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Abstract 

 
We consider a competitive version of the traditional capacity planning model of production with 

capacity constraints. In the general case, multiple products are produced with constrained resources and 

capacities. Production quantities are allocated across markets, and competitors also produce for these 

markets. Prices and profits depend on production and allocation decisions. We first consider a single-tier 

version of this problem without interactions with the raw material supply tier and utilize a Cournot 

framework. We next extend our model using a successive “Bertrand-Cournot” framework to include 

interactions with the raw material supplying sector whose supplies are limited, and where prices reflect 

these limitations. Such situations have recently occurred in several process industry settings including the 

petro-refining and metal processing sectors, such as steel and copper. 

 

1. INTRODUCTION 

Traditional capacity planning models are usually cast in terms of allocating scarce resources and capacity 

to competing products. They are most commonly formulated as linear programs that minimize costs for a 

single producer, with products, demand levels and prices given. However, in many process industries, 

changes in demand due to the emergence of new markets, competition, capacity constraints and 

interactions with the raw material supply tier often cause significant market effects across one or more 

product segments including changes in availability of products, price and profit. These situations occur 

frequently in sectors that produce high volume, commodity products for which capacity is expensive and 

not easily expanded. Examples can be found across a variety of process industry sectors such as petro-
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refining, petrochemicals, basic chemicals, cement, fertilizers, pharmaceuticals, rubber, paper, food 

processing and metals.  

The petro-refining industry appears to be a particularly egregious example of jockeying by crude oil 

producers and refiners to control prices and profits with results that are painful to consumers. In the first 

quarter of 2004, gasoline prices were rising sharply in the United States. Certainly, the limited supply of 

oil, exacerbated by uncertainties surrounding international oil supplies due to the Iraq war, was a major 

reason for the rise in the price of crude oil. But, an article in Business Week (Coy, 2004) noted that 

capacity constraints at refineries were also a factor. The Financial Times (McNulty, 2004) suggested that 

the lack of capacity in U.S. refineries contributed significantly to these record prices. The article went on 

to say that there had been no refineries built in the United States for 28 years, that the number of 

refineries had actually halved since 1981 and that there was little incentive for producers to add capacity 

given the average rates of return on capacity investments.  

Fuel prices in 2005 continued to rise, and the finger pointing also continued. The Organization of the 

Petrol Exporting Countries (OPEC) has historically been blamed for keeping oil scarce to raise prices. 

But, in 2005, OPEC offered to make two million more barrels of oil a day available if only it could be 

processed (Catan and Morrison, 2005). The capacity bottleneck in the refining tier was becoming 

obvious, to the point that President Bush at a White House press conference in October of 2005 called for 

more refining capacity (CNN/Money, 2005). The refiners in turn complained that their returns on 

investment in refining capacity were extremely low and risky due to the cyclical nature of the industry 

and the uncertainty over whether additional crude oil supplies would continue over a longer term to utilize 

this new refining capacity (Catan and Morrison, 2005).  

Raw material shortages have become an issue not only for oil, but for many other commodities as 

well. The rapid growth of China created significant shortages in steel and copper at the start of 2004. For 

example, the price of hot-rolled steel coil rose more than 20% and that of steel wire and rod rose by 50% 

over the first two months of 2004. As a result, downstream producers of parts and components using steel 
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were also forced to raise prices. By mid 2005, copper prices reached record highs as demand outstripped 

supply, and stockpiles were used up (Morrison, 2005). 

There are many situations in the process industry for which high capacity costs coupled with long 

planning horizons, raw material shortages and modest rates of return on investments leave producers with 

little incentive to add capacity or to carry excess capacity. In these situations, capacity constraints 

effectively lead to markets being “on allocation.” In some cases, such as the oil refining and steel 

industries, there are interactions between capacity constraints, shifts in demand curves and raw material 

availability (e.g., crude in oil-refining and scrap metal in steel).  

Traditional models of capacity planning with constrained resources formulate the problem of 

allocation of scarce resources and capacity to competing products as a linear programming model of cost 

minimization with known demand levels (Sanderson, 1978). These models are applicable in a stable 

economic environment, with low rates of change. Consequently, factories can operate in a relatively 

stable manner, with capacity and mix changes being made infrequently. However, in the last decade, we 

have seen rapid changes in many process industry sectors usually brought about by economic growth in 

emerging economies, with the consequent increases in demand. In such situations, raw material 

availability and processing capacity can both be significant constraints. Here, the traditional capacity 

planning formulations are not able to capture the competitive nature of this situation, nor the interactions 

between production quantities, capacity constraints, raw material availability and price. Consequently, it 

is doubtful whether product mix and market allocation decisions made using a single-producer cost 

minimization model could correctly reflect the interactions between decisions of competitors and the 

response of markets and prices to production quantities. Indeed, we will show that concepts such as 

Lagrange multipliers, reflecting the marginal value of capacity, can be subject to misinterpretation to the 

point of being misleading. 

In this paper, we formulate a competitive version of the traditional capacity planning model of 

production with capacity constraints. We first analyze the single-tier version of this problem without 

interactions with the raw material supply tier and utilize a Cournot framework. In this context, we were 
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able to extract closed form solutions that provide insight and structure to our subsequent analysis. In 

addition to production quantity decisions, we are also able to find Lagrange multipliers for capacity 

constraints in the competitive, profit maximization setting. The interpretation of these Lagrange 

multipliers is fundamentally different from those obtained from traditional planning models.  

We next extend our model using a successive “Bertrand-Cournot” framework to the two-tier case to 

include interactions with the raw material supplying sector where supplies are limited, and where prices 

reflect these limitations. Constraints on production capacity can effectively reduce the market power of 

the raw material supplier. However, the intensity of competition in each sector is crucially important in 

determining market power. In this case, we use small examples to provide explicit solutions that provide 

insight; larger problems require numerical solution methods. We show that it is possible to have a 

situation in which capacity is fully utilized, but for which the multiplier on capacity is zero and, yet, the 

value of a marginal expansion of capacity can still be positive. Here, Lagrange multipliers can have a very 

different interpretation then the traditional one of marginal value for increases in a constrained resource. 

We develop a computational method to solve larger problems and test this method on an illustrative 

example. This analysis also provides insight into the impact of production efficiencies (i.e., supplier’s and 

producers’ unit production costs) and market parameters (i.e., market size and customer price sensitivity) 

on prices, production quantities and profits for both the supplier and the producers’ tiers. 

This paper is organized as follows. In the next section, we review the relevant literature. In Section 3, 

we formulate the single-tier capacity planning problem under competition without interactions with the 

raw material supply tier. In Section 4, we extend our model formulation and analysis to consider a two-

tier model that includes interactions with the raw material supply tier. We also examine the special case of 

a single product, single raw material with a monopoly supplier. In this context, we consider both 

homogenous and heterogeneous producers. In Section 5, we develop a computational method to solve 

general versions of this problem with multiple producers, products and raw materials. We test this method 

on an illustrative example. In the concluding section, we summarize the major results of the paper and 

suggest future research directions. 
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2. LITERATURE REVIEW 

There is substantial literature on capacity planning or aggregate planning decisions that address 

production mix, capacity allocation, seasonal inventory planning and distribution planning with annual 

planning horizons. Early formulations of aggregate capacity planning decisions employed linear 

programming (Hanssmann and Hess, 1960) and quadratic cost models (Holt, Modigliani et al., 1960) to 

represent the problem. Extensions of the linear programming model included its use in hierarchical 

control schemes, sometimes through column generation techniques (Lasdon and Terjung, 1971). Such 

models correspond to annual budgeting and sales planning cycles, and usually serve the purpose of inter-

functional coordination. Surveys of aggregate planning models are presented by Hax (1978) and Nam and 

Logendran (1992). However, none of this work captures the relationship between production quantities 

and prices, and the interactions between capacity constraints, shifts in demand curves and the raw 

material supply tier.  

Models of Cournot competition have a long history going back to the original paper by Cournot 

(1838). The literature on capacity constrained competition is, however, quite limited. Moreover, 

managerial issues are rarely addressed in this literature. Haskell and Martin (1994) examine the behavior 

of capacity constrained producers, and conclude that they exhibit Cournot-like behavior. Herk (1993) 

formulates a two-stage duopoly model with capacity choice followed by price competition and shows that 

capacity choices exhibit Cournot behavior. Of the papers that are similar to the setting of our work are 

Karmarkar and Pitbladdo (1993, 1994) who study a two-stage, single-tier formulation with entry at the 

first stage and multi-product Cournot competition with capacity constraints at the second stage. Our work 

differs from theirs in that we focus on the tactical (second stage) problem with fixed (given) capacity, 

permit heterogeneity of producers and consider multiple products, multiple capacity constraints and 

interactions with the raw material supply tier.  

Previous work that is closest to our model is that of Zappe and Horowitz (1993) who examine a 

multi-product, multi-market model and study the effect of capacity on competitive response under quasi-
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Cournot conjectures. In addition, they embed a capacity decision into the Cournot quantity decision. As a 

consequence, they limit their analysis to a problem with two identical producers, one product, two 

capacity levels and two markets, and restrict their investigation to the symmetric case. Further, they do 

not consider the two-tier case that includes the raw material supplier. In contrast, our emphasis is on 

developing methods to analyze planning decisions in a multi-tier setting consisting of producers and the 

raw material supplier. To this end, we focus primarily on the capacity allocation decision at the producers 

tier. We explicitly consider both the effect of short term capacity constraints on prices and production 

quantities under competition, as well as examining the impact of interactions with the raw material supply 

tier. As we show, the effect of the latter is quite significant and leads to results that are quite different 

from traditional planning models.  

 

3. THE SINGLE-TIER MODEL 

Consider m producers indexed by i ε (1, 2, . . . m) producing n commodity products indexed by j ε (1, 2, . 

. . n). Let variable qij represent the production quantity for product j at producer i and ∑=
=

m

i
ijj qQ

1
 

denote the total amount of product j available in the market. For example, in the context of the 

petrochemical industry, these producers can be considered as the refiners of crude oil (e.g. Shell, Exxon 

Mobil, Chevron, etc.), while products could be the different grades of gasoline (e.g. Regular, Plus and 

Supreme). We assume that demand for product j is characterized by an affine inverse demand function pj 

= aj – bjQj, where pj is the price for product j, while aj and bj are parameters. Here, aj/bj can be considered 

as the market size and 1/bj can be regarded as the customer price sensitivity. This can also be viewed as 

an affine approximation of the actual demand function and has been commonly used in the literature 

(Karmarkar and Pitbladdo, 1993; Corbett and Karmarkar, 2001). We are given: 

vij: production cost per unit of product j at producer i ($/unit), 

cij: capacity required per unit of product j at producer i (capacity units/unit), and 
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di: total capacity available at producer i. 

We assume quantity competition to model capacity planning decisions under competition,  as price 

competition with more than one producer will lead to marginal cost pricing. We utilize a Cournot 

framework in which producers make decisions on production quantities by allocating capacity across 

products and by choosing how to allocate production across markets. Given a demand curve, this 

establishes product prices. 

The Cournot framework is the standard mechanism used to study competitive interactions with a 

small number of producers (i.e., oligopoly). This framework assumes that one producer observes or 

forecasts the production of the other producer and is a “one shot game”, the profits of producer i is its 

payoff and the strategy space of a producer i is the possible production quantities that can be produced. At 

equilibrium, each producer produces a profit maximizing output, given its knowledge of the other 

producer’s production quantity.  

The Cournot framework is particularly appropriate for our process industry setting for several 

reasons. First, due to high fixed costs of entry, there are usually only a small number of producers 

producing any particular type of commodity product. Second, environmental regulations typically require 

full public disclosure of production quantities and capacities (For instance, see Energy Information 

Administration, 2006). Finally, short term capacity is very expensive to change so that the interactions 

between producers can be regarded as a “one shot game”. In the Cournot framework, producer i solves 

the following problem: 

(P1)  ∑ −=Π
=

n

j
ijijji qvpMax

1
}){(   (1) 

Subject to: 

i

n

j
ijij dqc ≤∑

=1
,    (2) 

0≥ijq , ∀j.    (3) 
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Objective function (1) maximizes profits at producer i by choosing the appropriate production quantity, 

qij, given the production quantities at the other producers (i.e., qpj, ∀p ≠i). Constraint (2) ensures capacity 

limits at producer i, while non-negativity constraints are enforced by (3).  

Next, we substitute )(
1

∑−=
=

m

i
ijjjj qbap in (1). Note that (P1) is a concave optimization problem. 

We then relax constraint (2) by introducing Lagrange multiplier λi to get the following dual problem for 

the ith producer: 

∑ −∑ −−=Π
= =≥≥

n

j
ijiji

m

i
ijijjj

q
D
i qcvqbaMax

iij 1 10,0
}){( λ

λ
+ iidλ   (4) 

From (4), the sufficient first order conditions with respect to qij can be found by setting 0=
∂
Π∂

ij

D
i

q
, so 

that: 

 .,,2 ji
b

cva
qq

j

ijijj

it
tjij ∀

−−
=∑+

≠

λ
     (5) 

 

Proposition 1: There exists a unique vector of equilibrium order quantities jiqij ,,* ∀ . 

Proof. Observe from (5) that 1≤∑ ∑ ∑
≠j i it tj

ij

q
q

δ

δ
. By Friedman (1986), page 84, Theorem 3.4, there exists a 

unique equilibrium. ■ 

 

In light of Proposition 1, we can find the equilibrium production quantities jiqij ,,* ∀ , by solving the 

system of equations defined in (5) to get:  

j

it
tjttjijiijj

ij bm

cvcvma
q

)1(

)}()({
*

+

∑ +++−
= ≠

λλ
   ∀ i, j.    (6) 
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The total quantity *
jq  of product j in the market is given by: 

j

i it
ijiijtjttj

j

j

i
ijj bm

cvmcv

bm
ma

qq
)1(

)}()({

)1(
**

+

∑ ∑ +−+
+

+
=∑= ≠

λλ
.    (7) 

As expected, it can be observed from (6) and (7) that for a given j, *
ijq and *

jq  increase when market size 

increases, and when production costs, capacity requirements and costs of capacity expansion increase for 

competing producers (i.e. ∀t, t ≠ i). On the other hand, *
ijq  and *

jq  decrease when the number of 

competing producers and customer price sensitivity increase, and when capacity requirements, costs of 

capacity expansion and production costs increase at producer i. The equilibrium price *
jp  for product j is 

given by: 

)1(

)}()({
**

+

∑ ∑ +−+−
=∑−= ≠

m

cvmcva
qbap i it

ijiijtjttjj

i
ijjjj

λλ
. ∀ j   (8) 

It can be seen from (8) that the equilibrium price increases as market size increases, but decreases as the 

number of producers increases. To find the marginal value of capacity expansion under the equilibrium 

production quantities, we can use (5) to find iλ , the Lagrange multiplier corresponding to producer i as: 

ij

it
tjijjijj

i c

qqbva ∑+−−
= ≠

)2( **

λ .        (9) 

This shows that for a given producer, the Lagrange multiplier representing the marginal value of capacity 

expansion is increasing with market size for the product, but decreasing with production costs and 

production quantities at this producer. In addition, observe that the marginal value of capacity expansion 

at any producer is reduced by the total equilibrium production quantities produced by the competitors. 

This effect is not captured by the traditional, non-competitive Lagrange multiplier. 
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Next, we compare the marginal value of capacity expansion and the equilibrium production quantities 

and prices with the Non Competitive (NC) or monopolistic case. To perform this analysis, we set i= 

(NC), m = 1 in (6) and (8) to get the production quantities and prices in this case as: 

j

jNCNCjNCj
jNC b

cva
q

2
)()()(*

)(
λ−−

=        (10) 

2
)()()(*

)(
jNCNCjNCj

jNC
cva

p
λ++

=        (11) 

 
Proposition 2. When the capacity constraint is not binding and when production costs are equal across all 

producers, the monopolist produces less of the product at a higher price. 

Proof. Let ivvv jNCijj ∀== ,)( represent the production cost for product j, which is invariant across m 

producers. When the capacity constraint is not binding, jiNCij ,,0)( ∀== λλ . Under these assumptions 

and using (7) and (10), we get 2,
)1(

*
)(

* ≥∀>








 −

+
= mq

b
va

m
mq jNC

j

jj
j . It then follows that 

2,*
)(

*
)(

** ≥∀=−<−= mpqbaqbap jNCjNCjjjjjj .■ 

 
4. THE TWO-TIER MODEL 

In this section, we extend the single tier model to incorporate interactions with the raw material supplying 

sector, where supplies are limited, and where raw material prices reflect these limitations. This situation 

occurs in oil production, where the supply of crude is often tightly controlled by a group of countries 

(e.g., OPEC). It also occurs in a number of other industries, for which the item in limited supply could be 

a raw material commodity like copper, a rare material like uncut diamonds or a manufactured product like 

DRAM chips. To model this case, we consider a monopolist price setting supplier and consider r raw 

materials indexed by k ε (1, 2, . . . r). Further, let pk represent the price of these raw materials, kv  

represent production costs per unit of the raw material and rijk be a scale factor representing the number of 



 11

units of raw material required for the production of a unit of product j at producer i. In this case, producer 

i considers the following problem: 

(P2)  }))({(
11

ij
r

k
ijk

k
ijj

m

j
i qrpvpMax ∑+−∑=Π

==
   

Subject to: 

i

n

j
ijij dqc ≤∑

=1

,       (12) 

0≥ijq , ∀j.       

Note that (P2) is identical in structure to (P1) with vij replaced by )(
1

∑+=
=

r

k
ijk

k
ijij rpvv . Therefore, the 

first order conditions for (P2) can be obtained by replacing vij with ijv  in (5). Similar to Proposition 1, we 

can show that equilibrium exists and is unique. If pk, ∀k is given, then the equilibrium production 

quantities and prices can be found by replacing vj with jv in (6) through (8). However, finding pk is 

intricate and requires constructing the demand function )( kk pQ  for each raw material k, and then 

solving the supplier’s problem:  

(P3)  )}(){(
1

kkkkr

k

o pQvpMax −∑=Π
=

    (13) 

Subject to: 

or

k

kkk dpQc ≤∑
=1

)( ,      (14) 

0≥kp .        

Problems (P3) and (P2) can be considered as a successive “Bertrand-Cournot” framework. In (P3), the 

supplier sets raw material prices to maximize profits subject to capacity constraints on raw material 

production. At this price, the raw material production quantity equals the total requirements across all 

producers. Given these raw material prices, the producers solve the Cournot game (P2) to determine the 

optimal production quantities by allocating capacity across a set of products. Given a demand curve for 
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the product, this establishes prices for the end customer. The successive “Bertrand-Cournot” framework is 

similar in concept to the successive Cournot framework commonly used in the literature (Machlup and 

Taber, 1960; Greenhut and Ohta, 1979; Abiru, 1988; Corbett and Karmarkar, 2001). However the 

successive Cournot framework cannot be always employed in our context, as in general, the raw material 

demand function )( kk pQ  may not be invertible. 

To solve (P3), we first need to construct )( kk pQ , ∀k. To develop this function, let 

∑∑
= =

=
m

i

n

j
ijijk

k qrQ
1 1

 represent the total amount of raw material k required across all producers. We can 

replace vj with jv in (6), use the resulting expression in ∑∑
= =

=
m

i

n

j
ijijk

k qrQ
1 1

to construct )( kk pQ . We can 

then substitute function )( kk pQ  into (13) and (14) to solve (P3) to find the values of pk. This can then 

be used to calculate jv . Finally, the equilibrium producer’s quantities and prices can be calculated by 

employing (6) through (8) with this calculated value of jv  and the condition i
n

j
ijij dqc =∑

=1

* , ∀i. In 

Section 5, we develop an efficient method to execute this procedure for large real problems. However, 

this procedure does not provide insight into how prices, production quantities and capacity constraints 

interact across producers and with supplier prices, production quantities and capacity constraints. To 

develop this understanding, we next consider smaller versions of this problem.  

 
4.1 THE SINGLE RAW MATERIAL, SINGLE PRODUCT PROBLEM 

There are some very significant strategic interactions that occur between the raw material supplier tier and 

the product processing tier. Some of these interactions are best revealed by examining simplified versions 

of the problem. As a start, we consider the problem in which there are multiple producers making a single 

product with a capacity constraint, and in which there is a single raw material supplied by a monopolist 
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supplier. This setting allows us to derive insights into the relationship between capacity constraints and 

supply decisions and into the interpretation of Lagrange multipliers in a multi-tier competitive setting. 

In the context of this simplified problem, we are able to demonstrate that, when all producers are 

homogenous with respect to capacity limits, there are systematic situations for which the Lagrange 

multipliers for the capacity constraints are zero, but a marginal increase in capacity can result in positive 

benefits for the producers. In short, the usual interpretation of Lagrange multipliers is not valid. We 

further show that when producers are heterogeneous and have varying capacity constraints, the Lagrange 

multipliers are generally not zero, but, again, their interpretation requires care. We show that in the latter 

case there is a critical marginal producer, whose capacity constraint has a significant effect on the entire 

production tier.  

 
4.1.1 Homogenous Capacity Across Producers 

Consider the scenario in which there are m producers in the production tier, a single product is 

manufactured and all producers have equal variable manufacturing costs and equal capacity so that vi = v 

and di = d , ∀i = 1,2, …, m. In addition, there is a single raw material required (i.e., k = 1), and we can 

assume without loss of generality that one unit of the raw material is required for one unit of the product 

(i.e., r = 1). Further, let p0 represent the price of this raw material. The problem for producer i is: 

 

(P4)  }))({(~ 0
i

i
ii qpvqbaMax +−∑−=Π    

Subject to: dqi ≤  and 0≥iq . 

 

The supplier considers the following problem: 

 

(P5)  )}(~){(~ 00 pQvpMax oo −=Π  

Subject to: 00 )(~ dpQ ≤ , and 00 ≥p . 
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Proposition 3. The only possible solutions for (P4) are dqi =*  ∀ i, or dqqi <= **  ∀ i. 

Proof. Suppose not, dqi =*  ∀ i ≠ j and dq j <* , or **
ji qq > . Then, 

0)(2 0

,

**

, **
≥+−∑−−−=

∂
Π∂

≠==
pvqbbqbqa

q jip
pji

qqqqi

i

jjii

, 

0)(2
,

0**

, **
=∑ +−−−−=

∂
Π∂

≠== jip
pij

qqqqj

i pvqbbqbqa
q

iijj

.  

But, this is a contradiction, if **
ji qq > . Therefore, the result holds.■  

 

Proposition 3 implies that if the supplier has capacity mdd >0 , then they would sell at price *0 pp = , 

so that at this price, each producer would order d and the total supplier production quantity corresponds to 

md. When mdd ≤0 , then the supplier would sell at price op , so that vapp o −≤≤* . At this price, 

each producer orders *q , where dq ≤* and the total raw material production quantity is *mq . Figure 1 

shows the demand function faced by the monopolist supplier. 

INSERT FIGURE 1 ABOUT HERE 

To determine *q  and *p , we consider the problem for producer i and note that due to Proposition 3, 

this now reduces to qpvbmqa o
i )( −−−=Π . The optimal production quantity *q  can be obtained by 

setting 0=
∂
Π∂
q

i , so that 
)1(

)( 0
*

+
−−

=
mb

pvaq . The total quantity of product in the market is 

b
pva

m
mmqQ )(

)1(

0
* −−

+
== . From Figure 1, note that *0 pp =  is chosen so that 
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md
b

pva
m

mQ =
−−

+
=

)(
)1(

*
. This implies that dmbvap )1(* +−−= . We next analyze the 

marginal value of capacity expansion in this context. 

 

Proposition 4. The producers’ Lagrange multipliers are identically zero, i.e., .,0 ii ∀=λ  

Proof. Observe from Figure 1, that the maximum production d for each producer is achieved 

when dmbvapp )1(*0 +−−== . Thus, when *0 pp > , d
mb

pvaq <
+
−−

=
)1(

)(*
0

. This implies that 

the producer’s capacity is not exceeded and by Proposition 3, this is true for all producers. Therefore, 

each producer’s Lagrange multiplier, iλ , which measures the marginal value of capacity expansion will 

always be zero for all producers. ■ 

 

Next, consider a situation in which we increase each producer’s capacity by ∈ , 0∈→  so that 

equilibrium is maintained and so that there are no fixed costs of capacity expansion. The following 

proposition shows that even a small increase in capacity will result in increased profits for the producer, if 

there is sufficient supply to use this capacity.  

 

Proposition 5. There is a positive change in the ith producer’s profit when its capacity is increased by 

∈, 0∈→ . 

Proof. Let )(~ dΠ  represent the producer’s profits when capacity is d and )(~ ∈+Π d  represent the profit 

when capacity is increased to d + ∈. Then: 

bddpvbmdad 2*)()(~ =−−−=Π  and bddpvdbmad 2)()*)()(()(~ ∈+=∈+−−∈+−=∈+Π ,  

so that 02)(~)(~
lim

0
>=

∈
Π−∈+Π

∈→
bddd

.■ 
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If a producer solves (P4) in a myopic single-tier manner, as expected by Proposition 4, the Lagrange 

multiplier would be zero and they could conclude that the marginal value of capacity expansion is zero. 

However, as shown by Proposition 5, this conclusion is not valid if we consider multi-tier effects. 

Propositions 4 and 5 together imply that that the usual interpretation of Lagrange multipliers is not valid 

in this competitive, multi-tier context. 

We now consider the supplier. The supplier’s initial profit is 

mdvdmbvamdvpmd ooo ))1(()*()( −+−−=−=Π . When the supplier changes capacity to meet 

the increased supply requirement of ∈ by each of the m producers, their new capacity is )( ∈+dm . The 

resulting profit is now )()))(1(())(( ∈+−∈++−−=∈+Π dmvdmbvadm oo . The change in profit 

due to this capacity change is dmbmmpmddm oo
)1(*)())((lim

0
+−=

∈
Π−∈+Π

∈→
, where 

dmbvap )1(* +−−= . Therefore, 0)())((lim
0

>
∈

Π−∈+Π
∈→

mddm oo
, if )1(* +> mdbp . This will 

hold when the optimal supplier’s price is sufficiently high, which would entice the supplier to marginally 

expand capacity and sell more product or when the producer’s capacity d is sufficiently low providing the 

basis for capacity expansion. This analysis shows that it could be profitable for both producers and the 

supplier to expand capacity by a small amount. However, were the producers to only consider the myopic 

problem (P4), by Proposition 3, they might erroneously conclude that the marginal value of capacity 

expansion is zero. This could lead to the scenario when both the supplier and producers may not even 

marginally increase their capacity, when this could be profitable for both of them. 

 
4.1.2 Heterogeneous Capacity Across Producers 

Now consider a scenario in which capacity differs across the producers, but without loss of generality the 

producers still have identical variable manufacturing costs. The problem for producer i is now given by  

(P6)  }))({(ˆ i
i

ii qpvqbaMax +−∑−=Π    
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Subject to: ii dq ≤  and 0≥iq . 

The supplier considers the following problem: 

 

(P7)  )}(ˆ){(ˆ 0pQvpMax ooo −=Π  

Subject to: 00 )(ˆ dpQ ≤  and 00 ≥p . 

Note that (P7) is similar in structure to (P5), but the imputed demand function )(ˆ 0pQ is different. Figure 

2 shows the demand function for this case. 

INSERT FIGURE 2 ABOUT HERE 

We next explain how Figure 2 is constructed by considering what happens as raw material price 0p  

changes. Without loss of generality, assume that producers are indexed in order of increasing capacity; 

i.e. di ≤ dj if i < j. When vap −>0 , no producer will produce a positive quantity and Q = 0. As the 

price 0p  is lowered below a-v, by Proposition 3 and the subsequent analysis, all producers begin to 

produce and they will make the same production decision
)1(

)( 0

+
−−

=
mb

pvaqi , so that the demand 

function for the raw material is 
b

pva
m

mmqpQ i
)(

)1(
)(

0
0

1
−−

+
== . The corresponding inverse 

demand function is Q
m

mbvaQp )1()(1
+

−−= . The demand function will hold until producer i = 1 

reaches its capacity limit first. That limit is reached at 0
1p  such that 1

0
1

1 )1(
)(

d
mb

pva
q =

+

−−
=  or when 

1
0
1 )1( dmbvap +−−= . At this price, all producers make the same quantity decision, so that the total 

raw material quantity is Q1 = md1. This implies that the demand function for the raw material takes the 

form of the linear line segment for price 0p , such that vapp −≤≤ 00
1 .  
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As price 0p  is reduced below 0
1p , producer i = 1 remains at capacity so only the remaining (m – 1) 

producers continue to increase production. So the demand function for the raw material now becomes 

b
pbdva

m
mpQ

)()1()(
0

10
2

−−−−
=  and the corresponding inverse demand function is 

Q
m

mbmdvaQp
)1(

)( 12 −
−−−= . The demand function will hold until producer i = 2 reaches its 

capacity limit, reached at 0
2p  such that 2

0
21

2
)(

d
bm

pbdva
q =

−−−
=  or when 

21
0
2 bmdbdvap −−−= . At this price, the total raw material quantity is 212 )1( dmdQ −+= . Here 

again, the demand function for the raw material takes the form of the linear line segment, for prices 0p  

such that 0
1

00
2 ppp ≤≤ .  

Using the same reasoning, we can show that:  









∑ −−−
















+−
+−

=
−

=

1

1

01
2
1)(

u

i
i

o
u pdbva

bum
umpQ     (15) 

and each line segment is defined in the range )1( −<< uu QQQ , with break points 

u
u

i
iu dumdQ )1(

1

1
+−+∑=

−

=
 for u = 1 to m and 00 =Q . For notational compactness, we write 

00 )( pDCpQ uuu −= , where 


















∑−−









+−
+−

=

−

=
b

dbva

um
umC

u

i
i

u

1

1
2
1

 and 















+−
+−

=
bum

umDu
1

2
1

.  

The inverse demand function for the raw material is: 

)1(
)2()()(

1

1 +−
+−

−∑−−=
−

= um
umbQdbvaQp

u

i
iu , u = 1 to m.    (16) 
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For notational convenience, let )(
1

1
∑−−=
−

=

u

i
iu dbvaA  and 

)1(
)2(

+−
+−

=
um
umbBu , so that 

QBAQp uuu −=)( . Note that each line segment )(Qpu  is defined in the range o
u

oo
u ppp )1( −<< , 

where break points u
u

i
iu dumbdbvap )2(

1

1

0 −+−∑−−=
−

=
 for u = 1 to m and vap −=0

0 .  

Note that we will have t breakpoints, so that 0dQt ≥  and 0
)1( dQ t <− , and that we will need to 

consider t line segments of the demand function )( 0pQu . The demand function 

)}({min)(ˆ 0
1

0 pQpQ k
ttou   =

= . 

 

Proposition 6. The supplier’s problem with heterogeneous capacity across producers is a concave 

optimization problem. 

Proof. Consider the supplier’s problem with heterogeneous capacity across producers represented by 

(P7). In this problem, it is sufficient to show that )(ˆ 0pQpo is a concave function of p0. Since 

)}({min)(ˆ 00 pQpQ u
u

= , where 00 )( pDCpQ uuu −= , we get 

})({min)}({min)}({min)(ˆ 20000000 o
uu

u
u

u
u

u
pDpCpQppQppQp −=== .  

As 200 )( pDpC uu −  is concave in p0, ∀u, we get that )(ˆ 0pQpo is a concave function of p0.■ 

 

In light of Proposition 6, we can find the optimal value of (P7) using the following procedure. First, 

consider break points ),( 0
uu Qp , evaluate uuuu QvpQp )(),(ˆ 000 −=Π  and find 

)},(ˆ{ˆ 01
uuu QpMax Π=Π  and let )},(ˆ{max 00

uuus QpArgp Π= . Next, consider 

00 )( pDCpQ sss −= , the line segment representing the demand function bounded by the break points 
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),( )1( ss QQ −  Also, consider 0
)1()1(

0
)1( )( pDCpQ sss +++ −= , the line segment bounded by break 

points ),( )1( +ss QQ . Then, compute })({ˆ 200

0

2

0
pDpCMax s

p
s −=Π

≥

, 

})({ˆ 20
)1(

0

0
)1(

3

0
pDpCMax s

p
s +

≥
+ −=Π , )ˆ,ˆ,ˆ{ˆ 321 ΠΠΠ=Π Max and the optimal raw 

material price )ˆ,ˆ,ˆmax{{ˆ 3210 ΠΠΠ= Argp .  

The above analysis shows that the equilibrium solution can either lie at a break point on the demand 

curve for the supplier at which some producer w just reaches capacity, or between break points (w-1) and 

w for some w at which producers 1 to (w-1) are at capacity, while producers w to m are below capacity. 

We denote the wth producer as the marginal producer and next analyze the marginal value of capacity 

expansion at the two cases of the equilibrium solution. 

 
Case 1: Equilibrium Solution Between Break Points 

When the equilibrium solution lies between the (w-1)th and wth break point, first consider producers i = w 

to m. As these producers are not yet at capacity, ,0=iλ  ∀ i = w to m. For producers i = 1 to w-1, since 

all the producers are at capacity di, a single-tier myopic analysis of (P6) will imply that the marginal value 

of capacity expansion 0* p̂vpi −−=λ , where Qbap ˆ* −=  is the optimal product price. However, we 

show in the analysis below that this interpretation would be misleading, as it does not consider the multi-

tier effects due to interaction between the supplier and the producers. 

When the equilibrium solution is between break points, the supplier problem (P7) reduces to 

)})({(ˆ 000

00
pDCvpMax ww

p

o −−=Π
≥

. Since this is concave in p0, we can easily find 0p  by setting 

0
)})({(

0

000
=

−−

dp

pDCvpd ww  so that 
w

wow
D

DvC
p

2
)(ˆ 0 −

= , 0ˆˆ pDCQ ww −=  and Qbap ˆ* −= . 
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First, consider producer i ≤ w-1. Initially, the optimal profit for this producer is 

iii dpvpd )ˆ*()(ˆ 0−−=Π . Suppose, we increase the producer capacity by ∈, where 0∈→ , so that 

equilibrium is maintained and there are no fixed costs of capacity expansion. Then, if the supplier makes 

the additional raw material available to the producer, the optimal profit for this producer is now 

))(ˆ*()(ˆ 0 ∈+∈+−−=∈+Π iwii dBpvpd .  

Therefore, the marginal value of capacity expansion is 

=
∈

Π−∈+Π
∈→

)(ˆ)(ˆ
lim

0

dd ii
)1(
)2()ˆ*( 0

+−
+−

+−−
wm
wmbpvp . Observe that this is similar to iλ  with an 

additional factor 
)1(
)2(

+−
+−

wm
wmb , which represents the additional value of capacity expansion to this 

producer due to the competitive interactions between producers for the raw material. Note that this 

additional value increases as the number of producers who are at capacity increase (i.e., as (w-1) 

increases), so that this producer uses this additional capacity to strengthen their market position. The 

multiplier iλ  does not capture this effect and thus caution must be used when we interpret this parameter 

in this multi-tier, competitive context. 

Now consider the supplier. Initially, the optimal profit for the supplier is Qvp o
o ˆ)ˆ(ˆ 0 −=Π . If the 

supplier increases the supply of raw material to accommodate producer i, then the supplier’s profit is 

)ˆ)()(ˆ(ˆ 0 ∈+∈+−−=Π QBbvp wo
o
new . Therefore, =

∈
Π−Π

∈→

o
new

o ˆˆ
lim

0
 )ˆ( 0

ovp − -

)2(

)2
3(

)(
+−

+−
+

wm

wm
vA ow . This implies that 0

ˆˆ
lim

0
>

∈
Π−Π

∈→

o
new

o
, if 

)2(

)2
3(

)()ˆ( 0
+−

+−
+>−

wm

wm
vAvp owo . This inequality shows that it is profitable for the supplier to 

increase the raw material supply to accommodate producer i when the existing profit margin is greater 
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than a threshold. Note that as w or the number of producers who are at capacity increases, this threshold 

decreases. This is because the price reduction due to increase in supply affects only producers who are 

not at capacity and now this would impact fewer high volume producers who are not yet at capacity. This 

analysis shows that while it is possible that both the producer and the supplier can make higher profits, 

solving the myopic, single-tier problem underestimates the marginal value of capacity expansion and the 

producers, if myopic, may not choose to increase capacity. 

 
Case 2: Equilibrium Solution at the Break Points 

If we are at the wth breakpoint, then ,0=iλ  ∀ i = w + 1 to m. For producers i = 1 to w, since all the 

producers are at capacity di, a single-tier myopic analysis of (P6) implies that the marginal value of 

capacity expansion would be 0* p̂vpi −−=λ , where Qbap ˆ* −=  is the optimal price of the 

producer. Here again, we show in the analysis below that this interpretation would be misleading, as it 

does not consider the multi-tier effects due to interactions between the supplier and the producers. 

First, consider producer w. Initially, the optimal profit for this producer is 

w
o
www dpvpd )*()(ˆ −−=Π , where wbQap −=* . Suppose, we increase the producer capacity by 

∈ , 0∈→  so that equilibrium is maintained and there are no fixed costs of capacity expansion. Then, if 

the supplier makes additional raw material available to the producer, the optimal profit for this producer is 

))(*()(ˆ ∈+∈+−−=∈+Π w
o
www dbpvpd .  

Therefore, the marginal value of capacity expansion is 

=
∈

Π−∈+Π
∈→

)(ˆ)(ˆ
lim

0

dd ww
ww bdpvp +−− )*( 0 . Observe that this is similar to iλ  with an additional 

factor wbd  that represents the additional value of capacity expansion to this producer due to the 

competitive interactions between producers for the raw material. The multiplier iλ  will not capture this 
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effect and thus caution must be used when we interpret this parameter in this multi-tier, competitive 

context. 

Now consider the supplier. Initially, the optimal profit for the supplier is wow
o Qvp )(ˆ 0 −=Π . If the 

supplier increases the supply of raw material to accommodate producer w, then the supplier’s profit is 

now ))1())(2((ˆ 0 ∈+−++−∈−−=Π wmQwmbvp wow
o
new . Therefore, =

∈
Π−Π

∈→

o
new

o ˆˆ
lim

0
 

)( 0
ow vp − - wQ

wm
wmb

)1(
)2(

+−
+−

. This implies that 0
ˆˆ

lim
0

>
∈
Π−Π

∈→

o
new

o
, if 

wow Q
wm
wmbvp

)1(
)2()( 0

+−
+−

>− . This inequality shows that it is profitable for the supplier to 

accommodate producer w only when the current profit margin is greater than a threshold. Note that, 

unlike Case 1, as w or the number of producers who are at capacity increases, this threshold also 

increases. This is because there would be fewer producers to sell the additional supply, while price 

reduction due to this additional supply is felt across all producers. This analysis again shows that while it 

is possible that both the producer and supplier can increase their profits, the producer may not increase 

capacity even by a small amount, perhaps because solving the myopic, single-tier problem underestimates 

the marginal value of capacity expansion and because they are also unsure if the supplier would provide 

additional raw material. 

In both cases, predicting whether the supplier would provide additional raw material is complicated, 

as it requires knowledge of the raw material supplier’s margin and demand function, and understanding 

whether the raw material price is located at a break point or at a line segment and knowing how many 

producers are below and above this region. This, coupled with the underestimation of the marginal value 

of expansion at the producers tier, may explain in part why both producers and the supplier could be 

reluctant to increase capacity even by small amounts. Such reluctance is particularly evident in the petro-

refining industry. 
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5. COMPUTATIONAL METHOD 

We next develop a method to solve the general versions of the producer’s problem (i.e. (P2)) and the 

supplier’s problem (i.e. (P3)). If we are given raw material prices pk, k  = 1 to r, then (P2) reduces to (P1) 

with vij replaced by )(
1

∑+=
=

r

k
ijk

k
ijij rpvv . Then, using (6) the equilibrium production quantities are: 

j

it
tjt

r

k
tjk

k
tjiji

r

k
ijk

k
ijj

ij bm

crpvcrpvma
q

)1(

)}()({
11*

+

∑ +∑+++∑+−
= ≠ ==

λλ
, ∀ i, j.  (17) 

Let si be the slack variable associated with capacity constraint (12). The complimentary slackness 

conditions associated with these constraints at the equilibrium production quantities are: 

ii
n

j
ijij dsqc =+∑

=1

* ,   ∀i = 1 to m, and      (18) 

0=ii sλ    ∀i = 1 to m.       (19) 

Rather than explicitly construct the inverse demand function, )( kk pQ , required to solve (P3), we 

implicitly represent this function by defining ∑ ∑=
= =

m

i

n

j
ijijk

k qrQ
1 1

*  and introduce this as constraints along 

with (17) through (19) in (P3) to get: 

(P8)  )}){(
1

kkkr

k

o QvpMax −∑=Π
=

     

Subject to (17), (18), (19), and: 

o
r

k

kk dQc ≤∑
=1

,       (20) 

∑ ∑=
= =

m

i

n

j
ijijk

k qrQ
1 1

* ,   ∀k,   (21) 

0,, ≥ii
k sp λ ,    ∀i, k. 

 

Proposition 7. Solving (P8) is equivalent to solving (P2) and (P3). 
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Proof. Observe that (P8) consists of (P3) and definitional constraints (17) through (19) that represent the 

optimal solution of (P2) that is obtained for any value of pk, including its optimal value. Therefore solving 

(P8) is equivalent to solving (P2) and (P3).■ 

 
The following steps outline the procedure to solve (P8). 

 

Step 1: Initialization: Set  α=0, 0
iλ =0 and .0)( == αλλ ii  

Step 2: Solve: 

(P5)   )}){(
1

kkkr

k

o QvpMax −∑=Π
=

 

Subject to: (17), (20), (21) and pk ≥ 0, ∀k. 

Note that in (P5), Qk can be substituted in the objective function and in (20) using (17) and (21). This 

reduces (P5) to a standard concave quadratic programming problem in pk, which can be solved using 

commercially available software such as Matlab (MathWorks Inc. 1998). Let kp)  ∀ k represent the 

optimal solution to this problem. 

Step 3: Use kp)  in (17) to find *
ijq) , ∀ i,j. and use *

ijq)  in (21) to find kQ
)

. 

Step 4: Use *
ijq)  in (18) to compute is)  ∀i. Let P = {p \ ps) <0}. If P = { }, set 0=iλ , ∀ i and stop. 

Otherwise, set 0=iλ , ∀ Pi ∉  and ∂+=+ )()1( αα λλ ii , +∈∂ R , ∀ Pi ∈ . Finally, set ii λλ α =+ )1( , 

α  to α + 1 and go to Step 2. 

 
Proposition 8. Steps 1 through 4 provide an optimal solution to (P8). 

Proof. Observe that for any value of raw material prices kpk ∀, , the producer’s problem is a concave 

optimization problem. Therefore, the Kuhn-Tucker conditions are necessary and sufficient for this 

problem. Since this procedure enforces the Kuhn-Tucker conditions for any value of raw material prices, 

including the optimal raw material prices kpk ∀,) , this procedure provides an optimal solution to (P8). ■ 
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In light of Propositions 7 and 8, we can use this procedure to find the optimal solution to 

problems (P2) and (P3). We use this procedure in the following illustrative example. 

 
5.1 AN ILLUSTRATIVE EXAMPLE 

To better understand how production efficiencies (i.e., supplier’s and producers’ unit production costs) 

and market parameters (i.e., market size and customer price sensitivity) affect price, production quantities 

and profits at both the supplier and producers tiers, we considered a ten-producer, three-product, one-raw 

material problem. This problem size was chosen to correspond to the ten major petrochemical refining 

companies in the United States (Platts, 2006), each of whom produce three grades of gasoline (i.e., 

regular, plus and supreme) refined from crude oil (i.e., raw material).  

For this example, we first solved (P8) using Steps 1 through 4 of this procedure, which was 

programmed in Matlab. We then changed the supplier’s unit production cost from the base level in 

increments of 10% from -50% to 50%. As expected, the price of the raw material increases with an 

increase in raw material unit production costs. But this, in turn, leads to less demand for the raw material 

and, consequently, lower profits for the supplier. For the producer, an increase in raw material price 

increases the price offered to end customers. This lowers end customer demand and hence their 

production quantities for the products. However, the impact on producer’s profit depends on the 

conversion factor (i.e., rijk) representing the rate at which the raw material is consumed by the producer to 

provide the end product. In particular, profits go up for producers with lower conversion factors, while 

they go down for producers with higher conversion factors. The implications in the petro-refining 

industry are that producers could benefit from technologies that decrease conversion factors (i.e., improve 

yields) particularly when raw material (i.e., crude prices) increase. 

To understand the impact of a producer’s unit production costs on price, quantity and profit at the 

supplier and producers, we varied the value of this parameter across the three products and ten producers 

from the base level in increments of 10% from -50% to 50%. With an increase in unit production costs at 

the producer, these costs are passed on to customers and end product prices increase. This reduces end 
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product demand and consequently the producer’s production quantity. This in turn leads to a decline in 

producer’s profits. As the total production quantities decrease, demand for raw material decrease, which 

causes raw material production quantities and prices to drop. This contributes to a decline in supplier 

profits. Thus, a decrease in production efficiencies at the producers causes profits for both the supplier 

and producers to decline. 

Finally, we wanted to analyze how market size and customer price sensitivity affect price, production 

quantity and profit at the supplier and producers. Recall that the market size and customer price 

sensitivity for product j are aj/bj, and 1/bj, respectively. To vary market size for a product, we varied aj 

across the three products from the base level in increments of 10% from -50% to 50%. This analysis 

showed that as market size increased, as expected, prices, production quantities and profits increased at 

both the supplier and the producers, and the converse also holds. This seems consistent with trends in the 

petrochemical industry. Here, an increase in market size due to emerging markets like China and due to 

gas guzzling vehicles such as SUV’s (U.S. Census Bureau News, 2004), has been observed to increase 

prices, production quantities and profits for refiners and the crude oil supplier (Energy Information 

Administration, 2006). We also analyzed the impact of customer price sensitivity by varying bj across the 

three products from the base level in increments of 10% from -50% to 50%. Here, we also changed aj as 

required to ensure that market size remained unchanged. This analysis showed that as customer price 

sensitivity decreased, prices, production quantities and profits increased at both the supplier and the 

producers, and the converse also holds. Again, this seems consistent with trends in the petrochemical 

industry, in which customers seem more insensitive to gas prices due to life style choices (Victorian 

Transport Policy Institute, 2005) and this has led to an increase in prices, production quantities and profits 

for refiners and the crude oil supplier (Energy Information Administration, 2006). 

 
6. CONCLUSIONS 

We have considered a competitive version of the traditional capacity planning model of production with 

capacity constraints. We first analyzed the single-tier version of this problem without interactions with the 
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raw material supplier tier and utilized a Cournot framework. Here, producers make decisions on 

production quantities by allocating capacity across products and can also choose how to allocate 

production across markets. Given a demand curve, this establishes product prices. In this case, we were 

able to establish that a unique equilibrium of production quantities exists and were able to extract closed 

form solutions that provide insight, and structure for our subsequent analysis. In addition to production 

quantity decisions, we were also able to find Lagrange multipliers for capacity constraints in the 

competitive, profit maximization setting. The interpretation of these Lagrange multipliers representing the 

marginal value of capacity expansion is fundamentally different from those obtained from traditional 

planning models. In particular, we found that marginal value of capacity expansion at any producer is 

reduced by the total equilibrium production quantities produced by the competitors. This effect is not 

captured by the traditional non-competitive Lagrange multiplier. We also find that when capacity 

constraints are not tight and production costs are equal across producers, the total production quantities 

are higher and prices are lower in comparison to the non-competitive case. 

We next extend our model to include interactions with the raw material supplying sector for which 

supplies are limited and prices reflect these limitations. Here, we use a successive “Bertrand-Cournot” 

framework in which a monopolist supplier sets raw material prices to maximize profits so that the raw 

material production quantity equals the total requirements across all producers. Given these raw material 

prices, the producers solve the Cournot game to determine the optimal production quantities by allocating 

capacity across a set of products.  

To understand the strategic interactions between the raw material supplier and the product processing 

tier, we examine simplified versions of this problem. In particular, we consider the single-raw-material, 

single-product problem with homogenous and heterogeneous capacity across producers. When producers 

are homogenous with respect to capacity limits, there are systematic situations for which Lagrange 

multipliers for capacity constraints are zero, but a marginal increase in capacity can result in positive 

benefits for the producers. Therefore, the usual interpretation of Lagrange multipliers is not valid. We also 

show that it is profitable for the supplier to increase capacity marginally and supply to the producers when 
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the optimal price set by the supplier is high or the producer’s capacity is sufficiently low. While such 

marginal increases in capacity could be profitable to both the supplier and producers, this is not apparent 

if the producer does not consider multi-tier effects in their decision making process. 

We further show that when producers are heterogeneous with varying capacity constraints, Lagrange 

multipliers are not generally zero, but again, their interpretation requires care. In particular, we show that 

the multiplier does not capture the additional value of capacity for the producer due to competitive 

interactions between producers for the raw material used. We also show that it is profitable for the 

supplier to marginally increase capacity when the profit margin on the raw material is greater than a 

threshold; and this threshold changes with the number of producers at capacity. Here again, we find that 

while capacity expansion could be profitable for both the supplier and producers, this is not evident if the 

producer does not consider multi-tier effects in their decision making process.  

We also present a computational method to solve the general problem. We use this method on an 

illustrative example to better understand how production efficiencies at the supplier and producers affect 

production quantities and prices of the raw material and the product, and profits at the supplier and 

producer’s tiers. We also consider the impact of market size and customer price sensitivity on these 

aspects. 

This paper presents several avenues for future research. First, this problem could be extended to 

incorporate multi-period effects using inventory constraints. Second, we could consider the impact of 

yield uncertainty at both the supplier and producer tiers. Both these extensions would require significant 

modifications to the computational method to solve the general problem. Finally, another direction could 

be to extend this problem to multiple suppliers and producers. In this case, the entire structure of the 

supplier problem has to be changed, as price competition with more than one supplier would lead to 

marginal cost pricing. One plausible approach could be to change the supplier problem to quantity rather 

than price competition. However, the optimal solution for such a problem may not be always computable, 

as in general, the raw material demand function may not be invertible. We hope this paper provides the 

stimulus and building blocks to examine these new, exciting and challenging avenues for future research. 
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FIGURE 1.  Demand Function for the Supplier With Homogenous Producers 

 

FIGURE 2.  Demand Function for the Supplier With Heterogeneous Producers 
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