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CHA.PTER 2 

. . 
INTRODUCTION TO CONTRAST ~~ALYSIS 

Gareth Thomas 

Professor of Metallurgy, Department of Materials Science and Engineering~ 
-· College of Engineering·; University of California, Berkeley~ California 

1. INTRODUCTION 

In this chapter some simple geometrical approaches are discussed 

which may assist the beginning electron microscopist to better under-

stand the nature of contrast and to facilitate the use of .the microscope · 

for characterizing the structure of materials. The bibliography listed 

at the end of Chapter 1 also applies to this chapter. In recent years 

developments have been made in what is now often referred to as "non-

conventional" techniques such as weak beam dark field imaging (1) an 

example of which is shown in Fig. 1, and special effects from many 

beam interactions which become important at high energies. These 

phenomena are discussed elsewhere in this book, and in recent syr;zposia 

(e.g., 2-6), but some mention of the latter will be made at the end 

of this chapter. Some important and useful applications of the effects 
' 

of anomalous absorption which affect the symmetry properties of the 

image are also described. 

The contrast in the image depends on the intensity distribution 

leaving the bottom surface of.the specimen. Just as the diffraction 

-patte:rn is the Fourier transform of the object, so is the image the 

Fourier transform of the diffraction pattern, so that all the points 

discussed in Chapter 1 apply directly to the undet"standing of contrast 

phenomena. 

........... 

-~ 
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Alth~ugh lattice imaging is a very powerful method with resolutions 

2A (Fig. 2, Chapter 1), the more general technique of imaging is by 

(Chapter 1). 

Amplitude contrast is achieved in either of two ways; a).formation 

of the bright field image by removing all diffracted beams or . b) forma-~ 

tion of the dark field image by allowing only one strong diffracted ~ 

beam to form this image. These operations are carried out by~means 
.~ - --·- -·-"-·- - -

• of the objective aperture which is inserted at the back focal plane 

of-~the objective ·lens (Fig. 3, Chapter 1) •. The dark' field image is 

·-~-----·-··best obtained by gun tilting or by deflection so as to allow the beam 

·to pass along the optic axis, thereby reducing errors from chromatic 

and spherical aberrations which occur if the objective aperture is 

moved off the optic axis (Figs. 3, 4, Chapter 1) c An importantpoint ~ 

to realize is that for axial dark field the gun translation or beam 

deflection must be done such that the direction of g is reversed 

(i.e., if g is excited for bright field the corresponding gun tilt 

dark fi~ld should be obtained in- g). ' . - . 

This must be remembered when 

.. making the correct· alignment between images and diffraction patterns. 

2 ~ KINEMATICAL APPROXIHATION-PERFECT CRYSTALS 

As explained earlier the kinematical theory is applicable only 

to .thin specimens and for conditions away from the exact Bragg position 

··' ..... 

(s :fo 0). In Chapter 1 the kinematical intensities lvere derived. 

assuming all the energy is conserved (no absorption), viz., 
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Di.ffracted I1PI
2 2 . 2 

== (F) sin 1Tts 
(1) . 2 .n y 

(1Ts) 
· ... , 

l1Pii 
2 2 

= 1- (F) sin~ Tits 
{2) 

2 v (rrs) 
Transmitted 

since f1Pfi + I1PI~ = l) ~e kinematical ~heory predicts that bright 

· and dark field images are complementary. I~ practice absorption occurs 

and .. this symmetry property is modified. However, the kinematical function 

predicts periodic vari~tions of fntensi ty with thickness for constant s 

(thickness f~-~nges) or variations in intensity with s for constant thick­

ness··which lead to fringes about the Bragg--contours. The··-(hld) Bragg 

··-'-----~~-----··contour in the image··corresponds-to the hid spot or kikuchi -line in 

the diffraction pattern and is identified easily in dark field. 

Intensity minima occur in dark field whenever s = n/t (constant t) 

or when t = (n/s) for constant s. The periodic variation of f1PI 2 

with t leads to primary extinction t = 1/s., as discussed in Chapter 1. 
·0 

·In the dynamical theory (see the Chapter by Metherall)., the extinction 

distance s is defined as 1TV/AF where V is the volUme of the unit 
~ g . . 

cell and F the structure factor for the parti~ular reflection. The 
g 

deviation from Brag'g' s condition is then often referred to by the 

dimensionless narameter w = s s and iri the kinematical case w >> 1. 
. • . g 

~very integral number of extinction distances all the electrons 

end up in the forWard direction {transmitted) and in eve~y odd half 

multiple extinction distances all electrons end up in the diffracted 

direction. The extinction distance is inversely proportional to the. 
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scattering factor, which decreases with increasing scattering angle. 

Thus electrons have short extinction distances (100-lOOoA), whereas 

x-rays have very long extinction distances. 

"'·· ··· ...... The .exchange of electron intensity between the transmitted and 

diffracted beams is exactly analogous to the motion of two coupled 

harmonic oscillators, which periodically exchange all th~ :vibrational 

energy of the system. This forms the basis of the dynamical theory. 

Th h 1 h h b "d" . h ( 2 + (t" )-2)t2 e t eory a so s ows t at su s1 1ary max1ma occur w en s · s = 
g 

integral. For thin crystalsthe value oft can be determined from 

measurements of s at subsidiary fringes either in the image or 
·-·· ·-~ - -

. __ diffraction patterns (7), provide~d values of ~ are known • 
. g . . . 

From the foregoing we expect to produce contrast effects in an 

otherwise perfect crystal due to the. following: 

1) Changes in t -wedge fringes, fringes at inclined defects 

2) Changes- in s ~ Bragg contour fringes 

3) Changes in orientation - changes s and g 

Thus, e.g. in polycrystals the intensity varies from grain to grain 

because of differences in diffracting conditions. In general, therefore, 

contrast from crystals is not limited by resolution except in special 

cases. However, since the contrast is very orientation sensitive·, it is 

essential to use a goniometric specimen holder preferably with as large a 

tilting range as possible so that the diffracting conditions can be varied 

in a systematic matter. Without such a stage, quantitative characteriza-

tion of microstructure is almost impossible. 
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3. CONTRAST IN IMPERFECT CRYSTALS 

a) General Comments 

In practical materials we have to consider and characterize 
. .. - .· . - .. 

-~ complicated microstructures including the following effects: 

1. Changes in ori-entation with- or without change in structure 

--or- composition e. g., grains, twins, precipitates. 

2. Lattice defects, point defects, line defects, planar defects 

-volume defects (effects due to elastic displaceme~ts) 

3. Phase transformations a) changes in composition but not 

structure (e.g. spinodals) b) changes. in composition and structure 

· .. _(general precipitation) c) changes in structure but not composition 

________________ --~-~-e. g. martensites) d) Interphase inter~~~~--~coh-===-~~-' partially 

coherent, incoherent). 

The contrast from these will arise from such effects as changes 

in the local diffracting conditions- {changing s and g (d-spacings)}, 

phase changes on crossing interfaces, structure factor changes, changes 

in effective thickness (changing l; ). The . . . . g 

complex especially when the defect density 

situation can become quite 

is high and str'£_ fields 

overlap as in heavily deformed crystals, or crystals containing large 
' 

volume fractions of particles. 

The combination of bright and dark field imaging techniques and 

diffraction pattern analysis is essential in the characterization 

procedure. Analysis should always start from the diffraction pattern 

,and most of the interpretation will be carried out at the rilictoscope. 

For contrast work it is recommended that two-beam orientations be used 

' .. 
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. {as in Fig. 14(a) in Chapter 1}. For this reason it becomes essential 

to recognize orientations by inspection so that particular reflections 

of interest can be brought into operation. It is convenient to start ., 
··-<by tilting the foil into a recognizable. symmetry orientation and then 

.. tilting from there. ·The use of kiktichi maps greatly facilitates this 

• process as will be shown later. Thus it cannot be emphasized too 

., strongly how important it is to have a strong working knowledge of 

diffraction patterns and three dimensional crystallography. Thus all 

the informtaion developedin Chapter 1 is needed for analysis. 

. -----b) Informa"tion Requirements for Analysis (tWo beam conditions) 

_Generally we need to know the foil orientation, direction of 

diffraction vector, sign of s, and foil thickness. 
-~-~~-- ·-· ·-·--. ·--- ·- ~--· ···-- - ~-- .. _, ______ ----·--· ·-- ...,. ... ....:........ ____ .. :. -~_ .. _.,_ -. 

1. Precise Orientation. 

Because of the 180° ambiguity in spot patterns, the spot pattern 

by itself does not give the unique foil orientation and hence the 

geometry of defects in the foil are not known since the image is a 

two dimensional projection of the object. Thus the top of the foil 

is not distinguishable from the bottom, nor up from dmvn. Hmvever a 

kikuchi pattern can be indexed uniquely (provided at least two poles 

are present) and this is facilitated by comparison to the appropriate 

•· kikuchi map. If kikuchi patterns are not obtainable then several 

methods can be utilized e.g. special absorption contrast effects such 

as the asymmetry in the dark field image when s is not quite zero • 

. At s :> 0 the bottom of the foil is in stronger contrast than the top; 

the reverse is true at s < 0. "(e.g. See Fig. 15 and ref 8) 
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Alternatively, large angle tilting experiments observing the change 

in projected size of an object in the foil can be performed. 

Once the orientation is known, the geometry of the foil is known 

., and hence the sense of slope of planes· and directions is known. This 

information is needed for quantitative analyses involving determining 

the sense ·of strain fields {e.g. vacancy or interstitial loops or 

faults). 

Stereomicroscopy is useful also,' because by this technique one 

can obtain information on the depth distribution of defects. Stereo· 

pairs can be obtained by tilting 8-10° along a kikuchi band so that 

the diffracting conditions are not altered. ·· · ··· 

In orienting the pattern ~th the image, due to the inversion. 

between the image and the di~fraction pattern, rotate the diffraction 

pattern 180° (plus magnification rotation) with respect to the image, 

* with the negatives both emulsion side up. Crystallographic data 

can then be transferred directly from the pattern to the image. It 

is recommended that this be done directly on the negative (on the 

non-emulsion side) where it can be wiped off later after prints are 

made. In this way the geometry is'preserved with minimum confusion, 

and the correct sense of the diffraction vector g in the image is 

retained. g is of course identified from the diffraction pattern and 

·------··----· 

thg, region in the specimen corresponding to this g will reverse contrast 

in th~ dark field image of this reflection. 

* This rotation is clockwise for Siemens Elmiskops,it is anticlockwise 
in the JEM 7. Thus it must be checked for each type of microscope. 
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Sign of s 

The sign of the deviation parameter is important in several 

instances. In a two beam absorbing case the intensity in bright field 

~- is a maximum for s > 0 and in dark field at s = 0. These conditions 

are thus readily seen directly in the image. In the diffraction 

pattern for s > 0 the kikuchi line will lie to the outside of the 

corresponding spot since the reciprocal lattice point will be lying 

inside the reflecting sphere). For s < 0 the kikuchi lines lie inside 

the spot as e.g. in symmetrical orientations (Fig. 14(b) Chapter 1). 

Foil Thickness 

This can be found.in several ways e.g. 1) trace analysis of 

projected defects that go completely through thefoil (faults, twins, 

····--- ··--·--··- -··-- ••• ' w-- ··•-··· 
precipitates), 2) from measurements of subsidiary fringes either in 

--~ ..... _· - . - --

the convergent beam pattern or from Bragg contour fringes (7). Recently 

a general method-has been developed by Heimendahl (9) in which one or 

two-late~ b~lls of known diameter are applied to both foil surfaces in 

the area viewed •. Changes. in dimensions are observed after a known 

tilt and from the geometry the_thickness can be calculated- 4% 

accuracy. 

4. . VISIBILITY OF LATTICE DEFECTS: GENERAL CRITERIA 

Defects can be described in terms of translational vectors which 

represent displacements of atoms from their regular positions in the 
. . 

-+ 
lattice. If the general displacement vector is R, the kinematical 

~mplitude scattered from the crystal as a whole becomes 
,;. 

....... 
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1 ~ ~ - ~ lfJ ...... · [exp 27Ti(g + s) • (r. + R)]dt 
~ 

crystal . 
(3) 

or 
·, 

lfJ - . ( [ exp 27Ti -; ·; i exp 27Ti g · R] d t 
}crystal · 

(4) 

. ~~ . . 

since g·r. = integer, and neglecting s•R • (refer to Eq. 20, Chapter 1). 
~ . n 

---· ·- Thus the amplitude scattered by the perfect· crystal is modified 

++ 
by the phase factor 27Tg·R = n27T and n can be integral, zero or 

.. +~ 
fractional~ The case g•R = 0 is particularly important in contrast 

work. -.In lias a simple physical meaning as can be seen from Fig. 7, 
...... -· -- - -····· 

. . ~ .. . ·-··· ..... ···:· .. .·. . .· .. ..... .. 

Chapter 1. .: If ·R lies in the reflecting plane, d (and thus I g I) is 
·, 

·- ···- -------- ------~-----------------------·-· .. 
unaltered, so that the path difference between transmitted anq diffracted 

~ ~ +~ .. 
waves ·is 'unaffected by R. Since g is normal to (hk~), g•R = 0, is the 

. ~ 

.condition for no contrast due. to a displacement R (Figs. 1, 2). It 

' ~ 
should.be pointed out that R for a general defect varies with position. 

However for a stacking fault R is·a constant equal to the displacement 

vector-for-the fault (section 8a). In this case no contrast arises 

~~ 

when a. = 27Tg· R = n • 27T, n integral. 

+~ 
The magnitude of g·R must be sufficient to change the intensity 

such that contrast is detectable over background (about 10% is enough). 

~~ 1 
For example, for dislocation line defects in crystals g·b >3 if the 

~~ 

lines are to be detectable. Non-integral values of g•b for dislocations 

'· ~ 
JPeans that b is not a lattice translational vector and such dislocations · 

must therefore always be associated with faults. 
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-+ 
From a visibility viewpoint a general displacement R can be 

resolved along the principal axes 

·-
-+ -+ -+ -+ 
R = R +R +R 

X y Z 

·-Examples of defects which are of general interest in the study 

of crystals ·and which can be described in terms of such displacements 

are: dislocations, dislocation loops, coherent volume defects e.g. 

point defect clusters, voids, coherent particles; planar defects such 

as stacking faults; domain boundaries (chemical, magnetic~ electric, 

order), twin and grain boundaries, interphase interfaces etc. 

The visibility of these defects can all be understood in terms 
. ··--···-.-·-·~~ ·-··-···· -+ +" ·-. . ....... ··-· . . .. . . . ... --·· . ·-·--··· .. -

of the simple.g•R criterion. However the detailed interpretation of 

contrast behavior,such as the intensities, and variations in contrast 

with depth in the foil, behavior in the exact Bragg cas~influence 

of other reflections, and the analysis of the sense of the displacements 

associated with the defects,require the application of the dynamical 

th.eory ,as is described by Goringe. 

A truly kinematical situation arises when large s values are 

used e.g. when imaging in g with ngs > 0 (n=2,3 or: larger) excited. 

Such images are called weak beam images (because the intensity in g is 

low) and have high r.esolution (1). An example is shown in Fig. 1 which 

can be compared to Fig. 2. 

' -+ -+ 
From Eq. (5), R ·g is always zero, hence-only displacements lying 
•' z 

in the plane of the foil are of importance in producing contrast. For 

screw dislocations the displacements R are always parallel to the 

-+ -+ -+ 
Burgers vector b hence when g·b = 0 screws are invisible. In the case of 



-11-

-+- -+-
an edge dislocation, the principal components of R are b a~d R 

n 
-+-

(displacements normal to b). For an edge dislocation with its half 

plane parallel to the beam, 
-+--+- -+--+-
g•b = n(including 0), whereas g·R = 0. 

n 

· · ·-Ort the other hand, if the dislocation is oriented with its half plane 

-+--+ -+-+-
normal to the beam, g•b = 0, but g·R = m(including zero). Thus 

n 
-+-

because of. the displacements Rrt edge dislcoations.do not necessarily 

-+--+-
go out of contrast completely when g•b = 0, except under conditions 

--+- -+-
when g·R also goes to zero. For this reason it is possible to see n 

edge dislocations when their Burgers vectors are parallel to the 

incident beam. For example pure edge prismatic dislocation loops are 

visible (by so-called "residual contrast") when they are parallel "·to 

. ·-------·- the foil .. plane as shown in Fig. 3. Notice in this case that loop 

-+- -+-
segments are invisible where g•R = 0 so the loops have a line of no 

n 
-+ 

contrast for those parts of the loop normal to g. A similar· contrast 

occurs for spherical strain fields such as in the case of coherent 

particles because the plane normal to g is unaffected by the strain, 

-+--+-
hence g•R =~a well known example is Cu-Co,Fig. 4. In both cases . n 

therefore as the direction of g is changed so does the line of no 

' contrast shift so as to always lie normal to g. This behavior allows 

such defects to be distinguished from perfect loops which also exhibit 

arced contrast (independent of g, g·b =fo 0) when inclined to the foil 

plane (Fig. 9). 

··' •·· 
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5. BURGERS VECTOR ANALYSIS 

-+-+ 
. Table 1 gives examples of various g·b values for perfect disloca-

-+-+ 
tions in FCC, BCC and HCP structures, and tables 2, 3 gives g·b values 

' for·imperfect dislocations in fcc and hcp. By considering the various 

-+-+ 
g·b possibilities it is possible to arrive at the most useful 

-+ 
orientations needed for analysis (orientations [uvw] such that [uvw]·g = 

-. 0 Fig. 8,. Chapter 1), and what changes in orientation are needed to 

arrive at the range of reflections required.-_ These -must lie within 

the range of the specimen tilting device. For this purpose the use .. of 

Kikuchi maps (10,11,13) greatly facilitates the required procedures. 

--:Several different- ·reflections will normally be needed to obtain unique 

-+-+ 1 
---·--·identifications.- For partial dislocations g·b = 3 does not produce 

·:·'enough contrast· to be detected so that this condition is one for 

-~-invisibility (12). 

As an illustration consider the case for hcp crystals for which 

Kikuchi maps are very helpful for several reasons (10,11) especially 

. :since the ·spot diffraction patterns from hcp crystals are in general 

less useful and much more difficult to analyze than those for cubic 

crystals. In addition to the complexities due to double diffraction 

(see Chapter 1), and that the c/a ratios differ from material to 

material,.the d spacings of certain planes in he~ crystals are so 

clo~e together that obtaining two beam orientations, e~g., in ( 1120 } 

foils and unambiguously identifying the foil orientation, may be 

impossible, in certain cases. The above problemS can be circumvented 

if foils thick enough to produce Kikuchi reflections are used. In 

general, Kikuchi patterns become increasingly useful as the symmetry 
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Table 1. Values of g·b for Perfect Dislocations 

a) FCC / - -
Plane of 

g·b 

Dislocation 
/lg 111 Ill lli 

1I1 or 1II 1/2 [110] 0 0 1 

1II or lli 1/2 [101] 1 0 0 

1ll or 11I 1/2 [011] 0 1 0 

111 or 11I 1/2 [1IO] 1 I 0 

111 or 1I1 1/2 [lOI] 0 I 1 

111 or I11 1/2 [Oil] 1 0 I 

b) BCC Plane of / g·b· 

Dislo~c;~!=ion /I g Oil 110 110 ' ... _ ....... -· --·--·~ 

Oil ·1Io ·Iol - .- ""1/2 111 - o- ----- ---- 0 1 ~---,. ---·- ------.~---, , 
0I1,110,101 1/2 lll 0 I 0 

l01,110,011 1/2 Ill 1 I 0 

lOl,llO,Oll 1/2 II1 1 0 I 

. ;· .. 

c) HCP 
Perfect dislocations in the hcp lattice are a/3 < 2110 >(three in-

number), a [0001] (one in number) and a/3 ( 1123 > (six in number). 

Tne table below illustrates for orientation near [ll05] the g·b 

conditions necessary to distinguish dislocations invisible in g = liOO 

/ g•b 

-~lg i2oo 2311 

1/3 [ll20] 0 -1 

1/3 [ll23] 0 0 

1/3 [1123] 0 2 

.. 

-
-3211 

1 

2 

0 

. 
J 

I. 

r .......... 
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Table 2. Values for g·b for Imperfect Dislocations in the FCC:L~ttice(a} 

Fault. 
Plane b 200 o2o 220 220 111 1II 422 311 

(111) a/6[112] -1/3 1/3 0 

a/6[211] 2/3 1/3 1 

a/6[121] -1/3 -2/3 -1 

-2/3 

1/3 

1/3 

.o .. · -1/3 . -1· -1/3. 

0 2/3 2 2/3· . 

0 -1/3 -1 -1/3 

(111) a/6[211] 2/3 1/3 1 1/3 1/3 1/3 4/1 . 2 

a/6 [112] -1/3 . 1/3 0 · -2/3_ -2/3 1/3 1/3 -1 

a/6[l21] -1/3 -2/3 -1/3 1/3 1/3 -2/3 -5/3 0 

(111) a/6 [I2IJ -1/3 2/3 1/3 · -1 -2/3 1/3 1/3 -1 . 

a/6[112] -1/3 -1/3 -2/3 0 1/3 -2/3 -5/3 0 

a/6[211] 2/3 -1/3 1/3 1 · 1/3 

(111) a/6[2IIJ -2/3 1/3 -1/3 

a/6[1l2] . 1/3 1/3 2/3 

. ~/6[12l] 1/3 -2/3 -1/3 

-1· -2/3 

0 1/3 
1 1/3 .. 

0 4/3 1. 

0 ·-2/3 -4/3 

0 

0 

1/3 2/3 

1/3 . 2/3 

(111) a/3[111] 2/3 -2/3 

(11I) a/3[111] 2/3 -2/3 

(1ll) a/3(111] . · 2/3 2/3 

(l11) . a/3[ll1] -2/3 -2/3 

0 

0 

4/3 

-4/3 

4/3 1 ~1/3 

4/3 "1/3 -1/3 

0 1/3 1/3 
0 1/3 .·· -1 

0 5/3 .. 

4/3 1 

4/3 1 

.-8/3 -1/3 

(111) a/6[1l0] 

a/6[011] 

a/6[101] 

1/3 

0 

1/3 

1/3 2/3 0. 

-:-1/3 -1/3 . 1/3 

0 1/3 1/3 

(111) a/6[101] -1/3 0 -1/3 -1/3 
. ,. 

a/6[110] 1/3 ~1/3 0 _2/3 

a/6[011] 0 -1/3 -1/3 1/3 
.. 

0 

0 

0' 

0 

1/3 

·. 1/3 

1/3 

0 

1/3 

1 1/3 

0 0 
1 .. 1/3 

1/3 . -1 

0 1/3 

-1/3 -2/3 

1/3 

2/3 

1/3 

(111) a/6[101] 

a/6[110] 

a/6[011] 

1/3 0 1/3 . 1/3 ·. 1/3 0 1/3 2/3 

1/3 1/3 2/3 0 . 0 1/3 1 1/3 

0 -1/3 -1/3 . 1/3 1/3 -1/3 -2/3 1/3 . 

_ : ' (Ill) a/ 6 [ 110] 
·'-

· a/6[011} 

·· a/6[101] 

1/3 -1/3 

0 1/3 

1/3 0 

0 2/3 1/3 

1/3 -1/3 0 

1/3 1/3 1/3 

0 

0 

0 

1/3 

0 

1/3 

2/3 

0 

2/3 

{a) a/6 ( 112 ) are Shockley partials; a/3 < 111 ) are Frank partials; and 
. a/6 ( 110 > are stair rod dislocations. 

' ' 

. . . . . ~ ' 

·-~ .. 



of the crystal system decreases, and for recognizing orientations 

under two-beam conditions: Furthermore, for hcp structures, the basal-

plane orientation and orientations within about a 20-deg tilt from 

[0001] are all that are required for solving problems such as Burgers 

vector determinations. This tilting range is within the range .. 
available for most commercial tilting stages. 

(a) Perfect Dislocations 
.. I 

Perfect dislocations must vanish for one of the 2020 Kikuchi 

bands. · These, rather than lOlO are used because of their higher 

intensities. If we designate the particular reflection to be the 2200, 

. then b m~ t be one of the foliowing: ± ; [IT20], ± ; [1123], or 

± ; [1123] •.. Since a dislocation image vanishes for any Kikuchi band 

which converges to the pole of the Burgers vector, {g·b = 0) any two 

Kikuchi bands converging to the [ll23] and [1123] poles can be used 

to distinguish between the three possibilities.·· Reference to the 

Kikuch~ map [Fig. 25, Chapter 1] shows that the nearest of such bands 

are the 2311 and 3211 which intersect at the [ll05] pole~ This pole . 
' . 

can be reached by a direct tilt along the 1120 Kikuchi band (e.g., for 

Ti thiS' involves about a 14° tilt.) Table lc shows the g·b values for _ 

the three reflections used in the procedure, and clearly shows that 

they are sufficient to determine the Burgers vector. 

(b) Imperfect Dislocation~ 

Imperfect dislocations must vanish for one of the 1120 Kikuchi 

" bandS. If we designate the reflection to be the 2II0, then b must 

be one of the following: 1 - 1 -
± 3[0110], ± 6[0223], or ± ~[OZ23]. Table 3(a) 

t{]l ... 



-16-

UTab'le '1(a')
5
. ,.;'~a{tesJof'g·b-ifoJ imterfect dislocations, 

[0001] o~ientation. 

b 

g ~[OilO] ~[OZ23] ~[0223] 

2020 
2 2 2 

''- 3 -3 3 
·-.... 2200 

2 2 2 
·3 3 -3 

0220 
4 4 4 

-3 -3 3 
- -~-·-· . . 2110 0 0 0 

~--~-I2Io -·-·--- 1 - 1 1 . 
1120 1 1 - 1 

.·..:.'·.-:c--.::.:-_~=- -==-Table- 3(b). ~::values of g•b for ·partial dislocations 

-'----.. --"using.:..-{0001-]- [ 4229] orientations. 

------ -·--·------- -.·_ ....;__._-·. =========-=-=-=-=-==---=-=-=-=--===--=--~--::.=::. ·=-=-~--=::::===- . -.. --~---- ·-·--- --· -·--" b 
~ .. -- .. - .--

.![0223]. 

-- .-~ -·----- -- -------
--- -- 2IIo - - - - .... 

0 0 
-

3032 .. ---- - -
1 

.. ::--·-·-::,-;--.::.:...:......-:-.-_. 
2 0 

·--=--~.:: - -· --------- --. - - -- - - - - --
0 ,_,. '2 - ·.--

·-Table 3(c). Values of g·b for partial dislocations '·.- . ~- . 

' .. :·· 

using [0001]-[ll03] orientations. 
/ 

._.,_ ____ ..:._ . ---

b 
--- --------·-· ·- ... .. ---· .......... ·----------'----------

~[OllO] ~[0223] !ro223J 
... 

g 

:-:. 2ll0 0 0 0 ... 

. 2111 0 
1 1 -
2 2 

J302 - 1 0 2 
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shows that other 1120 and 2020 reflections· cannot be used to distinguish 

between the three possibilities. ··In this case the poles of interest 

are the [0223] and [0223], and the corresponding Kikuchi pands are 

the 3302 and 3032 which intersect at the [4229] pole. This pole can 

·, ·· be reached by tilting (- 24 deg for Ti) along the OliO. Kikuchi band. 

Table 3b shows the g•b values for the three reflections used in the 

procedure. 

Sirice the tilt (- 24 deg) needed to reach the [4229] pole from 
. . 

the [0001] orientation is very near the limit of many specimen tilting 

devices, an alternate procedure involving somewhat smaller· tilts can 

be used by utilizing the 2111 forbidden reflections resulting from 
.. 

double diffraction. The procedure ·i·s the same-as the one described 

· ~---·-·· ---·~--- above- except that the foil-is tilted into the [ll03] rather---than the---~-. -·-. -_---

. ' 

• 
~-

. . 

[4229] orientation. (For Ti this involves about a 20 ~eg tilt.) 

Remembering that extinction of imperfect dislocations occurs when 

fg·bl~ ; , Table 3c shows that the 2111 and 3302 reflections acce;~ibl~ 

in the [ll03] orientation provide sufficient information for a unique 

·" determination of the Burgers vector. (/ . -.. 

In many problems, the object is to distinguish between dislocations 

having Burgers vectors of the same type.· For example, one may wish to 
, 

distinguish between dislocations of the primary and secondary slip 

1 -- .. 
. -. systems having Burgers vectors of the _form 

3 
( 2110 > • The lowest-order 

I Ill 

reflections needed for g· b = 0 conditions are of the form lOlO and '2201. 

10I0 reflections cannot distinguish between ; { 2IIo ) and ~ < 2ll3) · • 

. : Furthermore, the tilting device often tilts further in one direction 

'than in another. If the [0001] orientation does not lie within the 

85il& d = - -

:.0' • 
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range of the tilt, then all three lOlO Kikuchi bands m~y not be 

accessible. On the other hand, the 2201 Kikuchi bands intersect in 

such a way as to form six equivalent triangles situated symmetrically 

about the [0001] zone axis. The six triangles are centered on the 

. ' . ( ll03 ) poles and have vertices composed of poles of the form < 1216 ) 

and < Ol12 ) • Any one of the six triangles can be used to distinguish 

1 -- . between the three 3 < 2110 ) . Burgers vectors. For example, if the foil 

is initially in some high-index orientation sue~ as the [0334], the 

[0001] zone axis may lie outside the range of the specimen tilting 

device. In this case, the triangle centered on the [Oll3] pole .can 

be used where 2201, 0221, and 2021 Kikuchi bands are readily accessible. 

An example of this application is shown in Fig. 5 for dislocations in 

·---AglAl·- (r4r~·-- The dislo.cat:lons occ.ur -in the form of perfect loops 

clustered in slip bands lying parallel to the trace of the primarY 

slip plane. Figure 5(a)-(c) is a series of micrographs of a typical 

slip band. The corresponding reflections are indicated on the Kikuchi 

map, Fig. 5(d). The micrographs have been oriented with respect to the 

. Kikuchi map so that the slip band lies parallel to the trace of the 

(OllO) .plane, i.e., parallel to the OllO Kikuchi band. As shown in 

sectiori?(b), in fcc metals the Burgers vector of double arc loops can 

be rmiquely determined from the direction of the line-of-no-contrast (18); 

however, in hcp metals the line-of-no~contrast can only be used to 

eliminate all but three of the nine possible Burgers vectors of the 

1 - 1 . 
form 3 < 2110 } and 

3 
< 2113 ) • As indicated in Fig. 5 (a), the line-of-

~ . ' 

no-contrast is parallel to the [llOOJ direction; hence, the double-arc 

loops can have any of the following Burgers vectors: 1 --
± 3[1120]' 

. ~ .. . . .. 
....... .. r 
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1 --± 
3

[1123] 2 or ± 
1 
3[1123]. 
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In order to distinguish bet:Yreen these~. the 

foil was tilted to the nearest 2201-triang1e. centered on the [Oll3] 

pole. Figure 5(a) was taken with.2ll0 so that all three possible 

--.........,_ types of dislocations can be in contrast. Figure 5(b) shows all 

loops are out of contrast with 2201; therefore, they. all have the 

. 1-· 
identical Burgers vector 

3
[1120]. By tilting tog= 0221, the pileup 

of dislocations within the-band and the helical· dislocations near the 

:_ . . . . 1 .__ . 
. · _ Burgers vee tor 

3 
[ 2110] • 

•. 

6. MAGNITUDE OF g • b 
. . 

·For hcp crystals, g·b can be 2 in low order reflections for 

perfect dislocationS (Table lc}. In these conditions the image is 

then doubled •. This effect is useful for distinguishing different 

Burgers vectors. g•b > 1 is not commonly observed in fcc or bee. 

crystals unless high order reflections are obtained. For example in 

the [llO] fcc orientation a screw dislocation with b = a/2 [110] would 

show a double image in g = 220, a single image in g = 111 ·and be 

invisible in g = 002. · Thus in principle studies of the _image in 

different reflections enable the magnitude of b as well as its direction 

to be determined. . . 
·.:-.· 

For partial dislocations some complexities arise, due to dynamical 

. . 

. effects. In the fcc structure especially when anisotropy is considered (16) . 
1 .· 

it ,has been shown that whereas g. b = ± 3 is always an invisibility 

: crit~fio~, the case for g· b = + ; leads to visibility or invisibility 

_depending on the sign of s and the position in the foil (thickness 

dependence). These difficulties have been discussed by Clarebrough (15) 

-i·.· 

-

~---..,.."'"="--,.------~--~------------------::--------.-,-. _ _,;_ _ _,;.,. _ _;_ __ ..;.... 
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who suggests that computations will be necessary to determine Burgers 

vectors of partials. This approach is facilitated by using image 

simulation techniques for direct comparisons of computed data with 

_ experimental results (16). 

7. IMAGE POSITION 

The position of the dislocation image with respect to the actual 

line depends on the sign of s. This can be seen geometrically by 

considering Fig. 6. In (a) we set. s > 0 and assume an edge dislocation 

-+ 
is oriented as shown. We see that if g points to the right the sense 

of tilt of the planes on the LHS_c~uses greater deviations>> 0 from 

diffraction whereas on the. RHS the reverse-J.s true. IIi this case.the 

···· ·-··-:-·---------·· --·image -will--thus appear· to the RHS. · --- Simularly in (b) if -the. foil- is----,.--

tilted slightly to make s negative, the image flips to the LHS. Thus 

.. -On crossing an extinction contour (s changing sign) the image changes 

position. The same effect is true when g is changed sign (for s 

invariant). 

Thus without pre-defining the sense of the Burgers vector as long 

-+ 
as the sign of s and the direction of g are known it is possible to 

reconstruct in the foil the orientation of the dislocation which gives 
~ 

rise to the observed image shift when g or s changes sign. This result 

has useful applications. 

(a)~Dislocation pairs 

: Dislocation pairs are of two types, viz. the dipole (two dislocations 

.of op_p~site sign) and the superdislocation (t\vO of the same sign)~ 

These can be distinguished by the manner in which the images change 
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with changing g or s as is seen in Fig. 7(a). The eY2mple of Figs. 7b~c 

for austenitic stainless steel obt'ained by changing the sign of g sho•..~s 

that the pairs at A are superdislocations~ indicating the existence of 

... "" order. These experiments are particularly valuable for studying order 

in alloys of similar elements for which possible sup~rlattice_reflections 

cannot be detected in the electron diffraction patterns, e.g., brass 

(Cu-Zn) and Fe-cr-Ni alloys (17). Pairs can be distinguished from 

double images since the latter occur only when'more than one strong 

reflection operates on opposite sides of a single dislocations or when- -

... ~ ~ ·" 

- (b) Loops ··•: ___ .;. __ ~--

.• ... 

The fact that the dislocation image changes position with change ------.. ---------:-.:---.------------------------ -------------------,---------------------------

-_in sign of g or scan be used to determine whether dipoles or loops 
·- - -·::- - - --· -::: -

~_re __ yace3._n_c_r or interstitial in character~ again without prior definition 

- + 
of the sign of.b. 

.... ·:-·. 

-·- ., '···· .: ' ~-- . 
. ... ·.·. 

Figure 8 illustrates how the images vary with change in sign of g 

or s. _ If the defect lies along the plane inclined from bottom left to -

+ 
top right the vacancy loop will always be in outside contrast for g to_ 

the RHS and s > 0 • . 
- .. --.. :. 

It is important to notice that if the defects in Fig. 8 were 

-inclined in opposite sense -(top left to bottom right), then the v~cancy' 
+ 

will be in outside contrast at s > 0 with g to the LHS. Figure 9 shows 

an actual example for this case~ for loops in quenched aluminum.- Thus 

·-it is_,, 'essential to know the sense of inclination of the defect and to 
- - -

correctly orient the direction of g on the micrograph as was discussed 

earlier in this chapter. The example of Fig. 9 also shmvs that for 
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perfect loops the Burgers vector is perpendicular to the line of no 

co~trast dividing the loop image into arcs (18). For fcc crystals this 

line is a < 110 ) and so b can be uniquely found once the foil is 

correctly oriented. This double-arc contrast arises because the strain 

... fields tend to cancel at the strong edge components of the loops. For 

two beam imaging conditions at s - 0 this rule appears to hold generally 

for large perfect loops in fcc, bee and hcp crystals, and is thus quite 

useful- when la-rge numbers of defects 'are to be analysed (19). 

~ -·- -· .. 
8. PLAN.~ DEFECTS 

·(a) ·Stacking Faults 

-·For purposes of illustration consider stacking faults· iri.-the .. FCC 

---struc.ture-.:.:..-Two possibilid.es~exist~-viz •. formation of a stacking fault. 

-by ·the splitting of a whole dislocation- under a shear stress: 

.a/2[l01] = a/6[ll2] + a/6[211] on (111) 

linperfe.ct edge- prismatic loop dislocations of the a/3 < 111 > type. 

·· The stacking fault is the least complicated of planar defects 
, 

since only a displacement of the crystal across the fault plane is 

involved (i.e., no change ins or g). The contrast was first considered 

by-Whelan and Hirsch (20). A wave crossing a faulted region of a 

-7--7-
cry§tal suffers a phase change a = 2rrg·R, and similar to the wedge case, 

+ 
fring~s occur when the fault is inclined in the foil. If R is a lattice 

+-+-
translation vector, then the phase contrast is zero since g•R is integral. 

-+ 
For stacking faults, however, R cannot be a lattice translation vector, 

-7--7-
but particular values can occur for which g•R is integral. This result 
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affords a means for studying the faults in a similar manner to that 

tt . ~R e~ual· to the fault vector. adopted for dislocations, pu lng · · 

~ 

In FCC materials R = a/6 < 112 ) or a/3 < 111 ) • Therefore CL can 

. ..._ take the values · ·2n(h + k + 22) 
CL = 6 . or ;rr (h + k + 2). In either case 

CL = ± 2n/3, (fault visible), or n2rr, (fault invisible) hence the shear 

a/6 < 112 ) fault cannot be distinguished from the a/3 < 111 > fault 

purely from fringe _contrast, as expected since physically they are identical. 

The possible g·R values for faults in fc~ -or de crystals can be 

found from Table 2. The values of a = 21rg•R change along each parallel· 

<lll> row .. o£ .the reciprocal lattice (See Fig. l6a, Chapter 1). Thus 

faults -are visible in reflections along the 2nd, 3rd, 5th~- 6th etc <111> 

--:r·a-ws-;-·out--il'rVisible in the 1st, 4th.;~·-.-~-~ etc. 

-~-- - We will now consider various examples of contrast to be expected 

from faults bounded by partials. Consider the (111) fault plane with 

the operating partials a:/6[121] and a/6[2ll]. 
·-···· 

It is assumed also that 
. 2 

g•b ~ ± 3 will always be visible (remembering that this is not 

~ecessarily true in all situations. 

~ 

1) g = [200] 
. '· 

. a/2[ll0]. = a/6[121] + a/6[2ll] on (111) 

g·b 1 + 1/3 + 2/3 

CL for fault = 2rr/3 fault visible and one partial visible 

2) g = [200] 
·,, 

. )· 

a/2[0ll] = a/6[l2l] + a/6[112] ·on (111) 

g•b 0 - 1/3 + 1/3 

CL for fault = -2rr/3 fault visible but no partials visible 
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3) g = [i2o] 

a/2[0ll] = a/6[l2l] '+ a/6[112]' on (111) 

g·b -1 - 1 0 

. ·--..... ex for fault = 0; fault invisible, only one paJ:tial visible • 

This case could be mistaken for aperfect dislocation. 

- These cases are illustrated by the sketches in Fig. 10 •. Figure 11 -

shows an example of Case 1 in which faults of opposite sense are -

present at A and B. 
: ~ . 

If one wishes to distinguish between a l/3(lli) and a 1/6(112) 

fault it is necessa~ to determine the Burgers vector of the bounding -

dislocations. Reference to Table 2 for FCC crystals shows the reflections 

·needed to. !Il~k:e_~~Jlis distl:~cti_o~~---}~C>.r. a fault on a· (!ll}__use of g = 

( 220 ) ~ -~d g = ( 200 >_ is s~~~ic;ie~t _ an!l a foil in < 001 ) -~ill b~ required 

'""-"-~~g. :r-_~ig. 12; t~e partial at A on (lll) must be the Shockley, 

.... -
-;_b __ = a/6[1?1] 

~ ·. : . . - ~ . 

:(b)-- Determination of Type of Stacking Fault 

-::.·=~-~:--The dynamical theory predicts the dependence of the intensity of 

:the fringes on the sign of a. In bright field for a positive the first 

··fringe is light whereas for a negative the first fringe is dark. The-
' 

reverse is true for dark field images although the effect of absorption 

modifies the symmetry such that the fringes are complementary only at-

the lower surface of the foil (Fig. 13). This dependence of the colour 

of the first fringe on a can also be obtained intuitively by considering 

' 
-phas?'advance or retardation on an amplitude phase diagram. 

. ; " 

: '. 

. ... 
~- : 
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The above rules can be used to determine whether a fault or thin 

slab of precipitate is intrinsic or extrinsic. (21,22), but it is 

essential to know the sense of slope of the fault plane with respect 

· _ to g. Since we can consider an extrinsic fault as one due to the 

insertion of an extra plane of atoms and an intrinsic fault as one 

+ 
formed by removal of a plane, the sign of R will be opposite for an 

++ 
extrinsic and intrinsic fault and hence the sign of a = 2~g·R will be 

+ 
reversed for these cases when the same g operates. We now define the 

two-types of faults as follows. Consider the top half of the crystal 

at rest and the bottom half is now displaced by the fault displacement· 

- vector (Fig. 14) • The sense of. the displacements are -shown.. Now 

. + 
-· ·-~---------}cnowing the direction of g, after allowing for optical rotations, and 

.. 

- ------~---------

observing the color of the first fringe, we can identify whether a is 

acute or obtuse and hence determine the nature of the fault.- For 

example in the FCC case the value of a = 2~lgl IRI cos a = ± 2~/3, where 

IRI = a/3/3, then suppose g = 200 and is to the R.H.S. of the fault. 

+ 
a=± 1/:3, since R = ± a/3[111]. If the first fringe is white, a is 

positive, i.e. a = 4~/3(/3) cos a = 2~/3 if cos a = -1/3 • That is a 
must be obtuse and the fault must be intrinsic. For the same situation 

an extrinsic fault would show a black first fringe. These rules are 

summarized in Table 4 for faults oriented as shown in Fig. 14. In 
. . 

. · pr~ctice the micrograph can always be oriented such that the fault plane 

slopes as shown in these sketches. 
. . 

·'Figure 15 shows an example of the use of these rules, and illustrates 

how rapidly one can analyse the fault inclination by dark field imaging 

at s * 0. The first fringe is thus the most intense fringe when s < 0 
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Table 4. Determination of Nature of Stacking Faults in FCC Crystals(a) 

- Color of First Fringe * + + 
g Orientation of g 

Bright Dark 

L E I 
200 . 

.R I E 

L I E 
400 

R E I 

L I E 
220 

R E I 

L I E 
·-

111 
. ~ ·- - -- - .. ;-·· 

R E 
I 

I 
.. . ... 

(a) Ref. 22 * Bright Field . . .. . . 

.. 

... .. -. 
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slight deviation in dark field. 

The reader can show that in Fig. 12 the faults on (lll) and (111) 

slope in opposite sense and since.the first fringe is bright in both 

cases they must be extrinsic and intrinsic respectively. 

(c) Overlapping Faults 

Consider two overlapping faults of the same kind (Fig. 16a). If. 

these are close together the phase factors add giving a net phase 

shift of 2rr/3 + 2rr/3 = -2rr/3, ·i.e. the color of the first fringe changes 

at the point of overlap. If three faults overlap t~e phase change is 

2rr • zero and no contrast occurs. If the faults are far apart the 

outer fringes will be of the same color (Fig. l6b). 

Similarly if two overlapping intrinsic-extrinsic faults exist, if · 
-·~·-·· '----'---c...... 

they are close together a. = +2rr/3 + (-2rr/3) = 0 and no contrast occurs •. 

However if they are far enough apart the outer fringes will.. be of 

opposite color and the center part of the overlap will hav~ weak or 

zero contrast where the two phase shifts cancel. (Fig. 16(c.))~ 

(d) Ordered Alloys:· Antiphase Boundaries v··.··_ .. · ·. 

A fault in the periodic array of ordered planes of atoms gives 

rise to an antiphase boundary.· If the displacement of the crystal 

. + 
associated with this type of fault is R = [uvw] then the phase shift 

·. + +' . . ... 
a.= 2rrg.R = 2rr(hu + kv + iw). Ordered alloys are often characterized 

by having primitive symmetry in that all values of hk£ are allowed. The 

superlattice reflections are those that would not exist in the disordered 

alloy, e.g. in the B2 superlattice, based on a body centered structure 

.(CsCl): 
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.F = fA+ fB h + k + t even (fund amen tal) 

= h + k + t odd (superlattice) 

-+ 
In this superlattice R = a/2 < 111 > hence 

<l. = 11' (h . + k + t) = 0 for h + k + i even 

for h + k + t odd 

in other words, only superlattice reflections (e.g. 100, 111) can 

produce phase contrast in this case •. This follows because a/2 { 111) 

-+ 
is a T vector for the disordered alloy. In the case .of 1T .boundaries 

the first fringe is always dark·in bright field •. 

· Another type of superlattice is the Ll
2 

su:perlattice based on a 

face-centered structure. In this case 
--· -·-·------ ... -------·--·-· ...... :..--~-· -· .. ... ----... .---~--. >"·----'-

·for hki unmixed 

for hkt mixed .... 

-+ 
One type of antiphase boundary vector R is a/2 { 110 > , hence a = 7T(h + k). 

+ 
Thus for fundamental reflections a is always zero (a/2 { 110 ) is a T 

vector for the disordered alloy) a~d is zero or ±1r for superlattice 

J * reflections. Again in bright field the first fringe is always black. 

Another possible antiphase vector is a/6 { 112} - a partial vector in 

the disordered alloy. Hence for fundamental reflections a= 0 or ±2rr3 

as for a stacking fault. In the case of superlattice reflections a can 

be ±n/3, ±211'/3, ±n or 0. If a is +rr/3 the contrast will be the same 

* In Fig. 21 a,b,c chapter 1 faint APB contrast is visible in the funda-
mental reflection-this is because there is a faint contribution from the 
superlattice reflection (e.g. if the fundamental is 2g, g is also excited 
to some extent e.g. Fig. 2d). 
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as that for a = -2~/3 and vice versa for a = -~/3. Examples are given 

in my later. chapter in Figs. 7, 11, 12, of part 2. 

The periodicity of fringes for superlattices is quite different 

_from that of stacking faults in non-ordered materials due to the fact 

that the extinction distances for superlattice reflections are much 

greater than those for fundamental reflections. Few fringes are there-

fore visible in the case of-domain boundaries. 

9. .ADDITIONAL EFFECTS 

Other factors can give rise to contrast due to planar defects. So 

far we have considered phase contrast due to a displacement ~thout 

change in orientation or structure. This is exactly true for stacking 

faults in fcc crystals, but e.g. is not generally true for planar 

defects, or for crystals of lower symmetry. For example the value of 

both s and g can change across a fault giving rise to Moire (~g) and 

other fringes, sometimes called o fringes, discussed in detail else-

- . 
where in this book by Amelinckx (see also ref. 23). Figure 9. part 2 

of my later chapter shows an example of o fringes at antiferromagnetic 

domain walls. An example of Moire fringes across coherent interfaces 

in. Cu-Mn-Al has been given in Fig. 15 Chapter 1. Measurements of fringe 
J 

spacings enable the mismatch across the interface to be calculated 

especially for very small mismatches (~g small, D(fringe spacing)large) • 

Imaging at conditions when s >> 0 e.g. dark field weak beam is also . 
useful for distinguishing Haire contrast from interface disloca~ions as 

has been shown for coarsened spinodal alloys by Bouchard et.al (25). 
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The analysis of contrast changes across interfaces is necessary 

if the nature of the interface is to be determined. Recently, 

consj_derable interest has being generated in grain boundaries and 

-, interphase interfaces (see e.g. refs. 24, 25). 

' ~0. SMALL VOLUME DEFECTS-PRECIPITATES 

For coherent defects the contrast can be considered by use of the 

. appropriate _displacements (Eq. 5) in the intensity-calculations. The 

. ~~ ' ~ 

visibility criterion g·R enables the direction of R to be established 

and no difficulties arise in the case of plates, rods, and spheres. 

(See ref 26 for review) Contributing to contrast in the case 

of precipitates· will be intensity changes due to the differences 

in structure factor-between- precipitate and matrix. Figure 17 (a) shows 

diffraction contrast from smalr' {100} coherent·. plates in a [011] foil. 

of Al-4%Cu. These plates have strain fields normal to the. {001} habit 
-- ~ ~ 

plane so R = { 001 ) • In Fig._ 17a, since g = 200, only plates on (100) 

~ ' 

are visible (g· < 100 ) criteria); in (b) which is a dark field image 

of the [100] streak from 8" occurring in the diffraction pattern (c), 

"structure factor" contrast is obtained for the (100) plates. In 

Fig. 17d which is a superb example of the powerful technique of lattice 

imaging, small G. P. zones of thickness - 8A and diameter 11~ are 

actually resolved. In Fig. 17(d) the strains from each G. P. zone 

can-be measured directly from the displacements of the (002) planes 

along,the lines marked a, b, c, d. The strains fall off to near zero 

at about 3~ from the zone center. 

~----------------------------------------------------------~--------~ 
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This ,technique is very valuable for analysing the complex sitUation 

existing·when there is a very large density of defects (e.g. G. P. zones 

in Al-4%Cu can exist in densities·;;, 1019 per c~3) such that strain 

, fields overlap. The resultant strain patterns in amplitude~contrast 

images are very complex and in many cases completely mask the individual 

particles. Such contrast is referred to as tweed or basket~eave and 

often occurs in { 110 > in many alloys undergoing different types of 

phase transformations (26). Progress is being made in understanding 

these images by computational techniques (27) and lattice imaging (28~ 29). 

Analysis is also difficult when large densities of sma1~ defect 

clusters are produced by irradiation (see Chapter by Wilkens).. The 

contrast is very depth dependent, which makes identification: in terms 

of vacancy or interstitial character rather tedious. These difficulties 

have been discussed in detail recently (30) and it is clear that 

computer simulation and image processing techniques will also be 

essenti.al for these problems (31) • 

13. MANY BEAM EFFECTS AND CONTRAST AT HIGH VOLTAGES 

At high voltages the sphere of reflection becomes much flatter 

(Table)., Chapter 1) so that many beams are excited. Furthermore the 

electron scattering, factors increase with voltage due to the increase 
f 

of the relativistic mass (Fig. 5, Chapter 1) so that the diffracted 

intensities are higher. These factors mean that two beam theory no 

longer applies and it is more difficult or impossible to predict 

·contrast from simple geometrical arguments. 

.... -. 

:··.-...-
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However if many beam theory is used it appears that useful 

practical applications become possible. A particularly interesting 

effect is that of critical voltage \ihere intensities of second order 

reflections go through a minimum at certain voltages (e.g. 430 kV for 

222 in Al) see e.g. ref. 4. Since this phenomenon will be discussed 

elsewhere in this book, here we indicate two general examples of many 

beam effects. 

(a) Dislocatiort Contrast 

Some results of up to 12 beam drnamical contrast calculations for 

. . 2 3 32 33 
systematic orientat1ons ' ' ' have indicated that high order 

* reflections at high voltages may provide improved dislocation resolution. 

------ For example the bright field images of dislocations show a decrease __ in 

image width for increasing order of reflection (i·. e. increasing g • b), 

thus enabling improved resolution of narrow dislocation dissociations 

and closely spaced dipoles or superdislocations. Experimental results 

have confirmed these predictions (e.g. refs. 2, 3). The technique is 

to orient the crystal to excite ng usually with s > 0, where n is the 

.. ·-.---:--· 

th . 
n order of the first reflection g

1
.(see Fig. 8(b) Part 2 of my later Chap). 

Dislocation image characteristics under systematic diffracting 

conditions have also been found useful for determining the magnitude 

of the product g
1

b where g
1 

is the first order reflection of the 

.sys~tematic set and thus can be of tremendous help when it is necessary 

* Systematic orientation means a reciprocal lattice row along ng is 
excited; simultaneous orientation means several different rows are 
excited. 

-. 
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to choose·between a number of different possibilities, and for examining 

more-complex crystals. Examples o"f such application will be given in 

a later chapter, but here we i~di~ate comparison between a known case 

and theory. Tn the fcc system, for an undissociated dislocation with 

Burgers vector of the type a/2 ( 110} , when a 220 reflection is used 

·the only three possibilities are g
1

·b equal ·to 0~ 1, or 2. Figure 18 

shows.the image of a screw dislocation in A1 compared to the image 
. . 

profile and multiple beam bright~field profiles obtained by computer 

the image with the theoretical profiles itis clear that there is 
-. . _ (r\il\iM~M 

ve!~_good correspondence for the width of ·the ·central ~and the 

positions of all extrema for the g1 ·b = 2 case. Variations in relative 
------- -- _ ...... _, ____ ---------· --·- - - ---------------- ' ---- --- --·-- -----·-------~ __ , ______ ---

intensities in the experimental image are most likely due to thickness 

variations and discrepancies in dislocation depth. 

(b) Planar Defects 

The 12-beam systematic calculations for pure phase contrast (i.e., 

change in a = 2~g·R with no changes in s, or g across the fault) 

indicate a surprising result (35). Bright field images were predicted 

to be ~ontrasty or not depending on the sign of the phase change across 

the boundary (Fig. 19a, b). The effect is predicted at all voltages 

where strong systematic interactions occur. Although this general 

result has been confirmed for coherent thin hcp plates (equivalent to 

stacking faults a = ±2~/3) in Al (Fig. 19(c-£) and for faults in 

silicon there are discrepancies in the details such as the thickness 

dependence-of the intensity (2). Thus the potential applications of this 

'·. 

\ 
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effect for determining the extrinsic or intrinsic nature of faults 

merely by inspection of bright field images must await further refine-

ments of the theory. Attempts along these lines are in progress (34, 36). 

,. ' : ~ . 
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CHAPTER 2 FIGURE CAPTIONS 

Fig. 1. a) -Bright field and b, c, d, weak beam dark field images of 

interphase boundary dislocatio·ns in over-aged Cu-Mn-Al alloy 

showing images - 2oA wide. These are high resolution, kinematical 

images (s >> 0) formed in -g with [ng s > 0] excited where n = 3 

or larger (See Fig. 2). D. Cockayne and G. Thomas (unpublished). 

Fig. 2. As Fig. 1 (different foil) bright field image with g(s > 0) 

excited. {courtesy Surface Science·, Livak, Bouchard and Thomas 

ref 25}. Notice the image width of these dislocations is much 

greater than in Fig. 1. Both FigE. 1, 2 show that the disloca~.ions 

~re pure edge (undissci.ciated) with b in< 100 > · directions. The 

---··-----··--· diffraction pattern· (d)·-shows·-the--·alloy is ordered-· (L21- structure).--.-.: ______ .-·-

Fig. 3. Contrast from dislocation loops around 8' plates in aged 

Al-4%Cu alloy. The loops lie in. {100} and are pure edge with b 
in ( 100 ) • For plates normal to the beam g·b = 0 and g•R is 

n 
+ 

radial and zero along directions normal to g. This gives rise to 

"residual" arced contrast. The dislocations around 010 plates 

are invisible since g·b(OlO) = 0. 

Fig. 4. 'Contrast from spherically symmetrical strain fields due to 

precipitation in Cu-Co alloy (Courtesy Ashby and Brown, Phil. Mag. 

~' 1649 1963). Notice similarity to arc contrast in Fig. 3. 

Fig. 5. Illustrating the use of the Kikuchi map for analysing the slip . 

band structure in deformed Ag2Al (ref 10 Courtesy J. Appl •. Physics) • 
.. 

· .. ,; .. ........ _ 
·-· ... , ... ' 
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Fig. 6. Scheme show~ng that a dislocation locally tilts reflecting 

planes closer to or away from the Bragg condition on opposite 

sides of the extra half plane. (a) and (b) would be reversed if 

--... the dislocation was inverted (extra half plane down). The images 

are therefore to one side of the true position of the dislocation. 

Fig. 7(a). Illustrating ari application of Fig.-6 for distinguishing 

between dipoles and superdislocations; three different methods 

all involving tilting ar~ shown (ref. 17» Courtesy Acta Met.} 

(b»c) Application of Fig. 7a to dislocations in austenitic 

stainless steel: B are dipoles, A are superdislocations indicating 

the alloy is ordered (ref. 17 Courtesy Acta Met). 

--~--Fig. 8.-... Scheme showing image behavior of large, perfect, dislocation 

loops in crystals when g or s changes-sign (Courtesy Amer. Soc. 

Metals ref. Thin Films 1964, p. 227). 
'·· 

Fig. 9 •. Quenched aluminum containing perfect loops on- {lll}: loops B 

+ 
- increase in size as the sign of g is changed from (a) to (b) 

[s > 0, as shown by the diffraction patterosJ loops A go out of · 

-- + - + contrasting= 220 sob= a/2[110]. Notice that this b is normal 

to the [110] no contrast lines of the double-arc images of loops 

A in {a). (ref. 18 Courtesy Phil. Mag.) 

Fig. 10. Scheme predicting visibility of partial dislocations and 

associated stacking faults in fcc crystals. 

Fig. ·11. Partial dislocations and stacking faults in austenitic 

stainless steel {cf Fig. 10). 
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Fig. 12. Contrast experiments for faults in Tac
0

_8 a~ b~ c bright 

' . . + 
field images showing 'the shear nature of the faults {b = < 112 ) } • 

The faults do not completely_vanish in (b-d)~ indicating local 

changes in composition (structure factor contrast). The dark field 

image in (d) shows that· (111) and (111) are intrinsic and extrinsic 

respectively. . · .. -

Fig. 13. ·· Intensity distribution for a = ± 'l:rr/3 contrast as predicted 

by t:Wo-beam dynamical theory with absorption. 

Fig. 14. Scheme showing orientation of intrinsic (top row) and 
. . ...... ·- .. 

extrinsic (lower row) stacking faults with respect to g for 
----------~ ---- ----·-

determining fault character (See Table 4)(from ref. 22)._ 

Fig. 15. Contrast from intrinsic faults in silicon; (a) bright field - ... 
~-- ----···------·------------· -------····.. --- ------------· --··· . ·------. ------------ ------· ------:......,.... ____ _ 

(b) dark field showing the predicted behavior of Fig. 13; c, d 

shows the asymmetry properties of dark field for s =1: 0 enabiing . 

the first, or last, fringe to be immediately identified. (ref. 8 
· .. · . . :·. 

·. Courtesy Phys. Stat~ Sol.) . .. -

Fig. 16. Scheme showing contrast expected from overlapp~ng faults in 

fcc crystals with a = ± 'i:rr/3 Band W are dark and light fringes--

' respectively. 

-·' .. 

:·-:---

Fig. 17. Showing three contrast mechanisms for ~maging small coherent 
. . 

. ' . . . . . . . . 

plates of G. P. zones or 8" in Al-Cu alloys a) bright field 

diffraction contrast b) structure factor contrast dark field 

-~mage of the streak in c), (d) Two beam tilted (002) lattice images 

of G. P. zones. a, b~ c Al-4%Cu - 0.5%Sn ref 26 Courtesy N-Holland 

d) Al-3%Cu courtesy V. A. Phillips and Acta Net (in press) • 

....... _ .. 
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Fig. 18. Comparison between observed and calculated image contrast 
. . 

for a/2 { 110 } screw ·dislocation in aluminum. The magnitude of . 

. the Burgers vector is found from the fringe spacings·, not from 

their intensities. g1 ·b = 2 in this case 650 kV systematic 12 beam 

case (ref. 34). 

Fig. 19. a, b 12 beam systematic contrast calculation for stacking 

.faults in fcc crystals upper curves bright field, lower curves 

dark field. Notice stronger bright field·fringe contrast for. 

-- . 1 1 
g•R = - 3 than + 3'. ·. (430 kV Al-l%Ag) c, d ±g bright field images. 

of thin hcp platelets in Al-l%Ag alloy (430 ·kV) e.f. corresponding . · · 

.·dark-field images Courtesy W. L. Bell.· 

.. . 
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r-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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