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ABSTRACT OF THE THESIS

Generative Model for Change Point Detection

in Dynamic Weighted Graphs

by

Junpeng Ren

Master of Science in Statistics

University of California, Los Angeles, 2024

Professor Oscar Hernan Madrid Padilla, Chair

Existing methods for graph change point detection focus on binary graphs, limiting their

ability to capture the richer information available in weighted graphs. This work introduces

a novel algorithm for detecting change points in weighted graphs by combining generative

modeling with Group-Fused Lasso. Graphs are represented through low-dimensional

latent vectors, with neural networks modeling their underlying distributions. Specifically,

change points are identified as shifts in the distributions of latent vectors, with Group-

Fused Lasso optimized using the Alternating Direction Method of Multipliers (ADMM).

Simulation experiments and real-world applications demonstrate the effectiveness of the

proposed method, highlighting the advantages of incorporating edge weights for a deeper

understanding of temporal graph dynamics.
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CHAPTER 1

Introduction

Graphs, also referred to as networks, are a fundamental data structure used to represent

complex relationships between entities, where nodes represent the entities and edges

capture their interactions. They are widely applied across numerous fields, including social

science, neuroscience, and finance, among others. Capturing the evolution of graphs over

time is a challenging problem, with change point detection being a critical yet complex

task in this context.

Various models have been developed to represent graphs, such as the stochastic block

model [HLL83], exponential random graphical models (ERGM) [LKR13], exponential

random dot product graphs [YS07; Nic08], etc. Corresponding methods for change point

detection have also been proposed for these models. For instance, the stochastic block

model captures community structures within graphs by grouping nodes and defining edge

probabilities based on group membership. [BBM20] introduces a method for detecting

temporal changes in these community structures. Similarly, ERGMs model graphs as

an exponential function of specified graph statistics. To account for temporal dynamics,

Separable Temporal ERGMs [KH14] extend this framework to model evolving graph

structures over time, with [KLCP23] offering insights into their change point detection.

Random dot product graphs embed nodes in a latent space, with edge probabilities

determined by the dot product of latent vectors, and corresponding change point detection

focuses on shifts in these embeddings [LBFM21].

However, most existing methods for change point detection are designed for binary

graphs, where edge weights are restricted to 0 or 1. The detection of change points in

1



weighted graphs, where edge weights carry richer information, has been less explored.

Weighted graphs naturally encode more information than their binary counterparts. For

example, in social graphs, edge weights can represent the strength of relationships between

individuals, providing a more detailed and nuanced depiction of interactions [OP09].

In this work, we propose a novel algorithm for change point detection in weighted graphs,

extending the existing binary approach presented in [KLLCP24]. Our approach leverages

a generative model to simulate graphs and employs Group-Fused Lasso [TSRZK05] to

localize change points. Specifically, we represent each graph with a low-dimensional latent

random vector that captures the underlying graph-level distribution. Neural networks

are then used to model the true distribution of these latent vectors. We define a graph’s

change point as the moment when the edge generation pattern changes, which corresponds

to a shift in the distribution of the latent representation. By applying Group-Fused

Lasso with Alternating Direction Method of Multipliers (ADMM, with partial lists of

examples [BPCPE11], [FCG10], [BF10], etc.), we identify distributional shifts in the latent

vectors and consequently detect the associated change points. This framework provides

a principled and effective approach to uncovering changes in the evolution of weighted

graphs.
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CHAPTER 2

Background

In this chapter, we provide an overview of existing methods for modeling graph data and

detecting change points in graphs, which serve as benchmarks for evaluating change point

detection algorithms. Section 2.1 introduces the change point detection algorithm based

on separable temporal exponential random graph models, an advanced approach for binary

graph change point detection. Section 2.2 and 2.3 present two more general methods:

graph-based change point detection [CZ15] and kernel-based change point detection [SC24].

While [CZ15; SC24] are not specifically designed for network data, these methods are

applicable to weighted graphs, making them valuable baselines for weighted graph change

point detection.

2.1 Change Point Detection Using Separable Temporal Expo-

nential Random Graph Models

[KLCP23] introduces a change point detection algorithm, referred to as the CPD-STERGM

method. This algorithm identifies change points in dynamic graphs by leveraging the

Separable Temporal Exponential-family Random Graph Model (STERGM, [KH14]). Below,

we provide a brief introduction to the key components of this algorithm.

2.1.1 Exponential Random Graph Models (ERGMs)

Exponential Random Graph Models (ERGMs, [LKR13]) are a flexible and widely used

statistical framework for modeling complex networks. Consider a node setN = {1, 2, . . . , n}
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and a binary graph y ⊆ Y, where Y ⊆ N × N represents all possible dyads (pairs of

nodes). The dyadic variable yij equals 1 if a relationship exists between nodes i and j,

and 0 otherwise. ERGMs assume that the probability of observing a specific graph y is

determined by a set of graph-level statistics and their corresponding parameters. The

probability mass function of an ERGM is given by:

P(y;θ) =
exp (θ · g(y))

ψ(θ)
,

where g(y) is a vector of sufficient statistics capturing graph properties (e.g., edge counts,

triangle counts, degree distributions), θ is the parameter vector associated with these

statistics, and ψ(θ) is the normalizing constant (log-partition function) ensuring proper

normalization:

ψ(θ) =
∑
y′∈Y

exp (θ · g(y′)) .

The parameters θ reflect the strength and direction of the effects of the corresponding

graph statistics. A positive θk indicates that the associated statistic gk(y) is more likely

to occur, while a negative θk suggests suppression of that statistic.

ERGMs are particularly suitable for static networks and are foundational for un-

derstanding network processes. However, they are limited when it comes to modeling

temporal dynamics, which motivates the need for extensions like the Separable Temporal

Exponential Random Graph Model (STERGM, [KH14]).

2.1.2 Separable Temporal Exponential Random Graph Models

The Separable Temporal Exponential-family Random Graph Model (STERGM, [KH14]) is

an extension of the ERGM that allows for the modeling of dynamic networks by separating

the formation and dissolution of ties. This separation provides a flexible framework to

study temporal network evolution by decoupling the processes of creating and dissolving

ties.
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With the same notation and denoting the network at time t as yt, STERGM can

be constructed from two intermediate networks: the formation network y+,t and the

dissolution network y−,t. Specifically:

y+,t
ij = max(yt−1

ij , ytij), y−,t
ij = min(yt−1

ij , ytij).

Assuming conditional independence between y+,t and y−,t given yt−1, the probability of

observing the network yt can be expressed as:

P(yt | yt−1;θt) = P(y+,t | yt−1;θ+,t)× P(y−,t | yt−1;θ−,t),

where the formation and dissolution probabilities are modeled as:

P(y+,t | yt−1;θ+,t) = exp[θ+,t · g+(y+,t,yt−1)− ψ(θ+,t,yt−1)],

P(y−,t | yt−1;θ−,t) = exp[θ−,t · g−(y−,t,yt−1)− ψ(θ−,t,yt−1)].

Here, g+ and g− are vectors of network statistics for formation and dissolution, and θ+

and θ− are the respective parameter vectors. The term ψ(·) is the log-partition function

ensuring proper normalization.

STERGM’s flexibility makes it particularly suitable for analyzing temporal network

dynamics, where the processes of tie creation and removal exhibit distinct patterns.

However, it assumes that the parameters θ+ and θ− remain constant over time, which

may not hold in practice when the network undergoes structural changes.

2.1.3 Change Point Detection in STERGM

In dynamic networks, the underlying generative processes often change over time, resulting

in structural shifts. Change point detection aims to identify these time points where

significant changes occur in the network’s structure or dynamics. Here, we introduce the
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change point detection algorithm based on STERGM, the CPD-STERGM [KLCP23].

For a time-varying STERGM [KH14], the parameters θt = (θ+,t,θ−,t) may vary across

time. Denote the ordered change points as {Ck}K+1
k=0 ⊆ {1, 2, . . . , T}, where K+1 segments

are defined, and the parameters are constant within each segment:

θCk = θCk+1 = · · · = θCk+1−1, k = 0, . . . , K,

but differ between segments:

θCk ̸= θCk+1 , k = 0, . . . , K − 1.

To detect these change points, the negative log-likelihood of the STERGM is minimized

with a Group Fused Lasso penalty:

θ̂ = argmin
θ

−ℓ(θ) + λ
T−1∑
t=2

∥θt − θt−1∥2
wt

,

where λ > 0 is a regularization parameter and wt are position-dependent weights. To

identify change points, the differences between consecutive parameters are computed:

∆θ̂t = ∥θ̂t+1 − θ̂t∥2, t = 1, . . . , T − 1.

These differences are standardized to account for variability:

∆ζ̂t =
∆θ̂t −median(∆θ̂)

sd(∆θ̂)
.

A data-driven threshold ϵthr is defined as:

ϵthr = mean(∆ζ̂) + Z1−α × sd(∆ζ̂),

where Z1−α is the (1 − α)-quantile of the standard normal distribution. Time points t
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with ∆ζ̂t ≥ ϵthr are classified as change points.

This approach provides a robust framework for detecting change points in temporal

networks, enabling the identification of significant shifts in the formation and dissolution

dynamics modeled by STERGM.

2.2 Graph-based change-point detection

Graph-based change-point detection [CZ15] provides a flexible, nonparametric framework to

detect distributional changes in a sequence of observations. By leveraging similarity graphs,

this method is well-suited for complex data structures, such as high-dimensional data and

non-Euclidean sample spaces. This section introduces the theoretical foundation, hypothesis

testing framework, graph construction methods, and the mathematical formulation of the

detection process.

2.2.1 Problem Setup

Given a sequence of observations {xi : i = 1, 2, . . . , n}, the goal is to detect one or more

change-points where the distribution of the observations changes. Specifically, let the

observations be indexed by i in a meaningful order, such as time or spatial location.

Single Change-Point Scenario Under the null hypothesis H0, all observations are

identically distributed with distribution F0:

H0 : xi ∼ F0, ∀i = 1, . . . , n.

The alternative hypothesis H1 assumes a single change-point τ such that:

H1 :


xi ∼ F0, i ≤ τ,

xi ∼ F1, i > τ,
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where F0 ̸= F1. The change-point τ is unknown and must be estimated.

To test such kind of hypothesis, a similarity graph G is needed to be constructed, which

is specifically induced for change point detection in this setting, over the observations and

use graph-based statistics to quantify group separation.

2.2.2 Graph Construction

The similarity graph G is defined by a vertex set corresponding to the observations {xi} and

an edge set representing pairwise relationships. Graph-based hypothesis testing has been

studied using various graph construction methods, including testing with the Minimum

Spanning Tree (MST, [FR79]), Minimum Distance Pairing (MDP, [Ros05]), etc. We use

the MST as an example to illustrate the procedure of constructing a similarity graph. It is

worth noting that other graph construction methods are also integrated into the proposed

framework.

Minimum Spanning Tree (MST): The MST connects all observations with the

minimum total edge weight, where the weight is typically defined using a distance metric

such as the Euclidean distance:

Distance(xi,xj) =

√√√√ d∑
k=1

(xi,k − xj,k)2,

where d is the d-th dimension of the i-th observed vector x.

2.2.3 Graph-Based Statistic

Given a similarity graph G, the test statistic RG(t) quantifies the number of edges

connecting nodes in different groups. For a candidate change-point t, we define:

RG(t) =
∑

(i,j)∈G

Igi(t) ̸=gj(t),
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where gi(t) is a group indicator:

gi(t) =


0, i ≤ t,

1, i > t.

The indicator function Igi(t)̸=gj(t) equals 1 if the edge (i, j) connects nodes in different

groups. For the changed interval hypothesis, the statistic is extended as:

RG(t1, t2) =
∑

(i,j)∈G

Igi(t1,t2) ̸=gj(t1,t2),

where gi(t1, t2) = It1<i≤t2 .

2.2.4 Standardization and Scan Statistic

To compare RG(t) across different t, we standardize it:

ZG(t) = −RG(t)− E[RG(t)]√
Var(RG(t))

.

Here, E[RG(t)] and Var(RG(t)) are the expectation and variance of RG(t) under the

null hypothesis H0. Specifically, under the null hypothesis H0, the joint distribution of

{yi : i = 1, . . . , n} is assumed to be invariant under permutation. The null distribution of

RG(t) is approximated using a permutation distribution, which assigns equal probability

to each of the n! permutations of {yi : i = 1, . . . , n}. E[RG(t)] and Var(RG(t)) are the

expectation and variance of RG(t) have explicit expressions under the null hypothesis H0,

defined as follows:

E[RG(t)] = p1(t)|G|,

Var(RG(t)) = p2(t)|G|+
(
1

2
p1(t)− p2(t)

)∑
i

|Gi|2 +
(
p2(t)− p21(t)

)
|G|2,
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where

p1(t) =
2t(n− t)

n(n− 1)
, p2(t) =

4t(n− t)(n− t− 1)

n(n− 1)(n− 2)(n− 3)
.

Here, Gi denotes the set of edges connected to node xi in G, and |Gi| is the degree of node

xi. The scan statistic then maximizes the standardized statistic over all candidate change

points to identify the most likely change point in the entire sequence:

max
n0≤t≤n1

ZG(t).

Finally,

P(maxZG(t) > b),

is used to compute the p-value, where P represents the probability that the scan statistic

exceeds b under the null hypothesis. This quantifies the statistical significance of the

detected change points. The mathematical relationship between P and b is derived from

the tail distribution of the scan statistic under the null hypothesis, as discussed in [CZ15].

For scenarios involving multiple change points, this graph-based scan can be extended

using binary segmentation methods [Vos81; OVLW04]. This framework offers a robust

and flexible method for detecting change-points in complex data structures. The choice

of similarity metric and graph construction method plays a crucial role in the detection

power. As it provides a general framework for change point detection, where the adjacency

matrix of a weighted network is treated as high-dimensional data, we include this method

as one of the competitors.

2.3 Kernel-Based Change-Point Detection

Kernel-based methods provide a flexible and powerful framework for conducting two-

sample hypothesis testing in complex data by leveraging reproducing kernel Hilbert spaces

(RKHS). These methods can effectively capture complex distributional changes, including

location and scale changes. In this subsection, we introduce the theoretical foundation,

10



hypothesis testing framework, and detailed construction of kernel-based change-point

detection statistics.

2.3.1 Kernel Function and RKHS Representation

The kernel function k(xi, xj) measures the similarity between observations xi and xj . Com-

mon choices for kernel functions include the Gaussian kernel, k(xi, xj) = exp
(
−∥xi−xj∥2

2σ2

)
,

which emphasizes locality and is widely used for its smooth and continuous similarity

measure; the linear kernel, k(xi, xj) = x⊤i xj , which captures direct linear relationships and

is often used in linear models; and the polynomial kernel, k(xi, xj) = (x⊤i xj + c)p, which

introduces flexibility by mapping the data into higher-dimensional polynomial feature

spaces, where c and p are constants. The kernel matrix K is constructed with elements

Kij = k(xi, xj) for all i, j, encapsulating pairwise similarities in the data.

2.3.2 Test Statistic: Maximum Mean Discrepancy Based Method

In this section, we present kernel-based change-point detection algorithms (e.g., [HC07;

LXDS15]) that utilize the Maximum Mean Discrepancy (MMD; [GBRSS06]) as the test

statistic. Continuing from the notation established earlier, consider the independent

observation sequence {xi}ni=1. Our goal is to detect change points in the data distribution,

which can be formalized through hypothesis testing. For a candidate change-point t,

the observations are divided into two groups: {x1, . . . , xt} (Group 1) and {xt+1, . . . , xn}

(Group 2). The test statistic is based on the MMD, which measures the difference between

two distributions. The unbiased MMD statistic for t is given by:

MMD2
u(t) =

1

t(t− 1)

t∑
i=1

t∑
j=1
j ̸=i

k(xi, xj) +
1

(n− t)(n− t− 1)

n∑
i=t+1

n∑
j=t+1
j ̸=i

k(xi, xj)

− 2

t(n− t)

t∑
i=1

n∑
j=t+1

k(xi, xj).
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This statistic captures the internal similarity within each group and the dissimilarity

between groups. To detect a change-point, the scan statistic maximizes MMD2
u(t) over all

possible t in the range [n0, n1]:

max
n0≤t≤n1

MMD2
u(t).

2.3.3 Improved Test Statistic: GKCP

To address potential limitations of MMD2
u(t), such as sensitivity to high-dimensional

data and offset effects due to variance changes, the Generalized Kernel Change-Point

(GKCP) statistic is introduced [SC24]. This statistic focuses on deviations in internal

group similarities and is defined as:

GKCP(t) =

α(t)− E[α(t)]

β(t)− E[β(t)]

⊤

Σ−1
t

α(t)− E[α(t)]

β(t)− E[β(t)]

 ,

where α(t) and β(t) are the mean kernel values within Group 1 and Group 2, respectively:

α(t) =
1

t(t− 1)

t∑
i=1

t∑
j=1
j ̸=i

k(xi, xj), β(t) =
1

(n− t)(n− t− 1)

n∑
i=t+1

n∑
j=t+1
j ̸=i

k(xi, xj).

The expectations E[α(t)] and E[β(t)] are given by:

E[α(t)] = E[β(t)] =
1

n(n− 1)
R0, R0 =

n∑
i=1

n∑
j=1,j ̸=i

k(xi, xj),

and Σt = Var([α(t), β(t)]) represents the covariance matrix of α(t) and β(t). The scan

statistic maximizes GKCP(t) over all possible t:

max
n0≤t≤n1

GKCP(t).
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2.3.4 Thresholding and Hypothesis Testing

To test H0 against H1, the scan statistic is compared to a threshold derived from permu-

tation tests. Specifically, if:

max
n0≤t≤n1

GKCP(t) > Threshold,

the null hypothesis H0 is rejected, indicating the presence of a change-point at t. The

detailed procedure for constructing the p-value can be found in [SC24].

The GKCP statistic overcomes the limitations of MMD2
u(t) by incorporating internal

group deviations and normalizing them with respect to their expectations. It is robust to

high-dimensional data and variance changes, enabling effective detection of both location

and scale shifts. This robustness makes GKCP a powerful tool for identifying change-

points in complex, high-dimensional data distributions. Given that the weighted network

adjacency matrix can be treated as high-dimensional data, we incorporate this method as

one of our competitors.

13



CHAPTER 3

Generative Models for Network Change-Point

Detection

Generative models have become powerful tools for modeling complex data distributions,

with widespread applications in various domains. Variational Autoencoders (VAEs, [Kin13])

offer a probabilistic framework that learns latent representations by maximizing a lower

bound on data likelihood. Generative Adversarial Networks (GANs, [GPMXWOCB20]),

on the other hand, employ a min-max game between a generator and a discriminator,

enabling the generation of highly realistic samples. Diffusion models [HJA20] represent

a newer class of generative approaches, which model data through iterative denoising

processes, excelling in image and graph synthesis. Additionally, large language models

(LLMs) like GPT [RWCLAS19] have demonstrated remarkable generative capabilities

for sequential data and text, further showcasing the versatility of generative modeling

techniques.

[KLLCP24] proposed a generative model for detecting change-points in binary networks,

providing an effective framework for analyzing temporal changes in network structures.

The model leverages a graph decoder based on a likelihood function suited for binary data

and a neural network structure designed specifically for binary adjacency matrices.

Building on this foundation, this work extends the framework in [KLLCP24] to ac-

commodate weighted networks and other graph types, including directed and undirected

networks. The proposed extension introduces a generalized likelihood function that can

handle different network data distributions, such as Poisson and Gaussian models for

weighted edges. Additionally, we expand the neural network design in the graph decoder
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to account for the structural diversity of various graph types. These modifications ensure

the framework’s applicability to a broader range of real-world scenarios while retaining

the strengths of the original binary network model.

In the following, we describe the model specification and highlight how it generalizes

the binary network approach in [KLLCP24].

3.1 Model Specification

Consider a node set N = {1, 2, . . . , n} and let y ∈ Rn×n represent an adjacency matrix for

a graph. The adjacency matrix can encode binary or weighted relationships for all pairs

(i, j) ∈ Y = N ×N , with yij denoting the strength of the relation between nodes i and j.

For undirected networks, we assume symmetry, i.e., yij = yji for all (i, j) ∈ Y.

Let yt denote the network observed at a discrete time point t. The observed data

consist of a sequence of networks {y1, . . . ,yT}. For each network yt, we assume the

existence of a latent variable zt ∈ Rd that generates the network via a graph decoder:

yt ∼ P (yt|zt) =
∏

(i,j)∈Y

F (yt
ij;θij(z

t)),

where F represents the likelihood function, which can be specified as a Poisson, Bernoulli,

or other distribution depending on the network type. The parameter θij(z
t) governs the

distribution of the dyad (i, j) and will be further detailed in Section 3.1.1. We assume

that, conditioned on the latent variable zt, the network yt is temporally independent.

The latent variable zt is assumed to follow a learnable prior distribution:

zt ∼ P (zt) = N (zt;µt, Id),

where µt ∈ Rd and Id is the identity matrix. Typically, the latent vector’s dimension d is

assumed to be significantly smaller than the number of nodes in the network. This ensures
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that the latent variable zt serves as a compact graph-level representation of the network

yt, effectively capturing its structural characteristics in a lower-dimensional space.

3.1.1 Graph Decoder

The graph decoder P (yt|zt) maps the latent variable zt to the parameters of the likelihood

function for each dyad. For instance, in the case of a Poisson-distributed network, the

decoder parameterizes the Poisson rate θij(z
t) as:

θij(z
t) = gij

(
h(zt)

)
,

where h : Rd → Rn×n is a function implemented using neural networks. Multi-layer

perceptrons (MLPs) with activation functions, such as the rectified linear unit (ReLU),

are employed to introduce nonlinearity. With such design, the graph decoder P (yt|zt)

maps the latent variable zt to the parameters of the likelihood function for each dyad.

The proposed framework generalizes the binary network model by accommodating

different network types and distributions while preserving the core structure of the genera-

tive process. The flexibility in specifying the likelihood function F and parameterizing

the decoder function h ensures applicability to a wide range of network analysis tasks.

Figure 3.1 illustrates the overall workflow of the proposed framework, highlighting its

adaptability to different scenarios.

z1

y1

N (µ1, Id)

z2

y2

N (µ2, Id)

zT

yT

N (µT , Id)

Pϕ(y
1|z1) Pϕ(y

2|z2) Pϕ(y
T |zT )

. . .

Figure 3.1: An overview of the proposed framework.
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3.1.2 Binary Network Special Case

In [KLLCP24], the generative framework was instantiated specifically for binary networks.

In this special case, the adjacency matrix entries yt
ij are binary (yt

ij ∈ {0, 1}), representing

the presence or absence of edges. The likelihood function F is specified as a Bernoulli

distribution:

F (yt
ij;θij(z

t)) = Bernoulli(θij(z
t)),

where θij(z
t) represents the probability of an edge existing between nodes i and j.

[KLLCP24] also parameterized θij(z
t) using a special neural network structure to

capture complex interactions between nodes with nodal embedding and dot product.

Specifically h(·) can be parameterized using latent matrix factorization, where the latent

variable zt is decomposed into matrices U t ∈ Rn×k and V t ∈ Rn×k, allowing:

h(zt) =


U tV t⊤, for directed networks,

U tU t⊤, for undirected networks.

This factorization ensures that the latent dimensions d and k are smaller than the number of

nodes n, enabling a compact yet expressive representation of the network structure. Under

this design, the graph-level latent variable zt is transformed into node-level representations

U t and V t, which serve as intermediate steps before generating the network yt.

3.2 Change Points

Similar to the change-point definition in the CPD-STERGM framework, in the context

of the generative model, we define the change points in terms of the prior parameters

µt ∈ Rd for t = 1, . . . , T . Specifically, let {Ck}K+1
k=0 ⊂ {1, 2, . . . , T} represent an ordered

sequence of change points, where:

1 = C0 < C1 < · · · < CK < CK+1 = T,
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such that:

µCk = µCk+1 = · · · = µCk+1−1, k = 0, . . . , K,

µCk ̸= µCk+1 , k = 0, . . . , K − 1, and µCK+1 = µCK .

Our objective is to identify these unknown change points {Ck} from the observed data.

Intuitively, we aim to characterize structural changes in the network through shifts in

the prior distribution’s parameters. These shifts in µt capture transitions in the underlying

graph structure over time, enabling us to detect and localize change points effectively.

3.3 Learning and Inference

We formulate the change-point detection problem as an optimization over a likelihood-

based objective regularized by a Group-Fused Lasso penalty, which encourages sparsity

in the differences of prior parameters between consecutive time points. Denoting the

log-likelihood of the observed dynamic graphs y1, . . . ,yT as l(ϕ,µ), the objective function

is defined as:

ϕ̂, µ̂ =ϕ,µ −l(ϕ,µ) + λ
T−1∑
t=1

∥µt+1 − µt∥2,

where λ > 0 is a tuning parameter. The penalty promotes structural change detection

by enforcing sparsity in the differences µt+1 − µt, while the ℓ2-norm allows simultaneous

changes across multiple dimensions of the latent variable. This grouping effect is crucial

for capturing complex changes in dynamic networks.

To solve the optimization problem, we adopt an Alternating Direction Method of

Multipliers (ADMM, [BPCPE11]) framework. By introducing a slack variable ν, the

objective is reformulated as a constrained optimization problem:

ϕ̂, µ̂ =ϕ,µ −l(ϕ,µ) + λ
T−1∑
t=1

∥νt+1 − νt∥2 subject to µ = ν.

The augmented Lagrangian is defined, and updates for ϕ,µ,ν, and the dual variables are
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derived. Details of these updates, including how the slack variable is incorporated and

parameterized, are provided in [KLLCP24]. Here we illustrate the updates of the graph

decoder parameter ϕ, which is able to be performed via back-propagation. The gradient

of the objective with respect to ϕ is given by:

∇ϕL(ϕ,µ) = −
T∑
t=1

EP (zt|yt)

(
∇ϕ logPϕ(y

t|zt)
)
.

Using the samples {zt
u}su=1 from the posterior P (zt|yt), the gradient can be approximated

as:

∇ϕL(ϕ,µ) ≈ −
T∑
t=1

1

s

s∑
u=1

∇ϕ logPϕ(y
t|zt

u).

This allows the graph decoder Pϕ(y
t|zt) to be updated iteratively using standard gradient-

based optimization techniques. However, the updates for ϕ include computing expectations

under the posterior distribution P (zt|yt) ∝ P (yt|zt) × P (zt). To approximate these

expectations efficiently, we employ Langevin Dynamics sampling [PHNZW20]:

zt
τ+1 = zt

τ + δ
[
∇zt logPϕ(y

t|zt)− (zt
τ − µt)

]
+
√
2δϵ,

where δ > 0 is the step size, and ϵ ∼ N (0, Id) introduces stochasticity for exploration.

This approach approximates the likelihood while ensuring computational tractability.

In summary, the learning procedure alternates between optimizing the parameters ϕ and

µ and updating the slack variables using ADMM, with posterior expectations approximated

through Langevin Dynamics. This iterative process continues until convergence, ensuring

robust change-point detection. Notably, the log-likelihood can be easily adapted to

different choices of likelihood functions given the latent vector z, making various likelihood

formulations as a flexible plug-in component for our proposed framework.

19



3.4 Model Selection and Change Point Localization

3.4.1 Model Selection

For model selection, we use Cross-Validation to tune λ. The time series of graphs is split

into training (odd-indexed time points) and testing (even-indexed time points) sets. For

each candidate λ, model parameters are learned on the training set, and the log-likelihood

on the testing set is evaluated as:

T∑
t=1

logP (yt) ≈
T∑
t=1

log
[1
s

s∑
u=1

∏
(i,j)∈Y

Pϕ(y
t
ij|zt

u)
]
,

where Monte Carlo samples {zt
u}su=1 are drawn from the prior distribution P (zt). The λ

maximizing the testing log-likelihood is selected. Finally, the parameters are re-learned

using the full dataset with this λ, yielding the final set of detected change points.

3.4.2 Change Point Localization

Once parameters are learned, change points are localized by examining shifts in the prior

parameters µ̂. The differences between consecutive time points are calculated as:

∆µ̂t = ∥µ̂t − µ̂t−1∥2, t = 2, . . . , T.

These differences are standardized:

∆ζ̂t =
∆µ̂t −median(∆µ̂)

std(∆µ̂)
,

and a data-driven threshold is defined:

Tthr = mean(∆ζ̂) + Zq × sd(∆ζ̂),
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where Zq is the q% quantile of the standard normal distribution. A time point Ck is

identified as a change point if:

∆ζ̂Ck > Tthr.

This approach ensures that significant structural changes are detected, while standardized

differences close to zero are ignored.

3.5 Simulated Data Experiments

This section evaluates the performance of the proposed weighted graph change point

detection method through comprehensive experiments. Given the limited availability of

algorithms specifically designed for weighted graph change point detection, we compare

our method with CPD-STERGM, a state-of-the-art approach for change point detection

in binary graphs. Additionally, we include two widely used general-purpose change point

detection methods: graph-based change point detection (gSeg) and kernel-based change

point detection (kerSeg).

We evaluate our model’s performance on weighted data derived from simulated counted

networks. Following the experimental design in [KLLCP24], we simulate dynamic graph

time series using two distinct models: the Stochastic Block Model (SBM, [HLL83]), and

a Recurrent Neural Network (RNN, [Elm90]). These models represent sparse and dense

graph time series, providing a comprehensive evaluation of the methods under different

scenarios. Specifically, we generate dynamic graphs of size n = 50 nodes over a time span

of T = 100. In each simulation, the generation mechanism changes at three predetermined

change points located at t = 26, t = 51, and t = 76. The corresponding intervals are [1, 25],

[26, 50], [51, 75], and [76, 100], creating a total of K = 3 change points. Each experiment

is replicated across 30 Monte Carlo trials, and we report the mean and standard deviation

of the evaluation metrics across these trials. Our design specifically constrains most

parameters of the Poisson distribution to lie within the range [0, 1], ensuring that the

weighted scenario can be effectively transferred to binary graphs through hard thresholding,
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where all edges with weights greater than 0 are set to 1, and edges with weights equal to 0

remain 0. This approach is designed to maintain fairness in the comparison.

We use three metrics to evaluate the performance of each algorithm. The first metric

evaluates the discrepancy between the number of true and detected change points by

calculating the absolute difference |K̂ −K|, where K̂ represents the number of change

points identified by the algorithm, and K is the true number of change points. This metric

provides a direct measure of how well the method estimates the total number of change

points, with smaller values indicating better performance.

The second and third metrics quantify the temporal accuracy of the detected change

points using a modified Hausdorff distance, which has been employed in prior works such as

[MYWR21; GA18; BKLMW09]. The one-sided Hausdorff distance measures the maximum

temporal distance from any true change point to its nearest detected change point:

d(Ĉ | C) = max
c∈C

min
ĉ∈Ĉ

|ĉ− c|,

where C and Ĉ denote the sets of true and detected change points, respectively. This

metric evaluates the extent to which the algorithm can accurately localize the true change

points. Additionally, we report the reversed one-sided Hausdorff distance:

d(C | Ĉ) = max
ĉ∈Ĉ

min
c∈C

|ĉ− c|.

This counterpart assesses the maximum distance from any detected change point to its

nearest true change point. If no change points are detected (i.e., Ĉ = ∅), the convention

is to assign d(Ĉ | C) = ∞ and d(C | Ĉ) = −∞, indicating complete failure to detect any

change points.

The third metric evaluates the overlap between the true and detected time partitions.

Following the definition in [VW20], this metric calculates the degree to which the intervals

formed by consecutive change points in the detected partition align with those in the true
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partition:

C(G,G ′) =
1

T

∑
A∈G

|A| · max
A′∈G′

|A ∩ A′|
|A ∪ A′|

,

where G and G ′ represent the true and detected partitions, respectively, and A, A′ are

individual intervals within the partitions. This metric measures how well the detected

time intervals cover the true intervals, with higher values indicating better coverage and

alignment.

The results, including the mean and standard deviation of these metrics across the

Monte Carlo trials, are reported in the following sections. Our proposed method, denoted

Weighted-CPDLatent, employs a data-driven thresholding approach based on the 90th

percentile of the standard normal distribution. The latent dimensions for the graph decoder

are set to d = 10 and k = 5, balancing computational complexity and detection accuracy.

The likelihood function is modeled using a Poisson distribution.

Scenario 1: Poisson SBM

Poisson parameter matrices P,Q ∈ Rn×n are constructed and they are defined as

Pij =


0.5, i, j ∈ Bl, l ∈ [1, 2, 3],

4, otherwise,

and Qij =


0.75, i, j ∈ Bl, l ∈ [1, 2, 3],

3.4, otherwise,

where B1,B2,B3 are three evenly sized clusters that form a partition of {1, . . . , n}. Then

a sequence of matrices Et ∈ [0, 1]n×n are arranged for t = 1, . . . , T such that

Et
ij =


Pij, t ∈ A1 ∪ A3,

Qij, t ∈ A2 ∪ A4.

Lastly, the networks are generated with ρ = 0.5, representing a strong temporal dependency,

which aligns with patterns commonly observed in real-world temporal data. For t =
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1, . . . , T − 1, we let ytij ∼ Poisson(Et
ij) and

yt+1
ij ∼ Poisson

(
ρEt

ij + (1− ρ)ytij
)
.

Figures 3.2 and 3.3 offer description for the generated graphs. Our simulated graphs are

challenging to differentiate through trivial observation, underscoring the non-triviality

of our change-point detection simulation setting. Experimental results in Table 3.1

demonstrate that both the CPD-STERGM algorithm and our proposed algorithm achieve

nearly perfect detection accuracy, with our method slightly outperforming in terms of

Hausdorff distance, ranking as the top-performing algorithm. In contrast, the performance

of gSeg and kerSeg in this setting is poor, as they consistently overestimate the number of

potential change points across the sequence.

Figure 3.2: Examples of graphs generated using SBM with n = 50. The first row shows
graphs at t = 25, t = 50, and t = 75, arranged from left to right. The second row displays
graphs at t = 26, t = 51, and t = 76, representing the change points.
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Figure 3.3: Total edge weights over time for graphs generated using SBM. The plot depicts
the sum of all edge weights at each time point. The red vertical lines represent the detected
change points, located at t = 26, t = 51, and t = 76.

Table 3.1: Performance comparison of methods for change point detection on dynamic
networks simulated from SBM. Results are averaged over 30 Monte Carlo simulations and
reported as means (standard deviations) across performance metrics.

Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

CPD-STERGMp=4 0.0 (0.0) 1.0 (0.0) 1.0 (0.0) 96.5%

CPD-STERGMp=6 0.1 (0.3) 1.0 (0.0) 1.8 (2.4) 97.1%

gSeg 12.2 (0.3) 0.3 (0.5) 19.0 (0.0) 27.8%

kerSeg 6.8 (0.8) 0.0 (0.2) 16.6 (1.8) 44.7%

Weighted-CPDLatent 0.3 (0.6) 0.0 (0.0) 3.5 (7.2) 97.3%
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Scenario 2: RNN

In this scenario, we employ Recurrent Neural Networks (RNNs) to generate sequences

of weighted dynamic networks. Specifically, latent variables are sampled from predefined

priors, and the RNN is initialized with uniform weights. The network graphs are subse-

quently generated through matrix multiplication using the RNN outputs. The parameters

for the predefined priors are as follows:

zt ∼


N (−1, 0.1Id), if t ∈ A1 ∪ A3,

N (5, 0.1Id), if t ∈ A2 ∪ A4.

At each time point, the neural network’s output serves as the parameter for an edge-wise

Poisson distribution, which is used to generate weighted edges. Similar to the previous

scenario, the RNN-based simulation enforces a time-dependent mechanism across dynamic

networks. Figures 3.4 and 3.5 offer description of generated networks under this setting.

Figure 3.4: Examples of graphs generated using RNN with n = 50. The first row shows
graphs at t = 25, t = 50, and t = 75, arranged from left to right. The second row displays
graphs at t = 26, t = 51, and t = 76, representing the change points.
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Figure 3.5: Total edge weights over time for graphs generated using RNN. The plot depicts
the sum of all edge weights at each time point. The red vertical lines represent the detected
change points, located at t = 26, t = 51, and t = 76.

Table 3.2: Performance comparison of methods for change point detection on dynamic
networks simulated from RNN. Results are averaged over 30 Monte Carlo simulations and
reported as means (standard deviations) across performance metrics.

Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

CPD-STERGMp=4 2.1 (1.0) 6.7 (6.1) 11.5 (4.8) 68.8%

CPD-STERGMp=6 1.2 (0.8) 15.4 (10.2) 12.9 (3.2) 64.3%

gSeg 3.0 (0.0) Inf (NA) Inf (NA) 0%

kerSeg 0.9 (0.6) 1.8 (0.4) 5.1 (3.3) 90.1%

Weighted-CPDLatent 0.1 (0.2) 1.6 (0.6) 2.3 (2.5) 94.9%
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The performance of the models, as shown in Table 3.2, indicates that under the RNN-

generated graph setting, our proposed method achieves the best performance compared

to competitors. Specifically, the performance of STERGM-based change-point detection

methods shows a significant decline compared to the previous experimental setting, while

gSeg consistently fails to identify even a single potential change point across all Monte

Carlo simulations using binary search. Notably, the kernel-based change-point algorithm

performs relatively well in this setting, achieving more than 90% overlap of the time

partitions between the detected sequences and the truth.

In conclusion, our proposed method demonstrates state-of-the-art performance for

change-point detection tasks in Poisson-distributed weighted graph settings.

3.6 Real Data Experiments

We evaluate our model using the Enron email dataset [Uni04], a well-known real-world

example often used in network analysis [PCMP05; PC15; PC15; KLLCP24]. This dataset

records detailed timestamps of email communications among employees during the period

of Enron’s bankruptcy crisis. This scenario highlights the importance of incorporating

weighted networks, where the strength of connections between employees is represented by

the frequency of their email exchanges. The weights are calculated by aggregating the

number of emails exchanged over specified time intervals.

To maintain comparability with the previous work in [KLLCP24], we follow a similar

network construction methodology. Specifically, we focus on the top 100 employees with

the highest email communication frequencies. Weekly email exchanges between each pair

of employees are aggregated to construct a temporal graph sequence spanning 100 weeks.

Each graph is represented by a 100 × 100 weighted adjacency matrix. Using the same

model structure and hyperparameters as described in the simulation experiments, we

perform change point detection. The results of the experiment are presented in Figure 3.6.
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Figure 3.6: Detected change points on the Enron Email Data. The red line represents the
data-driven threshold calculated at the 90% quantile, while the change-point detection
results from competitor algorithms are shown in the upper panels as blue lines.

We list the major events potentially corresponding to the detected change points in

Table 3.3. As shown, our proposed algorithm achieves superior change-point detection by

identifying points that more closely align with real-world events, compared to results from

other competitors. Specifically, gSeg and kerSeg incorrectly estimate the change point

too early, in July 2000, when the fall of Enron had not yet begun, while CPD-STERGM

provides detection results that occur later than the significant event’s actual timing. This

underscores the importance of incorporating weighted networks in change point detection,

as they capture more informative patterns and relationships, in contrast to relying solely

on binary networks.
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Table 3.3: Detected change points (CP) and their corresponding potential nearby events.

Detected CP Potential Nearby Events

2000-12-11 2000-12-13 CEO transition

2001-01-22 2001-01-22 Quarterly analyst conference

2001-06-11 2001-06-21 CEO publicly confronted

2001-07-23 2001-07-24 Analyst meeting

2001-09-24 2001-09-26 Employee Meeting

2001-11-26 2001-11-29 Stock price turmoil & Dynegy withdraws acquisition

2002-02-11 2001-02-07 Court Hearing Period

3.7 Discussion

This work focuses on change point detection for temporal weighted graphs using generative

models. We extend the binary network structure proposed in [KLLCP24] by introducing

a general decoder-only neural network framework for modeling weighted graphs. Using

Poisson distribution as an example, both simulation experiments and real-world applications

demonstrate the effectiveness of the proposed method.

A potential limitation of this approach lies in the requirement that the likelihood

distribution governing the generation of edges in the graph, given the corresponding

latent vector, should closely approximate the true data generation process. In real-world

applications, this assumption may be challenging to satisfy. As a future direction, it is

important to evaluate the robustness of the method when there is a significant mismatch

between the assumed likelihood distribution and the true edge-generation distribution.

Additionally, approaches that do not rely on specific designs for the likelihood distribution

should be considered. Finally, as the proposed method depends on neural networks,

exploring more complex network architectures could further enhance the performance of

the model.
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