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Matrix metalloproteinase-9 deficiency attenuates
diabetic nephropathy by modulation of podocyte
functions and dedifferentiation
Szu-Yuan Li1, Po-Hsun Huang2, An-Hang Yang3, Der-Cherng Tarng4, Wu-Chang Yang5, Chih-Ching Lin5,
Jaw-Wen Chen6, Geert Schmid-Schönbein7 and Shing-Jong Lin8

1Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and Institute of Clinical Medicine, National Yang-
Ming University, Taipei, Taiwan; 2Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital and Institute of
Clinical Medicine, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; 3Department of Pathology and
Laboratory Medicine, Taipei Veterans General Hospital and Institute of Anatomy and Cell Biology, National Yang-Ming University,
Taipei, Taiwan; 4Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and Institute of Physiology, National
Yang-Ming University, Taipei, Taiwan; 5Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and School of
Medicine, National Yang-Ming University, Taipei, Taiwan; 6Department of Medical Research and Education, Taipei Veterans General
Hospital, Institute and Department of Pharmacology, and Cardiovascular Research Center, National Yang-Ming University, Taipei,
Taiwan; 7Department of Bioengineering, The Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California,
USA and 8Department of Medical Research and Education, Taipei Veterans General Hospital, Institute of Clinical Medicine, and
Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan

Diabetic nephropathy is characterized by excessive

deposition of extracellular matrix protein and disruption of

the glomerular filtration barrier. Matrix metalloproteinases

(MMPs) affect the breakdown and turnover of extracellular

matrix protein, suggesting that altered expression of MMPs

may contribute to diabetic nephropathy. Here we used

an MMP-9 gene knockout mouse model, with in vitro

experiments and clinical samples, to determine the possible

role of MMP-9 in diabetic nephropathy. After 6 months of

streptozotocin-induced diabetes, mice developed markedly

increased albuminuria, glomerular and kidney hypertrophy,

and thickening of the glomerular basement membrane.

Gelatin zymographic analysis and western blotting showed

that there was enhanced MMP-9 protein production and

activity in the glomeruli. However, MMP-9 knockout in

diabetic mice significantly attenuated these nephropathy

changes. In cultured podocytes, various cytokines related to

diabetic nephropathy including TGF-b1, TNF-a, and VEGF

stimulated MMP-9 secretion. Overexpression of endogenous

MMP-9 induced podocyte dedifferentiation. MMP-9 also

interrupted podocyte cell integrity, promoted podocyte

monolayer permeability to albumin, and extracellular matrix

protein synthesis. In diabetic patients, the upregulation of

urinary MMP-9 concentrations occurred earlier than the

onset of microalbuminuria. Thus, MMP-9 seems to play a role

in the development of diabetic nephropathy.

Kidney International (2014) 86, 358–369; doi:10.1038/ki.2014.67;

published online 26 March 2014
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Diabetic nephropathy (DN) is the leading cause of end-stage
renal disease (ESRD), and it affects 10–40% of diabetic
patients.1,2 Hyperglycemia, hypertension, and genetic pre-
disposition are the main risk factors for the development of
DN. However, glycemic control along with currently available
pharmacotherapies may delay, but do not stop, the pro-
gression of DN toward ESRD.3,4 Therefore, identifying the
key signaling culprits of DN in order to explore novel thera-
peutic agent demands immediate attention.

Glomerular basement membrane (GBM) thickening and
glomerular extracellular matrix (ECM) accumulation–induced
Kimmelstiel–Wilson nodules are pathological hallmarks of
DN.5 Matrix metalloproteinases (MMPs) affect the break-
down and turnover of ECM, suggesting that altered MMP
expression may contribute to DN. Among various MMPs,
MMP-9 digests collagen IV of the basement membrane, and it
has been documented as a central corpus in diabetic retino-
pathy6,7 and tissue remodeling.8–10 It is thus important to
define whether and how MMP-9 could contribute to DN. It
has long been recognized that tubulointerstitial lesions have
an important role in the progression of DN,11–13 and renal
tubular cell dedifferentiation has been considered a critical
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step in tubulointerstitial damage. Recent studies have
indicated that podocytes also undergo dedifferentiation in
DN, which causes foot process effacement, albuminuria,
and ultimately results in glomerular sclerosis and kidney
fibrosis.14–17 Furthermore, it is known that a complex net-
work of molecular signals is involved in cell dedifferen-
tiation, and MMP-9 is able to induce renal tubular cell
dedifferentiation in vitro.18,19 Accordingly, in this study, we
showed the influence of the targeted deletion of the MMP-9
gene in an animal model of DN; we used podocyte culture to
reveal the potential stimulators of MMP-9 and investigated
the effects of MMP-9 on podocyte cell functions. Finally, we
tested the hypothesis that DN patients have higher urinary
MMP-9 concentrations than non-DN patients, and that the
upregulation of MMP-9 occurs earlier than the onset of
microalbuminuria in DN patients.

RESULTS
Upregulation of intraglomerular MMP-9 activity in a DN
mouse model

To clarify the expression pattern of MMP-9 in DN, we
created a DN mouse model. As shown in Figure 1, there was
a greater MMP-9 production and activity in glomeruli in
diabetic mice and MMP-9 is co-stained with nephrin, a
podocyte marker. As expected, no MMP-9 protein production

or activity could be detected in glomeruli in MMP-9� /�

mice. These findings indicated that induction of diabetes can
stimulate MMP-9 activation and increase protein production
in kidney glomeruli.

Deficiency of MMP-9 attenuates diabetic kidney injury

To determine the potential pathological role of MMP-9
in DN in vivo, we examined the severity of kidney injury
in MMP-9� /� and MMP-9þ /þ mice after the development
of diabetes. The blood sugar and hemoglobin A1c levels
were comparable between the two diabetic groups (Supple-
mentary Figure online). There was no difference in the
24-h urine albumin levels between nondiabetic MMP-9� /�

and MMP-9þ /þ mice throughout the 6 months of the study.
Urinary albumin was significantly elevated in diabetic
MMP-9þ /þ mice starting from the second month of
diabetes (Po0.05; Figure 2a), and the extent of urinary
albumin progressively increased in diabetic mice through
the fourth and sixth month (Po0.01). However, as shown in
Figure 2a, the diabetic MMP-9� /� mice had significantly
less 24-h urinary albumin than diabetic WT mice (Po0.05).
After killing the mice at the sixth month, kidney glomerular
volume was calculated. As shown in Figure 2b and c, diabetic
mice had increased glomerular volume compared with
nondiabetic mice (Po0.01, separately). However, diabetic
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Figure 1 | Increased glomerular matrix metalloproteinase-9 (MMP-9) protein expression and catalytic activity in diabetic mice.
(a) Immunostaining of MMP-9 in control and diabetic kidneys. MMP-9 was expressed in glomeruli and upregulated in diabetic nephropathy;
4,6-diamidino-2-phenylindole (DAPI) is used for nuclear counterstaining. (b) Zymography and western blot analysis from the sieved glomeruli
lysate showed that both MMP-9 activity and protein expression were upregulated in MMP-9þ /þ mice after induction of diabetes (15 mg protein
per well, n¼ 12 each group, Po0.01). As expected, no MMP-9 enzymatic activity or protein expression was detected in MMP-9� /� mice
with or without diabetes. Intraglomerular MMP-9 is costained with podocyte marker nephrin in wild-type (MMP-9þ /þ ) and MMP-9� /�

mice. DM, diabetes mellitus.
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MMP-9� /� mice had significantly mitigated glomerular
hypertrophy compared with diabetic MMP-9þ /þ mice
(Po0.01). Moreover, progressively increasing glomerular
filtration rate (GFR) was observed in diabetic mice,
and ablation of MMP-9 significantly decreased GFR hyper-
filtration in DN (Po0.05; Figure 2d). Kidney weights were
compared among the four groups. As shown in Figure 2e
and f, less kidney hypertrophy was noted in diabetic MMP-9� /�

mice compared with diabetic MMP-9þ /þ mice (Po0.05).
We further evaluated the thickness of GBM by electron

microscopic examination in kidney tissues. As illustrated in
Figure 3, induction of diabetes increased GBM thickness, and
diabetic MMP-9� /� mice had significantly lower GBM
thickening than diabetic MMP-9þ /þ mice (Po0.05). These
data indicated that deletion of MMP-9 significantly amelio-

rated albuminuria and prevented structural alterations of the
diabetic kidneys.

Diabetes-related cytokines stimulate podocytes to secrete
MMP-9

MMPs are major physiological determinants of ECM
degradation, and diverse cytokines may stimulate MMP acti-
vation in diabetes. High-glucose and advanced glycoprotein
end products are well-known diabetes-specific mediators,
and we first assessed the expression of other potential
cytokines in mouse kidney tissue. As shown in Figure 4a, the
western blotting showed that tumor necrosis factor-a (TNF-
a), transforming growth factor-b1 (TGF-b1), vascular endo-
thelial growth factor (VEGF), and angiotensin II protein
expression levels are upregulated in diabetic kidneys.
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Figure 2 | Matrix metalloproteinase-9 (MMP-9)-deficient mice have attenuated functional and pathological changes in diabetic
nephropathy. (a) Twenty-four-h urine albumin was determined in nondiabetic and diabetic mice both in wild-type (WT) and MMP-9-deficient
mice throughout the study of 6 months. Microalbuminuria occurred at the second month and progressed to the end of the study. The diabetic
MMP-9� /� mice had less 24-h urine albumin than diabetic WT mice. (b, c) After the mice were killed at the sixth month, kidney glomerular
volume was calculated. Six months of diabetes caused significant glomerular hypertrophy, and diabetic MMP-9� /� mice had mitigated
glomerular hypertrophy compared with diabetic WT mice. (d) Progressively increased glomerular filtration rate (GFR) was observed in diabetic
mice, and diabetic MMP-9� /� mice had reduced GFR hyperfiltration compared with diabetic WT mice during the whole study period.
(e, f) Kidney weights were compared among the four groups. Kidney hypertrophy was observed in diabetic mice, and the diabetic MMP-9� /�

mice had significantly decreased kidney weight, when compared with diabetic WT mice. (*Po0.05 compared with nondiabetic WT mice;
**Po0.01 compared with nondiabetic WT mice, #Po0.05 compared with diabetic WT mice, ##Po0.01 compared with diabetic WT mice)
(n¼ 12 each group for all animal experiments.)
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We then evaluated MMP-9 and MMP-2 expression in
response to various cytokines in cultured podocytes. Among
various diabetes-related cytokines, TGF-b1, TNF-a, and
VEGF, but not high glucose, angiotensin II, or advanced

glycoprotein end-product bovine serum albumin, signifi-
cantly stimulated MMP-9 activation in a time- and dose-
dependent manner. In contrast, the activity of the other
collagenase MMP-2 remained constant (Figure 4b). These
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diabetes mellitus.
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findings suggest that diabetes-related cytokines are able to
stimulate MMP-9 secretion by podocytes.

Endogenous and exogenous MMP-9 interrupts podocyte
junction integrity, induces cell dedifferentiation, and
increases ECM production

Podocyte slit diaphragm, a modified adherens junction, is an
essential component to maintain normal glomerular filtra-
tion barrier. As various cytokines stimulate MMP-9 in DN,
to investigate the effects of enhanced glomerular MMP-9 on
the slit diaphragm, we studied the effect of MMP-9 over-
expression in cultured podocytes. MMP-9 overexpression
significantly downregulated slit diaphragm protein nephrin
and promoted the expression of mesenchymal markers
fibroblast-specific protein-1 and fibronectin. In addition,
integrin-linked kinase (ILK), a key intracellular mediator for
cell dedifferentiation,20,21 was also significantly upregulated
at mRNA and protein levels (Figure 5a and b). To further
evaluate the effect of exogenous MMP-9, cultured podocytes

were exposed to recombinant active MMP-9 (rMMP-9). To
rule out a cytotoxic effect of rMMP-9, a cell viability assay
using MTT reagent was performed. Podocytes incubated with
low to high concentrations of rMMP-9 (0.1, 1, or 5 mg/ml)
did not alter cell viability in 96 h (data not shown).
Exogenous MMP-9 induced cultured podocyte dedifferentia-
tion in a dose-dependent manner (Figure 5c). Zonula
occludens-1, a cell tight junction–associated protein, is
located at the slit diaphragm. As depicted in Figure 5d,
immunofluorescence staining demonstrated abundant con-
tinuous zonula occludens-1 at the sites of cell–cell contacts. It
is noteworthy that after incubation with rMMP-9, the liner
zonula occludens-1 staining became interrupted.

We then determined the albumin permeability of podo-
cytes using in vitro transwell assay. After the monolayer
podocyte had achieved confluence and thermoshifted for 14
days, treatment with 1mg/ml rMMP-9 caused the podocytes
to permit increased leakage of albumin from the lower to the
upper chamber (Figure 6a). Observation of cell ultrastructures
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by electron microscopy showed that administration of
rMMP-9 (0.5 mg/ml) for 1 week interrupted podocyte adhe-
rens junction integrity and stimulated podocytes to synthe-
size new basement membrane (Figure 6b). These results from
cultured podocytes provide evidence showing that elevated
glomerular MMP-9 is able to induce podocyte dedifferentia-
tion, interrupt podocyte adherens junction integrity, and
stimulate GBM synthesis.

Podocytes secrete MMP-9 in patients with DN

We examined the MMP-9 expression in kidney tissues from
individuals with and without DN. As shown in Figure 7a,
MMP-9-positive glomerular cells could be detected in DN
kidneys, and the MMP-9-positive area was colocalized with
podocyte marker synaptopodin, but not with the endothelial
cell marker CD 31. However, MMP-9 was negatively stained
in non-diabetes mellitus (DM) kidney samples.

Increased urinary MMP-9 precedes albuminuria in diabetic
patients

To determine the time course by which MMP-9 may affect
the development of microalbuminuria, we examined the
MMP-9 concentrations in urinary samples retrieved from
freshly voided urine of 104 diabetic patients and 23 healthy
subjects. The clinical characteristics of study subjects are

listed in the supplement. As shown in Figure 7b, there was
significantly increased urinary MMP-9-to-creatinine ratio in
DM patients without microalbuminuria, when compared
with healthy controls (control vs. DM patients without
microalbuminuria, 1.3±3.0 vs. 18.4±4.1 pg/mg, Po0.01).
Furthermore, DM patients with microalbuminuria had
higher urinary MMP-9 concentration compared with DM
patients without microalbuminuria (DM patients without
microalbuminuria vs. DM patients with microalbuminuria,
18.4±4.1 vs. 26.1±8.2 pg/ml, Po0.05). However, there was
no difference in urinary MMP-9 in DM patients with
microalbuminuria and macroalbuminuria. These findings
suggest an earlier elevation of urinary MMP-9 before the
onset of microalbuminuria in diabetic patients.

DISCUSSION

In this study, we created a DN mouse model and
demonstrated that induction of diabetes upregulates MMP-
9 expression and activity in kidney glomeruli. Deletion of
MMP-9 in diabetic mice significantly attenuated albuminur-
ia, reduced glomerular hyperfiltration, partly recovered
kidney size, and diminished the thickness of GBM. In
cultured podocytes, incubation with diabetes-related cyto-
kines upregulated MMP-9 activity, and MMP-9 promoted
podocyte dedifferentiation, interrupted podocyte cell–cell
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integrity, and enhanced albumin leakage. Furthermore,
we showed that MMP-9-positive glomerular cells could be
detected in patients with clinical evidence of DN, but not in
non-DN patients. DN patients had higher urinary MMP-9
concentrations than healthy controls, and an earlier upregu-
lation of MMP-9 was observed in diabetic patients before the
onset of microalbuminuria. These findings provide clear
evidence that MMP-9 has a pivotal role in the development
of DN.

It is widely recognized that microalbuminuria is one of
the earliest clinical markers of DN, and the appearance of
albumin in urine suggests a compromised glomerular
filtration barrier. Podocyte foot processes interdigitate with
the counterparts of their neighboring cells to form slit
diaphragm. This membrane-like structure constitutes the
final barrier to prevent protein loss during convective fluid
flow from the vascular to the urinary space. Any injury to
podocytes that disrupts slit diaphragm structural and
functional integrity would eventually lead to a defective

glomerular filtration, thereby causing albuminuria, and thus
the onset of albuminuria is most closely associated with
podocytopathy.22 Emerging evidence indicates that podo-
cytes’ phenotypic conversion after injury is one of the most
important factors that lead to proteinuria and renal
fibrosis.11,14 In the current study, we clearly illustrated that
glomerular MMP-9 protein expression and catalytic activity
are enhanced in DN. A previous study showed that TGF-b
stimulation enhanced podocyte MMP-9 expression as a
dedifferentiation marker,15 and our experiments further
demonstrated that MMP-9 per se is able to induce podo-
cyte dedifferentiation. In addition, we found that MMP-9
disrupts podocyte cell–cell junction integrity and increases
albumin filtration fraction. We also discovered that not only
TGF-b1 but also other various cytokines are able to stimulate
podocyte MMP-9 secretion. These findings indicate that
increased intraglomerular MMP-9 catalytic activity is a com-
mon pathway of albuminuria in DN and explain the reason
why TGF-b-neutralizing antibody attenuated glomerular
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sclerosis but not albuminuria in previous DN studies.23,24

Bai et al.25 reported that the cultured podocytes have an
increased MMP-9 secretion when incubated in high-glucose
medium for 2–3 days, and the catalytic activity returns to
normal after 5 days of incubation. In our experiments, high-
glucose culture condition tends to increase MMP-9 catalytic
activity, but at a modest level, especially when compared with
other DM-related cytokines. ILK has been proven to regulate
cell adhesion and ECM accumulation.26 ILK has been shown
to have a central role in integrin-mediated cell signaling and
is involved in the cross talk between GBM and the specialized
slit diaphragm.27 ILK expression is induced in glomeruli of
various diseases with typical podocyte lesions of foot process
effacement and GBM denudation, including DN.28,29 Under
diseased conditions, ILK outside-in signaling senses the ECM
microenvironment change, induces cell dedifferentiation, and
activates an inside-out signaling to reduce podocyte matrix
adhesion.20,21,30 In the current study, we observed that
MMP-9 upregulates ILK and promotes podocyte dedifferen-
tiation, suggesting that MMP-9 modulates podocyte dedifferen-
tiation through the ILK pathway. The pathological hallmarks of
DN are characterized by excessive amassing of ECM
with thickening of GBM and increased amount of mesangial
matrix. Numerous studies have documented hyperglycemia,
advanced glycoprotein end-products, angiotensin II, TGF-b,
VEGF, interleukins, and TNF-a involvement in the DN, and
most of these signal pathways ultimately activate tran-
scription factors affecting glomerular ECM accumulation.31–34

It was initially thought that MMPs may be globally protective
through antagonism of ECM accumulation, but growing
evidence indicates that MMPs are also involved in
inflammation and tissue fibrosis in kidney disease.35 For
example, transgenic MMP-2 overexpression in renal tubular
cells causes renal fibrosis in mice,36 although a study has also
proven that MMP-9 can induce murine renal tubular
dedifferentiation in vitro.19 A study from clinical kidney
biopsy samples also illustrated that increased MMP-9
expression is an independent risk factor for kidney fibrosis.37

Genetic MMP-9 ablation has been reported to have a beneficial
effect on ischemia reperfusion nephropathy, nephritic serum
nephritis, and obstructive nephropathy animal models.38–41

Although the pathological role of MMP-9 in DN has been
widely speculated upon, to the best of our knowledge, we are
the first group to use genetic knockout mice to investigate its
role in DN. A previous study found a decreased MMP-9
activity of total kidney homogenesis and suggested that the
decreased MMP-9 activity may be the cause of ECM
accumulation in DN.42,43 By contrast, using series sieving
of renal cortex to isolate glomeruli, we demonstrated that
MMP-9 activity is actually enhanced in glomeruli from
diabetic kidney. According to the immunofluorescence
staining on diabetic mouse kidney, we believe that the
discrepancy occurs because MMP-9 is mainly expressed in
glomeruli. Surprisingly, we found that MMP-9� /� mice had
attenuated DN severity. To confirm our finding that MMP-9
ablation attenuated GBM thickening in DN, we tested the

effect of MMP-9 on cultured podocytes because they
are the principal glomerular cell type involved in the
GBM formation and assembly. By electron microscopic
examination, we found that MMP-9 stimulates podocyte
synthesis of new ECM. In the past, it has been hypothesized
that podocytes secrete MMP-9 to digest accumulated ECM in
DN, but our study suggested that it may be a maladaptation,
and chronic MMP-9 activation makes the GBM less compact
and progresses thickening.

Pharmacological broad-spectrum MMP inhibition has
been reported to reduce albuminuria and glomerular
sclerosis in animal DN models,44,45 but the beneficial effect
of selective MMP inhibition is lacking. In contrast to our
finding, a group recently reported that genetic MMP-2
knockout mice had less glomerular hyperfiltration but with
increased ECM accumulation in DN.46 Although MMP-2 and
MMP-9 are both grouped in type IV collagenase, they have
different nonstructural ECM subtracts.35 Of interest, MMP-9
has been documented to activate TGF-b in vitro.47 With
regard to enzyme regulation, MMP-2 is constantly expressed
and regulated by proenzymatic activation, although, by
contrast, MMP-9 is a highly inducible enzyme, which is
regulated mostly at the transcription level. In current
experiments, the six DM-related cytokines did not induce
MMP-2 activation in cultured podocytes.

Some,48 but not all,49 clinical studies indicate that DM
patients have increased serum MMP-9 concentrations. Our
study illustrated that DM patients have an elevated urinary
MMP-9 concentration even earlier than the onset of
microalbuminuria. The molecular weight of MMP-9
(92 kD) is much larger than albumin (66 kD), which means
it is very unlikely that urinary MMP-9 is filtrated from
serum. The tissue staining of DN samples also illustrated that
kidney MMP-9 is produced mainly from podocytes.

There are several limitations of the current study. First,
although renal function is normal at 9 months of age, C57BL/
6J strain MMP-9� /� mice have been reported with increased
interstitial fibrosis and tubular dilation at 12 months of age.50

As C57BL/6J strains are relatively resistant to the
development of DN,51 we used FVB strain MMP-9� /� and
MMP-9þ /þ mice in the current study because they develop
marked albuminuria and hyperfiltration after diabetes.51

When the mice were killed at 6 months of age, we found
that the renal function and pathology were indistinguishable
between the two nondiabetic groups; thus, this issue hardly
affects the interpretation of the current study result.
Although one may question the role of cell dedifferen-
tiation in renal disease,52,53 it is clear that MMPs are a part of
its regulation under experimental conditions, and MMP-9
has also been found to induce renal tubular cell dedifferen-
tiation.18,19 We found that DM patients have elevated urinary
MMP-9 before the onset of microalbuminuria, and there are
two potential explanations of this finding. It might only be
the relevant to the common early renal adaptation of
hyperglycemia, or the elevated urinary MMP-9 is actually
an early marker or even a mediator for DN. Further clinical
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studies are needed to determine whether baseline urinary
MMP-9 is an independent parameter of albuminuria and
GFR decline. Another concern may be related to the source
of intrarenal MMP-9. Kluger et al.41 recently reported that
leukocyte-derived MMP-9 has a crucial role in macrophage
recruitment in nephrotoxic serum nephritis. MMP-9-
deficient mice were shown to have reduced macrophage
infiltration and pathological change, and bone marrow
transplantation with wild-type–derived cells restored the
disease severity. As leukocytes are MMP-9-rich cells, it is
not surprising that deficiency of MMP-9 may suppress
leukocyte-induced proinflammatory response in acute
nephrotoxic nephritis. In contrast to the acute toxic
nephritis, DN is a chronic disease and has no necrotic
tissue; the macrophage infiltration is also modest in DN.
Our data also demonstrated that MMP-9 is mainly produced
from podocytes in diabetic kidney (Figure 1). Despite these
limitations, our study still showed that MMP-9 is involved in
DN development. Uncontrolled hyperglycemia enhances the
activation of several inflammatory cytokines in the kidney
and induces abnormal ECM synthesis, whereas some of these
cytokines further stimulate podocytes to secrete MMP-9 to
balance ECM accumulation. However, chronic activation of
MMP-9 disrupts slit diaphragm integrity, induces podocyte
dedifferentiation, and reduces cell–matrix adhesion. These
events eventually result in GBM thickening, glomerular
hypertrophy, and albuminuria in DN (Figure 8).

Conclusions

Taken together, our findings indicate that intraglomerular
MMP-9 activation has an important role with regard to
albuminuria and subsequent kidney damage in DN. Selective
MMP-9 inhibition attenuates DN in an animal model and
may be an attractive treatment strategy to treat DN in clinical
practice.

MATERIALS AND METHODS
DN animal model
To clarify the effects of MMP-9 on DN, we created type 1 diabetes in
MMP-9� /� mice and their wild-type controls and evaluated the
subsequent diabetic kidney damages. MMP-9 � /� (Jax lab stock
number 007084, FVB strain) and their FVB control MMP-9þ /þ

mice were purchased from the Jackson Laboratory (Bar Harbor,
ME). Diabetes was induced by daily intraperitoneal injections of
streptozotocin (50 mg/kg�5 days) in 8-week-old male mice.
Induction of DM was confirmed with fasting blood sugar
4300 mg/dl 2 weeks after streptozotocin injection. Diabetic mice
received a small dose of insulin (0.1 U) injection every other day;
this dose of insulin does not affect blood sugar significantly, but
it is able to prevent ketoacidosis and body weight loss. The mice
were divided into four groups: the MMP-9þ /þ control group,
MMP-9þ /þ DM group, MMP-9� /� control group, and MMP-9� /�

DM group (n¼ 12 for each group). All mice were housed under
standard conditions with normal food, and were killed 6 months
after induction of diabetes. All experimental procedures involving
animals were approved by the institutional animal care committee
of National Yang-Ming University, and complied with the ‘Care and

Use of Laboratory Animals published by the US National Institutes
of Health (NIH Publication No. 85-23, revised 1996).

GFR and albuminuria measurement
Mouse GFR was assessed by fluorescein isothiocyanate-inulin
clearance method, as previously described.54 For measurement of
the urine albumin, mice were placed in metabolic cages. The 24-h
urine was centrifuged and the albumin level was determined using a
commercialized enzyme-linked immunosorbent assay (ELISA Kit,
Albuwell M kit, Exocell, Philadelphia, PA).

Measurement of histopathological change
Mice were killed after 6 months of diabetes, and the kidneys were
carefully removed and weighed. The severity of DN was evaluated by
glomerular hypertrophy, mesangial expansion, and GBM thickness. Ten
randomly selected glomeruli from each mouse were used to measure
glomerular volume, which was calculated by serial sections, as described
previously,55 The severity of these histological changes was assessed
using a digital camera and the MetaMorph software (Molecular Devices,
Sunnyvale, CA). A part of the kidney tissue was series sieved in order to
retrieve glomeruli for protein expression and catalytic activity analysis.

Podocyte culture and treatment
Conditional immortalized murine podocytes were kindly provided
by Professor Peter Mundel. Podocytes were cultured as previously
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Figure 8 | Overview of the potential pathophysiological
mechanisms of matrix metalloproteinase-9 (MMP-9) in diabetic
nephropathy (DN). The diagram shows the crucial role of MMP-9 in
the development of DN. In the diabetic kidney, transforming factor-
b1 (TGF-b1), vascular endothelial growth factor (VEGF), tumor
necrosis factor (TNF)-a, angiotensin II, and advanced glycoprotein
end products (AGE) induce extracellular matrix (ECM) accumulation.
Among these cytokines, TGF-b1, VEGF, and TNF-a stimulate podocyte
MMP-9 secretion to digest excess ECM, but it is a maladaptation.
Chronic intraglomerular MMP-9 activation induces podocyte
dedifferentiation, interrupts podocyte cell integrity, and stimulates
podocytes to synthesize new GBM. These functional alterations
eventually result in albuminuria and the typical pathological changes
seen in DN.
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described.56 Briefly, in permissive condition, growth medium
consisting of RPMI 1640 containing 10% fetal bovine serum
supplemented with 50m/ml interferon-g in 33 1C supported cell
proliferation. After switching the cells to a medium lacking INF-g at
a temperature of 37 1C, the cells exited the cell cycle and started
differentiation. For enhancement of nephrin expression, vitamin-D
(100 nmol/l) and all-trans retinoid acid (1mmol/l, Sigma-Aldrich,
St Louis, MO) were added 7 days after thermoshift in part of
the experiments.57 For overexpression experiments, an MMP-9
plasmid (pCMV-Sport6.1) constructed by cloning a 2.2-kb MMP-9
complementary DNA fragment (cDAN clone MGC: 54599 IMAGE:
6309245) was transfected by Lipofectamine LTX under permissive
conditions. All cell experiments were performed 14 days after
thermoshift and triplicated.

Zymography
To examine the effects of various diabetic mediators on MMP-9
secretion, podocytes were treated with D-glucose, advanced glyco-
protein end-product bovine serum albumin (R&D Systems,
Minneapolis, MN), angiotensin II (Sigma-Aldrich), VEGF (ProSpec,
East Brunswick, NJ), TNF-a (R&D Systems), and TGF-b1 (R&D
Systems), because these cytokines are proven to increase and to have
an important role in DN. The conditioned media were collected to
analyze the MMP-9 activity by gelatin zymography. A constant
amount of conditioned medium was loaded onto 8% sodium
dodecyl sulfate-polyacrylamide gel containing 0.1% gelatin. After
electrophoresis, the gel was incubated at 37 1C for 18 h in a
developing buffer containing 50 mmol/l Tris-HCl, 0.2 mol/l NaCl,
5 mmol/l CaCl2, and 0.02% Brij 35. The gel was then stained with
Coomassie blue. Proteinase activity was detected as unstained bands
on a blue background representing areas of gelatin digestion.

Monolayer cell permeability assay
Podocyte monolayer cell permeability reflects albuminuria in vitro
and was measured as described previously.58 Briefly, podocytes
(2�105 podocytes per well) were grown on type 1 collagen–coated
transwell plates (0.4-mm pore; Corning, Tewksbury, MA) in
nonpermissive conditions for 14 days. Cells were incubated with
rMMP-9 (EMD Millipore, Billerica, MA) for 12 and 36 h. Cells were
washed twice with phosphate-buffered saline supplemented with
1 mmol/l each of MgCl2 and CaCl2. The upper compartment was
filled with 0.25 ml of RPMI 1640 alone, and the lower compartment
was filled with 0.5 ml of RPMI supplemented with 40 mg/ml bovine
serum albumin and incubated for 4 h at 37 1C. Total protein
concentrations in the upper compartment were determined using a
Bio-Rad protein assay (Hercules, CA).

Western blot analysis and reverse transcription-polymerase
chain reaction
Proteins in cell and glomerular lysates were separated on sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and detected by
western blot analysis according to the established protocols. The
primary antibodies used were as follows: anti-nephrin (Santa Cruz
Biotechnologies, Santa Cruz, CA), anti-MMP-9 (Chemicon, Billerica,
MA), anti-TGF-b (Abcam, Cambridge, MA), anti-VEGF (Santa Cruz
Biotechnologies), anti-angiotensin II (Genetex, Irvine, CA), anti-
TNF-a (Abcam), anti-ILK (Abcam), anti-fibroblast-specific protein-1
(Dako, Hamburg, Germany), anti-P-cadherin (R&D Systems), anti-
fibronectin (Santa Cruz Biotechnologies), anti b-actin, and anti-
tubulin. For reverse transcription-polymerase chain reaction analysis,

total RNA was extracted with the TRIzol Plus RNA purification kit
(Invitrogen, Carlsbad, CA). First strain complementary DNA was
synthesized from total RNA using oligo (dT) as primers. Real-time
PCR and semiquantitative evaluation of target mRNA transcripts
were performed using the following primers: fibronectin, nephrin,
P-cadherin, ILK, fibroblast-specific protein-1, and actin. The primer
pair sequence is listed in supplement.

Immunofluorescence staining
Podocytes grown on type I collagen–coated coverslips or kidney
cryosections were fixed for 15 min at room temperature in 4%
paraformaldehyde, followed by permeabilization with 0.4% Triton
X-100 in phosphate-buffered saline for 10 min. After blocking with
5% bovine serum albumin in phosphate-buffered saline for 30 min,
samples were incubated with primary antibodies against zonula
occludens-1 (Invitrogen), nephrin, fibronectin, P-cadherin, ILK,
and fibroblast-specific protein-1. Nonimmune immunoglobulin G
served as a negative control, and no staining was observed. The
slides were viewed under an Olympus FV10i confocal microscope
(Olympus, Tokyo, Japan).

Electron microscopy
Mouse kidney cortex and cultured podocytes growing on transwell
membranes were fixed using 2.5% glutaraldehyde, followed by 0.5%
OsO4. They were then series dehydrated and embedded according
to routine procedures. Thin sections were viewed and digitally
recorded using a transmission electron microscope (JEM-1230,
JEOL, Tokyo, Japan). The GBM thickness was determined by the
orthogonal intercept method.59 In essence, this applies a correction
factor for oblique sectioning to the harmonic mean of a large
number of random orthogonal intercept measurements of the GBM
of two or more glomeruli, as described by El-Aouni et al.60 In the
current study, five glomeruli of each mouse were reviewed.

Human urinary and kidney biopsy samples
To identify the source of MMP-9, four formalin-fixed kidney-
biopsied tissues from DN patients were costained with MMP-9
antibody (Chemicon AB19016), endothelial cell marker CD-31 (Dako),
or podocyte marker synaptopodin (Acris, Herford, Germany), whereas
normal kidney tissues from the opposite site to the tumor in two
nephrectomy patients were used as control. To compare urinary
MMP-9 concentrations, DM patients with preserved renal function
(estimated GFR 460 ml/min per 1.72 m2) and healthy controls were
enrolled in a cross-sectional study. Urine samples were spun at
3000 r.p.m. for 10 min to remove debris; urine samples with white
blood cell 410 per high-power field were excluded and supernatants
were stored at � 80 1C until use. Study subjects were categorized
into four groups: the control, the DM without microalbuminuria,
the DM with microalbuminuria, and the DM with macroalbumi-
nuria group. Urinary MMP-9 concentration was measured using the
commercially available ELISA kit (Quantikine human total MMP-9
ELISA kit, R&D Systems) and corrected for creatinine concentra-
tion. Blood biochemistry data were measured with a Hitachi 7600
chemical auto-analyzer (Hitachi, Tokyo, Japan), whereas urinary
albumin and creatinine were measured with an Olympus AU640
auto-analyzer (Olympus). Clinical serum and urinary biochemistry
measurements were performed in a College of American Patholo-
gists qualified central lab. The human study part was approved by
Taipei Veterans General Hospital Institutional Review Board, and all
enrolled subjects signed informed consent.
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Statistical analysis
All values are expressed as mean and s.d. unless otherwise specified.
Statistical analysis of the data was performed using the SPSS
software (IBM Corporation, Armonk, NY). Comparison between
groups was carried out by analysis of variance and Boferroni’s
correction. A level of Po0.05 was considered statistically significant.
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