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The arrival of large-scale open platforms such as cloud-computing infrastructures

and petascale clusters is fueling the emergence of a new class of users and applications

with large and diverse resource needs. Optimizing for traditional system-centric metrics

such as response time or throughput does not capture the diverse and often conflict-

ing needs of different users and resource providers. Collaboration between economists

and computer scientists over the past ten years has lead to many important results de-

scribing designs of market-based mechanisms to address exactly these issues. However,

there is very little progress in building these systems due to apprehensions about their

potential unfairness and fragility in a live deployment. The resulting reality is that sys-

tems continue to rely on traditional and inadequate designs despite theoretical results

demonstrating the potentially significant value added to all stakeholders by designing

market-based systems.

This dissertation investigates the sensitivity, applicability, and practicality of a

market-based policy to increase the efficiency of resource allocations — measured using a

utilitarian social welfare metric — in real, large-scale computing systems. We build upon

previous work in this space by moving beyond “paper designs” and using an iterative

process of implementation, deployment, measurement, modeling and simulation.

xvii



We begin by presenting Mirage, our implementation of a microeconomic resource

allocation system for a sensor network, which is still in use today. In this context, we

identify the compromises that deployed market-based systems must make when using

traditional theoretical designs due to computational challenges and various imperfect

conditions of a live deployment. Nonetheless, based upon user data, we find that these

systems are still expected to be robust to typical user errors seen in traditional comput-

ing systems. We also describe extensions of existing designs to address some of these

limitations. Finally, we discuss our experience with deploying systems with real users

and applications and conclude by discussing the forthcoming challenges in pushing more

widespread adoption of these market-based designs in real systems.
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Chapter 1

Introduction

Many computer systems have reached the point where the goal of resource al-

location is no longer to maximize utilization or response time; instead, when demand

exceeds supply and not all needs can be met, one needs a policy to guide resource allo-

cation decisions. One natural policy is to seek efficient usage, which allocates resources

to the set of users who have the highest utility for the use of the resources. Researchers

have frequently proposed market-based mechanisms to provide such a goal-oriented way

to allocate resources among competing interests while maximizing overall “happiness”

(or “aggregate utility”) of the users. In general, however, market-based allocators have

yet to catch on in practice or with a large body of computer science researchers.

This dissertation investigates the potential of applying economic market design

principles to solve emerging resource allocation problems in distributed systems. Sys-

tems such as high-performance computing clusters, data centers and other large-scale

resource infrastructures play a tremendous role in supporting large-scale scientific appli-

cations [121]. However, the arrival of large-scale open platforms such as cloud-computing

infrastructures and petascale clusters is fueling the emergence of a new class of users and

applications with large and diverse resource needs. A desire to schedule these applica-

tions on a consolidated resource infrastructure poses a challenge to traditional system

design. For example, an application may prefer twice as much memory at the cost of

an additional unit of processing power or storage, or a user may prefer to reduce power

consumption at the cost of decreased throughput. Optimizing for a traditional system-

centric metric such as response time or throughput does not capture the diverse, and

often conflicting needs of these stakeholders. It is clear that there is significant potential

1



2

to improve the value and satisfaction delivered by these systems by introducing a more

sophisticated allocation policy.

The challenge for any system to deliver on these goals is to first elicit this “util-

ity” information from its users and then to determine how to use the corresponding

information to meet its goals. Collaboration between economists and computer scien-

tists over the past ten years has lead to many important results that describe how to

design economic-inspired mechanisms to address exactly these issues. However, there is

very little progress on how to build systems with these mechanisms. The resulting reality

is that systems continue to rely on traditional and inadequate designs despite theoreti-

cal results demonstrating the potentially significant value1 added to all stakeholders by

designing economics-inspired systems. This dissertation focuses on bridging this widen-

ing gap between theory and practice. Through a process of deployment, measurement

and modeling, we uncover limitations of proposed theoretical models, and motivate the

development of refined models to better fit emerging system designs.

The contributions of the work contained herein are as follows: (1) we implement

and deploy two real market-based systems and present our corresponding deployment

experience, (2) we provide a simulation-based analysis of the expected performance of

a market-based system in the presence of imperfect operating conditions, (3) we intro-

duce a market-based scheduling framework that increases the utility of both a profit-

seeking service provider and its utility-maximizing clients, and finally, (4) we implement

a market-based scheduler in a small Hadoop cluster that can take advantage of hid-

den preference information in real applications to increase both system and application

utility.

On a broader scale, this research intends to provide a deeper understanding

of when and where such economics-inspired theory can be applied to other problems

in systems and networking, and perhaps allow us to rethink traditional systems and

networking design in order to allow us to build systems to meet our current and emerging

needs.

1.1 Emerging Large-Scale Applications

In the past decade, computer and network-based applications have reached an

unprecedented level of ubiquity in society. From support for on-line communities (Face-

1We use the terms value, utility and user satisfaction interchangeably unless otherwise noted.
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book, Myspace, Twitter), to clients for sharing multimedia (BitTorrent, Hulu, YouTube),

new applications are constantly developed that can leverage increasingly cheap and pow-

erful computational [99] and networking capabilities [30]. The unique characteristics of

these applications pose a challenge for their underlying resource infrastructures to sup-

port. We discuss several examples below.

The growth and presence of Internet applications continues to generate massive

volumes of application data for Web service providers. Careful analysis of this data

yields information about individual users, social networks, and other patterns of usage

that providers like Google, Yahoo! Microsoft and Facebook find useful to refine their

services and products. Since these data are simply too large to store and analyze with

existing resource infrastructures, companies have developed sophisticated programming

models and scheduling systems like MapReduce [37], Hadoop [16] and Dryad [55], to allow

these large data-intensive jobs to run on existing hardware. The motivation for these new

scheduling frameworks highlights the significant limitations of existing infrastructures,

irrespective of resource capacity.

The emergence of diverse scientific applications also poses a challenge to high-

performance computing clusters. When using metrics like system throughput or response

time, the performance of traditional scientific applications scale well with increased re-

source capacity. However, the emergence of a diverse set of applications and users, with

their own resource configurations (loosely coupled vs tightly coupled), distinct deadlines

(e.g., seismic monitoring application wishing to process available data immediately fol-

lowing a major seismic event) and importance (perhaps defined by relative government-

endowed grant money towards a research project) have forced researchers to design

addition system support to account for these user-specific metrics [66, 93].

The increasing availability of computational and networking hardware is fueling

the development of large-scale distributed testbeds as a foundation for the development

of large-scale distributed applications and systems. Resource allocation in testbeds like

PlanetLab [90], EmuLab [44] and GENI [77] is designed on the principle of best-effort

scheduling, with the objective of scaling application performance with the underlying

resource capacity. However, experience with these systems demonstrates that such a

policy can fail to meet this objective: when users are responsible for both selecting

resources and moderating resource consumption, this policy often leads to poor resource

utilization and potentially avoidable resource contention [87]. Since these problems arise
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primarily from user behavior, and users lack both an incentive and mechanism to shift

or curb consumption during times of peak demand, it is not clear if these systems can

in fact, scale with additional resource capacity using existing allocation policies.

Finally, non-scientific applications have also emerged as consumers of these large-

scale infrastructures, and supporting these applications using traditional allocation poli-

cies has proven to be challenging. For example, Pixar Animation Studios leased access to

an external data center to support the rendering of a large and complex set of computer

graphics imagery for one of its films [13]. Despite having ample system capacity, the

existing scheduling policies used by the data center did not support the diverse workflow

constraints, task deadlines and priorities within each job, and therefore schedules often

had to be hand-tuned in order to achieve the necessary job throughput [7].

As an increasing number and variety of applications find opportunities to leverage

available on-demand computation, network or storage, existing resource infrastructures

will become critical bottlenecks to application scalability and performance. From these

anecdotes, it is clear that today’s computational resource infrastructures are no longer

limited to traditional applications with predictable needs and that emerging applications

are fundamentally different from those in the past. On one dimension, applications vary

greatly in raw quantity of resource consumption: varying in required run-time (from

seconds to months), size (from a single processor to tens-of-thousands of processors),

or network radius (localized versus geographically distributed network topology). On

another dimension, applications, vary in less easily quantifiable measures, such as im-

portance (e.g., a scientific application simulating the effects of a new cancer-treatment

drug), or elasticity (e.g., sensitivity to time deadlines). It is becoming clear that the

existing allocation policies of emerging shared resource infrastructures must adapt to

support these emerging applications.

1.2 Shared Resource Infrastructures

The traditional method to mitigate resource contention is to provision excess

capacity in anticipation of peak demand. When capacity exceeds supply, even the most

simplistic scheduling policies can provide competitive performance with more sophis-

ticated policies. Unfortunately, provisioning for peak demand is slowly becoming an

untenable strategy due to prohibitive capital and energy costs [20]. Furthermore, as we

mention in the anecdote of distributed applications, simply having excess capacity in the
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system does not mean that applications can or will take advantage of it. Together, these

concerns have lead to a paradigm shift in the provisioning of resource infrastructures.

Today, we see an increasing number of providers of on-demand computation and

storage. This so-called Cloud-computing or Service-oriented computing model has arrived

in enterprise computer systems [86], whereupon internal resources are provisioned and

leased—on-demand—to consumers. This model has many benefits: clients avoid the

hassles and expense of maintaining their own infrastructure and provisioning it for their

peak load; clients benefit from the service provider’s economies of scale, expertise, and

management; and multiple clients can share a common infrastructure and (sometimes)

expensive software licenses, resulting in lower costs. Companies like Amazon, Sun and

Microsoft are increasingly investing in this cloud-based services model.

This shift has also manifested itself in academic and non-commercial infrastruc-

tures like PlanetLab [90], GENI [77] and the Grid [45], whereupon the system is composed

of loosely-coupled resources which are federated or shared across hundreds or thousands

of users. Existing policies do not lend well to considering the cost of using such infras-

tructures to support a variety of applications. As these infrastructures begin to play a

more critical role in serving the computational and network needs of society at large, it

is critical that they move beyond traditional or ad-hoc allocation policies.

1.3 Market-Based Allocation Policies

Studies show that traditional scheduling policies such as first-come-first-served

(FCFS) or proportional-share (PS) are unable to support such heterogeneity in appli-

cations. In fact, more sophisticated policies dramatically outperform these approaches:

researchers have claimed improvements in aggregate user utility ranging from 4–20% [67]

to 100–1400% [25], with the magnitude of the improvement depending upon the details

of the particular environment. To put this improvement into context, if an increase in

utility leads to a similar increase in revenue in a commercial infrastructure, consider that

an estimate of annual revenue from Amazon’s Elastic Compute Cloud is roughly $220

million annually [29] — which means that a 4% improvement could lead to an increase

in over $8 million in annual revenue.

The key idea behind this class of scheduling policies is the use of market-inspired

mechanisms to infer information about the characteristics of the resource demand in

order to determine socially desirable allocations, for instance, allocating scarce resources



6

to the users who derive the most value, or utility, from consumption. This “market-

based” approach uses this additional information (importance, elasticity of raw resource

consumption) to make an informed scheduling decision and adapt to dynamic resource

demand. However, despite such lofty claims, utility-based techniques are rarely deployed

in practice.

1.4 Challenges

Opponents of market-inspired techniques often dismiss these mechanisms as too

burdensome for end-users, inequitable in their allocations, or too fragile to use in pro-

duction environments [101]. While proponents cite the results of numerous independent

simulation and theoretical studies showing significant performance improvement, each of

these studies assume perfect operating conditions; however, operators argue that such

assumptions rarely hold in practice, and it is unclear how market-based systems will

perform in practice relative to these idealized results.

In this dissertation, we address the following challenges to help advance this

long-standing debate about the viability of market-based scheduling systems:

• Lack of implementation experience. The majority of research in large-scale

market-based allocation systems is limited to theoretical designs or simulation-

based results, and very little has been done to describe how to implement market-

based designs in real systems. Even in traditional — and often simpler — schedul-

ing systems, there are many parameter settings to tune upon deployment, such as

reservations in backfilling algorithms, or the number and relative levels of priority

queues. With limited experience in either identifying or appropriately setting the

corresponding market parameters such as currency policies and resource pricing

mechanisms, there is a significant portion of unexplored design space for imple-

menting a market-based framework for a real system.

• Lack of deployment experience. While there does not seem to be disagree-

ment that market-based systems offer the potential to improve allocations in shared

resource infrastructures, most of the apprehensions involve the departure of sim-

ulated results from actual performance upon deployment. Specifically, there are

concerns that these systems may be too fragile, non-deterministic, or burdensome
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for users in practice, and therefore, it is unclear how much improvement to expect

from a market-based system in a live deployment.

• Lack of empirical system analysis. Another major source of apprehension for

these systems is a lack of quantitative experimental data. While many concerns

surrounding market-based systems require experience with a live deployment to

address properly, many important analyses and simulation studies can be con-

ducted simply using empirical data, such as user preferences, demand and other

basic workload characteristics. Indeed, many advanced scheduling techniques in

high-performance computing systems are developed using detailed trace-based sim-

ulation studies from workloads of real systems. Although they are not a complete

substitute for a deployment, real workloads fill an essential gap between general,

theoretical designs and the application of the design to a particular environment.

Such studies can provide fundamentally important comparisons between tradi-

tional and existing approaches, and address such basic issues as when a particular

scheduling policy is more appropriate than other and identifying the basic trade

offs.

• Lack of empirical user analysis. Unlike existing scheduling systems, market-

based systems fundamentally rely on “rational” behavior from users. Specifically,

these systems assume that users will provide demand information to the market,

and in turn react properly to the corresponding prices from the market. However,

with a lack of empirical evidence for how users behave, it is unclear whether or

not users will behave as expected, and if not, what impact this imperfect behavior

will have on the performance of the system. Indeed, prior theoretical work has

outlined the potential for significant cognitive burden for users in specific market

settings [63, 85], and prior empirical work has demonstrated that a large set of

users of computational system are limited in the information they can provide [66].

However, neither observation has been applied to these market-based designs.

• Designing for multiple objectives: users and providers. Finally, for com-

mercial systems, a resource service provider desires an allocation policy that in-

creases profitability. It is not clear how the potentially independent objectives of

service-provider profit-maximization, and user utility-maximization interact when

using a market-based allocation policy, particularly when a resource service provider
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must also consider its own underlying infrastructure costs.

1.5 Contributions

Given the strong momentum towards shared resource infrastructures, and the

continued emergence of diverse and large-scale applications, we believe that now is

an opportune time to re-visit these sophisticated allocation techniques, in particular,

market-based systems.

1.5.1 Hypothesis and Approach

We believe that the fear and apprehension towards sophisticated, market-based

allocation techniques are founded, and in particular, that existing principals in systems

— comprising of current applications and users — cannot be expected to interact like

agents in an idealized market. However, we believe that we can still implement market-

based mechanisms that will allow systems to more efficiently support the diversity in

emerging applications. In this dissertation, we take the following steps to test this

hypothesis:

First, we address the lack of deployment experience with these systems by im-

plementing and deploying two real market-based resource allocation systems from which

we measure the impact of the market on real users, and uncover limitations in existing

market designs.

Second, we address the lack of rigorous empirical analysis of these systems by

using our collected deployment data to drive a set of detailed simulation studies to

quantify the benefits of a market design with respect to traditional scheduling systems

in the face of imperfect operating conditions from both the system and the users.

Third, we introduce a market-based allocation policy that can be used by a

commercial infrastructure to maximize profitability, and a non-commercial infrastructure

to maximize user satisfaction; we argue that such a market-based design can be applied

to both commercial and non-commercial infrastructures.

Finally, we demonstrate that market-inspired systems can be used effectively in

a production system with minimal user overhead. Specifically, we implement a market-

based scheduler in a Hadoop cluster which infers utility information, and demonstrate

how this information can be used to improve the performance of real applications.
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1.5.2 Results

Our contributions can be summarized as follows:

• Case studies of implementation and deployment experience. Our deploy-

ment of a market-based allocation system reveals challenges not typically addressed

in the literature. For example, we use a heuristic algorithm instead of an idealized

market-clearing algorithm to handle the worst-case complexity of market-driven re-

source requests in a large-scale environments. Furthermore, users of market mech-

anisms exhibit a wide range of behavior, including unwanted and unanticipated

behavior that can affect system performance. We find that there are indifferent

users, who do not participate in the market, and there are sophisticated users,

some of whom will properly leverage market mechanisms, and yet others, who will

further manipulate the system for their own benefit and to the detriment of others

(Chapter 3).

• Empirical analysis of the impacts of imperfections in user behavior and

system settings. We quantify the sensitivity of a market-based system based

upon a model of imperfect conditions and empirical data. We find that significant

user uncertainty can severely decrease the aggregate performance and per-user

fairness of a heuristic scheduling policy, but projected levels of uncertainty indicate

significant benefit in both respects from this same policy. In each uncertainty

regime, we compare how a market-based approach fares against simpler traditional

allocation policies (Chapter 4).

• An allocation model for service providers and clients. We investigate a por-

tion of the design space of a profit-seeking job-execution service provider, utility-

maximizing clients with sophisticated job requirements, and variability in under-

lying resource availability; we explore the effects of profit-aware algorithms, and

study how load, aggregate utility functions, and the number and cost of resources

influences the service provider’s profit. We demonstrate that our profit-aware ap-

proach outperforms previous ones across a wide range of conditions (Chapter 5).

• Implementation to reduce user burden. We implement system support for

a market mechanism in an existing scheduling system that automatically infers

hidden utility information of clients. We demonstrate how to use this mechanism
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improve the performance of real applications in a Hadoop cluster without requiring

explicit input from a user or application (Chapter 6).

1.6 Roadmap

In the next chapter, we formalize the resource allocation problem, and our as-

sumptions, and place our contributions in the context of related work. In Chapter 3,

we present a case study of deploying market-mechanisms in two different systems, and

explain how the details of a particular environment (job, users, resource partition) im-

pact the choice of market mechanisms. Based upon these deployments, we discuss how

this choice of mechanism fares in the presence of the imperfections and challenges of

the environment. In Chapter 4, we take a step back and present a model for the types

of challenges observed in Chapter 3, and provide a trace-driven analysis of how this

market mechanism is projected to fare in general systems based upon this model. In

Chapter 5, we discuss how to extend our allocation system to consider a profit-seeking

service provider, and how to design the allocation policy to simultaneously maximize

revenue and client satisfaction. Finally, in Chapter 6, we present an implementation of

an improved market-based mechanism in a real system and show how it can improve

allocation decisions while also reducing usage burden on users. We conclude with our

high-level observations about the feasibility of market-mechanisms in real systems and

next steps in this research agenda.



Chapter 2

Background

In this chapter, we formalize the definition and scope of our resource alloca-

tion problem, and discuss the challenges with applying existing theoretical approaches,

and the limitations of existing market-based designs. We conclude with an outline our

approach to this problem, and a detailed roadmap of the remaining chapters.

2.1 The Resource Allocation Problem

Abstractly, the resource allocation problem can be described as a classic assign-

ment problem. Consider a set of jobs J ∈ N that wish to run on a system with capacity

C ∈ N. A job j ∈ J has a size and length that it occupies, and each of the N ∈ N

available resources i ∈ [1, ...N ] is partitioned with some integer capacity ci, such that
∑N

i=1 ci = C. An example of an assignment for a job j with size sj ≤ N and length lj is

A = {1, 2, ...sj−1, sj} such that the remaining capacity of each resource i ∈ A is ri = ci−1

for lj time units (assuming no other jobs have been scheduled on those resources). The

goal is to assign jobs to resources such that a particular optimization criteria (or single

criterion) is maximized.

There are several theoretical results which describe algorithmic solutions to a

few common optimization criteria for this problem, with each solution depending on

specific assumptions made about the environment, such as job characteristics, job arrivals

and server capacity. As we will see, these results rely on assumptions which depart

from important practical considerations, and therefore, are not directly applicable to the

environments that we are interested in.

11
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2.2 Existing Scheduling Approaches

Traditionally, schedulers for large-scale systems have a simple goal, which is to

minimize the waiting time for an individual job (response time), or for a set of jobs

(makespan) 1. Extending our model described earlier, we define tj ∈ R
+ as the abso-

lute completion time of job j ∈ J , which is determined based upon the particular job

scheduling algorithm, and define aj ∈ R
+ as its arrival time (∀j, tj > aj). This goal

can thus be formulated as assigning jobs to resources to minimize 1
J
·
∑J

i=1(ti − ai) for

optimizing over average response time, or to minimize [maxi∈J ti − minj∈Jaj ], so as to

optimize for the makespan.

2.2.1 Theory vs Practice

There are several algorithms which can determine an optimal, or near-optimal job

schedule based upon these constraints; in this section, we discuss how critical assumptions

made by a few of these algorithms render the proposed solution impractical.

Perhaps the most straightforward solution is for a scheduler to simply create a

schedule based upon a solution to the aforementioned optimization problem. However,

this approach requires clairvoyance to do so; solving this particular optimization problem

requires foresight of all future job arrivals, and in practice, this information is not known.

An alternative approach is to use queueing theory, which provides a mathematical frame-

work to estimate the expected response time or makespan when workload information

— such as job arrival times — is stochastic. Unfortunately, many of the results from

queuing theory are not applied in practice for both quantitative and qualitative reasons.

First, applications in our environments require scheduling parallel jobs, which is

to say that they require simultaneous use of multiple resources such that J,C >> 1.

Unfortunately results from queueing theory are restricted to small clusters (C ≤ 2) or

workloads with small job sizes (sj ≤ 2). For instance, the near-optimality of a shortest-

remaining-processing-time (SRPT) policy in minimizing expected response time [114]

has only been demonstrated for a single-server cases (C = 1).

Second, theoretical results often ignore significant practical costs. For example,

even if the same SRPT policy was demonstrated to be useful in a multi-server environ-

1It is worth noting that in addition to these goals, some administrators for larger clusters also may
have a conflicting desire to maximize system resource utilization, which we will discuss later in this
section.
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ment, the assumptions used to establish this result ignores the cost of job pre-emption.

An SRPT policy requires jobs to be pre-emptible. Specifically, an SRPT policy schedules

the job with the least amount of remaining processing time, with new job arrivals poten-

tially pre-empting a currently-running job. There is a significant cost incurred from job

pre-emption: both in time required to halt, off-load and store a pre-empted job, and in

the time to restore it. In large-scale systems such as high-performance computing clus-

ters, where there are many data-intensive tasks which require significant storage, these

operations are prohibitively costly, as multiple pre-emptions would require significant

intermediate storage for this data.

Finally, there are qualitative concerns that such optimization unfairly biases

against larger jobs. For example, the shortest-job-first (SJF) policy has similar prop-

erties as SRPT, but without pre-emption costs. Under this policy, it is believed that

larger jobs are penalized unfairly (although recent work by Wierman et al. [113] shows

that in many cases, SRPT does not penalize larger jobs anymore than the alternative,

best-effort scheduling policy), hence few schedulers use this type of policy.

We discuss the limits of job-scheduling optimization and queueing theory simply

to illustrate the gap between theoretical and practical scheduling algorithms. For a

thorough exposition of theoretical results, refer to Pinedo [89]. Instead, the focus of this

dissertation is on mechanisms that can be used in real systems. The challenges we have

described force real systems to rely on heuristic scheduling policies that are engineered

for their particular workload and environment. In these systems, we typically see two

classes of scheduling policies: time-sharing and batch scheduling. The choice of class

depends upon the size of a typical job relative to the capacity of a single resource; jobs

are either scheduled to time-share a resource by running simultaneously (ci ≥ 1) or

sequentially on a resource as a batch (∀i, ci = 1).

2.2.2 Time-Sharing Systems

Systems like PlanetLab [90] and GENI [77] are infrastructures which have many

long-lived and interactive services, and typically have jobs that are significantly smaller

than the available capacity of a single machine. Therefore, time-sharing is a natural

policy for these systems whereupon jobs are run simultaneously on a single machine, and

a machine’s resources are multiplexed across all running jobs. Perhaps the most natural

resource allocation policy in these systems is proportional share, which provides equal,
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simultaneous access to time-shared resources to all users. It is well known, however, that

proportional-share scheduling alone does not function well in systems where over-demand

for resources is common. As demand for resources increases, the multiplexed time-share

received by each user decreases, with any associated scheduling overheads remaining

constant (or in some cases, increase due to thrashing). Taken to scale, we observe that

as the number of competing users increases, the amount of time each user receives is

surpassed by the pre-emption costs of multiplexing between jobs, thereby decreasing

the performance of each user (or application), and thus, decreasing the value derived

from the system. Solutions to this problem are primarily ad-hoc, and involve a heuristic

admission-control algorithm, which will evict jobs when resource capacity is deemed

saturated. However, due to a lack of fine-grained accounting in most modern operating

systems, and because many tasks have unknown dependencies, it is actually difficult

to tell when resources are constrained and which jobs are responsible for consumption,

which makes it difficult to establish a “good” eviction or admission-control policy.

2.2.3 Batch Scheduling Systems

High-performance computing clusters [41], supercomputers [1, 2] and emerging

petascale systems [93] generally support scientific applications which are often large

(sj ∈ [100, 1000], lj ∈ [hour,days]), and resource-intensive (e.g., either CPU-bound,

I/O-bound, or both). These jobs have a performance bottleneck on at least one of

the resources of the machine (e.g., CPU, memory, I/O bandwidth), and a job is given

exclusive access to the machine during its run time. First-come first-served (FCFS)

scheduling is among the earliest and simplest policies used in these systems. In this

scheduling discipline, users submit a job, along with the desired degree of parallelism

(size), and the jobs are executed in order of arrival. A limitation of this technique is its

poor resource utilization, which can in turn negatively impact individual job response

time. This problem can occur if a job at the head of the queue requires more processors

than are available, and blocks all other jobs behind it in the queue — even if there are

enough processors to satisfy those job requests. This problem is referred to as head-of-line

blocking. EASY backfilling [70] addresses this problem by allowing other jobs to jump

ahead in the queue, provided their executions do not delay the projected start time of the

job at the head of the queue. EASY requires each job to be supplied with an estimated

running time. Using these estimates, the scheduler can create a reservation time for the
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first waiting job, and also determine which jobs can be “backfilled”. Variants of this

technique, such as conservative backfilling or selective reservation have been studied,

where the number of jobs with reservations varies [43, 105]. A particular variant is

usually chosen on an ad-hoc basis.

2.2.4 Evaluation Metrics

The reliance of scheduling heuristics yields little room for rigorous mathematical

evaluation compared to their theoretical counterparts. Instead, these systems rely on

empirical measurements for evaluation. For example, early administrators of batch and

parallel computing environments were concerned with maximizing system utilization [70].

Historically, FCFS schedulers exhibited a utilization between 50 and 80% [105]. A com-

bination of improvements in algorithms, such as backfilling, and increased usage [105]

have increased overall utilization on these systems, where many parallel processors typi-

cally see a utilization percentage between 90 and 98% [42]. However, utilization in these

systems can still vary greatly between peak and base demand, with the average vary-

ing from between 50 and 98%, depending on the time scales [42] being observed. In

other words, it is possible for jobs to experience long wait times during periods of heavy

demand even though a larger snapshot of resource utilization falls below 100%.

Although most scheduling systems seek to optimize metrics to improve end-user

application performance, oftentimes system administrators have an incentive to max-

imize a metric of their own interest, such as resource utilization. Anecdotally, the

motivation for this desire is to justify increasing resource capacity (i.e., buying more

machines) from available funding sources. In fact, as usage of these systems increase, it

is becoming apparent that users have different requirements for their jobs: some jobs are

significantly more important than others, and some jobs have different levels of urgency

(i.e., deadlines) than others [66]. Regardless of the motivation, this desire for multi-

objective optimization has encouraged a body of research to develop more sophisticated

scheduling algorithms to satisfy these needs.

2.3 A Market-Based Scheduling Approach

It should be apparent that many existing scheduling policies are based upon

simple ideas, but end up using heuristics to deal with the increasing complexity of appli-

cations. Moving forward, the fundamental shortcoming of existing scheduling approaches
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is rooted in the fact that they do not explicitly consider a user’s utility for scheduling

a job when making an allocation decision. Job priorities are used to distinguish impor-

tant jobs from others [56, 105]. However, these priority-based systems typically employ

between four and six priority queues, which restricts the amount of utility information

a user can express for a job. Market-based approaches extend the idea of priority by

allowing a scheduler to prioritize jobs based on finer-grained information, such as per-job

utility functions [20, 21, 25, 54, 67, 110].

Proponents of these policies tend to view the goal of a scheduler as one to satisfy

higher-level user needs [66]. Indeed, our argument for supporting applications with di-

verse objectives simultaneously on a consolidated infrastructure seems to provide similar

motivation for this type of scheduling approach.

The objective of a market-based scheduling policy can be formulated as the well-

known weighted knapsack optimization problem [59]. In this formulation, a knapsack is

defined by its capacity (a positive integer), which represents the capacity of a resource

in the system. Items to place in a knapsack represent the jobs in the system. Each item

is completely defined by its size and weight : its size is an integer that represents how

much of a knapsack’s capacity it consumes, whereas its weight represents the value of an

assignment (this model can be extended to a multi-dimensional case which considers the

job length as well [64]). The goal of the optimization problem is to choose an assignment

of items to knapsacks that maximizes the sum of the weights of packed items. In a

market-based setting, the weights of each job represent the value, or utility that a job

derives from use of the resources, and therefore, this goal is analogous to scheduling to

maximize total value delivered by a resource assignment.

In economics, this particular choice of function to maximize is often called utili-

tarian social welfare function, where the sum, or aggregate utility of a population is the

measure of success, rather than the distribution of utility across the population. For the

remainder of this dissertation, we will refer to this metric as aggregate utility, and use it

as the common metric when comparing allocation policies.

It is worth noting that there may be several choices of allocation which maximize

aggregate utility, and we are not explicitly concerned with which one of these allocations

is chosen. Furthermore, this concept of aggregate utility or efficiency is different from

the economics concept of Pareto efficiency [75]. Formally, a Pareto efficient allocation

outcome in our context is an allocation in which no change in allocation can increase the
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utility of a single participant without also decreasing the utility of another.

In time-sharing systems, any work-conserving allocation policy is approximately2

Pareto efficient (though not necessarily desirable) since resources will only be unallocated

in the absence of demand, and resources are always allocated in the presence of demand.

On the other hand, batch-scheduling systems may leave resources underutilized due

to inefficiencies of the scheduling policy: for example, a conservative backfill scheduler

performs allocations which are weakly Pareto superior (at least as efficient, and usually

more so) to those of a simple FCFS scheduler. While we do not explicitly seek such

Pareto efficient outcomes, our goal of maximizing aggregate utility is in line with a

Pareto efficient outcome, since achieving an optimal aggregate utility also results in a

Pareto efficient outcome. In other words, while the allocations from a market-based

system and a simpler, work-conserving proportional-share system may both be Pareto

efficient, the market-based system will usually lead to an allocation with higher overall

efficiency, or aggregate utility.

Similar to the case with existing scheduling policies, designing and implementing

a market-based policy for a real system cannot be done by simply solving the associated

optimization problem. Creating a robust market for computational resources requires

addressing several design and implementation challenges. In this section, we discuss these

theoretical design challenges, and the challenges of implementing a practical deployment

in the subsequent section.

2.3.1 Theoretical Design Challenges

Much of the work in the area of market-based computational resource allocation

depends on results in economics, such as general equilibrium theory, auction theory, game

theory and consumer theory. However, we will not discuss this specific literature, but

will mention and summarize results as appropriate. For a thorough exposition of these

subjects, refer to Mas-Colell et al. [75]. In the next section, we discuss the theoretical

treatment of computational markets, and the challenges in designing robust markets in

this context.

2The statement relies upon the assumption that resources are infinitely divisible, and that the con-
sumption functions for an application are continuous; this is not necessarily true in practice, but is an
assumption often made in the literature.
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Mechanism Design

Perhaps the economics theory that most completely captures the issues in design-

ing a computational market is mechanism design [75]. In a functioning computational

market, resources are allocated based upon some social welfare metric (which we de-

scribed earlier as aggregate utility), which in turn, is based upon the preferences of

individual users. Traditionally, this preference information is known only by each user.

Therefore, the challenge in mechanism design is to design a system with proper partici-

pation rules to provide incentives for users to truthfully reveal this private information.

Note that there is a significant difference between simply enforcing rules, and providing

incentives to follow them. Since we assume the information held by a user is private, a

mechanism can require that such a user ostensibly “play by the rules”, but cannot verify

the accuracy of the provided information. Therefore, designing robust incentives such

that a self-interested user would be directly motivated to reveal this information is of

critical importance.

In our setting, the users (and therefore, their applications) represent the par-

ticipants in the game, their valuation for resources represent their private information,

and the allocation system is in charge of supporting any infrastructure needed to create

incentives and enforce the rules of the mechanism.

Example. Imagine a simplification of our resource allocation problem, where

we have one resource, and multiple users competing for that resource. Each user has a

maximum willingness to pay for the resource, which we can measure in units of currency

3 — a commonly used measure of value for a resource. An allocation policy can max-

imize aggregate utility by simply assigning the resource to the user with the maximum

willingness to pay. However, since this information is private to each user, the allocation

system will have to design rules to elicit this information. An auction is a common mech-

anism used in this situation; the system holds an auction for the resource and awards it

to the user with the winning bid. In this case, a critical part of the mechanism design

problem is to create auction rules that will motivate each user to bid their maximum

willingness to pay. As we mentioned earlier, we assume that all users will pursue actions

to maximize their utility. In this case, a user i submits a bid bi to the auctioneer (i.e.,

the scheduler), and wants to maximize ui = vi − pi, where vi is his maximum willingness

3Note, currency is just a particular unit of measurement for user “value” or “utility”. In economics,
these units are abstractly referred to as utils.
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to pay for the resource, and pi is the price that the user pays for the resource (if won,

otherwise, pi = 0). The utility ui received by a user i thus depends upon his payment

pi.

First consider a standard sealed-bid4, first-price auction, where bi = pi. If a

user i believes that other users j have a lower value for resources (vi > vj), then user i

will have an incentive to bid an amount lower than vi, but higher than vj, in order to

maximize ui. In fact, Vickrey, demonstrated that if all bidders I are risk neutral and are

commonly aware that private values vi are drawn uniformly from a known distribution

(∀i ∈ I, vi ∈ [0, V ]), then every bidder will have an incentive to under-bid: bi = (|I|−1)
|I| ·vi

[108]. Therefore, the rules of this type of auction do not elicit the desired information

from users.

Now consider a Vickrey auction (sometimes referred to as a second-price auction)

in which pi = bj,
5 where i has the highest (and therefore, winning) bid, and j has the

second-highest bid. In other words, the winner pays the bid amount the next-highest

(first losing) bid. If we repeat the analysis from the first-price auction, we can see that

users have no incentive to change their bids in order to maximize their utility, since the

winning payment is a function of the other bids. For a more formal explanation, refer

to the seminal paper by Vickrey [108] or a more detailed discussion by Mas-Colell et al.

[75].

While the example of a Vickrey auction and its generalized counterpart, the

Vickrey-Clarke-Groves mechanism, are still abstractions of our exact problem setting,

they are important results in mechanism design because they satisfy several desirable

properties in common strategic settings. We will discuss a few of these properties briefly

to explain what we wish to achieve with a mechanism, and what we cannot. Beyond this

explanation, we do not explicitly consider all of these issues further in this dissertation.

Typical properties of a robust mechanism are incentive-compatibility, efficiency,

individual rationality and budget-balance [83]. A mechanism is incentive-compatible if

users are motivated to be truthful. In the example of a first-price auction, we saw that

users were not motivated to reveal their private information truthfully, however, in the

second-price auction, they were. A mechanism is efficient, if it leads to an allocation

outcome that maximizes the desired social welfare function. In our examples, both the

4Sealed-bid simply means that each user’s bid is concealed from other bidders.
5There is also a more general Vickrey-Clarke-Groves (VCG) mechanism which is commonly referred

to in the related literature. In this mechanism, the winning payment is measured by the opportunity cost
by their presence in the auction. The Vickrey auction as described is an example of a VCG mechanism.
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first-price and second-price auction are expected to lead to an allocation that maximizes

aggregate utility — although the first-price auction requires some assumptions about

how users will bid.

Individual rationality is a concept that quantifies whether or not this mechanism

imposes any harm to a user; formally, a mechanism supports individual rationality if a

user is never made worse off (in terms of ui) by participating in the auction. Again, in

our example, the Vickrey auction achieves this property. Finally, budget balance is the

property that the system does not run at a loss, meaning that no cash is transferred into

or out of the system to support currency payments. There is also an associated notion

of weak budget-balance, which simply states that agents (in an auction, these would be

the bidders) can make payments to the system, but we cannot assume that the system

can make payments to the agents. This property is important if using real currency, or

any mechanism of significant value in the system to elicit information.

In the simple setting of our example, where there is a single resource, a Vickrey

auction satisfies the first three properties, as well as weak budget balance, but it is known

that in more general settings, no mechanism can satisfy all of these properties. In fact,

there is an important result called the Myerson-Satterthwaite theorem (see Parkes [83]

for original citation and a discussion of this result), which states that there can be no

market exchange that can achieve these four properties; an exchange merely differs from

an auction in that there are multiple sellers and buyers, and where an agent can be both

a seller and a buyer simultaneously.

It is not clear if our systems impose the same assumptions required by the

Myerson-Satterthwaite theorem to be applicable, but fortunately, we do not require

all of these properties to be satisfied. In developing an allocation system, we ultimately

care about overall efficiency, but due to the many practical limits of resource scheduling,

a near-efficient solution is not only adequate, but often times preferred. Furthermore,

we care about incentive compatibility and individual rationality insofar as they allow

us to achieve this goal. Budget balance also becomes an issue only if dealing with real

currency or a currency of value. This relaxation of requirements may make it easier to de-

velop theoretically sound systems, as we will discuss later in this dissertation, we will be

forced to make other trade-offs to accommodate the practical limitations of algorithmic

solutions.
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Computational Complexity

A tangential challenge that of mechanism design is handling the computational

complexity of algorithms. Even if there is a mechanism that can satisfy the desired

properties in mechanism design, the solutions must be computationally tractable.

As an example, consider an extension to the single-good auction from the pre-

vious section where we now auction multiple goods. In both parallel batch scheduling

systems, and large-scale testbeds, users often require multiple resources simultaneously.

In economics theory, this property is referred to as complementary goods: where the

value in consuming multiple goods exceeds the sum of the values derived from consum-

ing each of the goods individually. A combinatorial auction is one which allows bidders to

express combinatorial bids, which are bids over sets of goods rather than only individual

items simultaneously.

The algorithm used by the auctioneer to determine winning bids in a combinato-

rial auction is in a class of problems defined to be NP-complete [68], which is considered

computationally intractable in theoretical computer science [32]. Likewise, the users

themselves may also face similar computational obstacles [17, 31, 52, 63, 85, 97] when

interacting with the market. For example, a user’s valuation for an allocation outcome

may depend upon a large number of contingencies, which require an intractable amount

of computation (e.g., the traveling salesman problem [32]) to determine or communicate.

So even if we have a robust mechanism (as defined by our sample list of desiderata with

mechanism design) for this problem, a practical system may not be able to implement

the necessary rules. There is an entire area of research called algorithmic mechanism

design that is dedicated to the study of creating computationally tractable solutions for

mechanism design [80].

2.3.2 Implementation Challenges

Thus far, we have discussed some of the theoretical design challenges to creating a

robust market-based framework such as challenges in designing appropriate information-

elicitation mechanisms, and using computationally tractable algorithms. However, even

if we have such a computationally tractable market-based mechanism for our resource

infrastructure, there are several implementation challenges that remain. A system that

supports a market-based policy must provide a mechanism by which users can commu-

nicate their preferences for resources or their utility for a particular job. Also, such a
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market-based system must provide mechanisms which can ensure that users will provide

this information truthfully. Collecting this information and enforcing this behavior can

be both computationally expensive and inexact.

Currency

Market-based approaches assume the existence of a mechanism to prevent self-

interested users from artificially overstating their job priority or utility. Our example of

an auction assumes the existence of a universal currency, and indeed, this is the same

assumption used in a market. When deploying a market-based system, we must consider

how currency is created, distributed, and used.

Currency as a Mechanism. Currency plays a central role in dictating user

behavior. The theory we have discussed thus far assumes that users a utility-maximizing,

and thus have an incentive to spend and save their currency based upon their preferences.

Indeed our auction example illustrates how this idea is used to elicit private valuation

information from a user. Unfortunately, real currency isn’t always an option in real

systems, particularly in scientific or research infrastructures where resource access is

designed to be free.

In these settings, use of a virtual currency is proposed as an alternative to real

money [53]. Virtual currency is completely generated and accounted for by the system,

and is designed to serve the same purpose as its real-world counterpart. Unfortunately,

a user with virtual currency does not necessarily behave in the same way as a user with

real currency. Consider a scenario with two users who each have the same budget of

currency, but have different demand (i.e., the first user has more jobs to submit than

the second user). Without loss of generality, we can assume that each user otherwise

has the same private valuation for each job. If using virtual currency, neither user will

have incentive to save money, and thus the user with fewer jobs will be able to express

a higher willingness to pay relative to the other user, despite the fact that they both

have the same private valuation information. This problem does not occur with real

money because consumers in a fully-functioning market have an incentive to save money

to spend on other goods, and therefore, a utility-maximizing user would not choose to

“throw money away”. In a market with virtual currency, the actions of spending and

saving money is isolated, and thus actual user behavior may differ from the expected

utility-maximizing behavior. Therefore, using currency as a mechanism to elicit the
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desired information poses an important challenge.

Currency as a Policy. Assuming that we have a sound currency mechanism

which creates the desired incentives, there is the challenge of deciding how to distribute

currency among users. Ostensibly, a user with a larger endowment of currency will

be able to pay more for consumption, and thus state a larger willingness to pay for

resources. Assuming that the currency is still spent and saved inline with a utility-

maximizing user, choice of currency endowment might not affect the aggregate utility

of the system. For example, there may be several efficient allocation outcomes. In

fact, the second fundamental theorem of welfare economics (see Mas-Colell et al. [75]

for original citation) states that any of these outcomes can be attained by changing

the initial endowments of users. However, as we noted earlier, the desired metric of

market-based schedulers is to maximize aggregate utility, rather than Pareto efficiency,

so this result does not directly apply. We mention this result merely to illustrate the

potential impact choice of currency distribution can have on the allocation efficiency. In

this dissertation, we will assume that chosen endowments are exogenously determined,

and will not explicitly consider the problem of how to perform these assignments. In

practice, these assignments are often assigned by an external entity; for example, the

National Science Foundation (NSF) assigns service units (credits) to research projects

that wish to use NSF-sponsored computing clusters.

Perfect Information

Another basic assumption made in both mechanism design and general market

equilibrium is that the consumers (in this case, users and applications) are have sym-

metric (if not perfect) information about resources.

Utility-maximizing users are assumed to know their own private information.

This does not seem like an unreasonable assumption, but when applied to computational

markets, it is clear that this assumption can break down. As discussed earlier, users may

need to solve a computationally difficult problem to determine private valuation [63], and

instead of doing this, users may be more comfortable making an approximate decision

[23]. On the other hand, some users simply cannot pre-determine their value for a

job, or value from use of a resource until after the fact. For example, users of high-

performance computing systems are notorious for being unable to even estimate their

job run-time length, even when given incentive to do so [66]. Therefore, even honest and
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motivated users may not accurately reveal their private information to a sound elicitation

mechanism.

Secondly, users are assumed to have symmetric common value information about

market goods. With respect to a computational market, this information may mean

characteristics of market items, such as resource availability, capacity, and performance.

In many large-scale systems, resource characteristics are known to exhibit highly variable

temporal characteristics (particularly when demand is high, which is precisely when the

information is most needed [82]), which may make this information inconsistent across

users depending on their vantage point [120]. If this information is inconsistent, then

a user’s ex-post satisfaction for resource consumption (how happy they are after an

allocation) may differ greatly from their ex-ante strategy (e.g., bid in an auction, or

determination of willingness to pay for an item prior to actual purchase); inconsistencies

of this nature may reduce the aggregate utility (i.e., ex-post utility of users) delivered

by the system.

Identifying Client and Service Provider Needs

The effectiveness of any market mechanism is dictated by its ability to extract

meaningful utility information and use it to make relevant decisions for both clients

and providers. For example, users may have complementary resource needs, and if a

provider only allows preferences for resources to be stated independently — as in much

of the existing market-based designs — then the allocation of the market may not be ex-

post efficient. However, supporting such complementarity increases the computational

complexity of the allocation algorithm and may decrease the efficiency of the system

(i.e., by using a heuristic algorithm in lieu of an optimal algorithm), therefore, it is also

clear that a practical market-based system cannot provide prices for every conceivable

resource configuration.

Furthermore, many resource infrastructures are sponsored by service providers

who themselves are clients of underlying resource providers. Many proposed market

mechanisms deal with this scenario: reserve prices and combinatorial exchanges [84] ex-

tend the allocation problem as a two-sided exchange where the optimization criteria is

to maximize the utility of all parties, rather than simply the buyers. As we mentioned

in the context of mechanism design, this model presents a significantly more challenging

setting in which to design robust mechanisms. In practice, the uncertainty which under-
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lies the time-varying availability or cost of resources may make it difficult for resource

providers to use these traditional mechanisms. Balancing the feasibility of a market

design with its utility to users and resource providers will be a significant challenge in a

live deployment.

2.3.3 Summary of Related Work

There is a large body of related work in the general area of market-based allo-

cation systems, with the focus either being on the mechanics of the market itself, or on

using user preference information to improve scheduling decisions. We briefly discuss

each type of approach, but defer detailed discussion of related work to each specific

chapter.

There are many designs for computational markets for resource scheduling, such

as a time-shared PDP system [104], parallel systems [49, 62, 84, 103, 109, 116], data

centers [18] and Internet computing systems [69, 94] (see Yeo and Buyya for a more

comprehensive taxonomy [117]). These systems represent seminal work in designing a

market-based allocation system, and concentrate on providing mechanisms to establish

equilibrium prices for resources in the market, thereby focusing on many of the theoretical

design challenges of a computational market. These systems differ primarily in how they

define resources and in their target applications. Our work is inspired by many of these

designs and applications, but our focus is primarily on addressing practical issues, such

as the implementation challenges we describe earlier in the chapter.

On the other end of the spectrum, there are also several designs for utility-based

allocation systems. This body of research uses per-job utility functions to specify the

client’s value of job completion: the Alpha OS [28] and Millennium [25] handle time-

varying utility functions; Chen et al. [21] discuss how to do processor scheduling for

them; Lee et al. [65] look at tradeoffs between multiple applications with multiple

utility-dimensions; Muse [20] and Unity [110] use utility functions for continuous fine

grained service quality control; and Petrou et al. [88] describe using utility functions to

allow speculative execution of tasks; Bailey Lee et al. and Kelly [59] consider different

algorithmic approaches a genetic algorithm approach to solving the intractable task

assignment problem, and Irwin et al. [54] considers the problem of job admission control

in the face of uncertainty in future job demand.

The distinction between this category and a pure market-based system is that
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these systems do not consider traditional market issues such as currency policy and user

incentives. Nonetheless, this prior body of work provides valuable insight in developing

practical heuristic algorithms based upon market principles in order to use domain-

specific utility functions to allocate resources in large-scale systems. Our work differs

from this body of work in that we also concentrate on market-related issues, but leverage

this existing work to improve practical scheduling algorithms.

2.4 Our Approach

We have discussed at length the potential benefits a market-framework can pro-

vide over existing scheduling approaches, and the challenges to designing and implement-

ing such a system, but without a rigorous empirical analysis of a deployed market-based

allocation system, we cannot begin to quantify the expected benefit or actual challenges

from a market-based approach. Our approach follows an iterative process of design,

implementation and deployment of a market-based system, and based upon lessons from

an initial deployment, we present empirical analysis and refined design for a practical

market-based allocation system for today’s emerging resource infrastructures.

In the next chapter, we discuss two real systems that we have design, implement

and deploy for real users of two large-scale resource infrastructures. Based upon our

experiences and data from this work, we reveal limitations in existing market-based de-

signs, and offer suggestions for ways to improve them. In subsequent chapters, we present

trace-based simulation studies of these suggestions, an extension of a market-based de-

sign to support commercial service providers, and conclude with an implementation of

a market-inspired mechanism in a time-sharing system.
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Case Studies

This chapter presents two case studies of market-based mechanisms designed to

support sophisticated usage policies in real computing environments. First, we present

Bellagio, a market-based resource allocator designed for the worldwide PlanetLab re-

search network. Second, we describe Mirage, an allocator deployed on the Intel Research

Berkeley sensor network testbed. We discuss the initial challenges these systems are

designed to address and our deployment experience with each. We conclude with a

set of suggestions to help guide future deployments of market-based resource allocation

systems.

3.1 Motivation

PlanetLab [90] and the Intel Research Berkeley (IRB) sensor-network testbed are

two early examples of large-scale federated resource infrastructures which were unable

to handle periodic peaks in resource demand. Early on, each of these systems employed

a traditional best-effort proportional-share and FCFS, scheduling policy, respectively.

Since users have no incentive to restrain resource consumption, these systems typically

suffer from a “tragedy of the commons” for prolonged periods of time, where uncon-

strained usage lead to a dramatic decrease in the accessibility and usability of resources

[24, 47].

In early 2004, we were given the opportunity to build and deploy a market-based

mechanism to address these issues. At a high-level a market framework is attractive

to system administrators to encourage users to restrain resource consumption during

27
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times of peak demand, and at the same time, give the system a framework to prioritize

jobs when resources are severely constrained. We designed, implemented and deployed

a market-based allocation mechanism on each of these systems.

Similar to many prior market-based designs, our allocation mechanism uses an

auction, which requires domain users to express their resource preferences as a bid,

which is subsequently used by the system to prioritize demand. We employ additional

mechanisms to address some of the challenges not addressed by previous systems, such

as resource discovery, a rich bidding language, and implementation of a currency (see

diagram in Figure 3.1; we will describe each of these components in more detail). While

our systems are based upon a set of shared design principles, each of these components are

designed to work within their specific domain of PlanetLab or the IRB sensor network.

We summarize the results below.

3.1.1 Summary of Results

The primary contributions of this chapter is the implementation and deployment

of Bellagio and Mirage. Since they are two of the first large-scale market-based systems

to have been implemented for real users, we have several new design choices, system

components and results that contribute to the existing literature of market-based designs.

These contributions can be summarized as follows:

• User-driven design choices. To address the user needs for simultaneous re-

sources, we depart from traditional single-item auction-based resource allocation

systems and use a combinatorial bidding language to allow users to express com-

plementary and substitutable preferences.

• Support for symmetric information. To address the challenge of asymmetric

resource information, we use a resource discovery mechanism to allow users to

state an abstract resource preference, and aggregate information about the system

to resolve these requests into physical resources upon run-time.

• Repeated combinatorial auction heuristic algorithm. In order to support a

combinatorial bidding language and mechanism for providing symmetric informa-

tion, we design a fast heuristic allocation algorithm as a necessary alternative to

the computationally complex optimal algorithm.
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• Virtual currency policy. We provide a distribution and collection infrastructure

for a virtual currency. We support different endowments of currency (initial bal-

ances to support exogenous priorities), and a taxation policy to promote stability

in currency distribution over time.

• Empirical data. We observe predicted, unanticipated, and unwanted user be-

haviors, including utility-maximizing, opportunistic and naive actions from users;

we see evidence that users exhibit distinct preferences for resources and that an

auction can elicit this information. However, there is also a cost imposed on users

of the auction-based mechanism.

Next, we discuss the general system architecture for our market-based system,

and the specific instantiations (Bellagio and Mirage) in subsequent sections. We conclude

with our deployment results and lessons learned.

3.2 System Design

There are two primary shortcomings of using simple proportional-share and FCFS

allocation policies that we wish to address with our deployments. First, users reside in

different administrative boundaries, so it is difficult to statically assign priorities to

users and jobs when resources are constrained. Second, users lack both an incentive and

mechanism to restrain their consumption behavior during times of peak load. Designing

Bellagio and Mirage as market-based allocation systems is a natural framework with

which to address both of these challenges.

In constructing our markets, we have two critical design decisions: how to struc-

ture the market, and how to handle currency. In this section, we describe the high-level

design used by both Bellagio and Mirage: the basic market mechanism used for alloca-

tion, and the implementation of currency used in both systems.

3.2.1 Market Mechanism

Economists have long proposed pricing as a mechanism to decentralize resource

allocation [50, 51, 58, 100, 72], but it is not clear how to set prices in our particular

market. The fundamental role of prices in our system is to change user behavior (i.e.,

shift demand) according to resource supply and demand, and force users to self-select

who can afford a particular resource at any point in time. There are two significant
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challenges to setting prices in PlanetLab and the IRB testbed. First, price is a function

of demand, which is often hard to predict. In the absence of steady demand [26] and good

prediction, prices may fluctuate wildly. Second, users require combinations of resources

(e.g. CPU, network bandwidth, memory, etc.), but it is not feasible to price all possible

combinations. Taken together, these two issues place considerable uncertainty on a user,

who must anticipate both the price changes over the course of a job and the changes in

the level of contention on resources, and repeat this process for each resource in a desired

bundle.

Recognizing that, while demand volume and user values are typically unknown,

and capacity is known, an auction-based approach turns this problem around. Auc-

tions can schedule resources for individual jobs while accounting for the per-job utility

expressed in user bids. Clearing prices can be determined in terms of the demand infor-

mation implicit in a set of user bids. Auction-based approaches for resource allocation

in computer systems have been explored by a number of previous efforts across a broad

range of distributed systems including clusters [25, 109], computational Grids [62, 116],

parallel computers [103], and Internet computing systems [69, 94].

However, these existing auction-based approaches are limited to allocating a sin-

gle type of good, and to allocating a single good at once. In the case of SPAWN [109],

this is CPU shares of a single machine, and in Tycoon [62], each resource (CPU, disk,

memory and network bandwidth) is allocated independently. As with these systems, our

designs also rely on an auction to allocate resources. However, we adopt the model of a

combinatorial auction, in which users can bid on bundles of resources as opposed to indi-

vidual resources. This ability to bid on resource combinations in space and time allows

users to more accurately express their preferences on different resources. For example, a

user can express that some resources are interchangeable (“substitutes”) and some are

required together (“complements”). To the best of our knowledge, Bellagio and Mirage

are the first deployed systems that support allocation of combinations of heterogeneous

computational resources via flexible auction methods.

The goal of our auction is to determine an allocation that maximizes user utility

(as measured, for example, in units of currency). If the market is reasonably competitive

and bids reflect the true utility of a user for a particular allocation, then by clearing

a market to maximize the total bid value the market will tend to achieve our goal of

maximizing aggregate utility.
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Implementation

Both Bellagio and Mirage systems use a repeated combinatorial auction1, which

runs an auction periodically, and allocates resources to competing users based on the

results of the auction. As we discuss earlier, the problem of determining winners in a

combinatorial auction is computationally intractable, so we adopt a greedy algorithm

to ensure that the auctions clear quickly, irrespective of the number or complexity of

user bids. This heuristic orders bids by value density, which is defined as the bid value

(bi) divided by its size (si) and length (li). In order to minimize the risk of settling in

at a local minima, our algorithm compares the outcome of k different ordering of the

top k bid value densities, and selects the best allocation among these k attempts. In

our deployment we set k = 10. Also, we adopt a first-price auction format rather than

a Vickrey-style auction, in part to make auctions clear as quickly as possible. As we

mention in Chapter 2, a first-price auction is not incentive-compatible; however, we are

unaware of any efficient, incentive-compatible and computationally-tractable mechanism

that supports combinatorial preferences. Furthermore, it has been observed that the

advantages of an incentive-compatible VCG mechanism can break down when moving

from a static setting to our repeated setting [78]. In this implementation, our primary

goal is to maximize aggregate utility, and, as we also mention in Chapter 2, we do not

require that our auction mechanism be strictly incentive compatible, merely efficient2.

In addition to requiring multiple resources, users in PlanetLab and the IRB

testbed are often interested in a class of resource as opposed to a unique resource. For

example, a PlanetLab user may simply want any 10 machines, as long as each has at

least 1 GB/s of available outbound bandwidth, or an IRB testbed user may want any

20 sensor nodes as long as they will not interfere with particular frequency bands. Since

these properties may change over time, or may be difficult for a client to determine, we

provide a resource-discovery service to assist user resource selection. Users specify the

type of resources they are interested in by expressing an abstract resource specification.

The resource discovery service then maps these specifications to concrete resources that

meet the desired constraints. We use this level of indirection for three reasons. First, it

frees the user from having to manually identify candidate resources. Second, it allows

1The initial deployment of Mirage used an open-bid English auction format, which was later changed
to a sealed-bid format for reasons we will discuss later; Bellagio uses a sealed-bid format.

2As we will see later in the chapter, it may be difficult to achieve efficiency without also providing
incentive-compatibility.
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users to automatically take advantage of new resources as they are introduced into the

system. Finally, as mentioned, testbed users are frequently interested in acquiring sets

of nodes and are often indifferent to which specific nodes they are allocated as long as

the candidate resources meet their constraints. The resource discovery service allows

users to discover all possible candidates and thus provides the system with the maximal

amount of information on substitutes when clearing the auction.

Our system continually accepts resource bids and runs the auction on collected

bids periodically (in our deployments, we choose once every hour, which we will discuss

later). Once bids are received the auction must determine winning bids and the asso-

ciated resource allocation. A user in our systems submits bids to the auction using a

two-phase process (Figure 3.1). First, she adopts a resource discovery service to find

candidate resources that meet her needs. Second, using the concrete resources identified

from the first step, such a user can place bids using a system-specific bidding language.

Resource
Discovery Auction

Client

Abstract
Resources

Concrete
Resources Bid

Win/Lose

Resource
Valuation

Resource
Request

1. 1.

2.

3. 4. 5.

Figure 3.1: Bidding and Acquiring Resources.

3.2.2 Currency System

As we mention in Chapter 2, currency is used to create incentives for globally

desirable user behavior. In PlanetLab and the IRB testbed, currency is the token with

which users bid in the auction, and since users have a finite budget of currency, they

will have an incentive to save and spend it according to their own needs. However, like

most existing computing systems, neither PlanetLab nor IRB have any existing notion

of user currency. And because introducing real currency isn’t a feasible option in either

deployment, we design a virtual currency system for use in both Bellagio and Mirage.
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The design of a good currency policy encourages desirable behaviors and discour-

ages undesirable behaviors. The lack of proper policies can render the system useless.

For example, if users can obtain large amounts of virtual currency very easily then they

will of course bid arbitrarily high values all the time. Such a system reduces to resource

allocation based on social conventions, since there is no disincentive for a user to not

always bid the maximum possible value permitted within the bidding language. Simply

stated, the currency must be “real enough” that users care not to spend it because they

will be able to benefit from saving unspent currency for future use. In order to support

virtual currency, we rely on a central bank that enforces a currency policy by controlling

the aggregate amount and flow of virtual currency in the system.

Since users have no direct way of earning virtual currency, the system must decide

how to distribute the currency. Because users enter the system with no virtual currency,

we also need to provide new users with some initial amount of currency. In addition, as

users spend currency over time, we also need a way to infuse their accounts with new

currency. Clearly, there are many virtual currency polices one could employ to meet

these requirements and different policies will result in very different economic systems

and resource allocations.

Our virtual currency policy is based on two principles: (i) prioritizing users based

on an exogenous policy (we will describe the specific policies for Bellagio and Mirage in

the next sections); and (ii) penalizing/rewarding users based on usage or lack of usage

during times of peak demand. Examples of factors that may affect prioritization include

the types of usage (e.g., research vs. coursework), the amount of contribution made to a

system, and fairness concerns, which may be defined in terms of the cumulative resource

consumption of an individual. Allowing the prioritization metric to be determined ex-

ogenously permits flexibility in crafting a good policy for a specific domain. In addition,

it seems natural to reward the user who refrains from using the system during times of

peak demand (or, more generally, does not waste resources) and penalize the user who

uses resources aggressively when resources are scarce. Consider a user who monopolizes

the entire system for several days prior to a major deadline, for instance.

Each user is associated with an account at a central bank which stores virtual

currency. Each bank account is assigned a baseline amount of currency based on priority,

and a number of currency shares which influences the rate that currency will subsequently

flow into the account. Given an initial currency allocation, users can begin to bid for
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resources in the auction. Each time the auction clears, trades are settled and revenue is

collected from the accounts of winning bids. This currency is then distributed back to all

accounts through profit sharing in a proportional-share fashion based on the number of

shares in each account (Figure 3.2). It is this profit-sharing policy that allows users who

do not waste resources to save additional currency which can be used for a subsequent

burst of activity later.

In addition to profit sharing, the system also imposes a fixed-rate savings tax on

all accounts that have excess currency above their baseline values, again with proportional-

share distribution. The motivation for the savings tax is based on expected resource

consumption. For example, in PlanetLab (and also other distributed systems testbeds),

resource consumption is often highly imbalanced with a small fraction of the users con-

suming the majority of the resources and many users often going idle for long periods

of time [26]. Similarly, parallel batch computing systems often exhibit a diurnal load

pattern varying between extremes of light utilization and heavy utilization [27]. Assum-

ing similar resource consumption patterns, and in the absence of additional policy, the

implication would be that heavy users would eventually be working out of accounts with

very little currency even if there is little demand for resources in the system. To mitigate

this effect, we impose a fixed rate savings tax that makes operational the concept of “use

it or lose it” policy employed by agencies such as the Federal Aviation Administration

in allocating scarce resources; i.e., it is fine to defer the consumption of currency for a

while but at some point it is desirable to allow others to gain the benefit of resources

that a user is not using by redistributing some of the currency via the savings tax. Users

should be rewarded for not wasting resources, but such a reward should not last forever.

In the absence of any activity in the system, the savings tax works such that all accounts

eventually converge back to their baseline values. The savings tax is collected every 4

hours, at a rate of 5% of an account’s savings. These parameters were chosen such that

an exhausted bank account can recover half of its balance within a few days, and the

full amount in a week 3.

By controlling the distribution of wealth in a virtual economy, the system is able

to indirectly control the share of resources received by individual participants over dif-

ferent time-scales, despite artifacts introduced by the virtual currency and the continued

3Kash, Friedman and Halpern have recently initiated a research agenda on developing a theory for
how to allocate virtual currency within “scrip” systems in which agents both contribute and consume
resources.
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presence of load imbalance. In order to control the distribution of wealth among users,

there are two policies that we must determine: how will users be able to earn virtual

currency, and how (if at all) will the system limit the wealth of users. We discuss the

policies chosen for our specific implementations, Bellagio and Mirage, next.

baseline: 1000
shares:       80

Alice’s Account
baseline: 2000
shares:       20

Bob’s Account

Settlement Tax

80% 20%

Figure 3.2: Virtual currency policy.

3.3 Bellagio

In this section we describe the Bellagio architecture and implementation on Plan-

etLab.

3.3.1 Target Platform

PlanetLab is a distributed, wide-area, federated testbed consisting of over 800

machines hosted by more than 400 sites across the world (Figure 3.3). Machines are

owned and operated locally by each site, but primarily administered centrally by Plan-

etLab Central (PLC). PLC performs access control and maintains a consistent software

image on each machine. Each site is in charge of the physical upkeep of its machines,

such as uptime and providing adequate and persistent network bandwidth. Additionally,

each site pays a periodic fee to PLC to support the central administration. In return, a

site’s members, such as research scientists and graduate students, are granted access to

use any machine in the system. Each user can obtain a slice, which grants her access to

the resources of any PlanetLab machine. The instantiation of a slice on a particular ma-

chine is called a sliver. A sliver shares basic information about its associated slice, such
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as authentication keys and basic configuration files, and is the physical manifestation of

the user’s isolated environment on a machine. A sliver is therefore intended to export an

interface similar to that of a virtual machine or other virtualization technology. As of

this writing, PlanetLab implements virtualization using the Linux V-Server technology.

Figure 3.3: Layout of PlanetLab resources as of 2008.

A typical scenario for a PlanetLab user is that she will first obtain a slice from

her local administrator (by way of PLC). Once she has a slice, she creates slivers on any

number of machines. The most common use for the machines is as part of a wide-area

network experiment, with each component machine acting as an end-point or providing

some other function within the experiment. The value in these machines is not only in

their local resources, but their geographic location; a wide-area configuration of machines

provides a realistic setting for many distributed systems and network experiments. At

any point in time, a particular machine can multiplex its resources across processes from

many different slivers. These tasks can vary in length (i.e., a few minutes to months)

and in size (i.e., a few machines versus all machines). Each machine’s resources are time-

shared among active slivers using an equal-weight, proportional-share scheduling policy.

For example, if there are n active slivers on a machine, each active sliver is expected

to receive a 1/nth time-slice of a machine’s CPU cycles and network bandwidth over

every scheduling window. This type of scheduling is termed work-conserving [60], since

resource access is multiplexed among only active slivers. PLC performs limited admission

control such that the number of active slivers on a machine is limited to n = 1000 (i.e.,

no more than 1000 simultaneous slices can run on a machine). This constraint is imposed

due to the physical limitations on memory and disk space on each machine.
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Figure 3.4: 5th, average and 95th percentile load on 220 PlanetLab nodes leading up to
the May 2004 OSDI deadline.

The need for a more sophisticated resource allocation policy became apparent

during deadlines for the major systems and networking conferences in 2003 and 2004,

when resource contention became a persistent problem in PlanetLab. Figure 3.4 illus-

trates a (then) common occurrence for PlanetLab users. Due to synchronized conference

paper deadlines among users, the system experiences large spikes in resource demand

in the days leading up to a deadline. The proportional-share resource allocation policy

provides users with little control over their share of resources during such times, little

incentive to reduce consumption, and even less means to coordinate usage with one an-

other. The end result is that significant resource contention leaves the system unusable

for the majority of users. Bellagio is designed to help address this problem.

3.3.2 Architecture

Bellagio makes allocation decisions using a combinatorial auction. We provide

additional mechanisms on PlanetLab to allow users to bid for these resources. In this

section, we describe these mechanisms.

Resource Discovery

The decision to use a combinatorial auction rather than a series of single-item

auctions is motivated by the fact that most users on PlanetLab require simultaneous

use of a large number of machines. Selecting these machines poses a challenge to users

because there is a large set from which to choose, and machines — while largely homo-
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geneous in resource capacity — often exhibit dynamic characteristics. For example, a

typical usage scenario involves selecting machines that exhibit low load and an abun-

dance of network capacity. In addition, a user might want machines that have a particular

physical network topology of interest, such as within the same continent, or explicitly

spanning continents.

Distributed resource discovery allows end users to identify available resources

based upon both of these characteristics. Bellagio uses SWORD [81] for this purpose,

which is a resource discovery service implemented on PlanetLab. It exports an interface

that allows PlanetLab users to locate particular resources matching various criteria. For

example, users can search for resources based on resource-specific attributes (e.g., ma-

chines with low CPU load and large amounts of free memory), inter-resource attributes

(e.g., machines with low inter-node latency), and logical (e.g., machines within a spe-

cific administrative domain) or physical attributes (e.g., geographic location). SWORD

returns a set of candidate machines matching the user’s description.

Once users submit a bid, there may be a substantial delay between bid submission

and the actual allocation. Because resources can exhibit dynamic temporal characteris-

tics, it might not be useful for a user to bid on specific machines that she has discovered

from SWORD. Instead, the intended use of the resource discovery mechanism is to ex-

press abstract resource specifications. Therefore, Bellagio alternatively allows a user to

specify a SWORD resource specification (i.e., a SWORD query) in her bid instead of pro-

viding details on specific machines, and Bellagio will resolve these queries immediately

prior to determining a resource allocation for users.

Bidding Language

The previous section describes how resources bundles are identified by users. This

section describes how users then communicate demands for resource bundles to Bellagio.

Designing a bidding language for Bellagio involves a number of trade-offs. First, the

expressiveness of the language, such as size and types of allowable bids directly affects

the computational complexity of the allocation algorithm. On the other hand, having a

language that is both expressive and concise for users can make their life simpler. One

consideration of relevance within Bellagio is the frequency with which auctions must be

cleared. Very frequent auctions would require a restrictive bidding language with simple

allocation problems while less frequent auctions would allow for a more complex bidding
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language and hard clearing problems. Of course, less frequent auctions would also make

the system less reactive and less useful for very impatient users.

The particular choice of parameters is hand-tuned based on studies of PlanetLab

usage and our own experience. The end result is a 4-hour time slot of CPU share as the

basic unit of allocation in Bellagio. The combinatorial auction correspondingly clears

every 4 hours. In each period, there is a rolling window of T = {1, 2, 3..., 42} time slots

forward from the current time in the auction (where T = 1 denotes the immediately

next time slot that will be available). We let N denote the set of resources available

to allocate (i.e., different PlanetLab nodes). Note that immediately prior to running

the auction clearing algorithm, any bid that contains an abstract resource specification

(SWORD query), Bellagio translates the resource specification to a set of concrete can-

didate machines. The bidding language allows a user to specify a required allocation

duration from the set D = {1, 2, 4, 8}, which represents the number of time-slots to

reserve. Taken together, a bid bi from a user is constructed as follows:

bid = (s0, t1, d, {n1, n2, ...}, {ok1, ok2, ...}, v),

where s0, t1 ∈ T denote the range of possible start times for the bid to be valid,

d ∈ D is the duration of the job, {n1, n2, . . . , nk} and {ok1, ok2, . . . , okk} denote the

required quantities nl ≥ 1 on resource equivalence classes okl ⊆ N . An example of an

equivalence class is oki = {∗.princeton.edu}, where oki represents the subset of Plan-

etLab nodes located in the princeton.edu domain. The corresponding ni parameter

represents the desired quantity of nodes satisfying this equivalence class. v ≥ 0 is the

bid price (willingness to pay) for any bundle of resources that satisfies this bid. These

parameters allow PlanetLab users to reserve CPU shares for a duration of up to 32 hours,

and up to a week in advance. For example, a user might request “any 10 nodes from

Princeton, and any 10 nodes from Berkeley, for 32 consecutive hours anytime in the next

24 hours.” The corresponding bid of value v would be:

bid = (1, 6, 8, {10, 10}, {{∗.princeton.edu}, {∗.berkeley.edu}}, v).

Currency Policy

The currency distribution policy in Bellagio is performed on a per-organization

basis. Each site begins with an initial balance of virtual currency that is proportional to
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the number of machines contributed to PlanetLab. This policy is designed to encourage

contributions to PlanetLab, and in particular to reward those who contribute the most.

New sites that join PlanetLab are assigned currency in this way, as this initial balance

is only way that currency can be introduced in the economy. In PlanetLab, individual

users and slices are associated with a particular site or institution. All users and slices

associated with that institution have rights to the site’s bank account. When a user

makes a bid, her balance is temporarily frozen into an intermediate Bellagio account.

Each time an auction clears, revenue is collected from the accounts of winning bidders.

As described earlier, each bank account is also associated with a currency share

which determines the site’s portion of profit sharing. Initially, the currency share for a

bank account was the same as its initial balance — the number of machines their site

has contributed to PlanetLab. However, we modified this policy upon observation that

certain machines in the system are used much more often than other machines. We want

a policy that rewards organizations that contribute the most valuable (highly utilized)

resources. Therefore, we revise profit sharing such that it is only divided among each

of the organizations that owns a machine in a winning allocation; profit (revenue) from

each auction-clearing period is funneled directly back to the account of the PlanetLab

organization that owns the machine. One implication of this policy is the promotion of

long-term system growth. Users wishing to receive a larger revenue share will now have

an incentive to contribute useful resources to the shared infrastructure.

Once the payment amount for each winning bid has been determined, the user’s

bank account is charged by the appropriate amount, and resource bindings are performed

by returning resource capabilities in the form of tickets to the winning bidders using a

system such as SHARP [47].

3.3.3 Deployment

In the Summer of 2004, PLC provided the opportunity for research groups on

PlanetLab to experiment with more sophisticated scheduling policies. Beginning in De-

cember 2004, timed with the release of PlanetLab Kernel version 3.0, Bellagio was given

a fraction of each PlanetLab machine’s CPU resources, which it could then allocate to

different user slices. For example, if a machine has n active slices, each slice receives 1/n

time-share of the machine’s CPU. A full allocation of Bellagio’s share of resources to a

single slice would provide the slice with 3/n+2. For large n, the relative boost a slice
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could receive through the market is 200%. Therefore, for a single machine, the full allo-

cation of Bellagio’s resource can double or triple a slice’s relative CPU scheduling share.

We stress that the use of Bellagio was strictly optional: PlanetLab users automatically

received a default proportional share allocation; our system only sells an increase in

these soft resource shares. This particular resource boost is an artifact of the scheduling

technology used by PlanetLab, and the amount of resources that we are provided to

allocate within our market.

Because we are introducing a market-based allocation scheme to a live system

which previously had no notion of markets, we anticipated the learning curve for new

users would be high. The Bellagio user interface is designed to encourage early adoption

by the PlanetLab user community and promote frequent use. In order to lower the barrier

to for the user community, every registered PlanetLab user is automatically registered

to use Bellagio; a user simply supplies her authentication credentials to the Bellagio

Web interface, which are then verified against the central PlanetLab database. The

Web interface is deployed on a cluster of Linux machines with a PHP front-end and

a PostgreSQL database back-end. The database contains account balances for virtual

currency and manages user authentication.

Once authenticated by the Web interface, a user can view the status of her

account and previous bids and allocations. To facilitate the bidding process, we provide

several useful guides. First, to address the issue of “valuation uncertainty”, which is an

issue related to whether or not users will understand how to value resources in units

of the virtual currency, we provide historical prices in Bellagio as a reference point to

the current level of demand in the system. Second, to help formulate bids, we provide

several “one-click” bidding options, such as “bid on any N nodes in my slice” or “any N

nodes from K distinct Autonomous Systems”. Users also have the option of formulating

complex queries by defining equivalence classes of resources on which to bid. And, as

mentioned, Bellagio provides an interface to SWORD to perform these queries, which is

a tool familiar to many PlanetLab users.

In the next section, we discuss the Mirage platform and implementation, before

proceeding to discuss the deployment experience of each system.
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3.4 Mirage

In this section we describe the Mirage architecture and implementation on the

Intel Research Berkeley sensor-network testbed.

3.4.1 Target Platform

The initial motivation for this work became apparent during the construction

of a 148-node testbed at the Intel Research laboratory (IRB) in Berkeley, CA (Figure

3.5). This testbed is comprised of 97 Crossbow MICA2 and 51 Crossbow MICA2DOT

series sensor nodes, or motes, mounted uniformly in the ceiling of the lab. The motes

incorporate an Atmel ATmega128 8-bit microcontroller, 4KB of RAM, 128KB of flash

memory, and a Chipcon CC1000 FSK radio chip. The MICA2 series devices in the

testbed operate in the 433 MHz ISM band and incorporate a sophisticated sensorboard

that can monitor pressure, temperature, light, and humidity. The MICA2DOT devices

operate in the 916MHz ISM band and do not include sensorboards.

Figure 3.5: The Intel Berkeley lab testbed layout.

Users of a sensor-network testbed such as IRB’s are frequently interested in

acquiring combinations of resources; e.g., resources that meet certain constraints. For

example, consider a machine learning researcher who is interested in testing distributed

inference algorithms in sensor networks. Such a user might be interested in evaluating

algorithms at a moderate scale while performing inference over temperature and humidity

readings of the environment. The user’s code might also be tailored to a particular type

of device (e.g., a MICA2 mote) and needs to run on a different, appropriately-spaced

frequency to avoid crosstalk from other experiments. Thus, a user’s abstract resource

requirement might be something like “any 64 MICA2 motes, operating on an unused
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frequency, that have both a temperature and a humidity sensor”.

3.4.2 Architecture

As described in the Bellagio architecture, Mirage makes allocation decisions using

a combinatorial auction. We describe in this section the methods that we provide in

Mirage to allow users to bid for motes.

Resource Discovery

Similar to Bellagio, Mirage users can express an abstract resource specification to

specify constraints on the types of resources they seek to acquire. For example, testbed

users often need to specify constraints on per-node attributes. In the machine learning

example earlier, for instance, a logical conjunction on per-node attributes (mote type

and sensor board type) combined with a desired number of nodes is required. In other

cases, constraints on inter-node attributes may be necessary. For example, a user might

wish to acquire “8 motes where each pair of motes is at least 10 meters apart” to ensure

that the network causes a multi-hop routing layer to form. Currently, Mirage supports

resource discovery using per-node attributes including mote type, sensor board type, and

supported frequency range.

Bidding Language

The bidding language in Mirage is similar to Bellagio’s. The only difference is

that Mirage users are also interested in allocating a radio frequency range ([fmin,fmax])

for their allocation. Mirage must allocate frequencies in such a way that does not generate

crosstalk between user experiments. Formally, a bid bi in Mirage is specified as follows:

bi = (vi, si, ti, di, fmin, fmax, ni, oki) (3.1)

Bid bi indicates the user wants any combination of ni motes from the set oki (ob-

tained through resource discovery) for a duration of di hours with a start time anywhere

between times si and ti and a frequency anywhere in the range [fmin, fmax]. The asso-

ciated bid price is vi, representing the units of virtual currency that the user is willing

to pay for these resources. Continuing with the distributed inference example, a user

thus might say: “any 64 MICA2 motes, which have both a temperature and a humidity



44

sensor, operating on an unused frequency in the range [423 MHz, 443 MHz], for 4 consec-

utive hours anytime in the next 24 hours”. Suppose the user used the resource discovery

service and found 128 motes meeting the desired resource specification and valued the

allocation at 99 units of virtual currency. The corresponding bid in this case would be:

bi = (99, 0, 20, 4, 423, 443, 64, list of 128 motes) (3.2)

Mirage uses a greedy heuristic algorithm to compute the set of winning bids,

similar to the algorithm used by Bellagio. Like Bellagio, the resources that a user of the

IRB testbed cares about can exhibit both substitutes and complements. For example,

in the machine learning example, the user does not care which specific MICA2 motes

are allocated as long as a total of 64 of them are allocated. Hence, MICA2 motes are

substitutes for one another. Similarly, the user does care that 64 motes are allocated

simultaneously. A partial allocation of, say, 8 motes would not meet the user’s needs in

this case since the user’s intention was to test at a moderate scale. (The extreme case

would be a partial allocation of a single mote.) Thus, the 64 motes can be viewed as

being complimentary to one another.

Currency Policy

As in Bellagio, each user is associated with a project that has an account at

a central bank which stores virtual currency. Each project’s bank account is assigned

a baseline amount of currency based on priority, a number of currency shares, which

influences the rate that currency flows into the account, and is initialized with a base-

line amount of currency. Priority and currency shares are determined exogenously, and

mostly based on the type of usage (e.g., research vs coursework). Most accounts have

a baseline balance and currency share of 1000, while 2 local users have a balance and

share of 2000. Note that the profit sharing policy differs from the one used in Bellagio.

In Mirage, the sensor nodes are all owned by the IRB lab, and therefore, profit cannot

be associated with a particular project, whereas in PlanetLab a resource can be directly

attributed to a site.

3.4.3 Deployment

We deployed Mirage on Intel Research Berkeley’s 148-mote sensor-network testbed

in December 2004, and it is still in operation as of this writing. The implementation
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is comprised of three types of components: clients, a server, and a front-end machine

that users log in to and which provides controlled physical access to the testbed (Figure

3.6). Clients provide users with secure, authenticated command-line (the mirage pro-

gram) and Web-based access to a server (miraged) which implements a combinatorial

auction, bank, and resource discovery service. The server provides service to clients by

handling secure, authenticated XML-RPC requests using the SSL protocol with persis-

tent state stored in a PostgreSQL database. Lastly, the front-end physically enforces

resource allocations from the auction using Linux’s per-uid iptables packet filtering

capabilities. By default, all users are denied access to all motes. Based on the outcome

of the auction, rules are added as needed to open up access to users of winning bids for

specific periods of time.

mirage ssh ssh

miraged

sshd

SensorNet Testbed

Front−end

XML−RPC
 over SSL

XML−RPC
 over SSL

Web Server

Web Browser

Alice Bob

motes 1,2 motes 3,4,5

HTTPS

Figure 3.6: Mirage implementation.

The auction is parameterized by several variables: number of resource slots,

resource slot size, and acceptable bid durations. Our deployment includes 148 motes

where access to those motes is based on 1-hour slots, the minimum time unit of resource

allocation. To accommodate users who might require a range of different times with the

motes, users may bid for either 1, 2, 4, 8, 16, or 32 hour duration blocks. To allow users

who wish to plan ahead (e.g., perhaps near a conference deadline), the auction will sell

resources for up to three days into the future. Given our slot size of 1-hour, this works

out to a total of 72 slots. Thus, we can view the resources being allocated as a matrix of

148 motes by 72 time slots. When the system boots, all slots are available. Over time,



46

slots become occupied as bids are allocated resources and new slots become available as

the window of slots opens up over time.

To use the system, users register for an account at a secure web site by provid-

ing identifying information, contact information, a project name, and by uploading an

SSH public key. Each user is associated with a project and each project has an owner.

An administrative user is responsible for enabling accounts for project owners and as-

signing each project a baseline virtual currency value and a number of virtual currency

shares. Project owners can subsequently enable their own users, thereby eliminating the

administrative user as a centralized bottleneck.

Users bid securely in the auction using either the command-line tool mirage,

which acts as an XML-RPC/SSL client, or through the web-based interface, where PHP

scripts on the back-end act as XML-RPC/SSL clients to the relevant servers. The

command-line tool provides full access to the entire RPC interface exposed by miraged.

Use of this program is useful for various types of scripting and automation. To accom-

modate users who prefer a graphical interface, the web-based interface provides a simple,

integrated interface to the system where users specify what resources they want and how

much they are willing to pay using an HTML form. The web server, in turn, maps the

user’s abstract resources to concrete resources using the resource discovery service and

places a bid in the auction on the user’s behalf.

To use testbed resources, each winning bid results in members of the associ-

ated project being given access to a specific set of motes for a period of time specified

in the bid. Motes are made physically accessible to project users through the front-

end by doing the following for each project member: (i) creating a temporary Unix

login on the front-end machine using a global username (MD5 hash of the user’s SSH

public key), (ii) enabling access to the front-end via SSH authentication using an SSH

authorized keys file, and (iii) setting up firewall rules on the front-end such that

only the user can access the particular motes assigned to the winning bid.

3.5 Experiences

In this section we compare and contrast our deployment experience in Mirage

and Bellagio, and discuss the lessons we’ve learned about a market mechanism based

upon these two deployments.
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3.5.1 System Usage

Our deployment experience in Bellagio was very different from that in Mirage.

Bellagio was released for public use on February, 2005. Each site was given a balance

of 100 units of virtual currency per node; the initial balance of sites ranged from 100

to 2200. During its lifetime, it saw only 23 bids from PlanetLab users representing 13

different organizations, but allocated a total of 242,372 hours of CPU shares. In other

words, there were very few users, but those users were very active in the system. In part

due to this lack of activity, Bellagio was taken off-line in the Summer of 2005.

On the other hand, Mirage was deployed in December 2004, and it is still in

operation as of this writing. In the first six months of use, 18 research projects were

registered to use the system and 322 bids were submitted resulting in a total of 312,148

allocated node hours. Compared to Bellagio, Mirage had roughly the same number of

users, but saw significantly more usage: more than 10x as much bid activity (the number

of node hours is difficult to compare since PlanetLab has a higher capacity).

The primary difference between Mirage and Bellagio is the value of the resources

available in the market. Participation in Bellagio was optional, as users were guaranteed

best-effort resources through the standard PlanetLab interface. Thus users were able to

choose between using “free” resources, or managing currency and using an auction to

pay for additional resource shares. This lack of participation thus indicates an inherent

user cost to using the auction mechanism in PlanetLab. On the other hand, participa-

tion in Mirage is mandatory in order to use the resources. Anecdotally, a few PlanetLab

users who chose not to engage in the market did not want to tolerate the delay between

submitting a bid and subsequently waiting for the auction outcome before being able

to proceed with an experiment. Since PlanetLab applications are time-shared, users are

able to run experiments immediately and use resources on-demand. On the other hand,

in Mirage, users are accustomed to “waiting in line” for sensor nodes. Prior to Mirage,

experiments were scheduled in batches, and the only significant burden imposed by Mi-

rage is for IRB testbed users is to use the bidding interface. We see this dichotomy as

an artifact of the opt-in nature of Bellagio, and not a negative result about the applica-

bility of a market-based scheduler on the PlanetLab domain or time-sharing systems in

general.

While Bellagio did not provide enough data to draw significant conclusions, we

present data from our Mirage deployment and discuss the implications.
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3.5.2 Discussion

The goal of both Bellagio and Mirage is to promote efficient allocation of re-

sources, and in particular, guide allocation decisions when demand exceeds supply. In

this section, we reproduce figures from an analysis performed by a colleague [78] on the

data generated by our deployment of Mirage.

Figure 3.7 (reproduced from [78]) indicates that resource contention continues to

persist on the IRB sensor network testbed, as it had prior to the deployment of Mirage.

We can see that during times of heavy system load, the bidding process is able to allocate

resources at a higher price (Figure 3.8, reproduced from [78]), and resolves contention

by allocating the scarce resource supply to users who valued them the most. Figure 3.9

(reproduced from [78]) demonstrates that individual users place bids that range over

four orders of magnitude. From this data, we can conclude that users indeed place

different levels of priority on resources (assuming that the bids don’t represent grossly

misstated valuations) at different times, which suggests that extracting this information

can improve the allocation efficiency of a system, i.e., the aggregate utility achieved by

its user base.
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Figure 3.7: Testbed utilization for 97 MICA2 motes. [78]

Similar observations about resource valuation were made from our deployment

on Bellagio; however the data is significantly less reliable because of the few data points

available from deployment. As emphasized earlier, use of Bellagio was strictly optional to

PlanetLab users. As a result, the market did not capture the full demand of the system.

In particular, when overall system demand was low, there was virtually no activity on

Bellagio.

This example also serves to illustrate that users will often choose an easier-to-user
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January 20 to March 22, 2005. [78]

approach, even if it results in slightly less utility. One particular burden of our auction-

based approach is the artificial delay between node allocations. Since auctions are run

every hour, allocations to winning bids are correspondingly delayed until the hour. There

is a trade-off between imposing little delay on users and maximizing the efficiency of an

allocation: increasing the frequency of auctions reduces the delay imposed on users, but

it also reduces the amount of demand information captured in an auction, potentially

reducing the quality of the allocation.

In Mirage, the auction-clearing period of 1 hour is designed to mitigate the impact

of the imposed auction delay. However, based on the available data, we observe that a

significant fraction of the bids from users could not be satisfied given the 1-hour delay.

Each bid in Mirage includes both a delay and patience field, indicating an earliest start

time and latest start time allowed for an allocation. These fields are used to communicate

time-based constraints such as a deadline for an allocation. Figure 3.10 (reproduced from

[78]) indicates that 10% of user bids could not wait for the 1-hour duration. This effect

was more obvious in Bellagio, where a majority of PlanetLab users chose not to bid at

all.

Bellagio and Mirage were both designed to reduce the usage overhead imposed

on the users. In Mirage, we provided some information transparency by using a first-

price, open auction in order to help guide user bidding behavior. Despite the potential

for strategic manipulation in an open auction, we initially decided to prioritize our

goals for usability and efficiency improvement over incentive-compatibility. Perhaps not

unexpectedly, users not only learned how to use the system effectively, but a few users
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eventually developed strategies to manipulate allocations in their favor. These results

provide evidence that some end users may exhibit the sophisticated usage patterns of

rational economic agents and serves to justify the use of market based methods in seeking

to address these kinds of manipulations. The following are descriptions of the four

primary bidding behaviors that we observed during the initial Mirage deployment.

Behavior 1: underbidding based on current demand. Since all outstanding bids

in our initial deployment were publicly visible, users could observe periods with low

demand and submit low bids in these periods. For example, one user would frequently

bid a low value, such as 1 or 2 when no other bids were present. Underbidding is not

necessarily a problem in this situation, because it can still result in a utility-maximizing

allocation; e.g., if supply exceeds demand then all interested users receive an allocation.

This can be a problem in for-profit systems, however, where it would be important to

use a reserve price to provide good revenue properties. Moreover, it suggests that users

need to be strategic in thinking about how and when to bid, which indicates that such

a system might be difficult to use.

Behavior 2: iterative bidding. The possibility of user underbidding coupled

with uncertainty about the bid values of other users results in “iterative” bidding, i.e. a

behavior in which a user adjusts her bids while an auction remains open and in response

to price feedback. This poses a problem for system performance in Mirage because

the auctions need to have a definite closing time (because the associated resources are

perishable), and users may still be adjusting their bids when an auction closes. The

impact of this strategy is a potential efficiency loss in the allocation.

Behavior 3: rolling window manipulation. Unlike auctions for tangible goods,

resource allocation in computer systems are not allocated permanently, but rather allo-

cated for particular intervals of time. Since many experiments by Mirage users can span

several days, we permitted users to bid for allocation blocks of 1, 2, . . . , or 32 hours in

size. In order to allow users to plan in advance, we auctioned off resources over a rolling

window of 72 hours into the future. In periods of over-demand (e.g., during the SenSys

2005 conference deadline) the entire window of resources becomes fully allocated, and

we found that the design of the rolling window can lead to unintended consequences.

For example, consider a scenario with only two users, A and B, where user A requires

a 4-hour block of nodes, and user B requires only a 2-hour block. If the window of

resources is fully allocated, user A must wait at least 4 hours before a contiguous 4-hour
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block is available. However, after only 2 hours, user B will win her allocation, regardless

of her valuation relative to user A’s. Furthermore, if user B continues this behavior, it

is possible that user A will be starved indefinitely. During times of heavy resource load,

we observed that no bids involving a block larger than 2-hours could be satisfied. It

is possible that there were outstanding bids involving larger blocks and proportionally

larger bid amounts that could not be allocated because of the rolling window.

Given the negative impact of these observed user behaviors, we responded by

adjusting the Mirage auction protocol. First, we instituted a sealed-bid auction format,

thereby discouraging Behaviors 1 and 2. We also responded to Behavior 3 by increasing

the allowable time window to be 104 hours, with bid start times constrained to be within

the next 72 hours. To understand the rationale for this change, consider the following

example. Assume that we have users A and B, where user A requires a 32-hour block of

nodes (the maximum allowed), and user B requires a 16-hour block of nodes. If the entire

72-hour window is allocated, the next available 32-hour block occurs 104 hours in the

future. By expanding the rolling window to 104 hours and restricting the last 32 hours

(of the window) from being reserved, bids from both user A and B will be considered for

the next available 32-hour block. Under the original auction format, the bid from user

B would win the allocation before the bid from user A could even be considered.

Behavior 4: auction sandwich attack. While our changes eliminated Behavior

3 and significantly reduced Behaviors 1 and 2, a fourth behavior exploited the available

information about awarded allocations. In this attack, termed the “auction sandwich”

attack [78], a user exploits two pieces of information: (i) historical information on pre-

vious winning bids to estimate the current workload and (ii) the greedy nature of the

auction clearing algorithm. In this particular case, we observed a user employing a strat-

egy of splitting a bid for 97 MICA2 motes across several bids, only one of which has a

high value per node hour. During times of high resource demand, most users request a

majority of nodes (most often all 97 motes, since a conference deadline requires large-

scale experiments). Since Mirage uses a greedy (first-fit) heuristic in its auction-clearing

algorithm, the user’s single high value bid is likely to win and because the bids from

other users are then blocked and unable to fit in the remaining available slots, her other

low-valued bids fill the remaining slots. We produce an actual occurrence of this be-

havior in Table 3.1. Here, user A submits three bids, the main one being a bid with

value 130 (value per node hour 130/(44̇0) = 0.813) and used to outbid a bid from user
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B, with value 1590 (value per node hour 1590/(329̇7) = 0.0512). Once the high valued

40-node bid has occupied its portion of the resource window, no other 97-node bids can

be matched. Consequently, the user wins the remaining 57 nodes using two bids: a

24-node bid and a 33-node bid, both at low bid prices.

Table 3.1: Strategy S4 on 97 MICA2 motes. [78]

Time Project Value #Nodes #Hours

04-02-2005 03:58:04 user B 1590 97 32

04-02-2005 05:05:45 user A 5 24 4

04-02-2005 05:28:23 user A 130 40 4

04-02-2005 06:12:12 user A 1 33 4

3.6 Conclusions

From our deployments, we see that a market-based allocation system can sig-

nificantly reduce the management burden and simultaneously improve user satisfaction

on large-scale federated infrastructures. The allocation decisions in Bellagio and Mi-

rage are autonomously driven by user-provided job utility information, with otherwise,

very limited human intervention. Also, when user behavior is properly constrained, the

scheduling policies can lead to utility-maximizing resource allocations. Our deployment

experience also highlights a few challenges to using market-based systems with real users

and applications.

• Markets can increase allocation efficiency, but only if users understand how to

use the market. There exist many simpler alternatives to markets for resource

allocation; e.g., traditional methods that do not require users to bid or provide

demand information a priori. We hypothesize that users might sometimes prefer

this simplicity over the potential benefits of a market; we saw this behavior in

Bellagio. But we also observe that given enough incentive, users are willing to

put forth the effort to use a market system, which we saw in Mirage. It is likely

that not all users will be able or willing to use market mechanisms correctly. We

consider this problem in the next Chapter, where we analyze the sensitivity of our

market-based system to this particular type of user difficulties. Specifically, we

use workload data from Mirage to compare the sensitivity of different allocation

policies — ranging from traditional, simplistic policies, to our market policy —
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to various forms of inaccurate information, such as user uncertainty, haphazard

bidding, or imperfect currency assignments.

• The cost of using a market may be prohibitive to some users. In the course of the

Bellagio deployment, we learned that there is a cost to using the auction inter-

face, and that many users prefer both immediate and easier access (i.e., standard

use best-effort, proportional-share) over a potentially larger resource allocation ac-

quired from a more complicated bidding interface. For example, in Mirage, we

observe that many users require more immediacy for a significant fraction of their

resource requests. We hypothesize that it is possible to provide system support to

reduce the amount of planning a user must do to engage the allocation mechanism.

In Chapter 5, we address the issue of immediate use by using service contracts

over sets of user jobs (however, we frame this problem within the scope of a larger

problem setting) with, and in Chapter 6, we address the inherent user costs im-

posed by our auction mechanism by providing system support to help determine

application resource preferences in a time-sharing system.
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Chapter 4

Information Accuracy

In the previous chapter, we discuss the decision to trade-off usability for incentive-

compatibility in both Mirage and Bellagio. As we alluded to in Chapter 2, the inability to

achieve an incentive-compatible auction mechanism does not necessarily preclude us from

achieving efficiency. However, given the additional complexity of an auction over simpler

allocation systems, and the possible side-effects of using a virtual currency, this begs

the question: how sensitive is our market-based approach to such imperfect conditions

compared to existing best-effort policies?

In order to investigate the robustness of our market-based allocation policy, we

conduct an extensive simulation study that compares the performance of market-based

policy relative to existing alternatives under a range of these imperfect conditions. We

develop a model for varying the range of fidelity in market information: from complete

accuracy to complete noise. Using workloads based upon two different systems, we try

and generalize the expected performance of a market-based approach in other domains.

To our knowledge, ours is the first study of a market-based scheduling system to

analyze the potential impact of the imperfect information likely to be submitted to the

scheduler in a live deployment, and also one of the few to analyze its performance in the

context of real user utility information. Quantifying the effect of inaccurate information

is vital to understand how robust the underlying market mechanisms [49, 79] must be

in order to effectively support a market-based scheduling approach, or, conversely, to

understand when the inability for users to provide sufficiently accurate information might

prevent the effective deployment of a market-based mechanism.

55



56

4.1 Motivation

From our deployment experience with Mirage and Bellagio, we see evidence that

market-based systems have the potential to work well, but that many concerns about the

fragility of and burden imposed by these systems are founded. In fact, most of the studies

touting the potential benefits of these systems assume perfect operating conditions, and

as we see from our deployments, such assumptions do not always hold in practice, and

it is unclear how market-based systems will perform relative to these idealized results.

Not only might they not improve performance, but the potential exists to significantly

harm aggregate utility and fairness in existing systems should users provide inaccurate

information. While the simpler, more traditional scheduling policies do not provide as

much value to users in the best case, it would appear that they offer less fragility upon

deployment.

In fact, these apprehensions may contribute to the resistance to using market-

based policies in supercomputers and high-performance computing centers. Although

such clusters continue to increase resource capacity — with systems already achieving

petascale performance — resource allocation for jobs remains a significant challenge [93].

For example, some jobs may require high-speed interconnects for its many coupled tasks,

other jobs may require sufficient local storage for its data-intensive tasks, and some jobs

require both; a scheduling policy that does account for these needs will continue to

suffer from artificial resource bottlenecks. Despite the continued inability of Grid and

supercomputing systems to prioritize jobs based upon user needs [66], these systems

continue to deal with over-subscription through either a first-come-first-served + backfill

(FCFS+backfill) allocation policy, or some form of fixed-price priority-based scheduling.

It is worth noting that even many of these simpler, non-market-based scheduling

approaches are known to be sensitive to user input [107], and require significant engi-

neering and parameter-tweaking [56] when deployed. Therefore, any apprehension to the

potential fragility of a market-based policy may already be deeply rooted.

The purpose of this chapter is to use our deployment experience with Mirage

and Bellagio to help compare a class of market-based scheduling policies with traditional

scheduling policies. We use an extensive trace-based simulation to evaluate the sensitivity

of a market-based scheduling approach when subjected to imperfect conditions likely

to exist in a real deployment, as well as practical considerations, such as a heuristic

clearing algorithm and currency system. Partially to address concerns from the area
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of high-performance computing, we base our simulation study upon fifteen months of

user data from Mirage, as well as similar data from the San Diego Supercomputing

Center SDSC-SP2 cluster [1]. Since we lack sufficient data from Bellagio, we do not

consider time-shared jobs in this chapter. We begin by addressing the fundamental

concern that the additional information gathered by market-based schedulers, namely

users’ expressed job utility, to be inaccurate with respect to their actual (internal) value

for jobs. Our evaluation considers two distinct sources of this inaccuracy, which stem

from imperfections in user knowledge, and a market-based scheduler’s ability to extract

this knowledge (due to possible limitations of the currency system used) respectively.

We term these sources of inaccuracy user uncertainty and wealth inequity.

Uncertainty exists, for example, when a user is unsure how to assign a value to a

job (e.g., due to insufficient information about future demand or job importance [63, 85,

101]), or is otherwise unable to accurately determine job-specific characteristics prior to

submission, such as estimated running time [43, 66, 106, 107]. Markets-based schedulers

use a pricing mechanism to extract truthful user valuations. Wealth inequity among

users may decrease the effectiveness of such an approach; for example, wealthy users

may consistently overstate the value of their jobs (i.e., over-pay for resources), and

therefore consistently receive a larger share of resources than relatively less wealthy

users, regardless of need. If a virtual currency is used in lieu of real money, such as

service units in Supercomputing clusters like SDSC, all users may have less incentive to

save or spend currency according to true, private values, thereby decreasing the fidelity

of resource value information available to a scheduler.

4.1.1 Questions to Address

In this chapter, we focus on the following specific questions:

• How fragile is the performance of a market-based allocation system when subject

to imperfect information, specifically, from a range of user uncertainty and effects

of wealth inequity?

• How much imperfect information can a batch-scheduled market-based approach

tolerate and still add value over existing scheduling policies, such as FCFS+backfill

or a priority-based approach?

• Can we estimate the expected information fidelity in, production environments,
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and therefore, project the expected benefit of a market-based system over existing

approaches?

4.1.2 Summary of Results

For both sources of inaccuracy, we develop a parameterized model that allows

us to vary the level of inaccuracy from zero—meaning all user-provided information is

perfectly accurate—to one, where user-provided utility is entirely uncorrelated with true

values. We use this model to perform trace-based simulations on two distinct workloads.

Based on simulations driven by our two workloads, we present the following main results:

• When faced with extreme levels of uncertainty or wealth imbalance, a market-

based scheduler can under-perform traditional approaches, delivering roughly half

the aggregate utility of a traditional FCFS+backfilling scheduler in the worst case.

• However, market-based scheduling is sufficiently in-sensitive to levels of inaccurate

information that occur in existing computing environments. Specifically, if we

expect user utility information to be at least as accurate as observed inaccuracies

in run-time estimates, we can expect an increase in aggregate utility of at least

20-100%.

• Finally, we argue that in general, the effectiveness of any market-based allocation

mechanism is dictated by its ability to accurately extract user valuation. Specifi-

cally, we demonstrate that a fixed-price priority queue allocation mechanism can

degrade to the performance of a simpler, FCFS+backfill approach under a variety

of conditions. Therefore, we argue that the design of future pricing mechanisms

(e.g., fixed prices, auctions) or monetary policies (e.g., virtual currency distribu-

tion, spending limits) must explicitly consider the expected fidelity of elicited job

value information from users.

Our results indicate that despite the potential for poor performance in extreme

cases, market-based scheduling is robust to reasonable levels of inaccuracy and seems

likely to outperform traditional scheduling techniques in practice.
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4.2 Related Work

The primary focus of this study is to quantify the impact of errors in user-

provided information on both a market-based scheduling policy and traditional schedul-

ing policies. We are unaware of any such studies of market-based scheduling systems,

particularly with respect to a comparison against traditional scheduling approaches.

However, there are many studies that focus on the impact of user errors in traditional

scheduling systems.

The effect of errors in user run-time estimates on parallel scheduling algorithms

in batch computing environments is the subject of much study [22, 43, 76, 107]. Bailey

Lee et al. find that even with an incentive (a raffle) for users to improve their estimates

of job run-times, most users are inherently unable to do so [66]. Tsafrir et al. develop a

model for characterizing the error in supercomputing users’ job run-time estimates [106],

and others have characterized the impact of this error in batch environments through

simulation [22, 43, 76, 107], or in simpler environments using a theoretical approach

[115].

The primary difference between these studies and ours is that we are considering

the effects of imperfect utility information, which poses a significant set of additional

challenges. First, even with usage data from Mirage, it is impossible to quantify error

in utility information; job run-time estimates provide a measurable quantity that can

be modeled and compared. To address this challenge, we must develop a model for

a range of user error. The second challenge is in considering the different sources of

error. In a market-based system, there are many moving parts (i.e., virtual currency,

users’ private information, incentive compatibility of the market mechanism), and the

information may exhibit errors from a variety of sources. Our model must capture how

any of these sources may manifest in practice.

4.3 Models

We wish to characterize the sensitivity of a market-based batch scheduling system

system using realistic user and job data. At a high level, we use real-world data points

from Mirage and SDSC-SP2 to establish a ground truth for user job characteristics and

user valuation information (defined in this section). Our Mirage data provides one of

the few real-world data points for user valuation information, and the SDSC-SP2 data
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set provides examples of job characteristics and limited utility information (also defined

in this section) in a similar-sized parallel computing cluster. We use these data to drive

our simulations.

In this section, we describe how we model the entities in our simulations: the

scheduling environment, job utility functions, and the information inaccuracy.

4.3.1 Job Scheduling Algorithm

Developing an effective and deployable market-based scheduler for parallel batch

environments is challenging and the subject of much prior work [8, 12, 25, 54, 67, 91]. In

these algorithms, users submit a utility function along with each job, which conveys the

utility, or value, the user will receive from the job, as a function of the job schedule (e.g.,

turnaround time for the job). The goal of the scheduler is to determine a schedule that

maximizes the aggregate utility delivered to all users. In these systems, utility typically

represents not only the value the user will extract from the job, but also the price she

must pay to the system upon completion. Hence, rational users have an incentive to

truthfully reveal their utilities.

Thus, one way to view these prior algorithms is that they implicitly run a repeated

auction, as is done in Mirage. In our simulations, we use the same FirstPrice scheduling

heuristic used in Mirage. In this context, the basic idea of the heuristic is to calculate

the value density for each job, which is the initial value of the utility function (i.e., value

at time 0 in Figure 4.1), divided by its size and length. The heuristic performs a greedy

“first-fit” for each job, ordered by value density. We defer considering extensions to

the FirstPrice heuristic, such as a variable cost model like that of Popovici et al. [91],

pre-emptible jobs to the next chapter.

4.3.2 Utility Functions

Prior work characterizes each job utility function by its initial value and its decay

over time (see Figure 4.1). It is possible that the decay can cause the utility function to

become negative, but in our model and in previous models, we are implicitly assuming

individual rationality (as defined in Chapter 2), such that users will not incur negative

utility when using the system. One way to think about this assumption is that users

will not submit a job to the scheduling system if it would impose a net cost on them. In

all of our simulations, none of the schedulers will execute jobs that deliver no positive
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Figure 4.1: Job utility function (linear decay) as a function of v,v̂.

utility to the user. We extend the model of utility function to handle the possibility of

negative values in Chapter 5.

In this chapter, we focus on varying the initial value, and decay of a utility func-

tion. A study by Bailey Lee et al. [66] suggests that these two components are sufficient

to characterize the time-varying utility of jobs from real users. Lacking deployments

from which to observe the values and decays of utility functions belonging to real system

users, previous studies have relied on generating these components based on artificial

values to drive their simulations [8, 25, 54, 91]. In contrast, we can use workload data

from Mirage to create a distribution for initial values and job deadlines (both of which

are contained in the job logs), and explore the effect of different types of utility decay

(not contained in the job logs) in between the supplied initial value and job deadline in-

formation. In particular, for utility function decay, we examine the impact of the decay

types observed by Bailey Lee et al. in their study of job utility functions among real

users at the San Diego Supercomputer Center (SDSC) [66].

4.3.3 Information Inaccuracy

We capture the potential fragility of a utility-based scheduling approach by con-

sidering the impact of inaccuracies in the user-provided utility information. Specifically,

we model two types of inaccuracy commonly associated with utility information: val-

uation uncertainty, and wealth inequity. These types of inaccuracy are challenging to
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model because there is very little data available that describes how these inaccuracies

may manifest in practice. Therefore, we create a parameterized model that can capture

a range of possibilities associated with each type of inaccuracy. Namely, for a given

utility function u(t), we create a perturbed utility function û(t) for each of these error

types, and parameterize the magnitude of perturbation by the variable k. For the pur-

poses of this study, we ignore possible inaccuracies in job deadlines as, in many cases,

job deadlines are externally imposed upon the user. We defer investigation of misstated

deadlines to future work.

Uncertainty

A first source of inaccuracy has to do with uncertainty. In many cases, the output

(or utility) of a job depends upon the completion of other jobs [7, 8] and therefore a user

is unable to determine its value prior to submission. More generally, a user simply may

not be able to express her utility for a job due to cognitive or computational complex-

ity [63, 85]. Therefore, we expect many honest and well-intentioned users to express job

valuations that are weakly correlated or uncorrelated with their true valuations.

We assume that each job’s true utility function has a start value v that is drawn

from a fixed distribution V . In our simulations, V is the distribution of per-node-hour

valuations from the workload trace. To model uncertainty we generate a perturbed

value, v̂, which represents the start value of a user’s stated utility function (Figure 4.1).

We define the parameter k ∈ [0, 1] as the level of uncertainty, with larger values of k

representing less certainty. For example, k = 0 indicates absolute certainty (i.e., no

uncertainty), and k = 1 implies absolute uncertainty. If k = 0, we have the property

that v̂ = v, and for k = 1, v̂ will be uncorrelated with v.

The key challenge in defining a model for uncertainty is remaining independent

of the distribution V ; this is important in case V exhibits significant skew, as is the case

for the value distribution in Mirage. Our procedure for doing this is as follows. Define

the function CDF : V → [0, 1] as map from a value in v to its percentile within the

distribution V , and its inverse function, CDF−1 : [0, 1] → V . Therefore, if we draw

v ∈ V , and v is in the 75th percentile of all values in V , then CDF (v) = 0.75, and

CDF−1(0.75) = v.

For a given value v, we find its percentile in V (as a fraction) f = CDF (v).

From f , we draw f̂ ∈ Gaussian(µ = f, σ = k/2). We determine our perturbed value v̂
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Figure 4.2: Generating v̂ from v for uncertain users.

from the inverse CDF as v̂ = CDF−1(f̂). By using a Gaussian distribution with mean

f , and standard deviation k/2, we have an intuitive way to understand how the value

v̂ deviates from v. For example, if CDF (v) = 0.5, this means that there is a “good

chance” (from the definition of a Gaussian distribution, this means 68%) that v̂ will be

within k standard deviations of the percentile of v.

Figure 4.2 illustrates a sampled distribution when choosing CDF (v̂) from CDF (v).

We see that when k = 0, CDF (v̂) is exactly CDF (v) with probability 1, and as k

approaches 1, CDF (v̂) is drawn from an increasingly noisy distribution centered at

CDF (v). Note that since a Gaussian distribution is unbounded, we clip f̂ such that

f̂ ∈ [0, 1]. As we can see from Figure 4.2 (CDF (v) = 0.5), the end points are raised for

values 0 and 1 due to the effects of clipping. However, since clipping is significant only

as k approaches 1, we do not expect it to adversely affect our results.

Figure 4.2(b) plots the distribution from which f̂ is drawn for a large value of

CDF (v).

Wealth Inequity

The second source of inaccuracy has to do with a user’s wealth. All market-based

scheduling systems assume the existence of a currency — either real or virtual — with

which users will express their value, or willingness to pay for a job. In either scenario,

we assume that a user with a larger budget of currency will receive a larger share of

resources, regardless of the true value derived from that job. For example, a user with a

disproportionately large share of wealth has more “disposable income”, and is therefore,
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Figure 4.3: Graphical depiction of Gini coefficient.

Table 4.1: User wealth inequity: ǫ is approximately zero; the last table row corresponds
to a population larger than 5 to illustrate how wealth inequity can approach 1.

{w1, w2, w3, w4, w5} Gini coefficient (k)

{1, 1, 1, 1, 1} 0

{1, 1, 1, 1, ǫ} 0.2

{1, 1, 1, ǫ, ǫ} 0.4

{1, 1, ǫ, ǫ, ǫ} 0.6

{1, ǫ, ǫ, ǫ, ǫ} 0.8

{1, ǫ, ǫ, ...ǫ, ǫ, ...} 1

more likely to forgo an additional dollar than a user with comparatively less wealth (this

a consequence of the Diminishing Marginal Utility of Wealth). For systems that use a

virtual currency (e.g., supercomputing service units, or currency in Mirage), this effect is

exaggerated since all users will be motivated to spend their remaining balance on their

remaining workloads, since the currency can only be redeemed for this purpose.

To model this behavior, we define a wealth parameter, wi > 0, for each user i,

with the property that wi > wj indicates that user i has more wealth, or ability to pay,

than user j. For any user i, we generate v̂ by scaling v by wi (i.e., v̂ = wi · v).

Similar to the case with uncertain users, we use parameter k to indicate the

level of wealth inequity across users in the system. For k = 0, we have wi = wj for

all users i, j, and for k = 1, nearly all wealth is held by a single user. There is a

formal economic metric used to describe such wealth (im)balance in a society: the Gini

coefficient [14]. As we illustrate graphically in Figure 4.3 (the x-axis is in ascending order

of wealth), this coefficient is defined as a fraction between 0 and 1 where 0 represents

perfect wealth equality and 1 indicates perfect inequality. Therefore, we simply define

k as the Gini coefficient of the wealth coefficients in the population. Table 4.1 contains

the Gini coefficient for various values of wi in a given population.
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Finally, given v̂ as a result of user uncertainty or wealth inequity, we generate a

user’s stated utility function, û(t), by scaling the non-decaying portion of a user’s utility

function by v̂/v, and decay the job from v̂ to the original deadline in the same manner

as the original decay. Figure 4.1 illustrates such an example for a linear-decay utility

function.

4.4 Experimental Setting

In this section, we discuss our simulation setup. Based upon data from Mirage

and SDSC-SP2 workloads, we create statistical distributions to drive our simulation

environment. Based upon these distributions, we generate multiple instantiations of a

workload that we run both our market-based scheduler and alternative scheduling policies

against, and compare the outcomes against varying levels of information inaccuracy.

4.4.1 Simulator

We have constructed a concurrent simulation environment to mimic a generic

parallel computing cluster and use it to compare the performance of the FirstPrice

market-based scheduling policy against that of two common scheduling policies: first-

come, first-served (FCFS) ordering with EASY backfilling [70], and a priority queue that

uses four levels of priority (SDSC supports four levels of priority). While neither the

FCFS+backfill nor the priority scheduler explicitly considers job deadlines, we assume

that jobs that pass their deadlines are canceled or otherwise removed from the queue

such that neither algorithm will consider scheduling a job that cannot complete before

its deadline passes, and therefore, only jobs with positive value are scheduled.

4.4.2 Workloads

As opposed to the graphs we present in the previous chapter that use raw data,

the graphs in this chapter use distributions of data from our chosen traces. The Mirage

trace contains 15-months (2006-2007) worth of data, and the SDSC-SP2 trace contains

24 months of job submissions (1998-2000). In Figure 4.4, we plot distribution data for

job size, length, value and deadlines for both the Mirage and SDSC-SP2 workloads.

Using distributions instead of raw data to drive our simulations allows us to extract

important features from the workload, and repeated different experiments over the same
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dataset. The features we focus on in for each workload are the job characteristics, and

job arrivals.

Distributions of these job characteristics are presented in Figure 4.4. The Mirage

data-set has various discontinuities in the CDFs due to restrictions on bids placed upon

users. For example, a minimum bid value of 1 unit is required for all bids, which leads

to the minimum per-node-hour bid seen in the CDF of Figure 4.4(a). The SDSC-SP2

workload, on the other hand, creates random bid values based on different Gaussian

distributions; these values are generated by the aforementioned tool by Bailey Lee et al.

[66] based upon the priority queue it was submitted to and observed queuing time. More

details about this tool can be found in the authors’ paper. Similarly, node reservations

are partitioned into into hour-long blocks (in increments of powers of 2) between one and

32 hours (Figure 4.4(b)), and users are able to select no more than 100 of the available

150 nodes in a given Mirage bid (Figure 4.4(c)), whereas in SDSC-SP2, users are only

limited by a maximum run-time of approximately 10 hours, and 128 nodes. Finally,

users are able to submit job requests up to 2 weeks in advance, as illustrated by the

maximum value seen in the CDF of Figure 4.4(d).

One interesting thing to note from these distributions is that workloads from

previous simulation studies of similar market-based scheduling algorithms often use a

bi-modal distribution of valuable and less-valuable jobs, and a bi-modal distribution of

urgent and less-urgent jobs [8, 25, 54, 91]. In comparison, the workload data we see here

exhibits an even wider distribution of job valuations and deadlines than those used in

previous studies.

The other dimension of our workload — job arrival patterns — is more challeng-

ing to model. Job arrival patterns are highly variable in both Mirage and SDSC-SP2,

making it difficult to draw conclusions from the trace as a whole. Instead, we partition

the trace data into two operating regimes based upon short-term demand: light and

loaded. We define the light regime to be any time period where almost all incoming

requests can be completely satisfied by available system capacity; in other words, total

resource demand can satisfied on average. (This regime includes many instances where

the system is completely idle.) In the loaded regime, incoming resource demand exceeds

system capacity. For each operating regime, we extract all job requests and calculate the

distribution of inter-arrival times, bid sizes, lengths, patience and values and simulate

the results separately. Table 4.2 contains a few workload values for each demand regime.
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(a) Per-node-hour values.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0001  0.001  0.01  0.1  1  10  100  1000

c
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

duration (hours)

SDSC-SP2
Mirage

(b) Job lengths.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100  1000

c
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

number of nodes

SDSC-SP2
Mirage

(c) Job sizes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  1  10  100  1000 10000 100000 1e+06 1e+07 1e+08 1e+09

c
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

patience (hours)

SDSC-SP2
Mirage

(d) Job deadlines.

Figure 4.4: Distributions of the workloads used to drive our simulations.

Note that bid values and arrival rates are larger in the loaded regime than the light

regime. However, jobs appear to be less urgent during the loaded regime. The increased

patience seems to indicate additional planning by users in order to use the system.

To account for the possibility of hidden demand or future peak usage, we create

a synthetic operating regime that we call extreme; it maintains the same job distribution

as the loaded regime, but with double the number of requests (i.e., inter-arrival times

are halved).

Finally, although the Mirage trace reports each user’s job valuation and deadline,

it contains no information about how the utility of the job decays over time. We consider

the following scenarios to capture the possibilities of job decay (inspired by study of SDSC

users from Bailey et al. [66]):

• convex : Job utility decays as a convex curve from arrival time until the deadline.

• linear : Job utility decays linearly from arrival time+run time until the job deadline
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Table 4.2: Workload characteristics for different demand regimes; deadline represents a
relative offset from job submission time.

Light Loaded

Mirage Mean Min Max Mean Min Max

Value (per node-hour) 0.16 0.0025 2.5 1.5 3e-4 111

InterArrival (hr) 18 0 44 8.6 0 24

Deadline (hr) 81 0 359 133 0 359

Light Loaded

SDSC Mean Min Max Mean Min Max

Value (per node-hour) 0.002 4.7e-5 1.84 0.001 1e-9 1.84

InterArrival (hr) 0.317 0 22 0.312 0 22

Deadline (hr) 231.8 0 40209 274 0 43238

(Figure 4.1). This model is used frequently in previous work [8, 25, 54, 91].

• flat : Job utility does not decay until the deadline, at which point it drops instan-

taneously to zero.

• mix : Job utility decays as either flat, linear, or convex. Each type is equally

probable.

4.4.3 Schedulers

In addition to the Mirage FirstPrice scheduler, we consider two alternatives. As

a baseline, we simulate FCFS+backfill, a traditional, non-utility based scheduler. In

addition, we study a simple four-level priority scheduler modeled on the SDSC sched-

uler, which can be viewed as a simplistic form of market-based scheduling (that captures

starting value, but ignores decay). At SDSC, users are charged for their jobs in accor-

dance with the priority level they assign [96], so there is motivation to accurately classify

job priority.

In our baseline experiments, we consider two configurations of the priority sched-

uler: static (PRIO+static) and dynamic (PRIO+demand). The former uses the stati-

cally defined priorities observed in SDSC trace logs. Specifically, rates are fixed at 0.5x,

1x, 2x, and 1.8x service units per CPU hour, respectively, for each of the four increas-

ing priority levels. (Note the highest priority is reserved for “express” jobs which are

restricted in their duration, hence the lower cost.) If we define priority level 1x to be

the median job value in our workload, then jobs with values twice the value of the me-
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dian have priority level 2x, and sufficiently small jobs with at least 1.8x the value of the

median qualify for the express queue, or highest priority.

In both workloads however, most of the important jobs are several orders of

magnitude more valuable than less important jobs, so the static priority settings do not

appropriately segregate jobs of different values. Therefore, we also consider a dynamic

approach (PRIO+demand), which classifies job priority based upon observed demand.

Specifically, we determine the appropriate priority level for each job based on its value

and the total distribution of job values in the workload. We use an implementation

of the Expectation Maximization (EM) algorithm [33] to decompose the distribution of

observed values into four separate Gaussian distributions, each with its own weight, mean

and standard deviation. Each of the component distributions represents a single priority

level (e.g., the distribution with the highest mean represents jobs with the highest priority

level), and based on this decomposition, the PRIO+demand algorithm determines to

which priority level a job corresponds.

4.5 Results

We quantify the performance of a market-based scheduling approach relative to

traditional, non-market-based approaches under various operating conditions — partic-

ularly in the face of inaccurate utility information. We are primarily interested in two

metrics: the aggregate utility delivered to users, and the distribution of utility across

its users. Our primary goal is to identify how much uncertainty or wealth inequity a

market-based approach can tolerate before degenerating. Secondarily, we seek to deter-

mine whether such levels of uncertainty arise in real workloads.

4.5.1 Baseline Performance

In order to calibrate our study with previous studies, we quantify the baseline

(i.e., assuming perfect information) performance improvement of market-based schedul-

ing over a non-market-based approach under each workload. Specifically, this experiment

measures the competitive ratio of each approach (measured as a ratio of aggregate utility

delivered by a scheduler to the FCFS+backfill scheduler).

The results for each workload are plotted in Figures 4.5 and 4.6 (unless otherwise

noted, standard deviation bars are depicted along with the averages). As expected, the
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(c) Flat utility function decay.
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(d) Mixed utility function decay.

Figure 4.5: Mirage: Baseline competitive ratio.

performance for all the schedulers is the same under light conditions, regardless of utility

function decay or workload.

Under loaded demand, the competitive ratio for the FirstPrice scheduler (UTIL)

and PRIO+demand are similar, and range from 1.1 to 1.8 in the Mirage workload. In

the SDSC workload, we see that the competitive ratio for UTIL ranges from 2.5 to 3, and

PRIO+demand ranges from 1.75 to 2. For the extreme demand regime, the competitive

ratios range from 2.2 to 4 in Mirage, and from 3.5 to 5 in SDSC-SP2, depending on

utility decay.

In the Mirage workload, the median job size is 100 (out of 100 possible nodes),

and in the SDSC-SP2 workload, the median job size is 5 (out of 128 possible nodes).

Therefore, we can account for the difference in competitive ratios across workloads by

recognizing that there are more scheduling decisions to make in the SDSC-SP2 workload,

which provides an opportunity for the UTIL and PRIO schedulers to make a “smart”

decision, and at the same time, for the FCFS scheduler to make an unwise decision.

Interestingly, the PRIO+static algorithm performs poorly compared to the other
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(c) Flat utility function decay.
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Figure 4.6: SDSC-SP2: Baseline competitive ratio.

market-based algorithms. In both workloads, it is unable to effectively differentiate

the highest-valued jobs, and therefore performs about as well as the FCFS+backfill

algorithm. In Figure 4.7, we plot the baseline performance of the PRIO+static algorithm

against algorithms which take into account the distribution of value densities in job

workload. For example PRIO+light establishes 4 levels of priority based on value-density

observed during light demand, and PRIO+demand established priority levels based on

value-density observed during the entire trace. We see that a priority-based algorithm

must take into account the value density of the incoming job stream in order to approach

the performance of the market-based approach.

The preceding graphs illustrate the overall allocation efficiency in the system,

but do not consider how utility is distributed among users. We define fairness to be a

measure of the utility share received by each user. Formally, we measure the fraction of

utility received by a user divided by the maximum possible utility he could have received

from all of his submitted jobs. In Figure 4.8, we see the average, minimum and maximum

utility share received by each user (the error bars represent minimum and maximum).
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Figure 4.7: Mirage: Competitive ratio using different priority-based schedulers.

For light demand, all scheduling approaches satisfy over 60−90% of the utility in

each workload, but, as demand increases, the utility share of the FCFS and PRIO+static

schedulers decrease rapidly. Interestingly, while all algorithms schedule roughly the same

fraction of jobs for each user (not shown for space considerations), both market-based

approaches (UTIL and PRIO+demand) schedule jobs with 2 − 3x (for SDSC-SP2) to

1.8 − 4.5x (for Mirage) more value to the average user, and 1.5 − 7x to the minimum

(worst-case) user. In general, the relative improvement of utility and priority scheduling

decreases (and fairness increases) as the utility function decay moves from convex to

linear to flat. In the interest of space, we plot only the PRIO+demand scheduler for the

remainder of the simulations.

4.5.2 Information Inaccuracy

In our next set of experiments, we measure the impact of imperfect utility infor-

mation on the competitive ratio. We consider the impact of each type of information

inaccuracy separately.

User Uncertainty

In Figure 4.9, we plot the competitive ratio under user uncertainty as a function

of k (degree of user uncertainty). We see that again, for a lightly loaded system, there

is effectively no difference among the schedulers. However, as demand increases, the

impact of uncertainty on the competitive ratio depends directly on the utility function

decay. In fact, without sufficient demand, a linear or flat decay and k = 0.75 uncertainty
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Figure 4.8: Baseline utility fairness in Mirage (left), SDSC-SP2 (right)
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renders both priority or market-based scheduling approaches 20% less effective than a

FCFS+backfill approach in the Mirage workload. In the SDSC workload, uncertainty

of k = 0.125 can drop the competitive ratio of the market-based approaches by a factor

of 2 − 3, depending on utility decay. Note that while the SDSC workload provides

more opportunity to deliver utility to its users (i.e., higher competitive ratio than in

Mirage workload for baseline experiments), it is also more vulnerable to error from user

uncertainty.

All schedulers are effectively fair under light load (light loads not shown for the

remainder of this chapter for space considerations). For the loaded regime, however,

we see that when k exceeds 0.5, that the market-based approaches can be, on average

(and max-min), less fair than the traditional approach: Figure 4.10 (Mirage on the left,

SDSC-SP2 on the right). For the extreme regime, this breaking point occurs even earlier,

at k > 0.25 (Figure 4.11). Again, as with the competitive ratio for aggregate utility, we

see that generally, as user certainty decreases, the user utility-share also decreases, and

that the uncertainty has a much more pronounced effect in the SDSC-SP2 workload since

there are more scheduling opportunities for error.

Wealth Inequity

This section considers the impact of wealth inequity between users on a market-

based approach. In these experiments, the degree to which users have different levels

of wealth is parameterized by the variable k. Figure 4.12 shows the aggregate utility

competitive ratio for each market-based scheduler as a function of k.

Similar to the scenario with uncertain users, there is effectively no difference

in aggregate utility among the scheduling approach for a lightly loaded system, but

as demand increases, the competitive ratio for both market-based schedulers increase,

depending upon the steepness of utility function decay. For the Mirage workload, the

competitive ratio for UTIL incurs its minimum at k = 0.3 (loaded demand), while PRIO

incurs its minimum as k approaches 1. To understand why the worst-case performance

for UTIL occurs at a different value of k from that of PRIO, consider the difference

between a scenario with k = 0.5 and k = 0.9. With k = 0.5, half of the users hold

most of the wealth in the system, and they are able to consume most of the available

resources. However, as k increases to 0.9, more of the wealth is held by a single user,

in which case he does not consume most of the resources. The remaining resources are
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Figure 4.9: Utility with uncertain users in Mirage (left) and SDSC-SP2 (right).
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Figure 4.10: Fairness with uncertain users and loaded demand.
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Figure 4.11: Fairness with uncertain users and extreme demand.
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Figure 4.12: Utility with wealth inequity in Mirage (left) and SDSC-SP2 (right).
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scheduled among the remaining users who are of the same wealth level. Therefore with

UTIL, the jobs of these users will be prioritized based upon expressed utility, however

with PRIO, all of the jobs are classified as having the same (low) priority, and thus

scheduled in order of arrival, without regards to job value. For the SDSC workload, the

competitive ratio for UTIL incurs its minimum at k = 0.7 (loaded demand).

In Figures 4.13 and 4.14, we plot the minimum and average utility share under

loaded and extreme demands, respectively (Mirage on the left, SDSC-SP2 on the right).

Generally, we see that the average utility share received by each user is no worse with

either market-based scheduler. However, we also see that the minimum utility share

may be lower depending on k. Specifically, in Figure 4.13, we see that for k = 0.2

(Mirage), the minimum utility share received by the worst-case user is less than half of

that received by the worst-case user in the FCFS approach. In the corresponding graph

for the SDSC workload, we see that for k > 0 and k < 0.9, the worst-case user gets no

utility share. In Figure 4.14, we see a similar effect, except that the “breaking point”

occurs with a larger value of k. Also, as mentioned in the user uncertainty simulations,

the SDSC-SP2 workload (right-hand column) presents more scheduling opportunities for

a given load, and therefore more opportunities for error. Therefore, in general, we expect

that the effect of wealth inequity is more pronounced than in Mirage.

Simultaneous Information Inaccuracy

Finally, we examine the impact of a combination of user uncertainty and wealth

inequity. In Figures 4.15 and 4.16, we plot the competitive ratio for each workload under

a combination of uncertainty and wealth inequality levels, for users with a flat utility

decay, and mix decay, respectively. In general, we observe that user uncertainty has a

larger impact on the competitive ratio than wealth inequality. With steep utility func-

tion decays (Figure 4.16), UTIL is robust to both forms of inaccurate information, and

PRIO, while robust to most forms of inaccuracy, exhibits performance that is sensitive to

the incoming resource demand. However, as utility function decay becomes more shallow

(Figure 4.15), both approaches are more sensitive, and therefore, less robust to inaccu-

racy. And, as we have seen in previous graphs, the difference between the utility-based

scheduling approaches (UTIL and PRIO) increases with demand.
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Figure 4.13: Fairness with wealth inequity and loaded demand.
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Figure 4.14: Fairness with wealth inequity and extreme demand.
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Figure 4.15: Competitive ratio with both uncertainty and wealth inequity, and users
with flat decay; Mirage (left) and SDSC-SP2 (right).
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Figure 4.16: Competitive ratio with both uncertainty and wealth inequity, and users
with mix decay; Mirage (left) and SDSC-SP2 (right).
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Table 4.3: Uncertainty in job run-time estimates.

Cluster name Number of jobs k

SDSC SP2 [41] 54,006 0.107

SDSC BLUEHORIZON [41] 224,065 0.165

SDSC DATASTAR [41] 71,484 0.111

4.5.3 Levels of Inaccuracy in Practice

Our simulation results suggest that the robustness of a market-based scheduling

approach depends significantly upon the distribution of utility function decay and the

assumed value of k for information inaccuracy. In this section, we consider which decay

model and values of k might be expected in practice. The study of SDSC users by Bailey

Lee et al. [66] suggests that the mix decay most accurately reflects reality, particularly

for the SDSC workload. Unfortunately, there is little available data to suggest what

values of k occur in production systems.

For user uncertainty in particular, it is not possible to determine k from available

workload logs. However, accuracy information about other user-specified job character-

istics can provide a comparison point. For example, studies show that user-provided job

run-time estimates used for backfill algorithms are inherently inaccurate [66].1 Using

our definition of uncertainty from Section 4.3 we list the corresponding values of k for

job run-time estimates for both the SDSC-SP2 workload considered here, as well as two

other supercomputing workloads, in Table 4.3. The magnitude of k in all instances is

within the threshold for user uncertainty that a market-based scheduler can tolerate.

For the case of wealth inequity, we can use information about the distribution of

virtual currency endowments to directly determine k. In Mirage, most users receive the

same endowment of virtual currency, with a single group receiving twice as much as the

others. Since the user population is restricted to fewer than 20 groups, this distribution

results in an inequity level of k = 0.09, which is within the threshold for wealth inequity

that a market-based scheduler can tolerate. While we lack similar data for SDSC-SP2,

we have SU allocation data from other production clusters (Table 4.4) which show that

k ranges from 0.75 to 0.85 [38]. From Figure 4.12, we see that these values of k in SDSC-

SP2 may adversely impact the performance of a market-based scheduler. One way to

1All of our presented simulations assume perfect run-time estimates. However, repeating all of the
experiments using the actual run-time estimates from users does not significantly change the results; we
omit these graphs for space considerations.
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Table 4.4: Wealth inequity in SU allocations.

Cluster name Number of groups k

SDSC BLUEGENE [38] 1120 0.824

SDSC DATSTAR [38] 1818 0.851

SDSC IA-64 [38] 1758 0.750

mitigate the impact would be to limit the quantity of high-priority jobs across groups,

or limit the accrual of service units by any group, as is done by the savings tax policy

in Mirage. This policy, in effect, lowers the average k over tax-collection periods.

In our discussion of wealth inequity, we also observe that an inequity level of k = 1

(Figure 4.12) appears less harmful than a level of k ≈ 0.5. This result is dependent on

the wealthiest users not exhibiting enough resource demand to consume all available

resource capacity.

In Figure 4.17(a), we illustrate that for the Mirage workload, a demand of 8x·

loaded is sufficient to evoke this worst-case behavior. At present, however, the wealthiest

Mirage users consume roughly half of available resource for the duration of the trace.

Based on these consumption patterns, Figure 4.17(b) illustrates the competitive ratio

as a function of wealth inequity; we see that the competitive ratio does not degrade as

severely as in theoretical the worst case.
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4.6 Conclusions

One indirect result of our simulation studies is that we can corroborate the find-

ings from previous simulation studies that a market-based scheduler can potentially

increase the value delivered to users when compared to a FCFS+backfill scheduler, and

we quantify this increase in real workloads at 10–300%, depending on demand and util-

ity function decay. We also find that utility is distributed more equitably across users

than in the case of a traditional approach, in both the average (80–450%) and minimum

(45–700%) utility share per user.

More importantly, we find that these results are surprisingly robust based upon

projections from real world data. Despite a theoretical worst-case performance of up to

50% degradation when compared against a FCFS+backfill approach, we provide projec-

tions from information error in real systems that suggest a market-based approach can

indeed deliver more equitable values to users even under potentially imperfect operating

conditions. Specifically, if we expect user utility information to be at least as accurate

as observed inaccuracies in run-time estimates (k < 0.2 for all logs in Table 4.3), we can

expect an increase in value of at least 20–100%.
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Chapter 5

Service Providers and Aggregate

Utility Functions

In the previous chapters we allocate resources with the implicit assumption that

maximizing user utility also maximizes aggregate utility. This assumption is adequate

for the academic and non-commercial settings we’ve considered, but for commercial

environments reflective of emerging cloud-based and service-oriented systems, we must

also consider the utility of the resource service provider. In this chapter, we model

our system as a job-execution service provider which, as before, executes jobs on the

behalf of clients, but must also maintain profitability. We examine different market-

based allocation policies to allow such a service provider to maintain profitability (that

is, maximizing its own utility) when both user demand and the underlying availability

of resources is uncertain.

5.1 Motivation

The explicit goal in Mirage and Bellagio is to improve aggregate user utility. We

have demonstrated how combinatorial bids and job valuation information are used by

clients1 to communicate the value of a piece of work and other QoS aspects such as its

timely completion. However, in both of these systems, allocation decisions are driven

solely by user needs. In this chapter, we consider the more general case of a system

where its needs, or profitability, is also critical. In particular, we demonstrate how to

1The terms client and user will be interchangeable in this chapter.
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extend our model of an auction-based allocation mechanism to cope with such a setting,

where we have both a utility-maximizing service provider (who in of itself, may be a

client to a resource provider) and utility-maximizing clients. We find that as defined

thus far, job utility functions on individual work items do not capture how important it

is to complete all or part of a batch of items, which can result in reduced satisfaction

for both client and service provider; to capture this need, a higher-level construct is

required. We present a multi-job aggregate-utility function, and show how a resource

service provider that executes jobs on rented resources can use it to drive admission

control and job scheduling decisions. Using a profit-seeking approach to its policies,

we find that the service provider can cope gracefully with client overload and varying

resource availability (Figure 5.1). The result is significantly greater value delivered to

clients, and higher profit (net value) generated for the service provider, the sum of which

represents our previously defined notion of aggregate utility.

5.1.1 Examples

In the previous chapter, we consider the sensitivity of a market-based allocation

algorithm in a parallel job environment: users have many parallel jobs to run, and the

scheduling system prioritizes jobs based upon user utility information. When demand

exceeds resource capacity, the scheduling algorithm can simply select among the jobs

with the highest per-unit utility to maximize aggregate client satisfaction. We argue

that this behavior does not adequately capture the needs of users in many commercial

environments.

Consider the example of a user who has a workload consisting of 100 independent

jobs. Each of these jobs is a part of a larger task, and he needs at least 75 of the jobs to

complete (it does not matter which 75), but can tolerate having fewer than 100 complete.

If he submits each job individually, he risks having fewer than 75 jobs completed, but if

he sends all of the jobs as a large parallel job, he risks not having any of the individual

jobs complete.

While a system lacking this type of expressiveness may still benefit users in

the non-commercial or academic infrastructures that we have considered thus far, for a

system that must sustain itself on profits and serving client needs, the approach in the

previous chapters is not adequate. This client example is motivated by several others we

have encountered in real systems:
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• We have a colleague who often runs 100,000 jobs over a weekend on a shared

compute cluster in order to perform an experiment. Each job takes a few minutes

to run and produces one data point on a graph. The graph is nearly useless if too

few data points have been obtained by Monday morning, but completing 90% is

almost as good as completing all of them. No particular job is more important

than any other — it is the aggregate set of results that counts.

• Computer-graphics film animators often compete with each other for access to a

compute farm on which they run multi-hour rendering jobs overnight [13]. For

any particular animator, getting a particular image back the following morning

has some benefit, and having more images rendered is better — but sometimes the

majority of the sequence needs to complete for any of it to be useful. Some frames

are considerably more expensive to render than others, yet no particular frame is

more important than its peers — it is the overall effect that matters.

• Outsourced business services often have service level agreements (SLAs) or con-

tracts that include penalties for poor performance: if the response time is too high,

for too many transactions, the service provider will earn less, and may even have

to pay out more than it takes in. Sometimes, from the perspective of a user, no

individual transaction in a set of work is any more important than any other —

the percentage of transactions that violate the bounds is what is important.

Simple per-job or per-work-item information does not capture the true intent

of the client in these examples, leaving the scheduler to do the best it can, but risking

unhappy clients, under-utilized services, or both. In the absence of any higher-level

control or incentive, the service provider is free to cherry-pick jobs, and accept only the

most profitable ones, leaving the client at risk of not getting its less-profitable work done.

To prevent this behavior, the client needs to constrain the service provider somehow. As

the examples show, simple per-job metrics will not work, and imposing binary constraints

of the form “you must finish all of these” would be sub-optimal in the presence of

competition from other clients that may not be known at the time an agreement is

made. What is needed is additional mechanisms that can express the client’s desires

while not unduly constraining the service provider. This chapter presents such controls

— contracts and aggregate utility functions — and evaluates their behavior.
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Figure 5.1: Problem overview: The relationship between clients, service providers, and
resource providers.

5.1.2 Questions to Address

We focus our study by considering the concrete example of a job-execution service

provider that runs batch jobs on behalf of its clients, who can be commercial clients,

scientific partners, or other entities (Figure 5.1). We focus on the following questions:

• How can a job execution service provider remain profitable while also increasing

user utility?

• How can a job execution service provider remain profitable when it must also

consider underlying resource availability?

5.1.3 Summary of Results

The primary contributions of this chapter are to:

• Introduce aggregate utility functions, which are used as a part of a higher-level

agreement between a service provider and client which let clients specify the overall

value of completing a set of work, in addition to the values of individual work items.

• Present algorithms that allow a service provider to make both per-contract and

per-job admission-control and scheduling decisions that take such client aggregate
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utility functions into account.

• Evaluate these algorithms by means of a simulation study, in the context of a

service provider that obtains resources from an external source, from which resource

availability may be volatile.

Our evaluation covers a range of operating conditions: load, resource cost and

quantity variability, per-job utility function shape, and aggregate utility function shape.

Our experiments show that the new algorithms consistently extract higher utility for

clients and higher profit rates for service providers than previous approaches.

The next section is a survey of broadly related work. Section 5.3 introduces our

model of services and the contracts they support; section 5.4 describes our job execution

service in greater detail; section 5.5 describes the resource provider service it uses. The

evaluation portion of the chapter starts with a description of our setup in section 5.6 and

is followed by our results in section 5.7. A discussion of the results and our conclusions

close out the chapter.

5.2 Related Work

This chapter extends the previous work on Popovici et al., which uses a system

model similar to ours in which a service provider rents resources instead of owning them,

and whose goal is both to decide on the quantity of resources to obtain, and the allocation

of resources to client jobs. We directly build upon this work, but instead of exploring

the effects of resource availability uncertainty, we explore the effects of known variability,

and the problem of aggregate performance constraints, which has not been considered

previously.

In this chapter, we discuss the use of client aggregate utility functions to control

service provider behavior across multiple jobs. Kumar et al. [61] use a single utility

function that aggregated data from multiple sources. We use both per-job and aggregate

utility functions.

We use client contracts to indicate how a service provider should perform in the

face of changing underlying conditions and conflicting service contracts. Balazinska et

al. use off-line bilateral contracts [9] to specify service quality for distributed stream-

processing applications; SNAP [35] performs service and resource allocations based on

three levels of agreements for resource management in grid computing: application per-
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formance, resource guarantees, and binding of applications to resources. Unlike SNAP,

our job-execution service, rather than the client, determines how to bind applications to

resources. Dan et al. [36] is similar, but also includes client level objectives and abstract

resource objectives, and focuses on the service provider’s need to manage resources and

applications; however, they do not look at the effects of aggregate objectives nor the

performance of a service provider to meet their objectives. GRUBER [39] uses contracts

for job scheduling based on the amount of CPU a group is allowed to consume over a

period of time, but does not assign values to individual jobs.

5.3 Models

In this section, we present our model for a service provider in a cloud-based

or service-oriented world. We define each of the components in Figure 5.1, and how a

particular service provider — in this case, our job execution service — communicates

with clients and its own resource provider.

5.3.1 Contracts

In a cloud-based or service-oriented world, clients need control over their service

provider’s behavior, and service providers must be able to constrain the behavior of

their clients. This mutual control is provided by means of service level agreements, or

contracts, which specify the service to be provided, its quality and quantity levels (e.g.,

the load that the client can impose), price, and penalties for non-compliance.

Too much specificity in a contract may prevent helpful optimizations behind the

scenes; too little leaves the the service provider to second-guess the intentions and desires

of its clients, which exposes the clients to the risk of being surprised, disappointed, or

both.2

For our job-execution service, each of our clients negotiates a contract with the

service provider to run a single sequence of jobs. The client binds itself too, by including

a description of the contract’s workload in sufficient detail to allow its aggregate load

and value to be estimated, but not the precise timings of when jobs will arrive, or their

individual sizes or values. This description includes estimates of the number of jobs,

2Not everything needs to be explicitly specified in a contract: anything for which there is little risk of
misunderstanding can safely be omitted. Ascertaining what is mutually understood is itself an interesting
problem.
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their sizes, arrival rates, and utility functions, in the form of distributions (in our case,

the distributions used by our client workload-generators).

We model well-behaved clients that submit jobs that conform to the contracts

they negotiate; coping with malicious clients is outside the scope of this chapter. For

simplicity of exposition, each job demands only one processor; handling multi-node,

moldable or reshapable jobs is a relatively straightforward extension.

5.3.2 Job Utility Functions
u
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Figure 5.2: Per-job utility functions: How much value a job delivers as a function of
when it is completed.

As before, each job has an associated time-varying utility function that expresses

the maximum price that the client is willing to pay for that job to be run, and how this

price decreases with elapsed time (see Figure 5.2). We follow our definition from the

previous chapters, but in this chapter, we allow the utility function to decrease below

zero, which reflects a negative penalty of not having the work complete. This change

is necessary when considering binding contracts and service-level agreements between

clients and providers. As with before, we equate the value of a job with the maximum

price the client is willing to pay.

Once the job execution service accepts a job, it will either run it and deliver

its results, or it will cancel it. If the job is not completed by its timeout, it is always

cancelled. The job value to the client equals either the job’s utility function value at the

moment that the job completes and returns its results, or the maximum penalty if the

job is cancelled.
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5.3.3 Aggregate Utility Functions

In order to properly balance the desires of a provider to execute only the most

profitable jobs, and the desire for clients to execute less-profitable work, we build on top

of per-job utility functions and choose the following: the overall payment for a contract

is the sum of the per-job prices multiplied by the value of an aggregate utility function,

which is a function of an aggregate metric measured across the entire contract. This

function allows the client to express near-arbitrary consequences for different aggregate

behaviors in a simple way. We believe that this mechanism is simple, powerful, easy to

communicate, captures important client concerns, and is easy for the service provider to

interpret.

The aggregate utility function could be of nearly arbitrary shape. To explore a

range of behaviors, we pick a family of functions that can be generated using only two

parameters: aggregate utility = αxβ for an aggregate metric value x in the range 0–1

(see Figure 5.3). We call (aggregate utility − 1) a “bonus” when it is positive, and a

“penalty” when negative.

The parameter β is a measure of the client’s sensitivity to the aggregate metric:

when β = 0, the client is indifferent to its value; when β = 1, the client is moderately

sensitive (the relationship is linear), and for higher values of β, the client is increasingly

sensitive. When the aggregate metric is the fraction of jobs completed, then as β in-

creases, the client is expressing increasing concern about completing all of the jobs; for
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β < 1, as β approaches 0, the client is expressing increasing indifference to having the

last few jobs run.

The parameter α describes the potential upside to the service provider of good

performance: for example, with α = 1.4 and β = 1, the client is offering a bonus of 40%

of the sum of individual job utility values for completion of all the jobs in a sequence

(the tallest straight line in Figure 5.3).

The overall pay-out for a contract is calculated at its end; we assume that pay-

ment can be deferred until then, and any disputes can be arbitrated by a third-party

auditor [10, 15].

Here, we use the fraction-of-jobs-completed as the aggregate metric, but it could

as easily be any such metric, such as the average job completion time, the average start-

time delay, or even the correctness of the results.

Composite utility functions could certainly be constructed using more than one

aggregate metric. Essentially, they become objective functions for the service provider,

guiding its tradeoffs along different operating dimensions. Using such functions might

be an interesting way to augment the penalty clauses that are traditionally used in

SLAs to handle QoS violations for properties such as availability, reliability, correctness,

timeliness, and security — but it remains future work.

We also believe that aggregate utility functions that span multiple contracts

would be a powerful tool to capture concerns about overall customer satisfaction and

most-favored customers; such functions are also potential future work.

5.3.4 Using Contracts in the Service Provider

Faced with a proposed contract from a client, a service provider has to decide

whether to accept or refuse it. Once a contract has been accepted, the service provider is

bound to it: it cannot be cancelled, although it can effectively be abandoned. Payment

is determined by the combination of jobs completed and the aggregate utility function.

Even in the absence of penalties for refusing contracts, the service provider still

faces a tricky question when a new client contract arrives: is accepting the new one

likely to give it more profit than completing an already-accepted one that it might have

to abandon, or even some possible future one? Remember that the contract details

provide only estimates of future client behavior — the details of exactly which jobs will

arrive when are unknown, for both the new and the existing contracts.
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The number of resources available to the service provider may fluctuate with

time, affecting which contracts it can service profitably. The desirability of abandoning

an existing contract is affected by both the likely cancellation penalties for its jobs, and

by what fraction of the achievable aggregate-level benefits have been achieved from the

already-completed jobs: if it has nearly completed a contract with a high β value, it may

well be worth completing it, because much of the payout will result from only a little

more work. All these factors complicate the service provider’s decision.

A similar problem occurs when the client submits a job: the service provider has

to decide whether to accept it or not, bearing in mind the likely profitability of the job

by itself, its impact on other work that it has already agreed to do, and the effect it

might have on the aggregate utility function for the contract the job is associated with

— or even other contracts, if those jobs have to be cancelled to make way for this one.

The next section describes some of the algorithms we use to solve these problems.

5.4 Job Execution Service

The primary metric we use to evaluate the job execution service is the profit-rate

it achieves: the difference between its income and expenditures per unit time. Income

corresponds to the utility (value) it delivers to its clients, as measured by what they pay;

expenditures are its costs to rent processors on which to run the jobs. In turn, client

value is specified by the combination of a contract’s per-job utilities and the client’s

aggregate utility function.

We are also interested in the total client utility achieved, which we equate with

the total value (utility) the clients pay — i.e., the service provider’s revenue.

The job-execution service provider runs two types of admission control algo-

rithms: one for client contracts and one for individual jobs. It also has a scheduler that

decides when to run jobs. We discuss these algorithms in the remainder of this section.

5.4.1 Contract Admission Control

The contract admission control algorithm determines which client job-sequences

to accept. Its purpose is to avoid long-term service over-commitments, and to establish

a binding contract between the service provider and its client. The algorithm is run

whenever a new contract arrives. It first runs a feasibility check to determine if it can

accept the contract (i.e., it will be able to get enough resources to do so), and then a
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profitability check to see if it should (i.e., if its profitability is likely to increase if the

contract is accepted). If the contract passes both tests, it is accepted; if not, it is declined,

and the client seeks service elsewhere. There is no penalty for refusing a contract, but

once accepted, it is mutually binding on both parties.

The contract-feasibility check is selected from the following policies:

1. contract-load=oblivious: always accepts contracts.

2. contract-load=average: accepts a contract only if its average load plus the existing

average load is within the predicted resource availability for the contract’s duration.

3. contract-load=conservative: like average, but uses load estimates that are 2 stan-

dard deviations above the average, to provide some resilience to time-varying loads.

4. contract-load=preempt-conservative: accepts a contract if it passes the contract-

load=conservative admission test, possibly by cancelling an overlapping contract

that would generate less total revenue.

5. contract-load=high-value-only: accepts a contract if its expected value per hour

exceeds a threshold. Setting the threshold requires knowing the expected value

per hour of future contracts; however, running this algorithm provides a useful

upper bound on profit.

If the contract is feasible, its profitability is then checked, using one of the fol-

lowing tests:

1. contract-cost=any: the cost to rent resources to execute the contract is ignored; no

contract is rejected for this reason.

2. contract-cost=variable: profitability predictions are calculated separately for each

different cost period and added; only contracts that increase the overall profit-rate

are accepted.

In theory, multi-round negotiations could occur at the time a contract is offered

[40]. For simplicity, we just consider a contract once, and accept or reject it as it stands:

no attempt is made to adjust the contract to make it more acceptable to either side.

Once a contract is accepted, clients can submit jobs against it.
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Figure 5.4: Calculating the effective utility bias: The bias is calculated from the loss in
aggregate utility of not running a job, starting at the current operating point.

5.4.2 Job Admission Control

To avoid short-term overload, the job execution service provider also runs a job

admission-control algorithm when a new job arrives, which decides whether it should

accept individual jobs. Rejected jobs are not further considered, although they do affect

the aggregate utility metric. Furthermore, we consider the case where some jobs are

individually unprofitable: even if there were no other jobs in the system, the cost of

executing them would exceed the job’s utility.

If the admission control algorithm accepts a job, it is placed into a work queue,

from which it is selected to be run at some future time by our job scheduler.

In the absence of aggregate utility functions, the job admission decision is made

by comparing the profit rate of a tentative new schedule that includes the new job against

the existing schedule that does not.3 If the new profit rate is higher, the job is accepted.

Aggregate utility functions complicate job admission control: it may be more

profitable to run an individually-unprofitable job than to reject it. A useful way to

think about this scenario is to consider the cost to the service provider of not running

a particular job. The lost aggregate utility may be larger than the cost of running a

non-profitable job. Our solution is to make the job appear to be sufficiently profitable

for it to be accepted and run.

We capture the increased desirability of a job by constructing an effective job

utility function for it that includes a bias to the job’s utility, and use it in admission and

scheduling decisions, rather than the original utility function.

3As make-span for this calculation, we use the time to first free resource; using time to last job
completed gave less satisfactory results.
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Figure 5.4 shows how the bias is computed, and Figure 5.5 provides the equivalent

pseudo-code. We first determine the current operating point (old fraction), the fraction

of jobs that would be finished if this job and all subsequent jobs were run to completion

(i.e., 1 minus the fraction of jobs that have been rejected or cancelled so far). The bias

is the drop in the aggregate utility function from completing one fewer job, multiplied

by the expected (i.e., average) value of a job. It is added to all of the original job

utility-function y-values to generate the effective utility function.

The effect of the bias is to assign much higher values to jobs that would have

a large effect on the aggregate utility function if they were abandoned — for example,

at an operating point near 100% for large-β functions (highly-sensitive clients) — but

not to alter the values of jobs that are at relatively insensitive portions of the aggregate

utility function.

As a concrete example, suppose that the contract specifies 20 jobs with a mean

job value of 15, and further suppose that the service provider has already failed to finish

2 of 12 jobs so far. When the next job arrives, the operating point old fraction is 0.90,

the new fraction is 0.85, and potential is 18. Therefore, the bias is 15 × (18 × f(0.90) −

(17 × f(0.85) − 1). If the aggregate utility function f(x) = 2x (α = 2, β = 1), then the

bias is 37.5. A more sensitive aggregate utility function f(x) = x3 generates a bias of

only 25.2, because the 10% of jobs that were already missed have pushed the operating

point to a place where the aggregate value is heavily degraded. The same f(x) = x3

correctly generates a bigger bias of 41.25 when the current operating point is 1.0 because

the downside of not running even one job is so large near the 100%-complete operating

point.

The jobs’ effective utility functions are only used to help the service provider

make decisions: they are not used for charging the client.

5.4.3 Job Scheduling

Once a job is accepted, the service provider’s job scheduler decides when it should

be run. We adapt the FirstPrice algorithm from Mirage to consider variable cost; instead

of prioritizing by per-unit value, we prioritize by per-unit profit, or profit-rate. We call

this algorithm FirstProfit.

The job scheduler maintains a preferred schedule of pending jobs, and attempts

to execute that schedule on the resources available to it. The scheduler is invoked
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computeEffectiveUtility(
input:
U(t) // original job utility function
f(x) // aggregate utility function
total // number of jobs in the sequence
dropped // number of jobs already abandoned
mean_value // average for all [future] jobs

output:
U’(t) // effective utility function

{
// "old_fraction" is the position on the
// aggregate-utility curve before this job
// arrived - i.e., "x" in f(x)
old_fraction = 1 - (dropped / total);

// "new_fraction" is the new position on the
// aggregate-utility curve if this job
// were to be dropped
new_fraction = 1 - ((dropped + 1) / total);

// potential is how many jobs could complete
potential = total - dropped;

// bias is how far to boost the job’s
// effective value
bias = mean_value *

( (potential * f(old_fraction))
- ((potential-1) * f(new_fraction))
- 1 );

// create the effective utility function
U’(t) = U(t) + bias;

)
}

Figure 5.5: Calculating effective utility: How effective utility is calculated for a job.
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whenever a job arrives, a job completes, or the number of available resources changes.

If the scheduler decides that a job can be run, it selects a resource from those obtained

from a resource provider, and assigns the first job in the schedule to it; this procedure is

repeated until the scheduler has no more jobs that can be run or no remaining available

resources.

Once a job starts running, we assume it will run to completion: it will not be

preempted or aborted. To avoid getting tangled up in all the issues related to managing

uncertainty, we deliberately assume that the job-execution time is known in advance, and

construct the schedules so that the resource provider never needs to take away resources

being used by a running job.4

If a job’s start is delayed too long, its effective value may become negative. The

scheduler will then cancel the job.

5.5 Resource Provider Service

So far in this dissertation we have assumed that the service provider owns the

machines on which it runs its service. Besides the obvious disadvantage of representing

a static capital investment in a single service offering, this approach biases the decisions

made by the job-execution service towards maximizing the utilization of its processor

nodes, even at the cost of declining marginal utility.

We believe that there is an alternative model that can cope with the realities

of emerging environments, such as a service-oriented computing world, where service

providers can be clients of other service providers. In particular, we model a job-execution

service provider that rents compute nodes from one or more physical resource service

providers, or just resource providers.5

Such resource rental has many benefits: the job execution service can scale up or

down its capabilities as its business fluctuates; it does not have to be in the capital and

operating-expense intensive business of running data centers; it can benefit from compe-

tition across multiple resource providers; and it can aggregate resources from several of

them. There are disadvantages, primarily that the number and cost of resources avail-

4We realize that this is a strong assumption, but it is a conscious one, because it makes it easier to
focus attention on the new results. Nevertheless, we believe that our results would be similar without
this assumption — just harder to interpret, and with yet more workload parameters to set.

5The resources rented could be virtual machines rather than physical ones, as in Tycoon [62]. This
represents a level of indirection that does not affect our story, other than to add the complexity of
managing potentially dynamically-changing resource performance.
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Figure 5.6: The on-off model for variable resource providers: “On” periods correspond
to times of high resource availability and relatively lower resource cost.

able to the job-execution service may fluctuate as a function of other service providers’

demands on the resource provider.

Since the resource provider is not the focus of this chapter, we adopt a model of

its behavior that is sufficient to capture several of its salient behaviors and exercise the

job-execution service provider’s algorithms, while eliminating what we feel is unnecessary

complexity.

Our variable resource provider models changing resource availability by alternat-

ing between on and off modes (see Figure 5.6), with more resources available in the

former than the latter, and potentially different per-hour rental costs in the two modes.

The special case of identical numbers and costs of resources in both on and off modes is

called a static resource provider.

We construct different scenarios by considering a number of ratios between the

properties of on and off periods:

• quantity-ratio: the number of resources in an on-period divided by the number in

an off-period.

• cost-ratio: the cost of a resource in an on-period divided by the cost in an off-period

— we expect that an excess of resources might cause the resource provider to lower

its CPU-hour cost in times of plenty.

• on-ratio: the length of on-periods divided by the sum of on- and off-periods.

We always use equal-length on and off times (on-ratio = 0.5); the static provider

has all other ratios equal to 1.0.
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The resource provider offers accurate descriptions of how many resources it will

have available at a specific time, using a set of tuples of the form <start-time, duration,

resource-quantity, cost>. Prior work [91] has shown how to handle inaccurate resource

capacity in a batch-scheduling system context such as ours, so we omit that feature here.

We restrict this analysis to homogeneous processor resources; the techniques we describe

can readily be generalized to handle multiple resource types. Finally, we note that the

resource provider’s revenue is the same as the job-execution service provider’s cost.

5.6 Experimental Setting

Like our approach in Chapter 4, we rely on a simulation to study our job-

execution service provider’s behavior across a wide range of operating conditions, varying

the offered workload and contract conditions, the policies and algorithms used by the

service provider, and resource-provider behavior. This section describes our experimen-

tal setup, and the default parameters used in our experiments. The next section presents

the results we obtained.

5.6.1 Simulator

Unlike our simulation-based environment in the previous chapter, we started by

constructing a system with a set of independent Java processes to act as clients, a service

provider and a resource provider. This system is able to perform real job-execution, for

a set of “fake” jobs, with the intent that the code base can be easily adapted for use in

a production environment. This code base forms the basis of a simulator, which mimics

the behavior of the real system, and was used for all the results reported here.

In our experiments we use a single job-execution service provider, renting com-

puters from a single resource provider, as this is sufficient to stress our algorithms.

5.6.2 Workload

Unlike the simulation study in Chapter 4, we do not base our simulation workload

on trace-data. First, we are unaware of any existing workload data with client aggregate

utility information. Second, our primary reference point is prior work in this space,

which relies on mathematical distributions (as opposed to our sampled distributions in

Chapter 4). Since we can characterize our workload with known distribution types, we
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Table 5.1: Default simulator parameter-settings: The notation distribution(x, y) means
a distribution of the given type with a mean of x and a standard deviation of y.

Parameter Default value

Simulation length 1000 hours
Runs per data point 10

Client inter-arrival time exponential(1.0) hours
Client (contract) duration Gamma(100.0, 25.0) hours

Aggregate-utility α, β 1.0, 0.0

Job inter-arrival time exponential(0.15) hours
Job length Gamma(1.0, 0.25) CPU-hours

Low-value job value Gamma(12, 2.4)
High-value job value Gamma(36, 7.2)

Low:high-value clients ratio 80:20
Delay before value decays 1.5 × job-length
Mean decay rate (steep) to 0 value in 1 job-length

Mean decay rate (shallow) to 0 value in 5 job-lengths
Shallow:steep clients ratio 80:20

Max penalty value = −(job-value)
Job-cancellation penalty = max-penalty-value

Resources available 20 processors
Resource cost 10 per hour

On- and off-period duration 125 hours each
Quantity- and cost-ratio 1.0 (static)

list the important parameters in Table 5.1. We describe how each parameter is used in

the text below.

We begin with a set of exploratory runs that are designed to tease out the be-

havior of the system under relatively straightforward conditions, before proceeding to

more challenging situations. This first set of experiments establishes a baseline operating

environment with the static resource provider: our goal is to set up a workload that has

a reasonable profit margin (about 50%), operating at or near saturation on the available

resources, while still rejecting some contracts and individual jobs. The first set of results

we report present this behavior (see Section 5.7.1).

Since the most closely related work to ours is by Irwin et al. [54] and Popovici

et al. [91], we opt to model the remaining parameters of our synthetic workload dis-

tributions upon their chosen simulation distributions rather than our Mirage data; this
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choice allows for a more direct comparison of our work with their prior work. Each job

utility function has a fixed value-decay rate (see Figure 5.2) that reduces the job’s value

from its initial value to its maximum penalty value; the decay starts at 1.5 times the

job’s running time. We use a mixture of high and low-value jobs and both shallow and

steep value-decay rates. RiskReward[54] discusses how these synthetic loads relate to

real workloads. Not all offered jobs can be executed profitably with the cost, computa-

tion time, and value settings used, even if the service provider is otherwise idle. We find

that the Mirage data and the described data herein differ primarily on the distribution

of job values: in these workloads, job values have a bi-modal distribution, whereas in

Mirage, we observe a quad-modal distribution.

The default parameter-settings for our runs are shown in Table 5.1. Each client

generates one sequence of jobs with an exponentially-distributed inter-arrival time. Such

clients are created at exponentially-distributed inter-arrival times throughout the run,

with a contract duration designed so that contracts may span on/off boundaries. Con-

tract negotiation is simulated as occurring at the time a client is created; the client’s

first job is submitted one job inter-arrival time later.

We used Gamma distributions to generate bounded values such as job length or

utility values.6 Unless otherwise noted, all graphs present averages over 10 runs. We

take care to avoid end-effects as much as possible. In particular, we run all jobs to

completion, make the experiment duration much larger than the average job duration,

and undo the effects of jobs that are incomplete at the end of a run.

We found that the execution times for the algorithms of the job execution service

provider are small compared to the time for running the jobs.

5.7 Results

We now present our simulation results. We begin by establishing the baseline

behavior for our system in the absence of aggregate utility-aware clients, and then add

them, followed by varying the behavior of the resource provider.

6Gamma distributions are chosen with parameters such that they behave roughly like normal dis-
tributions but with the attractive property that they do not generate negative values. Using a normal
distribution and suppressing such values would result in a new, not-quite-normal distribution with a
slightly different mean than intended.
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5.7.1 Baseline Performance

The policies used by the baseline service provider are contract-load=oblivious, and

contract-cost=any for contract-admission and first-profit-rate for job admission control

and scheduling.

Figure 5.7 shows how the service provider and clients behave in the absence

of an aggregate utility function (or, more strictly, if the aggregate utility function is

“indifference”), and with a static resource provider.

As the offered load increases, the overall utility delivered to both clients and

service providers increases. The service provider costs (which equal resource-provider

revenues) stop growing significantly at around 60 jobs/hour, at the same point that

resource utilization saturates.

Revenue and profit also stop growing at resource saturation. The service provider

finds and runs more higher-valued (and hence more profitable) jobs at higher loads, as

shown by the breakdown of CPUs assigned to jobs of different values (Figure 5.7(b)).

However, accepting higher-value jobs is achieved at the expense of cancelling more lower-

value jobs and the net result is a flat profit curve.

Note that the service provider’s tendency to cancel low-value jobs when higher-

value jobs arrive is what motivated our desire for client aggregate-utility functions.

We used these first results to establish a baseline operating point for the remain-

ing experiments. The parameters that resulted are shown in Table 5.1.

5.7.2 Aggregate Utility Functions

Figure 5.8 shows the effect of introducing client aggregate utility functions under

different service-provider contract-admission policies (section 5.4.1). For this experiment,

the aggregate utility function is f(x) = x2 (α = 1 and β = 2).

Figure 5.8(a) shows profit earned using each policy. In the presence of aggregate-

utility aware (“sensitive”) clients, profit drops dramatically as load increases for the

oblivious admission control policy, which admits all contracts. The other three poli-

cies, which limit the number of contracts and hence the number of jobs submitted, see

increasing profit with increasing load.

Figure 5.8(d) shows that while just as many (in fact, more) jobs are completed

using the oblivious policy, there are also a lot of cancelled jobs. Fortunately, since first-

profit-rate job scheduling always prioritizes the high-value jobs, virtually all (95-100%) of
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Figure 5.8: Sensitive clients: Exploring the effects of different service provider contract-
admission policies.

the jobs for high-value contracts are completed. At the same time, a much lower fraction

of jobs are completed for low-value contracts. Combined with the penalty incurred for

cancelled jobs, the lower fraction causes the overall revenue earned from the low-value

contracts to result in negative profit. In fact, for low-value contracts, if only 90% of the

jobs complete, the aggregate utility function reduces an average job value of 12 to 10

(which equals cost). When fewer than 90% complete, the completed jobs are actually run

at a loss. The preempt-conservative policy, by contrast, finishes over 90% of the jobs for

most of the low-value contracts that it accepts.

Figure 5.8(c) shows how many fewer contracts are accepted using the policies

that monitor and limit load. The unrealistic high-value-only policy accepts the 20%

of contracts that are high-value and completes nearly every job at full value, as seen

in Figure 5.8(d). However, job arrival is bursty enough that even this policy cannot



109

complete every high-value job, which is why there are small bands of completed (late)

and cancelled jobs at the top of the bar. Furthermore, the much smaller number of jobs

completed using the high-value-only policy as compared to the preempt-conservative

policy shows that not enough contracts are accepted when using the high-value-only

policy to keep the resources utilized.

The two policies that consider load when performing contract admission, conser-

vative and preempt-conservative, accept and complete about the same number of jobs.

However, Figures 5.8(b) and (c) show that preempt-conservative is able to accept more

contracts. By abandoning some contracts in favor of more profitable contracts that

arrive later, the preempt-conservative algorithm sees a higher percentage of high-value

jobs. These high-value jobs then have a large positive impact on its profit.

Note that profit for these experiments is lower for all policies than in the baseline

experiments. By choosing an aggregate utility function where α = 1 and β = 2, the effect

of the aggregate utility function is always to diminish revenue. In other experiments

where α = 2, omitted here for lack of space, we see much higher (nearly double) profit.

All the runs shown in Figure 5.8 use the effective job utility function described

in Section 5.4.2 when constructing schedules, both for job admission and job scheduling

decisions. The benefit of using the bias calculated by this function is shown in Figure 5.9,

which compares the performance of the preempt-conservative policy with and without

the bias. Adding the bias improves profit because about 5% more low-value jobs are

accepted and run: while these jobs are individually unprofitable and hence rejected

without the bias, completing these jobs raises the percentage of jobs completed and

hence the aggregate utility bonus enough to more than compensate for their individual

losses.

The results shown in Figure 5.8 for α = 1 and β = 2 are similar with other

values of β > 1, as shown in Figure 5.10. For larger values of α and β, adding the

bias calculation has a larger impact on the service provider’s profitability. This greater

profitability is important for clients as well. Client satisfaction is measured in terms of

value per accepted contract, and as we can see from Figures 5.8(a) and (c), the algorithms

earning a higher profit-rate also deliver a greater level of client satisfaction.

We use these results to establish an operating point for the experiments relating

to variability in the resource provider. For the remaining set of experiments, we use the

preempt-conservative contract admission policy.
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Figure 5.9: Job admission and scheduling: Enabling and disabling the effective job utility
function.
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5.7.3 Static and Variable Resource Providers

Figure 5.11 shows the effect of varying the resource provider behavior (Section

5.5) for the two contract-admission profitability tests described in section 5.4.1.

Figure 5.11(a) shows the results of fixing the resource costs, but varying the

available resource quantity by changing the resource provider’s quantity ratio (labeled

as qRatio in the figures). A quantity ratio of 1 corresponds to the static resource provider

used in the previous experiments.

As the quantity ratio increases, the profit rate of the service provider decreases.

We hold the average number of resources constant, so when there are more resources in

an on period, the number of resources in the off period drops accordingly. For a fixed

level of demand, there is an abundance of profitable jobs during the low quantity periods
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and not enough jobs during the high quantity periods to use all of the resources. When

the quantity ratio is 8, the contract completion rate is so low that most of the jobs

from low-value contracts incur a loss, regardless of whether or not the job was actually

run. This loss completely offsets the profit from the high-value contracts, which are also

completing an average of only 85% of their jobs rather than the 98% they complete with

static quantities of resources.

Figure 5.11(b) shows the effect of variable resource costs (by varying the cost-

ratio) and also illustrates the benefit of turning on the profitability check from Sec-

tion 5.4.1. As in Figure 5.11(a), increasing the quantity ratio decreases the profitability

of the service provider. However, both with and without variable quantities of resources,

the contract-cost=variable admission control policy outperformed the contract-cost=any

policy, especially at higher offered load, since the provider is able to complete a larger

fraction of jobs for a given contract. Note that a higher degree of client sensitivity (i.e.

larger α or β) would increase the profit gap between the two policies.

5.8 Conclusions

In this chapter, we explore the effects of profit-aware algorithms, and study how

load, aggregate utility functions, and the number and cost of resources influence our

service provider’s profit. We show that our profit-aware approach more thoroughly ad-

dresses the problems for both the provider and the clients we outline at the outset of

this chapter. Specifically, we demonstrate that a preempt-conservative contract admis-

sion algorithm with a variable cost profitability prediction, and the effective-utility bias

job scheduling approach is a more effective technique across a wide range of conditions

than previously proposed resource allocation algorithms. Together, these techniques rep-

resent a good balance between effectiveness, robustness, and ease of implementation and

execution.

Based on our results, we also make the following additional high-level observa-

tions:

• The idea of a self-interested, profit-aware service provider is a powerful technique

for thinking about, generating and selecting algorithms, and avoiding imprecision

in defining a “good” outcome.

• The contract-admission control algorithms we developed seem to be quite effective,
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and our evaluation highlighted how important careful selection of work is for a

service provider.

• Successfully handling aggregate utility functions is a new result. Doing so also

increases client utility, which is an important result in its own right.

Our results demonstrate the importance of profit-aware schedulers and admission-

control algorithms, and include cases where a decent profit can be obtained in place of

losses from less profit-sensitive algorithms. In the context of our previous results, we

demonstrate that the notion of maximizing the aggregate utility of a set of clients using a

market mechanism can be extended to a two-sided setting where a utility-maximizing ser-

vice provider and a set of utility-maximizing clients can coordinate using simple market-

based mechanisms, such as service contracts, aggregate utility function, and a heuristic

auction-based allocation policy.
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Chapter 6

A Market Mechanism for

MapReduce

In this chapter, we return to the goal of improving resource allocation but this

time, focus on a real time-sharing system using market-inspired techniques. Fundamen-

tally, a time-sharing system presents additional resource allocation challenges not faced

by a batch-scheduling system. For a user, applications compete with unknown resource

demand, and therefore, she may find it difficult to reason about the value of a particular

resource share. Also, a resource provider in a time-sharing system must plan capacity

for the number of concurrent applications allowed to run on a particular machine; the

unknown resource consumption characteristics of the competing applications makes this

capacity planning problem difficult.

The primary goal of this chapter is to demonstrate that we can improve the

quality of resource allocations for a set of jobs by approximating a utility function for jobs

as well as the resources they use. Unlike previous chapters, we do not measure quality

of resource allocations using an abstractly-constructed quantity of aggregate utility, but

rather, use job makespan as a proxy for aggregate utility. Using makespan as a proxy

for aggregate utility allows us to focus on this goal, and consideration of additional

definitions of aggregate utility (such as the user-provided information we consider in

previous chapters) should simply be an extension of these techniques, which we defer to

future work. With a goal to minimize makespan (we assume that aggregate utility is a

function of makespan), we observe that a job has a preference to complete as quickly as

possible, and likewise, a machine has a preference to maximize utilization of its resources,

114
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such as CPU or I/O. Based upon these observations, we define utility functions for each

entity, and use this utility information to drive the allocation decisions in our time-

sharing system.

To address the resource allocation challenges of a time-sharing system, we im-

plement task profiling support within a Hadoop scheduler to perform informed capacity

planning and prioritize applications based upon its resource consumption characteristics.

This mechanism allows a resource provider to simplify the problem of capacity planning

in the face of unknown resource demand, and for applications to be scheduled based

upon resource preferences without requiring a user or application to explicitly provide

this information to the scheduler. These techniques infer utility information from both

a machine’s resources, and the jobs that consume those resources. We demonstrate how

these market-inspired techniques improve system throughput on a Hadoop scheduler

running real jobs.

6.1 Motivation

The deployment of Bellagio is motivated by the problems stemming from the best-

effort, proportional-share resource allocation in PlanetLab. In Chapter 3, we see that the

usage costs of Bellagio on users coupled with the existence of other free resources do not

justify Bellagio’s sustained support in PlanetLab. In this chapter, we simplify our imple-

mentation mechanism and investigate its applicability to another time-sharing scheduling

framework where we can exercise full control over resource allocation: Hadoop. To begin,

we consider the fundamentally unique problems of allocating resources in a time-sharing

system relative to the batch-scheduling counterpart we consider in the previous chapter.

From the perspective of a service provider, the primary difficulty of a time-sharing

system is dealing with over-subscription of resources. This problem is unique to time-

sharing systems because batch-scheduling systems allocate a single task to a machine

at a time. In time-sharing systems, applications run on a machine concurrently, and

the system scheduler decides how many concurrent application instances to allow at any

given time; this choice can impact application performance, resource utilization, and a

variety of other relevant metrics.

Consider the example of a type of application which periodically performs a

computation and writes its output to disk. Without loss of generality, assume it spends

half of its time using the CPU, and the other half, primarily writing the output to disk.
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In a batch-scheduling system, both the CPU and I/O subsystem would remain idle for

roughly half the time. In a time-sharing system, two applications of the same type can

run simultaneously, and theoretically provide better resource utilization. Typically such

increased resource utilization manifests itself in increased application performance, such

as decreased makespan (time for the entire workflow to complete) or average response

time (average time for each workflow component to complete). We will refer to this

problem as capacity planning.

From the perspective of a user, a time-sharing system may provide more im-

mediate access to resources compared to batch-scheduling systems, but if the system

is over-committed, a time-sharing system increases the uncertainty of application per-

formance since the quantity of competing background traffic is typically unknown. In

the case of PlanetLab, even the presence of tools to monitor machine resource usage

does not encourage applications to use machines with under-utilized resources in lieu of

over-subscribed machines [87]. Ideally, a user would like to enjoy the benefits of a time-

sharing system, without suffering from the possible performance degradation resulting

from poor admission control. Therefore, in a large-scale time-shared system, users must

carefully select the machines upon which to try and execute their tasks. We term this

problem task resource assignment.

PlanetLab pushes both problems to the users, allowing access to each machine

to be (theoretically) unbounded, such that users can instantiate an application on a

machine at any time [87]. As we mention earlier, PlanetLab users have neither the

mechanism or incentive to constrain usage, leading to severe CPU over-subscription

on some nodes (Chapter 3, Figure 3.4), which leaves the system poorly utilized [87].

Currently, PlanetLab institutes a limit of 1000 slivers (we can think of these slivers

as applications) running on any single machine, which is a heuristic designed to also

preserve a minimum amount of disk space and memory for existing tasks. Bellagio uses

a market framework to limit the number of simultaneous users on a machine through

prices, but is not able to do so since market users share the machine with non-market

users.

Instead of continuing to push with PlanetLab, we consider applying market-

based allocation ideas to Hadoop, which, as an open-source scheduling framework, we

can create our own instance to fully control resource access. The simple job-execution

framework of Hadoop allows us to concentrate on the challenges we outline earlier in
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the chapter. First, unlike typical job scheduling frameworks, which are batch-scheduled,

Hadoop jobs are time-shared, and the number of concurrent jobs, or tasks, that occupy

an execution machine (called a TaskTracker) is a hand-tuned parameter. Furthermore,

the default best-effort scheduling policy used in Hadoop prevents users from controlling

when or where their jobs are executed, thereby allowing us to focus on the problem of

designing the scheduler to control the environment properly, rather than anticipating

how end-users or applications may behave.

In this chapter, we will focus on providing a general approach to capacity planning

and resource selection in a time-sharing system, and use Hadoop as our proof-of-concept

implementation.

6.1.1 Questions to Address

In this chapter, we focus on the following specific questions:

• How can a time-shared system plan capacity to balance resource utilization and

machine load?

• Do real applications exhibit different resource preferences?

• How can a time-shared system use this information to execute jobs that satisfy a

task’s preferences without explicit fine-grained input from the user?

6.1.2 Summary of Results

We have implemented a market-based mechanism for use with the Hadoop Map-

Reduce scheduler. Based upon the implementation, we demonstrate the following results:

• We implement support for task-profiling in Hadoop which allows us to make ca-

pacity planning decisions that increase the total task throughput of each machine.

• We show that real applications exhibit distinct resource preferences, primarily

across Disk I/O and CPU consumption, and perhaps surprisingly, these differ across

comparable task types in jobs.

• Using no input from the user or applications, we infer resource consumption pref-

erences of applications, and increase the throughput of real applications on a fixed

resource capacity.
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To re-emphasize our point in the opening paragraph of this chapter, unlike pre-

vious chapters, we do not rely on exogenous utility or priority information, but rather

focus on leveraging the underlying utility preferences of applications to increase their

own efficiency.

6.2 Background and Related Work

In this section, we discuss the Hadoop system, the MapReduce paradigm, and

research efforts that are related to the work done in this chapter.

6.2.1 Hadoop and MapReduce

Hadoop is an implementation of a job-execution system based upon the Google

MapReduce [37] paradigm. This system is used primarily for running large, highly

parallel, data-intensive jobs on a cluster (or network) of commodity hardware. The idea

behind this paradigm is that cheap, commodity hardware can be used as an alternative

to expensive, high-end hardware, if the operations of the job can be partitioned into

smaller, more manageable pieces.

Applications written for Hadoop use a specific programming model, which sup-

ports two high-level operations: map and reduce. At a high level, these operations

define how to parallelize the job into smaller tasks, and how to aggregate the output of

each task. For example, consider a job that must sort a large data set of words. Hadoop

first splits the input data into smaller, more manageable data blocks. Hadoop then cre-

ates a set of map tasks which operate separately on each data block. In this example,

the map operation merely describes how to take an arbitrary block of the original input

data and transform it into sorted data. Hadoop then creates a set of reduce tasks, which

take the output data from the map tasks, and aggregates them to create an output of

sorted data from all of the blocks. In this example, the logic of the reduce operation is

such that the intermediate sorted data produced by the map tasks is logically aggregated

into sorted data from the original input data.

The primary distinction between Hadoop and traditional parallel batch clusters

is that it is explicitly designed to run on commodity hardware. Since failures may occur

more frequently in such an environment, and hardware may have different performance

profiles, Hadoop handles task fault-tolerance, task assignment and re-execution seam-

lessly.
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A side-effect of the task partitioning in Hadoop (and MapReduce) is that a single

task usually does not require a dedicated machine, so tasks are typically time-shared.

This choice leaves many parameters available to tune for any instantiation of the system.

In this chapter, the primary parameter we are interested in is the capacity of each task-

execution machine in the system. The default parameter in Hadoop is hard-coded to a

maximum of 2 concurrent map tasks and 2 concurrent reduce tasks, with this setting

based upon intuition from traditional workloads. Production systems can hand-tune this

parameters to fit with their workloads. However, this methodology as a whole implicitly

assumes that map tasks are similar and reduce tasks are similar, across jobs. In a

later section, we will demonstrate that this is not necessarily the case, even for simple

workloads.

6.2.2 Related Work

There are two primary research efforts that are related to ours. The first is

the Tycoon resource-allocation system [62]. Tycoon is a rate-based market-inspired

system for allocating resources for time-shared jobs. In this system, individual users are

provided with a finite bank account with which they can “fund” their applications. Since

jobs are time-shared, users must fund each resource on the machine: the CPU, network

bandwidth, memory capacity and disk storage. Using machine virtualization technology,

the Tycoon market (which runs independently on each machine) allocates resources to

an application based upon its bid relative to all other applications in the market. Since

time-shared applications typically do not have a well-defined execution time, the funding

is defined as a rate, which periodically drains currency from the application user’s bank

account. As a proof-of-concept, Tycoon has recently been applied to a set of Hadoop

jobs [98] with the goal to improve resource allocations based upon their preferences. Our

work differs from Tycoon because our system does not require fine-grained user input;

instead, we rely on the system to infer resource consumption patterns of applications to

prioritize jobs and plan TaskTracker capacity. Also using Tycoon with Hadoop relies on

the existence of virtualization technology to segregate applications, whereas we do not

assume the existence of any such technology on the Hadoop machines.

Another related effort is Spawn, which is a market-based system for applications

in a time-shared cluster or distributed system[109]. The primary distinction in our work

is that we explicitly consider the resource consumption of multiple bottleneck resources,
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such as CPU and I/O — which are relevant to typical Hadoop workloads — whereas

Spawn primarily considers the problem of scheduling for primarily CPU-bound jobs, and

therefore, resolves only CPU contention.

Tangentially related to our work are efforts to improve the performance of the

Hadoop scheduler. In addition to the work by Sandholm and Lai [98], there are multiple

efforts by Zaharia et al. to increase the performance of the default Hadoop scheduler.

One effort considers intelligent re-execution of tasks in heterogeneous environments using

the LATE scheduler [119], and another effort adopts heuristics for task placement and

ordering to leverage observed patterns in Facebook workloads [118]. We believe that

these efforts are complementary to ours, and can be used to improve our techniques

further; this chapter merely demonstrates the value of our approach.

Finally, Weinberg et al. [111] investigate the ability for users to provide applica-

tion bottleneck information to improve system throughput in a batch-scheduling domain

using symbiotic space-sharing (coined and developed by Snavely [102]). Our work differs

because our target domain is a time-sharing Hadoop system instead of a batch-scheduling

domain, which gives us flexibility in improving system throughput by controlling system

load as well as task placement. Furthermore, instead us relying on user-provided input,

we infer this information. Finally, we provide an implementation which uses real Hadoop

jobs.

6.3 Our Approach

The two primary challenges we wish to address in this chapter concern capacity

planning and task resource selection. We argue that resource utility information from

the perspective of both the executing machine and the task is useful to make intelligent

decisions in both. We validate this argument by comparing the traditional approaches

used by a real Hadoop system with real jobs, to our implementation which gathers

utility information to make its decisions. In the next section, we will discuss our basic

experimental setup with Hadoop, the Hadoop jobs, and our scheduling mechanisms.

6.3.1 Experimental Setting

Using simulation to characterize the impact of job allocations in a time-sharing

system is more difficult when compared to a batch-scheduling system because of the

induced interaction between co-scheduled applications (i.e., jobs which reside on the
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same host machine). Unlike the previous chapters, where we rely upon simulation, in

this chapter, we present results from experimental runs from a real Hadoop system. We

use the source code from Hadoop release 0.19.1, the most current stable release when

we began this investigation.

The workloads we consider in this chapter consist of three common jobs in

Hadoop applications: grep, sort and wordcount. Each of these jobs themselves

are comprised of several map tasks and reduce tasks. More complicated Hadoop jobs

can consist of several jobs themselves. We use the implementation of these three jobs

that are bundled with the Hadoop source code distribution. We believe that these com-

mon operations represent typical building blocks of larger Hadoop jobs, and that with

some additional work, these results can generalize somewhat to larger, more complex,

Hadoop applications.

A grep job takes as input a set of data (a particular file or set of files), and an

input string (defined upon the same character set as the input data), and returns the

number of instances of that string in the input data. A sort job takes as input a set of

data (defined over a previously understood alphabet), and returns the same set of data

in sorted order (the order of data members is also predefined). A wordcount job is

similar to the grep job, but it counts the number of occurrences of each word appearing

in the input data. Each of our workloads will consider a combination of these three jobs.

6.4 Capacity Planning

In this section, we investigate the use of resource consumption information to

improve capacity planning in Hadoop.

6.4.1 Capacity Planning in Hadoop

In general, time-sharing systems adjust load based upon a domain-specific heuris-

tic: for example, by identifying a maximum saturation level for a particular bottleneck

resource (e.g., memory in Xen for the creation of additional VMs [11]), or by setting a

limit to the maximum number of concurrent processes based upon past experience (e.g.,

PlanetLab [87]).

Hadoop also relies on domain-specific knowledge for setting resource capacity

limits. Since the granularity of its work is the map and reduce tasks of each job, the

system administrator can define two parameters: one each for the maximum number of
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concurrent map and reduce tasks to execute. The default Hadoop implementation has

a centralized scheduler which acts a single queue for tasks. The scheduler assigns tasks

to TaskTrackers with an intent to balance load across the system, while never exceeding

an individual machine’s pre-defined load limit. Since a map task in any application is

viewed as a fundamentally different type of task from a reduce task, their limits are

parameterized independently.

Baseline Measurements

To illustrate the challenge of capacity planning even with domain-specific knowl-

edge of map tasks and reduce tasks, consider the problem of setting the number of

map and reduce tasks in a simple 1-node, 1 job-type Hadoop system. We expect that

increasing the number of concurrent map tasks may slow down the response time of

the average map task (since it must now share the machine), but may also reduce the

overall makespan of the collection of map tasks (makespan is defined as the total com-

pletion time of all tasks, which is calculated as the elapsed time between the start of

the earliest task and the completion of the latest task). At some point, we would expect

the makespan to increase when load is sufficiently high if the resources on our Hadoop

TaskTracker become over-provisioned. We expect similar behavior for reduce tasks.

In Figure 6.1, we vary the number of allowed map (or reduce) tasks (we refer

to this number as load) from 1 to 10 (Hadoop defaults to 2), and compare the average

response time for each of the map tasks, and the makespan for the collection of tasks.

We plot each job’s map tasks and reduce tasks as a separate set on each column of the

graphs (we will continue to treat map tasks differently from reduce tasks in our graphs

since they are treated as different entities in Hadoop), and plot the results for each job

by row.

We first notice that the average response time for tasks in each job generally

increases (or stays the same in the case of a grep reduce), but the “breaking point” load

of each makespan varies, depending on the job. For example, sort map tasks generally

benefit from concurrency between a load of 2 and 5, and grep map tasks generally benefit

from concurrency between 2 and 5, but a wordcount job performs best (notice the larger

y-axis range) at a load of 3. Across jobs, we see that the reduce tasks perform best with

a concurrency load of 2.

In general, we notice that the results in these graphs generally corroborate our in-
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Figure 6.1: Makespan and average response time of map and reduce tasks as a function
of load.
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tuition about load. These results are merely intended to demonstrate that static resource

provisioning with a diverse workload (i.e., any combination of our three jobs) is likely

to leave resources either under-utilized or over-provisioned, and from the standpoint of

maximizing task throughput, there is potential to improve capacity planning.

6.4.2 Waste-Aware Capacity Planning

In order to minimize makespan, we define the utility of a resource to be a function

that increases with its utilization. We hypothesize that increasing resource utilization

also decreases job makespan. We argue that planning capacity based upon resource

availability can direct efficient resource utilization without relying on static resource

provisioning. In this section, we present such an algorithm for capacity planning, and

demonstrate how its choice of load can lead to increased resource utilization (measured

by job throughput), without explicit input from a system administrator in our Hadoop

system.

Defining Waste

First, we motivate the design of our algorithm by defining a notion of resource

waste. We define the waste of a particular resource as a combination of its idle time and

its overhead time spend managing load (i.e., which increases as the number of queued

tasks increases). The illustration in Figure 6.2 illustrates a typical scenario of a time-

shared CPU running multiple concurrent tasks: CPU utilization — measured as the

amount of useful work performed by the CPU — increases as idle time decreases, but

typically reaches a point of over-saturation for a particular number of concurrent tasks,

after which, the CPU begins to thrash, and utilization decreases.

Ideally, we would be able to determine the point of maximum CPU utilization

(immediately preceding the thrashing threshold), but this point is dependent on the

characteristics of the running tasks, which we do not know a priori. Instead, we try

and dynamically adjust the number of concurrent tasks to minimize the idle time and

overhead. Intuitively, an individual time-sharing machine would like to minimize idle

resource time if there is remaining work to do. At the same time, a time-sharing machine

does not want to schedule so many tasks so as to thrash between them, and therefore,

would also like to minimize the queuing time that tasks spend on it (one way to think

about this is that a waiting task can otherwise be using an available resource on another
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machine, or at the very least, not causing congestion for other resources on the machine

it is currently blocked on). We do not consider job migration in this chapter since job

migration has significant costs in a practical implementation.

Figure 6.2: CPU utilization as a function of number of tasks.

Also, we acknowledge that different definitions of this waste metric may make

sense for other domains. For example, a provider may wish to minimize power consump-

tion of a resource scheduler, or I/O bandwidth. Extensions to these other definitions are

a straightforward extension of our algorithm, and simply require supporting mechanisms

to dynamically account for each unit of waste with respect to a task.

Waste-Aware algorithm

We implement a scheduler with waste-aware capacity planning, which adjusts

TaskTracker capacity based upon perceived waste. Based on our definition of waste,

the scheduler seeks to adjust load to minimize perceived waste on each TaskTracker.

At a high-level, our implementation requires an additional mechanism for each Hadoop

TaskTracker that records node resource usage information (gathered through the Linux

/proc and taskstats interface in kernel version 2.6.27, with the task delay accounting

feature enabled). Our scheduler executes tasks with different map/reduce parameter

settings, periodically sampling the total waste in the system. In our implementation,

we define waste as the sum of idle CPU time, and time spent waiting for any of three

resources: memory, I/O and the CPU. The scheduling algorithm operates under the

assumption that there is an inflection point, similar to the graphs in Figure 6.1, and

tries to compare different load regimes before choosing a particular setting. Since there

are possibly many different task states to explore, we start with the default Hadoop

settings of 2 map tasks and 2 reduce tasks. The algorithm proceeds to explore different

spaces and when sufficient samples are taken, selects the task allocation quantity that
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minimizes sampled waste. We present pseudo-code for this algorithm in Figure 6.3.

6.4.3 Experiments

In this section, we examine the ability of our waste-aware scheduler to both

minimize waste, and to increase resource utilization compared to the default Hadoop

scheduler. First consider a simple workload with only one job: grep. We again use

a 2-node Hadoop cluster with 1 TaskTracker so as to simplify the problem of inducing

resource contention. In Table 6.1, we compare different configurations of the default

Hadoop scheduler to our scheduler implementation. We see that our scheduler, which

uses waste-aware capacity planning, provides more throughput than each of the different

default Hadoop settings by better utilization of resources. In Figure 6.4, we plot the

behavior of a TaskTracker over time. On the left y-axis is the number of maps or

reduces running at any given time, and on the right y-axis is a measure of waste, as

defined previously. However, in order to make these units more meaningful, we plot

to metrics over time: relative waste, which is waste as a fraction of average CPU run-

time, and cpu run, which is the average CPU run time during that time interval. We

see that the waste-aware scheduler eventually settles on a capacity for the single grep

job, with an average waste that is lower than or similar to that of the other Hadoop

configurations. Note that the cpu run and rel waste curves cross near the end of

the workload, which indicates the scenario when mostly reduce tasks remain running on

the TaskTracker, which utilizes less CPU than I/O.

Table 6.1: Makespan and average resource waste of default Hadoop configurations and
waste-aware capacity planning using 2 x grep workload.

Scheduler Maps Reduces Makespan Average Waste

Default 1 2 478 324.165

Default 2 2 347 287.236

Default 3 2 316 271.312

Default 4 2 297 258.994

Default 5 2 294 260.639

Default 6 2 315 293.891

Default 7 2 308 296.480

Default 8 2 441 425.412

Default 9 2 704 958.795

Default 10 2 890 1288.61

Waste-aware – – 229 204.714
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desiredNumMaps(

input:

currentReds // current number of reduces running

// on TaskTracker

WasteRecords // hash table mapping <#maps,#reds>

// to data structures recording waste

output:

m // desired number of maps and reduces

// default <m,r>

optMaps = 2;

optReds = currentReds;

// see if we have any records

if WasteRecords.hasRecords() == false then:

return optMaps;

// see if we have an ideal

minWaste = ∞;

for <m,r> in WasteRecords.keys():

record = WasteRecords<m,r>;

if record.enoughSamples() and record.getWaste() < minWaste:

minWaste = record.getWaste();

optMaps = m;

// try one below optimal if we haven’t yet

// (boundary case of m>0 not shown for brevity)

if WasteRecords<optMaps-1,optReds>.enoughSamples() == false:

return optMaps-1;

// try one above optimal if we haven’t yet tried it

if WasteRecords<optMaps+1,optReds>.enoughSamples() == false:

return optMaps+1;

//

return optMaps

)

Figure 6.3: Pseudo-code for waste-aware capacity planning algorithm in Hadoop.
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(d) Waste-aware capacity planner

Figure 6.4: Waste of task execution using 2 x grep workload.

We now extend this example to a workload with two different jobs: a grep and

sort; each job has roughly the same data-input size, but because of the nature of each

job, the grep requires less time to complete (where time in this case is measured when

there is no other resource demand). In Figure 6.5 we again see that the waste-aware

scheduling algorithm initially runs with a 3 to 4 maps, but eventually settles down to

fewer than 2. From this data and Table 6.2, we see this waste-aware algorithm also

results in a less waste and increased throughput (makespan).

Interestingly, we see that each workload has a different “sweet spot”; in the grep

workload, the Hadoop scheduler performs best with a configuration of 5 concurrent map

tasks, whereas the workload with a sort performs best with fewer concurrent map tasks.

The waste-aware scheduler simplifies the problem capacity planning to that of dynamic

waste minimization.
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Table 6.2: Makespan and average resource waste of default Hadoop configurations and
waste-aware capacity planning using grep + sort workload.

Scheduler Maps Reduces Makespan Average Waste

Default 1 2 655 400.347

Default 2 2 583 428.403

Default 3 2 622 467.357

Default 4 2 579 473.891

Default 5 2 637 545.125

Default 6 2 656 537.911

Default 7 2 990 775.603

Default 8 2 942 840.045

Default 9 2 1232 1264.23

Default 10 2 1362 1370.11

Waste-aware – – 535 368.566
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(b) Default with 4 maps, 2 reduces
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(c) Default with 8 maps, 2 reduces
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(d) Waste-aware capacity planner

Figure 6.5: Waste of task execution using grep + sort workload.
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Finally, we extend this example to a more complete workload, which involves

2 simultaneous instances of each of the three job types. In the previous example, we

see that a setting of either 2 or 4 maps is best for the grep and sort workload. In

Table 6.3 we list the results for these schedulers, and in Figure 6.6 we plot the behavior

of each scheduler. Again, we see the waste-aware algorithm lowers waste and increases

throughput.

Table 6.3: Makespan and average resource waste of default Hadoop configurations and
waste-aware capacity planning using 2 x grep + 2 x wordcount + 2 xsort workload.

Capacity Planning Maps Reduces Makespan Average Waste

Default 2 2 6878 6724.93

Default 4 2 7063 9613.76

Waste-aware – – 4847 5484.92

6.5 Task Resource Assignment

In the previous section, we discuss a simple framework for capacity planning

based upon resource waste. This planning does not require knowledge about how tasks

use resources, but merely relies on a heuristic that relates resource under-provisioning

and over-provisioning to system throughput. This heuristic provides an effective way to

maximize the throughput of a fixed resource capacity in various Hadoop workloads.

We hypothesize that using task-specific information can also improve allocation

decisions for task execution in a way that is complementary to our capacity planning

technique. This hypothesis is based upon the premise that applications exhibit different

resource preferences, and that this information can be useful to a resource assignments

or allocation. Our goal in this section is to show that jobs indeed exhibit different

resource preferences, and that we can infer this information — without user input — to

make more informed resource assignments for tasks. Note that this situation is similar

to the problem in our market-based setting, where we place the onus on users to bid

for resources on a particular host which are important to them. In this section, we

turn this problem around, and assume that jobs are indifferent about which particular

machine they use, and instead place tasks of jobs on nodes where their most desired (or

bottleneck) resource is most plentiful.



131

 0

 2

 4

 6

 8

 10

0 1e3 2e3 3e3 4e3 5e3 6e3
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

nu
m

be
r 

of
 p

ro
ce

ss
es

re
la

tiv
e 

w
as

te
 a

nd
 c

pu
 r

un

time

cpu run
rel waste

MAP
REDUCE

(a) Default Hadoop scheduler, 2 maps, 2 reduces
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(b) Default Hadoop scheduler, 4 maps, 2 reduces
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(c) Waste-aware scheduler

Figure 6.6: Waste of task execution for 2 x grep + 2 xwordcount+ 2 xsort workload.
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6.5.1 Determining Job Resource Preferences

The first question we need to answer is whether or not real applications exhibit

different preferences, or utility for resources? We simplify this question to identifying

a job’s bottleneck resource. We define a bottleneck resources as the one an application

depends upon the most to complete execution. In order to identify this information,

we measure the resource contention of each of three resources: CPU, I/O and memory

for map and reduce tasks for each job we consider in the previous section. In order to

measure this contention, we implement a profiling tool.

Profiler Implementation

We again use the taskstats interface on the Linux kernel to extract resource

consumption and contention information for each task, as well as from the perspective of

the node. The taskstats interface allows the central Hadoop scheduler to track process

accounting information for any task or group of tasks. From this information, we can

measure an application’s time spent consuming and waiting for different resources. For

each task, we create a data structure that periodically samples its resource consumption

and waiting time for the CPU, disk I/O and the memory subsystem. For each job, we

create a function that can aggregate these samples to generalize the resource profile of

each task.

These profiling data structures are similar to the profiler we used in the capacity

planning problem, but in the prior case, we are only concerned with aggregate consump-

tion on the node, rather than per-task accounting information.

Measured Job Profiles

We begin by considering our three Hadoop jobs: grep, sort, and wordcount.

Intuitively, a grep job is CPU-intensive and a sort job is relatively more disk I/O

intensive since it read and writes more data, and a wordcount job exhibits the qualities

of both jobs. In order to corroborate the intuition of these jobs, we profile the resource

consumption of each of these jobs as load increases.

In Figure 6.7(a), 6.7(c), 6.7(e), we plot the resource consumption of the map

tasks of each job as the number of concurrent tasks are run. In this graph, we define

load (x-axis) as the number of map task slots on a single TaskTracker node. The stacked

vertical bars represent the amount of time (in seconds) each task spends in a particular



133

state: either waiting for a resource (memory, I/O, CPU), or running on the CPU. The

height of all bars on the y-axis, represents the average number of seconds accounted to

each task for every second; these bars occasionally exceed 1 due to an implementation

detail in our profiler. Specifically, each map and reduce task is itself comprised of several

concurrent Java processes. Since a task itself can have one process running, and multiple

processes waiting, the bar on the y-axis may exceed 1. However, we emphasize that it is

more important to consider the bar heights as ratios, rather than as an absolute unit of

measure.

The goal of Figure 6.7 is to illustrate the bottleneck resource of a typical task in

each job. As we can see, as the grep map load on the TaskTracker increases, each task

spends more time waiting for the CPU, with relatively negligible time waiting for I/O or

memory. On the other hand, the map tasks belonging to a sort job have a significant

bottleneck of the I/O subsystem, which, as we mention, is due to its frequent interaction

with the data stored in memory and disk.

Finally, the map tasks belonging to a wordcount job exhibits a similar bottle-

neck to the grep job for lighter loads, but as the number of concurrent tasks increases

beyond 3, the I/O subsystem becomes a bottleneck, until finally, the memory subsystem

becomes a primary bottleneck beyond a load of 7 concurrent tasks.

In Hadoop, the reduce tasks of a job are commonly more I/O intensive than

its corresponding map tasks because they necessarily involve I/O. On the right column

of Figure 6.7, we see that this intuition is correct for reduce tasks in all jobs relative

to their map task counterparts, but interestingly, the reduce tasks for the grep require

significantly fewer aggregate resources because it is simply shorter.

To relate these resource bottlenecks to the resource utilization on the Task-

Tracker, we plot CPU utilization on the TaskTracker for map tasks in Figure 6.8. We see

that these graphs corroborate the high-level findings of which tasks bottleneck with the

CPU, but more interestingly, the CPU is never fully saturated when another resource

bottleneck exists. In other words, as long as resource contention exists on another re-

source (in this case, besides the CPU), the CPU will not be fully utilized. Similarly for

reduce tasks (Figure 6.8), we see that the CPU remains idle for even longer periods of

time.

Taken together, these graphs indicate that map tasks and reduce tasks of a typical

Hadoop job can be time-shared effectively, but that is is also important to consider which
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(c) sort map tasks
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(d) sort reduce tasks
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Figure 6.7: Resource consumption profiles of map and reduce tasks as a function of load.
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Figure 6.8: Load on TaskTracker from map and reduce tasks for grep, sort and
wordcount jobs.
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Table 6.4: Makespan and average waste of waste-aware capacity planning and utility-
aware task selection using 4 x grep + 4 xsort workload.

Capacity Planning Task Assignment Alice Bob Makespan Avg Waste

Waste-aware Default 722 773 773 2433.79

Waste-aware Utility-aware 617 604 617 2230.48

job a map task or reduce task belongs to in executing tasks. Clearly, the map task of

a sort may contend with the same resources as that of a typical reduce task, and load

balancing of tasks should not merely happen at the level of task type. Rather, this

partitioning should consider job type as well.

6.5.2 Utility-Aware Task Resource Assignment

We implement a utility-Aware task resource scheduler which assigns tasks to

TaskTrackers based upon bottleneck resource availability. The algorithm for our sched-

uler makes several key, simplifying assumptions: (1) the map tasks for any particular job

are similar, (2) the reduce tasks for any particular job are similar, and (3) each job has

only one significant bottleneck resource. Based upon these assumptions, our scheduler

tries at most k tasks with the same bottleneck resource on a machine at a given time.

We currently tune k off-line as a proof-of-concept, but eventually hope to derive k in a

similar fashion to the waste algorithm from Figure 6.3. We present pseudo-code for our

utility-aware algorithm in Figure 6.9.

6.5.3 Experiments

In this section, we consider a workload with 4 grep jobs and 4 sort jobs.

However, we also consider two users, who each have the same workload to run on the

Hadoop cluster. Since our task-resource assignment problem is most interesting when

there are multiple task trackers, we extend this experiment to run on 4 nodes, with 3

TaskTrackers.

In Table 6.4, we compare the performance of our waste-aware from the previous

section, and the utility-aware algorithm in this section. We see that the that the utility-

aware can further improve the utilization of resources.
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assignTask(

input:

k // scheduler parameter

TaskTracker // contains state of TaskTracker we are

// considering assigning a task to

TaskProfiles // data structure for each ready tasks

// ready to run

WasteRecords // hash table mapping <#maps,#reds>

// to data structures recording waste

output:

task // possibly null (for none) task to send

// to TaskTracker for execution

numMemTasks = TaskTracker.numMemTasks;

numIOTasks = TaskTracker.numIOTasks;

numCPUTasks = TaskTracker.numCPUTasks;

// make list of number of tasks occupying bottleneck

// resources in ascending order

sortedBottlenecks = makeSortedList((numMemTasks,MEM),

(numIOTasks,IO),

(numCPUTasks,CPU));

// extract the numTasks field to see how many

minBottleneckNum = sortedBottlenecks[0][0];

// no more than k of the same type of task

if minBottleneckNum >= k:

return null;

else:

for numTasks, Type in sortedBottlenecks:

if TaskProfile.hasTask(mybottleneck=Type):

return TaskProfile.getTask(mybottleneck=Type)

// if we haven’t found a suitable task, return none

return null;

)

Figure 6.9: Pseudo-code for utility-aware task resource allocation algorithm.
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6.6 Limitations

Before our scheduler implementation can be used in a production environment,

there are a few key implementation limitations to overcome. First, the profiler as cur-

rently constructed, introduces overhead to the scheduling system in Hadoop. Secondly,

it is not clear how quickly the capacity-planning algorithm or task-assignment algorithm

can adapt to larger workloads which may exhibit significantly different characteristics

over time.

Furthermore, we have not compared our implementation to a scenario where

application resource preferences are known a priori. Since the resource consumption

behavior of an application depends upon the consumption characteristics of co-located

tasks, we would need to measure every combination of task assignments in order to

conduct this comparison. We defer this study to future work.

6.7 Conclusions

In this chapter, we revisit two classic problems in time-shared scheduling: capac-

ity planning and task resource allocation. We frame the capacity planning problem as

a waste-minimization problem, and the task-allocation problem as a bottleneck-packing

problem in the context of a Hadoop scheduling system. In effect, we define a utility func-

tion for each Hadoop TaskTracker machine (maximizing utility = minimizing waste), and

a utility function for each task (place tasks on a machine where the bottleneck resource

is plentiful), and use this information to drive the decisions in each system. Overall, we

implement a system that can infer utility information based upon a few simple rules to

demonstrably improve the throughput of real applications. While this implementation

does not address the problem of having complete resource control from our Bellagio de-

ployment in PlanetLab, it does provide a framework with which a system like Bellagio

can be deployed on a system like PlanetLab with less usage costs imposed upon users.



Chapter 7

Concluding Remarks

In this chapter, we summarize our primary results and discuss a few specific

avenues of future research in this space.

7.1 Summary

This dissertation explores the potential of using market-based resource allocation

in real, large scale computing systems. We are inspired by the tremendous literature in

designing such economically-inspired systems, and offer our implementation and deploy-

ment experience from a pragmatic, computer science, systems approach.

Our implementation experience with Bellagio and Mirage illustrates that a prac-

tical market-based allocation system itself requires a trade-off between theoretically-

desirable pricing and allocation mechanisms, and the tractable heuristics that must be

used to implement a scheduling mechanism in large-scale systems. Nonetheless, our Mi-

rage deployment experience demonstrates that a market framework can indeed lead to

improved and autonomously-driven allocation decisions based upon user-provided job

utility information, when user behavior is properly constrained. However, as we observe

in Mirage, the use of heuristic allocation algorithms and virtual currency can lead to

undesirable user behavior and render the system vulnerable to strategic manipulation.

Although the heuristic allocation algorithms have been adjusted to handle the currently

observed behaviors, further analysis is required to understand if the system is vulnerable

to other forms of manipulation.

Still, these deployments alone do not necessarily address many of the qualitative

139
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apprehensions many in the computer science community may have toward such market-

based systems.

First, a market-based allocation system requires more complex user interaction,

and thus is often viewed as too fragile. We explore the impact that user uncertainty and

error-prone behavior have on the efficiency of our system. Perhaps unsurprisingly, we

find that a market-based system is, indeed, more sensitive to these types of errors than

traditional scheduling policies, but based upon our forecast of user information fidelity,

such systems can still provide a 20%–100% increase in user satisfaction. However, as we

mention later, this analysis does not consider the sensitivity of our market to strategic

manipulation.

Second, a market-based allocation policy is often qualitatively viewed as less

fair than traditional, best-effort allocation policies. We demonstrate that in particular

circumstances, this fear is grounded, and that users with a significantly larger share

of wealth can indeed receive a larger share of resources. However, based upon data of

relevant environments, we find that demand characteristics and our proposed (virtual)

currency policy leads to increased fairness of allocations. One way to view this result

is that the increase in overall allocation efficiency allows more room for distribution of

utility across users, such that the expected utility received by the average, best and

worst-case users are in fact higher than when using traditional allocation policies.

Despite these generally positive results, our deployment experience with a small

set of Mirage users, and the relatively short-lived experience with Bellagio also reveal

specific challenges to further widespread deployments.

Specifically, we investigate the implementation of a market-based job-execution

service and we find that existing market designs are not expressive enough for many

real-world clients. For these clients, such a service has little incentive to execute the

low-paying portion of their workflows. Adding higher-level constructs, like contracts and

aggregate utility functions can provide the incentives to satisfy both a provider’s goal for

profitability, and the clients’ aggregate needs, while having the net effect of increasing

the utility of both parties.

A common criticism against market-based allocation mechanism — particularly

in a time-sharing system (like Bellagio) — is that they are too burdensome to use: a

provider must plan capacity, and users must understand their application’s resource

preferences. We design and implement support in a Hadoop scheduler that reduces
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each of these burdens by automatically inferring this information from an underlying

profiler, thereby increasing the efficiency of allocations for real applications, without

additional administrator or user support. We are optimistic that this type of system has

the potential to apply more generally in other time-sharing systems.

In general, we find that significant additional engineering effort is required in some

domains to identify and address the conflicting needs of users and providers, and to make

a market mechanism easy enough to use in a production setting. While market-based

systems have not yet seen widespread adoption, we believe that our efforts demonstrate

that such market-based techniques can improve user satisfaction by improving the quality

of resource allocations in real systems.

7.2 Future Directions

Based upon our experience with real users and workloads, we also believe that

we can begin targeting practical market-based resource allocation mechanisms more gen-

erally to emerging technologies such as cloud-based infrastructures, data centers, and

extreme-scale testbeds. Using a market-based system in these contexts enables several

broader impacts.

First, such a framework addresses the challenge of establishing an inter-domain

allocation policy for the intelligent consolidation of resource infrastructures across differ-

ent administrative domains [48], thereby decreasing significant and possibly redundant

capital investments. Secondly, the fine-grained accounting of resource usage costs and

“profitability” can motivate more balanced [73], cost-effective, or energy-efficient designs,

thereby impacting larger, social concerns, like the energy footprint of such systems [3].

Finally, such a framework may motivate increased use of volunteer-based computing

systems [6, 19, 112]; such systems have had tremendous success in solving large-scale

problems using otherwise “idle” resources [48, 112], but have yet to tap the potential

of resources belonging to non-participating institutions who currently do not have the

incentive to provision their idle resources. These efforts may, in turn, broaden the reach

and accessibility of computer power across geographic and socio-economic boundaries.

We outline a few specific steps required to take before market-based computing design

can fulfill this vision.
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7.2.1 Characterizing Strategic Behavior

In Chapter 4, we characterize the sensitivity of a market-based design to tradi-

tional problems of user error and inexact system parameter settings. By virtue of its

user-driven design, a market creates opportunities for a new class strategic or oppor-

tunistic manipulation [79]. In Chapter 3, we discuss evidence of real users manipulating

allocation decisions of the initial open-auction allocation in Mirage. While the change

to a sealed-bid auction may have ostensibly addressed those particular manipulations, it

is not clear how resilient such a framework is in larger or more anonymous settings.

There are efforts in computer science research to design a practical incentive-

compatible mechanism in this context [78], but there is currently a lack of a simultane-

ously efficient, incentive-compatible, and individually rational mechanism in economics

theory for our particular setting, which leaves this challenge as an open theoretical prob-

lem. However, careful implementation of simulations based upon evolutionary game

theory [71] or from empirical studies of real systems can help identify potentially op-

portunistic strategies. By focusing the analysis on a particular deployment domain, it

may be possible to design external system “rules” to help assuage initial apprehensions

about the possibility of strategic manipulation by explicitly preventing any such harmful

behaviors.

7.2.2 Deployment-Driven Modeling

Our experience with Mirage gives us insight into designing an effective market-

based allocation system. This insight is based largely upon user utility information, user

workload information, and observed user interaction with market mechanisms. Absent

this data, characterizing the expected behavior of such a system in another problem

domain is a very difficult problem [74, 101]. Gathering this information in emergent

domains such as cloud-based or petascale systems is of increasing importance as appli-

cations increase in size and diversity. A critical complement to any pragmatic research

agenda is the deployment of experimental testbeds. As opposed to the live deployments

of Bellagio and Mirage, the focus of these proposed platforms will be to collect data from

real users, and use this data to refine the underlying allocation mechanisms based upon

user feedback and empirical analysis.

An added benefit of this type of platform is that it provides a medium for eco-

nomics researchers to test and refine various allocation mechanisms. We anticipate the
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effectiveness of any particular mechanism to be largely dependent upon the particu-

lar user types, preferences and job characteristics in each problem domain. Previous

approaches to similar problems rely either on pure simulation-based studies [25, 91], ab-

stract game-theoretic models [5, 95], or a combination of both [4, 92]. The alternatives

to both the allocation and pricing mechanism used in these systems have not been inves-

tigated in the context of real users and real workloads. This platform would also provide

a unique vantage point to consider alternative metrics1, which may be better suited for

optimizing over conflicting interests, say for example, balancing profitability and power

consumption in a data center, or for balancing load distribution and response time in a

network backbone. With a focus on implementation and deployment, this approach can

complement theoretical research and promote better design and implementation through

modeling and measurement.

7.2.3 System Convergence and Worst-Case Performance

We demonstrate how markets can improve the overall value derived from a sys-

tem in the expected case. Our efforts parallel existing theoretical analysis in this respect,

as the prior work in the area also focuses on the characterization of steady-state perfor-

mance, or equilibrium outcome(s) of these systems. However, the theory that describes

these equilibria (if they even exist) says nothing about how or even if a system can arrive

at such an outcome.

We believe that it is important for systems builders to design against potential

instability and worst-case scenarios, since production systems may be unable to tolerate

performance loss and instability from a potentially fluctuating market. For example,

emerging petascale clusters engender applications with resource demand that varies sig-

nificantly across both time (minutes versus months) and space (tens of processors versus

tens of thousands). With extreme variability across individual demand, it is unclear

whether relying on the existence of equilibrium prices alone is enough to measure the

applicability of a mechanism to support these varied applications, since, for example,

rapid price convergence is also critical to those jobs that operate on short timescales,

like minutes. Therefore, we argue that it is important to consider both the convergence

and worst-case properties of applying an economics-inspired mechanism to a system.

Since these properties likely depend upon domain-specific information like application

1As noted before, most applied concepts of user satisfaction involve a utilitarian social welfare function.
However, it would be interesting to try alternatives, such as Maximin [75].
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demand patterns, an experimental infrastructure such as the one we describe above

would be a critical to provide empirical characterization of these domains. In turn, this

characterization will allow us to develop or apply the appropriate theory to character-

ize the worst-case and convergence properties of an economics-inspired design for real

systems in these domains.

7.2.4 Automating User Decisions

In many computational systems, user behavior largely governs how quickly, or

whether a system can converge to equilibrium. Observation of real users indicates that

the primary obstacle to convergence is the fact many users do not behave “rationally”,

or the way that economic theory predicts that they will play. Information asymmetry

[46, 57], lack of sophistication [34], and computational tractability [63] are examples of

typical barriers to this rational behavior. We suggest an approach to use the model of

economic rationality to guide user behavior, rather than as a tool to predict how they will

behave. There are many instances where we may be able to determine what is best for

the user, and help the user refine this information with otherwise minimal burden. We

begin investigation of this approach in the multi-user, time-shared computing framework

of Chapter 6. The premise of the study is that different jobs have a preference over

different computational resources: jobs that are CPU-bound may prefer less disk or

network bandwidth than other jobs. We can use existing operating systems profiling

techniques to formulate this preference as utility for different resources, and schedule

jobs based upon this utility information, all with limited or no interaction with the user.

The next interesting question will be to compare the trade-offs between inferring this

information and having users provide it.

7.3 Final Thoughts

The intersection between economics and computer science research began almost

a decade ago. From the computer science perspective, there have been numerous results

in the area of theory, artificial intelligence, and to a more limited extent, system design

and networks. However, there have not been as many corresponding experiences in build-

ing and deploying systems that leverage these designs. Our work has demonstrated that

this approach can deliver significantly more value to all stakeholders in these systems
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despite observed inconsistencies in user behavior, uncertainty, or otherwise imperfect op-

erating conditions. We hope to use our experience to initiate a sustained research agenda

to push forth the iterated design and deployment of these systems, and introspection of

these deployments in order to understand how these systems can best be designed to

meet our emerging needs.
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