UC San Diego UC San Diego Previously Published Works

Title

Low-temperature pressure-assisted liquid-metal printing for β -Ga2O3 thin-film transistors.

Permalink

https://escholarship.org/uc/item/45z1342k

Journal Nature Communications, 16(1)

Authors

Huang, Chi-Hsin Cyu, Ruei-Hong Chueh, Yu-Lun <u>et al.</u>

Publication Date

2025-02-22

DOI

10.1038/s41467-025-57200-2

Peer reviewed

Article

Low-temperature pressure-assisted liquidmetal printing for β -Ga₂O₃ thin-film transistors

Received: 22 September 2023

Accepted: 14 February 2025

Published online: 22 February 2025

Check for updates

Chi-Hsin Huang¹, Ruei-Hong Cyu², Yu-Lun Chueh ^{2,3,4,5} & Kenji Nomura ^{1,6}

Developing a low-temperature and cost-effective manufacturing process for energy-efficient and high-performance oxide-thin-film transistors (TFTs) is a crucial step toward advancing next-generation device applications such as wearable and flexible electronics. Among several methods, a liquid-metal printing technique is considered a promising, cost-effective oxide semiconductor process due to its inherent advantages, such as vacuum-free, lowthermal budget, high throughput, and scalability. In this study, we have developed a pressure-assisted liquid-metal printing technique enabling the low-temperature synthesis of polycrystalline wide bandgap n-channel oxide-TFTs. The n-channel oxide TFTs based on ~3 nm-thick β -Ga₂O₃ channels exhibited good TFT switching properties with a threshold voltage of ~3.8 V, a saturation mobility of ~11.7 cm² V⁻¹ s⁻¹, an on/off-current ratio of ~10⁹, and a subthreshold slope of ~163 mV/decade. We also observed p-channel operation in the off-stoichiometric GaO_x channels fabricated at high-pressure conditions. Toward oxide-based circuit applications, we developed highperformance oxide-TFT-based inverters. While our approach can promote the advancement of low-temperature manufacturing for oxide TFT technology, further work will be necessary to confirm the role of the applied pressure in the β -Ga₂O₃ crystallization process.

The demand for sustainable high-performance electronic devices and integrated circuits has been on the rise, especially for advanced device applications such as flexible displays¹, lightweight wearable electronics and sensors^{2,3}, electronic skin^{4,5}, Internet of Things⁶, and back-end-of-line (BEOL)-compatible transistors for three-dimensional highly-integrated circuits⁷. To develop these device applications, it is crucial to explore low-temperature semiconductor device fabrication processes that not only reduce production costs but also minimize the environmental impact of electronic devices, significantly contributing to the development of sustainable electronics. Therefore, enormous efforts to develop

semiconductor materials and device processing have been devoted to paving the way for the realization of environmentally friendly and cost-effective sustainable electronics⁸⁻¹⁶.

In recent years, a variety of semiconductor materials such as organics and oxide semiconductors have been developed for low-temperature and cost-effective processing such as solution process and ink-jet printing^{8-15,17}. Among these materials, ionic metal-oxide semiconductors, composed of post-transition metals, such as a-In-Ga-Zn-O (a-IGZO), In₂O₃, ZnO, SnO₂ have emerged as promising electronic materials to develop low-temperature processed and cost-effective,

¹Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA. ²Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan. ³College of Semiconductor Research, National Tsing-Hua University, Hsinchu 30013, Taiwan. ⁴Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan. ⁵ Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea. ⁶Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA.

ubiquitous electronics. In general, it is well-known that structural defects are a common issue in low-temperature material/device processing, causing severe degradation of electrical properties in conventional semiconductors. However, n-type oxide semiconductors are less sensitive to structural defects due to their unique electronic structure nature, and electron transport is not significantly hindered¹⁸. This advantage offers a great opportunity to develop low-temperature processed electronic devices.

Currently, there have been significant advancements in the development of solution-processed oxide-based thin-film transistors (oxide TFTs), leading to several high-performance n-channel oxide TFTs¹⁹⁻²⁵. However, an additional device fabrication process, such as post-thermal annealing, is generally required to achieve a device-quality semiconducting channel for TFT applications. A post-annealing process for oxides typically involves relatively high temperatures (usually between 300–600 °C) and can potentially negate the advantages of oxide semiconductors for low-temperature processed electronic devices^{19–22,24,25}. Additionally, precise control of the processing atmosphere is often necessary, even in solution processes^{25,26}. As a result, there is a high demand for oxide-based device processing at low temperatures, vacuum-free, and non-controlled atmospheric circumstances.

 β -gallium oxide (β -Ga₂O₃) is a well-known n-type wide-bandgap oxide semiconductor with ultra-large wide-bandgap nature of 4.4-4.9 eV and relatively high electron mobility of 100-200 cm² V⁻¹ s⁻¹²⁷⁻³⁰ for a wide field of device applications such as deep-ultraviolet (DUV) optoelectronics³¹⁻³³, power electronics operated in high-electrical fields (~MV/cm) and high-temperature devices (250-300 °C)³⁴⁻³⁶. The widebandgap nature of Ga₂O₃ is especially advantageous for designing devices capable of operating in harsh environments, such as extreme environment sensors, space-based applications, and terrestrial applications. Additionally, β -Ga₂O₃ is expected to develop energy-efficient operable transistors with low power consumption due to the lowchannel leakage (i.e., off-current) nature originating from the low intrinsic carrier concentration and wide-bandgap. Therefore, Ga₂O₃ holds promise as a semiconductor material for microelectronics, and several demonstrations of high-performance β -Ga₂O₃ transistors have already been achieved. Current research on β -Ga₂O₃ transistors primarily focuses on metal-oxide-semiconductor field-effect transistor (MOSFET) structures using bulk single-crystal wafers for power devices. However, developing β -Ga₂O₃ TFTs remains challenging due to the hightemperature process required for β -Ga₂O₃ film growth in conventional physical vapor deposition (PVD) methods. Nevertheless, lowtemperature processes for Ga2O3 TFTs show promise for various practical applications, such as low-power switching devices and solar-blind deep-ultraviolet photodetectors, originating from their ultra-widebandgap nature.

To date, high-performance Ga₂O₃ transistors use electron-doped single-crystal β -Ga₂O₃ channels, grown at a high temperature of >600 °C^{34,35,37,38} and prepared using a mechanical exfoliation process³⁹⁻⁴¹. Recently, amorphous and polycrystalline β -Ga₂O₃ TFTs have also been demonstrated, but achieving good TFT device operations still requires high process temperatures (200–900 °C)⁴²⁻⁴⁵. Moreover, the mobility of the previously reported Ga₂O₃ TFTs is only limited to <2 cm²V⁻¹S⁻¹, which is insufficient for high-performance device applications⁴²⁻⁴⁵. Thus, developing a low-temperature process for β -Ga₂O₃ thin film with high mobility is critical to advancing the field of ultra-wide-bandgap oxide semiconductor electronic devices. Furthermore, Ga₂O₃ emerges as the next promising channel material in TFT technology to significantly reduce off-current and power consumption compared to the currently commercialized a-IGZO TFTs.

In this work, we proposed a solvent-free, vacuum-free, pressureassisted liquid metal printing method called PA-LMP to fabricate highperformance β -Ga₂O₃ TFTs. The liquid metal printing (LMP) method is proposed for forming high-quality crystalline oxide materials with superior electrical properties compared to conventional physical/ chemical vapor thin-film deposition, owing to its distinct thermodynamic pathway^{17,46}. Therefore, the LMP method has already been demonstrated to develop high-mobility Indium-based n-channel oxide TFTs⁴⁶. Here, the PA-LMP approach, which involves applying external uniaxial pressure during oxide skin formation on liquid metal, is demonstrated to directly form high-quality polycrystalline β -Ga₂O₃ nanosheets at a low temperature of 150 °C under a non-controlled ambient air atmosphere, exhibiting high-performance transistor operation. The presented n-channel β -Ga₂O₃ TFTs exhibited superior electrical characteristics with a high saturation mobility of $11.7 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$, on/off-current ratio of ~ 10^9 , and subthreshold swing of 163 mV·decade⁻¹. Additionally, we successfully demonstrated a zero- V_{GS} -load NMOS inverter composed of enhancement/depletion-mode β -Ga₂O₃ TFTs and an all-oxide-based CMOS inverter using liquid metal printed p-channel SnO TFTs. These inverters operated in rail-to-rail full-swing voltage transfer operations with high voltage gain and low static power dissipation.

Results and discussion

Liquid-metal printing for Ga₂O₃ growth and characterization

A family of Ga₂O₃ is known to consist of five crystalline polymorphic forms, namely α , β , γ , δ , and ε phases. The monoclinic β -Ga₂O₃ phase is the most stable, with lattice constants of a = 1.22 nm, b = 0.30 nm, and c = 0.58 nm, and it exhibits good thermal stability^{33,47} (as shown in Fig. 1b). Figure 1b summarizes the transformation relationships among the five polymorphic forms of Ga₂O₃ under equilibrium conditions. The α and γ forms are metastable and can be easily formed from GaO hydrate and gel forms and then transform into β -phase. However, to achieve the β -Ga₂O₃ phase from these metastable phases, a hightemperature process of at least 300 °C is required⁴⁸.

On the other hand, β -Ga₂O₃ thin film can be directly grown by several PVD techniques, such as sputtering and pulsed laser deposition. However, high-temperature substrate heating and postdeposition annealing, typically over 500 °C, are required for the thinfilm growth process^{44,49}. These results imply that low-temperature growth of β -Ga₂O₃ is very challenging in conventional thin-film growth approaches. The liquid metal printing approach can form crystalline and highly conductive oxide films upon deposition, avoiding insulating intermediate phases and eliminating the thermodynamic barriers posed by precursor decomposition^{17,46}, which is typical in the traditional approach to growing β -Ga₂O₃. The traditional processes involve the formation of GaO hydrate and gel forms, which then transform into the β -phase during subsequent processing. (Fig. 1b) We believe the oxidation process of the liquid metal presents different thermodynamic barriers and pathways for growing oxide materials, potentially making it easier to produce high-quality oxide materials at lower process temperatures. Furthermore, additional energy sources to modify thermodynamic parameters for crystallization are needed to overcome this issue and lower the growth temperature. It is considered that the external environmental pressure is a typical fundamental thermodynamic parameter and kinetic variable for the free energy change of the materials system defined by $\Delta G_f = \Delta (E + PV)$ – $T\Delta S$, where E is internal energy, P is pressure, V is volume, T is temperature, and S is entropy⁵⁰. External pressure provides the opportunity to facilitate the crystallization process of oxide materials and lowers the crystallization temperature⁵¹. Therefore, we developed a method for low-temperature growth of β -Ga₂O₃ using external uniaxial pressure-liquid metal printing.

Figure 1c shows a schematic illustration of the PA-LMP method for fabricating Ga_2O_3 nanosheets under ambient air. The liquid-metal printing process was performed at 150 °C under an external uniaxial pressure of approximately 29 kPa. (printing process temperatures (T_p) of 150 °C and process pressure (P_p) of 29 kPa) The process steps are described in detail in Supplementary Fig. 1. The nanometer-thin surface oxide of liquid Ga is formed by self-limiting Cabrera–Mott

Fig. 1 | Pressure-assisted liquid-metal printing for β -Ga₂O₃ thin-film transistors (TFTs). a Motivation and purpose for developing low-temperature processed widebandgap Ga₂O₃ TFTs. **b** Phase transformation relationship for Ga₂O₃

polymorphism. **c** Schematic and photographs of the developed pressure-assisted liquid metal printing routes for Ga_2O_3 nanosheet fabrication.

oxidation in the ambient air to grow the Ga2O3 nanosheets. The optical microscope images and photographs of the Ga₂O₃ grown by previously reported LMP⁵²⁻⁵⁵ and the proposed PA-LMP method show that these samples exhibit large-scale Ga2O3 nanosheets with dimensions of around 1×1 cm². (Fig. 1a, b) (The schematic of the conventional LMP is shown in Supplementary Fig. 2) The entire laterally large Ga₂O₃ layer is continuous and without significant holes and cracks under optimized synthesis operations. (Supplementary Fig. 3 shows additional optical microscope images of the Ga₂O₃ nanosheet fabricated by the different printing process parameters.) Fig. 2a, b displays an atomic force microscopy (AFM) image of nanosheets grown by the previously reported and proposed PA-LMP method. The edge step-height profile of these nanosheets found that the thickness was approximately 3.0 nm for both films. The root-mean-square of surface roughness (R_{RMS}) of the Ga₂O₃ nanosheets grown using LMP and PA-LMP methods were measured to be approximately 1.16 and 0.64 nm, respectively, comparable to the $R_{\rm RMS}$ of SiO₂ surface (approximately 1.0 nm). These results suggest that the surface roughness of the Ga2O3 nanosheets is primarily due to the underlying SiO₂/Si substrate. Moreover, the presented Ga₂O₃ nanosheets were homogeneously and conformally grown on the substrates. Therefore, it was also confirmed that the developed pressure-assisted liquid-metal printing enabled the direct printing of large-area oxide materials onto various substrates, including SiO₂/Si, III-V (GaAs), transparent glass, paper, and flexible plastic substrates like PET, allowing the development of versatile applications by integrating diverse functional materials and substrates (Supplementary Fig. 4).

We fabricated inverted-staggered (i.e., bottom-gate and top-contact) structured TFT devices using the Ga₂O₃ nanosheets as a channel layer on thermally-oxidized SiO₂/p⁺-Si substrate (Fig. 2c). The SiO₂ served as the gate oxide with a thickness of 150 nm, while the p + -Si acted as the gate electrode. The ITO was used as the source/drain electrode for the Ga₂O₃ TFTs to form ohmic contacts^{33,56,57}. The channel width (*W*) and length (*L*) are 300 and 100 µm, respectively. The optical microscopy image and scanning electron microscopy (SEM) image of the Ga_2O_3 TFT are shown in Supplementary Fig. 5. Figure 2d displays the transfer characteristics of the Ga_2O_3 nanosheet TFTs fabricated by the conventional LMP and PA-LMP methods. In the case of the Ga_2O_3 fabricated by conventional LMP, the drain current was comparable to the background current level (-pA) of our device measurement system, and no TFT action was observed. This indicates that the LMP-grown nanosheet is electrically insulating.

In contrast, the PA-LMP-grown Ga₂O₃ channel (T_p of 150 °C and P_p of 129 kPa) exhibits desirable n-channel TFT operation, in which the drain currents ($|I_{DS}|$), measured by the drain-to-source voltage (V_{DS}), increase upon applying negative gate bias (V_{GS}). The output characteristics show ohmic liner-relations at small V_{DS} regions and clear pinch-off behavior with the I_{DS} saturation, confirming that the device operation follows the standard MOSFET model (Fig. 2e, f). The key TFT device characteristics (i.e., saturation mobility (μ_{sat}), linear mobility (μ_{lin}), s-value, and threshold voltage (V_{th})) were determined as the following: the μ_{sat} , μ_{lin} are estimated by the following equation, $|I_{DS}| = \mu_{sat} C_{ox} (\frac{W}{2L}) (V_{GS} - V_{th})^2$), $|I_{DS}| = \mu_{lin} C_{ox}(\frac{W}{L})[(V_{GS} - V_{th})V_{DS} - \frac{1}{2}V_{DS}^2]$, respectively, where C_{ox} is the gate insulator capacitance per unit area. The subthreshold slope (s-value) is extracted from the slope in the semi-logarithmic plot with $s = (\partial \log I_{DS} / \partial V_{GS})^{-1}$. A reasonable high μ_{sat} of 11.7 cm² V⁻¹ s⁻¹ and μ_{lin} of $10.2 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ was obtained for the PA-LMP fabricated TFTs. The V_{th} is determined from the intercept of a straight-line fit of the $(I_{DS})^{1/2} - V_{GS}$ plot and estimated 3.8 V, indicating that the device operates in enhancement mode, the "normally-off" operation, which is preferred for low-power analogs/digital circuits. The device also exhibits a small s-value of 163 mV dec⁻¹. Trap-state density (D_{it}) is estimated from the s-values using the following relation: $s = \frac{\log_e 10 \cdot k_B T}{e} \left[1 + \frac{eD_{it}}{C_{ox}} \right]$, where *e* is the elementary electric charge, k_B is the Boltzmann constant, T is the temperature, C_{ox} is the gate capacitance per area. The D_{it} was estimated as 2.53×10^{11} cm⁻² eV⁻¹, which is a significant improvement over previously reported Ga₂O₃ TFTs with the D_{it} of ~10¹² cm⁻² eV⁻¹. Importantly, the presented β -Ga₂O₃ nanosheet TFTs exhibit higher mobility and lower D_{it} with a much lower process temperature compared to reported Ga₂O₃ TFTs fabricated by traditional thin-film processing. (Supplementary Table 1 for the summary

Fig. 2 | **Material and electrical characterization of Ga₂O₃ films.** Optical microscopy image and atomic force microscopy (AFM) image (including cross-sectional step-height profile) for the Ga₂O₃ nanosheet were prepared by **a** conventional liquid metal printing (LMP) (without applied printing process pressure) and **b** pressure-assisted liquid metal printing (PA-LMP) methods (applied printing process temperatures (T_p) of 150 °C and printing process pressure (P_p) of 129 kPa). **c** Schematics of the device structure of the Ga₂O₃ TFTs prepared by LMP (T_p of 150 °C and P_p of 0 kgf/cm²)) and PA-LMP (T_p of 150 °C and P_p of 129 kPa) methods. (*I_{DS}*: drain currents, *V_{DS}*: drain-to-source voltage, *V_{GS}*: gate bias) The channel width (*W*)

and length (*L*) of TFTs are 300 and 100 μ m, respectively. **e** Magnified view of the linear regime in the typical output characteristics for the Ga₂O₃ TFT. **f** Typical output characteristics for the Ga₂O₃ TFT. **g** Low-magnified high-resolution transmission electron microscopy (HRTEM) images of the Ga₂O₃ nanosheet synthesized by the conventional LMP route. (without applied printing process pressure) Corresponding **h** high-magnified HRTEM image and **i** selected area electron diffraction (SAED) pattern. **j** Low-magnified HRTEM images of Ga₂O₃ nanosheet synthesized by the pressure-assisted liquid-metal route. (T_p of 150 °C and P_p of 129 kPa) Corresponding **k** high-magnified HRTEM image and **I** SAED pattern.

of device performance for previously reported Ga₂O₃ TFTs). These findings demonstrate that the PA-LMP method produces a high-quality Ga₂O₃ semiconductor nanosheet with a low defect density at a low temperature. In addition, the off-current density of the presented TFT devices is estimated to be -3×10^{-15} A/µm, limited by the measurement instrument. The leakage current of the Ga₂O₃ TFTs is potentially even lower than that of commercial a-IGZO TFT devices (~10⁻¹⁸ A/µm)^{58,59} in display applications. This is attributed to the wider bandgap nature of the Ga₂O₃ channel compared to a-IGZO. The device-to-device statistical analysis was also performed using ten working devices on a single substrate, and the results are summarized in Supplementary Fig. 6. The values of μ_{sat} of $5.02 \pm 4.05 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, average μ_{lin} of $4.21 \pm 5.87 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \text{ s}^{-1}$ and $\log(I_{on}/I_{off})$ of 8.09 ± 1.54 were obtained. (Supplementary Figs. 6-8 provides a detailed discussion about the device uniformity) Furthermore, we observed no significant degradation in the device characteristics of the Ga₂O₃ TFTs even after 1 month of storage under a noncontrolled ambient atmosphere, confirming the environmental stability of the devices in the air. (Supplementary Fig. 9 for the environmental stability test for Ga₂O₃ TFTs) The photoresponse property of Ga₂O₃ TFTs was also evaluated. No photoresponse was observed under green, blue, or UV light illuminations, which can be attributed to the wide-bandgap nature of Ga₂O₃. (Supplementary Fig. 10).

From the output characteristics, the output resistance of $1/g_d$, where g_d is the output conductance, was evaluated as >80 MΩ (Supplementary Fig. 11a). We also calculated the transconductance, g_m , and the $1/g_d$ as a function of V_{GS} (Supplementary Fig. 11b). The intrinsic gain, defined as $A_i = g_m/g_d$, was as high as 1000 at V_{DS} of 30 V, significantly higher than that for other source-gate oxide TFTs (Schottkybarrier oxide TFTs)⁶⁰⁻⁶² and one order of magnitude higher than that for traditional ohmic contact IGZO TFTs. (Supplementary Fig. 11c) The high gains in the presented Ga₂O₃ TFTs guarantee the high potential of amplifier applications with better circuit stability and signal-to-noise ratio in digital/analog circuits. Moreover, good current saturation characteristics are immune to wide-range V_{DS} modulation, making it a promising candidate for use as a current source in pixel circuits.

We also investigated the effect of post-thermal annealing atmospheres on the ultrathin Ga_2O_3 TFTs fabricated by PA-LMP. We observed that the TFT characteristics remain almost unchanged during annealing up to a temperature of 200 °C. (Supplementary Fig. 12). On the other hand, vacuum annealing (-10⁻⁵ mTorr) improved the TFT mobility but also exhibited a negative V_{th} shift with the increase of offcurrent. This observation is attributed to the generation of extra carriers due to oxygen vacancy formation by vacuum annealing.

We analyzed the nanosheet structures grown by the conventional LMP and PA-LMP methods using transmission electron microscopy (TEM). (TEM sample preparation procedure was provided in Supplementary Fig. 13). Figure 2g shows a TEM image of the Ga₂O₃ nanosheet grown by the LMP method. The corresponding high-resolution TEM (HRTEM) image reveals no lattice-ordered structure in the LMP-grown nanosheet. (Fig. 2h) The corresponding selected area electron diffraction (SAED) pattern confirmed a halo pattern (Fig. 2i). These observations conclude that the nanosheet prepared by the LMP method is amorphous, which agrees with the previous reports^{52,63–65}. Since amorphous semiconductor includes high-density tail-state defects¹³, the nanosheet is speculated to involve high-density electron traps. Therefore, the LMP-grown amorphous GaO_x exhibited a highresistive state. We also attempted to improve the electrical properties of the amorphous GaO_x nanosheets by post-thermal annealing at temperatures ranging from 200 to 400 °C. However, all devices remained insulative in the presented annealing conditions (Supplementary Fig. 14). To achieve a crystalline β -Ga₂O₃ phase, hightemperature annealing at temperatures above 500 °C may be required, as reported in previous studies44,64,66. However, hightemperature annealing may cause serious off-chemical

stoichiometry, which can lead to the failure of TFT operations in the presented nanosheet channel.

In contrast, a distinct polycrystalline feature, i.e., ordered atomic alignment, for the PA-LMP-grown nanosheet (Tp of 150 °C and Pp of 129 kPa) was observed in the TEM analysis (Fig. 2j and Supplementary Fig. 15a for the low-magnified HRTEM images of the Ga₂O₃ nanosheet). The HRTEM image also showed the crystal lattice structure with internal spacings of ~0.362 and ~0.263 nm, which are assigned to the (201) and (-111) planes, respectively, of the monoclinic β -Ga₂O₃ crystal structure. (Fig. 2k) The corresponding SAED pattern is shown in Fig. 2i, and exhibits spots indexed to the (-111), (201), (-311), and (400) crystal plans. The observation concluded that the presented nanosheet was randomly oriented β -Ga₂O₃ crystals. In addition, we performed TEM analysis for the Ga₂O₃ nanosheet prepared using the PA-LMP approach with different process parameters to confirm the direct growth of β -Ga₂O₃ crystals. (Supplementary Figs. 15-17) The energy-dispersive Xray spectroscopy (EDX) chemical composition mapping analysis also finds that the Ga/O atomic ratio is ~0.64, which is close to the ideal stoichiometry of Ga₂O₃ (Supplementary Fig. 18). The grazing incidence X-ray diffraction (GIXRD) analysis also supported that the Ga₂O₃ nanosheets prepared by the PA-LMP method were polycrystalline β -Ga₂O₃. (Supplementary Fig. 19) Furthermore, we conducted a crosssectional TEM analysis for the Ga₂O₃ nanosheet prepared using the liquid metal printing approach on the Si/SiO2. The Ga2O3 nanosheet was prepared at the T_p of 150 °C, and the P_p of 129 kPa, exhibiting a high TFT mobility of 8-10 cm² V⁻¹ s⁻¹. The distinct polycrystalline nature of β -Ga₂O₃ was also observed, providing direct evidence that liquid metal printing can grow crystalline β -Ga₂O₃ on the SiO₂/Si substrate. (Supplementary Figs. 20-23) X-ray photoemission spectroscopy (XPS) analysis also confirmed that this material is Ga₂O₃ with the Ga³⁺ oxidation state. (Supplementary Fig. 24) Based on the material characterization discussed above, the developed PA-LMP method directly grows crystalline β -Ga₂O₃ with device quality at less than 150 °C.

We believe that the nature of oxidation of the liquid metal has a different thermodynamic barrier and path to grow oxide materials. potentially making it easier to grow high-quality oxide materials at lower process temperatures compared to other material growth approaches^{17,46}. Crystalline β -Ga₂O₃ has been successfully synthesized using liquid metal printing, achieved by scraping off the parent metal layer under stress at a process temperature of 200 °C⁶⁷. Given that the thermodynamic barrier and pathway may lower when employing liquid metal oxidation, the crystallization of the Ga2O3 phase could potentially be induced by various factors, such as heat, pressure, and stress, to lower the energy barriers for crystallization. Furthermore, our findings suggest that the effects of nanoscale confinement crystal growth and external pressure may influence the facilitation of lowtemperature crystallization for the β -Ga₂O₃ phase. It is well-known that nucleation is the initial critical process for crystallization, so reducing the free energy barriers of the nucleation process is essential. In general, free energy barriers for homogeneous ($\triangle G_{homo}$) and heterogeneous nucleations ($\triangle G_{hetero}$) are defined by

$$\triangle G_{homo} = \frac{16\pi\gamma^3}{3(\triangle G)^2}, \ \triangle G_{hetero} = \triangle G_{homo} \cdot f(\theta) \tag{1}$$

Where γ is the interfacial energy, $f(\theta)$ is a function related to the contact angle θ as

$$f(\theta) = \frac{2 - 3\cos\theta + \cos^3\theta}{4} \tag{2}$$

In the developed PA-LMP method, the contact angle is nearly zero since the liquid metal is confined in the nanogap that two substrates generate. Confined systems are expected to influence crystallization processes significantly. As the volume of the confining space

Fig. 3 | **Effect of the printing process on Ga₂O₃ thin-film transistor (TFT) performance. a** Variation of transfer characteristics for the Ga₂O₃ nanosheet TFTs with different printing process temperatures under the uniaxial process pressure of 29 kPa. The corresponding TFT parameters **b** saturation mobility (μ_{sat}) and linear mobility (μ_{lin}), **c** subthreshold swing (*s*-value) and trap-state density (D_{it}), **d** threshold voltage (V_{th}), and **e** on/off current ratio are plotted. **f** Variation of

transfer characteristics for the Ga₂O₃ TFTs with different process pressures under the printing process temperature of 150 °C. Corresponding TFT parameters $\mathbf{g} \,\mu_{\text{sat}}$ and μ_{lin} , \mathbf{h} s-value and D_{it} , $\mathbf{i} \, V_{\text{th}}$, and \mathbf{j} on/off current ratio are plotted. (The error bars are calculated using data from 16 representative working devices across different samples).

decreases, the role of the surface becomes increasingly essential in such constrained systems. To achieve low-temperature growth, crystallization in highly confined nanogap regions (nanoscale confinement) provides the potential approach to lower the energy barrier by reducing the reactive surface area of nuclei, thereby decreasing the surface energy penalty. Additionally, nanoscale confinement can alter the nucleation pathway, further reducing the overall energy barrier^{68,69}. Previous studies have explored crystallization and phase transitions under nanoscale confinement⁷⁰⁻⁷². For example, ref. 70 applied classical nucleation theory to investigate nucleation during the solidification and melting phase transitions of germanium (Ge) within nanoscale confinement between two planar surfaces. They found that nanoscale confinement significantly lowers nucleation temperatures of Ge for solid and liquid phases, with a 5.0 nm gap reducing nucleation temperature by up to 350 °C. A detailed discussion of twodimensional crystallization in the nanoscale confined space is provided in the Supplementary Information.

Moreover, it is widely accepted that external pressure impacts the thermodynamic driving forces for crystal nucleation and growth processes. The pressure (*P*) on the nucleation activation energy, ΔG^{*} , can be expressed as⁷³

$$\left[\frac{\partial\left(\triangle G^{*}\right)}{\partial P}\right] = -\frac{32\pi\gamma^{3}}{3} \cdot \frac{\triangle V}{(\triangle G)^{3}}$$
(3)

where $\triangle G = G_c - G_a$, where G_c and G_a are the Gibbs free energies of the crystalline and amorphous phases, respectively, γ is interfacial energy and is not sensitive to pressure, $\triangle V = V_c - V_a$ is the difference in molar volumes between the crystalline phase (V_c) and the amorphous phase (V_a). Based on previously reported experimental results, the film density of amorphous GaO_x was determined to be approximately 5.2–5.4 g·cm⁻³(^{43,74}, which is lower than that of β -Ga₂O₃ (density of ~5.95 g·cm⁻³)^{75–77}. In this case, i.e., $\frac{\partial(\triangle G)}{\partial P} < 0$, since the smaller molar volume of the crystalline phase compared to the amorphous phase ($\triangle V = V_c - V_a < 0$) and $\triangle G = G_c - G_a < 0$. As a result, our findings suggest that pressure may also facilitate crystallization by potentially reducing the nucleation activation energy. Further research is required to validate the impact of applied pressure on the β -Ga₂O₃ crystallization process.

Effect of the printing process on Ga₂O₃ transistor performance Figure 3a illustrates the variation of transfer curves for the ultrathin β -Ga₂O₃ TFTs grown by the PA-LMP under a pressure of 29 kPa at different printing process temperatures. (Supplementary Fig. 26 shows the transfer characteristics for linear regions. ($V_{DS} = 1$ V)) When the device was fabricated at 30 °C, the channel showed highly conducting behavior with an electrical conductivity of 28.3 S·m⁻¹, but the device exhibited negligible field-effect current modulation. Decent TFT actions with an on/off current ratio of 10⁵ were observed when the channels were grown at process temperatures above 80 °C. Furthermore, the TFT mobility was improved by raising the process

temperature up to 150 °C. However, a large positive V_{th} shift to 58 V was observed for the device fabricated at a high temperature of 200 °C, indicating that the high-temperature process under a pressure of 29 kPa resulted in poor TFT performances. The fundamental device parameters (μ_{sat} , μ_{lin} , *s*-value, V_{th} , and on/off current ratio) are also summarized in Fig. 3b–e. The data were analyzed using 16 representative working devices from different samples.

The temperature at which the gallium oxide skin is formed on the Ga liquid surface metal plays a critical role in the oxidation process. Our observations suggest that the low process temperature of 30 °C may not be sufficient to form Ga₂O₃ phases using the PA-LMP method with a printing process pressure of 29 kPa, resulting in high-density Ga metal impurity and highly conductive channels in the as-prepared device. From the TEM characterization, it was also confirmed that Garich GaO_x with embedded Ga metal in nanosheets grown by the printing process at the T_p of 30 °C and the P_p of 29 kPa. (Supplementary Figs. 27, 28) Interestingly, the devices after post-thermal annealing showed p-channel operation with a small on/off current ratio (Supplementary Fig. 29). The origin of the p-type behavior is not vet clear. but we speculate that the p-type behavior may relate to low-valence Ga(I)-based metastable phases formation, such as GaO or Ga₂O, which possibly have the VBM structure composed of spherical Ga 5s orbital. Further investigation of the origin of p-type behavior in gallium oxide is required.

On the other hand, a high-temperature printing process of PA-LMP is sufficient to oxidize gallium metal and form the Ga₂O₃ phase. However, the poor TFT performance was observed during the hightemperature process at 200 °C under a pressure of 29 kPa (Tp of 200 °C and P_p of 29 kPa). This is primarily caused by (1) the carrier concentration, resulting from oxygen vacancies, can be decreased through compensation by oxygen-containing annealing effect in the ambient air atmosphere, while (2) excessive oxygen defects, which function as acceptor-like defects, are introduced during oxygencontaining air annealing. Therefore, the optimal process temperature for β -Ga₂O₃ TFTs was found to be between 80–150 °C for the PA-LMP. We also fabricated TFTs using the channels prepared by the conventional LMP method at high temperatures of up to 200 °C and measured their electrical characteristics. However, no field-effect modulation was observed in any of the devices, indicating that the Ga₂O₃ fabricated LMP is electrically insulating regardless of the process temperature. (Supplementary Fig. 30).

Figure 3f shows the variation in transfer characteristics with different process pressures, with a process temperature of 150 °C. (Supplementary Fig. 26 also shows the transfer characteristics for linear ($V_{\rm DS}$ = 1 V) region.) The performance of TFTs was found to improve

with increasing external pressure, with the most significant improvement observed at uniaxial pressure of 129 kPa. The most optimized TFT switching properties were achieved under this condition, with high μ_{sat} of 11.7 cm² V⁻¹ s⁻¹, large on/off current ratio of ~10⁹, and small subthreshold slope of 137 mV·decade⁻¹, and V_{th} of ~4 V. The device exhibits clockwise hysteresis originating from electron traps, but the hysteresis window was improved to 0.1V under high-pressure conditions (Supplementary Fig. 31). The key device parameters (μ_{sat} , μ_{lin} , svalue, V_{th}, and on/off current ratio) are also summarized in Fig. 3g-j. The data were analyzed using 16 representative working devices from different samples. The average values of μ_{sat} of 8.24 ± 1.78 cm² V⁻¹ s⁻¹, μ_{lin} of 7.34 ± 1.96 cm² V⁻¹ s⁻¹, s-values of 125 ± 23.6 mV dec⁻¹, V_{th} of 4.73 ± 1.10 V, and $\log(I_{on}/I_{off})$ of 9.22 ± 0.43 were obtained under the temperature of 150 °C and the pressure of 129 kPa. (T_p of 150 °C and P_p of 129 kPa) At high-pressure conditions (206 kPa), the device operation switched from n-channel to p-channel devices, suggesting the formation of low valance Ga(I) under high-pressure conditions. The optical microscope images of these samples with different process conditions. which we investigated for their electrical properties, are also shown in Supplementary Fig. 3. Furthermore, the AFM image reveals the effect of the applied pressure on the surface morphology, as discussed in the Supplementary Figs. 32, 33.

Figure 4 summarizes the TFT operations fabricated by different process pressures and temperature conditions in the PA-LMP route. All The transfer characteristics are presented in Supplementary Fig. 34. Regardless of the nanosheet growth conditions, conventional LMPgrown nanosheets were electrically insulating amorphous gallium oxide, which was in good agreement with previous reports^{64,78}. In contrast, the PA-LMP directly synthesized a semiconducting polycrystalline β -Ga₂O₃ channel in the range of the T_p of 80–200 °C with the $P_{\rm p}$ of 29 kPa and in the range of the $T_{\rm p}$ 150–200 °C with the $P_{\rm p}$ of 129 kPa. The polycrystalline nature of β -Ga₂O₃ is confirmed by both GIXRD and TEM characterization. (Supplementary Figs. 15-17, 19). The performance of TFT degraded with a positive threshold voltage shift during the high-temperature process at 200 °C under pressures of 29 and 129 kPa, respectively. The reason is suspected to be a decrease in carrier concentration originating from oxygen vacancies and the introduction of excessive oxygen defects functioning as acceptor-like defects during annealing in oxygen-containing air. Interestingly, amorphous films grown at high pressure of 206 kPa with the process temperature of 150 and 200 °C exhibited p-type behavior. We suspect these materials result from the slight oxidation of Ga metal, leading to off-stoichiometric GaOx materials. These materials might include lowvalence Ga(I)-based metastable phases, possibly with a VBM structure composed of spherical Ga 5s orbitals contributing to the *p*-type

Fig. 5 | **TCAD simulation of Ga₂O₃ thin-film transistors (TFTs).** Comparison of measured (symbols) and simulated (lines) transfer curves with $V_{DS} = 20$ V for the Ga₂O₃ TFTs with different printing process conditions. (**a** T_p of 80 °C, P_p of 29 kPa, **b** T_p of 150 °C, P_p of 29 kPa, **c** T_p of 150 °C, P_p of 129 kPa). **d** Corresponding in-gap density of states (DOS) profiles for the Ga₂O₃ nanosheet channels for different printing process conditions. Fermi level (*E_F*) lies at *E_c* – *E_F* = 0.23 eV. (*E_c*: conduction band edge energy, CB:conduction band.) TCAD simulations were conducted to

extract the in-gap defect DOS profile in Ga₂O₃ TFTs. The measured I-V curves were accurately modeled by optimizing only the acceptor-like defects (electron trap states) using a Gaussian distribution, $g_G(E) = N_{GD} \cdot \exp\left\{-\left[\frac{(E_c - E_{GA})}{W_{GD}}\right]^2\right\}$, where N_{GD} is the state densities at the central energy E_{GA} of the Gaussian distribution, E_C is the conduction band edge energy for the reference zero point, E_{GA} is the central energy of $g_G(E)$, W_{GD} is the characteristic decay energy.

behavior. Further study is required to investigate these materials. We notice that there are reports of Ga ultrathin film growth using a similar liquid metal printing method^{79,80}. These results corroborate our findings that liquid metal printing can form off-stoichiometric GaO_x through slight oxidation of Ga metal under an air atmosphere.

To gain further insight into the variation of TFT characteristics, we performed the Technology Computer-Aided Design (TCAD) device simulation to extract the subgap defect density of the state (DOS) profile. Figure 5a-c shows the measured and simulated transfer curves of Ga_2O_3 TFTs with different process conditions. Only parameter optimization for the subgap acceptor-like defect density of state (DOS) can reproduce the measured transfer curves, indicating that the variation in TFT characteristics under different process parameters mainly originates from the change in subgap defect DOS in the Ga_2O_3 channels. The extracted subgap defect DOS near the conduction band (CB) of Ga_2O_3 TFTs under different process conditions are shown in Fig. 5d. (Supplementary Table 3 provides the parameters of the TFT simulations). We found that all the measured *I-V* curves were reproduced by only optimizing the acceptor-like defect (i.e., electron trap defect) with Gaussian distribution type,

$$g_G(E) = N_{GD} \cdot \exp\left\{-\left[\frac{(E_c - E_{GA})}{W_{GD}}\right]^2\right\}$$
(4)

where N_{GD} is the state densities at the central energy E_{GA} of the Gaussian distribution, *Ec* is the conduction band edge energy for the reference zero point, E_{GA} is the central energy of $g_G(E)$, W_{GD} is the characteristic decay energy. Due to the polycrystalline nature of the Ga₂O₃, we opted not to employ the acceptor-like exponential DOS to fit the measured *I-V* curves that are used for the tail states near the conduction for the amorphous silicon (a-Si:H) and amorphous IGZO⁸¹. All the devices show a low carrier concentration of 5.5×10^{14} cm³ due to the ultra-wide gap nature of Ga₂O₃.

We observed shallow acceptor-like defect states located at 0.15 eV below the conduction band (Ec – 0.15 eV) in the Ga₂O₃. TFTs. These acceptor-like defect states primarily function as electron traps in the n-channel oxide TFT devices. The physical origin of these shallow acceptor-like defect states remains elusive; however, we suspect these defects result from Ga vacancies or weakly bonded (excess) oxygen defects^{43,82,83}. The Ga₂O₃ TFT fabricated with the low-pressure condition (T_p of 80 °C, P_p of 29 kPa) exhibited a relatively high density of

shallow acceptor-like defect states of 2×10^{18} cm⁻³ eV⁻¹ and remained unchanged even in the device fabricated at 150 °C. (150 °C, 29 kPa) On the other hand, we found that the high-pressure condition (150 °C, 129 kPa) effectively reduced the shallow subgap acceptor-like defect DOS to 5×10^{17} cm⁻³ eV⁻¹, resulting in better TFT performances with higher mobility. This acceptor-like defect reduction makes moving the Fermi level toward the mobility edge easier, achieving band-like conduction and explaining the higher mobilities observed in these TFTs.

We also found that the shallow subgap defect DOS significantly impacts the on-current and *s*-value but does not affect the turn-on voltage, resulting from the enhancement mode operation. The $D_{\rm it}$, estimated from the *s*-values of the experimental transfer characteristics, are 5.37×10^{11} cm⁻² eV⁻¹ (80 °C, 29 kPa), 4.78×10^{11} cm⁻² eV⁻¹ (150 °C, 29 kPa), and 1.93×10^{11} cm⁻² eV⁻¹ (150 °C, 129 kPa) for these three process conditions, respectively. The shallow subgap defect DOS for all these three conditions we attained from the TCAD simulation correspond to area densities of 6×10^{11} cm⁻² eV⁻¹ (80 °C, 29 kPa), 4.5×10^{11} cm⁻² eV⁻¹ (150 °C, 29 kPa) and 1.8×10^{11} cm⁻² eV⁻¹ (150 °C, 129 kPa), respectively, considering the Ga₂O₃ thickness of 3 nm. These values are consistent with those calculated from experimental *s*-values.

Circuits based on Ga₂O₃ thin-film transistors

Since ultrathin oxide channels improve gate controllability and low-off current characteristics of the TFTs, developing a low-power inverter is highly expected for next-generation energy-efficient oxide electronics. We developed oxide-TFT-based inverter circuits, including NMOS and CMOS circuits, using ultrathin Ga₂O₃ TFTs. The Ga₂O₃ nanosheets used for the NMOS and CMOS circuits demonstration were grown using the T_p of 150 °C and P_p of 29 kPa. Figure 6a shows the typical transfer characteristics for a zero- V_{GS} NMOS, consisting of the enhancement and depletion-mode TFTs as the driver and load, respectively. The depletion-mode TFTs were fabricated by performing post-thermal annealing under vacuum conditions at 100°C. The effect of vacuum annealing is discussed in Supplementary Fig. 12. The depletion-mode TFTs showed the μ_{sat} of 0.8 cm² V⁻¹ s⁻¹, *s*-value of 1.6 V·decade⁻¹, V_{th} of -4.5 V, and on/off current ratio of ~107. The corresponding TFT performances for enhancement-mode TFTs show the μ_{sat} of 2.6 cm² V⁻¹ s⁻¹, s-value of 0.28 mV decade⁻¹, $V_{\rm th}$ of 6 V, and on/off current ratio of ~10⁸, respectively. Figure 6b shows a typical voltage transfer characteristic (VTC) of the NMOS inverter, which is the V_{out} as a function of the V_{in} with V_{DD} . The inset illustrates the equivalent circuit diagram of the

Fig. 6 | Ga₂O₃ transistor-based N-channel Metal-Oxide-Semiconductor (NMOS) inverter. An NMOS inverter is a logic circuit built using an n-channel MOSFET (NMOS transistor) and a pull-up resistor or load transistor. a Typical transfer characteristics for the depletion-mode and enhancement-mode Ga₂O₃ TFTs. (The Ga₂O₃ nanosheets used for the NMOS circuits demonstration were grown using the T_p of 150 °C, P_p of 29 kPa. The depletion-mode TFTs were fabricated by performing post-thermal annealing under vacuum conditions at 100 °C.) **b** Voltage transfer

characteristic (VTC) of the Ga₂O₃ TFT-based NMOS inverter. **c** corresponding voltage gains of the Ga₂O₃ TFT-based NMOS inverter. Inset: schematic circuit diagram of the zero- V_{GS} -load NMOS inverter composed of enhancement/depletion-mode Ga₂O₃ TFTs. **d** Corresponding supply currents (I_{DD}). **e** Output-power consumption (P_{out}) for the Ga₂O₃ TFT-based NMOS inverter. **f** Butterfly curves for noise margin (NM) of the Ga₂O₃ TFT-based NMOS inverter. (V_{in} : input voltage, V_{out} : output voltage, V_{DD} : supply voltage).

zero-V_{GS}-load NMOS inverter. The output voltage switches from high to low, confirming a clear inverting action with the full-voltage swing. The average voltage gain of the NMOS inverters was 16.9, 45.1, 64.0, 80.5, and 106.4 at V_{DD} from 5 to 25 V (Fig. 6c), respectively, comparable to the previously reported oxide-NMOS inverters⁸⁴⁻⁸⁶ (Supplementary Fig. 35 for statistical results on the gain of the NMOS inverter, and Supplementary Table 4 for the NMOS inverter summary) Fig. 6d also shows the corresponding supply currents (I_{DD}) as functions of V_{in} . The static currents ($V_{in} = 0$ V or $V_{in} = V_{DD}$) are lower than 2.4 nA, and the static power dissipation, which is defined by $P_{\text{static}} = V_{\text{DD}}$ (I_{static low}+I_{static high})/2, is 28 nW per logic gate at V_{DD} of 25 V. The P_{out} is estimated as <43 nW per logic gate, confirming that a nanowatt power source can operate the presented inverter (Fig. 6e). The noise margin (NM) is estimated using the maximum equal criterion method and obtained at 57.2% of the ideal value ($V_{DD}/2$). This indicates that the device has sufficient NM for most static logic applications (Fig. 6f). The dynamic switching was also demonstrated to indicate the potential for circuit applications by further optimizing the dimensions of the devices. (Supplementary Fig. 36). The enhancement-load inverter, which consists of two enhancement-mode TFTs, was also demonstrated (Supplementary Fig. 37 for the detailed inverter performance).

All-oxide-CMOS inverter circuits were also developed using n-type ultrathin Ga₂O₃ TFT and *p*-type ultrathin SnO TFT, which is also fabricated by a liquid-metal printing technique. The detailed fabrication procedure of *p*-channel SnO TFTs can be found in our previous work⁵⁵. The typical transfer characteristics of both the ultrathin *p*-channel SnO TFT and n-channel Ga₂O₃ TFT used in the oxide-TFT-based CMOS inverter are shown in Fig. 7a. The n-channel Ga₂O₃ TFT exhibits the μ_{sat} of 1.5 cm² V⁻¹ s⁻¹, *s*-value of 0.27 V dec.⁻¹, *V*_{th} of 6 V, and on/off current ratio of ~108. The corresponding TFT performances for p-channel SnO TFT are the μ_{sat} of 0.2 cm² V⁻¹ s⁻¹, s-value of 1.9 V-decade⁻¹, V_{th} of -20 V, and the on/off current ratio of ~105, respectively. The inset of Fig. 7b is the schematic circuit diagram of the CMOS inverters. Figure 7b presents the typical voltage transfer characteristic of the CMOS inverter, where the output voltage switches from high to low, confirming a clear inverting action with the full-voltage swing. The average voltage gain of the inverter was estimated as 38, 50, 79, 110, and 149 at V_{DD} from 10 to 50 V (Fig. 7c), respectively, which is nearly comparable to the previously reported values for oxide-based CMOS inverters⁸⁷⁻⁹⁰. (Supplementary Fig. 35 for statistical results on the gain of the CMOS inverter, and Supplementary Table 5 for the CMOS inverter summary) The I_{DD} of the ultrathin p-SnO/n-Ga₂O₃ TFT-based CMOS inverter as a function of $V_{\rm in}$ is shown in Fig. 7d. The static currents are lower than 1 nA, leading to the low static power dissipation of 20 nW per logic gate at a V_{DD} of 50 V. The Pout is smaller than 84 nW per logic gate, which indicates that this CMOS inverter can be operated by the nanowatt power source. (Fig. 7e) This demonstrates the high potential of atomically thin oxide-TFT-based inverter circuits for next-generation energy-efficient thinfilm electronics.

The uniaxial pressure-assisted liquid-metal printing approach using nanoscale confinement growth was developed for lowtemperature processed n-channel β -Ga₂O₃ TFTs for energy-efficient and cost-effective next-generation ubiquitous sustainable electronics. The presented growth method successfully fabricated device-quality crystalline β -Ga₂O₃ nanosheet at low temperatures (<150 °C) under vacuum-free, solvent-free, and non-controlled ambient air conditions. The n-channel TFTs based on β -Ga₂O₃ nanosheet exhibited high performance with a reasonably high mobility of 11.7 cm² V⁻¹ s⁻¹, an on/off-

Fig. 7 | N-Ga₂O₃/p-SnO transistor-based complementary metal-oxidesemiconductor (CMOS) inverter. A CMOS inverter is a logic circuit consisting of a p-channel MOSFET (PMOS) as the pull-up device and an n-channel MOSFET (NMOS) as the pull-down device. **a** Typical transfer characteristics of the ultrathin p-channel SnO TFT with $V_{DS} = -20$ V and n-channel Ga₂O₃ TFTs at $V_{DS} = 20$ V. (The Ga₂O₃ nanosheets used for the CMOS circuits demonstration were grown using the T_p of

150 °C, P_p of 29 kPa.) **b** Voltage transfer characteristics (VTC). **c** Corresponding voltage gains for the *p*-SnO/*n*-Ga₂O₃ TFT-based CMOS inverter. Inset: schematic of the corresponding oxide-TFT-based CMOS inverter circuit. **d** Corresponding supply currents (I_{DD}). **e** Output-power consumption (P_{out}) for *p*-SnO/*n*-Ga₂O₃ TFT-based CMOS inverter.

current ratio of -10⁹, and a small subthreshold slope of 163 mV-decade⁻¹, which is the best device performance for low-temperature-processed Ga₂O₃ TFTs to date. We also observed p-channel operation in the off-stoichiometric GaO_x channels fabricated at high-pressure conditions. Toward the oxide-based circuit application, we demonstrated low-power and all-oxide-based zero- V_{CS} -load NMOS and CMOS inverters using metal-liquid printing derived Ga₂O₃ nanosheet channel oxide-TFTs. These inverters showed full-voltage swing characteristics and high energy-efficient operation with low static power dissipations. Our work demonstrates the high potential of β -Ga₂O₃ for high-performance n-channel oxide TFTs and offers a promising approach for the development of sustainable oxide-TFT technology for next-generation electronics.

Methods

Synthesis of gallium oxide nanosheet

Atomically thin Ga_2O_3 nanosheets were fabricated by printing the oxide skin from the liquid gallium (Ga) metal. The liquid Ga metal was prepared by melting elemental Ga (99.99% purity, Shot Metals) inside a glass vial on a hot plate at 50 °C in ambient air.

To fabricate the nanosheets, a liquid droplet of the liquid Ga metal (with a size of -1 to -5 mm) was placed on a SiO₂/Si substrate using a pipette, and the substrate with liquid metal droplet was heated to the desired process temperature (80-200 °C), which is above the melting point of the liquid Ga metal. The surface of a SiO₂/Si substrate was treated with O_2 plasma (rf power = 70 W for 1 min) and preheated to the desired process temperature (80-200 °C) before a liquid Ga droplet was dropped on it. During the printing process, a second substrate (also treated with O₂ plasma and preheated to process temperature) was pressed onto the center of the droplet to spread the liquid alloy homogeneously between the two substrates. The two substrates were kept at process temperature (80-200 °C) and under uniaxial vertical pressure for the gallium oxide nanosheet growth for 3 min. When the printing process time was too long (>10 min), the channel exhibited insulating behavior, rendering the TFTs inoperative. (Supplementary Fig. 38) After the squeezing step with uniaxial vertical pressure, the top substrate was lifted vertically and separated without lateral slippage. Then, homogeneous ultrathin Ga₂O₃ nanosheets were exfoliated onto both substrates. The strong van der Waals bond between the oxide skin and the substrate facilitated the delamination of the oxide.

Metal inclusions attached to the exfoliated nanosheets could be removed by gently rubbing the SiO₂/Si wafer, which was submerged in ethanol, with a soft wiping tool (cotton bud). The Ga₂O₃ nanosheets were found to be firmly attached to the SiO₂ surface due to strong van der Waals adhesion between the nanosheets and the substrate, and they remained intact throughout the cleaning procedure. The large area atomically thin Ga₂O₃ nanosheets exceeding several centimeters in lateral dimensions could be fabricated efficiently using this method.

TEM sample preparation procedure

First, the TEM grid was placed on top of the glass slide and preheated to process temperature (80–200 °C), which is above the melting point of the liquid Ga metal. Note that we did not perform O_2 plasma treatment for the TEM sample, as we did for the Ga_2O_3 nanosheet on the SiO2/Si substrate.

To fabricate the nanosheets, a liquid droplet of Ga metal (with a size of <1 mm) was pipetted onto a TEM grid, and the TEM grid/glass slide with the liquid metal droplet was kept heated at 50 °C to prevent the liquid Ga from solidifying. During the printing process, we used SiO₂/Si as the top substrate (preheated to process temperature (80-200 °C)), pressing it onto the center of the droplet to spread the liquid alloy homogeneously between the TEM grid and SiO₂/Si substrates. The TEM grid and SiO₂/Si substrates were kept at process temperature (80-200 °C) under uniaxial vertical pressure for gallium oxide nanosheet growth for 3 min.

After the squeezing step with uniaxial vertical pressure, the top SiO₂/Si substrate and TEM grid were carefully separated. We then used a soft wiping tool (cotton bud) to remove Ga liquid inclusions directly by gentle rubbing. It is important to note that we did not immerse the sample in ethanol, as we did for the Ga_2O_3 nanosheet on the SiO₂/Si substrate. Following the printing process, we observed that most carbon films were broken. During TEM analysis, we looked for nanosheets suspended and connected/supported by the bar of the TEM grid for detailed analysis. (Supplementary Fig. 13).

Materials characterization

The surface structure of the nanosheet was analyzed using both optical microscopy and atomic force microscopy (AFM). The nanosheet thickness was determined by measuring the height of the patterned edge using AFM. The detailed crystal structures of the Ga_2O_3 nanosheets were examined using high-resolution transmission electron microscopy (HRTEM) with an acceleration voltage of 200 keV. The selected area electron diffraction (SAED) pattern was obtained using fast Fourier transform (FFT).

Article

Thin-film transistor fabrication and electrical characterization Thin-film transistors (TFTs) were fabricated with inverted-staggered structures, i.e., bottom-gate and top source/drain contacts. The 150-nmthick thermal-oxidized SiO_2/n^+ -Si substrates were used as the gate oxide and gate electrode. The channel area was patterned using photolithography and defined by chemical wet-etching with 1 mol/l of diluted HNO₃ solution. The source and drain electrodes were made of ohmic contact 40-nm-thick indium tin oxide (ITO), which was deposited by pulsed laser deposition (PLD) with an oxygen partial pressure of 2×10^{-4} Pa at room temperature. The channel length (*L*) and the width (*W*), which are defined by metal mask processing, were 100 and 300 µm, respectively. The electrical characteristics were measured using the semiconductor parameter analyzer at room temperature in the dark.

Device simulation

Two-dimensional simulations of the TFTs cross-section were conducted using a 2D ATLAS TCAD simulator (Silvaco) to gain insight into the electronic and defect structures of TFTs. The simulations utilized the same configuration and materials as the TFT devices. The parameters used in the simulations are listed in Supplementary Table 3. The detailed code for the TCAD simulation is available upon request.

Data availability

Relevant data supporting the key findings of this study are available within the article and the Supplementary Information file. All raw data generated during the current study are available from the corresponding authors upon request.

References

- 1. Heremans, P. et al. Mechanical and electronic properties of thinfilm transistors on plastic, and their integration in flexible electronic applications. *Adv. Mater.* **28**, 4266–4282 (2016).
- Sun, Y. & Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 19, 1897–1916 (2007).
- Gao, W., Ota, H., Kiriya, D., Takei, K. & Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 52, 523–533 (2019).
- Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).
- Hammock, M. L., Chortos, A., Tee, B. C. K., Tok, J. B. H. & Bao, Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. *Adv. Mater.* 25, 5997–6038 (2013).
- Papadopoulos, N. et al. Touchscreen tags based on thin-film electronics for the internet of everything. Nat. Electron. 2, 606–611 (2019).
- Son, Y., Frost, B., Zhao, Y. & Peterson, R. L. Monolithic integration of high-voltage thin-film electronics on low-voltage integrated circuits using a solution process. *Nat. Electron.* 2, 540–548 (2019).
- 8. Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. *Science* **290**, 2123–2126 (2000).
- Klauk, H., Zschieschang, U., Pflaum, J. & Halik, M. Ultralow-power organic complementary circuits. *Nature* 445, 745–748 (2007).
- 10. Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. *Nature* **457**, 679–686 (2009).
- Gelinck, G., Heremans, P., Nomoto, K. & Anthopoulos, T. D. Organic transistors in optical displays and microelectronic applications. *Adv. Mater.* 22, 3778–3798 (2010).
- Sirringhaus, H. 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. *Adv. Mater.* 26, 1319–1335 (2014).
- Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. *Nature* 432, 488–492 (2004).
- Fortunato, E., Barquinha, P. & Martins, R. Oxide semiconductor thinfilm transistors: a review of recent advances. *Adv. Mater.* 24, 2945–2986 (2012).

- Wang, Z., Nayak, P. K., Caraveo-Frescas, J. A. & Alshareef, H. N. Recent developments in p-Type oxide semiconductor materials and devices. *Adv. Mater.* 28, 3831–3892 (2016).
- 16. Hosono, H. How we made the IGZO transistor. *Nat. Electron.* **1**, 428–428 (2018).
- 17. Scheideler, W. J. & Subramanian, V. How to print high-mobility metal oxide transistors—Recent advances in ink design, processing, and device engineering. *Appl. Phys. Lett.* **121**, 220502 (2022).
- Kamiya, T. & Hosono, H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2, 15–22 (2010).
- Lee, D. H., Chang, Y. J., Herman, G. S. & Chang, C. H. A general route to printable high-mobility transparent amorphous oxide semiconductors. *Adv. Mater.* **19**, 843–847 (2007).
- 20. Kim, M.-G. et al. High-performance solution-processed amorphous zinc- indium-tin oxide thin-film transistors. J. Am. Chem. Soc. **132**, 10352–10364 (2010).
- 21. Han, S.-Y., Herman, G. S. & Chang, C.-h Low-temperature, highperformance, solution-processed indium oxide thin-film transistors. *J. Am. Chem.* Soc. **133**, 5166–5169 (2011).
- Kim, M.-G., Kanatzidis, M. G., Facchetti, A. & Marks, T. J. Lowtemperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. *Nat. Mater.* **10**, 382–388 (2011).
- 23. Banger, K. et al. Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a 'sol-gel on chip'process. *Nat. Mater.* **10**, 45–50 (2011).
- Rim, Y. S. et al. Boost up mobility of solution-processed metal oxide thin-film transistors via confining structure on electron pathways. *Adv. Mater.* 26, 4273–4278 (2014).
- Xu, W., Li, H., Xu, J.-B. & Wang, L. Recent advances of solutionprocessed metal oxide thin-film transistors. ACS Appl. Mater. Interfaces 10, 25878–25901 (2018).
- Thomas, S. R., Pattanasattayavong, P. & Anthopoulos, T. D. Solutionprocessable metal oxide semiconductors for thin-film transistor applications. *Chem. Soc. Rev.* 42, 6910–6923 (2013).
- 27. Lorenz, M., Woods, J. & Gambino, R. Some electrical properties of the semiconductor β -Ga₂O₃. J. Phys. Chem. Solids **28**, 403–404 (1967).
- 28. Ma, N. et al. Intrinsic electron mobility limits in β Ga₂O₃. Appl. Phys. Lett. **109**, 212101 (2016).
- 29. Oishi, T., Koga, Y., Harada, K. & Kasu, M. High-mobility β Ga₂O₃ single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. *Appl. Phys. Express* **8**, 031101 (2015).
- Tsao, J. et al. Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv. Electron. Mater. 4, 1600501 (2018).
- 31. Tippins, H. Optical absorption and photoconductivity in the band edge of β Ga₂O₃. *Phys. Rev.* **140**, A316 (1965).
- 32. Orita, M., Ohta, H., Hirano, M. & Hosono, H. Deep-ultraviolet transparent conductive β -Ga₂O₃ thin films. *Appl. Phys. Lett.* **77**, 4166–4168 (2000).
- Pearton, S. et al. A review of Ga₂O₃ materials, processing, and devices. Appl. Physics Rev. 5, 011301 (2018).
- 34. Higashiwaki, M. et al. Depletion-mode Ga_2O_3 metal-oxidesemiconductor field-effect transistors on β Ga_2O_3 (010) substrates and temperature dependence of their device characteristics. *Appl. Phys. Lett.* **103**, 123511 (2013).
- Wong, M. H., Sasaki, K., Kuramata, A., Yamakoshi, S. & Higashiwaki, M. Field-plated Ga₂O₃ MOSFETs with a breakdown voltage of over 750 V. *IEEE Electron Device Lett.* **37**, 212–215 (2015).
- Lei, D., Han, K., Wu, Y., Liu, Z. & Gong, X. Investigation on temperature dependent DC characteristics of gallium oxide metaloxide-semiconductor field-effect transistors from 25 °C to 300 °C. *Appl. Phys. Express* **12**, 041001 (2019).
- Higashiwaki, M., Sasaki, K., Kuramata, A., Masui, T. & Yamakoshi, S. Gallium oxide (Ga₂O₃) metal-semiconductor field-effect transistors

on single-crystal β - Ga_2O_3 (010) substrates. Appl. Phys. Lett. **100**, 013504 (2012).

- 38. Chabak, K. D. et al. Enhancement-mode Ga_2O_3 wrap-gate fin fieldeffect transistors on native (100) β - Ga_2O_3 substrate with high breakdown voltage. *Appl. Phys. Lett.* **109**, 213501 (2016).
- 39. Hwang, W. S. et al. High-voltage field effect transistors with widebandgap β - Ga₂O₃ nanomembranes. *Appl. Phys. Lett.* **104**, 203111 (2014).
- Zhou, H., Maize, K., Qiu, G., Shakouri, A. & Ye, P. D. β-Ga₂O₃ on insulator field-effect transistors with drain currents exceeding 1.5 A/ mm and their self-heating effect. *Appl. Phys. Lett.* **111**, 092102 (2017).
- Zhou, H. et al. High-performance depletion/enhancement-mode β-Ga₂O₃ on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm. *IEEE Electron Device Lett.* **38**, 103–106 (2016).
- Thomas, S. R. et al. High electron mobility thin-film transistors based on Ga₂O₃ grown by atmospheric ultrasonic spray pyrolysis at low temperatures. *Appl. Phys. Lett.* **105**, 092105 (2014).
- 43. Kim, J. et al. Conversion of an ultra-wide bandgap amorphous oxide insulator to a semiconductor. *NPG Asia Mater.* **9**, e359 (2017).
- Yoon, Y., Kim, M. J., Cho, B. J., Shin, M. & Hwang, W. S. An 8-nm-thick Sn-doped polycrystalline β- Ga₂O₃ MOSFET with a "normally off" operation. *Appl. Phys. Lett.* **119**, 122103 (2021).
- Purnawati, D., Bermundo, J. P. & Uraoka, Y. Insulator-tosemiconductor conversion of solution-processed ultra-wide bandgap amorphous gallium oxide via hydrogen annealing. *Appl. Phys. Express* 15, 024003 (2022).
- Hamlin, A. B., Ye, Y., Huddy, J. E., Rahman, M. S. & Scheideler, W. J. 2D transistors rapidly printed from the crystalline oxide skin of molten indium. *npj 2D Mater. Appl.* 6, 16 (2022).
- Zhang, J., Shi, J., Qi, D.-C., Chen, L. & Zhang, K. H. Recent progress on the electronic structure, defect, and doping properties of Ga₂O₃. *APL Mater.* 8, 020906 (2020).
- Roy, R., Hill, V. G. & Osborn, E. F. Polymorphism of Ga₂O₃ and the System Ga₂O₃—H₂O. J. Am. Chem. Soc. **74**, 719–722 (1952).
- Matsuzaki, K. et al. Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga₂O₃. *Appl. Phys. Lett.* 88, 092106 (2006).
- 50. Gaskell, D. R. & Laughlin, D. E. Introduction to the Thermodynamics of Materials (CRC Press, 2017).
- Adrjanowicz, K., Grzybowski, A., Grzybowska, K., Pionteck, J. & Paluch, M. Effect of high pressure on crystallization kinetics of van der Waals liquid: an experimental and theoretical study. *Crystal Growth Design* 14, 2097–2104 (2014).
- 52. Zavabeti, A. et al. A liquid metal reaction environment for the roomtemperature synthesis of atomically thin metal oxides. *Science* **358**, 332–335 (2017).
- Datta, R. S. et al. Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. *Nat. Electron.* 3, 51–58 (2020).
- 54. Zavabeti, A. et al. High-mobility p-type semiconducting twodimensional β-TeO₂. *Nat. Electron.* **4**, 277–283 (2021).
- 55. Huang, C.-H., Tang, Y., Yang, T.-Y., Chueh, Y.-L. & Nomura, K. Atomically thin tin monoxide-based p-channel thin-film transistor and a low-power complementary inverter. ACS Appl. Mater. Interfaces **13**, 52783–52792 (2021).
- 56. Oshima, T. et al. Formation of indium-tin oxide ohmic contacts for β -Ga₂O₃. Jpn. J. Appl. Phys. **55**, 1202B1207 (2016).
- Carey, P. H., IV. et al. Improvement of Ohmic contacts on Ga₂O₃ through use of ITO-interlayers. J. Vac. Sci. Technol. B **35**, 061201 (2017).
- Hosono, H. & Kumomi, H. Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory (John Wiley & Sons, 2022).

- Kim, T. et al. Progress, challenges, and opportunities in oxide semiconductor devices: a key building block for applications ranging from display backplanes to 3D integrated semiconductor chips. *Adv. Mater.* **35**, 2204663 (2023).
- 60. Lee, S. & Nathan, A. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain. *Science* **354**, 302–304 (2016).
- 61. Jiang, C. et al. Printed subthreshold organic transistors operating at high gain and ultralow power. *Science* **363**, 719–723 (2019).
- 62. Wang, G. et al. New opportunities for high-performance sourcegated transistors using unconventional materials. *Adv. Sci.* **8**, 2101473 (2021).
- Wurdack, M. et al. Ultrathin Ga₂O₃ glass: a large-scale passivation and protection material for monolayer WS₂. Adv. Mater. **33**, 2005732 (2021).
- 64. Li, J. et al. Template approach to large-area non-layered Ga-group two-dimensional crystals from printed skin of liquid gallium. *Chem. Mater.* **33**, 4568–4577 (2021).
- Ye, Y., Hamlin, A. B., Huddy, J. E., Rahman, M. S. & Scheideler, W. J. Continuous liquid metal printed 2D transparent conductive oxide superlattices. *Adv. Funct. Mater.* **32**, 2204235 (2022).
- Battu, A. K. & Ramana, C. V. Mechanical properties of nanocrystalline and amorphous gallium oxide thin films. *Adv. Eng. Mater.* 20, 1701033 (2018).
- Li, Q. et al. Gas-mediated liquid metal printing toward large-scale 2D semiconductors and ultraviolet photodetector. *npj 2D Mater*. *Appl.* 5, 36 (2021).
- Kim, D., Lee, B., Thomopoulos, S. & Jun, Y.-S. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization. *Nat. Commun.* 9, 1–9 (2018).
- 69. Meldrum, F. C. & O'Shaughnessy, C. Crystallization in confinement. Adv. Mater. **32**, 2001068 (2020).
- Mastandrea, J. P., Ager, J. W., III & Chrzan, D. C. Nucleation of melting and solidification in confined high aspect ratio thin films. J. Appl. Phys. 122, 105304 (2017).
- 71. Takagi, M. The thickness dependence of the phase transition temperature in thin solid films. J. Phys. Soc. Jpn. 55, 3484–3487 (1986).
- Zhou, X. et al. Heterogeneous nucleation of Al melt in symmetrical or asymmetrical confined nanoslits. *Nanoscale* 8, 12339–12346 (2016).
- Wang, W. et al. Effect of pressure on nucleation and growth in the Zr_{46.75} Ti_{8.25} Cu_{7.5} Ni₁₀ Be_{27.5} bulk glass-forming alloy investigated using in situ X-ray diffraction. *Phys. Rev. B* 68, 184105 (2003).
- 74. Zhang, Y., Huang, C. -H. & Nomura, K. High-mobility wide bandgap amorphous gallium oxide thin-film transistors for NMOS inverters. *Appl. Phys. Rev.* **11**, 011418 (2024).
- Geller, S. Crystal structure of β-Ga₂O₃. J. Chem. Phys. **33**, 676–684 (1960).
- Åhman, J., Svensson, G. & Albertsson, J. A reinvestigation of βgallium oxide. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 52, 1336–1338 (1996).
- Poncé, S. & Giustino, F. Structural, electronic, elastic, power, and transport properties of β–Ga₂O₃ from first principles. *Phys. Rev. Res.* 2, 033102 (2020).
- Xing, K. et al. Hydrogen-terminated diamond MOSFETs using ultrathin glassy Ga₂O₃ dielectric formed by low-temperature liquid metal printing method. ACS Appl. Electron. Mater. 4, 2272–2280 (2022).
- 79. Kochat, V. et al. Atomically thin gallium layers from solid-melt exfoliation. *Sci. Adv.* **4**, e1701373 (2018).
- Wundrack, S. et al. Liquid metal intercalation of epitaxial graphene: large-area gallenene layer fabrication through gallium self-propagation at ambient conditions. *Phys. Rev. Mater.* 5, 024006 (2021).
- Hsieh, H. -H., Kamiya, T., Nomura, K., Hosono, H. & Wu, C. -C. Modeling of amorphous InGaZnO₄ thin film transistors and their subgap density of states. *Appl. Phys. Lett.* **92**, 133503 (2008).

Article

- Korhonen, E. et al. Electrical compensation by Ga vacancies in Ga₂O₃ thin films. Appl. Phys. Lett. **106**, 242103 (2015).
- Varley, J. B., Peelaers, H., Janotti, A. & Van de Walle, C. G. Hydrogenated cation vacancies in semiconducting oxides. *J. Phys. Condens. Matter* 23, 334212 (2011).
- Nayak, P. K., Wang, Z. & Alshareef, H. N. Indium-free fully transparent electronics deposited entirely by atomic layer deposition. *Adv. Mater.* 28, 7736–7744 (2016).
- Feng, Z. et al. Fluorination-enabled monolithic integration of enhancement- and depletion-mode indium-gallium-zinc oxide TFTs. *IEEE Electron Device Lett.* **39**, 692–695 (2018).
- Chang, H., Huang, C.-H. & Nomura, K. Low-temperature solutionprocessed n-channel SnO₂ thin-film transistors and high-gain zero-V_{GS}-load inverter. ACS Appl. Electron. Mater. 3, 4943–4949 (2021).
- Min, W. K. et al. Switching enhancement via a back-channel phasecontrolling layer for p-type copper oxide thin-film transistors. ACS Appl. Mater. Interfaces 12, 24929–24939 (2020).
- Chang, H., Huang, C.-H., Matsuzaki, K. & Nomura, K. Back-channel defect termination by sulfur for p-channel Cu₂O thin-film transistors. ACS Appl. Mater. Interfaces 12, 51581–51588 (2020).
- Li, Y. et al. Complementary integrated circuits based on n-type and p-type oxide semiconductors for applications beyond flat-panel displays. *IEEE Trans. Electron Devices* 66, 950–956 (2019).
- Joo, H. J. et al. High-gain complementary inverter based on corbino p-type tin mMonoxide and n-type indium-gallium-zinc oxide thinfilm transistors. *IEEE Electron Device Lett.* 40, 1642–1645 (2019).

Acknowledgements

This work was partly supported by faculty start-up funds at UC San Diego.

Author contributions

K.N. conceived the concept and supervised the project. C.-H.H. designed the experiments and carried out material growth, device fabrication, and characterization. R.-H.C. and Y.-L.C. conducted material characterization, including TEM, AFM, and XPS. C.-H.H. and K.N. analyzed the results and contributed to writing the manuscript.

Competing interests

The authors declare no competing interests

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-025-57200-2.

Correspondence and requests for materials should be addressed to Kenji Nomura.

Peer review information *Nature Communications* thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/ licenses/by/4.0/.

© The Author(s) 2025