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Bumblebees (Bombus spp.) are important and widespread insect pollinators,
but the act of foraging on flowers can expose them to harmful pesticides and
chemicals such as oxidizers and heavy metals. How these compounds
directly influence bee survival and indirectly affect bee health via the gut
microbiome is largely unknown. As toxicants in floral nectar and pollen
take many forms, we explored the genomes of bee-associated microbes for
their potential to detoxify cadmium, copper, selenate, the neonicotinoid pes-
ticide imidacloprid, and hydrogen peroxide—which have all been identified
in floral nectar and pollen. We then exposed Bombus impatiens workers to
varying concentrations of these chemicals via their diet and assayed direct
effects on bee survival. Using field-realistic doses, we further explored the
indirect effects on bee microbiomes. We found multiple putative genes in
core gut microbes that may aid in detoxifying harmful chemicals. We also
found that while the chemicals are largely toxic at levels within and above
field-realistic concentrations, the field-realistic concentrations—except for
imidacloprid—altered the composition of the bee microbiome, potentially
causing gut dysbiosis. Overall, our study shows that chemicals found in
floral nectar and pollen can cause bee mortality, and likely have indirect,
deleterious effects on bee health via their influence on the bee microbiome.
1. Introduction
Despite the high value pollinators have in agriculture and wild ecosystems, many
populations are declining across Europe and North America [1,2]. Habitat
change, disease, and chemical exposure are all thought to play a role in bee
declines [3,4]. The primary chemicals responsible are pesticides, which bees
come into contact with when foraging on treated crops [5]. However, when fora-
ging on flowers bees do not only get exposed to pesticides, floral pollen and
nectar may also contain environmental toxicants such as natural oxidizers
(hydrogen peroxide), and heavy metals sequestered by the plants when growing
in contaminated soils [6–9]. These environmental toxicants accumulate in bees
and their hive materials, often at greater concentrations than in the flowers
they were collected from, prompting an urgent need to obtain a complete under-
standing of their influence on bee health at field-realistic concentrations [10,11].

Several environmental toxicants are directly lethal to bees at high concen-
trations; honeybees (Apis spp.), bumblebees (Bombus spp.), and mason bees
(Osmia spp.), all show rapid death after exposure in laboratory experiments
[12–14]. There is evidence that in addition to lethality, exposure to high doses
may cause indirect damage to bee health via disrupting their core microbiome
[15]. A healthy gut microbiome is considered to be a crucial factor in bee health
[16] and may positively influence bee tolerance to toxicants via toxicant metab-
olism [17], immune system stimulation [18], and protection against pathogens
[19]. Likewise, there is apparent variation in the microbiomes of Bombus spp.
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[20], with some guts harbouring non-core bacteria such as
taxa within the order Enterobacterales [21] including the
pathogen Serratia [22]. Increasing evidence finds that a
number of stressors can break down a normal healthy micro-
biome and in doing so prevents their beneficial influence on
the host. In particular, stressors such as inconsistent forage
availability [23], antibiotics [24], infection [25], and pesticides
[26], all disrupt the microbiome, potentially leading to dys-
biosis and reduced host health. It could therefore be that
the quality, quantity, and toxicity of a bee’s diet may shape
their microbiome and if these lead to microbial dysbiosis
the cascading effects could make bees increasingly vulnerable
to further nutritional stress and disease [27,28].

The effects of environmental toxicants and other xeno-
biotics on animal microbiomes is emerging as an integral
part of modern ecotoxicology [29], where the microbiome
potentially protects its host from metal(loid) toxicity. For
example, host-associated bacteria have been shown to detoxify
chromium and lead [30], copper [31], arsenic [32], and selenate
[33]. In bees, the presence of a microbiome reduces selenate-
induced mortality [34], and bee-associated microbes can
remove cadmium from their environment [15]. The mechan-
isms for microbe-mediated protection against toxicants in
bees remains unknown, but as the majority of bee symbionts
reside in the hindgut [35] and most metal absorption in insects
likely occurs in the midgut [36], the hindgut bacteria may be
stimulating the bees’ own inherent protective mechanisms.
Also, the midgut of insects has a peritrophic matrix, which
has been shown to directly protect against pesticides [37] and
metals [38]. Bacterial genomes often encode metal(loid) trans-
porters and detoxification pathways for stress responses, and
symbionts simultaneously interact with environmental
exposures and their host. This may result in bacterial detoxifi-
cation genes also benefiting the host, possibly by preventing
metal-induced damage to the hindgut, so by annotating path-
ways in symbiont genomes, we may begin to understand the
mechanisms behind microbial toxicant protection.

Given the importance of environmental toxicants and the
microbiome in host health,we investigated interactions between
multiple chemical poisons, the bumblebee B. impatiens, and its
microbes. First, we searched the genomes of bee-associated
microbes for evidence they could play a role in the metab-
olism/detoxification of common chemicals (selenate, copper,
cadmium, imidacloprid, and hydrogen peroxide). Second, we
tested the direct lethality of these toxicants to bumblebees.
Third, we determined if exposure to natural concentrations of
selenate, copper, cadmium, imidacloprid, or hydrogen peroxide
altered the composition of a healthy bee microbiome.
2. Materials and methods
To identify the genomic basis for toxicant tolerance, we annotated
publicly available genomes of bee symbionts with the RAST
Server (Rapid Annotations using Subsystems Technology) [39]
using whole-genome sequence data obtained from the National
Center for Biotechnology Information (NCBI). Based on known
‘core’ microbes and opportunistic microbes commonly found
within the microbiomes of bumblebees and those sharedwith hon-
eybees [40], we annotated genomes from strains of the following
species: Bifidobacterium bombi, Bifidobacterium commune, Bombella
intestini, Bombiscardovia coagulans, Candidatus Schmidhempelia
bombi, Commensalibacter intestini, Gilliamella apicola, Lactobacillus
bombicola, Serratia marcescens, and Snodgrassella alvi (see electronic
supplementary material, file SF1 for strain IDs and accession
numbers). We also used CheckM to assay genome quality and
removed genomes that were less than 90% complete and/or more
than 10% contaminated from further analysis. We searched the
following RAST subsystems: ‘cobalt-zinc-cadmium resistance’,
‘copper homeostasis’, ‘copper homeostasis copper tolerance’,
‘copper transport system’, ‘oxidative stress tolerance’, ‘selenate/
selenite uptake’, and ‘selenocysteine metabolism’.

We purchased 10 commercial Bombus impatiens colonies from
Koppert Biological Systems, Inc. (Howell, MI) that contained a
mated queen, approximately 200 workers, pollen, and a proprie-
tary sugar solution. We immediately replaced the proprietary
sugar solution with 60% sucrose and provided colonies with
pollen patties ad libitum. To allow the colonies to develop, we
kept them under constant darkness at 29°C for two weeks
before starting the experiment. We collected 60 adult workers
from each of three colonies (N = 180 bees for each compound)
and sorted them by colony into cohorts of five bees in 475 ml
polypropylene containers (WebstaurantStore, Lancaster, PA).
Based on published ranges (electronic supplementary material,
table ST1), we exposed bees to the following treatments:
10 mg l−1, 1.0 mg l−1, 0.1 mg l−1, 0.01 mg l−1, 0.001 mg l−1, and
0 mg l−1 spiked into 60% sucrose for sodium selenate, cadmium
chloride, and imidacloprid, 100 mg l−1, 10 mg l−1, 1.0 mg l−1,
0.1 mg l−1, 0.01 mg l−1, and 0 mg l−1 copper chloride spiked
into 60% sucrose, and 1.0 M, 0.1 M, 0.01 M, 0.001 M, 0.0001 M,
and 0 M hydrogen peroxide spiked into 60% sucrose. We allowed
bees to feed ad libitum for 14 days and recorded mortality daily.
To analyse survivorship, we used the R packages ‘drc,’ [41] to
calculate log-logistic functions for model selection, and ‘survival’
[42] to calculate statistical significance and hazard models, and
‘survminer’ to visualize survival curves [43].

We purchased three additional bumblebee colonies from
Koppert Biological Systems, Inc. and reared the bees as above.
We isolated 60 mature workers from each colony (N = 180) in
60 ml polypropylene containers (WebstaurantStore, Lancaster,
PA). We exposed bees to chemical treatments by chronically
feeding 30 bees 60% sucrose spiked with either 0.25 mg l−1 cad-
mium chloride, 0.5 mg l−1 sodium selenate, 25 mg l−1 copper
chloride, 0.001 mg l−1 imidacloprid, 0.025 mol l−1 hydrogen per-
oxide, or 60% sucrose as a control (N = 30 per treatment), based
on concentrations within the dose–response assay and published
ranges (electronic supplementary material, table ST1). We
allowed the bees to feed on either treatment ad libitum for 4
days, then flash froze and stored the bees at −80°C.

We used a DNA extraction protocol based on Engel et al. [44],
Pennington et al. [45], and Rothman et al. [46]. We first surface
sterilized individual bees using 0.1% sodium hypochlorite fol-
lowed by three rinses with water. We then sterilely dissected
the whole gut out of each bee and transferred the gut into
DNeasy Blood and Tissue Kit lysis plates (Qiagen, Valencia,
CA) containing 100 µl of 0.1 mm glass beads, one 3.4 mm steel-
chrome bead, and 180 µl of buffer ATL, then homogenized
with a Qiagen Tissuelyser at 30 Hz for 6 min. We followed the
remainder of the kit protocol after homogenization. We also
included four blanks to control for reagent contamination,
which we prepared and sequenced in the same way as samples.

We prepared 16S rRNA gene libraries for paired-end Illu-
mina MiSeq sequencing for each bee (N = 134) using the
protocol from McFrederick and Rehan [47], Pennington et al.
[48], and Rothman et al. [23]. We incorporated the 16S rRNA
gene primer sequence, unique barcode sequence, and Illumina
adapter sequence with PCRs as in [49]. We ran one round of
PCR to ligate barcodes, then cleaned these PCRs with a PureLink
PCR Purification Kit (Invitrogen, Carlsbad, CA) and used the
cleaned amplicons as the template for another PCR to complete
the Illumina adapter sequence [49]. We normalized the libraries
with a SequalPrep Normalization kit (ThermoFisher Scientific,
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Waltham, MA), pooled 5 µl of each normalized library and per-
formed a final clean-up with a single-column PureLink PCR
Purification Kit, then sequenced the libraries using a V3 Reagent
Kit at 2 × 300 cycles on an Illumina MiSeq Sequencer in the UC
Riverside Genomics Core Facility. Raw sequencing data are
available on the NCBI Sequence Read Archive under accession
numbers SRR6788889 – SRR6789022, and microbiome data of
selenate versus control treatments were previously published in
Rothman et al. [34].

We used QIME2-2018.6 [50] to process the 16S rRNA gene
sequence libraries. First, we trimmed low-quality ends off reads
with QIIME2 and used DADA2 [51] to bin sequences into
exact sequence variants (ESVs; 16S rRNA gene sequences that
are 100% matches). We assigned ESV taxonomy using the q2-fea-
ture-classifier and SILVA database [52]. We also conducted
BLASTn searches against the NCBI 16S microbial database
(July 2018). We filtered out ESVs from the resulting table that cor-
responded to reagent contaminants as identified in blanks or
were assigned as chloroplast or mitochondria. We then generated
an ESV table (electronic supplementary material, File SF2) and
UniFrac distance matrices. We visualized the UniFrac distances
through Principal Coordinates Analysis (PCoA) with the R pack-
age ‘ggplot2’ [53], analysed the alpha diversity of our samples
through the Shannon Diversity Index and the Kruskal–Wallis
test. Lastly, we tested our beta diversity data for statistical signifi-
cance in R v3.5.1 with the packages ‘vegan’ [54] and ‘DESeq2’
[55]. Data and representative code can be found on Data Dryad
(doi:10.7280/D14T2K) and a preprint of this study was posted
to the bioRxiv [56].
3. Results
(a) Genomic bases of chemical resistance
Through our RAST annotations of core microbial genomes, we
identified several putative homologous genes that suggest that
microbial genera commonly associated with bumblebees and
honeybees could reduce the negative effects of these toxic com-
pounds to bee health. Several bee symbionts and other bacteria
identified by our next-generation sequencing study had homo-
logs to some or all of the following genes in their genomes
(electronic supplementary material, figure S1). For selenium
ion resistance, we found genes corresponding to the selenium
ion transporters DedA [57], TsgA [58], and putative selenium
ion and sulfate importer CysA [59]. For cadmium ion resistance,
we found the genes CzcABC, which encode the components of
a cation transporter [60], its response regulator CzcD [61], and a
cadmium-responsive transcriptional regulator, CadR [62]. We
identified the following genes involved in copper resistance: a
copper-translocating ATPase [63], two copper-binding multi-
copper oxidases [64,65] (SufI and CueO, respectively), the
likely copper-binding proteins ScsABCD and CutEF [66], com-
ponents of a copper-sequestering protein complex CopCD [67],
and a copper-responsive transcriptional regulator, CueR [68].
Lastly, we searched for genes involved in oxidative stress
response and found genes encoding paraquat-inducible super-
oxide dismutase (SOD) PqiAB,Mn- and Fe-SODs [69], the SOD
response regulon SoxS [70], a LysR-family peroxide-inducible
transcriptional regulator [71], ferroxidase, a ferric uptake regu-
lation protein (FUR) [72], the zinc/copper uptake regulation
protein Zur, which may protect against oxidative stress [73],
the antioxidant gene NnrS [74], an Fnr-like transcriptional reg-
ulator [75], catalase/peroxidase [76], and alkyl hyperoxide
reductase C (AhpC) [77].
As S. alvi and G. apicola genomes are known to vary
between strains [78,79], and there are several genomes for
each taxon publicly available, we compared the above-men-
tioned detoxification/tolerance genes between strains within
these species and across isolates from Apis and Bombus spp.
(51 strains of S. alvi [33 strains isolated from Apis spp. and 18
strains from Bombus spp.] and 65 strains ofG. apicola [37 strains
isolated from Apis spp. and 28 strains isolated from Bombus
spp.]). We found that G. apicola had notable variation across
genes involved in responding to oxidative stress (specifically
NnrS, SoxS, Fnr, and catalase), copper tolerance (the copper-
translocating ATPase and SufI), cadmium tolerance (CadR),
and overall selenate tolerance. The variation in SufI, CadR,
TsgA, and CysA appeared to be mainly driven by the bee
genus that G. apicolawas isolated from. There was less overall
variation in detoxification/tolerance genes across S. alvi
strains: we found strain variation in copper (CueR, CueO,
and the copper-translocating ATPase) and cadmium tolerance
(CzcA and CadR), while there was no genetic variation in oxi-
dative stress response or selenate tolerance. Again, the bee
genus each strain was derived from added to the apparent
variability, with Apis isolates having fewer CueR and CzcA
genes present, and Bombus isolates having fewer CadR and
no CueO genes present (figure 1).

(b) Direct toxicity of each compound on bumblebee
survival

We found that the concentration ranges of cadmium, copper,
selenate, imidacloprid, and hydrogen peroxide went from no
deaths to complete mortality. Over 7 days of continuous
exposure, survival in the various concentrations differed signifi-
cantly (Cox proportional hazard test log rank p< 0.001 for each
compound, figure 2 and electronic supplementary material,
figure S2). We note that the lowest concentrations did not
affect survival, and that concentrationsabove 1 mg l−1 cadmium,
100 mg l−1 copper, 1 mg l−1 selenate, 0.1 mg l−1 imidacloprid,
and 1.0Mhydrogen peroxide significantly reduced bee survival,
which indicated a dose-dependent response (electronic sup-
plementary material, table ST2). We also calculated the LC50

after 7 days continuous exposure for each toxicant: cadmium:
0.83 mg l−1, copper: 66.55 mg l−1, imidacloprid: 0.22 mg l−1,
selenate: 0.75 mg l−1, and hydrogen peroxide: 0.39 mol l−1 (elec-
tronic supplementarymaterial, figure S3).We note thatwhilewe
exposed bees to treatments for 14 days, the data from copper and
cadmium did not fit the proportional hazards assumptions due
to high mortality in controls after 11 and 9 days, respectively.
Survival results of these compounds up to 7 days fit the assump-
tions, so all five treatments were tested over a total of 7 days.
Additionally, we tested selenate, imidacloprid, and hydrogen
peroxide for 14 days and report the 14-day LC50 as follows: sele-
nate: 0.09 mg l−1, imidacloprid: 0.11 mg l−1, and hydrogen
peroxide: 0.27 mol l−1 (electronic supplementary material,
figures S3 and S4).

(c) Amplicon sequencing alpha diversity and library
statistics

We obtained 743 529 quality-filtered 16S rRNA gene sequences
with a mean of 5467 reads per sample (N = 136) that clustered
into 113 ESVs (sequences that are 100% identical). We deter-
mined that our samples had a representative coverage of
bacterial diversity at a sequencing depth of 2182 reads through

http://dx.doi.org/doi:10.7280/D14T2K
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rarefaction analysis (electronic supplementary material, figure
S5). Overall, alpha diversity was significantly different due to
treatment (Shannon’s H = 24.21, p < 0.001), although pairwise
Kruskal–Wallis tests indicated that only selenate treatments
had higher diversity as compared to controls (Benjamini-
Hochberg corrected padj < 0.05, electronic supplementary
material, table ST3).

(d) Beta diversity and differential abundance of
bacterial taxa between treatments

Regardless of treatment, we found that the gut communities of
our samples were composed of bacteria of the generaGilliamella,
Snodgrassella, Lactobacillus, Bifidobacterium, Bombiscardovia, Com-
mensalibacter, and Serratia, while other bacteria accounted for
less than 1% of the relative abundance. To visualize the bumble-
bee gutmicrobiota, we generated a stacked bar plot representing
bacteria present in greater than 1% relative abundance in each
sample (figure 3 and electronic supplementary material, figure
S6) and beta diversity through PCoA (figure 3), with only
copper clearly clustering separately from control. We analysed
the Generalized UniFrac distance matrix of our samples with
Adonis PERMANOVAusing colony and treatment as covariates
and found that overall, therewas a significant effect of treatment
(F= 4.57, R2 = 0.14, p< 0.001), colony (F= 6.71, R2 = 0.08, p<
0.001), and interaction of these factors (treatment × colony, F =
1.63, R2 = 0.10, p< 0.001). As we had multiple separate treat-
ments, we analysed the pairwise interactions between each
treatment versus control and found that each treatment except
imidacloprid significantly changed the beta diversity of the
bees’microbiomes (Benjamini-Hochberg corrected for each treat-
ment padj< 0.02; imidacloprid: padj = 0.96, electronic
supplementary material, table ST3).

We used ‘DESeq2’ to identify differences in proportional
abundances of ESVs in our treatments versus controls. Sev-
eral ESVs significantly differed in proportional abundance
versus controls ( padj = < 0.05, figure 4, electronic supplemen-
tary material, table ST4): in cadmium treatments: one
Commensalibacter ESV was lower; copper treatments: two Ser-
ratia ESVs were higher, four Gilliamella ESVs (two higher and
two lower), two Bombiscardovia ESVs were higher, one Com-
mensalibacter ESV was higher, two Lactobacillus ESVs were
higher, and two Snodgrassella ESVs were lower; hydrogen
peroxide: one Commensalibacter ESV was higher; selenate
treatments: two Commensalibacter ESVs were higher, and
two Lactobacillus, two Snodgrassella, and two Gilliamella
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ESVs were all lower; lastly, we did not find any differentially
abundant ESVs in our imidacloprid-treated bees.
4. Discussion
A range of environmental toxicants negatively influenced bee
health indirectly and directly by perturbing their microbiome
composition and reducing their survival respectively. Field-
realistic doses of cadmium, selenate, and copper impacted
the bumblebee microbiome—potentially having an indirect
negative effect on bumblebee health. Furthermore, there are
individual ESVs of symbiotic or pathogenic bacteria that are
tolerant or susceptible to most of these chemicals. Previous
studies have examined whether the microbiome is affected
by our assayed poisons in several non-bee species [80–84]
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and in honeybees and bumblebees [15,34,85]. We extend this
work by screening a broad panel of toxicants on bees and
their symbionts and further show that members of the bee
microbiota vary in their tolerance to the chemicals. Addition-
ally, we identify that the field-realistic concentrations of
cadmium and selenate can cause mortality in the common
eastern bumblebee, Bombus impatiens.

(a) Toxicants generally, but sometimes subtly, affect
the bumblebee microbiome

The bumblebee gutmicrobiome exhibited avarietyof responses
to the toxicant challenges. Copper led to a striking compo-
sitional change of the opportunistic pathogen Serratia, which
suggests a departure from the normal, presumably healthy
gut community, potentially resulting in gut dysbiosis [24,86].
Selenate exposure altered the composition of non-core bacteria,
while core symbiont ESVs were less proportionally abundant,
further supporting our hypothesis of dysbiosis resulting from
toxicant exposure [87]. Despite less extreme effects on survival,
copper exposure had themost dramatic effect on the bees’ over-
allmicrobial diversity and changed the proportional abundance
of 13 individual ESVs: most taxa were compositionally
enriched. Conversely, two G. apicola ESVs and two S. alvi
ESVs decreased in compositional abundance. The effect on
G. apicola is especially interesting, as two other G. apicola ESVs
significantly increased in proportion, suggesting there is geno-
mic variation in copper tolerance within this taxon, similar to
other genomic differences within bee symbionts [78]. As a
caveat, due to the compositional nature of amplicon-based
microbiome sequencing, we are unable to definitively conclude
the effects of treatments on any individual ESV.

Genomic analyses suggest putative mechanisms by which
the bumblebee gut microbiome may be affected by copper and
selenate. Each core symbiont varies in its complement of puta-
tive selenium ion resistance genes, with Bifidobacterium bombi,
Bombiscardovia coagulans, L. bombicola, and S. alvi [79,88] all
possessing homologous genes to the selenate transporter
DedA [57], while G. apicola does not, with the effects of sele-
nate exposure being overall relatively minor possibly due to
the presence of selenate tolerance genes. All annotated strains
of S. alvi putatively possess the sulfate/selenium ion transpor-
ter CysA, while only Apis-derived strains of G. apicola possess
this gene but not those isolated from Bombus spp. Likewise,
there was a slight variation in the presence and copy
number of the selenium ion transporter TsgA [58] in the gen-
omes of Apis isolates of G. apicola, while TsgAwas much rarer
in the genomes of Bombus-derived strains. Similar to selenium
tolerance genes, between-strain variation likely exists in copper
tolerance in S. alvi and G. apicola: by homology to other bac-
terial taxa, strains of S. alvi contain varying numbers of the
genes CueO [65], CueR [68], and a copper-translocating
ATPase, while G. apicola strains varied in SufI and copper-
translocating ATPase genes; however, within Bombus isolates,
there was almost no variation in these genes and they did
not possess CueO. Snodgrassella isolated from Apis spp.
accounted for most of the variation between strains. The
strain variation in homologous G. apicola copper-translocating
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genes may underlie the differential abundance of G. apicola
strains under copper challenge, although our 16S rRNA gene
data do not allow us to test this hypothesis. Both Apis- and
Bombus-derived strains varied in their SufI and copper-translo-
cating ATPase genes. Lastly, we note that the potential
pathogen Serratia marcescens—which had a dramatic compo-
sitional increase during copper treatments—has numerous
putative genomic bases for copper tolerance, although again
we are unable to verify the genes present due to the limitations
of 16S rRNA gene sequencing.

Cadmium, imidacloprid, and hydrogen peroxide all had
moderate (cadmium and hydrogen peroxide) to no (imidaclo-
prid) effects on the microbiome. Cadmium changed the
bumblebees’ bacterial community but resulted in decreased
proportional abundance of only one ESV of Commensalibacter.
While neither S. alvi nor G. apicola were affected by cadmium
treatments, there were notable differences between Apis and
Bombus-derived isolates. For example, the presence of the
putative cadmium-responsive regulator gene CadR was
highly variable between both G. apicola (CadR is absent in
Bombus isolates) and S. alvi (CadR was present more com-
monly and in greater copy number, in Apis isolates than
Bombus isolates). Imidacloprid did not affect the gut micro-
biome in B. impatiens, which agrees with a previous
experiment that showed imidacloprid did not affect the hon-
eybee microbial community [85]. As imidacloprid targets
acetylcholine receptors in insects [89], it is perhaps not sur-
prising that the bumblebee gut microbiome is not affected
by this insecticide. Hydrogen peroxide modestly changed
the microbial community of B. impatiens at higher-than-natu-
ral concentrations and increased the proportional abundance
of one ESV of Commensalibacter. As hydrogen peroxide is
thought to have antimicrobial properties in flower nectar
[90], bumblebee-associated microbes may be resistant due
to routine peroxide exposure.

The ubiquity of hydrogen peroxide exposure in nature
may explain why members of the core bee gut microbiome
have combinations of putative genes to cope with oxidative
stress. While S. alvi did not exhibit any strain variation in
the presence of homologous genes known to underlie oxi-
dative stress response, G. apicola did: our genomic analysis
indicated a variable presence of SoxS, an Fnr regulator, and
NnrS. Cadmium resistance is less clear, as Commensalibacter
intestini has several cadmium resistance genes, but is still sus-
ceptible to the treatment in vivo, while core bumblebee
symbionts’ resistance pathways are more depauperate. As
with other resistance pathways, G. apicola varied in genes pre-
dicted to underlie cadmium tolerance, while S. alvi exhibited
substantial strain variation, notably in CadR between Apis
and Bombus isolates. These results suggest that individual
core bee microbiome members largely resist cadmium on a
community-level scale, and we hypothesize that bacteria
may be partitioning cadmium detoxification between each
other, as has been shown in other metabolic processes [79].
We also note that in insects, most metal uptake occurs in
the midgut [36], so the concentrations of the metals are
likely lessened through the bee absorbing some metal
before hindgut bacteria may encounter these toxicants.
(b) Mortality effects of each compound
By exposing bees to cadmium, copper, hydrogen peroxide, imi-
dacloprid, or selenate, we show that each toxicant is lethal to
bumblebees at varying concentrations—following the mantra
that the dose makes the poison. For example, constant ingestion
of selenate and cadmium at levels that bees may encounter on
flowers grown in polluted soils are toxic even on the third day
of chronic exposure [91,92]. Bees were more tolerant of copper,
with lethal doses higher than the levels likely encountered
when foraging on plants in contaminated areas [92]. In
regard to non-metallic toxicants, the insecticide imidacloprid
and hydrogen peroxide were both lethal to bees at doses
above normal exposure, and we note that bees appeared to
avoid the highest doses of hydrogen peroxide. While adult
bees tolerated above-field-relevant doses of copper and imida-
cloprid, sublethal exposure to these chemicals is known to
reduce brood production and larvae population, which may
cause negative colony-level effects [14,93]. Lastly, bees seemed
to tolerate natural levels of hydrogen peroxide, which is sup-
ported by studies showing high hydrogen peroxide levels in
some flowers [94] and that bees can detoxify peroxide [95].
Our data suggest that exposure to these chemicals should be
investigated further, and studies should focus on interactions
between bees, gut microbes, parasites, and their environment,
to understand more about the subtle and potentially synergistic
effects of stressors on pollinator health.
5. Conclusion
Bees have been recognized for their use as bioindicators tomoni-
tor environmental pollution, and our work supports this claim
by showing that bees are susceptible to many environmental
toxicants. Our interdisciplinary study reports the direct effects
of cadmium, copper, hydrogenperoxide, imidacloprid, and sele-
nate exposure, and we conclude that direct effects are only part
of the story. To fully appreciate the risks of exposure we must
also consider the effects on the microbiome as indirect effects
on bee health. Encouragingly, we have identified several puta-
tive genomic bases for microbial tolerance or susceptibility to
each toxicant and found that there can be substantial strain vari-
ation in these genes in the bacteria S. alvi and G. apicola,
especially between strains isolated from different bee genera.
This variation suggests that the bee gut microbiome harbours
diverse strains that may be resilient to various environmental
challenges. As we have indicated, there is a wide diversity of
putative stress response genes between bee symbiont strains,
and culture-based toxicology assays should be conducted to
characterize bacterial susceptibility to toxicants in vitro. We
suggest that future studies investigate the multipartite inter-
actions between host, symbiont, and the environment, and the
potential for microbiomes and hosts to reciprocally protect
each other from environmental insults.
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