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Introduction 

It is no~ generally believed that quarks (and antiquarks) are the fundamental 

building blocks of all nuclear matter. Unlike electrons and other fundamental parti­

cles, however, quarks have never been detected in isolation. Only composite particles 

called hadrons, which are bound state combinations of quarks and antiquarks, have 

been observed experimentally. The reason for this apparent confinement of quarks 

into hadrons is a mystery which must ultimately be solved by any theory purporting 

to describe the strong nuclear force. Currently, the best candidate for this theory, 

quantum chromodynamics (QCD), attributes a "color" to each quark and antiquark 

in such a way that each hadron corresponds to a "colorless" combination held to­

gether by particles called gluons. Although this idea is useful in explaining some of 

the symmetries seen in the various species of hadronic particles, it is still not known 

why only colorless combinations have been observed experimentally. Many believe 

that the answer to this puzzle may lie somewhere in the depths .of QCD, but the 

theory is so complex that no one has yet been able to discover it. 

To obtain a better understanding of QCD, it is therefore necessary to simplify 

the theory by making reasonable approximations. Since gluonic interactions become 

weaker at higher energies, the simplest approximation for high energy processes can 

be obtained by treating quarks and gluons as free non-interacting particles. 'Better 

approximations can then be arrived at by calculating perturbative corrections which 

take into account more and more complicated interactions. Perturbative QCD for­

mulated in this way has been remarkably successful in describing the results of high 

energy experiments like electron-positron annihilation and jet production[LLew]. An­

other commonly used approximation is to treat spacetime as a four dimensional lattice 

of separated points (rather than a continuous volume) and to perform calculations 

only at these points. Presumably, calculating on a lattice with an infinite number of 

points infinitely close together would be the same as performing a continuous calcu­

lation and so would provide exact answers to QCD. Due to the limitations of present 
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day computers, however, months are required to obtain results from a lattice of only 

164 points[Christ]. Nevertheless, making lattice calculations is currently the only way 

that QCD can be tested against observed low energy phenomena like the rest masses 

of hadrons. For example, the ratio of the proton mass to the p meson mass is mea­

sured to be 1.2, whereas lattice QCD obtains a value of 1.5 [Fuku]. On the basis of 

this and other comparisons, many people argue that lattice QCD calculations should 

be accurate to within 20-30%. 

One of the most intriguing predictions of lattice QCD is that there should be 

a phase transition into a new form of matter when the temperature is incr~ased to 

approximately 150-200 MeV. In this new phase, commonly called the quark-gluon 

plasma (QGP), highly energetic quarks and gluons would no longer be bound inside 

of colorless hadrons, SO it would seem that perturbative techniques should be ap­

plicable. High temperature perturbation theories have been developed[Kap79] and 

refined[Bra90], but subtle problems in the theories lead to a complete breakdown of 

the perturbation expansion when sufficiently complex interactions are considered[Lin80]. 

These problems could be a clue that non-perturbative objects like color magnetic 

monopoles must be considered in order to obtain an accurate picture of QCD Jat 

high temperature. It is also conceivable that the lessons learned in calculating the 

properties of hot QCD systems could shed light on the tantalizing question of quark 

confinement in hadrons at low energies. 

For these reasons, it is of interest to see whether a quark-gluon plasma can be 

created in the laboratory. Consequently, there are a number of relativistic heavy 

ion experiments currently being run or planned whose main aim is to create and 

observe the properties of a QGP. For example at Brookhaven's Alternating Gradient 

Synchrotron (AGS), silicon projectile nuclei have been accelerated to momenta of 14.6 

GeV Ic per nucleon (0.998 times the speed of light) before colliding with gold targets 

at rest[E802]. The hope is that when a silicon nucleus and a gold nucleus collide head 

on at these energies, they will stick together· in a highly compressed state for a short 

time, rather than immediately pass through one another. If such nuclear stopping 

does in fact occur, then it is possible that a super-dense lump of hot nuclear matter 
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(5-8 times normal nuclear density) can be created in these reactions. Furthermore, 

if the matter is hot and dense enough, then the phase transition could occur from 

hadronic matter to a quark-gl~on plasma. This plasma would subsequently expand 

and cool until finally "freezing" back into hadrons which could then be detected by 

the experiment (fig. A). By' examining in detail the final hadron distributions, it is 

hoped that one would be able to discern whether or not a QGP had been formed in 

the collision, and possibly even be able to determine some of its properties. 

Before searching for signs of a QGP, however, it is important to determine whether 

or not the colliding nuclei were able to stop one another in the first place. The first 

chapter of my thesis is comprised of three published papers and a summary of recent 

T 

QGP 

- ... , , 

Hadrons 

p 
Figure A. The phase diagram for Qeb. Temperature is plotted on the vertical axis, 
and nuclear matter density is plotted on the horizontal axis with normal nuclear 
density denoted by po. The solid arc is a schematic representation of the phase 
transition from hadronic matter to a quark-gluon plasma. The critical temperature 
Tc is thought to be about 150-200 MeV, while the critical density pc is thought to 
be about 5-8 times po. Time evolution of the nuclear matter in a heavy ion collision 
is shown by the dotted curve. This matter compresses and heats up until a QGP is 
formed, then it expands, cools, and eventually "freezes" back into hadrons. 
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developments which are devoted to exploring this issue. In the first paper, I showed 

that none of the standard event generators could reproduce the silicon on gold data 

reported by the E802 collaboration at the AGS[E802]. Furthermore, I showed that if 

these data are correct, then the nuclei involved exhibit an unusually high degree of 

transparency to each other. This was a very unpopular and surprising result, since 

I had shown that the amount of stopping implied by the data was even less than 

that observed for proton-proton collisions at similar energies, making the possibility 

of QGP formation at the AGS appear to be impossibly remote. In the second pa­

per, I pointed out discrepancies between various data sets from different experimental 

groups at the AGS, explored alternative scenarios in which I assumed that the nor­

malization of E802 data was off by more than 30%, and made predictions for the 

results of upcoming gold on gold collision experiments. The last paper .is the pub­

lished version of a talk given at the Quark Matter '91 conference in which I showed 

that. if key points of the E802 data were off by 40-70%, then· scenarios could be found 

in which the expected amount of nuclear stopping was achieved and agreement could 

be obtained between E802, E810 and E814 data sets. Although no new data has yet 

been officially published by the E802 (E866) collaboration, a recent Ph.D. thesis from 

an E802 collaborator reports that new measurements and newly found systematic er­

rors have had the effect of increasing the normalization of the E802 data by 10-20% 

for some points and as much as 50-100% for others[Pars]. In my summary of recent 

developments, I show that the reported increases are helpful, but that more correc­

tions are needed for some of the data points in order to establish overall agreement 

with the other experiments and theoretical expectations. In addition, I compare. my 

gold on gold predictions with new preliminary data by E866[E866] and show that the 

amount of stopping occurring in these reactions is still inconclusive. Consequently, 

many more measurements will have to be made before it will be possible to prove (~r 

disprove) that the amount of nuclear stopping required for QGP formation is actually 

being realized in these reactions. 
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The second chapter of my thesis deals with some of the more formal mathematical 

aspects of QCD and similar theories at high temperatures. Since there are funda­

mental problems with the normal perturbative expansions of these theories[Lin80], 

non-perturbative techniques must be explored. For example, rather than treat the 

QCD vacuum as a state without any background fields, nontrivial background field 

configurations can be used to mpdel the vacuum. In perturbative calculations, the 

quarks and gluons of the QGP arise from considering quantum fluctuations of the 

fields around the trivial vacuum. In non-perturbative semi-classical calculations, on 

the other hand, quantum fluctuations around complicated background fields must be 

considered. These calculations are far more complex than their perturbative counter­

parts, and exact solutions are only known for some very special cases[tH076]. In order 

to consider other more general cases, I have developed an approximation technique 

in which the quantum solutions are expressed in terms of a covariant derivative ex­

pansion. Similar expansions have been made for theories at zero temperature[Che87], 

but this is. the first such calculation for QCD and SU(N) theories at finite temper­

ature. As a first application of this technique, I show that certain color magnetic 

monopole background configurations are unstable to quantum fluctuations and that 

a background gas of dyons and antidyons wo~ld only be able to stabilize if the gas 

was so dense that the dyons were overlapping. These results cast doubt on previous 

speculations that a simple monopole plasma could regulate the infrared magnetic sin­

gularities which plague hot QCD. While we rule out two types of magnetically charged 

configurations, the development in this thesis of the covariant derivative expansion 

should prove useful in future studies of other possible background configurations, not 

only in hot QCD, but more generally in hot gauge theories. 

The goal in this thesis is thus twofold: The first is to investigate the feasibility of 

using heavy ion collisions to create conditions in the laboratory which are ripe for the 

formation of a quark-gluon plasma. The second is to develop a technique for studying 

some of the many non-perturbative features of this novel phase of matter. 
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1.1 Nuclear Transparency in 
15 AGeV Si+Au Reactions? 

by Scott Chapman and Miklos Gyulassy 
(Published in Physical Review Letters 67 (1991) p. 1210) 

Abstract 

Recent data on central Si+Au collisions at 15 AGeV are shown to imply an unex­
pected high degree of nuclear transparency. The paucity of observed midrapidity 
protons and pions suggests that up to one half of the projectile nucleons may lose less 
than one unit of rapidity after traversing 5-10 fm of nuclear matter . 

. The first detailed spectra of p, 1r±, and J(± from central Si + Au reactions 14.6 

. AGeV /c have been reported recently by the ES02 collaboration[ES02] at the AGS. 

These data are of interest in connection with estimating the nuclear stopping power 

and assessing whether high baryon density matter can be produced in nuclear colli­

sions. Previous indirect data on transverse energy spectra and leading baryon spectra 

have been interpreted [ES14, Stach] as evidence for a large amount of nuclear stop­

ping in such reactions. However, in Ref.[Gyu90] we noted that the paucity of pions 

and the shape of the proton rapidity distribution measured by ES02[ES02] were more 

indicative of nuclear transparency at least for light ion induced reactions. Our aim in 

this letter is to analyze the new data in detail and to estimate the nuclear stopping 

power in this reaction using a multi component firestreak model. 

The data that we focus on are shown in Figs. 1.1.1-1.1.3. The p, 1r-., J(± rapidity 

densities in central Si+Au collisions are shown in the upper panels. The lower panels 

show the transverse momentum slope parameter, T(y), obtained by fitting the invari­

ant distributions at each rapidity with exp( -mJ./T(y)). The curves and histograms 

show the results based on the models discussed below. Also shown are extrapolations 

of the ES14 leading neutron data[ES14] from a O.S degree cone assuming the above 

mJ. distribution with T varied between 0.1 to 0.2 GeV for their ET > 13 GeV trigger. 
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Figure 1.1.1: The proton and 7r- rapidity distributions and transverse mass 

slope parameters in central Si + Au reactions[E8021 (solid dots). Short dashed 
curves and histograms show results from the firestreak[Gosset, Myers] and Lund 
models[Gyu87], resp .. The long dashed curves show results form the Landau hydro­
dynamic model[Stach]. The extrapolated leading neutron data[E814] are indicated 
by the .crosses together with estimated extrapolation uncertainties. . 

Based on p + A -+ p + X data at energies E'ab .?:, 100 GeV[pA], it was expected 

that in central Si + Au reactions the average rapidity of projectile,baryons would 

be shifted downward by D.y rv 2.5 while the rapidity of participant target baryons 

should be shifted upward by D.y .?:, 1. Therefore a substantial amount of equilibration 

between projectile and target baryons was expected to occur at 15 AGeV where the 

total rapidity gap is only 3.5. We therefore compare the data first with the firestreak 

model[Gosset, Myers]. The short dashed curves in Figs. 1.1.1 and 1.1.3 show the 

results obtained with a cut on impact parameters b :::; 2.9 fm. The severe discrepancy 
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between the data and the calculated results is obvious. No reasonable variation of 

the freeze-out density was found to improve this situation. Also shown by the long 

dashed curves in fig~ 1.1.1, are the results using the Landau hydrodynamic fireball of 

Ref. [Stach]. While the proton distribution is in agreement with the extrapolated E814 

data, it fails to account for the ramp form of E802 proton data, the difference between 

the pion and proton slope parameters, and the absolute pion yield. In Ref.[Brown, 

BrownEr] a hydrochemical version of the fireball model was able to reproduce the pion 

and kaon spectra, but. that model also failed to account for the form and magnitude 

. of the observed proton distribution. It follows that if the E802 data are correct all 

such equilibrium models assuming complete nuclear stopping are ruled out by the 

absence of a peak of dNp / dy near y '" 1.2, the small value of dNp / dy ~ 7 at y '" 2, 
. . 

and the small number of 7r- observed at mid rapidity. 
\-

We therefore consider next non-equilibrium dynamical models such as the multi-

string Lund Fritiof Model[Lund]. In that model multiple interactions are assumed 

to excite baryon strings which fragment independently and without final state in­

teractions. Such phenomenological string models have been successful in accounting 

for many of the features of multi particle production in p + A and B + A collisions 

at higher energies E'ab > 60 AGeV[QM88]. The histograms in fig .. 1.1.1 show the 

results from the ATTILA version[Gyu87] of the Fritiof model for this reaction for the 

same range of impact parameters. While the ramp form of the proton distribution is 

much better reproduced, the proton slopes are much smaller than observed. In ad­

dition, the 7r- rapidity density is overpredicted by 70%. We note that RQMD string 

model[RQMD91, RQMDpi] also overpredicts the pion rapidity density by 70%. 

Having seen that the above simple equilibrium and nonequilibrium models for 

nuclear collision dynamics fail to reproduce the new data, we consider next a model 

independent fit in order to isolate possible causes for the discrepancies. In particular, 

this fit allows us to take into account all of the observed energy in longitudinal and 

transverse motion, pion production and kaon production. The measured transverse 
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momentum distributions were fit with a form 

(1.1.1 ) 

where the slope parameters, Ti(Y), were parameterized by sums of Gaussians in ra­

pidity. The data reported in [E802] together with unpublished data from [Bloo] were 

used to fix these slopes. The 'pion and kaon rapidity distributions were parameterized 

in terms of independent Gaussians. For the unobserved neutral mesons we assumed 

7r0 = (7r+ + 7r-) 12, 1(0 = 1(+, and [(0 = 1(-. The nucleon rapidity distribution was 

taken to be parabolic in the region 0 < Y < 3.0 with a linearly dropping ~ai1 from 

3.0 < Y < 3.5 and Gaussian taii Y < O. In the high rapidity region we allowed for an 

extra Gaussian distribution of baryons to test for nuclear transparency. For neutrons 

we assumed that Pn(Y) = 132/93pp(Y) to be on the safe side (Le., allowing for larger 
, 

unobserved neutral baryon energy than expected in the projectile fragmentation re­

gion). Total baryon conservation was enforced. 

We found that without an extra, high rapidity, baryon contribution the total lon­

gitudinal momentum carried by nucleons and mesons integrated over all of phase 

space was 165 GeV Ic less than the total initial momentum (Po = 409 GeV Ic). To 

take into account possible systematic errors i~troduced by extrapolations tounmea­

sured low Pl. regions and depletion of the proton yield due to composite fragment 

formation[E802], we tried a fit to data enhanced by a factor 1.3 However, even with 

that enhancement the fit failed to account for 93 GeV Ic of the incident longitudinal 

momentum! 

Only by introducing an extra, high rapidity baryon contribution centered at y = 

2.75 with an rms width D..y = 0.25 and containing approximately 11 of the 28 incident 

baryons were we finally able to account for all the incident momentum (and energy) to 

an accuracy of better than 1 GeV. This final fit is shown by the dot-dashed curves in 

figs. 1.1.2 and 1.1.3. We have checked that neither the ET nor the forward calorimeter 

data are sensitive to this unexpected baryon contribution in the region 2 < y < 3. 

We emphasize that the energy contained in the observed transverse flow of baryons 
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as well as in enhanced kaon production is taken into account by this fit. In addition 

our fit is conservative since we assumed that all the E802 rapidity densities must 

be multiplied by 1.3 due to systematic errors. From this analysis we conclude that 

the E802 spectrometer data are consistent with longitudinal momentum and baryon 

conservation only if a significant fraction of the projectile nucleons suffer less than 

one unit of rapidity shift after traversing 5 - 10 fm of nuclear matter . 

50 
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Figure 1.1.2: As in fig. 1.1.1 but compared to a constrained fit (dot-dashed) to 

data enhanced by a factor 1.3. The solid curves show results of our multicomponent 
model with Ls- L~ = 26 fm. 

Of course, it is possible that the "central" multiplicity-triggered data actually 

suffered some contamination from peripheral events. Large numbers of projectile 

spectators from these events would then be able to account for the missing longitudi-
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nal momentum. However, unpublished data correlating the multiplicity trigger with 

the zero degree calorimeter (ZDC)[Bloo] suggest that the published central events 

had negligible numbers of projectile spectators. Furthermore, unpublished central 

ZDC-triggered data[Bloo] agree to within 10% with the multiplicity-triggered data 

considered here. 
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Figure 1.1.3 J(± data[E802] compared to firestreak (dashed), constrained fit (dot­

dashed), and multi component model (solid) calculations. 

To estimate more quantitatively the .nuclear stopping power implied by these data 

and to enable us to calculate the A and impact parameter dependences of the spectra, 

we developed a multicomponent firestreak model with enough flexibility to deal with 

many complex nonequilibrium features exhibited by the p, 7r, . and J( data. Instead 

of forming one fireball(streak) in each collision between rows of nucleons as in the 
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conventional firestreak model, we allow each row-row collision to form up to four 

fireballs with different rapidities depending on the nuclear thicknesses involved. We 

found that four fireballs was the minimum necessary to reproduce all the features of 

the present data. While differing in detail, .this model is similar to previous multi­

component fireball and hydrodynamic models[Dan, Clare]) which were introduced to 

. take into account nuclear transparency. 

In our model we assume that in a collision of two tubes of nuclear matter of 

transverse area CTin = 30 mb containing Np and Nt nucleons, the total center of mass 

momentum p. of both tubes is reduced by an amount proportional to the number of 

binary collisions, NpNt : 

(1.1.2) 

Here hpz is the average longitudinal momentum loss per inelastic collision. Defining 

the effective nuclear thickness, Zi, via Ni = CTinpOZi, the momentum shift per baryon of 

the projectile (target) is thus assumed to increase linearly with the target (ptoje<;tile) 

thickness. A measure of the nuclear stopping power is given by the stopping length 

(1.1.3) 

where Yp(Yt) is the rapidity of the projectile (target) tube. For symmetric collisions 

with Zp = Zt = z, the fractional momentum loss, D.p. / p. = z/ Ls, increases linearly 

and reaches unity when Z = Ls. 

We found, however, that the above two fireball model of stopping could not re­

produce the apparent peaking of Tp(Y) near Y "" 1.5 as indicated by preliminary E802 

. data[BlooJ. We therefore allowed a fraction, fs, of the baryons from both the projec­

tile and target nucleon in each tube to stop completely in the tube-tube cm frame. 

This fraction was also assumed to increase with nuclear thickness as 

(1.1.4) 

Incomplete nuclear stopping is thus modelled by three separate baryonic fireballs (for 
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each row-row collision) with rapidity and baryon number controlled by two stopping 

lengths, La and L~. 

The baryon transverse momentum distribution is controlled by the excitation en~ 

ergy per baryon, M*, in each of these fireballs. In order to fit the preliminary Tp(Y) 

data[Bloo], we enforce the constraints M* ~ M; = 1.4 GeV for the noncentral fireballs 

and M; ~ M; = 1.85 Ge V for the central ones. Any excess energy is assumed to be 

taken up by a fourth central fireball with zero baryon content (the "meson" fireball). 

The baryon fireball freeze-out densities are all chosen to be PI = po = 0.15 fm- 3
, 

while the meson fireball freeze-out temperature is chosen to he 160 MeV. In addition, 

to account for incomplete chemical equilibration of strange hadrons seen from fig. 

1.1.3, we reduced the thermal contributions of all strange hadrons by a factor 1/4. 

These hybrid aspects of the model essentially mimic effects in the hydrochemical 

model[Brown, BrownEr] without th~ constraint of full nuclear stopping. 

The solid lines in Figs. 1.1.2, 1.1.3 show the results of this multi component model 

for La = L~ = 26 fm (opz = 0.22 GeV /c). With these parameters we recover essen­

tially the results of the (dash-dot) fit discussed earlier. In particular, this model also 

leads to a high rapidity projectile contribution centered around Y ~ 2.5 as required 

by energy-momentum and bary~n conservation. The rather large values of these stop-

, ping lengths are surprising in view previous expectations based on p + A at higher 

energies [pA, Mish]. Also with La = 26 fm, the fracti~n of projectile baryons in the 

central fireball is only fa rv 1/3 for Si + Au. This value is much less than deduced in 

[E814, Stach] based on transverse energy and leading neutron data and unpublished 

high multiplicity selected E802 dNch / dTJ data. 

We comment finally on the difference between collective longitudinal hydrody­

namic flow and nuclear transparency. In Ref.[Stach] it was suggested that Landau 

hydrodynamics could account for the nonisotropic angular distributions in the cm 

frame. However, the comparison between that model and the data in fig. 1.1.1 

shows that no single expanding source can account for the different maxima and 
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shapes of those distributions. On the other hand, detailed one fluid hydrodynamic 

calculations[Stau89, Stau90] predict a nonsymmetric baryon distribution with a shoul­

der between 2 ;S y ;S 3. In fact so much longitudinal collective baryon flow was pre­

dicted that the calculated pion yield falls significantly below the E802 data. It would 

be interesting to check if variations of the equation of state and the freeze-out condi­

tion could improve the agreement with data for this reaction. In principle only the A 

dependence of the particle spectra can differentiate between such novel nuclear shock 

effects from transparency. For example, one fluid hydrodynamics predicts[Strot] a 

sharp peak at mid rapidity for the proton distribution in central Si + AI, whereas our 

model predicts a minimum in that case. 

We conclude that none of the present models which assume complete nuclear stop­

ping and none of the nonequilibrium string models are consistent with the new E802 

data. If the normalization error of the new E802 data does not exceed 30%, then 

energy-momentum and baryon conservation alone require there to be an unexpected 

shoulder in the baryon spectrum in the region 2 < y < 3. Our. fits to the data 

in terms of a multi component firestreak model suggest surprisingly long stopping 

lengths, Ls ~ 26 fm. Because these results deviate so much from previous expec­

tations and analyses of more indirect data, systematic measurements of the A and 

multiplicity dependence of dNp/ dy over the full rapidity region should be undertaken 

to cross check these data and establish if indeed nuclei are as transparent as the 

present data seem to indicate. 
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1.2 Nuclear Stopping Power 
at 15 GeV /nucleon 

by Scott Chapman and Miklos Gyulassy 
(Published in Physical Review C 45 (1992) p. 2952) 

Abstract 

Fireball, firestreak and hadronic string models are shown to overpredict recent central 
15 AGeV Si+Au ES02 spectrometer data. Claims in the literature about full nuclear 
stopping in Si+Au reactions are therefore not supported by these data. In fact, fits 
to the spectrometer data indicate that up to half of the projectile nucleons may lose 
less than one unit of rapidity after traversing 5-10 fm of nuclear matter, implying an 
unexpected long stopping length of -20 fm. On the other hand, ESlO, ES14, and 
preliminary ES02 dNcharged/ d", data are more consistent with the expected degree of 
stopping. 

1.2.1 Introduction 

It has been claimed that "full stopping is realized[PANIC), showing a behavior close 

to the Landau model[Stach] and to relativistic fluid dynamics[StauS9], and the energy 

density can reach values comparable to the critical values for QGP formation" [Ame91]. 

However, as we pointed out in ref. [Chap91], the published ES02 spectrometer data 

[ES02] cast doubt on this belief, since in fact none of the present models is consistent 

~ith the full array of data. Moreover, if the spectrometer dN/dy are normalized 

correctly, then these data are more indicative of a surprising degree of nuclear trans-

parency. On the other hand, dNcharged/d",[HIPAGS] and high rapidity ES10[ESlO] 

and ES14[ES14] are well reproduced by models incorporating a high degree of nuclear 

stopping. As a result of this apparent inconsistency, no firm conclusion can yet be 

drawn on the important topic of the amount of nuclear stopping at the AGS. 

In our letter[Chap91] we discussed a model independent fit to the spectrometer 

data which showed that if systematic errors do not cause more than a 30% suppression 

of proton and pion yields, then 4-momentum and baryon conservation laws imply 

that at least 11 out of 28 projectile nucleons suffer less than one unit of rapidity loss 
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during a central Si+Au collision. In this paper, we give the precise functional form 

of the fit used in the letter, as well as introducing three other fits which allow for the 

possibility of systematic errors in excess of 30%. In addition to ES02 spectrometer 

data[ES02], we compare these four fits to ES02 dNcharged/d." data[HIPAGS] as well as . 

data from the ESlO[ESlO] and ES14[ES14] collaborations. In our letter, we developed 

a multi component model (mcm) in order to quantify the amount of nuclear stopping 

implied by the ES02 spectrometer data. In this paper, in addition to explaining the 

mcm in more detail in the Appendix, we show that a simpler double firestreak model 

leads to similar conclusions about the amount of stopping. These types of models 

are only able to reproduce the spectrometer data with stopping lengths of ",20 fm. 

In addition to central Si+Au data, we discuss the agreement of these models with , 

unpublished preliminary central Si+AI and Si+Cu ES02 spectrometer data[Bloo], 

and make predictions for central Au+Au proton and pion distributions at these same 

energies. The long stopping lengths implied by the ES02 spectrometer data provide 

a sharp contrast to the results of p+p and p+ A experiments at these same energies 

which imply stopping lengths of more on the order of 8-10 fm[pA]. Thus, either 

something new and unexplained is occurring in central Si+Au collisions at the AGS, 

or else systematic errors in the spectrometer dN / dy data must be significantly larger 

than previously estimated. In any case, the published ES02 spectrometer data do not 

support claims of full nuclear stopping which are prevalent in the literature[PANIC, 

Stach, Ame91, RQMD91, RQMDpi, Brown, BrownEr]. 

1.2.2 The Hadronic Fireball 

In the generic hadronic fireball model[Gosset], the projectile nucleus is assumed to 

be completely stopped by the target nucleus in the participant center-of-mass frame, 

whereupon thermal and chemical equilibrium are established. By treating both nuclei· 

as hard spheres of constant baryon density (Po = .145jm-3
), geometry determines 

the number of interacting nucleons for any given impact parameter. For example, in 

17 

"'1" .. " , 



• 

a b=Q Si+Au collision, all 28 (= Np ) silicon nucleons interact with a central tube 

of about 75 (= Nt) gold nucleons, thus making the baryon number of the resulting 

fireball 103 (= N j ). The remaining 122 gold nucleons of this example are merely 

spectators which are ignored in this model. Once Np and Nt are known, the rapidity 

of the fireball rest frame and the total fireball energy in that frame are fixed by 

kinematics. For the Si+Au example with ypa = 3.4 and Yto= 0, Yj = 1.3 and E j = 

250GeV. 

After its creation, the fireball expands and cools until freezeout, when the mean 

free path of the fireball hadrons becomes approximately the same size as the radius of 

the fireball. The temperature and chemical potentials at freezeout define the particle . 

distributions according to 
I 

c 

1,. - dNi _ li9i VjrE 
, - dyd2pl. - exp{ (E - BO), - SiJ.ls)/T} - (-I)Bi 

(1.2.1) 

where B i, Si and 9i are the baryon number, strangeness, and spin-isospin multiplicity 

for each species of hadron, Vjr is the freezeout volume, and Ii is a parameter intro­

duced to allow for incomplete the chemical equilibration. We assume that Ii = IS 

for all strange hadrons and Ii = 1 for all other hadrons. Since Ej and Nj are 

fixed by kinematics, T, J.l and J.llf can be found by choosing values for Ilf and Vjr (or 

Pjr = N j /Vjr ) and then solving the following integral equations: 

E j = L J d2pl.dyEfi 
i=hadrons 

(1.2.2) 

N j = L Bi J ~pl.dyli 
i=baryons 

(1.2.3) 

0= . L Si J ~pl.dyfi 
,=strange 

(1.2.4) 

We treat explicitly only the following hadronic resonances: N, .6., A, ~, 7r, 1'/, p, W, 1'/', 

/{, J<* and their antiparticles. For example, for b = 0, 18 = .5 and Pfr = 5pa, we find 

that T = 200 MeV, J.l = 418 MeV and J.ls = 92 MeV for AGS energy. 
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Once T, J.L and J.Ls have been found for a given set of input parameters, Ji (y, p 1..) 

determine the invariant distributions for each species of hadron in the fireball. How­

ever, before reaching the detector, the heavy baryon and meson resonances decay as 

follows: ~ ---+ N +7r, A ---+ P+7r- (64% of the time), E+ ---+ P+7r° (52%), E+ ---+ n+7r+ 

(48%), EO ---+ p + 7r- (64%), E- ---+ n + 7r-, 1] ---+ 37r(30%), p ---+ 27r, W ---+ 37r(90%), 

1]' ---+ 27r, and K* ---+ K + 7r, where the balance of the A, EO, 1] and w decays are 

into undetected neutrals. For the 37r decays, it is assumed for simplicity that each 

daughter particle carries away 1/3 of the parent energy. By convoluting the above 

decays with parent distribution functions as in ref. [Das], the resonance contributions 

to the nucleon and pion distributions are found. 

The net charge/baryon of the fireball is given by 

.' (1.2.5) 

where Zp (Zt) and Ap (At) are the charge and atomic number of the projectile (tar­

get) nucleus. Charge conservation is enforced as follows: All final state mesons not 

coming from strange 'baryon decays are assumed to be distributed isosymmetrically, 

and therefore the net charge carried by these mesons is determined solely by the kaon 

abundances: 

(1.2.6) 

From isosymmetry (N KO = N K+, etc.) and conservation of strangeness before strange 

baryon decays, we have the relation Cmes = .5Y, where Y is the number of strange 

baryons in the fireball. It is assumed that all of the strange baryons have the same 

mass (1.17 GeV) so that their relative abundances before decay do not depend on 

the temperature or chemical potentials. These abundances are taken to be 1/4, 

1/2(Z/A)" 1/4, and 1/2(1 - (Z/A),) for A, E+, EO, and E- respectively. In this 

way, the net charge/baryon of all strange hadrons is always identical to the incoming 

charge/baryon ratio of (Z/A),. If, on the other hand, we had chosen A's and E's to 

have different masses, we would either need to introduce another chemical potential or 
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some more complicated prescription for choosing strange baryon abundances in order 

to enforce charge conservation for arbitrary T, J.l and J.lll' Finally, by demanding 

that (ZjA}j of the final nucleons not coming from strange baryon decays be protons, 

overall charge conservation can be enforced. 

In the E802 experiment [E802], centralSi+Au events were identified. by a high 

multiplicity trigger whose cross section (=O"cent) represented 7% of the total Si+Au 

inelastic cross section (=3822mb[BlooD. In our model, we chose a maximum impact 

parameter (bmax = 2.9Jm) such that 7rb~ax = O"cent and then integrated our fireball 

results over b from 0 to bmax• 

In the -experiment, measurements were made using a spectrometer arm with a 

range of 50 < 0 < 550 which could detect and identify charged particles with total 

momentum between 0.5 and 3 GeV /c[ES02, ES02a]. The resulting raw particle dis­

tributions were binned both in y and ml.. For each rapidity bin, the distributions 

appear to be well fit by pure exponentials in ml.[E802]: 

(1.2.7) 

The rapidity distributions were then estimated by integrating these fits over ml.: 

(1.2.8) 

In the fireball model, dNi / dy can be calculated in two ways: by numerically integrat­

ing Ji over all cf2ml. or by using the exponential fitting procedure outlined above after 

imposing the experimental phase space constraints. For all of our calculations, the 

difference between the results of these two methods was less than 20% for dN1r / dy 

and completely negligible for dNp/dy. 

In fig. 1.2.1 we compare three fireball models to the data. The solid dots are 

data from the ES02 spectrometer[ES02], while the diamonds and x's are data from 

E810[E810] and ES14[E814] respectively. It should be noted that the E814 data are 

actually for Si + Pb collisions rather than Si + Au and that the three experiments 
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Figure 1.2.1: The solid dots in the upper panels show the proton and 7r- rapidity 
distributions measured by the E802 spectrometer in 14.6 AGeV Ic central Si + Au 
reactions, while the bottom panels show the ml. distributions for y = 1.3 in those 
same reactions[E802]. The diamonds show E810 '+' - '-' and negatively charged 
particle distributions for Si+Au using a trigger with twice the cross section of the 
E802 central trigger[E810]. The solid squares are E814 proton data for central Si+Pb 
reactions[E814]. Solid curves show results of the generic fireball model, while dashed 
and dot-dashed curves denote Landau hydrodynamic fireball[Stach] and" hydrochem­
ical fireball[Brown, BrownEr] results respectively. The norms of the hydrochemical 
results have been adjusted in accordance with the published erratum[BrQwnEr]. The 
dot-dot-dashed curves in the lower panels show ml. distributions of protons and 7r-'S 

coming only from heavy baryon decays in the generic fireball model. The dot-dot­
dashed curve in the upper right panel shows the generic fireball prediction for the 
pion rapidity distribution given the restricted phase space of the experiment. 
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use different centrality triggers (the E810 trigger has twice the cross section of the 

E802 trigger, while the E814 trigger has less than half the cross section of E802). 

Nevertheless, comparing these data sets to one another is done quite often[Nag] and 

is useful for making qualitative cross checks. The solid line in, fig. 1.2.1 shows the 

results of the generic fireball model outlined above with Plr = 5po and 16 = .5. 

This fireball model produces more than a factor of 2 too many protons, pions, and 

kaons (not shown) at mid-rapidity. Using a higher freezeout baryon density results 

in more heavy baryon resonances and slightly fewer pions, but the increased temper­

ature makes the distributions become too broad in ml.' Increasing (decreasing) 16 

increases (decreases) the number of kaons and strange baryons but does not have a 

significant effect on the total number of mid-rapidity protons and pions. In fact, no 

reasonable variation of Plr and/or IS significantly improves agreement with the data. 

In addition to the generic fireball, fig. 1.2.1 also shows results from the Landau hydro­

dynamic longitudinally expanding fireball[Stach] (dashed line) and the hydrochemical 

spherically expanding fireball[Brown, BrownEr] (dot-dashed line). The longitudinal 

expansion of the Landau fireball reduces the midrapidity proton and pion peaks but 

still overpredicts the E802 proton data by at least 70% in the range 1.5 < y < 2. On 

the other hand, it should be noted that this model does a very good job of reproduc­

ing high rapidity E810 and E814 data. Even though the spherical expansion of the 

hydrochemical model provides a possible explanation for the difference in proton and 

pion slopes, this model also fails to reproduce the measured norms of these distribu­

tions. In fact, all of the fireball models considered here overpredict the E802 proton 

and/or pion rapidity distributions by at least 70% in some rapidity range. 

It has been suggested[Brown, BrownEr] that at least some of the discrepancy in 

dN1r /dy could be due to an unmeasured excess of low Pl. pions coming from baryon 

resonance decays. The dot-dot-dashed curves in the bottom two panels of figure 1.2.1 

show the distributions of protons and pions coming only from baryon resonance decays 

in the generic fireball model. At least for the generic fireball, any low Pl. enhancement 
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due to these resonances is entirely negligible for protons and less than 20% for pions, as 

can be seen by comparing the restricted, exponentially fitted dN 1r / dy (dot-dot-dashed 

line in fig. 1.2.1) with the directly calculated dN 1r / dy (solid line). Furthermore, even 

if one makes the assumption of the hydrochemical model[Brown, BrownEr] that none 

of the pions corning from baryon resonance decays are detected, fireball models still 

predict 70% more mid-rapidity pions than are seen in the data (dashed line in fig. 

1.2.1). Since none of the fireball models discussed here can simultaneously reproduce 

all of the data, we turn to other models. 

1.2.3 The Firestreak and String Models 

The firestreak[Gosset, Myers] model was designed to take into account the diffuse 

edges of colliding nuclei by creating many smaller scale regions of local equilibrium 

rather than a single large fireball. In this model, the projectile and target nuclei 

are divided into longitudinal tubes with transverse area al.(;S 11m2
). Each set of 

two opposing tubes forms a completely stopped miniature fireball (or firestreak) in 

its local center of mass frame. In this way a large number of independent firestreaks 

forms, each with its own local values of Nj, yf, T, J1, and J1,S. Asa result of this locality, 

Wood-Saxon density distributions rather than sharp spheres can be used to determine 

how many nucleons are in each tube. Often, some very asymmetric cases will result. 

For example, a tube containing 3 nucleons from the center of a gold nucleus could 

interact with a tube containing .1 nucleon from the diffuse edge of a projectile silicon 

nucleus to create a streak with N/ = 3.1 and y/ = 0.4. These asymmetries provide 

a natural way to generate low-rapidity "spectator" contributions, even though there 

are no true spectators in this model. 

Hadronic string models[Lund] also feature locality, though they, do not impose 

the requirement of complete nuclear stopping. In fig. 1.2.2, we compare the fire­

streak (dashes) and two string models (Attila[Gyu87] (solid) and QGSM[Ame91] 

(histogram)) with the data. For the Firestreak and Attila, we have calculated Ti(Y) 
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. Figure 1.2.2: The top panels are as in fig. 1.2.1, while the bottom panels are the inverse 
slope parameters of eqn. (1.2.7)[ES02]. These data are compared to firestreak[Myers] 
(dashed); Attila[GyuS7] (solid), and QGSM[Ame91] (histogram) calculations. The 
dot-dot-dashed curve in the upper right panel shows the firestreak prediction with 
experimental phase space restrictions. 

via the exponential fitting procedure of-eqn. (1.2.7) in order to compare our curves to 

the published Ti(Y) values. Though the firestreak improves on the fireball by showing 

"spectator" contributions, it still has the problem of predicting far too many mid­

rapidity protons and pions, even after the experimental acceptance has been folded 

in (dot-dot-dashed line in dN1r /dy). The string models do a better job of reproducing 

the overall ramp shape of dNp/dy, though'they still overpredict by at least 70% the 

number of pions seen by E802. It should be noted that although Attila overpredicts 
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by about 50% the high rapidity protons seen by E802, it reproduces those seen by 

E810 and E814 very well. 
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Figure 1.2.3: The data of the top of fig. 1.2.1 are compared to RQMD calculations 
by H. Sorge et al. (histogram[RQMD92] and solid[RQMDpiD and to RQMD calcula­
tions which have explicitly incorporated the experimental acceptances and cuts (open 
circles) [RQMD802]. 

Recently, there have been claims[RQMD802] that the RQMD model[RQMD91] is 

consistent to within 23% with the E802 spectrometer data. In fig. 1.2.3, we compare 

various RQMD runs with proton and pion rapidity data. Since H. Sorge et. al. have 

not yet published proton and 7r- rapidity distributions in the same paper, we show the 

.proton distribution from ref. [RQMD92] (histogram) and the 7r- distribution from ref. 

[RQMDpi] (solid curve). These curves consistently overpredict the E802 data, even 

by as much as 70% for midrapidity pions. The open circles in fig. 1.2.3 represent the 

results of an RQMD run which was subjected to the E802experimental acceptances 

and cuts[RQMD802]. It is interesting that this RQMD run still overpredicts the E802 

pion and proton yields by '" 50% and '" 70% respectively in the region 1.5 < y < 2. 

None ()f these discrepancies can be due to undetected low Plo components since the 

same exponential fitting procedure was used for this RQMD run as for the E802 data. 
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On the other hand, RQMD does a very good job of reproducing the high rapidity 

E810 and E814 data. 

1.2.4 Model Independent Fits 

Having seen that none of the above equilibrium and nonequilibrium models for nuclear 

collision dynamics are able to simultaneously reproduce all of the published data, 

we consider next a model independent fitting procedure in order to isolate possible 

causes for the discrepancies. We begin by fitting the experimental Ti(y)[Bloo] and 

(dN / dY)i (y )[E802] data with simple functions which have reasonable extrapolations 

to phase space regions outside of the experimental acceptance. Equations ('7) and (8) 

are then used to determine the invariant distributions, Ji = dNddyd?mJ., from which 

information about momentum and energy conservation can be extracted. 

For the meson (dN / dy )i (y) we use 

(dN/dY)i = aCiexp(-(y - Yi)2/8i) -1:5 y:5 4 (1.2.9) 

where (Gi, Yi, 8i) are fit with (16, 1.4, 1), (16, 1.35, 1.3), (3.5, 0.95, 1) and (0.67, 1.3, 

1) for 1r+, 1r-, f{+ and f{- respectively. The reported data are fit with a = 1, but 

later we set a = 1.3 to account for experimental systematic errors. The meson and 

protoh temperatures are given by: 

Ttr+ - Ttr - = 0.06 + .1 exp( -(y - 1.3? /1.2) + 0.03 exp( _y2) (1.2.10) 

TK + - TK - = 0.1gexp( -(y - 1.3? /2.) (1.2.11) 

Tp { 0.23exp( -(y - 1.55)2) + .1 exp( _y2) y < 2.2 
(1.2.12) -

0.15 y > 2.2 

We fit the proton rapidity spectrum with a falling quadratic ramp and include ad­

justable undetected spectator and projectile gaussians in order to. conserve baryon 
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number and to test for transparency: 

-1 < y < 0 

O<y<3 
(dN/dy)p = a 

3 < y < 3.5 

o otherwise 

(1.2.13) 

Fits to E802 Spectrometer 
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Figure 1.2.4: The same proton data as in fig. 1.2.1 plotted on a log scale. In addition 
to a datafit (dashed) which does not conserve 4-momentum, we show fit! (solid), fit2 
(dot-dashed), fit3 (dot-dashed), and fit4 (dot-dot-dashed). 
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Fits to E802 Spectrometer 
25 

20 1T+ 

~ 15 "C 
"-
~. 10 

5 

° 
P 

>,0.2 
Q) 

,~ 
.......... 
~ 0.1 

0.0~--1~--2~--~3~--~1--~2--~3~ 

Y Y 
Figure 1.2.5: Data as in fig. 1.2.2 with ES02 dN1!'+ / dy[ES02J instead of protons. Also 
in the upper panels we show fit1 (solid), fit2 (solid), fit3 (solid 1/"+ and dot-dashed 1/"-) 
and fit4 (dot-dot-dashed 1/"+ and dot-dashed 1/"-). The lower panels show the T(y) 
which were used for all of the fits. 

where cpro = 0.2. For the unobserved neutral mesons it is assumed th~t 1/"0 = (1/"+ + 
1/"-)/2, f{0 == f{+, and RO = f{-. Charge conservation is enforced by demanding that 

the total number of final protons be Np = 14+79 - N1!'+ - NK + +N1!'- +NK - (= 91.9 

for the above fit). We employ E810 and ES14 data to guide our dNp/dy extrapolation 

to high rapidities by using (ypro, Cpro , Cspec , cspec ) = datafit = (2.5, 3.S, SO.9, 0.17), 

where the last two parameters were chosen to get the right value for Np. With Np 
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Figure 1.2.6: The upper panels show the E802 J{± rapidity distributions in central 
Si + Au reactions (solid dots), while the bottom panels show ml. distributions for 
y = 1.3 in these same reactions[E802]. Simple fits to the data are shown by dashed 
curves in the upper panels and solid lines in the lower panels. The solid curves in 
the upper panels show the 30% enhancement used in fitl -fit4. The dashed line in 
the lower right panel shows a low ml. component which would give rise to a 30% 
systematic error in dN7rldy. 

fixed, the total number of undetected neutrons is given by baryon number conser­

vation, Nn = 28 + 197 - Np = 133.1. The correct value for Nn can be achieved by' 

assuming an nip ratio of 1.3 for y > 2 (based on E814 findings[StachD and n/p= 1.46 

for y < 2. This fit to the three experiments at the AGS allows us to take into account 
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all of the observed energy in longitudinal and transverse motion as well as pion and 

kaon production. Datafit is shown by the dashed lines in figs. 1.2.4, 1.2.5 and 1.2.6 

(solid lines for the temperatures). 

The total outgoing longitudinal momentum Pz implied by this fit is easily calcu­

lated by integrating ml. sinh(y)fi over cPml. and y: 

(1.2.14) 

E is simply found by replacing sinh(y) by cosh(y). For datafit, the integration over 

y gives Pz = 289 GeV Ic and E = 495 GeV, whereas the total incoming energy and 

momentum are known to be Pz = 409 GeV/c (= 28 x 14.6) and E = 595 GeV 

(= 197 x .939 + 28 x 14.63). 120 GeV Ic of the incoming momentum and 100 GeVof 

the energy are unaccounted for in this fit to the data! If we assume that neither leptons 

nor photons carry a significant fraction of the 4-momentum, then there must be some 

undetected hadrons somewhere which do carry it. The E802 collaboration noted that 

an undetected excess of low Pl. particles could result in a 25% enhancement of dNldy 

over the exponentially fitted data[E802]. To take this into account as well as other 

possible systematic errors in the data, we multiply each of our (dN I dY)i functions by 

a = 1.3 and adjust Cpro to 2.3 in order to preserve high rapidity agreement with E810 

and E814 (Cspec = 43.9 for charge conservation). Even with this 30% enhancement 

over all of the E802 data, we find that 50 Ge V I c of momentum and 45 Ge V of energy 

are still missing. 

It seems that either the true dNd dy exceed the published E802 data by more than 

30% in some rapidity regions, or else the "missing" 4-momentum must be carried by 

more high rapidity hadrons than we use in the above extrapolations. If we assume that 

the latter is true, then the least transparent solution which does not overpredict any 

of the spectrometer data by more than 30% has fit! = (2.75,3.4, 40.9,0.17), where 

now a constant nIp ratio of 1.46 is assumed throughout and (a, h'pro) = (1.3, .25) 

for the rest of the fits considered in this paper. This 4-momentum conserving fit 

(solid lines in figs. 1.2.4-1.2.6) overpredicts high rapidity E810 and E814 proton data 
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by a factor of 2. By allowing a 50% disagreement with the last proton data point, a 

slightly less transparent solution can be found: fit2 = (2.5, 4.29, 32.2B, .25) which only 

overpredicts EB10 and EB14 by 50% (dot-dashed curve in fig. 1.2.4). These solutions 

have 1O.B and 10.1 nucleons respectively in the proj~ctile region (2.44 < y < 3.5). In 

the lower half of fig. 1.2.6 we show how an undetected low-ml. component for pions 

could give rise to a 30% normalization error in dN1rldy. However, since a high-ml. 

hadron with rapidity y carries more 4-momentum than a low-ml. hadron with the 

same rapidity, it is more conservative to use a uniform 30% enhancement everywhere 

as we did in our calculations. 

If we allow a 40% disagreement with the last two EB02 7r- data points, the width 

of the dN 1r- I dy Gaussian can be increased to D1r - = 1.B5 to provide agreement with 

EB10 negatives at high rapidities (dot-dashed dN1r ldy in fig. 1.2.5). By using fit3 

= (2.5, 4.5B, 72.7, 0.07) to define the proton distribution, 4-momentum can be con­

served with 9. 7 nucleo~s in the projectile region. The y > 0 protons in this fit are 

distributed almost identically to the protons in fit2, though from charge conservation 

the enhanced number of 7r-'S causes a smaller nip ratio (=1.33). Finally, from the 

fact that silicon is isosymmetric, one could argue that high-rapidity pions should be 

isosymmetric and therefore that the 7r+'s should also be distributed like the E810 neg­

atives at high rapidities. This can be achieved by taking D1r+ = 1.75 and fit4 = (2.5, 

1.92, 49.3, 0.09), which has only 6.6 nucleons in the projectile region and is shown by 

the dot-dot-dashed dNpldy and dN1r ldy curves in figs. 1.2.4 and 1.2.5. Though this 

fit conserves 4-momentum and agrees well with high rapidity EB10and EB14 proton 

data, it disagrees with the last two EB02 7r+ data points by 70-100% and it features 

an nip ratio of 1.56 even in the projectile region. 

It is instructive to compare the four fits discussed above to other preliminary data 

from E802 as well as to leading neutron data from EB14. In addition to the spec­

trometer arm, E802 has a target multiplicity array (TMA) detector which measures 

dN/dTJ of charged particles and a beam calorimeter (ZeAL) which measures the resid-
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Figure 1.2.7: Preliminary dNcharged/dq data[HIPAGS] are compared to results of 
RQMD [RQMD91) (histogram), fitl (solid), fit2 (dashed), fit3 (dot-dashed), and fit4 
( dot-dot-dashed). 

ual beam energy after a collision. Due to the geometry of the ZeAL detector, there is 

some uncertainty as to whether it measures the energy of final particles with () < 0.8° 

or with () < 2.2°[Bloo). For ()max = 0.8° the four fits discussed above give ZeAL 

energies (in Ge V) of (5.3, 3.8, 4.4, 4.1), while for ()max =2.2° these same fits give (37.0, 

27.4, 30.6, 27.6). If ()max is indeed 0.8°, then n~ne of the above fits are inconsistent 

with correlations between the TMA (which defines the central trigger) and ZeAL 

measurements[Bloo]. In fig. 1.2.7 we compare dN/dT] distributions from the four fits 
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and RQMD[RQMD91) with preliminary TMA data[HIPAGS). It is interesting that 

the four fits, each of which exceed the spectrometer multiplicities by at least 30%, 

still underestimate the TMA multiplicity. RQMD, on the other hand, can reproduce, 

dN / dTJ quite well even though it overpredicts spectrometer yields by 50-70% in some 

rapidity regions. Since no reasonable fit or model can simultaneously reproduce both 

the spectrometer and TMA charged particle multiplicities, there appears to be some 

inconsistency between these two data sets. We note here that preliminary EB14 dN / d7J 

data are in very good agreement with the EB02 TMA data[EB14a). 

814 Leading Neutrons 
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Figure 1.2.B: The histogram shows the rapidity distribution for neutrons emerg­
ing with a beam angle of less than O.BO in central (E1.814 > 13GeV) Si+Pb colli­
sions[EB14). Fit1 (solid), fit2 (dashed), fit3 (dot-dashed), and fit4 (dot-dot-dashed) 
for central Si+Au are compared to these data. 
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Figure 1.2.9: Angular energy distributions (kinetic energy for baryons) are shown 
for Attihi[Gyu87] (histogram), fit1 (solid), fit2 (dashed), fit3 (dot-dashed), and fit4 
( dot-dot-dashed). 

In the E814 experiment, neutrons emerging from Si+Pb collisions with a beam 

angle of () < 0.80 are measured using a forward spectrometer[E814]. Their rapidity is 

determined by the amount of energy that they deposit in the spectrometer, and so a 

dN()/dy plot of neutrons having(} < 0.80 is generated. In fig. 1.2.8 we compare dN()/dy 

from our four fits with leading neutron data for central (0" "" 40mb) Si+Pb collisions 

[E814]. The agreement is best for fit4, but due to the statistical uncertainty of the data 

as well as the different target (Pb) and trigger used by E814, none of the fits can be 
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ruled out. In addition to leading neutrons, E814 also measures dE/dO[Fox]. Tho,!gh 

these data are not yet published, we have plotted dE/dO predictions for our four fits 

and Attila in fig. 1.2.9. It will be very interesting to see how the E814 data compare 

to these predictions, since for 5° < 0 < 15° dE/dO is sensitive to the differences in 

the projectile region between the Attila model and our model independent fits. 

It should be emphasized that the four fits are conservative in that each assumes 

that all of the E802 spectrometer data are systematically low by at least 30%. There 

are, of course, other less transparent solutions which are consistent both with the 

spectrometer data and with conservation laws. For example, abnormally large num"' 

bers of 7I"°'S, photons, or high-energy electrons could be produced in these collisions 

without being detected by the spectrometer. These solutions, however,im:ply bizarre 

. and unprecedented physics. The four fits discussed above are thus the least unusual 

solutions which are more or less consistent with the reported E802 spectrometer data. 

One might argue that simplest solution of all to the problem of "missing" momentum 

is that the E802 spectrometer data are systematically low by 20-40% at low rapidities 

and by 40-70% at high rapidities. If that were the case, a number of conventional 

models would he able to reproduce both the spectrometer dN / dy and the TMA dN / dTJ 

data reasonably well. If the spectrometer data do in fact have such large systematic 

errors for central Si+Au collisions, then one might expect similar errors to be present 

in central Si+AI data, where the extrapolation to projectile rapidities is more accu­

rately known from the approximate symmetry of the projectile and target. However, 

in his Ph.D. thesis, Matt Bloomer performed an analysis using symmetric functions 

in which he found that energy conservation together with ZeAL data implied that 

the total systematic errors of the spectrometer data were less than 20% for central 

Si+AI collisions[BlooJ. We are led to conclude either that new systematic errors are 

present in central Si+Au collisions or that some new and unexpected physics occurs. 

(i.e. anomalously large neutral particle production, or large numbers of final particles 

in the projectile region). 
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For the remainderof this paper, we take the normalization of the E802 spectrom­

eter data at face value, ignoring the E810 and E814 data. None of the models which 

we have considered in this paper are consistent with the normalization of the spec­

trometer data; therefore, those models cannot be used to assess the stopping power 

implied by these data. For that purpose we now construct hybrid models that can 

reproduce the reported E802 data. It should be emphasized that these models will 

not be able to simultaneously reproduce high rapidity E810 and E814 data for reasons 

of momentum conservation as demonstrated above. 

1.2.5 Hybrid Models 

The most straight-forward way to generalize the firestreak model to incorporate trans­

parency is to assume that each tube-tube interaction produces two firestreaks (pro­

jectile and target) rather than one. We must then determine the rapidity (Yi) and 

rest energy per baryon (Mt) for each of these streaks. In order to treat projectile and 

target consistently, we must either pick YP and Yt or M; and Mt, since the remain­

ing two can be solved for by energy and momentum conservation. A simple linear 

parametrization of the projectile and target streak rapidities is given by 

( Nt )(O'in) d (Np)(O'in) YP = Ypo - 1\T - an Yt = 1I.T - , 
J1io a.L .lVO a.L 

(1.2.15) 

where No is the number of nucleons in a tube of size a.L= (Tin = 30mb necessary 

to cause a one unit rapidity shift of the opposing tube. The last factor in each 

of the above equations was included to insure that the stopping power would be 

independent of the lattice size (a.L) chosen. Unfortunately, the above prescription 

leads to a ilUmber of cases where M* of one of the fireballs is forced by 4-momentum 

conservation to be less than the mass of the nucleon. fig. 1.2.10 shows the regions 

of (Np, Nt) space for which this problem arises. Similar problems were encountered 

with other parametrizatiohs in which YP and Yt were chosen independently .. 

These problem regimes could in principle be handled specially by demanding com-
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plete transparency or the formation of a single fireball, but we chose instead to utilize 

a different algorithm which avoids special cases. First, in the center-of-mass frame of 

two colliding tubes containing Np and Nt n~cleons, the incoming momentum, p., is 
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Figure 1.2.10: The available phase space for the stopping prescription of eqn. (15) 
is shown by the unshaded region. In the shaded region, one or both of the receding 
fireballs must have a mass/baryon < .939 GeV in order to conserve 4-momentum. 

found. Next, the momentum of each tube is reduced by an amount proportional to 

the number of binary collisions, NpNt: 

(1.2.16) 

Finally, the energy/baryon is required to be the same for both of the outgoing fire-
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streaks (M* = Mt = M*). M* and the CM firestreak rapidities y; and y; can then 
p . 

be found from the following equations: 

(1.2.17) 

(1.2.18) 

where the CM energy/baryon of the tube-tube system, M cm , is determined by kine­

matics. Due to the symmetries of this method, M* monatonically increases from mN 

to Mcm as AP* is increased from 0 to P*. When the prescription of (16) gives a 

AP* ~ P*, a single firestreak with M* = Mcm and y; = y; == 0 is assumed to be 

formed. Defining the effective nuclear thickness, z,' via N, = a.l.POZ" the momentum 

shift per baryon of the projectile (target) is thus assumed to increase linearly with 

the effective target (projectile) thickness. The nuclear stopping power of this model 

is controlled by a single parameter-the momentum loss per binary collision hpz, or 

equivalently, the nuclear stopping length 

(1.2.19) 

The meaning of this stopping length can be most easily seen in symmetric collisions 

(zp = Zt = z,), where the fractional momentum loss (AP*/P* = z/L.) increases 

linearly and reaches unity when z = La. Thus a stopping length of 10 fm implies that 

two colliding tubes of length 10 fm will just be able to stop each other. 

In fig. 1.2.11 we compare models with various values of L. to the data (PJr = 2po 

and "(. = 0.7 have been chosen to provide the best agreement with kaon data and 
, 

pion temperatures). Compared to the data, La = 10 fm is evidently too small and 

La = 26 fm is too large. Though La = 17 fm provides good agreement to all but the 

last point of the dNp / dy data, its pion peak is shifted to low rapidities, and its proton 

temperature is too low with a dip at midrapidity which is not seen in preliminary, 

unpublished Tp(y) data[Bloo]. It should be noted that folding the E802 spectrometer 

acceptance[E802a] into the double firestreak leads to less than a 10% suppression 
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Figure 1.2.11: Double firestreaks with La =10 fm (dot-dashed), 17 fm (solid), and 26 
fm (dashed) are compared the data of fig. 1.2.2. 

of the pion yield and no discernable change in the proton rapidity spectrum. This 

double firestreak description provides far better agreement with the data than any 

of the other models discussed so far, but in order to quantitatively reproduce all the 

features of the E802 data, further refinements are needed. 

One of the key observations of E802 is that the transverse momentum slopes 

of protons and pions differ significantly. Therefore the amount of energy locked into 

transverse motion differs from that expected in simple thermal models with one freeze­

out temperature. Collective flow [Brown] provides one natural mechanism for different 

slopes. Different freezeout criteria due to different cross sections provides another. To 
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test the effect of this difference on the conclusion of the stopping power, we developed 

a more complex multi component model (mcm). The details of this model are given 

in the Appendix. We emphasize that the mcm is not meant to be a realistic model of 

the physics, but a convenient numerical tool to help sort the implications of various 

features of the data. 

In figs. 1.2.12 and 1.2.13 we show two mcm solutions. The solid line is the best fit 

to the data (mcm1), with La = L~ = 26fm, M;= 1.4 GeV, M; = 1.85 GeV, pJr = po, 

Tme8 = 160 MeV, and /8 = 0.25. This is the fit that was used by us in ref.[Chap91]. 

Multicomponent Model Fits 
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Figure 1.2.12: Multicomponent model fits mcm! (solid) and mcm2 (dashed) are com­
pared to the data of fig. 1.2.2. The dot-dashed curve for the pions shows the result 
of mcm! with the experimental acceptance taken into account[E802a]. 
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Figurel.2.13: Multicomponent model fits mcm1 (solid) and mcm2 (dashed) are com­
pared to the data of fig. 1.2.6. 

The dashed curve is another fit to the data (mcm2) with La =20jm, L~ = 50jm, 

M; = 1.55 GeV, M; =2 GeV, Plr = po, Tmes = 165 MeV, and 1a = 0.25. The 

dot-dashed curve for the pions shows mcm1 with the spectrometer acceptance[ES02a] 

folded in. Due to the many adjustable parameters of this model, both mcm1 and 

mcm2 are able to quantitatively reproduce almost all of the ES02 spectrometer data. 

The most notable discrepancy is the 25% overprediction of low rapidity pions by these 

models after the experimental acceptance has been taken into account. Unlike the 
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models discussed previously which also overpredict pions, the disagreement of the 

mcm fits is much' smaller and only seen at low rapidity. Both of the mcm fits as 

well as the La = 17 double firestreak exhibit the high degree of nuclear transparency 

necessary to be able to reproduce the E802 spectrometer data. 

The LIJ = 17 double firestreak as well as mcm1 and mcm2 discussed above have 

all had their parameters tuned to best fit theE802 central Si+Au spectrometer data. 

The quality of these fits is therefore not· very surprising, especially in the case of the 

. mcm where there are so many free parameters. An interesting test of these models 

is to see how well they can reproduce unpublished E802 central Si+AI and Si+Cu 

data[Bloo]. For these reactions, there is very little difference between the results 

of mcm1 and mcm2j both of them are able to reproduce dN1r /dy and mid-rapidity 

dNp/dy of both collisions to within 20%. Both parameter sets predict too many 

target protons, but this could be due to large fragment formation in these reactions. 

The LIJ = 17 double firestreak obtains results similar to mem1 and mcm2 for Si+Cu, 

but it exhibits a factor of 2 too few mid-rapidity protons and pions in central Si+AI 

collisions. Even though the double firestreak uses a smaller value for LIJ than the 

mcm fits, it exhibits less stopping when applied to lighter nuclei. This is because 

there is no center-of-mass firestreak in the double firestreak model, so a lot of energy 

is ~arried away by receding mesons. Thi~ effect becomes much more pronounced 

with less stopping (lighter nuclei). It should be noted that we were not able to 

find a model which could simultaneously fit E802 p+A data and central A+B data. 

However, to the extent that central Au+Au reactions bear more similarity to central 

Si+A than to p+A reactions, the predictions for Au+Au by our mcm fits are better 

supported by the E802 spectrometer data than those of the models discussed in the 

first parts of this paper. In figure 1.2.14 we show Au+Au predictions by the LIJ = 10 

fm (dot-dot-dashed) and La = 17 fm (dot-dashed) double firestreaks as well as by 

the mcm fits (mcm1=solid, mcm2=short-dashed). For such large nuclei, the La = 10 

fm double firestreak forms essentially a fully-stopped firestreak which consequently 
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features a much narrower and higher peak in dNp/ dy than the other models. This 

is due to the fact that full stopping has not been achieved in these models, as can 

be easily seen by looking at the long dashed line which represents the projectile 

proton rapidity distribution of mcml. Since Au+Au is symmetric, the projectile and 

target contributions combine to form a symmetric, gaussian-like dNp/dy which would 

be difficult to differentiate from the result that one would get from a fully-stopped 

fireball undergoing longitudinal expansion. For asymmetric collisions like Si+Au, on 
/ 

the other hand, these two cases can be clearly distinguished. For this reason it is 

important to study and understand asymmetric as well as symmetric collisions. 
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Figure 1.2.14: Predictions for central (0 < b < 3 fm) Au+Au collisions by multicom­
ponent model fits mcm! (solid), mcm2 (dashed), and double firestreaks with La =10 
fm (dot-dot-dashed) and La =17 fm (dot.:dashed). Projectile protons for mcm1 are 
shown by the long-dashed curve in the upper left panel. 
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1.2.6 Conclusion 

We showed that none of the present models which assume complete nuclear stop­

ping and none of the present nonequilibrium string models are consistent with the 

published E802 spectrometer data[E802] for central Si+Au reactions. For example, 

even the RQMD model is not consistent with these data, as they note that "the 

problem of the 'missing' energy-momentum could be resolved if the normalization of 

the E802 spectrometer data were too small." [RQMD92] If corrections to the normal­

ization nowhere exceed 30%, then energy-momentum and baryon conservation alone 

require the existence of at least 10-11 nucleons in the projectile region (y > 2.44). 

which, ho~ever, would be inconsistent withE81O[E810] and E814[E814] results. The 

fact that the high rapidity E810 and E814 proton data are in excellent agreement, 

even though the E810 trigger is less central and the E814 trigger is more central than 

E802, makes it unlikely that the discrepancies of those data with fits to the E802 

spectrometer are due to triggering effects alone. A double firestreak and a multicom­

ponent 'model have been developed to quantify the degree of transparency needed 

to reproduce the spectrometer data, and nuclear stopping lengths of 17-26 fm were 

found. These lengths are much larger than the lengths of 8-10 fm which were ex­

pected based on other experiments at these and higher energies[pA]. On the other 

hand, the high rapidity data from E810 and E814 as well as preliminary dN/dTJ data 

from E802[HIPAGS] and E814[E814a] are consistent with models incorporating the 

expected degree of nuclear stopping. Until the discrepancies between all data sets are 

resolved, conclusions about full nuclear stopping remain premature. 
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1.2.7 Appendix 

In the multi component model, we decompose a single fireball into two with two differ­

ent freezeout times (one baryonic and one mesonic)~ Baryonic fireballs are assumed to 

consist of baryons (no antibaryons), J<+'s and J<°'s-balanced such that they have zero 

net strangeness. Since the baryon resonances are allowed to decay as usual, there are 

some pions which are produced by baryonic fireballs. Mesonic fireballs are comprised 

of all hadronic resonances (including baryons); but have zero baryon number and 

strangeness. We suppose that each tube-tube collision gives rise to one fully stopped, 

double-freezeout firestreak at the local center of mass as well as to receding projectile 

and target baryonic firestreaks. A number of new parameters must be introduced 

into this model to determine the energy and baryon number of each of the firestreaks . 

involved. 

First, as in the double firestreak, a value of La is specified in order to determine 

M*, y;, andy; for the receding firestreaks. Second, another stopping length,L~, is 

chosen in order to determine the fraction of baryons from each tube which get fully 

stopped: 

(1.2.20) 

Next, if the initial eM energy/baryon, Mcm , of the tube-tube system is greater than 

an excitation mass parameter M;, then the energy/baryon of the baryonic part of 

the central fireball is limited to M; = M;, and the energy /baryon available to the 

receding streaks becomes 

M* -+ M*' = 1 - fs(M;/Mcm ) M* 
1- fs 

(1.2.21) 

in order to conserve energy. If, on the other hand, Mcm ~ M;, then M; = Mcm and 

M*' = M*. If M*' turns out to be smaller than another parameterM;, then there 

is no mesonic firestrea~ at all, and the tube-tube interaction is modeled by three 

purely baryonic streaks. However, if M*' > M; then the receding streaks have their 

energy/baryon limited to M; (M; = Mt = M;), and a mesonic streak overlapping 
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the eM baryonic streak is created with energy 

(1.2.22) 

For the mesoilic streaks, a freezeout temperature T mes is specified and Vir is solved for 

trivially, since J.l = J.lB = 0 for streaks with zero baryon number and strangeness. Not~ 

that if (ZpZt)1/2 2: L~ or t:1P- 2: P-((ZpZt)1/2 2:, La) for any two incoming tubes, then 

this model reduces to a fully-stopped firestreak with separate baryonic and mesonic 

freezeout criteria. 

The many parameters of this model have interrelated effects but can be approxi­

mately explained as follows. The amount of baryon stopping is controlled by Ls and 

L~. The central (1.1 < y < 1.7) values of Tp(y) are controlled by L~, M;, and Plr, 

while the wings (y < 1.1, y,,? 1.7) of Tp(y) are controlled by M; and Plr. It should be 

noted that for baryonic firestreaks with Mt fixed, decreasing Plr cools the baryons by 

forcing them into highe'r mass resonances. T1r(y) is mainly controlled by Tmes , though 

Plr, Mi and M; also have effects by adjusting the number of cool pions coming from 

baryon resonances. The height of dN1r /dy is affected by all of the parameters; in­

creasing the value of anyone of them leads to a decrease in the number of pions. The 

overall number of kaons is adjusted by Is, while'the 1(+/1(- ratio is determined by 

the number of strange baryons, which is again a function of Plr, M; and M;. 
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1.3 Talk from Quark Matter '91 

by Scott Chapman 
(Published in Nuclear Physics A544 (1992) p. 429) 

Abstract 

Fireball, firestreak and hadronic string models are shown to overpredict recent central 
15 AGeV Si+Au E802 spectrometer data by at least 70%. Claims in the literature 
about full nuclear stopping in Si+Au reactions are therefore premature. In fact, fits 
to the spectrometer data indicate that up to half of the projectile nucleons may lose 
less than one unit of rapidity after traversing 5-10 fm of nuclear matter, implying 
possibly a surprisingly long stopping length of ",,20 fm. Comparison of these same 
fits with E81O, E814, and preliminary E802 dNcharged/dTJ data suggests, however, that 
there may be some inconsistencies among the various data sets, and therefore that 
additional data will be needed to establish the degree of nuclear stopping at J\GS 
energIes. 

1.3.1 Introduction 

It is popularly believed that at the AGS "full stopping is realized[PANIC], showing a 

behavior close to the Landau model[Stach] and to relativistic fluid dynamics[Stau89], .. 

and the energy density can reach values comparable to the critical values for QGP 

formation" [Ame91]. However, as we pointed out in refs. [Chap91, Chap92], the 

published E802 spectrometer data[E802] cast doubt on this belief, since in fact none 

of the present models is consistent with the full array of data. Moreover, unless 

the systematic ~rrors of the spectrometer data are very large, these data are more 

indicative of a surprising degree of nuclear transparency. As we show below, however, 

. no firm conclusion can be made on this important topic, since not all of the data sets 

are completely consistent. In this paper our aim is to clarify what are the problems 

at present in drawing conclusions about nuclear stopping power in these reactions. 

In our letter[Chap911 we discussed a model independent fit to the spectrometer 

data which implied that if systema:tic errors do not cause more than a 30% sup­

pression .of proton and pion yields, then 4-momentum and baryon conservation laws 

imply that at least 11 out of 28 projectile nucleons suffer less than one unit of rapid-
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ity loss during the collision. In our subsequent paper[Chap92J, we gave the precise 

functional form of the fit used in the letter, and introduced three other fits which 

featured unexpectedly large nip ratios in the projectile region. Here we introduce 

a fifth 4-momentum-conserving fit which features a more realisticn/p ratio and can 

successfully reproduce the E810[E810] data and extrapolations of E814[E814] lead­

ing neutron data (errors are estimated by assuming .lGeV<T<.2GeV), but which 

overpredicts the currently published E802 spectrometer data by 40%-70%, while 

still underpredicting preliminary E802 dNcharged/d." data[HIPAGS]. We conclude 

that unlike E810, E814 and E802 dNcharged/ d." data, the E802 spectrometer data 

do not support the claims of full nuclear stopping which are so prevalent in the 

literature[PANIC, Stach, Ame91, RQMD91, RQMDpi, Brown, BrownEr]. 

1.3.2 Comparison of Models to the Data 

The solid lineil} fig. 1.3.1 shows the results of the generic fireball model outlined in ref~ 

[Chap92] with PJr = 5po and /8 = .5. This fireball model produces more thana factor 

of 2 too many protons, pions, and kaons (not shown) at mid-rapidity. No reasonable 

variation of pJr and/or /8 significantly improves agreement with the data. In addition 

. to the generic fireball, fig. 1.3.1 also shows results from the Landau hydrodynami'c lon­

gitudinally expanding fireball[Stach] (dashed line) and the hydrochemical spherically -

expanding fireball[Brown, BrownEr] (dot-dashed line). The longitudinal exp~nsion 

of the Landau fireball results in reduced proton and pion peaks atmidrapidity. This 

expansion, however, only shifts the problem to higher rapidities, where again the 

model produces a factor of 2 more protons than are seen in the data. Even though 

, the spherical expansion of the hydrochemical model provides a possible explanation 

for the difference in proton and pion slopes, the model again fails to reproduce the 

measured norms of these distributions. In fact, all of the fireball models considered 

here overpredict the measured proton and/or pion rapidity distributions by about a 

factor of 2. 
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Figure 1.3.1. Landau hydrodynamic[Stach], hydrochemical [Brown, BrownEr], and 
generic[Chap92] fireballs are compared to ES02 proton and pion spectrometer data 
from 14.6 AGeV /c central Si+Au reactions[ES02]. The bottom panels are for y = 1.3. 

, In fig. 1.3.2, we compare the firestreak[Chap91, C~ap92] and two string models 

(Attila[GyuS7] and RQMD[RQMD91, RQMDpi]) with the" data. For the Firestreak 

and Attila, we have calculated Ti(Y) by fitting the invariant distributions with expo­

nentials 

(1.3.1) 

in order to compare our curves to the published Ti(Y) values. Though the firestreak 

improves on the fireball by showing "spectator" contributions, it still predicts a factor 
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of 2 too many mid-rapidity protons and pions. The string models do a better job of 

reproducing the overall ramp shape of dNp/dy, though they overpredict the number 

of high rapidity protons by 50%. As for the pions, the string models again do better 

than the firestreak, though they still overpredict by 70% the dN'tr / dy values reported 

by E802. Comparing Attila to RQMD shows that rescattering does not significantly 

improve the string model fits to the rapidity data. It should also be noted that the. 

quark-gluon string model recently proposed in ref.[Ame91] similarly overpredicts the 

number of mid-rapidity pions by at least 70%. 
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Figure 1.3.2. Firestreak[Chap91, Chap92] (dashed), Attila[GyuS7] (solid), and RQMD 
[RQMD91, RQMDpi] (histogram) calculations are compared to the same data as in 
fig. 1.3.1. The bottom panels are the inverse slope parameters of eqn. (1.3.1)[ES02]. 
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1.3.3 Model Independent Fits 

Having seen that none of the above equilibrium and nonequilibrium models for nuclear 

collision dynamics are able to reproduce the published spectrometer data, we consider 

next a model independent fitting procedure in order to isolate possible causes for the 

discrepancies. As in ref. [Chap92], we begin by fitting the experimental Ti(y)[Bloo] 

and (dN I dy )i(y )[E802] data with simple functions which have reasonable extrapola­

tions to phase space regions outside of the experimental acceptance (dot-dashed line 

of fig. 1.3.3). The invariant distributions, h = dNddyJ:lml.' are then completely 

determined if the exponential form of eqn. (1) is assumed, since 

(1.3.2) 

The exact functional forms of the fits that we used (for kaons as well) are given in ref. 

[Chap92]. For the unobserved neutral mesons it is assumed that 7r0 .= (7r+ + 7r-)/2, 

](0 = ](+, andKo = ](-. Charge conservation is enforced by demanding that 

~ the total number of final protons be Np = .14 + 79 - N 1r+ - NK + + N 1r- + NK -. 

With Np fixed, the total number of undeteCted neutrons is given by baryon number 

conservation, Nn = 28 + 197 - Np • These fits allow us to take into account all of 

the observed energy in longitudinal and transverse motion as well as pion and kaon 

production. 

The total outgoing longitudinal momentum Pz implied by these fits is easily cal­

culated by integrating ml. sinh(Y)/i over J:lml. and y: 

Pz = . L J dy 2Tl + ~Ti:.+ m; (dN/dY)i sinh(y) 
i=hadrons Tt + t 

(1.3.3) 

E is simply found by replacing sinh(y) by cosh(y). For the fit to the data shown by 

the ·dot-dashed lines in fig. 1.3.3, the integration over y gives Pz = 241 GeV /c and 

E = 455 GeV, whereas the total incoming energy and momentum are known to be 

Pz = 409 GeV Ic (= 28 x 14.6) and E = 595 GeV (= 197 x .939 + 28 x 14.63). More 

than a third of the incoming momentum and a fourth of the energy are unaccounted 

51 



for in this fit to the data! If we assume that neither leptons nor photons carry a 

significant fraction of the 4-momentum, then there must be some undetected hadrons 

somewhere which do carry it. The E802 collaboration has acknowledged that an 

undetected excess of low Pl. particles could result in a 25% normalization error of the 

dN/dy data[E802]. To take into account these and/or other possible systematic errors 

in the data, we proceed by multiplying each of our (dN / dY)i functions by a = 1.3 and 

find Pz = 322 GeV /c and E = 519 GeV. However, more than 85 GeV /c of momentum 

and 75 GeV of energy are still missing! 
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Figure 1.3.3. A fit to the data (dot-dashed), fit1 (dashed) and fit5 (solid) are com­
pared to E802[E802] data (dots), E810[E810] negatives and (+) - (-) (diamonds), 
and extrapolated E814[E814] protons (circles for T=.15GeV). 

Either the systematic errors of the dNi/dy data are significantly larger than 30%, 

52 



or else the "missing" 4-momentum must be carried by an unexpectedly large number 

of undetected high-rapidity hadrons. The least transparent solution which does not 

overpredict any of the data by more than 30% is given by fit1 of ref. [Chap92] and 

is shown by the dashed lines in fig. 1.3.3. Less transparent solutions can of course 

be found by allowing more than a 30% discrepancy with the spectrometer data. An 

example of a fit of this kind is fit5 (solid lines in fig. 1.3.3), with fit parameters (see ref. 

= (2.25, 3.3, 93.39, 0.025, 1.75, 1.85, 1.4, 1.2, 0.5, 0.25). Fit5 has an nip ratio of 1.3 
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Figure 1.3.4. Fit1 (daShed), fit5.(solid), Attila[Gyu87] (dot-dashed) and RQMD 
[RQMD91, RQMDpi] (histogram) are compared to preliminary E802 dNcharged/dTJ 
data[HIP A GS]. 
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for y > 1.5 and 1.62 for y < 1.5. From the bottom panels of fig. 1.3.3, it is evident 

that fit5 is only able to reproduce high rapidity ESlO[ESlO] and ES14[ES14] data and 

simultaneously account for all of the initial momentum by overpredicting the ES02 

spectrometer data by 40%-70%. 

It was pointed out long ago[Stach] that the ES02 spectrometer and dNch-arged/d", 

data seem to be inconsistent with one another. In fact as can be seen in fig. 1.3.4, 

our fits significantly underpredict dNcharged/ d", even though they significantly over­

predict the spectrometer data. Only models like RQMD[RQMD91, RQMDpi] which 

overpredict the spectrometer pions everywhere by at least 70% are able to accurately 

reproduce dNcharged/d",. 

1.3.4 Conclusion 

We conclude that none of the present models which assume complete nuclear stopping 

and none of the nonequilibrium string models are consistent with the published ES02 

spectrometer data for central Si+Au collisions. If the normalization error of these 

data does not exceed 30%, then energy-momentum and baryon conservation alone 

require there to be an unexpected shoulder in the baryon sp~ctrum in the region 

2 < y < 3 implying a high degree of nuclear transparency. On the other hand, results 

from ESlO[ESI0] and ES14[ES14] as well as preliminary dNcharged/dT] data from ES02 

imply a high degree of nuclear stopping in these reactions. These data seem to 

be inconsistent with one another, since no model or fit has been found which can 

reproduce all of the data while preserving 4-momentum conservation. Consequently, 

until these apparent inconsistencies are resolved, no firm conclusion can be drawn 

about the amount of nuclear stopping in central Si+Au collisions at the AGS. 
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1.4 Recent Developments 

Since the most recent publication of central Si+Au dn/dy data by the E802 collab­

oration in 1991[E802], a number of new systematic errors have been foundand new 

IOW-PL measurements have been made which affect these data. The dn/dy yields pre­

sen ted by E802 at various conferences in the past year and a half have been increasing 

with time and gradually approaching the values predicted by standard event gener­

ators. Although no new dn/dy data reflecting these changes have yet been officially 

sanctioned and published by the E802 collaboration, Chuck Parsons has presented 

some new data in his May, 1992 PhD thesis[Pars]. In figs. 1.4.1 and 1.4.2, we com­

pare data from Parsons' thesis[Pars] (open circles) with the published 1991 data[E802] 

(solid dots). 
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Figure 1.4.1. Solid dots are published invariant cross sections for 1r-[E802] at y = 1.3 
in central Si+Au collisions, while open circles are recent data presented in the thesis 
of C. Parsons[Pars]. These data.areplotted both as functions of mL - m (left) and 
of PL (right). The dashed lines show the exponential mL fit used to determine dn/dy 
in [E802], while the solid lines show the exponential PL fit used in [Pars]. 

The most striking feature of the new data is the remarkable increase in midrapidity 

. pion yields. In fig. 1.4.1 we show how the new IOW-PL measurements have motivated 

fitting the pion invariant cross-sections with exp( -P 1. IT) (solid lines), rather than 
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with the previously used exp( -milT) (dashed lines). This effect combined with an 

overall increase in the invariant cross section normalizations is what has lead to the 

40-50% increase in pion dn/dy seen in the upper right panel of fig. 1.4.2. For protons, 

the 30-40% increase in dn/dy seen at high rapidities (upper left panel of fig. 1.4.2) 

is wholly due to normalization corrections, since the invariant cross sections are still 

best fit by exponentials in mi. The slope parameters (T) and Kaon yields have not 

changed significantly in the new data. 
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Figure 1.4.2. Solid dots are published dn/dy and temperature data for central Si+Au 
collisions[E802], while open circles are from Parsons' thesis[Pars]. Solid squares in the 
upper left panel are E814 data[E814], while those in the upper right panel are E810 
negatives[E810]. These data are compared to Lund calculations[Gyu87] (histogram), 
as well as to fits by Parsons[Pars] (dashed), Videbaek[Vide] (dot-dashed) and myself 
(solid). 
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The dashed lines in'fig. 1.4.2 show fits which Parsons has made to the new data. 

In his thesis, he performs an analysis in which he claims that 397 out of the initial 

409 GeV Ic of longitudinal momentum are accounted for by these fits. However, there 

are a couple of small problems with his analysis which I will outline here. To find the 

momentum carried by pions, he used the formula: 

J . 2T2 + 2Tm + m2 

111 = dy(dNldy)smh(y) T + m ' (1.4.1 ) 

where T(y) and (dNldy)(y) are his fits to the data. Unfortunately, the above formula 

is only applicable for invariant cross-sections which are fit by exponentials in ml.. 

The correct formula for cross-sections fit to exponentials in Pl. is the following: 

(1.4.2) 

Using this formula, I find that the pions from his fit carry 117 rather than 126 GeV Ic 
of longitudinal momentum. The correct treatment features enhanced numbers of 

low-pl. pions which do not carry as much longitudinal momentum as their high-pl. 

counterparts. 

Neutrons are not measured directly by ES02, so some ansatz must be made as to 

their distribution relative to that of the protons. Since the nip ratios for gold and 

silicon are 1.5 and 1 respectively, Parsons chose the following ansatz: 

Rn / p = 1.5 

Rn/p = 1. 

y < 0.5 

y > 3.5 

Rn/p = [(y - 0.5) - 1.5(y - 3.5)]/3 0.5 < y < 3.5 

J. 

(1.4.3) 

Using his proton fit along with the above ansatz, Parsons could account for 164 of the 

original 225 nucleons. He therefore treated the remaining 61 nucleons as spectators 

located at target rapidity. The nip ratio of these spectators was never stated, but it 

can be calculated by integrating the dnl dy fits to find the net charge carried by all 
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participant hadrons and then comparing this to the initial charge of 93. The difference 

in charge must be carried by spectator protons. In this way the spectator nip ratio 

can be determined to be 1.28, which implies an unphysical discontinuity: nip = 1.28 
, I 

for y = 0 while nip = 1.5 for y > o. A better ansatz would be the following: 

Rn/p = 1.423 

Rn/p = 1. 

y < 0.5 

y > 3.5 

Rn/p = [(y - 0.5) - 1.423(y - 3.5)]/3 0.5 < y < 3.5 (1.4.4) 

which allows the spectators to have a continuous nip ratio of 1.423 at y = o. The 

neutrons in this scenario carry 126 GeV Ic of Pjl rather than the 130.4 GeV Ic quoted 

by Parsons. 

'The net result of these corrections to Parsons' 'analysis is that his fits can account 

for 384 of the initial 409 Ge V I c of Pjl. Among other ways, the remaining 25 Ge V I c 

of longitudinal momentum could be accounted for if the overall normalization of all 

of the new data was low by 6.5%. At any rate, it seems clear that if the high rapidity 

E810 and E814 proton data are correct, then the absolute normalization of at least 

some of the published E802 dnl dy data must be low by at least 50%. As a comparison, 

I show two curves which account for all of the longitudinal momentum as well as Lund 

model results[Gyu87]. The solid curves in fig. 1.4.2 are from a fit which I presented 

at Quark Matter 91 (previous section of this thesis), while the dot-dashed curves 

are derived from a fit made by Flemming Videbaek of the E802 collaboration[Vide]. 

Videbaek originally fit the published data (solid dots) but then postulated that the 

true dnldy for pions would be 25% higher than these data due to undetected low­

Pl. pions. The fits thus derived could then account for 336 out of 409 GeV Ic of 
"-

Pjl. To display the absolute normalizations of dnldy needed to enforce momentum 

conservation, I have multiplied Videbaek's pion curves by 1.25 and then multiplied . 
both of his curves by an additional 1.22 before plotting them. It is apparent that the 

increases in' normalization of thednl dy data over recent months has gone a long way 
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toward solving the problem of momentum conservation, and if they continue at this 

rate, then it will not be long before we will be justified in concluding that the. amount 

of stopping in these reactions is roughly the same as that in the Lund model. 
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Figure 1.4.3. Solid dots are preliminary data from 11.6 AGeV Au+Au reactions, while 
open circles are reflections of these data in rapidity due to the symmetry of projec­
tile and target[E866]. These data are compared to Lund model[Gyu87] (histogram), 
mcm1 (solid) and firstreak (dot-dashed) calculations. The dashed curve shows the 
projectile protons only from the Lund calculation. 

Recently, some very preliminary Au+Au data at 11.6 GeV Ic per nucleon has 

been presented by the E866 collaboration[E866]. The solid dots in fig. 1.4.3 are the 

measured data, while the open circles are reflected pseudodata (due to the symmetry 
- ' 

of the projectile and target). Both the Lund model[Gyu87] (histogram) and mcm1 
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(section 2 of-this thesis, solid lines) are able. to reproduce the gaussian shape of the 

proton dn/dy remarkably well, even though they are comprised of projectile and 

target contributions which are still separated by a full unit in rapidity (dashed curve 

in fig. 1.4.3). Although the fully-stopped firestreak is much too strongly peaked 

at midrapidity (dot-dashed lines), it will undoubtedly soon be pointed out that a 

longitudinally expanding fireball (or firestreak) will also be able to reproduce the 

data. The dilemma, as I stated in my Phys. Rev. C paper (section 2 of this thesis), is 

that for symmetric collisions, a fully stopped longitudinally expanding fireball cannot 

be distinguished from two partially stopped fireballs simply on the basis of dn/ dy 

data. Certainly, more information is necessary in order to determine the amount of 

stopping in these reactions. 

Another very interesting aspect of the new data is the extremely high apparent 

temperatures of the protons ( ....... 240 MeV). Any statistical model purporting to de­

scribe these reactions must necessarily be able to reproduce these temperatures. As 

.can be seen from fig. 1.4.3, a firestreak (or fireball) in which the protons and pions 

are in equilibrium and freeze out together will feature proton temperatures which 

are much too low. In order to create high enough temperatures, the protons must 

freeze out well before the pions as is simulated by mcm1, or else there must be an 

enormous amount of transverse collectIve flow[Brown]. Without these features, no 

longitudinally expanding fireball will be able to fit the proton temperatures, even if 

it can fit the proton dn/dy well. 

Finally, E866 has measured K+ /tr+ and K- / K+ ratios of 0.25 and 0.16, as com­

pared to 0.19 and 0.28 for Si+Au[E866]. The larger proportion of K+'s as compared 

to K- 's seems to point to strongly enhanced production of A's and other strange 

baryons in these reactions. However, from experience with Si+Au data, we can see 

that it is wise not to ~e too quick in jumping to conclusions based on K/tr ratios alone. 

If low-p.l components and other effects calise a 50% increase in the pion normaliza­

tions without a similar increase for kaons (as seems to have happened for Si+Au), 
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then the true J(+ /7r+ ratio may be as low as 0.16 in Au+Au collisions. It will be very 

interesting to see the actual'pion and kaon yields which are found so that they can 

each be directly compared to various models. 
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Chapter 2 

Effective Action for SU(N) at 
Finite Temperature. 
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2.1 Introduction 

It has long been predicted thatQCD features a phase transition from hadronic matter 

to a quark-gluon plasma at sufficiently high temperatures or densities[Mor79]. Creat­

ing such a plasma is in fact the aim of many of the heavy ion experimental programs 

at the AGS, SPS and RHIC. Since the quarks and gluons in such a hot plasma would 

be very energetic, they would also be weakly interacting due to asymptotic freedom. 

Consequently, extensive work has been done in I developing perturbative techniques 

for finite temperature QCD[Kap79, Bra90]. One of the most interesting results of 

this perturbation theory is a resummation of infrared divergent diagrams which gives 

rise to an Ao Debye mass of order gT that screens static color electric fields[Kap79]. 

Unfortunately, no such resummation has yet been found for the magnetic sector. Con­

sequently, for diagrams above a certain order, infrared .divergences become intractable 

and perturbation theory breaks down[LinBO]. These divergences are a result of loops 

involving massless (n=O) Matsubara modes, so they do not occur in in QED since the 

photon only couples to fermions which always have Matsubara frequencies of order 

1rT. 

A constant Ao field cannot in general be gauged away at finite temperature the 

way that it can at zero temperature; consequently quantum effects give rise to an 

effective potential for the Ao field when T > O[WeiB1]. One way that QCD could 

generate a magnetic screening mass would be if the Ao effective potential were to 

feature an absolute minimum which was not simply a gauge transformation of Ao = O. 

The Ao field could then possess a nonzero vacuum expectation value (vev) , thus 

behaving like a Higgs field and giving a magnetic mass to the Ai fields through the 

gauge-gauge coupling terms. Unfortun~tely,no such minimum exists at the one loop 

level[WeiB1, GroB1]. At the two loop level, on the other hand, the presence of a 

negative linear term in the effective potential does produce a vev at Ao '" O(gT), 

thus giving rise to a magnetic mass of order g2T[AniB4]. This vev and magnetic mass 

is spurious, however, since the linear term is exactly cancelled by a term arising from 

the summation of the ring diagrams[Be191]. Beyond the order of the ring diagrams, 
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perturbation theory breaks down due to the magnetic infrared divergences mentioned 

earlier. There is therefore no way that perturbation theory alone can generate a 

nontrivial absolute minimum in the Ao effective potential. One of the results of this 

paper is-to show in addition that no gauge invariant resummation or non-perturbative 

technique can give rise to a linear term in the effective potential, since such a term 

would not be gauge invariant. 

In a more general context, it is well known that perturbation theory is limited in 

its application and by its very nature is not able to shed light on a number of very 

important unsolved physical problems. For this reason, non-perturbative techniques 

have been increasingly sought after and explored in recent years. Perhaps the most 

successful and well-developed of these techniques is the semiclassical method of ex­

panding around classical solutions. In the language of the path integral formalism, 

the idea behind this method is that by integrating over field configurations which 

are small fluctuations around nontrivial classical solutions, as well as over ones which 

are close to the perturbative vacuum, one can better approximate the full functional 

integral, _ which should in principle be performed over all possible field configurations. 

In field theory for example, integrating around instanton solutions allows one to gain 

insight into quantum tunneling processes which can never be described by any finite 

order of perturbation theory[Raj82, Col77, tHo76]. 

Similarly, for finite temperature QCD, it has been pointed out that integrating 

around a plasma of magnetic monopoles could possibly provide magnetic screening 

as T --+ 00 [Gr081, Dah85, Pol091]. Is there any evidence for the presence of such 

monopoles? At zero temperature, Mandelstam showed that if the ground state of 

QCD is a coherent superposition of monopoles, then confinement could be understood 

as the dual analog of superconductivity[Man76]. In other words, just as a condensate 

of electrically charged Cooper pairs will adjust to confine magnetic fields inside a 

superconductor, a condensate of color magnetic charges would adjust to confine color 

electric fields in the QCD vacuum. It has never been proven that such a condensate -

actually forms the ground state of QCD, however Savvidy has shown that a constant 

color magnetic field H has negative energy compared to the perturbative vacuum at 
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T = O[Sav77]. Although Savvidy's configuration violates Lorentz invariance, his result 

suggests that the ground state ofQCD does have some nontrivial magnetic structure. 

Based on this idea, Oleson has advocated a picture in which random distributions 

of magnetic vortices form a Lorentz invariant ground state featuring < H >= 0 but 

< H2 >=/:. O[Ole81]. This picture is not contradictory with one involving a monopole 

condensate since magnetic vorices of finite length must begin and end at monopoles, 

and both pictures feature strongly enhanced low frequency fluctuations[Man76]. At 

high temperatures, even though the Savvidy effect disappears[MuI85], the presence 

of low frequency (infrared) magnetic instabilities could be indicating the presence of 

monopoles or other magnetically charged objects. In this paper, we consider only 

high temperature monopoles and dyons and do not specifically address condensate 

.formation or other issues relating to confinement at T = O. 

In SU(N) at zero temperature the Ag field can always be gauged away, so if 

there are monopole solutions, one must be able to create them from the Ai fields 

alone. Infinite energy monopole solutions and finite energy monopole configurations 

which are not solutions have been found[Wu68, CoI81], but no finite energy monopole 

solutions are known for T = O. In order to find a solution which sufficiently smoothes 

out the l/r singularities in the Ai fields at the origin, one usually introduces a scalar 

field in the adjoint representation, as is done for the 't Hooft-Polyakov[tH074, Poly75]. 

or Prasad-Sommerfield [Pra75] monopoles. At finite temperature, however, the AD 

field cannot in general be gauged away, and it is therefore able to play the role 

of the Higgs field in a monopole configuration. Making this substitution, Prasad­

Sommerfield monopoles become dyon solutions in pure gauge theories, possessing 

electric as well as magnetic charge. Although the dual charge of dyons makes them 

necessarily more complicated than monopoles; they are at present the only available 

magnetically charged classical solutions with finite energy at the tree level, so they 

are a logical object of study. In addition to knowing the classical mass of these dyons, 

it is obviously important to know how dense of a gas or plasma they might form at 

any given temperature. 

Finding the density ofa soliton plasma can be a highly nontrivial task. In order to 
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derive an expression for the density, I will present a brief outline of the semiclassical 

method for a field theory at finite temperature. The first step is to find a nontrivial 

field configuration with energy E1 < 00 which is a local minimum of the classical 

action1 • Since the solution has finite energy, it must be localized, approaching the 

perturbative vacuum solution (or one of them if there is more than one) as r -+ 00. 

For the sake of simplicity, we will assume that the solution is a time independent 

soliton. It is plausible that a configuration with two solitons which are separated by 

a distance much larger than their size would be a close approximation to another 

solution. One therefore proceeds by either proving or assuming that configurations 

with N well-separated identical solitons are also Jocal minima of the action[RajS2, 

Poly77, WarSl, CorSI]. Often it is shown or assumed in addition that the solitons 

are weakly interacting. If this is the case, then the relative positions of solitons in 

an N soliton configuration are arbitrary and must be integrated over as well, giving a 

factor of volume V for each soliton. Putting together these ideas, one can write down 

a rough approximation to the partition function of a plasma of these solitons[Poly77]: 

(2.1.1) 

where the first term corresponds to no solitons, the second to one soliton, the third 

. to two, etc. Since the position of each identical soliton is being integrated over, a 

symmetry factor of ~! must be included for N soliton configurations. In addition, 

there is a dimensionless "prefactor" , included for each soliton which can in general 

be some complicated function of the coupling constant g. 

The density of a plasma of solitons is determined by noting that for Z == E xn In!, 
the average n is given by < n >= x. Thus, the density is simply: 

< n > IV", ,T3 exp( -E1IT) . (2.1.2) 

To determine, in the one loop approximation, one must calculate functional deter- \ 

minants around a soliton background. This is a very formidable task since no general 

1 It is not enough to find a classical solution which maximizes the action in some functional 
direction, because integrating over all small fluctuations around such a configuration would give an 
infinite result. This is the problem of negative eigenmodes which we address later in the paper. 

! 
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method is known for calculating these determinants exactly. For this reason, the 

value of I is often simply estimated by heuristic argume~ts. 

The main thrust of this paper is to develop new approximation techniques for 

determining prefactors I around a large class of background configurations at finite 

temperature. As examples of their utility, these techniques are applied to dyon and 

monopole configurations in pure gauge SU(2). It is found that if plasmas of such 

configurations do exist, then either they are unstable, infinitely massive, or else their 

, density is so high that they are strongly overlapping. For these types of configurations, 

semiclassical techniques are therefore not applicable. However, it is not ruled out 

that other soliton solutions may be found in the future which are not plagued by the 

above problems. In that event, the density of plasmas of those solitons could then 

be found by using the techniques developed here. For example, magnetically charged 

meron-antimeron solutions are known to exist at finite temperature[Jon81], though 

no explicit solutions are available. Alternatively for pure gauge theories, Coleman 

has found topologically stable monopole solutioriswhich have a singularity at the 

origin[CoI81]. It is possible that singularity-free monopole configurations could be 

found which would approach the above solutions as r ~ 00 and would also minimize 

the one loop effective action. 

I begin this paper by presenting the basic notation and formulas for finding the 

regularized one loop effective action for a pure gauge non-Abelian theory. Next, I 

generalize the methods of ref. [Dya84] to finite temperature and derive a covariant 

derivative expansion for the effective action. The increasing dimension of successive 

terms of this expansion is balanced by an infrared cutoff mass which is self consistently 

determined so as to optimize the expansion. -This infrared scale is shown to uniquely 

determine the semiclassical prefactor ,. Comparison of the results of the expansion to 

the known effective potential for a constant Ag field in SU(2) suggests that the lowest 

order form of this expansion should be reliable for slowly varying configurations in 

which IAgl < O(T/g) when 9 ~ 0 (T ~ 00). After showing that dyons meeting the 

above qualifications must necessarily be overlapping, I extend the covariant derivative 

expansion by performing a resummation in order to find an expression which is valid 
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for static background configurations with IAol = O(T / g). Since the effective potential 

of the Ao field can have periodic minima at 4ntrT / N 9 for pure gauge SU (N) (see 

Appendix B), I also examine dyon solutions and monopole configurations in which the 

magnitude of the Ao field approaches one of these minima as r -+ 00. I show that these 

monopoles are unstable and that depending on the temperature, the corresponding 

dyons are either infinitely massive or else overlapping. I complete the discussion of 

monopoles and dyons by showing that introducing fermions into the theory does not 

improve the' situation. 

2.2 Preliminaries 

We consider a pure gauge, Euclidean, non-Abelian theory with the Lagrangian: 

£. = _~ (F;//)2 , (2.2.1) 

where 

Fa - {) A a nab A b 
~//-~//- // ~ (2.2.2) 

and 

n:b = {)~sab _ gfabc A~ . (2.2~3) 

Since we are interested in finite temperature, the fields have periodic temporal bound­

ary conditions A~(T) = A~(T + (3), where (3 = 1/T[Kap79]. The equations of motion 

for this Lagrangian are . 

(2.2.4) 

Let A~ be solutions to the above equations which transform as no;mal Yang-Mills 

gauge fields, and let B: be quantum fluctuations around those solutions which trans­

form in the adjoint representation. To consider one loop effects, we make the substi­

tution[deW67] (A~ = A~ + B:) in the Lagrangian and expand the action up to terms 

quadratic in B:: 

(2.2.5) 
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where S = 3(...1.). Note that there are no terms linear in B since A is a classical 

solution and hence a saddle point. We choose to work in the background gauge, 

(2.2.6) 

where b:b = f)~hob _gjobc A~, since it is manifestly covariant and because Pauli-Villars 

regularization takes a particularly simple form in this gauge[Sla80]. By adding a gauge 

fixing term of ~ (b~B~)2 t~ the Lagrangian, we get: 

, .. wob = _(b2 )obh + 2gjobc pc 
~II ~II ~II , (2.2.7) 

- 0 _ -0 ~ ob -b 
where F~II - f)~AII - DII A~. 

The functional integral needed to calculate the one loop effective potential is given 

by: 

(2.2.8) 

Pauli-Villars regularization can be performed by introducing auxiliary fields B' and 

e which transform like B; and eo, but have mass A which will later be allowed to 

become infinite. Because all of the field fluctua~,ions are in the adjoint representation, 

the mass terms A 2 B,2 and ['A 2 e are gauge invariant. Application of this procedure 

produces the following regulated partition function[SlaSO]: 

Z[...1.]lreg = Z[...1.]/Z'[...1.,A2] , (2.2.9) 

where Z' has the same form as eqn. (2.2.8), except that mass terms are, included. 

Note that for convenience we have used the same Pauli-Villars mass A for both the 

B' and e', fields. 

2.2.1 Zero Modes 

We assume that the cla:ssical solutions depend on p parameters Ii but that the total 

gauge-fixed action is independent of these parameters. There are then p remaining 

zero modes of the Lagrangian given by 8A~/ 8,i where i runs from 0 to p. Actually, 
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any gauge transformation of one of these modes will also be a zero mode, so a more 

general expression for these zero modes is[Poly77]: 

hrN. a(i) _ 8A-aj8 . + nab()b y lViX~ - - ~ /. ~. i , (2.2.10) 

where the second term is pure gauge and ()f are gauge functions. By fixing the gauge, 

we have already removed all of the modes which do not satisfy (2.2.6), so in order to 

determine the remaining zero modes, we need to find specific functions ()~ such that 

lJ~bX~(i) = o. For the cases that we are studying, these zero modes can be made to 

be orthonormal, so we will demand: 

(2.2.11) 

As a concrete example, consider a soliton solution which is centered around some point 
. I 

in space denoted by the vector R. Th~ solution then has the form A: = A:(T, x - R). 
Since the Lagrangian has no preferred points, a change in R will not change the action 

and therefore represents a zero mode. In this case /i = ~, and due to the functional 

form of the solution 8A:j8~ = -8iA:. We then choose ()~ = A~ so that 

!fixa(i) = _pa. y Hi ~ ~. , (2.2.12) 

and the background gauge requirement (2.2.6) is trivially satisfied by the equations 

of motion (2.2.4). The normalization for this mode is then given by: 

(2.2.13) 

where i is a label which is not summed over. If the soliton is a self-dual solution, 

then[ Act 79] 

Ea - F,a - 1.c Fa - Ba . 
i = Oi - - 2 '-ijk jk = i· (2.2.14) 

If, in addition, the soliton is spherically symmetric, then the normalization takes the 

remarkably simple form of Ni = -So 

There are infinities due to the functional integration over non-gauge zero modes 

which can be isolated by the collective coordinate method[Raj82, Poly77]. First, we 

expand an arbitrary field configuration as follows: 

(2.2.15) 
.n 
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where bn are orthonormal eigenfunctions of W with positive eigenvalues, and we have 

explicitly included the Ii dependence of A in order to allow for zero mode fluctuations. 

To perform the functional integration, we must find the Jacobian associated with 

expressing the metric in terms of the eigenfunctions. For finite matrices, the Jacobian 

for a transformation from a vector X in one basis to a vector Y in another basis is 

found by calculating det J, where 6X = J6Y. If both bases under consideration 

are orthogonal, then J can always be diagonalized by a unitary transformation J' = 

U JU-1 so that the determinant is given by det J = TIk J~k' Calculating the length 

element then defines the determinant by isolating the diagonal elements of J': 

(6£)2 = (6X)2 = (J'U6y)2 = E J~1(6y)2 . (2.2.16) 
k 

. Generalizing this technique to field theory and applying it to oUr problem, we have: 

p , 

(6£)2 = J d4 x(6A(x)? = ENi(6, i? + E(6en)2, 
. i=l n·· 

(2.2.17F 

so that after Gaussian integrations[Poly77], 

p' , 

Z[A] = (II v'M J d,i)eS det( -[)2)[det '(W/211")t1
/

2 
, 

.=1 
(2.2.18) 

where det'(W/211") means to take the determinant with respect to the nonzero modes 

of W /211" only. 

Since we are using Pauli-Villars regulators, we will also encounter the operators 

W + A 2, which do not have any zero modes. When taking determinants of these, 

however, it is still convenient to split the results into two factors: 

(2.2.19) 

The full regulated expression, therefore becomes: 

Z[ All reg = <!11N. J d~;) (~>/'eS(A) det ( - [)') I reg [det '( W) 11;;,1' , (2.2.20) 

where we use the following notation for some operator K: 

. det(I<) 
. det(K)lreg = det(I< + A2) (2.2.21) 
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Note that we have left out the factors of 211'" in the regulated determinants of eqn. 

(2.2.20), since this expression only involves ratios of determinants, and multiplicative 

constants drop out. For the remainder of this paper we will drop the bars on ..4, fJ 

and P except where they are needed for clarity, keeping in mind that we are always 

referring to functions of the background field and not of the full field with quantum 

fluctuations included. 

2.3 Covariant Derivative Expansion 

Now comes the difficult problem of evaluating the functional determinants. For a 

few select cases, the determinants can be evaluated exactly, but in order to find a 

general expression, some approximation procedure must be used. The most com­

mon method is to make a ,covariant derivative expansion. There have been many 

papers written suggesting a variety of ways to make such an expansion at zero 

temperature[Dya84, Che87, Chan86, Gai89], but the literature on finite temperature 

expansions is much morelimited[Min86]. Each of th~ zero temperature methods that 

deals with a massless theory is forced to introduce some form of infrared cutoff mass 

in order to balance the dimension of new derivative terms. In most schemes, this cut­

off mass remains unspecified with the argument that in a complete calculation of an 

observable it will drop out anyway. Alternatively, D'yakonov et al.[Dya84] proposed a 

scheme in which the infrared cutoff is actually chosen in such a way that it optimizes 

the accuracy of any desired order of derivative expansion. To check their method, 

they calculated the one loop quantum correction to the action of the SU(2) instan­

ton and obtained a result which was within 3% of the exact value calculated by 't 

Hoqft[tHo76]. It is this method that we have chosen to extend to finite temperatures. 

In order to determine the free energy n of some nontrivial background configura­

tion A, we need to calculate the ratio of the partition function of that configuration 

to the trivial A = 0 configuration: 

. Z(A) 
exp( -njT) = Z(O) I reg • 
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From eqn. (2.2.20), we can see that the calculation will entail finding ratios of deter­

minants of various operators. These ratios can be evaluated by using the following 

expression for the difference of two logarithms: . 

det I< I _ {-lco dtR(t)T ( -tK _ -tKO)} 
d 

T/ reg - exp r e e 
etno 0 t 

(2.3.2) 

where Tr is a functional trace over all indices and coordinates and 

R(t) = 1 _ e-:- tA2 
• '(2.3.3) 

Note that t is formally of dimension M-2 • As long as both of the operators that 

we are interested in (_D2, W) are positive definite, they will have continuous spec­

tra of eigenvalues beginning with zero, as do their vacuum operator counterparts 

( _82 , _82). One expects, therefore, that for sufficiently smooth and rapidly falling 

background fields, the integrand of (2.3.2) will be a rapidly decaying function of ~. 

t[Dya84]. This suggests the possibility of an approximation whereby the infinite up­

per limit of the t integration is replaced by an infrared cutoff 6. In addition to this 

approximation, we will make an expansion of the exponential operators in powers 

of covariant derivatives. After integrating with respect to t, the optimum 6 for any. 

given number of terms in this expansion can be determ,ined by finding the extremum 

in the resulting expression. 

The functional trace ineqn. (2.3.2) can be taken relative to any complete set of 

states, so we are free to use plane waves exp(ipaxa). These have the effect of shifting 

the derivatives: 

Tre-
tK = tr J crxT~ J (:~3 exp[-I«8a ~ 8a + iPa)t] 1 , (2.3.4) 

where tr is a simple trace over spacetime and color indices. Due to the periodic 

temporal boundary conditions, we have replaced the normal zero temperature Po 

integral for a sum over the modes Po = 2mrT. Also the Xo integral in d4x is from 0 

to (3 = liT. A 1 has been included at the end of the equation to empha:size the fact 

that the shifted exp( -J(t) operates on unity; so that, for example, any term in the 

expansion of the exponent with a 8a all the way to the right will vanish. 
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2.3.1 Ghosts 

We now present the covariant derivative expansion of the ghost determinant. Accord­

ing to eqn. (2.3.4), we have 

(2.3.5) 

The expansion amounts to ~xpressing 

where I:h is comprised of terms involving n covariant derivatives. It is simply given 

by the zeroth.order term in the t expansion of eqn. (2.3.5), but is exactly cancelled in 

our calculation by the vacuum contribution seen in eqn. (2.3~2). Moreover, any term 

in the expansion with an odd number of Do's will vanish upon p integration. 

Thus the first nonzero term in the covariant derivative expansion is given by: 

(2.3.6) 

where we have performed the momentum integral by using equations (A.1) and (A.2) 

in Appendix A. We would like to separate the T = 0 and T =I 0 parts of the above 

expression. This can be done by using equations (A.4) and (A.5) which have been 

derived from the Poisson summation formula (A.7): 

gh HI '"' n
2 

(. n2) 
12 = 81r2t L., 4T2t exp - 4T2t ' 

n 
(2.3.7) . 

where 

(2.3.8) 

Each term in eqn. (2.3.7) vanishes in the T -+ 0 limit. This is reassuring since HI 

can be gauged away in the T = 0 limit. 
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Using similar techniques, the next term in the expansion is given by: 

with the functionals F2 , D2 , Gn and Hn defined in Appendix A. Here the only term 

surviving when T -+ 0 is the F2 term2 with n = 0, in agreement with the result of 

d'Yakonov et aI. [Dya84]. This expansion can of course be continued, but for our 

purposes we will only need the first two terms. 

To find the determinant, we must integrate over t as in eqn. (2.3.2). In all of our 

expressions, the zero temperature (n = 0) terms are the only ones with u~traviolet 
"-

divergences. For the rest however, we can immediatelylet A -+ 00 so that R(t) = 1 

and perform the remaining elementary integrals by using the variable u = lit. For 
( 

the case of It we get: 

(2.3.10) 

where the second equality is found after using the approximate expressions in Ap­

pendix A which become exact as 4T26 -+ 00. In this paper, we will only consider 

infrared cutoffs T 26 rv O(l/gOt) with a ~ O. For a > 0, the approximations used 

are obviously very good at high temperatures, but surprisingly enough, even when 

4T26 = 1, they are accurate to within a few percent. On the other hand, these approx­

imations are not valid for T = 0, and consequently many of the following equations 

will not reduce correctly to their zero temperature counterparts in the limit as T -+ o. 
After using eqns. (A.16-A.19) to perform the t integration and high temperature ap­

proximations on I:h, we arrive at the following expression for the regulated ghost 

determinant: 

2Note that after using the Poisson summation formula, the sum over n is no longer a sum over 
Matsubara frequencies; in fact, n = 0 terms correspond to T = 0, while the n ::j:. 0 terms provide the 
temperature corrections 
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det( _D2) 
In[ det( -82) J lreg 

2.3.2' GaugeFields 

For the gauge fields, we must only take the trace over the nonzero modes of exp( -Wt). 

If, however, we take the trace over all eigenfunctions of W, p of them will just give 

us a 1. This contribution can be subtracted out by hand, §o that we get: 

det'W 100 dt d HI; Ireg = exp{ - -:-R(t)[Tr(e-tW 
- e-tWO

)_ p]}l 
et 0 0 t , 

(2.3.12) 

Since the trace is now over all modes, we can just take it with respect to the functions 

b: exp(ipaxa), where b:bt = S:t. The calculations for gauge fields are similar to the 

ones for ghosts and one finds: 

det(W) 
In[det( -82) J lreg 

(2.3.13) 

Note that if F2 = p = 0 (as for a ,constant field), then W#'V = _D2S#,v and the log of 

, the gauge determinant is simply 4 times that of the ghosts, since the former involves 

a trace over spacetime indices. 

From eqn. (2.2.20), we can see that the quantity that we will be interested in will 

be 
, det( _D2) 1 det(W) 

In[ det( -1J2) Jlreg - 2 In[det( _82)Jlreg . (2.3.14) 

Using the expressions in (2.3.11) and (2.3.13), we can optimize the derivative ex­

pansion by differentiating (2.3.14) with respect to S and finding an extremum. The 

resulting S must obey the equation: 

(2.3.15) 
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Plugging in this b, we get: 

Z Pl· 
Zo = (g 1M J d'i )(21rb)P/2 exp(Sefr) , (2.3.16) 

where 

2.3.3 Renormalization 

It is worth noticing that the last term on the first line of (2.3.13) cancelled the Pauli­

Villars ultraviolet regulator (A2) in the prefactor of eqn. (2.2.20) and replaced it 

by an infrared cutoff mass (l/b) in eqn. (2.3.16). One might at first suspect this 

as being an anomalous artifact of our derivative expansion, but it is worth noting 

that in 't Hooft's exact one loop instanton calculation, his ultraviolet regulator in 

the prefactor was also replaced by an infrared scale - the size of the. instanton (p). 

Moreover, renormalization can always be performed by using counterterms in the 

original Lagrangian which have the same symmetry as that of the background field 

at zero temperature. Although the gauge of the background field has been fixed, 

it has not been specified; consequently, the countertermsmust take the form C F;v, 

where C is some constant depending on A 2 • It is therefore reassuring that the only A 2 

dependence comes in the coefficient of a term multiplying F2 , s~ that all ultraviolet 

divergences can be removed by normal counterterms. 

Because the counterterms in the background gauge have the same form as the 

original Lagrangian, one can create a renormalized Lagrangian simply by multiplying 

the original bare Lagrangian by the factor: 

llNg2 Q2 
Z3 = 1 - 481r2 In( A 2 ) , (2.3.18) 

where 9 now represents the running coupling. At very high temperature, it is most 

convenient to choose the renormalization scale to be Q2 ~ 4T2 exp(3.1 - IE) "'" 50T2 
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in order to absorb all of the one loop coefficients of F2 into the definition of the 

renormalized (running) coupling. This running coupling constant is then defined in 

terms of the bare coupling by: 

1 11g2 N ' 4T2 1 
"2 [1 - 48 2 [3.1 - I'E + In( A2 )] = 2 . 
9 r % 

(2.3.19) 

Just as at zero temperature, the running coupling can be defined in terms of an 

experimentally determined mass scale[Fie89]. We will denote this scale by AQCD even 

for theories other than QeD. The "running coupling can then be expressed 

g2 1271" 
471" = 11N In(T2 / A~CD) , 

(2.3.20) 

and the renormalized effective action takes the form: 

If a different renormalization scale Q2 is chosen, the coefficient of F2 in (2.3.21) will 

be altered by an 0(1) term, and AQCD in (2.3.20) will be multiplied by a calculable 

factor. 

2.3.4 Constant Background Ao Field 

To test the accuracy of this covariant derivative expansion, we can plug in a constant 

SU(2) background field of A~ = .", with all other field components vanishing. There 

are no non-gauge zero modes in this configuration, so p = O. It can also be shown 

that D2 = F2 = an. = 0 and that 

(2.3.22) 

where V = f tf3x is an infinite spatial volume. The infrared cutoffs and effective 

action from eqns. (2.3.15) and (2.3.21) take the simple forms: 

V[T2()2 T ( 3 1 4 
- - T 3" g." - J271"3 g.,,) + 1271"2 (g.,,) ] . (2.3.23) 
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SU(2) Effective Potential 
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Figure 2.3.1 The one loop SU(2) Ao effective potential with no fermions (solid), 1 
massless fermion (dashed), and 2 fermions (dot-dashed). The dot-dot-dashed curve 
shows the lowest order covariant derivative expansion result of eqn. (2.3.23). 

The exact answer is well-known to be (see Appendix B): 

v '() V [T2 )2 T ()3 1 ( )4] Seff = - T Veff 1] = - T 3(91] - 37r 91] + 127r2 91] mod211'T· (2.3.24) 

where mod27rT applies to each factor of 91] in Seff. Veff is plotted in figure 2.3.1. It 

is apparent that no finite number of terms in the derivative expansion outlined above 

79 



will be able to produce a periodic effective potential for the Ao field. Nevertheless, 

if one is interested in field configurations for which Ao '" O(gOtT) with a > -lin 

the T ~ 00 limit, then only the quadratic term in the effective potential will be 

important. Since the derivative expansion correctly reproduces this term (fig. 2.3.1), 

it is reasonable to use the expansion to describe the above class of configurations. 
. . 

It is important to note on the other hand that the derivative expansion is a bad 

approximation for configurations with a = -1 even when T ~ 00, because in this 

case the cubic term and periodic nature of VeEr become important. For example, one 

should not use this expansion to study configurations in which the Ao field approaches 

one of the minima at 2mrT / g. 

2.4 Application to Dyons 

It has been suggested [Polo91 ] that a plasma of magnetically charged solitons featuring 

Ao ~ O(gT) as r ~ 00 could possibly self-stabilize in the T ~ 00 limit of SU(2), 

even though there is no O(gT) minimum in the Ao effective potential. The derivative 

expansion can be used to study this idea more carefully. We make the following 

ansatz for spherically symmetric soliton configurations: 

A~ = 1] ra f(x) 
r 

(2.4.1) 

where 1] is the expectation value of IAol at infinity and x = g1]r. With this ansatz, 

the equations of motion (2.2.4) take the dimensionless form[Bia76]: 

x2 f" + 2xJ' - 2f(1 + Xh)2 - 0 

x 2h" + 2xh' - (1 + xh)(2h + xh2 + Xf2) - 0,. (2.4.2) 

where the primes denote derivatives with respect to x. Since f, h and x = g1]r are 

dimensionless, any solution of the above equations will have a characteristic len~th 

scale of O(l/gTJ). 
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Note that in ansatz (2.4.1), the magnitude of the Ao field approaches a nonzero 

constant value as r -+ 00. Rather than compare such configurations to the pertur­

bative Ao = 0 vacuum, it is more useful to compare them to a background with a 

constant IAol = TJ field. From the form of Veff in eqn. (2.3.24), it is apparent that 

such a background has infinitely more free energy (by a volume factor) than the per­

turbative vacuum, but it is possible that the infinite increase of entropy gained by 

introducing a pl~ma of solitons will offset the infinite background energy and allow 

such a plasma to self-stabilize. In other words, we would like to determine whether 

the free energy of a plasma of dyons in a constant background field is lower than that 

of the perturbative Ao = 0 vacuum. To do this, we must calculate Z/Z'1' where Z 

is the partition function for a background dyon configuration and Z'1 is that· for a 

constantlAol = TJ background field. All of our previous calculations have been for 

Z / Zo where Zo refers to the perturbative vacuum, so some of our expressions must be 

modified. Fortunately, F2 = D2 = Gn = 0 for both a: constant field and the perturba­

tive vacuum, so only the Hn are different. In fact all of the necessary modifications 

can be made by simply subtracting from each Hn the value ofHn for a constant field: 

(2.4.3) 

Much of our discussion will center around the Prasad-Sommerfield-Julia-Zee (PSJZ) 

dyon, which is a magnetic and electrically charged self-dual solution of the classical 

Euclidean SU(2) Lagrangian for any value of TJ. It is defined by: 

f(x) ~ ±(coth(x)- 1/x) h(x) = ±(csch(x) -l/x) , (2.4.4) 

where the ± reflects the fact that both- dyons--and- antidyons- are- solutions to the 

equations of motion, each having a tree level action given by S = -47rTJ/gT [Act79]. 

In addition to three translational zero modes which were treated previously as an 

example, these dyons each have a global gauge zero mode which is not eliminated 

by the background gauge requirement[Mot78]. To find the prefactor associated with 

this zero mode, it is best to consider the monopole in the string gauge. In this gauge, 
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Ag = ~a317f, and the Ai field has a Dirac string singularity along the -z axis. The 

string gauge form of the solution can be obtatned from the spherically symmetric 

form by making a gauge transformation with the following gauge function[CoI81]: 

I-
(2.4.5) 

where (Ta are the Pauli matrices. 

Consider the following global gauge transformation: 

(2.4.6) 

where A# = (TaA~ and G is given by: 

(2.4.7) 

Treating 'w as an infinitessimal collective coordinate, we find: 

(2.4.8) 

By making a careful' choice of the gauge function Oa from eqn. (2.2.10), we get the 

following zero mode: 

(2.4.9) , 

which satisfies the background gauge requirement (2.2.6) through the equations of 

motion (2.2.4). Like the translational modes, the normalization of this mode is No = 
-8, and the partition function involves an integral over the collective coordinate w. 

However, unlike the translational modes, w has a finite range of 0 < w < 41r /917, as 

can be easily seen by examining the form of G 'in eqn. (2.4.7). The entire prefactor 

for the dyon can now be expressed in terms of the infrared cutoff ~: 

(2.4.10) 

where V is the volume of space and Seff is defined by eqn. (2.3.24) with the replacement 

(2.4.3). 
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As we mentioned in the Introduction, if we assume that identical dyons are non in­

teracting, then we can approximate the one loop functional integral around two well 

separated dyons by e /2. The factor of 1/2 is included in order to avoid double count­

ing when the positions of the identical dyons are switched. Similarly, for a solution 

with N identical dyons, there will be a symmetry factor of l/N!. A full one loop cal­

culation of the partition function should incorporate quadratic fluctuations around 

every single saddle point of the original Lagrangian which has the same boundary 

conditions at infinity. If we demand that A~ -t 1] as r -t 00, then the saddle points 

include any number of dyons and antidyons,- as well as a constant background field 

with no dyons: 

Z/Zo = Zf//Zoexp(2e) = exp(-VeIf(1])V/T + 20 , (2.4.11) 

where the factor of 2 reflects the sum over both dyon and antidyon saddle points, and 

Zo is the partition function of the perturbative vacuum. Using VeIf(1]) from (2.3.24) 

and dropping all but the quadratic term, we get the following expression for the free 

energy density of a dyon plasma compared to that of the perturbative vacuum: 

) 
1· 2 321r1] ( n = -(T /V In Z = 3 (g1]T) - g3T82 exp Sefr) . (2.4.12) 

The trick of self-stabilization as T -t 00 is to see if a minimum of n can· be found for 

some nonzero value of 1]. 

For the moment, let us assume that as T -t 00 (g -t 0) one loop corrections 

are parametrically smaller than the tree level action (I.e. we assume that infrared 

divergences do not destroy this property). We can therefore replace Self in (2.4.12) 

by S = -41r1] / gT. Because of the exponential dependence of the second term, we 

can see that the only hope of finding a nontrivial minimum would be for 1] "'" O(gOlT) 

with a:: 2:: 1. Furthermore, the prefactor of the second term could be of no higher 

order in 9 than g2+201 since that would be the order of the first term. From the 

discussion in the Introduction, we can see that the density of the plasma would be 

'" O(g2+201T3), while from the discussion after eqn. (2.4.2), we know that the size of a 
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dyon is"" O(ljg1+Dl T). In other words, for a 2: 1 the dyons would have to be strongly 

overlapping. Furthermore, since the difference in length scales is a parametric one, 

the overlapping would get infinitely worse as 9 -+ O. 

Is this really a problem? If the plasma was comprised only of identical dyons with 

no antidyons, then overlapping might not be a problem since topologically stable, 

overlapping dyon solutions which are classically noninteracting have already been 

found[Cor81]. On the other hand, a dyon and an antidyon can annihilate, so the 

approximation that we have been using that they are noninteractiilg would be a very 

bad one for a strongly overlapping plasma of dyons and antidyons. If an overlap­

ping neutral plasma did in fact exist, it would have to be strongly interacting and 

consequently very difficult to describe using semi-classical methods. Furthermore, 

as Gross et al.[Gr081] pointed out when making a similar argument about a plasma 

of Wu-Yang monopoles, such a plasma, with typical field strengths on the order of 

gT, would be difficult to distinguish from normal fluctuations around the perturba:.. 

tive vacuum. Perhaps .the only clue to its existence might be the enhancement of 

low frequency flucttiations[Man76]. In order to avoid the problem of annihilation, 

it has been suggested that some mechanism could be found which would stabilize 

large domains of dyons and antidyons[Pol092]. Even with such a mechanism, the fact 

that each dyon has zero field strength at the origin would still make a parametrically 

overlapping plasma domain locally very difficult to distinguish from the perturbative 

vacuum. 

It is interesting to see what value of a would be necessary to make a plasma 

of dyons nonoverlapping in the 9 -+ 0 limit. Suppose that infrared divergences 

in one loop terms miraculously caused them to be of .the same order as tree level 

terms and were able to render SeEf '" 0(1), even when 'TJ '" O(T). The prefactor 

of the second term in eqn. (2.4.12) would then have to be at most 0(g2) in order 

to create a nontrivial minimum. In such a scenario, the typical separation would 

be '" 1/ g2/3T while the size of a dyon would be '" 1/ gT. Again, the plasma would 
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be parametrically overlapping ,in the 9 ~ 0 limit. Using similar reasoning, it can 

be shown that the only hope of creating a self-stabilized, nonoverlapping plasma of 

dyons would be for a ~ -1, which is exactly the range of a for which the covariant 

derivative expansion becomes unreliable. We can therefore conclude that no weakly 

interacting, nonoverlapping plasma of Prasad-Sommerfield dyons with a > -1 will 

be able to self-stabilize in the 9 ~ 0 limit. 

I would like to make a couple of remarks before continuing. It has been suggested 

that by using a Coleman-Weinberg type mechanism[CoI73] to minimize the effective 

action rather than the classical action, one may be able to to find monopole solutions 

with Ao ~ O(gT) [Pol091]. The idea would be that after combining the one loop 

effective potential with the tree Lagrangian, solutions could be found for which Ai 

drops off like l/x at large distances, but Ao only approaches 17 like exp(-Cx). Such 

a solution would not have a long range electric field and would consequently be a 

magnetic monopole rather than a dyon. As we shall show later however, in order to 

find such a monopole, it is necessary that the Ao field approaches a local minimum 

of the effective potential as r ~ 00 (see section 7). Unfortunately, no evidence has 

been found for such a minimum[BeI91], except for the periodic minima at 2mrT/g 

mentioned earlier. It is still possible ,that a plasma of Wu-Yang-type monopoles as 

suggested in [GroS1] or a strongly interacting plasma of dyons could provide a mag­

netic screening mass of '" O(g2T) as 9 ~ 0, but if so, it is not clear that semiclassical 

methods would be useful in describing these effects. On the other hand, it would be 

interesting to see whether the situation changes at all for dyons with 17 '" O(T / g). To 

do so, we must perform some infinite resummations which will improve our covariant 

derivative expansion. 

S5 



2.5 Improved Expansion 

The periodicity of Veff in eqn. (2.3.24) is simply a consequence of invariance under 

temporal gauge transformations. To see this, we first note that due to unitarity 

and the temporal boundary conditions at finite temperature, the most general gauge 

transformation for pure gauge SU(2) (see appendix C) is given by: 

(2.5.1) 

where (}a is periodic in T, na are integers, and U a are the Pauli matrices. Since the 

gauge of the background field is never specified in the background field formalism, any 

effective potential for the Ao field must be gauge independent. The most general gauge 

invariant expressions involving Ao but not Ai are integral powers of the Polyakov line 

trexp[ignua 1{3 A~dT] . 

Thus the most general possible gauge invariant expression for the pure gauge SU(2) 

Ao effective potential is: 

(2.5.2) 

Because the above effective potential is a general expression which should hold for 

any field configuration, our knowledge of the exact answer fora constant Ao field 

uniquely determines the coefficients an in the one loop approximation. For SU(2), we 

have: 

ao= ---
45 

(2.5.3) 

which leads to the correct expression (2.3.24) for A~ = TJ. 

Since the form of eqn. (2.5.2) is only a result of gauge mvanance, Veff for all 

consistent higher order calculations must also take that form, though the coefficients 

will of course be modified. As a consequence, Veff can never feature a linear term 

at the origin (i.e. Ao = 0 must always be an extremum of the potential). This 

is significant, since if one makes a two loop caIc:ulation of the effective potential, a 
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linear term does appear which seems to create a minimum of O(gT) in the effective 

potential[Ani84, Dah85]. From the above arguments, however, we know that such 

a linear term is spurious and must vanish in a consistent O(gn) calculation (which 

does not always coincide with a loop expansion). It is therefore not surprising that 

summing-the infrared divergent Debye ring diagrams (with more than two loops) in 

SU(2) gives rise to a linear term which exactly cancels the one found at the two loop 

order[BeI91] . 

Where is Veil' hidden in our covariant derivative expansion? ·The main problem 

with our expansion is that we are expanding a gauge invariant effective action in 

terms- of functionals like Hn and Gn which are gauge dependent. Nevertheless, if we 

had had the patience and fortitude to calculate all terms in the expansion out to 

infinite order, making no approximations and letting fJ -+ 00, we would have arrived 

at an exact and gauge invariant expression for the effective action. In particular for . 
SU(2), all of the terms Hn would have summed up to form the effective potential 

of eqns. (2.5.2) and (2.5.3). We can therefore improve our approximation of Sell' by 

including the known form of Veil' and dropping all Hn terms. By construction, our 

effective action will then exactly reproduce Veff(77) from eqn.(2.3.24). 

After having resummed the Hn terms, the only remaining gauge dependent terms 

are Gn • The ,main problem with these terms is that they do not reflect the equivalence 

between configurations with Ao near the different minima at 2mrT / g. We can solve 

this problem by introducing new functionals G~ which do reflect that equivalence: 

(2.5.4)-

-In particular, for static SU(2) fields with glAoI « T, we get: 

G G' - 2g2 fd3 82A2 
2 = 2 = -T x i 0 (2.5.5) 

Thus to the order that we are working, if we replace G2 by G~, we not only reproduce 

the correct behavior for static fields with small magnitudes, we also introduce the 

periodicity necessary to describe-configurations with IAol near each of the minima at 
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2mrT. If we wanted to take the derivative expansion to the next order, we would get 

some terms involving G3 • We could then replace G2 and G3 by their primed coun­

terparts, choosing coefficients such that the behavior of static fields with glAol < < T 

was not altered. In addition, new gauge dependent terms involving more derivatives 

of D5 could be replaced by terms having the same'small IAol behavior, but which 

reflect the equivalence of the Ao minima. In this way, a modified covariant derivative 

expansion for static SU(2) fields can be continued to higher orders with the gauge 

equivalence of the ;40 minima manifest at each step. 

Looking back at eqn. (2.3.15), we can see that after resummingthe Hn terms, the 

new 8 is given by: 

V8= 48Rp 
T( -llF2 + 2G~ - 2D2) 

(2.5.6) 

Notice that 8 = 0 for configurations without zero modes. This just means that for 

these configurations, we would need to keep more terms in the derivative expansion 

to get a reliable value for 8. However, since we are primarily interested in calculating 

prefactors for configurations with zero modes, the above definition of 8 is sufficient 

provided that it turns out that 8 > o. Assuming this, we can write down a partially 

resummed, renormalized effective action for pure gauge SU(2): 

(2.5.7) 

where Veff is given by eqns. (2.5.2) and (2.5.3). Equations (2.5.6) and (2.5.7) along 

with eqn. (2.3.16) are the main results of this paper. 

2.6 More Dyons 

We would now like to apply our improved formalism to the case of a PSJZ dyon 
, 

for which IAol. ~ TJ = 27rT I g as r ~ 00. Since Ao approaches one of the absolute 

minima of the effective potential at infinity, a plasma of these dyons would not have 

to "self-stabilize" its entropy against an infinite background energy, as was the case 
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of the dyons considered previously. Since the PSJZ dyon is self dual, 

2 - 2 
F2 = 4D2 = 8g S = -647r (2.6.1) 

The integral for G~' is convergeIlt and can be found to be: 

(2.6.2) 

Since the dyon has four zero modes, the infrared cutoff can be found from (2.5.6) to 

be: 

6 = .!.(~? 
7r lIT 

(2.6.3) 

Note that 6"", 0(1/(911)2) just as it was for a constant Ao field. Keeping more terms 

in the derivative expansion will not affect the order of 6, though it will affect the ~i~e 

of the 0(1) coefficient. Looking at eqn. (2.4.10), we can see that the entire plasma 
'. 

prefactor is determined, and we only need to evaluate Self in order to determine the 

density of the plasma. 

Here is where we run into problems. We might at first think that we can simply 

replace Self by S in the exponent of (2.4.10) because the one loop corrections S!:l are 

down by 0(g2). However, the fact is that for an isolated dyon, S!:l dIverges like a 

distance at infinity since Ao only approaches the ininimum at 27rT/g like l/x. We 

can see this by cutting off the integral over Velf at some large radius R: 

47r fR 2 2 T 10. r drVelf(Ao) ~ 87r (27r~ R) . (2.6.4) 

For a neutral plasma, we could argue that the highest electric multi pole moment at 

infinity would be a dipole and so this divergence would not really occur. Let us assume 

that this is the case and try to find some sensible procedure for estimating R in the 

9 ~ 0 limit. The simplest guess would be that 27rT R N O(g-a). For any positive a, 

R would be parametrically larger than the typical size of a dyon "'" 0(1/(21rT)). On 

the other hand, as long as a < 2, S will dominate Self and the density of the plasma 

can be found from (2.4.10) to be 0(g-4exp(-87r2/g2)T3). In the 9 --+ 0 liinit, one 
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would expect R to be of the same order in 9 as the typical separation between dyons, 

but we can see that du_e to the exponential dependence of the density on 1/ g2, this 

cannot be achieved in the 9 .--t 0 limit. In fact, trying to find an equivalence between 

R and the typical dyon separation will drive R -+ 00 in the 9 --t 0 limit. Thus, due 

to one loop effects, PSJZ dyons with TJ = 27rT / 9 will become infinitely heavy and 

decouple from the theory as T --t 00. 

On the other hand, we should not dismiss these dyons so easily for finite temper­

atures, in particular when T --t AQCD • For a neutral plasma at finite T, it might be 

that a scale could be found for R which would be in qualitative agreement with the 

typical dyon separation which we will hereafter call Rs. In other words, we would like. 

to find an R for which: 

(2.6.5) 

where R~ depends on R through Setr and Z/Z,., is given byeqns. (2.4.10) and (2.4.9). 

It turns out that this equation only starts having solutions for 9 > 4. Obviously at 

this point, we have left the regime of weak coupling, so the one loop approximation 

becomes dubious at best. In addition, it can be shown that the R's which solve (2.6.5) 

are typically between 1/(47rT) and 1/(27rT) which is the same scale as the size of the 

dyon, so dyons and antidyons would again begin to overlap. 

2.7 Monopoles 

One way that we could dispose of the troublesome divergence of J tf3xVetr would be 

if we could find a way to make Ao approach 27rT/g faster than l/x. In the 't Hooft­

Polyakov monopole, the Higgs field approaches its vacuum expectation value like 

exp( - M x), which is just a consequence of it going to a quadratic minimum. If we 

use the'Coleman-Weinberg mechanism[CoI73] to find configurations which minimize 

Setr rather than classical solutions which minimize S, we should be able to achieve the 

desired behavior for Ao --t 27rT / 9 as r --t 00 since there is a quadratic minimum in the 
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effective potential there. To really use the Coleman-Weinberg mechanism with a clear 

conscience, we should include all orders of the derivative expansion in our expression 

for Seff before we minimize, and we should verify that the configurations that we are 

interested in have no negative eigenmodes associated with them. Nevertheless, we 

shall proceed in the most naive manner, keeping only the effective potential and not 

worrying about negative eigenmodes for the time being. 

For r --+ 00, the extrema of Seff can be found by solving the following equations: 

(2.7.1) 

These equations are greatly simplified by using the ansatz (2.4.1) along with the 

definition: 

f{x) = 1 + F{x) 
x 

h{x) = H{x) - 1 
x 

Equations (2.7.1) then become[Act79]: 

_ H{ H2 - 1 + (x + F)2) . 

1 
2{x + F)H2 + -2F(F +! x){F + x), 

. 311'" 

(2.7.2) 

(2.7.3) 

(2.7.4) 

where the primes denote derivatives with respect to the variable x = g7Jr, and we have 

assumed that 7J = 211'"T / g. For a monopole configuration, the Ai fields should drop off 

like -l/x far from the origin. From the definitions of (2.7.2), then, we expect H and 

F to be small as x --+ 00. In this limit, the equations of motion become H" = Hand 

F" = F /67r2 , so that: 

H --+ C1 exp( -x) 
x 

F --+ C2 exp( - r,;--;;). 
V 611'"2 

(2.7.5) 

, . 

If we try to find a monopole for which Ao asymptotically approaches a value which 

is not a minimum, then we find an equation like F" = Cx, which does not feature 

solutions which vanish as x --+ 00. We can con dude that only monopole configurations 

in which the Ao field approaches a minimum of the effective potential have any chance 

of minimizing the effective action. 
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2.7.1 Negative Modes 

Unfortunately, in deriving Self for the monopole, we have implicitly integrated over 

negative eigenmodes. To see this, let us look a little more closely at what it means 

to integrate around a configuration which minimizes the effective action rather than 

the classical action. Suppose we have a monopole configuration A~ defined by eqns. 

(2.4.1), (2.7.2) and (2.7.5). Since A~ is not a classical solution, when we make the 

- replacement A~ = A~ + B; there will be terms linear in B;. Nevertheless, by adding 

an appropriate current term J;A~ to the original Lagrangian, the linear terms can be 

exactly cancelled and the monopole configuration becomes a solution to the modified 

equations of motion: 

D"bFb J" 
~ ~v-~· (2.7.6) 

It is now possible to perform gaussian functional integrals over the terms which are 

quadratic in B; as long as none of the operators involved have negative eigenmodes 

(i.e. the configuration is stable). If, on the other hand, there are negative eigenmodes, 

then some of our "gaussian" functional integrals would actually be integrals of the 

type J exp( +ax2)dx which diverge and render the one loop approximation useless. In 

the absense of negative modes, the current J is set equal to zero at the one loop level if 

the original configuration turns out to be an extremum of the effective action[CoI73]. 

In a sense, we have gone about things a bit backwards by first finding a configuration 

which sets J = O. We must now go back and check whether or not the configuration 

was classically stable to begin with. 

Far from the center of the monopole, exponentially falling functions are unim­

portant, so we can approximate the configuration by using (2.4.1) and (2.7.2) with 

H = F = o. We can then find an explicit expression for the operator inside the ghost 

determinant: 

(2.7.7) 

where I, Land J are isospin, orbital, and total angular momentum operators given 
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by: 

(Ictb . abc - -Z€ 

Li - -ifijkrjOk 
'--

J - I+L. (2.7.8) 

We are interested to see whether this operator has any negative eigenvalues. For static 

configurations, we can use temporal eigenfunctions of exp( i2n7rTr) and see that the 

first term of _D2 is positive semi-definite by making the replacement -ioo -+ 2n7rT. 

In addition, we can see that the last term is positive definite by noting that (L· f) = 0 

and replacing (I. f) by (J . f). Furthermore, the radial derivative terms are positive 

definite since 
. 02 2 0 L2 - o~ = -- - -- + -, or2 r or r2 

(2.7.9) 

is positive definite even when L2 = O. Therefore the whole ghost operator is positive 

definite. 

What about the gauge operator? To begin examining W, we first note that 

far from the monopole, there is no electric field and consequently Fili = O. From 

eqn. (2.2.7), this implies that WOi = WiO = O. The gauge determinant can then be 

separated into two determinants: 

(2.7.10) 

where we have already shown that the first is positive definite. Dropping the spatial 

indices on Wij, we can use techniques similar to those used forthe ghosts to write: 

where Sand 1< ~re spin and total angular momenta defined by: 

1< - I+S+L. (2.7.12) 
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The only nonzero commutator among the operators of (2.7.11) is between S·]( and 

S . f. Even with this difficuly, however, we can still make W block diagonal by 

quantizing with respect to S2, ](2, m = (I. f), s = (S . f) and 1 = ](z. 

The dangerous modes of this operator are when ]( < 2 and n = m= -s = ±l. 

For .the ]( = 0 modes the operator reduces to: 

. 82 2 8 1 
W=-------. 8r2 r 8r r2 

(2.7.13) 

In ref. [CoI81], Coleman presented an elegant way to show that operators which take 

the above form far away from the origin always have negative eigenvalues due to their 

attractive centrifugal potential. Consider the following radial function: 

1 -. 
1jJ - -(y'r-v'R)exp(-r/a), 

r 

"- 0, r <R, (2.7.14) 

where R and a are positive numbers. The expectation value of W from eqn. (2.7.13) 

for this function is: 

<W > - 100 

r 2dr1jJ(W)1jJ 

_ 100 

dr[r2(d1jJ/dr? _ 1jJ2] 

3 
= -gln(a/R)+ ... (2.7.15) 

where the triple dots denote terms that have a finite limit as a ~ 00. For any fixed R, 

this expression becomes negative for sufficiently large a. To get a negative expecta­

tion value for some function, there must be eigenfunctions with negative eigenvalues, 

since any function can be formed from linear combinations of eigenfunctions. Fur­

thermore, since the proof works for arbitrarily large R, no behavior of the fields near 

the center of the monopole where F and H are nonzero can save W from having 

negative eigenvalues. 

Another way to see that monopole configurations like the one suggested above 

would not be stable is to see that, unlike the normal 't Hooft-Polyakov monopole 
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with a Higg's, these monopoles are not protected by topology at infinity. As r -+ 00, 

the Ao field approaches a constant value of TJ = 21rT / 9 which is simply a temporal 

gauge transformation of Ao == O. If Ao -+ 0, it doesn't matter whether it looks like a 

hedgehog or is in a uniform color direction, and consequently topology is lost. There 

is nothing to stop a configuration which has Ao = 0 at both r = 0 and r = 00 from 

reducing Ao to 0 at intermediate values ?f r in order to minimize its action. This will 

be a general problem with any monopoles in pure gauge Yang-Mills theories: finite 

energy monopole configurations which minimize the effective action will feature the' 

Ag fields approaching minima of the effective potential as r -+ 00. These minima, 

however, will be gauge equivalent to Ag = 0, so the monopole configuration will not 

be stable. 

2.7.2 Generalizationto SU(3) with fermions 

To better illustrate these points, I will consider SU(3). From Appendix B, we know 

that we only need consider field configurations in which gAo/(21rT) = VA3 + V3pAs, 

where Aa are the Gell-Mann matrices. Again using Appendix B, we have plotted 

the effective potential as a function of p for v = 0 in fig. 2.7.1. The only minima 

of the potential in this direction occur at the points p = 2n/3 which are just gauge 

transformations of p= 0 (see Appendix C). Now let us look in the A3 direction by 

setting p = 0 and plotting Veff as a function of v (fig. 2.7.1). The absolute minima 

are again gauge transformations of v = 0, but in addition there appear to be local 

minima at v = 2n + 1. By making a contour plot with both v and p (fig. 2.7.2), 

however, we can see that the apparent "local minimum" at v = 1 is actually just 

the side of a crater which falls to an absolute minimum at (v,p) = (1,1/3). The 

Ao matrix at this minimum has the same eigenvalues as the minimum at v = 0 and 

p = -2/3, so we know that it is also a gauge transformation of Ao = O. 

On the other hand, true local minima of the effective potential can be created by 

introducing fermions into the theory and thereby breaking the center symmetry of the 
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gauge group (see Appendix C). For example, if one massless fermion is introduced into 

SU(2), the absolute minimum at glAol = 27rT is transformed into a local minimum 

(fig. 2.3.1) [Ign92]. Since there is"no longer an allowed gauge transformation which 

takes this minimum to the Ao = 0 configuration, one might be tempted to believe 

that a stable monopole configuration would exist with the IAol ~ 27rT / 9 as r ~ 00. 

Unfortunately, the presence of fermions induc~s no change in the gauge operator W, so 

there are still negative eigenmodes and the monopole is still unstable. It is interesting· 

to note that if a minimum of the effective potential with fermions had occured at any 

point other than one which was an absolute minimum of the pure gauge theory, then it 

would have been possible to create a stable monopole configuration which minimized 

the effective action. 

SU(3) Effective Potential 

6 . \ ., I . 
......... I I . \ 
~ \ .'\ \ I E-! I \ I I \ N .'/ 
~ 4 \ \ I \ N I I 

....t 
\ \ "-"' 

"- 2 ~ 
> 

0 
0 1 2 0 2 4 

p JI 

Figure 2.7.1: The one loop SU(3) effective potential for a constant Ao field with no 
fermions (solid), 2 fermions (dot-dashed), and fermions only (dashed). The left frame 
is for gAo/(27rT) = V3pAs, while the right frame is for gAo/(27rT) = "A3' 
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Figure 2.7.2: A contour plot of the one loop pure gauge SU(3) effective potential for 
a constant field given by gAo/(27rT) = IIA3 + V3pAs. 

Now we will examine the effect that fermions have on the SU(3) effective potential. 

Figure 2.7.1 shows this potential as a function of pfor II = o. It is not immediately 

obvious bylooking at the figure that the local minima with fermions will be positioned 

at exactly 2n7rT /3. Nevertheless, this is the case since the absolute minima of the 

gauge part of ¥eft' precisely line up with maxima of the fermionic part (Appendix B). 
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Figure 2.7.3: The SU(3) effective potential as in figure 2.7.2, but with 2 massless 
·fermions. 

Similarly, each of the local minima of (v,p) shown in fig. 2.7.3 corresponds exactly to 

an absolute minimum of the pure gauge theory. By the same reasoning used for SU(2) 

then, any monopole configuration with Ao approaching one of these local minima is 

still unstable. 
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2.8 Conclusion 

We have developed a covariant derivative expansion of the one loop SU (N) effective ac­

tion at finite temperature. The main use of this expansion is that it self-consistently 

produces an infrared cutoff mass which can be used to determine the density of a 

plasma of solitons in the semiclassical approximation. We have used our technique 

to evaluate suggestions in the literature[Dah85, Polo91] that magnetically charged 

solutions to pure gauge SU(N) could self-stabilize at ,finite temperature, providing 

a nonperturbative mechanism for screening static magnetic fluctuations; We have 

found that classical dyon solutions have infinite energy at the one loop level unless 

they form an overlapping plasma, in, which case they may be difficult to differenti.,. 
'.\ 

ate from thermal fluctuations. ' In addition, we have found finite energy monopole' 

configurations in SU(2) and SU(3) which minimize the effective action but which are 

unstable. Therefore, at least these, two types of semi-classical magnetic configurations 

do not solve the magnetic screening problem in hot QeD. Nevertheless, if stable, lo­

calized, finite energy solutions to pure gauge SU(N) at T#-O are found in the future, 

then the methods developed here should be useful for estimating their density at high 

. temperatures. 
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A Integrals, Sums and Functionals 

In this appendix, we present some of the tools that were used in deriving expressions 

for the effective action. In order to derive eqns. (2.3.6), (2.3.7), (2.3.9) and (2.3.13), 

it is necessary to use the following integrals and sums: 

J cPp 2 1 
(271")3 exp(-pi t ) - ( 471"t)3/2 

(A.I) 

J (~~3 exp( -p;t)PiPk - 1 h 
2t ( 471"t )3/2 ik 

(A.2) 

00 

T L exp( -p~t) (AA) 
n=-oo 

TLP~texp( -p~t) (A.5) 
n 

The above sums were obtained by using the Poisson summation formula: 

00 00 fo L F(nf3) = via L f(na) , (A.7) 
n=-'oo n=-oo 

where af3 = 271" and F(x) and f(p) are Fourier transforms of each other. The sums 

on the left sides of (AA-A.6) are over Matsubara frequencies, while those on the right 

side are over T = 0 (n = 0) and T#-O (n #- 0) pieces. The latter can be seen by 

noticing that in the limit as T ~ 0, only the n = 0 terms survive. 

In addition, we define the following functionals for notational convenience: 

(A.B) 
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HI -IN J d4XA~ (A.9) 

F2 - tr J d4x[DIl' DlIJ2 = _g2 N J d4x(F;J2 (A.I0) 

D2 - tr J d4x[Dj, DO]2 = ~g2 N J d4x(Fjao)2 (A.11) 

Gn+! tr J ~x[Dj, [Dj, D~n]] (A.12) 

G~+! - -2T2tr J d4x[Di' [Di, cos(nDoIT)]] , (A.13) 

where the last definition was introduced in eqn. (2.5.4) while developing the improved 

expansion. For a constant Ag field, all of the above functionals vanish except 

(A.14) 

where we use the matrix notation Ao = r bc Ag. For SU(2) with IAol = 77, we get the 

simple form: 

(A.15) 

The following high temperature approximations were used in deriving eqns. (2.3.10), 

(2.3.11) and (2.3.13): 

00 

I: n 2p exp( _m2
) 

n=1 

'" I ~I (2p - 1 )!! I C 

2" Y1('/f. (2f.)p - 2" OpO (A.16) 

(A.17) 

00 

L:Ei( _m2
) ~ -/1(' If. - ~ In f. + 1.55 . _ (A.lS) 

n=l 

The above sums become exact in the limit as f. -+ 0 and are even good to within a few 

percent when f. = 1. We also used the following integral to regulate the ultraviolet 

divergences in (2.3.11) and (2.3.13): 

15 dt 2 
-(1 - e-A t) = "IE + In(8A2

) , o t . . (A.19) 

where "IE ~ 0.577 is Euler's constant. 
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B Effective Potentials for T 1- 0 SU(N) 

The Ao fields in SU(N) can always be expressed in terms of a traceless Hermitian 

N x N matrix by defining Ao == ! AgAa where! Aa are the N2 - 1 fundamental 

generators of SU(N). Any matrix of this form can be diagonalized by a unitary trans­

formation. However,·making such a unitary transformation is equivalent to making a 

time-independent gauge transformation on Ao. Since the effective potential must be 

invariant under all gauge transformations, it can only depend on the eigenvalues of 

Ao, so it is sufficient to study configurations in which Ao is diagonal. In Appendix D 

of ref.[Gr081], Gross et al. evaluate functional determinants for constant fields which 

are diagonal in color. We use their results to write down a general expression for the 

effective potential of any traceless, diagonal Ao matrix. Let 

gAo = 27rTq (B.1) 

where q is a diagonal, real and traceless matrix whose elements are given by 

(B.2) 

The effective potential for this field configuration is given by[Gr081]: 

2T4 00 N ( i) N (( i k)) 2T4 Veff = -2 L L{2Nj(_ltCOS n47rq - L cos n7r q4 - q } + ~. (B.3) 
7r n=l i=l n k=l n 45 

The sums over n can be done by using the follpwing relations: 

(BA) 

~(_l)ncos(n7rx) = _77r4 7r4(2[]2 _ [ ]4) 
~ n4 720 + 48 x - x - , (B.5) 

where [x]+ = [x(mod2)] and [x]_ = [(x + 1)mod2] - 1. 

For SU(2), there is only one possible form of traceless diagonal matrix: q = V(f3. 

The effective potential then takes the form: 

1r2T4 7r2T4 7 N 
Veff = 12{2Nj(2[v]: - [v]~) + [2v]~([2v]+ - 2)2} -1:5(1 + -t-). (B.6) 
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Dropping the constant term at the end, Veff for SU(2) is plotted in fig. 2.3.1. For 

SU(3), there are two diagonal generators, so an arbitrary diagonal SU(3) matrix can 

be expressed by q = V.A3 + V3p.As. The effective potential then takes the form: 

7r 2T4 .. . 
- 12{Nf(2[v + p]: - [v + p]: + 2[v - p]: - [v - p]: + 2[2p]: - [2p]:) 

+ [2v]!([2v]+ - 2)2 + [v + 3p]!([v + 3p]+ - 2)2 + [v - 3p]!([v - 3p]+ - 2)2} 
7r2T4 21Nf \ 
"45(8 + -4-)· (B.7) 

Veff for SU(3) is plotted in figs. 2.7.1- 2.7.3. 

There are more allowed gauge transformations in pure gauge SU(N) than there , 
are in SU(N) with fermions(see Appendix C). For this reason, some of the degenerate 

absolute minima of the pure gauge effective potential are no longer absolute minima 

when fermions are included in the theory. Nevertheless, we show here that these 

points remain stationary points of the complete effective potential with fermions. 

A general diagonal SU(N) matrix can always be written as a linear combination of 

matrices having at least one zero on the diagonal and the matrix .AN2_1 given by: 

, 
.ANLI = diag(1, 1, ... , 1 - N)v . (B.8) 

Only this last matrix will feature the minima we seek (see Appendix C), so we only 

need to consider its effective potential: 

2T4 00 1 - -2L 4{2Nf ( -It[(N -1) cos(n7rv) + cos(n(N - l)7rv)] 
7r n=l n . 

2(N - 1) cos(nN7rv) - (N - 1)2} . (B.9) 

By simple differ~ntiation, it is easy to verify that the minima at v = 2m/N of the 

pure gauge part correspond exactly to maxima of the fermionic part. Consequently, 

for any value of N" the full effective potential will always have stationary points at 

v = 2m/N. 
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C Allowed Gauge Transformations 

Since there are periodic temporal boundary conditions for the fields at finite temper­

ature, the only allowed gauge transformations are those which preserve the boundary 

conditions. We would like to determine the most general form of these allowed gauge 

transformations. A general unitary transformation can always be written as an ex-

ponential: 

(C.I) 

where! Ao are the generators of the group. Let us now perform a gauge transformation 

. . 
z 

Ao -+ A~ = U AOU-1 
- -[8oU]U-1 

• 
9 

(C.2) 

As usual, the first term simply rotates Ao in color space, while the second term changes 

its magnitude. Just looking at the second term, we can see that the magnitude of 

A~( T) will only be the same as that of A~( T + j3) if eo ( T, x) takes the form: 

(C.3) 

where ff( T + j3, x) = ff,( T, x). Now if we examine the first term of eqn. (C.2), we can 

see that periodicity for a pure gauge theory also implies: 

U(r + j3,x) = exp(ia)U(T,x) . (CA) 

This puts a restriction on f;. For SU(N), the only possible values of exp(ia) will be 

N'th roots of 1, which form the center of the group. These discrete allowed values 

of exp(ia) can only be generated by discrete values of eo. Together with eqn. (CA), 

this implies that there can be no x dependence for 12, since such a dependence would 

be continuous rather than discrete. 

For SU(2), 

(C.5) 

where fia = oa Iloal, and it is easy to see that only f2 = no7rT with integer na will sat­

isfy eqn. (CA). For SU(N) with N > 2, it is always possible to choose a fundamental 
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representation in which all but one of the generators have at least one zero eigenvalue 

(for example the Gell-Mann matrices for SU(3)). The I~ terms corresponding to 

each of the generators with a zero eigenvalue must be of the form 12 . 2na7r. The 

remaining generator AN2_1 is given in its unnormalized form by (B.B) in Appendix 

B. It can be verified that If2
-

1 = 2n7r / N gives rise to allowed gauge transformations 

with exp(ia) of (CA) equal to N'th roots of 1. 

The situation changes a bit if there are fermions in the theory. Sillce fermions 

transform like t/J -+ Ut/J, there are no factors of U- 1 to cancel global phases. Thus 

in order for fermion temporal boundary conditions to remain unaffected by gauge 

transformations, only transformations satisfying eqn. (CA) with a· = 0 are permis­

sible. In other words, fermions break the center symmetry which is present in pure 

gauge theories. Therefore, the most general form of Ii for SU(N) with fermions is 

Ii = 2n7rT. 
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