Lawrence Berkeley National Laboratory
Recent Work

Title
Hot Nuclear Matter

Permalink
https://escholarship.org/uc/item/45x491zH

Author
Chapman, S.

Publication Date
1992-11-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/45x4g1zb
https://escholarship.org
http://www.cdlib.org/

o

LLBL-33111

UC-413

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Hot Nuclear Matter

S. Chapman
(Ph.D. Thesis)

November 1992

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

238TNOIT)
30N Sa0q
AdOD 3JIDNIYIJITY

"WUpTd

Tiiee-191

~




DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government. Neither the United States Government
nor any agency thereof, nor The Regents of the University of Califor-
nia, nor any of their employees, makes any warranty, express or im-
plied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark, manufac-
turer, or otherwise, does not necessarily constitute or imply its en-
dorsement, recommendation, or favoring by the United States Gov-
ernment or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government
or any agency thereof or The Regents of the University of California
and shall not be used for advertising or product endorsement pur-
poses.

Lawrence Berkeley Laboratory is an equal opportunity employer.



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



g

LBL-33111
UC-413

Hot Nuclear Matter

Scott Chapmarj
Ph.D. Thesis

PHYSICS DEPARTMENT

University of California
and -

NUCLEAR SCIENCE DIVISION?
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

November, 1992

‘tThis work was supported by the Director, Office of Energy Research, Division of Nuclear Physics

of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract

No. DE-AC03-76SF00098.



Contents

Introduction

1 Nuclear Stopping Power

\

1.1 Nuclear Transparency in 15 AGeV Si+Au Reactions? .i Cee e
1.2 Nuclear Stopping Power at 15 GeV/nucleon . ... .. ... ... ..
1.21 Imtroduction . . . . ... ......... ( ...........
1.2.2 The Hadronic Fireball . . ... .. .. .. .. ........
1.2.3 Thé Firestreak and String Models . . . . .. ... ... ....
1.24 Mode1 Independent Fits e e e e e e e e e e ......
1.2.5 Hybrid Models . . . . . . . P o
126 Conclusion. . . ................ I e
1.2.7 Appendik ................... o
1.3 Talk from Quark Matter 91 . . . . .. . . .. .. v ... g
1.3.1 Introduction . . .. ... .. ... ... ... ... .....
1.3.2 Comparison of Models to the Data . . . .. ..........
1.3.3 Model Independent Fits . . . .. ... ... ..........
134 Conclusion. . . .. ... .. ......... R AR
1.4 Recent Developments . . .................. PR

2 Effective Action for SU(N) at Finite Temperature
2.1 Introduction . ... .. .. .. e e e e e e

2.2 Preliminaries . . . .. . . . . . ... e e ..

11



221 ZeroModes . . .. ... .. ... e 69

2.3 Covariant Derivative Expansion e e e e e e e e e e e e L T2
2.3.1 Ghosts........; ......... EEREREE ... T4
2.3.2 GaugeFields.............;_v..b ........... (2
'2.3.3 Renormalization. . . . .. ....... I | Ce .17

-~ 2.3.4  Constant Background Ao Field . . .. ...... ..., T8

2.4 Application to Dyons . « v v v v vie e e IICIRRIP PP - 80

2.5 Ifripfoved Expansion' .......... e P 86

2.6 M‘oreDyons...-f ...... e e 88

2.7 Monopoles . . ... ....... L .‘ ........ e 90
271 Negative Modes « « « « o v oo 92
~ 2.7.2  Generalization to SU(3) with fermions . . . .. ........ 95

2.8 Conclusion...._..b..'.'..'....'...'....._ ....... .. 99

A Integrais, Sur_ris and Functionals . . . ... ... ...... ... .. 100
Effective Potentials for T# 0 SUN) ... .............. 102

C  Allowed Gauge Transformations . . . . . e e e e ce 104

Bibliography’ ' | o B | . R 106

iii



List of Figures

1.1.1
1.1.2
1.1.3
1.2.1
1.2.2

1.2.3

1.24
1.2.5
1.2.6
1.2.7
1.2.8

1.29
1.2.10

1.2.11
1.2.12
1.2.13
1.2;14
1.3.1
1.3.2
1.3.3

Phase Diagram for QCD . . . . . ... .. ... . ... ..., .. 3
Fireball, Firestreak and Lund Compared to Central Si+Au Data . 8
Model Independent Fits to Central Si+AuData . . . ... ... .11
KaonData. ... ... ... ... ... . . . ..., 12
Fireballs . . o v vt v it e e e e 21
Firestreak and String Models. . . . .. .. ... .. ........ 24
RQMD . . . . . e 25
Fits to E802 Spectrometer Protoﬁs ................. 27
Fits to E802 Spectrometer Pions . . . . . . e e e e e e e 28
Fits to E802 Spectrometer Kaonsand P, .. .. . . .. ... ... 29
Pseudorapidity Data of Charged Particles . ... ......... 32
E814 Leading Neutrons . . . . . S 33
Predictions for the Particle Calorimeter . . . . . .. ....... LM
Phase Space Restrictions of One Stdpping Scenario . ... .. .. 37
Double Firestreaks . . . . ... . ... ... ... ... .. 39
Multicompo.nent' Model Fits . . ... ... ... .. ........ 40
Multicomponent Model Fits for Kaons . . e I § |
Predfctions for Central Au+Au ... ... ... .. ........ 43
Fireballs . . . . .. . ... . o oL 49
Firestreak and String Models © o vt 50
Momentum Distribution of Model Independent Fits . . . ... .. 52

v

v



1.3.4
1.4.1
1.4.2

143
2.3.1

2.7.1

2.7.2

2.7.3

Pseudorapidity Data of Charged Particles . . . .. By - 83

P Fitsvs. My Fits . ... ............cc....... 55
New vs. Old Data for Si+Au. . . . . S 56
Comparison of Predictions to Preliminary Au+Au Data ...... | 59
SU(2) Effective Potential . . . . .. ... .............. 79
SU(3) Effective Potential . . . . . . ..o v e 96
Contour Plot of Pure Gauge SU(3) . ... .......... .97
' Contour Plot of SU(3) with 2 Fermions . . . . ... .. e .' 98



Acknowledgements

_ " Iam gfa.teful to Matt Bloomer, Shoji Nagamiya, Flemming Videbaek, Sam Lin-

denbaum, Johanna Stachel, Jimmy Dee and Chuck Parsons for extensive discussions
regarding the AGS data used in chapter one. Chapter two was originally inspired
by the enlightening ideas and marathon seminars of Janos Polonyi and Michael

Oleszczuk. 1 would also like to thank my campus advisor Mahiko Suzuki as well

as Korkut Bardacki and Mary K. Gaillard for valua,bl.e discussions about eﬁ'ective‘ ac- -

tions; magnetic monopoles and dynarﬁica,l stability. I greatly appreciate both Stanley
Mandelstam and Joseph Cerny for taking their time to wade through this thesis. In
addition, I am grateful for the interest, suggestions and moral support of the Nuclear
Theory group at LBL. Finally, I would like to thank my advisor Miklos Gyulassy,
whose ardent desire to find .and understand truth has continually challénged and

guided me in my research.

This work was supported by the Director, Office of Energy Research, Division

of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S.
Department of Energy under Contract No. DE-AC03-76SF00098.

vi



Introducti(jn

It is now generally believed that quarks (and antiquarks) aré the.fundar'nevntal_
buildihg blocks of all nuclear matter. Unlike electrons and other fundamental parti-
cies, .however,' quarks have never been detected in isol_aﬁi_on. Only composité particles
called hadrons, which are bound state combinations of quarks and antiquarks, have
been observed experiment,ally. The reason for this apparent confinement of quarks
into hadrons is a mystery which must ultimately be solved by any théoi‘y purporting
to describe vthe strong nuclear force. Currently, the best candidate for this theory,
quantum chromodynamics (QCD), aftributes a “éolor” to each quark and antiquark
in such a way that each hadron correspohds to a “colorless” combination held to-
gether by particles called gluons. Although this idea is useful in explaining some of
the syrﬁmetries seen in the various species of iladronic particles, it is still not known
why only colorless combinations have been observed éxperiinentally. .Many believe
that the answérrvto this puzzle rha.y lie Some{avhere in the depths of QCD, but the
theory is so complex that no one has yet been able to discover it. |

To obtain a better understandmg of QCD, it is therefore necessary to sunphfy
the theory by making reasonable approximations. Since gluonic interactions become
weakef at higher energies, the simplest approximation for high energy processes can
be obtained by treating quarks and gluons as free non-interacting particles; ‘Better
_ approximations can then be arrived at by calculating perturbative corrections which
take into account more and more complicated interactions. Perturbafive QCD for-
mulated in.this way has been remvarkably successful in describing the results of high
energy experiments like electron-positron annihilation and jet'prodﬁction[LLew]. An-
other commonly used approximation is to treat spacetime as a four dimensional lattice
of separated points (rather than a continuous volume) and to perform calculations
only at these points. Presumably, calculating on a lattice with an infinite number of
points infinitely close together would be the same as performing a continuous calcu-

lation and so would provide exact answers to QCD. Due to the limitations of present



day computers, however, months are required to obtain results from a lattice of only
16 points[Christ]. N evertheless, making lattice calculations is currently the only way

that QCD can be tested against observed low energy phenomena like the rest masses

of hadrons. Fdr example, the ratio of the proton mass to thé p meson mass is mea-

sured to be 1.2, whereas lattice QCD obtains a value of 1.5 [Fuku]. On the basis of

 this and other comparisons, many people argue that lattice QCD calculations shoul;i
be accurate to within 20-30%. |

One of the most intriguing predictions of lattice QCD is that there‘ should be
a phase transition into a new form of matter when the temperature is increased to
approximately 150-200 MeV. In this new phase, commonly called thé-quark-gluon
plasma (QGP), highly energetic qﬁarks and glvuons would no longer be bound inside
of colorless hadrons, so it would seem that perturbative techniques should be ap-
plicable. High temperature perturbation theories have been developed[Kap79] and
refined[Bra90], but subtle problems in the theories lead to a complete breakdown of
the perturbation expansion when sufficiently complex interactions are considered[Lin80].
These problems could be a clue that non-perturbative objects like color ma,gnetic‘
‘monopoles must be considered in order to obtain an accurate picture of QCD “at
high temperature. It is also conceivable that the lessons learned in caiculatihg the
properties of hot QCD systems could shed light on the tantalizing question of quark
confinement in hadrons at low energies.

For these reasons, it is of interest to see whether a quark-gluon plasma can be
created in the laboratory. Consequently, there are a number of relativistic heavy
ion expériments currently being run or planned whose main aim is to create and
observe the properties of a QGP. For example at Brookhaven’s Alternating Gradient
Synchrotron (AGS), silicon projectile nuclei have been accelerated to momenta of 14.6
GeV/c per nucleon (0.998 times the speed of light) before colliding with gold targets
at rest{E802]. The hope is that when a silicon nucleus and a gold nucleus collide head
on at these energies, they will stick together in a highly compressed state for a short

time, rather than immediately pass through one another. If such nuclear stopping

does in fact occur, then it is possible that a super-dense lump of hot nuclear matter



(5-8 times normal nuclear dénsity) can be created in these reactions. Furthermore,
if the matter is hot and dense enough, then the phase transition could ‘occur. from
hadronic matter to a quark-glﬁbn plasma. This plasma would subsequently expand
and cool until finally “freezing” back into hadrons which could then be detected by
the experiment (fig. A). By examining in detail the final hadron distributions, it is
hoped that one would be able to discern whether or not a QGP had been formed in
the collision, and possibly even be able to determine some of its properties.

Before searchiﬁg for signs of a QGP, however, it is important to determine whether
or ndt the colliding nuclei were able to stop one'anothér in the first pléce. The first

- chapter of my thesis is comprised of three published papers and a summary of recent

Te

Hadrons

- >
| Po " o P P

Figure A. The phase diagram for QCD. Temperature is plotted on the vertical axis,
and nuclear matter density is plotted on the horizontal axis with normal nuclear
density denoted by po. The solid arc is a schematic representation of the phase
transition from hadronic matter to a quark-gluon plasma. The critical temperature
T. is thought to be about 150-200 MeV, while the critical density p. is thought to
be about 5-8 times pg. Time evolution of the nuclear matter in a heavy ion collision

is shown by the dotted curve. This matter compresses and heats up until a QGP is
formed, then it expands, cools, and eventually “freezes” back into hadrons.
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developments which are devoted to exploring this issue. In the first paper, I showed

that none of the standard event generators could reproduce the silicon on gold data

reported by the E802 collaboration at the AGS[ESOQ]. Furthermore, I showed that if

these data are correct, then the nuclei involved exhibit an unusually high degree of
transparency to each other. This was a very unpopular and surprising result, since
I had shown that the amount éf stopping implied by the dafa was even less than
that observed for proton-proton collisions at similar energies, making the possibility
of QGP formation at the AGS appear to be impossibly remote. In the second pa-
pei‘, I pointed out discrepancies bet.ween various data sets from different experimental
groups at the AGS, explored alternatiﬁe scenarios in'which I assumed thé,t the nor-
malization of E802 data was .bff by more than 30%, and made predictioné for the
results of upcoming gold on gold collision experiments. The last paper is the pub-
lished version of a talk given at the Quark Matter ’91 conference in which I showed
that if key pdints of the E802 data were off by 40-70%, then scenarios could be found
in which the expected amount of nuclear stopping was achieved and agreement could
~ be obtained between E802, E810 and E814 data sets. Although no new data has yef
been officially published by the E802 (E866) collaboration, a recent Ph.D. thesis from
an E802 collaborator reports that new meaéurement_s and newly foun'd systematic er-
rors have had the effect of increasing the normalization of the E802 data by 10-20%
for some points. and as much as 50-100% for others[Pars). In my summary of recent
developments, I show that the reported increases are helpful, but that more correc-
tions are needed for some of the data points in order to establish overall agreement
with the‘ other experiments and theoretical expectations. In addition, I compare my
gold on gold predictions with new preliminary data by E866[E866] and show that the
amount of stopping occurring in these reactions is still inconclusive. Consequently,
many more measurements will have to be made before it will be poésible to prove I(o'r
disprove) that the amount of nuclear stopping required for QGP formation is actually

being realized in these reactions.



The second chapter of my thesis deals with some of the more formal mathematical
aspects of QCD and similar theories at high temperaturé_s. Since there are funda-
mental.problems with the normal perturbative expansions of these theories[Lin80],
non-perturbative techniques must be explored. For éxample,' rather than treat the
QCD vacuum as a state without any background fields, nontrivial background field
configurations can be used to model the vacuﬁm. In perturbative calculations, the
quarks and gluoné of the QGP arise from considering quantum fluctuations of phe
ﬁelds around the trivial vacuufn. In non-perturbative semi-classiczﬂ calculations, on
the ther hand, quantum fluctuations around complicated background fields must be
?:onsi-dered. These calculat}ions are far more compiex than their perturbative cbunter-
parts, and exact solutions are only known for some very special caées[tHo76]. In order
to consider other more general cases, I have developed an. approximation technique
in which the quantum solutions are expressed in terms of a covariant derivative ex-
pansion. Similar expansions have been made for theories at zero temperature[Che87],

“but this is_thé first such .ca,lculatiqn for QCD and SU(N) theories at finite temper-
ature. As a first application of this technique, I show that certain color magnefic
monopolevbackground configurations are unstable to qﬁqnfum fluctuations and that
a background gas of dyons and antidyons would only be able to stabilize if the gas
was so dense that the dyons were overlapping. Thesé résults cast doubt 'oh previous
speculations that a simple monopole plasma could regulate the infrared magnetic sin-

~ gularities which plague hot QCD. While we rule out two typés of magneticaliy charged
configurations, the developrnent in this thesis of the covariant deriva,iive expansion
should prove useful in future studies of other possible background conﬁguratlons, not
only in hot QCD but more generally in hot gauge theorles

- The goal in thls thesis is thus twofold: The first is to investigate the fea81b111ty of
using heavy ion collisions to create conditions in the laboratory which are ripe for the
formation of a quark-gluon plasma. The second is to develop a technique for studying

some of the many non-perturbative features of this novel phase of matter.



Chapter 1

Nuclear Stopping Power



1.1 Nuclear Transparency in
15 AGeV Si+Au Reactions?

by Scott Chapman and Miklos Gyulassy
(Published in Physical Review Letters 67 (1991) p. 1210)

' Abstract

Recent data on central Si+Au collisions at 15 AGeV are shown to imply an unex-
pected high degree of nuclear transparency. The paucity of observed midrapidity
protons and pions suggests that up to one half of the projectile nucleons may lose less
than one unit of rapidity after traversing 5-10 fm of nuclear matter. -

"The first detailed spectra of p,7*, and K* from central Si + Au reactions 14.6
AGeV/c have been reported recently by the E802 collaboration[E802] at bthe AGS.
These data are of interest in connection with estimating the nuclear stopping power
and assessing whether high baryon density matter can be produced in nuclear colli-
sions. Previous indirect data on trahsyerse energy spectra and leading baryon spectra
have been interpreted[E814, Stach] as evidence for a large amount of nuclear stop-
ping in such reactions. However, i.n Ref.[Gyu90] we note;:l that the paucity of pions
~ and the shape of the proton rapidity distribution measured by E802[E802] were more
indicative of nuclear transparency at least for light ion induced reactions. Our aim in
this letter is to analyze the new data in detail and to estimate the nuclear stoppingh
powér in this reaction using a multicomponent firestreak model. | v |

~ The data that we focus on are shown in Figs. 1.1.1-1.1.3. The p, =, K* rapidity
densities in central Si+Au collisions are shown in the upper panels. The lower panels
show the transverse momentum slope parémeter, T(y), obtained by fitting thé invari-
ant distributions. é,t each rapidity with exp(—my /T (y)). The curves ana histograrhs
show the results based on the models discussed below. Also shown are extrapolations
of the E814 leading neutron data[E814] from a 0.8 degree cone assuming the above
my distfi‘butiqn with T varied between 0.1 to 0.2 GeV for their Er > 13 GeV trigger.
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Figure 1.1.1: The proton and n~ rapidity distributions and transverse mass
slope parameters in central Si + Au reactions[E802] (solid dots). Short dashed
curves and histograms show results from the firestreak[Gosset, Myers] and Lund
models[Gyu87], resp.. The long dashed curves show results form the Landau hydro-
dynamic model[Stach]. The extrapolated leading neutron data[E814] are indicated
by the crosses together with estimated extrapolation uncertainties.

Based on p + A — p + X data at energies Ej,, ~ 100 GeV[pA], it was expected
that in central S7 + Au feactioﬂs the average rapidity of projectile baryons would
be shifted downward by Ay ~ 2.5 while the rapidity of participant target baryons
should be shifted upward by Ay R 1. Therefore a substantial amount of equilibration
between projectile and target baryons was expected to ;)ccur at 15 AGeV where the
total rapidity gap is only 3.5. We therefore compare the data first with the firestreak
model{Gosset, Myers]. The short dashed curves in Figs. 1.1.1 and 1.1.3 show the

results obtained with a cut on impact parameters b < 2.9 fm. The severe discrepancy

8
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between the data and the calculated results is obvious. No reasonable variation of
the freeze-out density was found to improve this situation. Also shown by the long

dashed curves in fig. 1.1.1, are the results using the Landau hydrodynamic fireball of

Ref.[Stach]. While the proton distribution is in agreement with the extrapolated E814

data, it fails to account for the ramp form of E802 proton data, the difference between
the pion -and protoh slope parameters, and the absolute pion yield. In Ref.[Brown,
BrownEr] a hydrochemical version of the fireball model was able to reproduce the pion
-~ and kaon spectra, but that model also failed to account for the form. and magnitude
| “of the observed proton distribution. It follows that if the E802 data are correct all
such equilibrium models éssuining complete .nuclear stopping are ruled out by the
absence of a peak of de/dy near y ~ 1.2, thelsrna,]l value of dN,/dy z 7 a;t y~ 2,

‘and the small number of 7~ observed at mid rapidity.
\ -

We therefore consider next non-equilibrium dynamical models such as the multi-
string Lund Fritiof Model[Lund]. In that model multiple interactions are assumed
to excite baryon strings which fragment independently and without final state‘ in-
teractions. Such phenomenological string models have been successful in accouhtin‘g
for many of the features of multiparticle production in p + A and B +'A‘collisions
at higher energies Ejq > 60 AGeV[QM88]. The histograms in fig. 1.1.1 show the
results from the ATTILA version[Gyu87] of the Fritiof model for this reaction for the
same range of impact pafameters. Whiie" the ré.mp form of the proton distribution is
much better reproduced, the proton slopes are mﬁch smalier, than observed. In ad-
dition, the 7~ ré,pidity d_ensity is overprédicted by‘ 70%. We no’te that RQMD string .
model[RQMDgl,. .RQMDpi] also overpredicts the pion r’apidit’y density by 70%.

Having seen that the above -sfmple equilibrium and nonequilibrium models for |
nﬁclear collision dynafnics fail to reproduce the new data, we consider next a model
independent fit in order to isolate possible causes for the discrepancies. In particular,
this fit allows us to take into account all of the observed energy in longitudinal and

transverse motion, pion production and kaon production. The measured transverse



momentum distributions were fit with a form
dN;/dyd’p, = pi(y)exp(—mir/Ti(y)) - (1.1.1)

where the slope parameters, Ti(y), were parameterized by sums of Gaussians in ra-
pidity. The data reported in [E802] together with unpublished data from [Bloo] were
used to fix these slopes. The ‘pion and kaon rapidity’distributions were parameterized
in terms of independent Gaussians. For th¢ unobservc;d neufral mesons we assumed
70 = (zt 4+ 77)/2, K° = K+, and K° = K~. The nucleon rapidity distribution was
taken to be parabolic in the region 0 < y < 3.0 with a linearly dropping tail from
3.0 < y < 3.5 and Gaussian tail y < 0. In the high rapidity region we allowed for an
extra Gaussian distribution of baryons to test for nuclear transparericy. For neutrons
we assumed that pn(y) = 132/93p,,(y) to be on the safe sic’ie (i.e., allowing for larger
unobserved neutral baryon energy than expected in the projectile fragmentation re-
gion). Total baryon conservation was enforced.

We found that without an extra, high rapidity, baryon contribution the total lon-
gitudiflal momentum carried by nucleons and mesons integrated ovef all of phasé
space was 165 GeV/c less than the total initial momentum (P, = 409 GeV/c). To
take into account poséible systematic errors introduced by extrapolations to unmea-
sured low p, regions and depletion of the proton' yield due to cornposivte fragment
formation[E802], we tried a fit to data enhanced by a factor 1.3 However, even with
that enhancement the fit failed to account for 93 GeV/c of the incident longitudinal
momentum! |

Only by introducing an extra, high rapidity baryon contribution centered at y =
2.75 with an rms width Ay = 0.25 and containing approxirnately 11 of the 28 incident
baryons were we finally able to accbunt for all the incident momentum (and energy) to
an accuracy of better than 1 GeV. This ﬁnal fit is shown by the dot-dashed curves in
ﬁg’é. 1.1.2 and 1.1.3. We have checked that neither the Er nor the forward calorimeter
" data are sensitive to this unex;;ected baryon contribution in the region 2 < y < 3.

We emphasize that the energy contained in the observed transverse flow of baryons

10
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as well as in enhanced kaon production is taken into account by this fit. In addition
our fit is conservative since we assumed that all the E802 rapidity densities must
be multiplied by 1.3 due to systematic errors. From this analysis we conclude that
the E802 spectrometer data are consistent with longitudinal momentum and baryon
conservation only if a éigniﬁcant fraction of the projectile nucleons suffer less than

~ one unit of rapidity shift aft'er.ltraversing 5 — 10 fm of nuclear matter.
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Figure 1.1.2: As in fig. 1.1.1 but compared to a constrained fit (dot-dashed) to

data enhanced by a factor 1.3. The solid curves show results of our multicomponent
model with L, = L’ = 26 fm. '

Of course, it is possible that the “central” multiplicity-triggered data actually
suffered some contamination from peripheral events. Large numbers of projectile

spectators from these events would then be able to account for the missing longitudi-

11



nal momenturﬁ. However, unpublished data correlating the multiplicity trigger with
the zero degree calorimeter (ZDC)[Bloo] suggest that the published central events
had negligible numbers of projectile spectators. Furthermore, unpublished central
ZDC-triggered data[Bloo] agree to within 10% with the multiplicity-triggered data

considered here.
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Figure 1.1.3 K* data[E802] compared to firestreak (dashed), constrained fit (dot-
dashed), and multicomponent model (solid) calculations. .

- To estimate more quantitatively the nuclear stopping power implied by these data
and to enable us to calculate the A and impact parameter dependences of the specfra,
we developed a multicomponent firestreak model with enough flexibility to deal with
many complex nohéquilibrium features exhibited by the p, 7w, and K data. Instead

of forming one fireball(streak) in each collision between rows of nucleons as in the

12
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conventibnal firestreak model, we allow each row-row collision to form up to four
~ fireballs with different rapidities depending on the nuclear thicknesses involved. We
found that four fireballs wasj the minimum necessary to reproduce all the features of
the present data. While differing in detail, this model is. similar to previous multi-
" component fireball and hydrodynamic models[Dan, Clare]) which were introduced to
~ take into account nuclear transparency. o

In our model we aséume that in a collision of two tubes of nuclear matter of
tranéverse area 0;, = 30 mb containing N, and N; nucleons, the total center of mass
momentum P* of both tubes is reduced by an amount proportional to the number of
_binary collisions, _N,,Nt:’ |

AP* = 6p,N,N; . | (1.1.2)

Here 6p, is the average longitudinal momentum loss per inelastic collision. Defining
the effective nuclear thickness, z;, via N; = Oinpozi, the momentum shift per baryon of
the projectile (target) is thus assumed to increase linearly with the target (projectile)

thickness. A measure of the nuclear stopping power is given by the stopping length

L, = mysinh((y, — 92)/2)/(cimpobps) » (113)

where y,(y:) is the rapidity of the projectile (target) tube. For symmetric colli_éions
with 2, = z; = z, the fractional momenfum loss, AP*/P* = z/L,, increases linearly |
and reaches unity When z=L,. | |

We found, however, that the é,bove two fireball model of Stopping could not re-
produce the apparent peaking of Tp(y) near y ~ 1.5 as .indica,ted by preliminary E802
- data[Bloo]. We therefore allowed a fraction, f,, of the baryons from both the projec-
tile and target nucleonvi;x each tube to stop completely in the tube-tube cm frame.

This fraction was also assumed to increase with nuclear thickness as
fo = (zp2)?/L. . _ (1.1.4)
Incomplete nuclear stopping is thus modelled by three separate baryonic fireballs (for
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each row-row collision) with rapidity.a.nd baryon number controlled by two stopping
lengths, L, and L. |

The baryon transverse momentum distribution is controlled by the excitation en-
ergy per baryon, M*, in each of these fireballs. In order to fit the preliminary To(y)
data[Bloo), we enforce the constraints M* <M =14 GéV for the noncentral fireballs
and M < M; = 1.85 GeV for the central ones. Any excess energy is assumed to be
taken up by a fourth central fireball with zero baryon contenf (the “meson” fireball).

The baryon fireball freeze-out densities are all chosen to be psr = po = 0.15 fm‘3,

while the meson fireball freeze-out temperature is chosen to be 160 MeV. In addition,

to account for incomplete ;:hemicai equilibration of strange hadrons seen from fig.
1.1.3, we réduced the thefmél coﬁtributions of all strange hadrons by a factor 1 /4.
These hybrid aspects of the model essentially mimic effects in the hydrochemical
model[Browh, BrownEr| without the c’énstraint of full nuclear stopping.

The solid lines in Figs. 1.1.2, 1.1.3 show the results of this multicomponent model
for I:s = L = 26 fm (ép, = O.22 GeV/c). With these parameters we recover essen-
tially the results of the (dash-dot)' fit discussed earlier. In particular, this model also
leads to a high rapidity projectile contribution centered around y =~ 2.5 as required
by energy-momentum and bai‘yon conservation. The rather lafge values of these stop-
: ping lengths are surprising in view previous expectations based on p + A at higher
energies [pA, Mish]. Also with L, = 26 fm, the fraction of projectAile baryons in the
central fireball is only f, ~ 1/3 for Si + Au. This value is much less than deduced in
[E814, Stach] based on transverse energy and leading neutron data and unpublished
high multiplicity selected E802 dN,,/dn data. | |

We comment finally on the difference bbetween collective longitudinal hydrody-
namic flow and nuclear transparency. In Ref.[Stach] it was suggested that Landau

hydrodynamics could account for the nonisotropic angular distributions in the cm

frame. However, the comparison between that model and the data in fig. 1.1.1

shows that no single expanding source can account for the different maxima and
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shapes of those distributions. On the other hand, detailed one fluid hydrodynamic
calculations[Stau89, Stau90] predict a nonsymmetric baryon distribution with a shoul-
der between 2 < y < 3. In fact so much longitudinal collective baryon flow was pre-
" dicted that the calculated pion yield falls significantly below the E802 data. It would
be interesting to check if variations of the equation of state and the freeze-out condi-
tion could imprbve the agreement with data for this reaction. In prilnciple only the A
dependence of the particle spectra can differentiate between such novel nuclear shock
effects from. transparency. For example, one fluid hydrodynamics predicts[Strot] a
sharb peak at mid rapidity for the proton distribution in central S: + Al, whereas our
- model predicts a minimum in that case. | |

We conclude that none of the present models which assume complete nuclear stop-
ping and none of the nonequilibrium string models are consistent with the new E802
data. If the normalization error of the new E802 da.té does not exceed 30%; then
energy-momentum and baryon conservation alone require there to be an unexpected
shoulder in the baryon spectrum in the region 2 < y < 3. Our fits to the data
in terms of a multicomponent firestreak model suggest surprisingly long stopping
lengths, L, =~ 26 fm. Because these résults deviate so much from previous expec-
tations and analyses of more indirect data, systematic measuremen'ts of the A and
multiplicity dependence of dN,/dy over the full rapidity region should be uﬁdertaken
to cross check these data and establish if indeed nuclei are as transparent as the

present data seem to indicate.
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1.2 Nuclear Stopping Power
at 15 GeV /nucleon

by Scott Chapman and Miklos Gyulassy
(Published in Physical Review C 45 (1992) p. 2952)

Abstract

Fireball, firestreak and hadronic string models are shown to overpredict recent central
15 AGeV Si+Au E802 spectrometer data. Claims in the literature about full nuclear
stopping in Si+Au reactions are therefore not supported by these data. In fact, fits
to the spectrometer data indicate that up to half of the projectile nucleons may lose
less than one unit of rapidity after traversing 5-10 fm of nuclear matter, implying an
unexpected long stopping length of ~20 fm. On the other hand, E810, E814, and
preliminary E802 dN,nqrgea/dn data are more consistent with the expected degree of

stopping.

1.2.1 Introduction

It has been claimed that “full stopping is realize&[PANIC], showing a behavior close
to the Landau model[Stach] and to relativistic fluid dynamics[Stau89], and the energy
density can reach values comparable to the critical values for QGP formation”[Ame91].
However, as we pointed out in ref. [Chap91], the published E802 spectrometer data
[E802] cast doubt on this belief, since m fact none of the present.mo'dels is consistent
with the full array bf data. Moreover, if the spectrometer dN/dy are normalized
correctly, then these data are more indicativé of a surprising degree of nuclear trans-
parency. On the other hand, dNnarged/dn[HIPAGS] and high rapivdity E810[E810]
and E814[E814] are well reproduced by models incorporating a high dégree of nuclear
stopping. As a result of this apparent inconsistency, no firm conclusion can yet be
drawn on the important topic bf the amount of nuclear stopping at the AGS.

In our letter[Chap91] we discussed a model independent fit to the spectrometer
data which showed that if systematic errors do not cause more than a 30% suppression
of proton and pion yields, then 4-momentum and baryon conservation laws imply
that at least 11 out of 28 projectile nucleons suffer less than ohe unit of rapidity loss

L
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during a central Si+Au collision. In this paper, we give the precise functional form
of the fit used in the letter, as well as introducing three other fits which allow for the
possibility ol systematic errors in excess of 30%. In addition to E802 spectrometer
data[E802], we compare these four fits to E802 d N arged/dn data[HIPAGS] as well as .

' data from the E810[E810] ancl E814[E814] collaborations. In our letter, we developed
a multicomponent model (imcm) in order to quantify the amount of nuclear stopping
implied by the ESO? spectrometer da,te. In this paper, in addition to explaining the
mcm in fnore detail in the Appendix, we show that a simpler double firestreak model
leads to similar conclusions about the amount of stopping. These types of models
~are only able to reproduce the .spectrometer data with stopping lengths of ~20 fm.
In addition to central Sl+Au data, we discuss the agreement of these models with
unpublished preliminary central SI+A1 and Si+Cu E802 spectrometer data[Bloo], ._
- and make predictions for central Au+Au proton and pion distributions at these .same
energies. The long stopping lengths impvlied. by tlle E802 spectrometer data provide
a sharp contrast to the results of p+p and p+A experiments at these same energies
which imply stopping lengths of more on the order of 8-10 fm[pA). Thus, either
something new and unexplained is occurring in central Si+Au collisions at the AGS,
or else systematic errors in the spectrometer dN/dy data must be significantly larger
~ than prevlously estimated. In any case, the published E802 spectrometer data do not
support claims of full nuclear stopping which are prevalent in the literature[PANIC,

Stach, Ame91, RQMD91, RQMDpi, Brown, BrownEr].

1.2.2 vThe Hadronic Fireball

In the genenc hadronic fireball model[Gosset] the projectile nucleus is assumed to
be completely stopped by the target nucleus in the part1c1pa.nt center- of-mass fra,me,‘
wher_eupon thermal and chermcal equilibrium are established. By treating both nuclei ..
as hard spheres of constant baryon density (po = .145fm™3), geometry determines |

the number of interacting nucleons for any given impact parameter. For example, in
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a b=0 Si+Au collision, all 28 (= N,) silicon nucleons interact with a central tube
of about 75 (= N;) gold nucleons, thus making the baryon number of the resulting
fireball 103 (= Ny). The remaining 122 gold nucleons of this example are merely
. spectators which are ignored in this model. Once N, and N, are known, thé rapidity
of the fireball rest frame and the total fireball energy in that frame é,re fixed by
kinematics. For the Si+Au example with Ypo = 3.4 and ypo= 0, y; ='1.3 and Ej =
250GeV. |

After its creation, the fireball expands and cools until freezeout, when the mean
free path of the fireball hadrqns becomes approximately the same size as t_he radius of
the fireball. The temperature and chemical potentials at freezeout define the particle -

distributions a,clcording to N
_ .dN,' _ '7.~jq.'Vf,E' :
dyd’py  exp{(E — Bip — Sin,)/T} — (-1)%

where B;, S; and g; are the baryon number, strangeness, and spin-isospin multiplicity

fi (1.2.1)

for each species of hadron, V4, is the freezeout volume, and v; is a parameter intro-
duced to allow for incomplete the chemical equilibration. We assume that v; = 7,
for all strange hadrons and v = 1 for all other hadrons. Since E; and Ny are
- fixed by kinematics, T, p and g, Can be found by choosing values for vs and Vj, (or

psr = N¢/V;,) and then solving the following integral equations:

Ej= 3 / &*p, dyEf; (1.2.2)
s=hadrons ’

Ny= 3 B / Pp, dyf: (1.2.3)
i=baryons

0= S;/dzpldyf,- - (1.2.4)
i=strange ’

We treat explicitly only the following hadronic resonances: N, A, A, &, 7, 9, p, w, 7,
K, K* and their antiparticles. For example, for b = 0, v, = .5 and py, = 5po, we find
that T = 200 MeV, u = 418 MeV and g, = 92 MeV for AGS enefgy.
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Once T, p and g, have been found for a given set of input parameters, fi(y,p L)
determine the invariant distributions for each species of hadron in the fireball. How-
ever, before reaching the detector,. the heavy baryon and meson resonances decay as
follows: A — N+m, A — p+7~(64% of the time), £+ — p+7° (52%), £ — n+n*t
(48%), x° —>-p +7~ (64%), T~ = n+7", n— 31(30%), p — 2r, w — 3r(90%),
7' — 27, and K* — K + m, where the balance of the A, £°% 7 and w decays are
into undetected néutra.ls. For the 37 decays, it is assumed for simplicity that each
daughter particle carries away 1/3 of the parent energy. By convoluting the above
decays with parent distribution functions as in ref. [Das], the resonance contributions
‘to the nucleon and pion distributions are found.

The net charge/baryon of the fireball is given by

| (Z/A), = (Z,/Ap)N, ]\;(Zt/At)Nt , / 125

where Z, (Z;) and A, (A;) are the charge and atomic number of the projectile (tar-
get) nucleus. Charge conservation is‘enforced as follows: All final state mesoné not
coming from strange baryon decays are assumed to be distributed isosymmetrically,
and therefore the ﬁet .cha.rge.carried by these mesons is determined solely by the kaon

abundances:

Cmes = NK+ - NK- _ o (1.2.6)

From isosymmetry (Ngo = N+, etc.) and conservation of étrangeness before strange -
baryon decéys, we have the rélation Cres = .5Y,_where Y is the number of strangé
baryons in the fireball. It is assumed that all of the strange baryoné have the same
mass (1;17 GeV) so that their relative abundances before decay do not depend on
the temperature or chémical potenﬁials. .These abundances are taken to be 1/4,
1/2(Z/A)s, 1/4, and 1 /2(i ~ (Z/A);) for A, £*, £°, and &~ respectively. In this
way, the net cha.rge/ baryon of all strange hadrons is always identical to the incoming
' charge/barybn ratio of (Z/A);. If, on the other hand, we had chosen A’s and ¥’s to

~ have different masses, we would either need to introduce another chemical potentitﬂ or
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some more complicated prescription for choosing strenge baryon abundances in order
to enforce charge conservation for arbitrary T, g and u,. Finally, by demanding
that (Z/A)s of the final nucleons not coming from strange baryon deceys be protons,
overall charge conservation can be enforced.

In the E802 experiment[E802], central -Si+Au events ‘were identified by a high
muitiplicify trigger whose cross section (=0cent) repreeented 7% of the total Si+Au
 inelastic cross section (=3822mb[Bloo)). In our model, we chose a maximum impact
parameter (bpo, = 2.9fm) such that 7b2,, = 0cen: and then integrated our fireball
results ever b from 0 to bmaz.

In the ‘experiment, measurements were made using a spectrorneter arm with a
| range of 5° < 6 < 55° Which could detect and identify charged particles with total
momentum between 0.5 and> 3 GeV/c[E802, E802a). The resulting raw particie dis-

tributions were binned both in y and m;. For each rapidity bin, the distributions

appear to be well fit by pure exponentials in m [E802]:
dN;/dyd’m, = pi(y) exp(—(miL — m;)/Ti(y)) - (27
The rapidity distributions were then estimated by integrating these fits over m:
dN;/dy = 27 pi(y) T(y)(Tiy) + ma). (1.2.8)

In the fireball model, dN;/dy can be calculated in two ways: by numerically integrat-
ing fi over all d?m, or by using the exponential fitting rprocedure outlined above after
iniposing the experimental phase space constraints. For all of our calculations, fhe
difference between the results of these two methods was less than 20% for dN,/dy
and completely negligible for dN, /dy. | |

In fig. 1.2.1 we compare thfee fireball models to the data. The solid dots are
data from the E802 spectrometer[E802], while the diamonds and x’s are data from
E810[E810] and E814[E814] respectively. It should be no;ed that the E814 data are
actually for Si + Pb collisions rather than Si 4+ Au and that the three experiments
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Figure 1.2.1: The solid dots in the upper panels show the proton and 7~ rapidity
-distributions measured by the E802 spectrometer in 14.6 AGeV/c central Si + Au
reactions, while the bottom panels show the m, distributions for y = 1.3 in those
same reactions[E802]. The diamonds show E810 ‘4’ - ‘-’ and negatively charged
particle distributions for Si+Au using a trigger with twice the cross section of the
E802 central trigger[E810]. The solid squares are E814 proton data for central Si+Pb
reactions[E814]. Solid curves show results of the generic fireball model, while dashed
and dot-dashed curves denote Landau hydrodynamic fireball[Stach] and hydrochem-
ical fireball[Brown, BrownEr| results respectively. The norms of the hydrochemical
- results have been adjusted in accordance with the published erratum[BrownEr]. The
dot-dot-dashed curves in the lower panels show m, distributions of protons and 7~ ’s
coming only from heavy baryon decays in the generic fireball model. The dot-dot-
dashed curve in the upper right panel shows the generic fireball prediction for the
pion rapidity distribution given the restricted phase space of the experiment.
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use different centrality triggers (the E810 trigger has twice the cross section of the
E802 trigger, while the E814 trigger has less than half tHe cross section of E802).
Nevertheless,,coml.)aring.these data sets to one another is done quite often[Nag] and
is useful for making qualitative cross checks. The solid line in fig. 1.2.1 shows the
results of the generic fireball model outlined above with py, A= 5po and 7, = .5.
This fireball model produces more than a factor of 2 too many protons, pions, and
kaons (not shown) at rriid-’x'apidity. Using a higher freezeout baryon density results
in more heavy baryon resonances and slightly fewer pioné, but the increased temper-
ature makes the distributions become too broad in m;. Increasing (decreasing) 7,
increases (decreases) the number of kaons and strange baryons‘ bﬁt does not have a
significant effect on the total number of mid-rapidity protons and pions. In fact, no
reasonable variation of ps, and/or 4, significantly improves agreement with the data.
In addition to the generic fireball, fig. 1.2.1 also shows results from the Landau hydro-
- dynamic longitudinally expanding fireball[Stach] (dashed liﬁe) and the hydrochemical
spherically expanding fireball[Brown, BrownEr] (dot-dashed line). The longitudinal
 expansion of the Landau fireball reduces the midrapidity proto'nvand 'p.ion peaks but
still overpredicts the E802 .proton data by at least 70% in the range 1.5 <y < 2. On
the other hand, it should be noted that this model does a very good job of reproduc-
ing high rapidity E810 and E814 data. Even though the sphérical expansion of the
hydrochemical model provides a possible explanation for the difference in proton and
pion vslopes, this model also fails to reproduce the measured norms of these distribu-
tions. In fact, all of the fireball models considered here overpredict the E802 proton
and/or pion rapidity distributions by at least 70% in some rapidity range.

It has been suggested[Brdwn, BrownEr] that at least some of the discrepancy in
dNr/dy could be due to an unmeasured excess of low p 1 pions coming from baryon
resonance decays. The dot-dot-dashed curves in the bottom two panels of figure 1.2.1
show the distributions of protons and pions coming only from baryon resonance decays

in the generic fireball model. At least for the generic fireball, any low p, enhancement
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due to these resonances is entirely negligible for protons and ‘less than 20% for pions, as
can be seen by comparing the restricted, exponentially fitted dN, /dy (dot-dot-dashed
line in fig. 1.2.1) with the directly calculated dN,/dy (solid line). Furthermore, even
if one makes the assumption of the hydrochemical model[Brown, BrownEr] that none
of the pions coming from baryon resonance decays are detected, ﬁreball medels still
predict 70% more mid-rapidity pions than ere seen in the data (dashed line in fig.
1.2.1). 'Sin_ce none of the fireball models discussed here can sirnult‘a.neously reproduce

~ all of the data, we turn to other models.

1.2.3 The Firestreak and String Models

The firestreak[Gosset, Myers] model was designed to take into account the diffuse
edges of colliding nuclei by creating many smaller scale Tegions of local equilibfium
rather than a single large fireball. In this model, the i)rojectile and target nuclei
are divided inte longitudinal tubes with transverse area a.(< 1 fm?). Each set of

two opposing tubes forms a completely stepped miniature fireball (or firestreak) in

~its local center of mass frame. In this way a large number of independent firestreaks - -

forms, each with its own local values of Ny, ys, T, y and g,. As-aresult of this locallty,
Wood-Saxon den51ty dlstrlbutlons rather than sharp spheres can be used to determine
how many nucleons are in each tube Often, some very asymmetric cases will result.
For example, a tube contammg 3 nucleons from the center of a gold nucleus could
interact with a tube containing .1 nucleon from the dlffuse edge of a projectile silicon
nucleus to create a streak with N f. - 3.1 and ys = 0.4. These asymmetries provide
a natufal ’w.ay to generate low-rapidity “spectator” contributions, even though there
are no true spectators in this model. | |

Hadronic string models[Lund] also feature locality, though they.do not impose
the requirement of complete'nuclear. stopping. In fig. 1.2.2, we compare the fire-
streak (dashes) and two string models (Attila[Gyu87] (solid) and QGSM[Ame91]
(histegram)) with the data. For the Firestreak and Attila, we have calculated T,(y)
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_Figure 1.2.2: The top panels are as in fig. 1.2.1, while the bottom panels are the inverse
slope parameters of eqn. (1.2.7)[E802]. These data are compared to firestreak[Myers]
(dashed), Attila[Gyu87] (solid), and QGSM[Ame91] (histogram) calculations. The
. dot-dot-dashed curve in the upper right panel shows the firestreak prediction with
experimental phase space restrictions.

via the expon;antial fitting procedure of eqn. (1.2.7) in order to compare our curves to
the published T;(y) values. Though the firestreak improves on the fireball by showing
“spectator” contributions, it still has the problem of predicting far too many mid-
rapidity protons and pions, even after the experimental acceptance has been folded
in (dot-dot-dashed line in dN,/dy). The string models do a better job of repfoducing
the overall ramp shape of dN,/dy, th'ough" they still overpredict by at least 70% the

number of pions seen by E802. It should be noted that although Attila overpfedicts
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by about 50% the high rapidity protons seen by E802, it reproduces those seen by
E810 and E814 very well. |

'RQMD

40
30 |
.
S 20t
-
o
10 -
0

y - y |
Figure 1.2.3: The data of the top of fig. 1.2.1 are compared to RQMD calculations
by H. Sorge et al. (histogram[RQMD92] and solid[RQMDpi]) and to RQMD calcula-
tions which have explicitly incorporated the experimental acceptances and cuts (open
circles)[RQMD802]. ' ' '

Recentiy, there; have been claims[RQMD802] that the RQMD’ model[RQMD?91] is
consistent to within 23% with the E802 spectrometer data. In fig. 1.2.3, we éompare
various RQMD runs with proton and piqh rapidity data. Since H. Sorge et. al. have
not yet published proton and 7~ rapidity distributions in the same paper, we show thé
-proton distribution from ref.[RQMD92] (histogram) and the 7~ distribution from ref.
[RQMDpi] (solid curve). These curves consistently overpredict the E802 data, even
by as much as 70% for midrapidity pions. The open circles in fig. 1.2.3 represent the
results of an RQMD run which was éubjécted to the E802:experimehtal acceptances
and cuts[RQMDB802]. It is interesting that this RQMD run still overpredicts the E802
pion and proton yields by ~ 50% and ~ 70% respectively in the region 1.5 < y < 2.
None of these discrepancies can be due to undetected low p, compohents since the -

same exponential fitting procedure was used for this RQMD run as for the E802 data.
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On the other hand, RQMD does a very good job of reproducing the high rapidity
E810 and E814 data. ’ '

- 1.2.4 Model Independent Fits

Having seen that none of the above equilibrium and nonequilibrium models for nuclear
collision dynamics are able to simultaneously reproduce all of the published data,
we consider next a model independent fitting procedure in order to isolate possible
causes for the discrepancies. We begin by fitting the experimental T;(y)[Bloo] and
(dN/dy)i(y)[E802] data with simpie functions which have reasonable extrapolations
to phase space regions outside of the experimental acceptance. Equations (7) and (8)
are then used to determine thé invariant distributions, f; = dN;/dyd*m,, from which
information about momentum and eneréy conservation can be extracted.

For the meson (dN/dy);(y) we use
(dN/dy); = aCiexp(—(y — %:)*/8) —1<y<4 o (129)

where (C;, yi, é;) are fit with (16, 1.4, 1), (16, 1.35, 1.3), (3.5, 0.95, 1) and (0.67, 1.3,
1) for n*, 7=, K* and K~ respectively. The reported data are fit with a = 1, but
later we set a@ = 1.3 to account for experilhental systematic errors. The meson and

protoh temperatures are given by:

Tp+ = Ty- =0.06+.1exp(—(y — 1.3)%/1.2) + 0.03exp(—y?)  (1.2.10)

T+ = Tg- =0.19exp(—(y —1.3)%/2.) (1.2.11)

0.23 exp(—(y — 1.55)2) + .1 exp(—y?2 < 2.2
sz{ exp(—(y — 1.55)%) + Lexp(—y?) y < (1212

0.15 y > 2.2

We fit the proton rapidity spectrum with a falling quadratic ramp and include ad-

justable undetected spectator and projectile gaussians in order to conserve baryon
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number and to test for transparency:

' Cspece(A_‘!ﬁ/(sapec) -1 < Y < 0
CS ece(iy2/68pec) AN
' Maz | 7 - Lo o] 0<y<3
(dN/dy), = a 6y? — 35y + 52 + Cproel "W tpre)/épre) | |
| 7= 2y + Cproel~twmvere)/6mr)  3<y<35
| 0 | ' | ~ otherwise
(1.2.13)

Fits to E802 Spectrometer
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Figure 1.2.4: The same proton data as in fig. 1.2.1 plotted on a log scale. In addition
- to a datafit (dashed) which does not conserve 4-momentum, we show fitl (solid), fit2

(dot-dashed), fit3 (dot-dashed), and fit4 (dot-dot-dashed).
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Fits to E802 Spectrometer
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Figure 1.2.5: Data as in fig. 1.2.2 with E802 dN,+ /dy[E802] instead of protons. Also
in the upper panels we show fit1 (solid), fit2 (solid), fit3 (solid 7% and dot-dashed =~)
and fit4 (dot-dot-dashed n* and dot-dashed #~). The lower panels show the T(y)
which were used for all of the fits.

where 6,,, = 0.2. For the unobserved neutral mesons it is assumed that 70 = (vt +
7~)/2, K® = K+, and K° = K~. Charge conservation is enforced by demanding that
the total number of final protons-be N, = 14+ 79— N+ — N+ + Np- + Ng- (= 91.9
for the above fit). We employ_ESlO and E814 data to guide‘ our dN, /dy extrapolation
to high rapidities by using (Ypro) Cpro) Capeer Supec) = datafit = (2.5, 3.8, 80.9, 0.17),

where the last two parameters were chosen to get the right value for N,. With N,
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Fits to E802 Spectrometer

1 1 1
4 _y -
. ! K—
g 3 ]
= _
1] — N
o - | 'l\\
1 2 3
y

0.0 05 1.0 05 1.0

m,—m S m,-m
Figure 1.2.6: The upper panels show the E802 K* rapidity distributions in central
St + Au reactions (solid dots), while the bottom panels show m, distributions for
- y = 1.3 in these same reactions[E802]. Simple fits to the data are shown by dashed
curves in the upper panels and solid lines in the lower panels. The solid curves in
the upper panels show the 30% enhancement used in fitl - fit4. The dashed line in

the lower right panel shows a low m, component which would give rise to a 30%
systematic error in dN,/dy. -

fixed, the tbtdl_number’of ‘undetected neutrons is given by bafyon number conser-
‘vation, N, = 28 + 197 — Np- = 133.1. The correct value for N, can be achieved by
v'a.ssuming an n/p ratio of 1.3 for y > 2 (ba,séd on E814 ﬁndings[Stach]) and n/p= 1.46 |

for y < 2. This fit to the three experiments at the AGS allows us to take into account

29



all of the observed energy in longitudinal and transverse motion as well as pion and
kaon productibn. Datafit is shown by the dashed lines in figs. 1.2.4, 1.2.5 and 1.2.6

(solid lines for the temperatures).
The total outgoing longitudinal momentum P, implied by this fit is easily calcu-

lated by integrating m sinh(y)f; over &m  and y:

9T? + 2Tim; + m? | |
- dN/d h 1.2.14
. P, = '_hadmm/dy Tt m *(dN/dy)isinh(y) . (1.2.14)

E is simply found by replacing sinh(y) by cosh(y). For datafit, the integration over
y givesv P, = 289 GeV/c and E = 495 GeV, whereas the total incoming ehergy and
momentum are known to be P, = 409 GeV/c (= 28 x 14.6) and E = 595 GeV
(=197 x .939 + 28 x 14.63). 120 GeV/c of the incoming momentum and 100 GeV of
the energy are unaccounted for in this fit to the déta! If we assume that n_eithér leptons
nor photons carry a significant fraction of the 4-momentum, then ther¢ must be some
undetected hadrons sﬁmewhére which db carry it. The E802 collaboration noted that
an undetected excess of low p, particles could result in a 25% enhancement of dN /dy
over the exponenfially fitted data[E802]. To take tilis into account as well as other
possible systematic errors in the data, we multiply each of our (dN/dy); functions by
a = 1.3 and adjust C,,, to 2.3 in order to preserve high fapidity agreement with E810
and E814 (Cspec = 43.9 for charge conservation). Even with vthi‘s 30% enhancement
over all of the E802 data, we find that 50 GeV/c of momentum and 45 GeV of energy
are still missing. | |

It seems that either the true dNV;/dy exceed the published E802 data by more than
30% in some rapidity regions, or else the “missing” 4-momentum must be carried by
more high rapidity hadrons than we use in the above extrapolations. If we assume that
the latter is true, then the least transparent solution which does not overpredict any
of the spectrometer data by more than 30% has fitl = (2.75, 3.4, 40.9, 0.17), where
now a constant n/p ratio of 1.46 is assumed throughout aﬂd (a, bpro) = (1.3, .25)
for the rest of the fits considered in this paper. This 4-momentum conserving fit

(solid lines in figs. 1.2.4-1.2.6) overpredicts high rapidity E810 and E814 proton data
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by a factor of 2. By allowing a 50% diéagreement with the last proton data point, a
slightly less transparent solution can be found: fit2 = (2.5, 4.29, 32.28, .25) which only
overpredicts E810 and E814 by 50% (dot-dashed curve in fig. 1.2.4). These solutions
have 10.8 and 10.1 nucleons respectively in the projéctile; region (2.44 < y < 3.5). In
the lower half of fig. 1.2.6 we show how an undetected low-m component for pions
could give rise to a 30% normalization error in dN,r /dy. However, since a high-m,
hadron with rapidity y carries more 4-momentum than a low-m, hadron with the
| same rapidity, it.is‘ more conservative td use a uniform 30% énhancement everywhere

as we did in our calculations.

" If we allow a 40% disagreement with the last_ two E802 7~ data points, the width

" of the dN,- /dy Gaussian can be increased to .6,,- = 1.85 to provide agreement with

E810 negatives at high rapidities (dot-dashed dN,/dy in fig. 1.2.5). By using fit3
= (2.5, ‘4.58, 72.7, 0.07) to define the proton distribution, 4-momentum can be ¢on-
served with 9.7 nucleons in the projectile region. The y > 0 protons in this fit are
distributed almost identicﬂly to the prbtons in fit2, though from charge conservation
the enhanced number of 7~’s causes a smaller n/p ratio (=1.33). Finally, from the
. fact that silicon is isosymmetric, one could argue that high;rapidity pions should be
isosymmetric and. therefore that the 7r+:’s_should also be distributed liké the E810 neg-
atives at high rapidities. This can be achieved by» taking é6,+ = 1.75 and fit4 = (2,5,
1.92, 49.3, 0.09), which has only 6.6 nucleons in the projectile regiqn and is s.'hiown by
the dot-dot-dashed> dN,/dy and dN,/dy curves in figs. 1.2.4 and 1.2.5. Though this
fit conserves 4-momentum and- agrees well with high rapidity E810 and E814 proton
data, it disagrees with the last two E802 7t data points by 70-100% and it features
an n/p ratio of 1.56 even in the projectile re‘gion. | |

It is instructive to comﬁare the four fits diééﬁssed above to other pfeliminary data
from E802 as well as to leading neutron data from E814. In addition to the spec-
trometer afrn, E802 has a target multiplicity array (TMA) detector which measures

dN/dn of charged particles and a beam calorimeter (ZCAL) which measures the resid-
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Figure 1.2.7: Preliminary chha,geg/dn data[HIPAGS] are compared to results of
RQMD [RQMD91] (histogram), fitl (solid), fit2 (dashed), fit3 (dot-dashed), and fit4 -
(dot-dot-dashed).

ual beam energy after a collision. Due to the geometry of the ZCAL detector, there is
some un‘certainty as to whether it measures the energy of final particles with 6 < 0.8°
or with 6 >< 2.2°[Bloo]. For Oz = 0.8° the four fits discussed above give ZCAL
energies (in GeV) of (5.3, 3.8, 4.4, 4.1), while for O, = 2.2° these same fits -give (37.0,
274, 30.6, 27.6). If 8., is indeed 0.8°, then none of the above fits are inconsistent
with correlations between the TMA (which defines the central trigger) and ZCAL

measurements[Bloo]. In fig. 1.2.7 we compare dN/dy distributions from the four fits
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and RQMD{RQMD91] with preliminary TMA data[HIPAGS]. It is interestiﬁg that
the four fits, each of which exceed the spectrometer multiplicities by at least 30%,
still underestimate the TMA multiplicity. RQMD, on the other hand, can reproduce
dN/dn quite well even though it overpredicts spectrofneter yields. by 50-70% in some
rapidity regions. Since no reasonable fit or model can simultaneously reproduce both
the spectrometer and TMA charged particle multiplicities, there appears to be some
| inconsistency between these two data sets. We note here that preliﬁlinary E814 dN/dn
data are in very good agreement with the E802 TMA data[ESMa]. .

814 Leading Neutrons
04 _ T T .
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vFigure 1.2.8: The histogram shows the rapidity distribution for neutrons emerg-
ing with a beam angle of less than 0.8° in central (E g4 > 13GeV) Si+Pb colli-
sions[E814]. Fitl (solid), fit2 (dashed), fit3 (dot-dashed), and fit4 (dot-dot-dashed)

for central Si+Au are compared to these data.

)
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Figure 1.2.9: Angular ené_rgy, distributions (kinetic energy for baryons) are shown

for Attila[Gyu87] (histogram), fitl (solid), fit2 (dashed), fit3 (dot-dashed), and fit4
(dot-dot-dashed).

In the E814 experiment, neutrons emerging from Si+Pb collisions with a beam
angle of 6 < 0.8° are measured using a forward spect'rorheter[E814]. Their rapidity is:
determined by the amount of energy that they deposit in the spectrometer, and so a
dNg/dy plot of neutrons having§ < 0.8° is generated. In fig. 1.2.8 we compare dNy/dy
from our four fits with leading neutron data for central (¢ ~ 40mb) Si+Pb collisions
[E814]. The agreement is best for fit4, but due to the statistical uncertainty of the data

as well as the different target (Pb) and trigger used by E814, none of the fits can be
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ruled out. In addition to leading neutrons, E814 also measures dE/d6f[Fox]. Though
these data are not yet published, vwe have plotted dE/dG predictions for our four fits
and Attila in fig. 1.2.9. It. will be very inferesting to see how the E814 dat@ compare
to these predictions, since for 5° < 8 < 15° dE/d0 is .sensitive to the differences in
the projectile region between the Attila model and our model independent fits.

It should bé erﬁphasized that the four fits are conservative in that each assumes
that all of the E802 spectrometer data are systematically lowvby at least 30%. Th'ere.
are, of course, other less trénsparent solutions which are consistent both with the
spectrometer data and with conservation laws. For example, abnormally large num-
bers of 7%, photons, or high-energy electrbns_could be produced in these collisions
without being detected by the spectrofneter. These soiutibns, however, imply bizarre
~and unprecédented physics. The four fits discussed above are thus the least unusual

solutions which are more or less consistent with the reported E802 spectrometer data.
One might argue that simplest solution of all to the problem of “missing” momentum
is that the E802 spectrometer data are systematicaily low by 20-40% at low fapidities
and By 40-70% at high ré,pidities. If that were the case, a number of ébngrentional
models would be able to reproduce both the spectrometer dV /dy and the TMA dN/dny
data reasonably well. If the spectrometer data do in fact have such large systematic
errors for central Si+Au collisions, then oﬁe might expect similar errors to be present
in central Si+Al data, where the extrapolation to projectile rapidities is more accu-
rately known from the appfoximate symmetry of the projectile and target. However,
in his Ph.D. thesis, Matt Bloomer performed an analysis using symmetric functioﬁs
in which he found that energy conservatioh together with ZCAL data implied that
the total systematic errors of the spectrometer data were less than 20% for central
Si+Al collisions[Bloo). We are led to conclude either that new systematic errors are
present iﬁ central Si+Au ‘collisions or that some new and unexpected physics occurs .
(i.e. anomalously large neutral paLrticle production, or large numbers of final particles

in the projectile region).
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For the remainder of this paper, we take the normalization of the E802 spectrom-
eter data at face value, ignoring the E810 and E814 data. None of the models which
we have considered in this paper are consistent with the normalization of the spec-
tromefer data.; therefore, those models cannot be used to assess the stopping power
ixﬁplied by these data. For that purpose we now cons.truct hybrid models that can
reproduce the reported E802 data. It should be emphasized that these models will
not be able to simultaneously ;eproduce high rapidity E810 and E814 data for reasons

of momentum conservation as demonstrated above.

1.2.5 Hybrid Models

The most straight-forward way to generalize the firestreak model to incorporate trans-
parency is to assume that each tube-tube interaction pro'duc_es two firestreaks (prb—
jectile and target) rather than one. We must then determiﬁe the rapidity (y;) and
rest energy per baryon (M) for each of these streaks. In order to treat projectile and
target consistently, we must either pick y, and y; or M and M}, since the remain-
ing two can be solved for by energy and momentum conservation. A simple linear
| parametrization of the projectile and target streak rapidities is given by |
=0 = () and o= (U2 (1:2.15
where Nj is the number of nucleons in a tube of size a; = o, = 30mb necessary
to cause a one unit rapidity shift of the opposing tube. The last factor in each
of the above equations was included to insure that‘ the stopping power would be
independent of the lattice size (a,) chosen. Unfortunately, the aone prescription
leads to a number of cases where M* of one of the fireballs is forced by 4-momentum
conservation to be less than the mass of the nucleon. fig. 1.2.10 shows the regions
of (Np, Vt) space for which this problem arises. Similar problems were encountered
with other parametrizatio‘n»s in which y, and y; were chosen independently.

These problem regimes could in principle be handled specially by demanding com-
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plete transparency or the formation of a single fireball, but we chose instead to utilize
a different zilgorithm which avoids special cases. First, in the center-of-mass frame of

two colliding tubes containing N, and N; nucleons, the incoming momentum, P*, is

Phas'e Space Restrictions

2.5

= = N
o UIO

Nt/NO(a.L-/o'in)

o
o

0.0

p/NO(a.L/a )

Figure 1.2. 10 The available phase space for the stopping prescription of eqn. (15)
is shown by the unshaded region. In the shaded region, one or both of the receding
fireballs must have a mass/baryon < .939 GeV in order to conserve 4-momentum.

found. Next, the momentum of each tube is reduced by an amount proportional to

the number of binary collisions, N, N;:

Uin

AP = 8p. N, Ny(Z2) (1.2.16)

ay

Finally, the energy/ba'ryon is reqﬁired to be the same for both of the outgoing fire-
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streaks (M7 = M; = M*). M* and the CM firestreak rapidities y; and y; can then

be found from the following equations:
M*N,sinh(y;) = M*N,sinh(y;) = P* — AP~ (1.2.17)

M*Nycosh(y;) + M™Nicosh(y;) = Mem(Np + Ny) (1.2.18) -

where the CM energy/baryon of the tube-tube system, Mcm, is determined by kine-
ma.tiés. Due to the vsymmetries of this method, M* monatohically increases from my
to M., as AP* is increased from 0 to P*. When i;he prescription of (16) gives a
AP* > P*, a single firestreak with M* = Mc.m and y; = y; = 0 is assumed to be .
formed. Defining the effective nuclear thickness, 2;, via N; = aypozi, the momentum
shift per baryon of the projectile (target) is thus assumed to increase linearly with
the effective target (projectile) thickness. The nuclear stopping power of this model
is controlled by a single parameter-the momentum loss per binary collision ép., or

equivalently, the nuclear stopping length
L, = mp sinh(ypo/2)/(Ginpobp:) - (1.2.19)

The meaning of this étopping length can be most easily seen in symmetric éollisiéns
(2p = 2z = z), where the fractional momentu.m loss (AP*/P* = z/L,) increases
linearly and reaches unity when z = L;.'Thus a stopping length of 10 fm implies that
two colliding tubes of length 10 fm will jﬁst be able to stop each other.
In fig. 1.2.11 we compare models with various values of L, tp the data (ps, = 2p0
and v, = -0_.7 hav? been chosen to provide the best agreement with kaon data and
pion temperatures). Compared to the data, L, = 10 fm is evidently too small and
L, =26 fm is too large. Though L, = 17 fm provides good agreement to all but the
last point of the dN,/dy data, its pion peak is shifted to low rapidities,, and its proton
temperature is too low with a dip at midrapidity which is not seen in preliminary,

‘unpublished T;(y) data[Bloo]. It should be noted that folding the E802 spectrometer

acceptance[E802a] into the double firestreak leads to less than a 10% suppression
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o - Double Firestreaks
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Figure 1.2.11: Double firestreaks with L, =10 fm (dot-dashed), 17 fm (sohd), and 26
fm (dashed) are compared the data of fig. 1.2.2.

of the pion yield and no discernable change in.the proton rapidify speetrum. This
double firestreak description provides far better agreement with the data than any
of the other modeis discussed so far, but in order te quantitatively reproduce all the
features of the E802 da.ta, further refinements are needed

One of the key observatlons of E802 is that the transverse momentum slopes
of protons and pions differ srgmﬁcantly. Therefore the amount of energy locked into
transverse motion differs from that expected in si‘mple thermal models with one freeze-
out temnerature. Collective flow[Brown] provides.one natural mechanism for different

slopes. Different freezeout criteria due to different cross sections provides another. To
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test the effect of this difference on the conclusion of the stopping power, we developed
a more complex multicomponent model (mcm). The details of this model are given
in the Appendix. We emphasize that the mcm is not meant fo be a realistic model Qf
the physics, but a convenient numerical tool to help sort the implicaticﬁis of various
features of the data. |

Inv figs. 1.2.12 and 1.2.13 we show two mcm solufions. The solid line is the best fit
to the data (mcml), with L, = L! = 26fm, M} = 1.4 GeV, M} = 1.85 GeV, pgr = po,
Tmes = 160 MeV, and v, = 0.25. This is the fit that was used by us in ref.[Chap91].

Multicomponént Model Fits

1 - 1 ] I 1 i

0. 1 L ] ; ] ! 1
0 1 2 3 1 2 3

y - y |
Figure 1.2.12: Multicomponent model fits mem1 (solid) and mem?2 (dashed) are com-

pared to the data of fig. 1.2.2. The dot-dashed curve for the pions shows the result
of meml with the experimental acceptance taken into account[E802a).
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Multicomponent Model Fits
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Figure 1.2.13: Multicomponent model fits mem1 (solid) and mem2 (dashed) are com-
pared to the data of fig. 1.2.6. '

The dashed curve is a.noth_er_-ﬁt to the da,t‘a (mem2) with L, =20fm, L, = 50fm,
- My = 1.55 GeV, M; =2 GeV, psr = po, Tnes = 165 MeV, and 4, = 0.25. The
dot-dashed curve for.the pions shows mcml with the spectrometer acceptance[E802a)
folded in. Due to the many adjustable parameters of this model, both mcml and
mcm?2 are able to quantitatively reproduce almost all of the E802 spectfométer data.
The most notable discrepahcy is the 25% dverprediction of low rapidity pion.s by these

models after the experimental acceptance has been taken into account. Unlike the
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models discussed previously which aléo overpredict pions, the disagfeement of the
mecm fits is much smaller and only seen at low rapidity. Both of the mcm fits as
well as the L, = 17 double firestreak exhibit the high degree of nuclear transparency
necessary to be able to reproduce the E802 épectrometer data.

The L, = 17 double firestreak as well as mecml and mcm?2 discussed abovg have
all had their parameters tuned to best fit the E802 central Si+Au spectrometér data.
The quality of these fits is therefore not very surprising, eépecially in the case of the

-mcm where there are so many free pa,fameters. An interesting test of these models
is to see how well they can reproduce unpublished E802 central Si+Al and Si+Cu
data.[Bloo]. For these reactions, there is very little difference between the results
of mcml and mcm2; both of them are able to reproduce dN,/dy and mid-rapidity
dN,/dy of both collisions to within 20%. Both parameter sets predict too many
ta.rgef pfotoﬁs, but this could be due to large fragment formation in these reactions.
The L, = 17 double firestreak obtains resulté similar to m¢m1 and mcm?2 for Si+Cu,
but it exhibits a factor of 2 too few mid-rapidity protons and pions in central Si+Al
collisions. Even though ‘thé double firestreak uses a smaller value for L, thaﬁ the
mcm fits, it exhibits less stopping when applied to lighter nuclei. ‘This is because
there is no center-of-mass firestreak in the double firestreak model, so a lot of energy
is carried away by receding mesons.v This effect becomes rhuch more pronounced
with less stopping (lighter nuclei). It should be noted that we were not able to
find a model which could simultaneously fit E802 p+A data and central A+B data.
‘However, to-the extent that central Au+Au reactions bear more similarity to central
Si+A than to .p+A reactioné, the predictions for Au+Au by our mcm fits are better
supported by the E802 spectrometer data thén those of the models discussed in the
first parts of this paper. In figure 1.2.14 we show Au+Au predictions by the L, = 10
fm (dot—dot-dashed) and L, = 17 fm (dot-dashed) double ﬁrestreaks as well as by.
the mcm fits (mcml=solid, mcm2=short-dashéd). For such large nuclei, the L, = 10

fm double firestreak forms essentially a fully-stopped firestreak which consequently
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features a much narrower and higher peak in dN,/dy than the other models. This
is due to the fact that full stoppingv has not been achieved in these models, as can
be easily seen by looking at the long dashed line which represents the vpfojectile
proton rapidity distribution of mcmlj Since Au+Au is symmetric, the projectile and
target contributions corflbine to form a symmetric, gaussian-like d N /dy which would
- be.difﬁcult to differentiate from the result that one would gét from a fully-stopped
fireball undergoing longitudinal expahsion. For asymmetric collisions like Si+Au, on
the other hénd, these two cases can be clearly distinguished. For this reason it is

important to study and understand asymmetric as well as symmetric collisions.

 Au+Au
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Figure 1.2.14: Predictions for central (0 < b < 3 fm) Au+Au collisions by multicom-
ponent model fits mem1 (solid), mem2 (dashed), and double firestreaks with L, =10
fm (dot-dot-dashed) and L, =17 fm (dot-dashed).. Projectile protons for mcm1 are
shown by the long-dashed curve in the upper left panel.
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1.2;6 Conclusion

We showed that none of the present models whiéh assume complete nuclear stop-
ping and none of the present nonequilibrium string models are consistent with the
published E802 spectrometer data[E802] for central Si+Au reactions. For exampie,
even the RQMD model is not consistent with these data, as they note that “the
problem of the ‘missing’ energy-momentum could be resolved if the normalization of
the E802 spectrometer data were too small.”[RQMD92] If corrections to the normal-
ization nowhere exceed 30%, then eﬂergy-momentUm and baryon conservation alone

- require the existence of at least 10-11 nucleons in the projectile region (y > 2.44)
which, however, would be inconsistent with E810[E810] and E814[E814] results. The
fact that the high rapidity E810 and E814 proton data are in excellent agreement,
even though the E810 trigger is less central and the E814 trigger ié more central than
E802, makes it unlikely that the discrepancies of those data with fits to the E802
. spectrometer are du\e_.to triggering effects alone. A double firestreak and a multicom-
ponent model have been developed to quantify the degree of transparency needed
to reproduce the spectrometer data, and nuclear stopping lengths of 17-26 fm were
found. These lengths are much larger than the lengths of 8->10 fm which were ex-
pected based on other experiments at these and higher energies[pA]. On the other
hand, the high rapidity data from E810 and E814 as well as preliminary dN/dn data
from E802[HIPAGS] and E814|E814a] are consistent with models incorporating the
expected degree of nuclear stopping. Until the discrepancies between all data sets are

resolved, conclusions about full nuclear stopping remain premature.
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1.2.7 Appendix

In the multicomponent model, we decompose a single ﬁrebalrl ihto two with two differ-
ent freezeout times (one baryonic and one mesonic). Baryonic ﬁfeba;lls are assumed to
consist of baryons (no antibaryons), K*’s and I{ O’s'Balanced such that they have zero
net strangeness. Since the baryon resonances are allowed to decay as usual, thefe are
some piqﬁs which are produced by ‘barybnic fireballs. Mesonic fireballs are comprised'
of all hadronic resonances (in;:ludirig baryons); but have zero baryon number and
strangeneés. We suppose that each tube-tube collision gives rise to one fully stopped,
double-freezeout firestreak at the local center of mass as well as to receding projectile
and target baryonic firestreaks. A number of new parameters must be introduced
into this model to determine the energy and baryon number of each of the firestreaks = -
involved... | |
First, as in the double ﬁrestreé,k, a value of L, is spéciﬁed in order to determine
M*, y;, and y; for the receding firestreaks. Second, another stopping length, .Lj, is
choseﬁ in order to determine the fraction of baryons from each tube which get fuily
stopped: | ' | .

| fo = (2p2)Y2/ L . o (1.2.20)
Néxt, if the initial CM energy/baryon, ,Mc'"’ of the tube-tube system is greater than
~ an excitation mass parameter M;, then the energy/baryon of the baryonic part of

 the central fireball is limited to M = M;, and the energy/baryon available to the

receding streaks becomes

1 — fo(M3/Mem)
1- fs

in order to conserve energy. If, on the other hand, M., < M;, then M? = M., and

M — M = M (1.2.21)

M* = M*. If M* turns out to be smaller than another parameter M, then there
is no mesonic firestreak at all, and the tube-tube interaction is modeled by three
purely baryonic streaks. However, if M*' > M; then the receding streaks have their

energy/baryon limited to My (M; = M; = M), and a mesonic streak overlapping
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| the CM baryonic streak is created with energy
Emes = (M = M?)(1 ~ fs)(Npcosh(y;) + Nicosh(y;)) . \ ' (1.2.22)

For the mesonic streaks, a freezeout temperature T, is specified and V4, is solved for
trivially, since i = i, = 0 for streaks with zero baryon nﬁmber and strangeness. Note
that if (z,2;)1/2 > L' or AP > P*((2p2:)Y/? R L,) for any two incoming tubes, then
this model reduces to a fully-stopped firestreak wi_th separ@te baryonic and mesonic
freezeout criteria. | |

The many parameters of this model have interrelated effects but can be approxi-
mately explained as follows. The amount of baryon stopping is controlled by L, and
Lf, .The central (1.1 < y < 1.7) values of T,(y) are controlled by L', M;, and py,,
while the wings (y < 1.1, y} 1.7) of T,(y) are controlled by M; and py,. It should be
noted‘ that for baryonic firestreaks with M fixed, decreasing py, cools the baryons by
forcing them into higher mass resonances. Tx(y) is mainly controlled by T}..,, though
psry M; and M7 also have effects by adjusting the number of cool pions coming from
~ baryon resonances. The height of dN,/dy is affected by all of the parameters; in-
~ creasing the value of any one of t};em leads to a decrease in the number of pions. The
overall number of kaons is adjusted by v,, while the K*/K~ ratio is determined by

the number of strémge baryons, which is again a function of ps,, M} and M.
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1.3 Talk from Quai‘k Matter ’91

by Scott Chapman
(Published in Nuclear Physics A544 (1992) p. 429)

Abstract

Fireball, firestreak and hadronic string models are shown to overpredict recent central _
- 15 AGeV Si+Au E802 spectrometer data by at least 70%. Claims in the literature
about full nuclear stopping in Si+Au reactions are therefore premature. In fact, fits
to the spectrometer data indicate that up to half of the projectile nucleons may lose
less than one unit of rapidity after traversing 5-10 fm of nuclear matter, implying
possibly a surprisingly long stopping length of ~20 fm. Comparison of these same
fits with E810, E814, and preliminary E802 d N parged/dn data suggests, however, that
there may be some inconsistencies among the various data sets, and therefore that
additional data will be needed to establish the degree of nuclear stopping at AGS‘
energies. : . . o L

1.3.1 Introduction

It is popularly believed that at the AGS “full stopping is realized[PAN}C], showing a
behavior close to the Landau model[Stach] and to relativistic fluid dynamics[Stau89),
“and the energy density can reach values comparable to the critical values for QGP
formation”[Amtei].‘ However, as we pointed out in refs. [Chépgl, Chap92], the
published E802 spectrometer data[E802] cast doubt on this belief, since in fact none
of the present models is consistent with the full array of data. Moreover, unless
the systematic errors of ‘the spectrometer data are very large, these data are more |
ipdicative of a surprising degree of nuclear transparehcy. As we show below, however,
. no firm conclusion can be made on this importani: tbpic, since not all of thé data sets
are completely consistent. In this paper our aim is to clarify what are the problems
at present in dréwing conclusions about nuclear stopping power in these reactions.
In our letter[Chale]_. we discussed a model independent fit to the spectrometer
data which implied that if _systemafic errors 'Ido not cause more than a 30% sup- .
- pression of proton and pion .yields, then 4-momentum and baryon conservation laws

imply that at least 11 out of 28 projectile nucleons suffer less than one unit of rapid-
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ity lé;ss during the collision. In our subsequent paper[ChapQQ],_ we gave the precise
functional form of the fit used in the letter, and introduced thrc;e other fits which
featured unexpectedly large n/p ratios in the projectile region. Hefe we introduce
a fifth 4-momentum-conserving fit which features a more re‘alisticn/ p ratio and can
successfully réproduce the E810[E810] data and extrapolations of E814[E814] lead-
ing neutron data (errors are estimated by assuming .1GeV<T<.2GeV), but which
overpredicts the currently published E802 spectrometer data by 40%-70%,' while
still underpfedicting preliminary E802 dNhqarged/dn data[HIPAGS]. We conclude
that unlike E810, E814 and E802 chha,'ged/dn data, the E802 spectrometer data
do 'not support the claims of full nuclear stopping which are so prevalent in the

literature[PANIC, Stach, Ame91, RQMD91, RQMDpi, Brown, BrownEr].

1.3.2 Comparison of Models to the Data

The solid line in fig. 1.3.1 shows the results of the generic fireball model outlined in ref.
[Chap92] with ps, = 5p0 and v, = .5. This fireball model produces more than a factor
of 2 too many protons, pions, and kaons (not shown) at mid-rapidity. No reasonable
variation of ps, and/or 4, significantly improves agreement with the data. In addition
to the generic fireball, fig. 1.3.1 also shows results from the Landau hydrodynamic loh;
gitudinally e)fpanding fireball[Stach] (dashed line) and the hydrochemical spherically -
expanding fireball[Brown, BrownEr] (dot-dashéd line). The longitudinal expansion
of the Landau fireball results in reduced proton and pion peaks at midrapidity. This
expansion, however, only shifts t_he problem to higher rapidities, where again the
model produces a factor of 2 more protons than are seen in the data. Even though
* the spherical expansion of the hydrochemical model‘provides a possibie explanation
for the difference in proton and pion slopes, the model again fails to reproduce the
measured norms of these distributions. In fact, all of the fireball models considered
here o§erpredict the measured proton and/or pion rapidity distributions by about a

factor of 2.
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| Fireballs
- 50 T T -

Figure 1.3.1. Landau hydrodynamic[Stach], hydrochemical[Brown, BrownEr], and
generic[Chap92] fireballs are compared to E802 proton and pion spectrometer data
from 14.6 AGeV /c central Si+ Au reactions[E802]. The bottom panels are for y = 1.3.

+ In fig. 1.3.2, we compare the ﬁrestfeak[Chale, Cﬁap92] and two string models
(Attila[Gyu87] and RQMD[RQMD91, RQMDpi]) with the data. For the Firestreak |
and Attila, we have calculated T;(y) by ﬁttihg the invariant distributions with expo-

nentials ' : v | ' | . |
dN;/dyd'my = pi(y) exp(—(mir —mi)/Ti(y)) (13.1)
in order to compare 6ur curves to the published Ti(y) values. Though the firestreak

improves on the fireball by showing “spectator” contributions, it still predicts a factor
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of 2 too many mid-xl'apidity protons and pions. The string models do a better job of
reproducing the overall ramp shape of dN,/dy, though they overpredict the number
- of high rapidity protons by 50%. As for the pions, the string models again do better
- than the firestreak, though they still overpredict by 70% the dN,/dy values reported
by E802. Comparing Attila to RQMD shows that rescattering does 'not‘ signiﬁcantly
improve the string model fits td the rapidity data. It sh;)ﬁld also be noted that the
qua,rk¥gluon string model recently proposed in ref.[Ame91] similarly overpredicts the

number of mid-rapidity pions by at least 70%.

| iresti"e_ak and String Models
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Figure 1.3.2. Firestreak[Chap91, Chap92] (dashed), Attila|Gyu87] (solid), and RQMD
[RQMD9I1, RQMDpi] (histogram) calculations are compared to the same data as in
fig. 1.3.1. The bottom panels are the inverse slope parameters of eqn. (1.3.1)[E802].
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1.3.3 Model Independent Fits

Having seen that none of the above equilibrium and nonequilibrium models for nuclear
collision dynafnics are able to reprdduce the published spectrometer data, we consider
next a model independent fitting précedure in order to isolate possible causes for the
discrepancies. As in ref. [Chap92], we begi_n by fitting the experimental T;(y)[Bloo]
| and (dN/dy):(y)[E802] data with simple functions which have reasonable extrapola-
tions to phase space regions outside of the experimental acceptance (dot-dashed line
of fig. 1.3.3). The invariant distribﬁtions, fi = dN;/dyd*m,, are then COmﬁletely

determined if the exponential form of eqn. (1) is assumed, since
dN;/dy = 27pi(y)Ti(y)(Ti(y) + ms). (1.3.2)

The exact functional forms of the ﬁts th;cmt we used (for kaons as well) are given in ref.
[Chap92]. ~For' the unobserved neutral mesons it is assumed that 7% = (z+ + 7©~)/2,
K° = K+, and K° = K-. Charge conservation is enforced by demanding that |
the total number of final protons be N, = 14 + 79 — N,,} — Ng+ + Np- + Ng-.
With N, fixed, the total number of undetected neutrons is given by baryon number
conservation, N, = 28 + 197 — N,. These fits allow us to take into account all of
the observed energy in longitudinal and transverse motion as well as pion and kaon
production.

The total outgoing longitudinal mornentuni P, implied by these fits is e'a,_sily‘ cal-

culated by integrating m, sinh(y)f; over d>m and y:

o 2
p = /d 2T? + 2Tm; + m?

T I (AN dy):sinb(y) - (13.3)

t=hadrons
Eis simply found by replacing sinh(y) by cdsh(y). For the ﬁt to the data shown by
the dot-dashed lines in fig. 1.3.3, the integration over y givés P, = 241 GeV/c and
E = 455 GeV, whereas the total incoming energy and momentum are known to be

P, = 409 GeV/c (= 28 x 14.6) and E = 595 GeV (= 197 x .939 + 28 x 14.63). More

than a third of the incoming momentum and a fourth of the energy are unaccounted
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for in this fit to the data! If we assume that neither leptons nor photons carry a
significant fraction of the 4-momentum, then there must be some undetected hadrons
- somewhere which do carry it. The E802 collaboration has acknowledged | that an
undetected excess of low p, particles could result in a 25% normalization error of the
- dN/dy data[E802]. To take into account these and/or other possible systematic errors
in the data, we proceed by multiplying each of our (dN/dy); functions by a = 1.3 and
find P, = 322 GéV/ cand E = .519 GeV. However, more than 85 GeV/c of momentum

- and 75 GeV of energy are still missing!

Model Indépendent Fits

o
-
N
-
= |-
N -
w

Figure 1.3.3. A fit to the data (dot-dashed), fitl (dashed) and fit5 (solid) are com-
pared to E802[E802] data (dots), E810[E810] negatives and (+) — (=) (diamonds),
and extrapolated E814[E814] protons (circles for T=.15GeV).

Either the systematic errors of the dN;/dy data are significantly larger than 30%,
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or else the “missing” 4-momentum must be carried by én unexpectedly large number
of undetected high-rapidity hadrons. .The least transparent solution which does not
overpredict any of the data by more than 30% is given by fitl of ref. [Chap92] and
is shown by the dashed lines in fig. 1.3.3. Less transparent solutions can of course
be found by allowing more than a 30% discrepancy with the spectrometer data. An
example of a fit of this kind is fit5 (solid lines in fig. 1.3.3), with fit parameters (see ref.
 [Chap92]) given by (Ypros Cpror Cupecs Sapess bxt bx-y Gmens Cps Bprofycs)s Fprofy>225)
= (2.25, 3.3, 93.39, 0.025; 1.75, 1.85, 1.4, 1.2; 0.5, 0.25). Fit5 has an n/p ratio of 1.3

Charged Particles

100 B 'lvb 1 T . |v

dN/dn

Figure 1.3.4. Fitl (dashed), fit5 (solid), Attila[Gyu87] (dot- -dashed) and RQMD

[RQMD9I1, RQMDpi] (histogram) are compared to preliminary E802 dN.sgrgeq/dn
data[HIPAGS].
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for y > 1.5 and 1.62 for y < 1.5. From the bottom panels of fig. 1.3.3, it is evident
that fit5 is only able to reproduce high rapidity E810{E810] and E814[E814] data and
simultaneously account for all of the initial momentum by overpredicting the E802
spectrometer data by 40%-70%. |

It was pointed out long ago[Stach] that the E802 spectrometer and dNckarged /dn
data seem to be inconsistent with one another. In facf as can be seen in fig. 1.3.4,
our fits significantly underpredict’ d Noparged/dn even though tHey significantly over- .
predict the spectrometer data. Only models like RQMD[RQMDQI, RQMDpi] which
overpredict the spectrometer pions everywhere By at least 70% are able to accurately

reproduce dNeparged /dn.

1.3.4 Conclusion

We conclude that none of the present. models which assume complete nuclear stopping
and none of the nonequilibrium sfring models are consistent with the published E802
spectrometer data for central Si+Au collisions. If the normalization error of these
data does not exceed 30%, then energy-momentum and baryon cohseriration alone
require there to be an unexpected shoulder in the baryon spectrum in the region
2 < y < 3 implying a high degree of nuclear transparency. On the other hand, results
from E810[E810] and E814[E814] as well as preliminary dNcharged/dn datg from E802
imply a high degree of nuclear stoppihg in these reactions. These data seem to
be inconsistent with one another, since no model or fit has been found which can
reproduce all of the data while preserving 4-momentum conservation. Consequently,
until these apparent inconsistencies are resolved, no firm conclusion can be drawn

about the amount of nuclear stopping in central Si+Au collisions at the AGS.
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1.4 Recent Devélopments

Since the moét recent publication of central Si+Au dn/dy data by the E802 collab-
oratioﬁ in 1991[E802], a number of new systematic errors have been found and new
low-p, rﬁeasurements have beeﬁ rhade which affect these data. The dn/dy yields pre-
sented'By E802 af various confgrences in the past year and a half ha\(e been increasing | ,.
with time and gradually approaching the values predicted by standard event gener-
ators. Althoﬁgh no new dn/dy data reflecting these changes have yet been officially -
sanctioned and published by the E802 collaboration, Chuck Parsons has presénted
some new data in his May, 1992 PhD thesis[Pars]. In figs. 1.4.1 and 1.4.2, we com-
pare da.t'a from Parsons’ thesis[Pars] (open circles) with the published 1991 data[E802]
(solid dots). | '

100 |

.25 .5 75 .25 5 75
_ m,—-m P.

- Figure 1.4.1. Solid dots are published invariant cross sections for 7~[E802] at y = 1.3
~ in central Si+Au collisions, while open circles are recent data presented in the thesis
of C. Parsons[Pars]. These data are plotted both as functions of m; — m (left) and

of p, (right). The dashed lines show the exponential m, fit used to determine dn/dy
in [E802], while the solid lines show the exponential p, fit used in [Pars].

Thé most striking feature of the new data is the remarkable increase in midrapidity
- pion yields. In fig. 1.4.1 we show how the new low-p, measurements have motivated

’ﬁtting the pion invariant cross-sections with exp(—p,/T) (solid lines), rather than
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with the previously used exp(ém 1/T) (dashed lines). This effect combined with an
overall increase in the invariant cross section normalizations is what has lead to the
40-50% increase in pion dn/dy seen in the upper right panel of fig. 1.4.2. For protons,
the 30-40% increase in dn/dy seen at high rapidities (upper left)paﬁel of fig. 1.4.2)
is wholly due to vnorrna,lizatiovn corrections, since the invariant cross sections are still
best fit by exponenfials in m, . The slope parameters (T) and Kaon yields have ﬁot

changed significantly in the new data.

New vs 0ld Data for Si+Au~'

5 0 I v 1 I i 1 i

40F N P 4 T

Figure 1.4.2. Solid dots are published dn/dy and temperature data for central Si+Au
collisions[E802], while open circles are from Parsons’ thesis[Pars]. Solid squares in the
upper left panel are E814 data[E814], while those in the upper right panel are E810
negatives[E810]. These data are compared to Lund calculations[Gyu87] (histogram),
as well as to fits by Parsons[Pars] (dashed), Videbaek[Vide] (dot-dashed) and myself
(solid). .
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The dashed lines in fig. 1.4.2 show fits which Parsons has made to the new data.

In his thesis, he performs an analysis in which he claims that 397 out of the initial
409 GeV /c of longitudinal momentum are accounted for by these fits. However, there
are a couple of small problems with his analysis which T will outline here. To find the

momentum carned by plODS, he used the formula:

2T2+2Tm+m
T+m

P = / dy(dN/dy)smh(y) , | (141)

where T(y) and (dN /dy)(y) are his fits to the data. Unfortunately, the above formula
is only applicable for invariant cross-sectlons which are fit by exponentlals in m L.

The correct formula for cross-sections fit to exponentials in p; is the followmg:

d =,/ dy(dN/dy) sinh(y)(1/T") / dp1p1\/pl +m?exp(=pL/T). | (142)

‘Using this formula, I find that the pions from his fit carry 117 rather than 126 GeV/c
of longitudinal momentum. The correct treatment fea,tu_res enhanced numbers _of
- low-p, pions which do not carry as much longitudina,l momentum as their high-p,
counterparts. - | “
Neutrons are not measured directly by E802, so some ansatz must be made as to -
their distribution relative to that of the protons. Since the n/p ratios for gold and

silicon are 1.5 and 1 respectively, Parsons chose the following ansatz:

Rn/p=1.5 y < 0.5
Fap=1. y > 35 |

p=1[y— 05)—15(y 3.5))/3 05 < y<35 (1.4.3)

Using his proton fit along with the above aﬁsatz, Parsons could account for 164 of the
original 225 nucleons. He therefore treated the remaining 61 nucleons as spectators
- located at target rapidity. The n/p ratio of these spectators was never stated, but it

can be calculated by integrating the dn/dy fits to find the net charge carried by all
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participant hadrons and then comparing this to the initial charge of 93. The difference
in charge must be carried by spectator protons. In this way the spectator n/p ratio
can be determined to be 1.28, which implies an unphysical discontinuity: n/p = 1.28

for y = 0 while n/p = 1.5 for y > 0. A better ansatz would be the following:

Ryp=1423 y < 0.5
Ryp=1 y > 35

Rop=[(y—05)—1.423(y —3.5)]/3 05 < y<35 (l144)

which allows the spectators to have a continuous n/p ratio of 1.423 at y = 0. The
neutrons in this scenario carry 126 GeV/c of P rather than the 130.4 GeV/c quoted
by Parsons. ‘

" The net result of these corrections to Parsons’ analysis is that his fits can account
for 384 of the initial 409 GeV/c of . Ainong other ways, the remaining 25 GeV/‘c
of longitudinal momentum could be accounted for if the overall normalization of all
of the new data was low by 6.5%. At any rate, it seems clear that if the high rapidity
E810 and E814 proton data are correct, then the absolute normalization of at least
some of the published E802 dn/dy data must be low by at least 50%. As a comparison,
I'show two curves which account for all of the longitudinal momentum as well as Lund
model results[Gyu87]. The solid curves in fig. 1.4.2 are from a fit which I presented
at Quark Matter 91 (previous section of this thesis), while the dot-dashed curves
are derived from a fit made by Flemming Videbaek of the E802 collaboration[Vide].
Videbaek originally fit the published data (solid dots) but then postulated that the
true dn/dy for pions would be 25% higher than theée data due to undetected low-

-pL pions. The fits thus derived could then account for 336 out of 409 GeV/c of
P“; To display the absolute normalization; of dn/dy needed to enforce momentum
conservation, I have multiplied Videbaek’s pion curves by 1.25 and then multiplied
both of his curves by an additional 1.22 before plotting them. It is appé.rent that the

increases in normalization of the dn/dy data over recent months has gone a long way
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toward solving the problem of momentum conservation, and if they continue at this
rate, then it will not be long before we will be justified in concluding that the amount

of stopping in these reactions is roughly the same as that in the Lund model.

Au+Au
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Figure 1.4.3. Solid dots are preliminary data from 11.6 AGeV Au+Au reactions, while.
open circles are reflections of these data in rapidity due to the symmetry of projec-
tile and target[E866]. These data are compared to Lund model[Gyu87] (histogram),
mcml (solid) and firstreak (dot-dashed) calculations. The dashed curve shows the
projectile protons only from the Lund calculation. ‘

Recently, some very preliminary Au+Au data at 11.6 GeV/c per nucleon has
been presented by the E866 collaboration[E866]. The solid dots in fig. 1.4.3 are the
measured data, while the open circles are reflected pseudodata (due to the symmetry

of the projectile and target). Both the Lund model[Gyu87] (histogram) and mcml

39~



(section 2 df"'this thesis, solid lines) are able. to reproduce the‘ gaussian shape of the
proton dn/dy remarkably well, even though they are compriéed of projectile and
target contributions which are still separated by a full unit in rapidity (dashed curve
in fig. 1.4.3). Although the fully-stopped firestreak is much too strongly peaked
.a.t midrapidity (dot-dashed lines), it will undoubtedly soon be pointed out that a
longitudinally expanding fireball (or firestreak) will also be able to reproduce the
data. The dilemma, as I stated in my Phys. Rev. C paper (section 2 of this thesis), is
that forvsymmetric collisions, a fully stopped longitudinally expanding fireball cannot
be distinguished from two partially stopped fireballs simply on the basis of dn/dy
data. Certainly, more information is necessary in order to determine the amount of
stopping in these reactions.

Anothef very interesting aspect of the new data is the extremely high apparént
temperatureé of the protons (~ 240 MeV). Any statistical model purporting to de-
scribe these reactions must necessarily be able to reproduce these temperatures. As
can be seen from fig. 1.4.3, a firestreak (or fireball) in which the protons and pions
are in equilibrium and freéze out together will feature proton temperatures which
are much too low. In order to create high enough temperatures, the protons must
freeze out well before the pions as is simulated by mcml, or else there must be an
enormous amount of transverse collective flow[Brown]. Without these 'feat'u_res, no
longitudinally expanding fireball will be able to fit the proton temperatures, even if
it can fit the proton dn/dy well.

Finally, E866 has measured K*/7* and K~ /K" ratios of 0.25 and 0.16, as com-
pared to 0.19 and 0.28 for Si+Au[E866]. The larger proportion of K+’s as compared
to K™’s seems to point to strongly enhanced production of A’s and other strange
baryons in these reactions. However, from experience with Si+Au data, we can see
that it is wise not to be too quick in jumping to conclusions based on K/= ratios alone.
If low-p, components and other effects cause a 50% increase in the pion normaliza-

tions without a similar increase for kaons (as seems to have happened for Si+Au),
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then the true K /7% ratio may be as low as 0.16 in Au+Au collisions. It will be very
~ interesting to see the actual pion and kaon yields which are found so that they can

each be directly compared to various models.
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Chaptér 2

Effective Action for SU(N) at
Finite Temperature
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2.1 Introduction

It has long been predicted that QCD features a phase transition from hadronic matter
to a quark-gluon plasma at sufficiently high temperatul;es or densities[Mor79]. Creat-
ing such a plasma is in fact the aim of many of the heavy ion experimental programs
at the AGS, SPS and RHIC. Since the quarks and gluons in such a hot plasma would
Hbe very_energétic, they would also be weakly interacting due to asymptotic freedom.
Consequently, extensive work has been done in‘developing perturbative techniques
for finite temperature QCD[Kap79, Bra90]. One of the most interesting results of -
this perturbation theory is a resummation of infrared divergent diagrams which gives
rise to an Ag Debye ma,ss-of order thtvhat screens static color electric fields[Kap79].
'Unfortunélfely, 1o such reéummation has yet been found for the magnetic sector. Con-
sequently, for diagra,fns above a certain order, infrared \divergences become intractable
and perturbation theory breaks down[Lin80]. These divergences are a result of loops
involving massless (n=0) Matsubara modes, so they do not occur in in QED since the
photon only couples to fermions which always have Matsubara frequencies of order
xT. | I | | |

A constant; Ao field cannot in general be gauged away at finite temperature the
way that it can at zero temperature; consequently quantum effects give rise to an
effective pbtential for the Ap field when T > 0[Wei81]. One way that QCD could
generate a magnetic screening mass would be if the A effective potential were to
feature an absolute minimum which was not simply a g_atige transformation of Ao = 0.
Thé 'on field could then possess a pbnzero vacuum vexpevctation value (vev), thus
behaving like a Higgs field and giving a magnetic mass to the A? fields through the
gauge-gauge coupling terms. Unfortunately, no such minimum exists at the one loop
level[Wei81, Gro81]. At the two loop level, on the other hand, the presence of a
negative linear term in the effective potential does produée a vev at Ao ~ O(gT),
thus giving rise to a magnetic mass of order g*T[Ani84). This vev and magnetic mass
is spurious, however, since the linear term 1s exactly cancelled by a term arising from

the summation of the ring diagrams[Bel91]. Beyond the order of the ring diagrams,
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perturbation theory breaks down due to the magnetic infrared divergenéeé mentioned
earlier. There is therefore no way that perturbation theory alone can generate a
nontrivial absolute minimum in the A effective potential. One of the results of this
paper is'to show in addition that no gauge invariant resummation or non-perturbative
technique can give rise to a linear term in the effective potential, since such a térm

would not be gauge invariant.

~ In a more genera.l context, it is well known that perturbation theory is limited in

its appllcatlon and by its very nature is not able to shed light on a number of very

important unsolved physical problems. For this reason, non-perturbative ‘techniques

have been increasingly sought after and explored in recent years. Perhaps the most-
successful and well-developed of these techniques is the semiclassical method _of ex-

panding around classical solutions. In the language of the path integral formalism,

the idea behind this method is that by integrating over field configurations which

are small fluctuations around nontrivial classical solutions, as well as over ones which

are close to the perturbative vacuum, one can better appréximate the full functional

integral, which should in principle be performed over all possible ﬁeld configurations.

In field theory for exémple, integrating around instanton solutions allows one to gain

insight into quantum tunneling processes which can never be described by any finite

order of perturbation theory[Raj82, Col77, tHoT76]. |

Similarly, for finite temperature QCD, it has been pointed out that integréting

around a plasma of magnetic monopoles could possibly provide magnetic scfeening
as T — oo [Gro81, Dah85, Polo91]. Is there any evidence for the presence of such

monopoles? At zero temperature, Mandelstam showed that if the ground state of
.QCD is a coherent superposition of monopoles, then confinement could be understood

as the dual analog of superconductivity[Man76). In other words, just as a condensate

of electrically ch.a.r'ged Cooper pairs will adjust to confine magnetic fields inside a
superconductor, a condensate of color magnetic charges would adjust to confine color.
electric fields in the QCD vacuum. It has never been proven that such a condensate
actually forms the ground state of QCD, however Savvidy has shown that a constant

color magnetic field H has negative energy compared to the perturbative vacuum at
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T = 0[Sav77]. Although Savvidy’s configuration violates Lorentz invariance, his result
suggests that the ground state of QCD does have some nontrivial magnetic structure.
Based on this idea, Oleson has advocated a picture in which random distributions
of magnetic vortices form a Lorentz invariant ground state featuripg < H >=0 but
< H? ># 0[Ole81]. This picture is not contradictory with one involving a monopole
condensate since magnetic vorices of finite length must begin and end at monopoles,
~and both pictures fee;ture strongly enhanced low 'frequéncy ﬂuctuatiohs[Ma.n76]. At
high temperatures, even though the Savvidy effect disappears[Mul85], the presence
of low frequency (infrared) magnetic instabilities could be indicating thé presence of
monopoles or other magnetically chargéd objects In this paper, we consider only-
hlgh temperature monopoles and dyons and do not spec1ﬁcally address condensate
formation or other issues relatmg to confinement at T =0.

In SU(N) at zero temperature the A3 field can always be gauged away, so if
there are monopole solutions, one must be able to create them from the A? fields
alone. Infinite energy monopole solutions and ﬁnite energy monoﬁdle configurations
which are not solutions have been found{Wu68, Col-81], but no finite energy inonopole '
solutions are known for ' = 0. In order to find a solution which sufficiently smoothes
out the 1/r singularities in the A; fields at the origin, one usually introduces a scalar
field in the adjoint représentation, as is done for the 't Hooft-Polyakov[tHo74, P01y75]_

. or.'iPra.sad-Sommerﬁeld[Pra75] monopolés. At finite temperafure, however, the A%
field cannot in general be gauged away, and it is therefore able to play the role -
of the Higgs field in a monopole configuration. Making this substitution, Prasad-
- Sommerfield monopoles become. dyon solutions in pure gaﬁge theories, possessing
electric as wrellvas magnétic charge. Although the dual charge of dyons makes them
neceésarily more complicated than monopoles; they are at present the only available
magnetlcally charged classical solutions with finite energy at the tree level, so they
" area loglcal obJect of study. In addition to knowing the classical mass of these dyons, :
it is obviously important to know how dense of a gas or plasma they might form at |
any given temperature. o

Finding the density of a soliton plasma can be a highly nontrivial task. In order to
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derive an expression for the density, I will present a brief outline of the semiclassical
method for a field theory at finite temperature. The first step is to find a nontrivial
field configuration with energy E; < oo which is a local minimum of the classical
action!. Since the solution has finite ehergy, it must be localized, approaching the -
perturba;tive vacuum solution (or one of them if there is more than one) as r — oo.
For the sake of simplicity, we will assume that the solution is a time independent
soliton. It is plausible that a configuration with two solitons which are separated.by
a distance much larger than their size would be a close approximation to another
solution. One therefore proceeds by either proving or aSsuming that configurations
with N well-separated identical solitons are also local minima of the action[Raj82,
Poly77, War81, Cor81]. Often it is shown or assumed in addition that the solitons
are weakly interacting. If this is the case, then the relative positions of solitons in
an N soliton configuration are arbitrary and must be integrated over as well, giving a
factor of volume V for each soliton. Putting together these ideas, one can write down
a rough approximation to the partition function of a plasma of these solitons[Poly77):

Z = 1+ TV exp(—Ey/T) + %[7T3V exp(—E /T +..  (2.11)

-

where the. first term cbrresponds i:o no solitons, the second to one soliton, the third
to two, etc. Since the position of each identical soliton is being integrated over, a
symmetry factor of # must be included for»iN soliton configurations. In addition,
there is a dimensionless “f)refactor” 7 included for each soliton which can in general
be some complicated function of the coupling constant g.

The density of a plasma of solitons is determined by noting that for Z = Y- z"/nl,

the average n is given by < n >= z. Thus, the density is simply:
<n> [V ~qTexp(-E/T). (2.1.2)

To determine v in the one loop approximation, one must calculate functional deter-

minants around a soliton background. This is a very formidable task since no general

1t is not enough to find a classical solution which maximizes the action in some functional
direction, because integrating over all small fluctuations around such a configuration would give an
infinite result. This is the problem of negative eigenmodes which we address later in the paper.
/
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method is known for calculating these determinants exactly. For this reason, the
value of v is often simply estimated by heuristic arguments.

The main thrust of this paper is to develop new approximation techniques for
determining prefactors v around a large class of background configurations at finite
temperature. As examples of their utility, these techniques are applied to dyon and
monopole configurations in pure gauge SU(?). It is found that if plasmas of such
configurations do exist, then either they are unstable, infinitely massive, or else their
. density is so high that they are strong]y. overlapping. For these types of configurations,
semiclassical techniques are therefore not applicable. However, it is not ruled out
that other soliton solutions may be ‘found' in the future which are not plagued by the
above problems. I.n that event, the density of plasmas of those solitons could then
be found by using the techniques developed here. For example, magnetically charged
meron-antimeron solutions are known to exist at finite terﬁperature[JonSl], thdugh
no explicit solutions are available. Alternatively for pure gauge theories, Coleman
has found topologically stable monopole solutions which have a singularity at the
origin[Col81]. It is possible that singularity-free'monopoie configurations could be
found which would approach the above solutions as r — oo and would also minimize
the one loop effective action. B o

I begin this paper by presenting the basic notation and formulas for finding the
regularized one loop effective action for a pure gauge non-Abelian theory. Next, 1
genera.lize the methods of ref. [Dya84] to finite temperature and derive a covariant
derivative expansion for the effective action. The increasing dimension of successive -
terms of this expansion is bgla'nced by an infrared cutoff mass which is self consistently
determined so as to optimize the expansion. This infrared scale is shown to uniquely
determine the semiclassical prefactor 5. Compari;e,on of the results of the'expans'ion. to
the known effective potential for a constant Ag' field in SU(2) suggests that the lowest
order form of this expansion should be reliable for slowly varying configurations in
which |A3]| < O(T/g) when g — 0 (T — 00). After showing that dyons meeting the |
above qualifications must necessarily be overlapping, I extend the covariant derivative

expansion by performing a resummation in order to find an expression which is valid
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for static background configurations with [A3| = O(T/g). Since the effective potential
of the A§ field can have periodic minima at annxT /Ng for pure gauge SU(N) (see
Appendix B), I also examine dyon solutions and monopole configurations in which the
magnitude of the Aj field a.pproachés one of these minima as r — oo. I'show that these
monopoles are unstable and that depending on the temperature, the corresponding
dyons are either infinitely massive or else overlapping. I complete the discussion of
monop‘oles anci dyons by showing that introducing fermions into the theory d(ies not

improve the situation.

2.2 Preliminaries

We consider a pure gauge, Euclidean, non-Abelian theory with the Lagrangian:

L=-5(FL)?, 1 (2.2.1)
where
Fe, =08,A2— DA} | (2.2.2)
and o o
DY = 8,8% — gfete A . | (2:2.3)

Since we are interested in finite temperature, the fields have periodic temporal bound-
ary conditions A§(7) = A%(7 + B), where 8 = 1/T[Kap79]. The equations of motion
for this Lagrangian are . '

D¥F), =0. (2.2.4)

Let /iz be solutions to the above equations which transform as normal Yang—Mills
gauge fields, and let BZ be quantum fluctuations around those solutions which trans-
form in the adjoint representation.. To consider one loop effects, we make the substi-
tution[deW67] (A% = A% + B;) in the Lagrangian and expand the action up to terms
Quadratic in BS: |

S(A+B)=5-1 / d'c B*WetBt | (2:2.5)

171 Vo VAR
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where § = S(A). Note that there are no terms linear in B since A is a classical

solution and hence a saddle point. We choose to work in the background gauge,
Aab b o
DYB, =0, (2.2.6)

where D2 = §,6° —g f**c A¢, since it is manifestly covariant and because Pauli-Villars
regularization takes a particularly simple form in this gauge[Sla80). By adding a gauge

fixing term of § (D, B,)* to the Lagrangian, we get:

. W2k = —(D?)*6,, + 29 f**F;, , i (2.2.7)
- where F2, = 6,,/1,‘.:‘— D:bﬁz. |
The functional integral needed to calculate the one loop effective potential is given

by:

ZIA) = & [(DB:E exp{- [ d'zly BIWBL - B(-D)0¢N} . (228)

Pé,uli_-Villa.rs regularization can be performed by introduéing auxiliary fields B’ and
¢’ which transform like B and £°, but have mass A which will later be allowed to
‘become infinite. Because all of the field ﬂuctﬁat}jons are in the adjoint representation,
the mass terms A2B' and £'A%¢’ are gauge invariant. Application of this procedure

“produces the following regulated partition function[SlaSO]:
2| Al = ZIAY 214,07, - (229)

where Z' has the same form as eqn. (2.2.8), except that mass terms are included.
Note that for convenience we have used the same Pauli-Villars mass A for both the

: /
B’ and ¢’ fields.

2.2.1 Zero Modes

We assume that the classical solutions depend on p parameters +; but that the total
gauge-fixed action is independent of these parameters. There are then P remaining

zero modes of the Lagrangian given by 6/@;“/ 0v: where i runs from 0 to p. Actually,
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" any gauge transformation of one of these modes will also be a zero mode, so a more

general expression for these zero modes is[Poly77]:
VN = 842 /0y + Di6? (2.2.10)

where the second term is pure gauge and 6° are gauge functions. By fixing the gauge,
we have already removed all of the modes which do not satisfy (2.2.6), so in order to
determine the remaining zero modes, we need to find specific functions 6% such that
Dszz(") = 0. For fhé céses that we are sﬁudying, these zero modes can be made to

be orthonormal, so we will demand:

[dtaxzng =89 v (2.2.11)
As a concrete example, consider a soliton solution wh;ich is ceqtered around some point
in space denoted by the vector R. The solutionvthen has the form f—lz = AZ(T, z-— 1-?:)
Since the Lagrangian has no preferred points, a change in R will not change the action
~and therefore represents a zero mode. In this case v; = R;, and due to the functional

form of the solution dA%/OR; = —8;A%. We then choose 6° = A? so that
VNixe® = —Fe. (2:2.12)

and the background gauge requirement (2.2.6) is trivially satisfied by the equations

of motion (2.2.4). The normalization for this mode is then given by:

N; = / do(Fe)? (2.2.13)
where ¢ is a label which is not summed over. If the soliton is a self-dual solution,
then[Act79] |
El =Fg=-1 e€ixF = B (2.2.14)
If, in addition, the soliton is spherically symmetric, then the normalization takes the
remarkably simple form of N; = —S.
There are infinities due to the functional integration over non-gauge zero modes

which can be isolated by the collective coordinate method[Raj82, Poly77]. First, we

expand an arbitrary field configuration as follows:

A(z) = Az, %) + Y_ &nbu(z) , (2.2.15)
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where b,, are orthonormal eigenfunctions of W with positive eigenvalues, and we have
explicitly included the ; dependence of A in order to allow for zero mode fluctuations.
To perform the functional integration, we must find the Jacobian associated with
expressing the metric in terms of the eigenfunctions. For finite matrices, the Jacobian
for a tra,nsformafion from a vector X in one basis to a vector Y in another basis is
fouf_id by calCulating det J ,. where 6X = J&Y. If Both’ bases uflder eonsideration '
are orfhogonal, then J can always be diagonalized by a unitary transformation J' =
UJU-" so that the determinant is given by det J = []; Ji;. Calculating the length

element then defines the determinant by isolating the diagonal elements of J':
(60 = (6X)* = (J'U&Y)"’ S IA6Y)’ - (22.16)
. Generalizing this technioue to field theory and applying it to our problem, we have:
/ d'a(8A(2) YN, (82 + 2 55n (22.17)
v _ = : -
so that after Gaussmn integrations[Poly77], | f

Z[A]—(H\/_ / d'y.)esdet( D?)[det "(W/2x)]" 12, (2.2.18)

=1

~ where det'(W/ 27) means to take the determinant with respect to the nonzero modes
of W/2r only. |

Since we are using Pauli-Villars regulators, we will also encounter the operators
‘W.+ A2, which do not have any zero modes.. When taking determinants of these,

however, it is still convenient to split the results into two factors:
det[(W + A?)/2x]” 12 - ( )P/2 det [(W + A?%)/2x]7V2 | (2.2.19) _'

The full regulated expression therefore becomeS' _
Z[ Al = (1_11 Vm: [ ) )P/? D det(— D)ldet ‘W2, (2220
where we use the following notation for some operator K: |

det(K)

mv . (2.2.21)

“ . det(I{)lreg =
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Note that we have left out the factors of 2r in the regulated determinants of ‘eqn.
(2.2.20), since this expression only involves ratios of determinants, and multiplicative
constants drop out. For the remainder of this paper we will drop the bars on A D
and F except where ﬁhey are needed for clarity, keeping in mind that we are always

referring to functions of the background field and not of the full field with quantum

fluctuations included.
2.3 Covariant Derivative Expansion

Now comes the difficult problem of evaluating the functional determinants. For a
few select cases, the determinants can be evaluated exactly, but in order to find a |
general expression, some approximation procedure must be used. The most com-
mon method is to make d[cdvariant derivative expansion. There have been many
papers written suggesting a variety of ways to make such an expansion at zero
temperature[Dya84, Che87, Chan86, Gai89], but the literature on finite temperature
expansions is much more limited{Min86]. Each of the zero temperature methods that
deals with a fnassless theory is forced to introduce some form of infrared cutoff mass
in order to balance the dimension of new derivative terms. In most schemes, this cut-
off mass remains unspecified with the argument that in a complete Célculation of an
observable it will drop out anyway. Alternatively, D‘yakonov et al.[Dyé,84] proposed a
scheme in which the infrared cutoff is actually chosen in such a way that it optimizés
the accuracy of any desired order of derivative expansion. To check their method,
they calculated the one loop quantum correction to the action of the SU(2) instan-
ton and obtained a result#which was within 3% of the exact value calculated by ’t
Hooft[tHo76]. It is this method that we have chosen to extend to finite temperatures.
In order to determine the free energy € of some nontrivial background configura-
tion A, we need to calculate the ratio of the partition functign of that configuration

to the trivial A = 0 configuration:

exp(—Q/T) = ;ZZ-((%)F‘,& - (2.3.1)
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From eqn. (2.2.20), we can see that the calculation will entail finding ratios of deter-
minants of various operators. These ratios can be evaluated by using the following

expresswn for the dxfference of two logarlthrns

g = ol [ RO ) (232)

where Tr is a functional trace over all indices and coord:inates and
R(t)=1— e, | . (23.3)

Note that ¢ is formally of dimension M~2. As long as both of the operators that
we are interested in (—D?, W) are positive deﬁnite, they will have continuous spec-
tra of eigenvalues beginning with zero, as do their vacuum dpera.tor counterparts
(—8?% —0?%). One expects, therefore, that for sufficiently smooth and rapidly falling
background fields, the integrand _of (2.3.2) will be a rapidly decémying function of ..
t[Dya84]. This suégests the possibility of an approximation whereby the infinite up'-"
per limit of the ¢ integration is replacéd by an infrared cutoff §. In addition to this
approximation, we will make an expansion of the expone;_xtial operdtors in powers
of covariant derivatives. After integrating with respect to t, the .optimum 6 for any .
given number of terms in this expansion can be determined by finding the extremum
in the resulting expression. |

- The functional trace in eqn. (2.3.2) can be taken relative to any complete set of
states, so we are free to use plane waves exﬁ(ipa:za). These have the effect of shifting

the derivatives:

Tre‘_‘Kv= tr/d“xTE/ ((21:,1;3 éxp[—-K(ao, _,'30 +ipa)t] 1, | | (2.3.4)

where tr is .a simple trace over spacetime and color indices. Due to the periodic
temporal boundary conditions, we have replaced the normal zero témpérat__ure Po
integfal for a sum over the modes po = 2nwT. Also the z, integral in d*z is from 0
0 B=1/T. A 1 has been included at the end of the equation to emphdsizé the fact
that the shifted exp(—Kt) operates on unity; so that, for example, any term in the

expansion of the exponent with a d, all the way to the right will vanish.
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2.3.1 Ghosts

We now present the covariant derivative expansion of the ghost determinant. Accord-

ing to eqn. (2.3.4), we have

r P | _ | |
I* = Trexp(D?*t) = tr/d"x TZ/ (2;))3 e Pt exp[(D? + 2ipaDa)t]1 . (2.3.5)
The expansion amounts to éxpressing

Igh = ZIgh ,

n

where I9* is comprised of terms involving n covariant derivatives. I§ R is simply given
by the zeroth order term in the ¢ expansion of eqn. (2.3.5), but is exactly cancelled in
our calculation by the vacuum contribution seen in eqn. (2.3.2). Moreover, any term
in the expansion with an odd number of D,’s will vanish upon p integration.’

Thus the first nonzero term in the covariant derivative expansion is given by:

1-29" = tr/d":z:T;/ (;: —-p2t[D2t (22')
(r t)a/z(tr / d'zD5)T (1 — 2pjt) exp(—pit) , (2.3.6)

where we have performed the momentum integral by using equations (A.1) and (A.2)
in Appendix A. We would like to separate the T = 0 and T # 0 parts of the above
expression. This can be done by using equations (A.4) and (A.5) which have been

derived from the Poisson summation formula (A.7):

' H n? . n? '
gh __ 1 —
L= 87r2t;4T2t exp(= 17z (2:3.7).
where _
Hy =tr / d*zD? = —¢*N / d'zA2 . (2.3.8)

Each term in eqn. (2.3.7) vanishes in the T — 0 limit. This is reassuring since H,

can be gauged away in the T' = 0 limit.
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Using similar techniques, the next term in the expansion is given by:

2 2

Ig,h = 4817r2 Zﬂ:exp( th)[4 Fy +( th)( Dz) + 2( T2t) H,}, (2.3.9)

with the functionals F5, Dg, G, and H, defined in Appendix A. Here the only term
surviving when T — 0 is the F, term? with n = 0, in-agreement with the result of
- d’Yakonov et al. [Dya84].' This expansion can of course be continued, but for our
purposes we will only need the ﬁrst two terms.’ |

To find the determinant, we must integrate over ¢ as in eqn. (2.3.2).. In all of our
expréssions, the zero temperature (n = 0) terms are the only ones with ultraviolet
divergences. For the rest however, we can immediately let A — oo so that R(t)=1
and perform the remamlng elementary integrals by usmg the variable u = 1/t. For

the case of Ig" we get:

Sdt g H & n? i:r_2
L = 1 O 4T26)[/ s
v T '
™~ %TzHl'— H] ' (2.310)

/%
where the second equality is found after using the approximate expressions in Ap-
pendix A which become exact as 4T?*6 — oo. In this pa,per,. we will only consider .
infrared cutoffs 726 ~ O(1/¢*) with a@ > 0. For a > 0, the approximations used
are obviously very good at high temperatures, but surprisingly enough, even when
4T?6 = 1, they are accurate to within a few percent. On the other hand, these approx-
imations are not valid for T = 0, and consequently many of the following equations
will not reduce correctly to their zero temperature counterparts in the limit as T — 0.
After using eqns. (A 16-A.19) td perforrn the ¢ integration and high temperature ap-
prox1matlons on I*, we arrive at the followmg expression for the regulated ghost

determmant

2Note that after using the Poisson summation formula, the sum over n is no longer a sum over
Matsubara frequencies; in fact, n = 0 terms correspond to T = 0, while the n # 0 terms provide the
temperature corrections
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det(— D2) T> T TG

In [mﬂm ~ —(% 1755 \/—[F2+2 — D2) + 6Hy]

yrm (e - 31+ln(4T2)]F2 Gy + Dy — 2H,} (2.3.11)

2.3.2° Gauge Fields

For the gauge fields, we must only take the trace over the nonzero modes of exp(—Wt).
If, however, we take the trace over all eigenfunctions of W, p of them will just give
us a 1. This contribution can be subtracted out by hand, so that we get:

det’ W
det Wo Wo

Since the trace is now over all modes, we can just take it with respect to the functions

lreg = exp{— / —R(t)[Tr( —tW -—.e'tw°)v—p]}v1 (2.3.12)

b, exp(ipaa), where b‘“‘bﬁ = 62°. The calculations for gauge fields are similar to the

ones for ghosts and one finds:

det(W)

det(— Dz)
e -2

d—m””‘ + plvE + ln(A25)]

]lms = 4ln|

+ ———[75 31+ In(ce) 4 4TVRRIF, . (2.319)

472
Note that if F; = p = 0 (as for a constant field), then W,, = —D?§,, and the log of

-the gauge determinaﬁt is simply 4 times that of the ghosts, since the former involves
a trace over spacetime indices. | '

From eqn. (2.2.20), we can see that the quantity that we will be interested in will

be :
det(—D?) 11 det(W) .

In [Wllmg -3 ln[m]lreg : (2.3.14)
Using the expressions in (2.3.11) and (2.3.13), we can optimize the derivative ex-
pansion by differentiating (2.3.14) with respect to § and finding an extremum. The

resulting § must obey the equation:
12H, + [-11F, 4+ 2(G; — D,) + 6H,)6 — 48pV#36/T =0 . (2.3.15)
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Plugging in this 5 we get:

- = (H \/—/d7, ”/2 exp(S f) 5 | (2316)

=1

where

St = Py - bp(ve—2) + 3 (5 — )H
eflf — 4N92 2 2P7E 2 3 735 1

\

{—_['YE. 31+1n( N, — 'G2+D2—2H2'}'. (2.3.17)

8 2 4T?
2.3.3 Renormalization
It is worth noticing that the last term on the first line of (2.3.13) cancelled the Pauli-
Villars ultraviolet regulator (A?) in the prefactor of eqn. (2.2.20) and replaced it
by an infrared cutoff mass (1/6) in eqn. (2.3.16). One might at first suspect this
as being an anomalous artifact of our derivative expansion, but it is worth noting
that in 't Hooft’s exact one loop instanton calculation, his ultraviolet regulator in
fhe prefactor was also replaced by an infrared scale ~ the size of the instanton (p).
Moreover, renormalization can always be perférmed by using counterterms in the
original Lagrangian which have the same symmetry as that of the background field
at zero temperature. Although the gauge of the background field has been fixed,
it has not been specified; consequently, the counterterms must take the forrn CFZ,
where C is some 'c_onstant depending on A2. It is therefore reassuring that the only A2
dependence corheé in the coefficient of a term multiplying F3, so that all ultraviolet
divergences can be removed by normal counterterms.
Because the counterterms in the ba.ckground gauge have the same form as the
orlgmal Lagrangian, one can create a renormalized Lagranglan sxmply by multiplying |
the original bare Lagrangla.n by the factor: '

11Ng?
4872

Zs=1-— ln( ) - (2.3.18)

where g now represents the running coupling. At very high temperature, it is most

‘convenient to choose the renormalization scale to be Q2 ~ 4T exp(3.1 — yg) ~ 507>
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in order to absorb all of the one loop coeflicients of F; into the definition of the
renormalized (running) coupling. This running coupling constant is then defined in

terms of the bare coupling by:

112N AT?. 1

1
—[1 - - 1 — . 2.3.19
92[1 4872 ez Bl-+ n( 7)1 = % (- : )

Just as at zero temperature, the running coupling can be defined in terms of an
experimentally determined mass scale[Fie89]. We will denote this scale by Agcp even

for theories other than QCD. The running coupling can then be expressed

g° 127

£ _ 2.3.20
47 llN ln(T2/A2QCD) ’ ( )

and the renormalized effective action takes the form:

T

Seft = 4Ng 2F2+2p(2 vE) +3 (_—\/—7';;—5)}1 yr 2{D2"'G2‘—2H2} (2.3.21)

If a different renormalization scale Q2 is chosen, the coefficient of F in (2.3.21) will
be altered by an O(1) term, and Agcp in (2.3.20) will be multiplied by a calculable

factor.

2.3.4 Constant Backgrovur.xd Ay Field

To test the accuracy of this covariant derivative expansion, we can plug in a constant
SU(2) background field of A3 = 5, with all other field components vanishing. There
are no non-gauge zero modes in this conﬁgura.tion,» so p = 0. It can also be shown

that D, = F, = G,, = 0 and that
Hy = —(gn)*Hy = 2(gn)*V/T , - (2.3.22)

where V = [d®z is an infinite spatial volume. The infrared cutoffs and effective

action from eqns. (2.3.15) and (2.3.21) take the simple forms:

2
* = @
Set = —K[T—(gn)2 \/%(gn)af 1217r2(977)4]o (2.3.23)
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SU(2) Effective Potential
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Figure 2.3.1 The one loop SU(2) Ao effective potential with no fermions (solid); 1
massless fermion (dashed), and 2 fermions (dot-dashed). The dot-dot-dashed curve
shows the lowest order covariant derivative expansion result of eqn. (2.3.23).

The exact answer is Well-known'to be (see .Appendix B):.

V., . VT 1
Seff = ——‘/eﬂ'(n) =

AN S e B - 4 (23,
T Tl (o) 3W(m) + 1o (9N otz - (23.24)

where mod 27T applies to each factor of gn in Ses. Ve is plotted in figure 2.3.1. It

is apparent that no finite number of terms in the derivative expansion outlined above
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will be able to produce a periodic effective potential for the Ao ﬁeld. Nevertheless,
if one is interested in field configurations for which Ap ~ O(g°T) with @ > —1 in
the T — oo limit, then only the quadratic term ih the effective potential will be
important. Since the derivative expansion correctly reproduces this term (fig. 2.3.1),
it is reasonable to use the expansion to describ‘e the above class of conﬁgurationé.
It is important to note on the other ha.ﬁd that the'derivative.expansion is a bad
approximation for configurations with o = —‘1 even when T — oo, because in this
case the cubic term and periodic nature of V.g become important. For example, one
should not use this expansion to study configurations in which the A field approaches

one of the minima at 2n7T/g.

2.4 Application to Dyons'

It has been suggested[Polo91] that a plasma of magnetically charged solitons featuring
Ao —» O(gT) as r — oo could possibly self-stabilize in the T — oo limit of SU(2),
even ‘thbugh there is no O(¢7T') minimum in the A eﬁ'éctive potential. The derivative
expansion can be used to study this idea; more carefully. We make the following

ansatz for spherically symmetric soliton configurations:

Ta

| .
Ag=n—f(z) A =nesih(z), (2.4.1)

r
where 7 is the expectation value of |Ag| at infinity and z = gnr. With this ansatz,

the equations of motion (2.2.4) take the dimensionless form[Bia76]:

22 f" +22f - 2f(1 +zh)® = 0
z2h" 4+ 2zh’ — (1 + zh)(2h + zh? + zf’) = 0,. (2.4.2)

where the primes denote derivatives with respect to z. Since f, h and ¢ = gnr are

dimensionless, any solution of the above equations will have a characteristic length

scale of O(1/¢gn).
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Note that in ansatz (2.4.1), the magnitude of the A, field approaches a nonzero
constant value as r — oo. Rather than compare such configurations to the pertur-.
bative Ag = 0 vacuum, it is more useful to compare them to a background with a
constant |Ao| = 7 field. From the form of Vg in eqn. (2.3.24), it is apparent that
such a background has infinitely vmore free energy (by a volume factor) than the per- _
turbative vacuuvm, but it is possible that the infinite increase of entropy gained by
introducing a plasma of solitons will offset the infinite background energy and allow
sucil a plasma to self-stabilize. In other words, we would like to determine whether-
the free energy of a plasma of dyons in a constant background field is lower than that
of the perturbative A9 = 0 vacuum. To do this, we must calculate Z /Z,, where Z
is the partition function for a background dyon configuration and Z, is that for a
constant |Ao] = ‘background‘ field. “All of our previous calcﬁlétioﬁs have been for
Z|Zy where Z, refers to the perturbative vacuum, so some of our expressions must be
modified. Fortunately, F; = D; = G, = 0 for both a constant field and the perturba-
~ tive vacuum, so only the H;, are different. In fact all of the necessary modiﬁcatioﬂs

can be made by simply subtracting from each Hn the value of H,, for a constant field:
H, — H, — 2(—¢**)"V/T . (2.4.3)

Much of our discussion will center around the Prasad-Sommerfield-Julia-Zee (PSJZ)
dyon, which is a magnetic and electrically charged self-dual solution of the classical

- Euclidean SU(2) Lagrangian for any value of 7. It is defined by:
f(z) = £(coth(z) — 1/z)  h(z) = +(csch(z) — 1/z) , (2.4.4)

where the + reflects the fact that both- dyons-and-antidyons- are solutions to the
equations of motion, each having a tree levelv‘_action gi\}en by § = —4ny/gT [Act79].

In addition to three translational zefo modes which-Were treated previously as an
example, these dyons each have a gl_obal gauge zero mode which is not eliminated
by the background gauge requirement[Mot78]. To find the prefactor associated with

this zero mode, it is best to consider the monopole in the string gauge. In this gauge,
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A3.= 6%3nf, and the A? field has a Dirac string singularity along the —Z axis. The
string gauge form of the solution can be obtamed from the spherically symmetric

form by making a gauge transformation with the following gauge functién[ColSl]:
U(6, ¢) = exp(ios¢/2) exp(io20/2) exp(—iosd/2) (2.4.5)

where o, are the Pauli matrices.

Consider the following global gauge transformation:
A, — AL =GAG™, ~ (24.6)
where A, = 0, Aj -and G is giveri by:

(2.47)

G =bexp(ia3wg7]/2) .
Treating w as an infinitessimal coliective coordinate, we find:
dA" . ‘ _
4 = —3ign[Au, 03] = 0. D} (6s3m) (2.4.8)

Ow
By making a careful choice of the gauge function 6, from eqn. (2.2.10), we get the

following zero mode:

HAY ' . .
X = % + Ditlndolf ~ 1] = Flo, (249)

which satisfies the ba.ck‘groﬂnd gauge requiremenﬁ (2.2.6) through the equations of
motion (2.2.4). Like the translational modes, the normalization of this mode is No=
—S, and the partition function involves an integral over the collective coordinate w.
However, unlike the translational modes, w has a finite range of 0 < w < 47 /g7, as -
can be easily seen by examining the form of G'in eqn. (247) The entire prefactor

for the dyon can now be expressed in terms of the infrared cutoff é:

Z 16wV ' o
€ - Z - g3T252 exp(Seﬁ) b —v N (2'4'10)

where V is the volume of space and Seq is defined by eqn. (2.3.24) with the replacement

(2.4.3).
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As we mentioned in the Introduction, if we assume that identical dyons are nonin-
teracting, then we can approximatevthe one loop functional integral around two well
separated dyons by £2/2. The factor of 1/2 is included in order to avoid double count-
4ing when the positions of the identical dyons ere switched. Similarly, for a solution
with N identical dyons, there will be a symmetry factor of 1/N!. A full one loop cal-
_culation of the partition function should incorporate quadratic fluctuations around
every single seddle point of the original Lagrangian which has the same boundary
conditions at infinity. If we demand that A3 — pasr — oo,‘ then the saddle points
include any number of dyons and antidyons, as well as a constant backgrqund field

with no dyons:
Z/Zo = Z,/Zo exp(2£) = exp(—Ver(n)V/T +2¢) (2.4.11)

where the factor of 2 reflects the sum over both dyon and antidyon saddle points, and -
Zy is the partition function of the perturbative vacuum. Using Vea(n) from (2.3.24) !
and dropping all but the quadratic term, we get the following expression for the free

-energy density of a dyon plasma conipared to that of the perturbative vacuum:

= —(T/V) InZ =1 (gnT)? — <o exp(Sert) - - (2.4.12)

327y
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The trick of self-stabilization as T — oo is to see if a minimum of { can be found for

' some nonzero value of 7.

For the moment, let us assume that as T — oo (g — 0) one loop corrections
are parametrically smaller than the tree level action (i.e. we assume that infrared
divergences do not destroy this property). We can therefore replace Seg in (2.4.12).
by S '= ~47mn/gT. Because of the exponehtial dependence of the second term, we
- can see that the only hope of finding a nontr1v1al minimum would be for  ~ 0( “T)
with a > 1. Furthermore, the prefactor of the second term could be of no higher
order in g than ¢g**?* since that would be the order of the first term. From the
discussion in the Introductlon, we can see that the density of the plasma would be |

~ 0(g2+2°’T3), while from the discussion after eqn. (2.4.2), we know that the size of a
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~dyon is ~ O(1/¢g***T). In other Words, for a > 1 the dyohs would have to be strongly |
overlapping. Furthermore, since the difference in length scales is a parametric one,
the overlapping would get infinitely worse as g — 0. |
Is t.h‘is really a problem? If the plasma was comprised only of identical dyons with
no antidyons, then‘ovérlépping might not be a problem since topologically stable,
overlapping dyon solutions which are classically noninterécting h@ve already been
fbuﬁd[Cor’Sl]. On the other hand, a dyon and an antidy”obn can annihilate, so the
approximafion that we have been using that they are ‘noninteracti’ng would be a very
| bad one for a strongly overlapping plasma of dyons and antidyons. If an overlap-
- ping neutral plasma did in fact exist, it would have to be strongly interacting and
consequently very difficult to describe using semi-classical methods. .Fur'thermo're,
as-Gross et al.[Gro81] pointed out when vrvnaking a similar argument about a plasma
" of Wu-Yang monopoles, such a plasma, with typical field strengths on the order of
gT, would be difficult to distinguish from normal ﬂuctuatioﬁs @round the perturba-
tive vacuum. Perhaps the only clue to its existence might be the eﬁhan_cement of
low frequency fluctuations[Man76]. In ofder to avoid the probIem of annihilation,
it has been suggested that some mechanism could be found which would stabilize
large domains of dyons and antidyons[Polo92]. Even with such a mechanism, the fact
that each dyon has zero field strength at the origin would still make a parametrically
overlapping plasma domain locally very difficult to distinguish from the perturbative
vacuum. |
It is interesting to see what value of & would be necessary to make a plasma
of dyons nonoverlapping in the g — 0 limit. Sﬁppose_ that infrared divergences
in one loop terms miraculously caused them to be of the same order as tree level
terms and were able to render Seg ~ O(1), even when n ~ O(T). The prefactor
of the second term in eqn. (2.4.12) would then have to be at most O(g?) in order
to create a nontrivial minimum. In such a scenario, the typical separation would

be ~ 1/¢g?/3T while the size of a dyon would be ~ 1/¢T. Again, the plasma would

84



be pararnétrically overlapping in the ¢ — 0 limit. Using similar reasoning, it can
be shown that the only hope of creating a self-stabilized, nonoverlapping plasma of
dyons would.b'e for @ < —1, which is exactlyithe range of a for which the covariant
derivative expansion becomes unreliable. We can therefore conclude that no weakly
~ interacting, nonoveriapping plasma of Prasad-Sonimerﬁeld dyons with a > -1 Will
" be able to self-stabilize in the g — 0 limit. |
i would like to make a couple of remarks before continuing. It has been suggested
“that by using a Coleman-Weinberg type mechanism[Col73] to minimize the effective
action rather than the classical action, one may be able to to find monopole solutions
with Ag — O(gT')[P01091]... The idea would be that after combining the one loop
effectiv¢ potential with the tree Lagrangian, solutions could be found for which A;
dfops off like 1/z a,t'largé distances, but Ay only approaches 7 like exp(—Cxz). Such
a solution would not have a long range electric field and would vcbnsequ_ently be a
magnetic monopole rather than a dyon. As we shall shov;' later however, in order to
.ﬁnd such a monopqle, it is necessary that the Ap field approaches a local minimum-
of the effective potential as r — oo (see section 7). Unfort.unately, no evidence has
been found for such a minimum|Bel91], excépt for the periodic rﬁinima. at 2n7T/g
mentioned earlier. It is still possible that a plasma of Wu-Yang-type monopoles as
suggested in [Gro81] or a strongly interacting plasma of dyons could provide a mag-
" netic screening mass of ~.O(g2T) as ¢ — 0, but if so, it is not clear that semiclassical
methods wéuld be useful in describing these effects. On the other hand, it would be
interesting to see whether the situation changes. ét all for dyons with  ~ O(T/g). To
do so, we must perform some infinite resummations which will improve our covariant

derivative expansion.
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2.5 Improved Expansion

The periodicity of V.g in eqn. (2.3.24) is simply a consequence of invariance under
temporal gauge transformations. To see this, we first note that due to unitarity
-and the temporal boundary conditions at finite temperature, the most general gauge

transformation for pure gauge SU(2) (see appendix C) is given by:
U(r, %) = exp{ioa[0°(r, &) + nanT7]} | (2.5.1)

where 6° is periodic in T, n, are integers, and o, are the Pauli matrices. Since the
gauge of the background field is never specified in the background field formalism, any
effective potential for the A field must be gauge independent. The most general gauge

invariant expressions involving Ao but not A; are integral powers of the Polyakov line
. ﬂ A
trexpligno, / Agdr] .
s 0

Thus the most general possible gauge invériant expression for the pure gaﬁge SU(2)
Ay effective potential is:

Kﬂ'(Ao)-: f: a, cos(gno, /Oﬂ Agdr) . _ (2.5.2)

=0

Because the above effective potential is a general expression which should hold for
any field configuration, our knowledge of the exact answer for ‘a constant A, field
uniquely determines the coeflicients a,, in the one loop approximation. For SU(2), we
have:

27274 - 4T4
ag = — Qy = ——,
0 45 >0 wind

(2.5.3)

which leads to the correct ex;;ression (2.3.24) for A3 = 19.

Since the form of eqﬁ. (2.5.2) is only a result of gauge invariance, Veg for all
consistent higher order calculations must also take that form, though the coefficients
will of course be modified. As é, consequence,‘Veg can never feature a linear term
at the origin (i.e. Ag = 0 must always be an extremum of the potential). This

is significant, since if one makes a two loop calculation of the effective potential, a
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linear term does appear which seems to create a minimum of O(gT) in the effective
potential[Ani84, Dah85]. From the above arguments, however, we know that such
~ a linear term is spurious and must vanish in a consistent O(g") calculation (which
does not alwayé coincide with a loop expansion). It is therefore not surprising that
summivng-the infrared divergent Debye ring diagrams (with more than two lodps) in
SU(2) gives rise to a linear term which exactly cancels the one found at the two loop |
order[Bel91].

Where is V.g hidden in our covariant derivative expansion? *The main problem
with our expansion is that we are expanding a gauge invariant effective action in
terms- of functi;)nals like H,, and G, which are gauge dependent. Nevertheless, if we
had had the patience and fortitude to calculate all terms in the expé,nsion out to
infinite order makmg no approximations and letting § — oo, we would have arrived

.at an exact and gauge invariant expression for the effectlve action. In partlcular for

SU(2), all of the terms H, would have summed up to form the effective potential
of eqns. (2.5.2) and (2.5.3). We can therefore improve our approximation of Seq by
including the known form of Vg and dropping all H,, terms. By construction, our
 effective action will then exactly reproduce Vea(n) from eqh.(2.3.24).

After having resummed the H, terms, the only rernaining gauge dependent terms
are G,. The main problem with these terms is that they do nof reflect the equivalence

between configurations with Ap near the different minima at 2n7T/g. We can solve

this problem by introducing new functionals G/, which do reflect that equivalence:
1l = —-2T2vtr/d“:z:.[Di, [D;,cos(r;Dp/T_)]] . (2.5.4)
: Ip pd:ticular, for static SU(2) ﬁelds with g|Ao| << T, we Iget: |
G =G, = —% / PP A2 - (2.5.5)

Thus to the order that we are working, if we replace G; by G5, we not only reproduce
‘the correct béhavibr for static fields with small magnitudes, we also introduce the

' periodicity necessary to describe -configurations with |Ag| near each of the minima at
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2nrT. If we wanted to take the derivative expansion to the next order, we would get
some terms involving G3. We could then replace G, and G3 by their primed coun-
terparts, choosing coefficients such that the behavior of static fields with g|Ao| << T
was not altered. In addition, new gauge dependent terms involving more derivatives
of D? could be replaced by terms having thé same small |Ag| behavior, but which
reflect the equivalencé of the Ag minima. In this way, a modified covariant derivative
expansion for static SU(2) fields can be continued to higher orders with the gauge
equivalence of thé Ap minima manifest at each step. .

Looking back at eqn. (2.3.15), we can see that after resumming the H, terms, the

new § is given by:

\/— _ 48\/7?])
T(—11F; + 2G} — 2D5)

Notice that 6 = 0 for configurations without zero modes. This just means that for

~ (2.5.6)

these configurations, we would need to keep more terms in the derivative expangion

to get a reliable value for §. However, since we are primarily interested in calculating
prefactors for configurations with zero modes, the abo&e definition of § is sufficient
provided that it turns out that § > 0. Assﬁming this, we can write down a partially
resummed, renormalized effective action for pure gauge SU(2):

1 1
= iNg 2Pt

' 1
Ser (D2 -G - % / BzVig(Ao),  (2.5.7)

where Vg is given by eqns. (2.5.2) and (2.5.3). Equations (2.5.6) and (2.5.7) along

with eqn. (2.3.16) are the main results of this paper.

2.6 More Dyons

We would now like to apply our improved formalism to the case of a PSJZ dyon
for which |Ag| = n = 27T/g as r — oo. Since Ag approaches one of the absolute
minima of the effective potential at infinity, a plasma of these dyons would not have

to “self-stabilize” its entropy against an infinite background energy, as was the case
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- of the dyohs considered previously. Since the PSJ Z dyon is self dual,
F, = 4D, = 8¢5 = —64x” I (2.6.1)
The integral for G..';is convergent and can be found to be:
G = —1672. (2.6.2)

Since the dyon has four zero modes, the infrared cutoff can be found from (2.5.6) to

be:

1,3
) S
Note that § ~ O(1/(gn)?) just as it was for a constant A, field. Keeping more terms

6= (2.6.3)

in the derivative expansion will not affect the order of §, though it will affect the size
of the O(1) coefficient. Looking at eqn. (2.4.10), we can see that the entiré plasma
prefactor is determined, and we only need to é;'aluate Seg in order to detef:mine the
density of the plasma. _ o |
Here is where we run into problems. We might af first think that we can simply
replace Seg by S in the exponent of (2.4.10) because the one loop corrections ng) are
down by O(g?). However, the fact is that for an isolated dyon, S diverges like a
distance at infinity since Ao only approaches the minimum at 2xT/g like 1/z. We
can see this by cutting off the integral over V.q at some large .ra,vdius R:
4z R 2 o 2,
Th T drVeq(Ao) ~ 87°(2rTR) : (2.6.4)
For Ia’ neutrél plasma, we could argue that.the highest electnric multipole moment at
infinity would be a dipole-a.nd so this divergence Would not really occur. Let us assume -
that this is the case and try to find some sensible procedure for estimating R in the
g — 0 limit. The simplest guess would be that 27T R ~ O(g~). For any positive o,
R would be parametrically larger than the typical size of a dyon ~ O(1/ (27rT)) On
the other hand, as long as a < 2; S will dominate S.q and the density of the plasma

can be found from (2.4.10) to be O(g~* exp(—8w2/gé)T3). In the ¢ — 0 limit, one
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would expect R to'bé of the same order in g as the typical separation between dyons,
but we can see that due to the exponential dependence of the density on 1/g¢?, this
cannot be achieved in thé g—0 limit. In fact, trying to find an equivalence between
R and the typical dyon separation will drive R — oo in the g — 0 limit. Thus, due
to one loop effects, PSJZ dyons with = 27T /g will become infinitely heavy and
decouple from the theory as T' — oo.

On the other hand, we should not dismiss these dyons so easily for finite temper-
atures, in particular when T — Agcp. For a neutral plasma at finite T, it might be
that a scale could be found for R which would be in qualitative agreement with the
typical dyog separation which we will hereafter call R,. In other words, we would like

to find an R for which:
(2.6.5)

1

. 3. Z
Nl :l —— —1/3
Rx3Ro=3 47rVZ,,)

where R, depends on R through S.g and Z/Z,, is given by eqns. (2.4.10) and (2.4.9).
It turns out that this equation only starts having solutions for ¢ > 4. Obviously at
this point, we have left the regime of weak coupling, so the one loop approximation
Becornes dubious at best. In addition, it can be shown that the R’s which solve (2.6.5)
are typically between 1/(47T) and 1/(27T) which is the same scale as the size of the

dyon, so dyons and antidyons would again begin to overlap.

2.7 Monopoles

One way that we could dispose of the troublesome divergence of [d3zV.g would be
if we could find a way to make Ao approach 27T/g faster than 1/z. In the ’t Hooft-
Polyakov monopole, the Higgs field approaches its vacuum expectation value like
exp(—Mz), which is just a consequence of it going to a quadratic minimum. If we
use the Coleman-Weinberg mechanism[Col73] to find configurations which minimize
Seq rather than classical solutions which minimize S, we should be a,bleAto achieve the

desired behavior for Ag — 27T /g as r — oo since there is a quadratic minimum in the
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effective potential there. To really use the Coleman-Weinberg mechanism with a clear
conscience, we should include all orders of the derivative expansion in our expre’ssion
for S before we minimize, and we should verxfy that the configurations that we are
interested in have no nega,tlve eigenmodes associated with thern Nevertheless, we
shall proceed in the most naive manner, keeplng only the effectwe potentlal and not
worrymg about negative elgenmodes for the time bexng |

For r — oo, the extrema of Seﬂ' can be found by solvmg the followmg equations:

a‘/eff:o: o ’;(2.‘7.1)'

D“”F” -6
gz

These equations are greatly simpliﬁed_ by using the ansatz (2.4.1) along with the

definition:
' F . H(z)-1 .
flo) =1+ 22 (“) h(z) = _(-%_ . 2.12)
- Equations (2.7.1) then becorne[Act79]:
PH = HH-1+(z+F)) O (213)
Z2F" = 20z+ F)H2 + WF(F +32)(F +2), (2.7.4)

where the primes d.enote derivatives with respect to the variable = = gnr, and we have
- assumed that 17 = 27rT/ g. For a monopole conﬁguratlon the A; fields should drop off
like —1/z far from the origin. From the deﬁmtlons of (2. 7 2) then, we expect H and -
F to be small as £ — oco. In this hrmt the equatlons of motion become H "= H and

=F /67r so that:-

).  (219)

V'H — C’l exp(——a:) , F-—» Cgexp(—m

It we try to ﬁhd a.: mouopole for which Ao-asymptotically' approaches a value whlch :
is not. a Iuihimum then we find an equatiOn like F” = Cz, which does not feature
solutions which vanish as z — oo. We can conclude that only monopole conﬁguratlons
in which the Ao field approaches a minimum of the effective potential have any chance

of minimizing the effective action.
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' 2.7.1 Negative Modes

Unfortunately, in deriving Seg for the monopole, we have implicitly integrated .0\;er
negative eigenmodes. To see this, let us look a little more closely at what it means
to integrate afound a configuration which minimizes the effective action rather than
the classic_al action. Suppose we have a monopole configuration fiz defined by eqné.
{2.4.1), (2.7.2) and (2.7.5). Since A2 is not a classical solution, when we make the
- replacement A} = /iz + Bj there will be terms linear in B:. Nevertheless, by adding
an appropriate current term Jj A}, to the original Lagrangian, the linear terins can be
exactly cancelled and the monopole configuration becomes a solution to the modified
-equations of motion: |
D2F}, =Jo. | - (2.7.6)
It is now possible to perform gaussian functional integrals over the terms which are
quadratic in B} as long as none of the operators involved have negative eigenmodes
(i.e. the configuration is stable). If, on the other hand, there are negative eigenmodes,
then some of our “gaussian” functional integrals would actually be integrals of the
type [ exp(+az?)dz which diverge and render the one loop approximation useless. In
the absense of negative modeé, the current J is set equal to zero at 'the one loop level if
the original configuration turns out to be an extremum of the effective action[Col73].
In a sense, we have gone about things a bit backwards by first finding a configuration
which sets J = 0. We must now go back and check whether or not the configuration
was classically stable to begin with.
Far from the center of the monopole, exponentially falling functions are unim-
portant, so we can approximate the configuration by using (2.4.1) and (2.7.2) with
H = F = 0. We can then find an explicit expression for the opera,tor' inside the ghost

deterrﬁinant:
—D*=[-ig—2rT(I - #) - = — —+ %[J2 - (I-7)7, (2.7.7)

where I, L and J are isospin, orbital, and total angular momentum operators given
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(Ic)ab = ._ieabc
L,‘ = —ie,‘jkrjak N
J = I+L. L (218)

We a;re interested to see whether this operator has any negative eigenvalues. For static
configurations, we can use temporal eigenfunctions of exp(i2n7T'7) and see that the
first term of —D? is positive semi-definite by making the replacemeﬁt —1Gp — 2nnT.
- In addition, we can see that the last term is positive definite by noting that (L-7)=0
“and re}ﬂacing (I-+) by(J - ). Furthermore, the radial derivative terms are pdsitive
definite since | o , .
. 2 -

-8 = —56:3 —%(,fr +% (2.7.9)

is positive definite even when L? = 0. Therefore the whole gh'ost dperator is positive
~ definite.

What about the.gauge operator? To begin examining W, we first note that
~ far from the monopole, there is no electric field and consequently F§; = 0. From
eqn. (2.2.7), this implies that Wy; = W;o = 0. The gauge determinant ca.n then be

' sepa.rated into two determinants:
det(W,,) = det(—D?*)det(Wy;), (2.7.10)

where we have already shown that the first is positive definite. Dropping the spatial

indices on W;;, we can use techniques similar to those used for the ghosts to write:

= (2v7rT)2(n—(Iv-7").)2—m-—;a +— {K2+S"’ 25- [K —#(I-#)]—(I- r) } (2711)

where S and K are spin and total angular momenta defined by:
(Sk)¥ = —ieie

K = I+S+L. (2.7.12)
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The only nonzero commutator among the operators of (2.7.11) is between S - K and
S - 7. Even with this difficuly, however, we- can still make W block diagonal by
quantizing with respect to §?, K?, m = (I -#), s = (S-7) and [ = K. \

The dangerous modes of this operator are when K < 2 and n = m = —s = 1.

For the K = 0 modes the operator reduces to:

W= - (2.7.13)

In ref. [06181], Coleman presented an elegant way to show that operators which take
the above form far away from the origin always have negative eigenvalues due to their

attractive centrifugal potential. Consider the following radial function:

v = LF-VRew(-r/a), r2R
= 0, r<R, - (2.7.14)

where R and a are positive numbers. The expectation value of W from eqn. (2.7.13)

for this function is:
W = / * r2drp(W)
o .
= [ drbrt@w/dn? - ¥

= —-:-ln(a/R) + . | (2.7.15)

where the triple dots denote terms that have a finite limit as d — 00. For any fixed R,
this expression becomes negative for sufficiently large a. To get a negative expecta-
tion value for some function, there must be eigenfunctions with negative eigenvalues,
since any function can be formed from linear combinations of eigenfunctions. Fur-
thermore, since the proof works for arbitrarily large R, no behavior of the fields near
the center of the monopole where F' and H are nonzero can save W from having
negative eigenvalues. |

Another way to see that monopole configurations like the one suggested above

would not be stable is to see that, unlike the normal ’t Hooft-Polyakov rrionopolev

94



with a Higg’s, these monopoles are not protected by topology at infinity. As r — oo,
the Ao field approaches a constant value of n = 27T /g which is simply a temporal
gauge transformation of Ay = 0. If Ay — 0, it doesn’t matter whether in looks like a
hedgehog or is iﬁ a uniform color direction, and consequently topology is lost. There
is nothing to stop a configuration which has Ay = 0 at both r = 0 and r = oo from
reducing Ao to 0 at intermediate values of 7 in order to minimize its action. This will
be a general problem with any monopoles in pure gauge Yang-Mills theories: finite
energy monopole configurations which minimize the effective action will feature the -
A3 fields approaching minima of the effective potential as r — oo. These minima,
however, will be gauge equivalent to A3 = 0, so the monopole cohﬁgura,tion will not

be stable.

2.7.2 Generalization to SU(3) with fermions

To better illustrate these points, I will consider SU(3). From Appendix B, we know
that we only need consider field configurations in which gA / (27T) = v)s + V3ps,
where A, are the Gell-Mann vmatri'ces. Agaih usipg Appendix B, we have plotted
the effective potential as a fuhction- of p for 1/ = 0in ﬁg.. 2.7.1. The only minima
of the potentiaﬂ in this direction occur at the points p = 2n/3 which are jﬁst gauge
transfor.mations of p = 0 (see Appendix C). Now let us look in the A; direction by
setting p = 0 and plotting V.g as a function of v (fig. 2.7.1). The absolute minima
are again gauge transformations of » = 0, but in addition there appear to be local
minima at v = 2n + 1. By making a contour plot with both v and p (fig. 2.7.2),
| however, we can see that the apparent “local minimum” at v =1 is octu’ally just
the side of & crater which falls to an absolute minimum at (v,p) = ‘.(lb,’ 1 /3); The
Ao matrix at this minimum has the same eigenvalues as the minimum o.t v=0and.
p= —2./ 3, so we know that it is also a gauge transformation of Ao = 0.

On the other hand, true local minima of the effective potential can be created by

introducing fermions into the theory and thereby breaking the center symmetry of the
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gauge group (see Appendix C). For éxarnple, if one massless fermion is introduced into
SU(2), the absolute minimum at g|Ao| = 27T is transformed into a local .mi,nimum
(fig. 2.3.1) [Ign92]. Since there is no longer an allowed gauge transformation which
takes this minimum to the Ag = 0 configuration, one might be tempted to believe
that a stable moﬁopole configuration would exist with the |Ao| — 27T/g as r — oo.
Unfortunately, the presence of fermions induces no change in the gauge operator W, so
there are still negative eigenmodes and the monopole is still unstable. It is interesting -
to note that if a minimum of the effective potential with fermions had occured at any
point other than one which was én absolute minimum of the pure gauge theory, then it

“would have been possible to create a stable monopole configuration which minimized

. the effective action.

SU(3) Effective Potential
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Figure 2.7.1: The one loop SU(3) effective potential for a constant Ag field with no
fermions (solid), 2 fermions (dot-dashed), and fermions only (dashed). The left frame
is for gAo/(27T) = v/3p)s, while the right frame is for gAo/(27T) = v)3.
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Pure Gauge SU(3)

Figure 2.7.2: A contour plot of the one loop pure gauge SU(3) effective potential for
a constant field given by gAo/(27T) = vA3 + V3ps.

Now we Wi_ll examine the effect that fermions have on the SU(3) eﬂ‘ectiive potential.
F igure 2.7.1 shows this potential as a functioﬁ of p for v = 0. It is not immediately
obvious by looking at the figure that the local minima with fermions will be positioned
at exactly 2nnT/3. Névértheless, this is the case since the absolute minima of the

gauge part of V.g precisely line up with maxima of the fermionic part (Appendix B).
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SU(3) with 2 Fermions

Figure 2.7.3: The SU(3)' effective potential as in figure 2.7.2, but with 2 massless
-fermions. '

Similarly, each of the local minima of (v, p) shown in fig. 2.7.3 corresponds exactly to
an absolute minimum of the pure gauge theory. By the same reasoning used for SU(2)
then, any monopole configuration with Ao approaching one of these local minima is

still unstable.
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_'temperatures

2.8 Conclusion

- We have developed a covariant derivative expansion of the one loop SU(N) effective ac-

tion at finite terriperature. The main use of t‘his'expa.nsion is that it self—consistently
proauces an infrared cutoff mass whic}r can be used to determine the density of a
plasma of solitons irl the semicla_ssica,ll a,ppreximation. We have used our technique
to evaluate suggestions in the literature[Dah85 Polo91] that magnetically charged

solutxons to pure gauge SU(N) could self-stabxhze at ﬁmte temperature, providing

a nonperturba.tlve mechanism for screemng static ma.gnetlc ﬂuctuatlons We have

found that classical dyon solutions have 1nﬁn1te energy at the one loop level unless
they form an overlappmg plasma, in which case they may be difficult to dlfferentl-,’
ate from thermal fluctuations. - In addltlon, we have found finite energy monopole?
configurations in SU(2) and SU(3) which minimize the effective action but which aref
unstable Therefore, at least these. two types of serm classmal magnetlc conﬁguratlons

do not solve the magnetlc screening problem in hot QCD. Nevertheless, if stable, lo-

_ca.hzed finite energy solutions to pure gauge SU(N) at T # 0 are found in the future,
~ then the methods developed here should be useful for estimating their density at hlgh

P
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A I.nt'egrals, Sums and Functionals

In this appendix, we present some of the tools that were used in deriving expressions
for the effective action. In order to derive eqns. (2.3.6), (2.3.7), (2.3.9) and (2.3.13),

it is necessary to use the following integrals and sums:

](;I:f))svexp(—P?t) = 04—7;)375 | | (A.1)
/ (—gs;%eXP(—P?t)Pij = W;)m@k | - (A2

da I 1 . .
/—(27:))3 exp(_P?t)PJPkPIPm . = W(&jk&[m + 5j16km + 6jm6kl) (A3)

T Z. exp( pot) = ’2\};{ i: exp(4z1;,—2—t) ' (A.4)
T  pitexp(—pjt) = 5 \/—Z( 4th ) exp(— 4th) | (A.5)

T pst’exp(—pit) = 2\/_ Z[— - E’;—t + (4;;)2] exp(——4;2t)'. (A.6)

The above sums were obtained by using the Poisson summation formula:

VB Y Fmp)=va ¥ f(na), (A7)
where aff = 27 and F(z) and f(p) are Fourier transforms of each other. The sums
on the left sides of (A.4-A.6) are over Matsubara frequencies, while those on the right
side are over T = 0 (n = 0) and T* # 0 (n # 0) pieces. The latter can be seen by
noticing that in the limit as T — 0, only the n = 0 terms survive.

In addition, we define the following functionals for notational convenience:
H, = tr/d“zDg" (A.8)
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H = —g*N / dizA2 (A.9)

F, = tr / d*z[D,,D,J> = —g*N / dz(Fe,)? (A.10)
D; = tr / d*z[D;, Do]* = —g?N / d'o(F5)? (A1)
Gapr = tr / d*z(D;,[D;, D3]] | (A.12)
G, = .-.—2T2tr/d4vm[D,~,[D;,Cos(nDo/T)]],  (A13)

where the last definition was introduced in eqn. (2.5.4) while developing the improved

expansion. For a constant Ag field, all of the above functionals vanish except
Hn= tr/d“z(ng)z" ) | (A.14)

where we use the matrix notation Ag' = f2*°AS. For SU(2) with |Ao| = 7, we get the
simple form: ' ' '

H, = 2(=¢*n*)"V/T . - (A.15)

The following high temperature approximations were used in deriving eqns. (2.3.10),

(2.3.11) and (2.3.13):

& | 2p — 1! - "
D n*exp(—en?) ~ 1 r/e-(—l()—ie—)p—)- — 3650 _ (A.16)
n=1

| -.
> ﬁexp(—erﬁ) o :__l,-e—- Vre+ i’ C (AT
n=1 . : .

f:.Ei(—enz) ~ —\/F—gln_e+1.55.  (A.18)

n=1
The above sums become exact in the limit as e — 0 and are even good to within a few
percent when € = 1. We also used the following integral to regulate the ultraviolet

divergenées in (2.3.11) and (2.3.13):

6 di ~A?¢ 2 » |
[ =) =g+ 1n(60?), . (A19)

where g ~ 0.577 is Euler’s constant.
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B Effective Potentials for T # 0 SU(N)

The A, fields in SU(N) can always be expressed in terms of a traceless Hermitian
N x N matrix by defining Ao = 3 AgA, where 2 Aa are the N? — 1 fundamental
generators of SU(N). Any matrix of this form can be diagonalized by a unitéry trans- -
formation. However, making such a unitary transformation is equiyalent to fnaking a
time-independent gauge transformation on Ag. Sihce the effective potential must be
invariant under all gauge transformations, it can only depénd on the eigenvalues of
Ao, so it 1s sufficient to study configurations in which Ao is diaéonal. In Appendix D
of ref.[Gro81], Gross et al. evaluate functional determinants for constant fields which
- are diagonal in color. We use their results to write down a general expression for the.'

effective potential of any traceless, diagonal Ag matrix. Let

gAp = 2%Tq | , (B.1)
where q ié a diagonal, real and traceless matrix whose elements are given by

(9)ik = ¢’ - | | (B.2)

The effective potential for this field conﬁgu‘ration is given by[GroSl]:.

274 &2 L | n Cos(nm N, cos(nn(q’ — 7214
eff — 2 Z Z{zN ( 1) ( q ) Z ( (q4 q ))} + -, (B3)
n=1j=1 k=1 n 45
The sums over n can be done by using the following relations:
X cos(nrz) L . '
S ) Tl (el - 27 (B.4)
n=1 : :
S I T o] e B3
nt 720 =15 (B:5)

n=1
where [z]4 = [z(mod2)] and [z]- = [(z + 1)mod2] — 1.
For SU(2), there is only one possible form of traceless diagonal matrix: ¢ = vos.
The effective potential then takes the form:

2T4 TNy

6 )"

Var = T (NI ~ W) + o3 (2 —27) - S0 4 (B.6)
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Dropping the constant term at the end, Vg for SU(2) is plotted in fig. 2.3.1. For

SU(3), there are two diagonal generators, so an arbitrary diagonal SU(3) matrix can

' be expressed by ¢ = vA3 + v/3prs. The effective potential then takes the form:

‘éﬁ = 2T4{Nf-(2[” + o2 = v+t 420 = g — [v — o)t +2[20)% — [20]%)

+ [2v3([2v]+ — 2)* + [v + 3o (v + 3p]+ —2)% + [v — 3p]3(lv - 3p)+ — 2)°}
2 4 AN . .
_ T 5+ 21N,) | | | (B.7)

V.q for SU(3) is plotted in figs. 2.7.1 - 2.7.3.

There are more allowed gauge transformatlons in pure gauge SU(N) than there
are in SU(N) with fermlons__(see Appendix C)'. For this reason, some of the degenerate
absolute minima of the pure gauge effective potential are no longer absolute minima
when fermions are included in the theory. Nevertheless, we show here that these
points remain statiQnary_ points of the complete effective potential with fermions.

A general diagonal SU(N) matrix can always be written as a linear combination of

matrices having at least one zero on the diagonal and the matrix Ayz_, given by:

/\.N2—'1: = diag(1,1, , 1-N}. : _ (B.8)

“Only this last matrix will feature the minima we seek (see Appendix C), so we only |

need to consider its effective potential:

2T4 ]

Vg = 7 ;_{21\’}( 1)"[(N-—1)cos(n7r1/)+cos(n(N—1)7rz/)]
= AN =Deos(uNev) = (N=1%}.  (BY)

By simple differentiation, it_is easy to verify that the minima at v = 2m/N of the

| pure gauge part correspond exactly to maxima of the fermionic part. Consequently,

for any value of Ny, the full effective potential will always have stationary points at

v=2m/N.
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C Allowed Gavuge Transformations

Since there are periodic temporal boundary conditions for the fields at finite temper-
ature, the only allowed gauge transformations are those which preserve the boundary |
conditions. We would like to determine the most general form of these allowed gauge
transformations. A general unitary transformation can always be written as an ex-
- ponential: |
U = expliA.0%(7, T)], | (C.1)
where ] A, are the generators of the group. Let us now perform a gauge transformation
on Ag = % A Ag: \ . |
| Ag — A= UAU™ - é[@oU]U‘l . - (C.2)
As usual, the first term simply rotates A in color space, while the second term changes
its magrﬁtude. Just looking at the second term, we can see that the magnitude of

~ Aj(r) will only be the same as that of A4(r + B) if 8°(r, &) takes the form:
(T, )= f{(r, D)+ f5 (:E)'r , | -~ (C.9)

where fi(r+ B,%) = f{(7,Z). Now if we examine the first term of eqn. (C.2), we can

see that periodicity for a pure gauge theory also implies:
U(r + 8,%) = exp(ia)U(T,T) . (C4)

This puts a restriction on f{,‘ For SU(N ), the only possible values of exp(ia) will be
N’th roots of 1, which form the center of the group. These discrete allowed values
of exp(ia) can only be genefated by discrete values of #°. Together with eqn. (C.4),
this implies that there can be no Z dependence for f2, since such a dependence would
be continuous rather than discrete.
For SU(2),

| U = cos(]6°]) + i\.0° sin(|6°]) , (C.5)

where 62 = 6°/]6°|, and it is easy to see that only f3 = n,#T with integer n, will sat-

isfy eqn. (C.4). For SU(N) with N > 2, it is always possible to choose a fundamental

104



o

representation in which all but one of the generators have at least one zero eigenvalue
(for example the Gell-Mann matrices for SU(3)). The f3 terms correspondi'ng to
each of the generators w1th a zero eigenvalue must be of the form f2 = 2n,7. The
remalmng generator Ayz2_; is glven in its unnormahzed form by (B.8) in Appendlx
B. It can be verified that f¥°~! = 2n7r /N gives rise to allowed gauge transformatlons
with exp(ia) of (C.4) equal to N’th roots of 1. ' |

The situation changes a bit if there are fermions in the theory Smce fermlons

.transform like p - U ¥, there are no factors of U-! to cancel globa.l phases. Thus

in order for fermxon temporal boundary condltlons to remain unaﬂ'ected by gauge
transformatxons, only transformations satlsfymg eqn. (C.4) with a'= 0 are permis-

sible. In other words, fermions break the center symrnetry which is present in pure

_gauge theories. Therefore, the most general form of f3 for SU(N) with fermions is

f3 =2nxT.
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