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Abstract

Modern Statistical Methods for Large-scale Structure Cosmology

by

James M. Sullivan

Doctor of Philosophy in Astrophysics

University of California, Berkeley

Professor Uroš Seljak, Chair

The number and quality of large-scale structure (LSS) surveys is already stretching current
methods of learning about cosmology from data to their capacity. However, the pace of data
streaming in will increase significantly, with, at the time of writing, data from the Dark En-
ergy Spectroscopic Instrument (DESI), Euclid, Rubin, Spectro-Photometer for the History
of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx), Spec-S5, and Roman
joining existing data from the Baryon Oscillation Spectroscopic Survey (BOSS), Dark En-
ergy Survey (DES), and Kilo Degree Survey (KiDS) as well as CMB lensing data. Maximally
extracting cosmological information from these datasets depends, of course, on high-fidelity
understanding of the instruments and observational effects involved in generating the data.
But more fundamentally, the cosmological information accessed with these surveys is gener-
ated by non-linear, non-perturbative, and high-dynamic range physical processes.

In the face of highly-constraining data, accurate and precise models for such processes are
necessarily complex. This generates several challenges for using them to access cosmological
information. However, recent advances in high-performance computing have enabled more
massive and high-resolution cosmological numerical simulations than ever before. Simultane-
ously, the growth of Graphics Processing Units (GPUs) and related tooling, such as methods
of automatic differentiation, have led to an explosion of machine learning architectures and
methods for working with high dimensional models and data, with concomitant application
of said methods to cosmological problems by the LSS community. These computational
advances have been, and will continue to be, drafted into the service of extracting cosmo-
logical information from high-quality data. This thesis highlights several areas where recent
technological developments can be directly translated into improved methods for large-scale
structure simulation and analysis.

Increasingly complex models generate additional parameters, which, though typically not of
cosmological interest, must be included and varied - leading to a more challenging inference
problem and, frequently, to less interpretable phenomenological models of LSS. One machine-
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learning-informed strategy to address this issue in the context of simulation-based prior
assumptions is outlined in Chapter 2, while a more direct strategy for speeding up the initial
phase of the inference procedure using machine learning methods in a more general inference
context is the subject of Chapter 5.

More straightforwardly, raw computational cost also grows when numerical models are asked
to describe a wider range of scales, which will be necessary for high-density LSS tracer sam-
ples covering large spatial volumes and redshift ranges. Chapter 3 details a scheme for
improving numerical simulation efficiency, therefore reducing this growing computational
cost in the context of modeling the cosmological impact of massive neutrinos on LSS. Nu-
merical simulations that attempt to model galaxy formation in a cosmological context are
also increasingly being used to inform LSS tracer properties. As these simulations become
more robust in their determination of tracer population properties, strategies for leveraging
these properties will enhance accessible cosmological information from surveys. An example
for performing such leveraging with a machine learning-based strategy in the context of pri-
mordial non-Gaussianity is outlined in Chapter 4. Extending methods in similar directions
going forward will enable the LSS community to learn the most possible from large-scale
structure survey data.
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Chapter 1

Introduction

First, a disclaimer. Here we will only have space to give a quick overview of modern large-
scale structure cosmology, specifically focusing on models. The hope is that this will give
the nonspecialized reader some needed context should they choose to move on to subsequent
chapters. This necessarily means disregarding many works - this introduction will be neither
complete nor self-contained - some review articles and relevant texts will be referenced where
omissions become particularly glaring. However, we will make an effort to string relevant
facts together in a fashion that gives some peek at the rich tapestry of cosmological physics.
We will use the notation that ˙= d

dt
, ′ = d

dτ
, c = ℏ = 1, and the (-,+,+,+) metric convention.

Cosmology is chiefly concerned with several aspects of the universe - its global geometry,
its constituents, and how they move on large scales. All of these aspects are well-described
by the standard Λ cold dark matter (ΛCDM) model, along with a couple of extensions.
Stated another way, the structure of the standard cosmological model reduces to solving the
Einstein equations

Gµν = 8πGTµν , (1.1)

under several symmetry assumptions. The evolution of both the energy density of the
universe as a whole and its large-scale fluctuations is governed by a handful of equations
that take only 10 numbers as inputs:

1. Ωk - the global curvature,

2. h - the expansion rate (Hubble parameter),

3. Ωc - the relative amount of cold dark matter,

4. Ωb - the relative amount of baryonic (non-dark) matter,

5. Ωγ - the relative amount of photons,

6. ΩΛ - the relative amount of dark energy1,

1We will not discuss evolving dark energy here, but see Ch. 28 of Ref. [1] as a starting place.
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7. Neff - the amount of light species,

8.
∑
mν - the sum of neutrino masses2,

9. As - the amplitude of primordial fluctuations,

10. ns - the deviation from scale-independence of primordial fluctuations,

where we will further discuss each of these parameters below. Recently determined numeri-
cal values for these parameters can be found in Ref. [3]. The point to stress here is that all
numbers above are generally known to the several percent level or better from the combi-
nation of several cosmological observations. The rest of this Chapter aims to introduce the
reader to the handful of equations necessary to tell the story of how the universe at large
evolves from its earliest moments to today. We will start with the global evolution of the
energy density.

Following from spatial translation and rotation invariance in general relativity, we obtain
the Friedmann-Lemâıtre-Robinson-Walker (FLRW) metric

ds2 = −dt2 + a2(t)

[
dr2

1− kr2 + r2
(
dθ2 + sin2(θ)dϕ2

)]
, (1.2)

where k encodes the global curvature. When k is positive, a fixed-time hypersurface exhibits
spherical geometry; when zero, flat geometry; and when negative, hyperbolic geometry.

This number can be related to Ωk as Ωk = −
(

k
H0

)2
, where H0 = 100 km

s ·Mpc
h . Since Ωk is

constrained by data to be very close to zero, for the remainder of this dissertation we will
work under the often-used assumption of flat global geometry, Ωk = 0.

Given this metric, at the level of the background (i.e., global, or spatially-averaged on a
given time slice) the Einstein equations 1.1 reduce to the flat-space Friedmann equations(

ȧ

a

)2

=
8πG

3
ρ (1.3)

ä

a
= −4πG

3
(ρ+ 3P ) , (1.4)

where a is the scale factor (set to 1 today), ρ, P are the global density and pressure as defined
by T ν

µ = diag(−ρ, P, P, P ).
We can rewrite the density in eqn. 1.3 as ρ =

∑
X ΩXρcrit where ρcrit =

3H2
0

8πG
and ΩX = ρX

ρcrit
.

We can now write the Hubble function H(a) = ȧ
a
that describes the expansion history of the

universe by rewriting the first Friedmann equation(
H(a)

H0

)2

= Ωγ

(
1 +

7

8

(
4

11

) 4
3

Neff

)
a−4 + (Ωc + Ωb) a

−3 + Ωmν(a;
∑

mν) + ΩΛ, (1.5)

2Cosmological perturbations are sensitive to more detailed neutrino physics, but this is the most widely-
considered parameter [2].
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which exposes the first 8 of our 10 parameters enumerated above (Ωmν is a non-power-law
function of a that depends on

∑
mν). From the power law scalings and known numerical

values of the ΩX parameters, equation 1.5 indicates that in turns, the energy density of the
universe will be dominated first by radiation (photons and neutrinos, or other light species),
then by matter (CDM and baryons), and finally by dark energy (here modeled as a constant
contribution, Λ).

This concludes our brief overview of the spatially-averaged dynamics of the universe3.
The story obviously does not end there, as there is abundant structure in the universe in
every direction we look - galaxies, galaxy clusters, the circum/intergalactic medium, huge
filaments and walls of galaxies, and even anisotropic microwaves being emitted from all
directions. Where does this structure in the universe arise from?

To address this question, we must turn our attention to perturbations in the fields of in-
terest - spatial fluctuations in the metric and the matter/radiation fluctuations that we treat
as classical random fields deviating from a smooth background. We also need a mechanism
for generating large-scale homogeneity, isotropy, and flatness in the first place. The next
section will touch on inflation, a mechanism for generating both large-scale homogeneity and
isotropy, observed flatness, as well as spatial fluctuations to seed the large-scale structure we
observe. The salient details will also introduce us to the last two parameters above, As and
ns.

1.1 Initial conditions

Here we briefly review the elements of inflation relevant for the standard model of cosmology.
For more details see, e.g., Refs. [4, 5].

Given some initial conditions, inflation is at its most basic a mechanism to generate a
largely flat, homogeneous, and isotropic patch big enough to be consistent with the observed
universe, which demonstrates all these qualities on scales larger than roughly 100 Mpc.
Though usually stated in terms of observational puzzles (see Figure 1.1), including the
horizon problem (the universe appears uniform on length scales even when causal connection
is impossible) and flatness problem (the extremely small value of observed global curvature),
the origin of large-scale homogeneity and isotropy can also be phrased in terms of initial
conditions of the density and velocity field. Said another way, the homogeneity and isotropy
of the universe suggests finely-tuned initial conditions for the energy density, while flatness
suggests the same for initial conditions of the velocity field [5]. Inflation acts to explain how
an initially small and largely homogeneous and isotropic region can become large.

Inflation also generates the perturbations that eventually lead to the nonlinear structure
we see in LSS on smaller scales today. To quickly see this, we can consider the usual case of
a scalar field φ = φ(x, τ) as a model for inflation4. For a classical scalar field with arbitrary

3We won’t discuss Big Bang Nucleosynthesis (BBN) or the thermal history of the universe, but see
Section 3 here for an overview.

45

https://cmb.wintherscoming.no/pdfs/baumann.pdf
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potential, we write the action as

S =

∫
d4x
√−g

(
−1

2
gµν∂µφ∂νφ

)
(1.6)

Varying this action leads to the Klein-Gordon equation of motion, which, when splitting the
field as φ = φ̄+ δφ, leads to, in spatially-flat gauge, the Mukhanov-Sasaki equation

f ′′ = −
(
k2 − z′′

z

)
f, (1.7)

where z = φ̄′

H
and f = aδφ. In terms of these variables, we can write the quadratic action,

which can be used to quantize the theory. Following the quantization process and the
assumption of a particular vacuum state, we can solve for the mode function solutions f(k, τ)
(for a particular Fourier mode k) of this equation that describe the perturbations.

What does the structure of these perturbations look like? Rather than answer this
question for f , for large-scale structure we are most interested in a related quantity, the
comoving curvature perturbation R = −f

z
= −δφH

φ̄′ . R is closely connected to observables,
as it is constant at linear order on very large scales - i.e. for modes with wavelengths larger
than the horizon scale (aH)−1, and therefore its superhorizon value set by inflation serves as
the initial condition for any particular Fourier mode of cosmological interest. For Gaussian
fluctuations arising from the simple scalar field quantization, the fluctuations are completely
described by their power spectrum6.

At the end of the day, when the Mukhanov-Sasaki equation is solved (numerically or
through approximations), one obtainsthe power spectrum of R. For example, in the slow-
roll approximation (when the scalar field energy is dominated by the potential),

PR(k) =

(
H2

2π (φ̄′)2

)∣∣∣∣
k=aH

(1.8)

≈ Ask
3

(
k

k0

)ns−1

, (1.9)

where the k-dependence of the first line is due to evaluation for a particular mode at the
horizon scale - this introduces a scale dependence to the power spectrum. Here we arrive at
an expression containing our last two parameters As and ns, quantifying the amplitude of
primordial fluctuations and the leading (in k) part of their scale dependence. The question
now remains how to connect perturbations in R to those of the observed galaxy density at
late times that traces large-scale structure. Neglecting the process by which fluctuations inR
are converted into fluctuations in Standard Model species [6, 7, 8, 9], we now proceed to our
next equation needed to construct the time evolution of the universe, the Einstein-Boltzmann
equation for those species.

6Non-negligible higher-order correlation structure arises in specific inflationary models, and the phe-
nomenological study of this behavior is termed Primordial non-Gaussianity, which we will see a bit of in
Chapter 4.
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Figure 1.1: Illustration of how inflation solves the horizon (top) and flatness (bottom) prob-
lems. Top: A small initially homogeneous and isotropic region of size re(ti) is stretched by
a factor

af
ai

during inflation, leading to homogeneity and isotropy on large-scales. Bottom:
Schematically, a region of large initial spatial curvature (A) is stretched such that the region
tends toward flatness (D). Taken from Refs. [5, 10].

1.2 Linear evolution

The primary quantities of interest in modern cosmology are statistics of the cosmic microwave
background (CMB) and the matter power spectrum P (k). These are sourced by fluctuations
in the photon, CDM, baryon, and to a lesser extent, neutrino and potentially more exotic
particle fields during matter domination - the CMB at a scale factor of a ∼ 10−3 and
P (k) at a ≲ 10−1. These sourcing fluctuations must evolve from the (assumed adiabatic)
initial condition fluctuations generated by inflation that enter the horizon7 during either

7For a detailed discussion of horizon crossing of individual Fourier modes of various fields, see Ch. 8 of
Ref. [12].
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Figure 1.2: The linear evolution of the photon temperature monopole perturbation Θ0 as a
function of time (conformal time τ) and scale (wavenumber k). While especially apparent
in the CMB, the memory of the photon-baryon oscillations is imprinted on the distribution
of LSS at late times through the BAO feature. Various scales governing the generation and
damping of fluctuations are highlighted. Produced using CLASS [11], adapted from here.

radiation (on smaller scales) or matter domination (on larger scales). Since we are not
concerned with the evolution of arbitrarily small scale fluctuations, it suffices to consider
the initial conditions of individual fields in radiation domination to solve for the evolution
of the Einstein-Boltzmann system to obtain late-time fluctuations at all times relevant for
observations.

Depending on the particle nature of each individual field, it will have a (assumed 1-
particle) distribution function f = f(x,p, t) on phase space typically described by Fermi-
Dirac or Bose-Einstein statistics. The particle mass of each field and its possible interactions
with other fields then, when combined with the Einstein equations, dictates the content of
the Einstein-Boltzmann system of equations.

We will briefly state the general form of this system, but the full details of this Einstein-
Boltzmann treatment for ΛCDM species (with the addition of massive neutrinos) can be

https://github.com/lesgourg/class_public/blob/master/notebooks/many_times.ipynb
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found in Ref. [13]8. In the notation there, the Einstein-Boltzmann system can be written
for an arbitrary species at linear order in terms of linear perturbations Ψ = Ψ(x,p, t) to the
background distribution function f0 = f −Ψ of the species for a given Fourier mode k

∂Ψ

∂τ
+ i

q

ϵ
(k · n̂)Ψ +

d ln f0
d ln q

[
ϕ′ − i ϵ

q

(
k̂ · n̂

)
ψ

]
=

1

f0

(
∂f

∂τ

)
C

, (1.10)

where, q = ap is the comoving momentum magnitude (where p is momentum magnitude), ϵ
is the comoving energy ϵ2 = q2+m2a2 for a species with particle mass m, n̂ is the momentum
direction unit vector, and the right-hand side contains all possible collision terms (e.g. due to
photon-baryon interaction), and we have written the equation in conformal Newton gauge9,
i.e., for a perturbed metric

ds2 = a2(τ)
[
− (1 + 2ψ) dτ 2 + (1− 2ϕ) dxidxi

]
. (1.11)

The evolution of this system leads to a rich picture of the physics at play in the evolution of
perturbations, and example of which is given for photons in Figure 1.2.

For large-scale structure, the case of the evolution of the “cold” species (CDM and
baryons) during matter domination is of particular interest. For the moment we will ne-
glect massive neutrinos, but see Chapter 3 for a more complete discussion that includes
them. For these cold species, higher velocity moments are negligible, and the two species
can each be modeled as a fluid. After photons decouple from the baryons around the
time when the CMB we see is emitted, the cold species evolve together under the influ-
ence of gravity and any interactions between species can be neglected. At this time, the
Einstein-Boltzmann system simplifies to the collisionless linearized Vlasov-Poisson equation
by setting the right-hand side of eqn. 1.10 to zero. During this time of purely gravitational
evolution, the baryons imprint the memory of the photon-baryon interaction at the time of
recombination (the Baryon Acoustic Oscillations, or BAO10) on the total matter overdensity

δm(k, a) =
Ωc

Ωb+Ωc
δc(k, a) +

Ωb

Ωb+Ωc
δb(k, a) where δX = δX(x, t) =

ρX(x,t)
ρ̄X(t)

− 1, which results in
oscillations in wavenumber in the matter power spectrum.

After these simplifications, by taking velocity moments of the Vlasov-Poisson equation
we obtain the familiar fluid equations augmented by the Poisson equation

∂δ

∂τ
= −θ (1.12)

∂θ

∂τ
= −aHθ −∇2Φ, (1.13)

8See also our open-source implementation of Bolt, the first differentiable linear Einstein-Boltzmann
solver.

9For a nice introduction to various gauges, see here
10The BAO is a robust source of cosmological information - specifically in terms of the ΛCDM parameters

Ωc and h, and has a rich history in the development of LSS - see, e.g., here and here for quick physical
overviews.

https://github.com/xzackli/Bolt.jl
https://background.uchicago.edu/~whu/Courses/Ast408_13/ast4PT_01.pdf
https://w.astro.berkeley.edu/~mwhite/bao/
https://scholar.harvard.edu/deisenstein/book/baryon-acoustic-oscillations
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where θ = −∇ ·v and Φ = ϕ in matter domination. For an individual Fourier mode,
the dominant growing mode solution of the total matter overdensity δm(k, a) evolves in a
scale-independent manner, and its time dependence is usually parameterized in terms of the
“growth factor” D(a), as δm(k, a) = D(a)δm(k, 1). This linear description of the evolution of
cold matter holds on large scales, and serves to set the initial conditions of nonlinear growth
on smaller scales, which we address in the next section.

1.3 Nonlinear structure formation

Figure 1.3: Several zoom-ins of a large-volume dark-matter-only cosmological N-body sim-
ulation. The illustration makes visually apparent the computational demand of simulating
large volumes and high resolution, as well as the non-linear structure of the density field that
is demonstrated through web-like structures. Taken from Ref. [14], where the simulation this
visualization is based on is described further.

The distribution of matter that constitutes large-scale structure is not well-described by
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linear perturbation theory except on the largest scales. The extremely low-density regions,
as well as the very dense sheets, filaments, and highly-clustered nodes (see Figure 1.3)
are all features that require solving a partial differential equation system to model - the
fully nonlinear analog of the Einstein-Boltzmann equation system - the collisionless Vlasov-
Poisson system:

∂f

∂t
+

pi
ma2

∂f

∂xi
−m∂Φ

∂xi
∂f

∂pi
= 0 (1.14)

∇2Φ =
3

2

H2
0

a
Ωmδ (1.15)

ρ = m

∫
d3f(x,p, t), (1.16)

where the comoving density is estimated using density tracer particles of mass m. Simplified
models for this fully non-linear phase space evolution generally proceed by making several
assumptions to reduce the complexity of the problem. Perturbative techniques solve the
fluid equations that result from velocity moments of the Vlasov-Poisson equation [15].

By considering the matter density field as a cold fluid, we can replace the linear equa-
tion 1.12 with the fully nonlinear fluid equations by taking velocity moments of the Vlasov-
Poisson equation:

∂δ

∂τ
= ∇ [(1 + δ) v] (1.17)

∂vi
∂τ

= −aHvi − vj∇jvi −∇iΦ. (1.18)

By expanding the density field as a power law in the linear solution as δ = δ(1)+ δ(2)+ ...,
and doing the same for the velocities (usually for the velocity divergence θ), a perturbative
solution for these fields and their statistics (such as the power spectrum) can be found. For
example, the matter density contrast in Eulerian perturbation theory at second order in δ is

δ(2)(x) =
17

21

[
δ(1)
]2

+
2

7

[
s
(1)
ij

]2
− ψ(1)

i ∂iδ(1)(x), (1.19)

where sij is the tidal tensor with sij =
(

∂i∂j
∇2 − 1

3
δ
(K)
ij

)
Φ, and ψ is the linear displacement.

Here a separability between the time and space dependence of the linear matter density
contrast growth is assumed, with powers of the linear growth factor D(a) carrying the time
dependence (though this is broken in detail, e.g. by the presence of massive neutrinos).

Alternatively, one can take a Lagrangian approach to perturbative solution of the fluid
equations - effectively following the ballistic trajectories of tracer particles. The leading
order Lagrangian expression for the matter overdensity field is given by the Zel’dovich ap-
proximation [16, 17], in which the Lagrangian matter is displaced according to (in Fourier
space)

Ψ(ZA)(k) =
ik

k2
δ(1)(k), (1.20)
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and positions of initial tracer particles q are related to the late-time positions as x = Ψ(ZA)+
q. The Lagrangian picture can be extended to arbitrary order in displacement by using
perturbative kernels [18]. Here we will not discuss Effective Field Theory (EFT) methods
for perturbative modeling of LSS, but simply note that these methods are indispensable
for modern perturbative analyses of LSS data, and direct the reader to Ref. [19] for an
introduction.

Any perturbative solution is only valid when the expansion parameter is small, and, on
small scales, fluctuations in the matter overdensity field are quite large. This breakdown
of perturbation theory can be addressed through direct simulation of non-linear matter
dynamics through numerical solution of the collisionless Vlasov-Poisson equation via dark-
matter-only N-body simulations [20]. Cosmological simulations of this kind rely on Monte
Carlo tracer particle draws of the density field, which are then used to estimate the grav-
itational potential. The potential is then used to estimate the gravitational force acting
on the particles, which are moved to new positions, and the whole process is iterated until
the simulation completes according to some stopping criterion. The starting point for such
simulations is the previously mentioned Zel’dovich approximation (eqn. 1.20) applied to the
linear density field (as computed by an Einstein-Boltzmann ODE system solver), or, more
commonly, a higher-order extension of the ZA such as second order Lagrangian perturbation
theory (2LPT).

Simulations that include gas dynamics and radiative transfer in addition to the dark
matter dynamics are largely computationally infeasible for cosmological applications simply
due to the dynamic range of length and time scales required for self-consistent numerical
simulations thereof. While the future will invariably bring improvements in such simulations,
a two-step process of simulating dark matter dynamics and applying corrections, e.g. due
to baryonic/gas physics, seems likely to drive cosmological inference in the near future. We
will see this issue again in Chapter 2.

The entirety of the above discussion has related only to an accurate description of the
cold matter field. However, what survey instruments actually observe are photons emitted
by tracers of large scale structure rather than the more easily described matter field. To learn
about cosmology from observed photons, we need a model for connecting the underlying cold
matter field to these photons.

1.4 Observed tracers

The nonlinear matter density field as modeled by N-body simulations cannot be observed
with telescopes - instead they see galaxies that form in locally overdense regions (see Fig-
ure 1.4). A dark matter halo is roughly the overdense region immediately surrounding a
galaxy (or another LSS tracer), and halos are therefore key for understanding the connec-
tion between the nonlinear density field and observed tracers. To understand where halos

11A more up-to-date map of observed galaxy positions can be found here or here.

https://www.sdss4.org/surveys/eboss/
https://newscenter.lbl.gov/2022/01/13/dark-energy-spectroscopic-instrument-desi-creates-largest-3d-map-of-the-cosmos/
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Figure 1.4: The distribution of observed and modeled large-scale structure tracers. Galaxies
measured by several earlier redshift surveys (blue, purple) and mock galaxies populated into
dark matter halos produced through simulations (red). Taken from Ref. [21, 22]11

come from, it is instructive to consider the case of a single patch of cold matter collaps-
ing under Newtonian gravity in an expanding FLRW background. Under the assumption
of spherical collapse, when the growth of a matter perturbation within the patch exceeds
a certain critical overdensity, the matter begins to collapse inwardly in a nonlinear fash-
ion. Eventually, the collapsing matter virializes, leading to a dense halo whose size can be
connected to its mass. This is an extremely simplified description of the process of halo for-
mation, and we refer the reader to Refs. [23, 24] for more thorough discussion. This simple
picture of a single halo’s formation can be extended to a model for the statistical properties
of the non-linear matter density field.

The halo model [25] assumes that all matter lives in dark matter halos to a decent
approximation and constructs statistics of the matter density field out of several ingredients
describing a population of halos. In the simplest case where only the mass (M) dependence
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is modeled, these include the halo population number density (or abundance) n̄h(M), the
halo profile ρp(r,M) as a function of radius r, and the halo bias b(M). Then the matter

power spectrum P
(HM)
mm (k) is computed via integrals over the halo population

P (HM)
mm (k) = P1h(k) + P2h(k) (1.21)

where, roughly, the “2-halo” term describes the large-scale power of a density field consisting
of a population of halos and the “1-halo” term captures the impact of the distribution of
matter within halos. We discuss this model in more detail in Chapter 2.

The halo model connects the nonlinear matter density to collapsed structures that can
host visible tracers, but does not describe the process of visible tracer formation itself. For the
case where galaxies are the visible tracers of interest, this missing “galaxy-halo connection”
must be modeled separately (see Ref. [26] for a review). This can be done at several levels,
ranging from fully empirical statistical models to hydrodynamical simulations that attempt
to numerically simulate the process of galaxy formation directly. One particularly general
option is a symmetries-based bias expansion, or simply “bias models”.

Modern tracer bias models provide a framework for precision cosmology that respects
certain basic symmetries baked into the formalism (see Ref. [21] for a review). Following
from the equivalence principle and Gaussian initial conditions, the large-scale bias expansion
supposes that tracer formation is an approximately local process, and the number density of
galaxies can depend on any scalars constructed from second derivatives and beyond of the
(Newtonian) potential Φ(x), for example from its curvature δ ∝ ∇2Φ and the tidal tensor
sij. In its general form, the tracer overdensity field δg at any order in the bias expansion can
then be written as a sum over a finite number of (gravitational) operator fields O weighted
by the scalar bias coefficients bO

δg(x) =
∑
O
bOO(x). (1.22)

For example, up to quadratic order, we have the Eulerian bias expansion

δg(x) = b1δ
(2)(x) +

b2
2

(
δ(1)
)2

(x) + bs2s
2(x) + (h.d.) + (stoch.) , (1.23)

where “h.d.” refers to higher derivative terms related to the finite size of tracers, “stoch.”
refers to stochastic terms uncorrelated with the long-wavelength operators, and δ(2) is the
second order matter density contrast in Eulerian perturbation theory (eqn. 1.19). For further
details see Ref. [21]. We will discuss bias models, the halo model, and the connection between
observed tracers and dark matter halos in Section 2 and again in the context of primordial
non-Gaussianity in Chapter 4.

To sum up, the essence of a physical model consistent with precision cosmological obser-
vations can be largely boiled down to the composition of:

1. the smooth background expansion history, expressed by eqn. 1.5
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2. the evolution of curvature/inflaton fluctuations from Gaussian initial conditions (eqn. 1.7)
during inflation to horizon crossing

3. the evolution of small (linear) fluctuations of SM species from the time of horizon
crossing to the onset of gravitational nonlinearity (eqn. 1.10)

4. the evolution of larger fluctuations, either modeled perturbatively (eqn. 1.17) or via
N-body simulations (eqn. 1.14)

5. a model for connecting the nonlinear matter distribution to observed tracers, such as
galaxies (e.g., eqn. 1.22).

With a physical model in hand, it is then possible to obtain point estimates of cosmological
parameters and uncertainty quantification of those estimates through statistical inference.

1.5 Inference

Figure 1.5: The linear matter power spectrum, as probed at a range of scales by the cos-
mic microwave background and several large-scale structure tracers - namely, CMB lensing,
gravitational lensing of galaxy shapes, luminous red galaxy clustering, and Lyman-α forest
flux correlations. Taken from Ref. [27]12.
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The story of the universe told by our physical models is only credible due to the match
of their predictions of key observables to data. Figure 1.5 shows one such observable, the
matter power spectrum, as probed through the anisotropy power spectrum of the CMB as
observed by Planck [28] and several LSS tracers of the matter density field. The excellent
match between the points and the model curve reflects the status of the ΛCDM model as
the touchstone of cosmology for the last decade. Observations of supernovae constitute
another key pillar of modern cosmology (for some recent measurements see [29, 30, 31]) - the
measurement of distances to supernovae was responsible for the discovery of dark energy (Λ),
and has been corroborated by more recent measurements of baryonic acoustic oscillations in
the matter power spectrum [32].

Constraints on model parameters (such as those of ΛCDM) are obtained through compar-
ing the data to models via Bayesian inference [33]. As a brief overview, given a parametric
model m(θ) and data d, the goal of inference is to obtain the (usually marginal) probability
distribution of θ given the data d - i.e. the form of p(θ|d), the posterior. Bayes theorem
gives a way to obtain this posterior

p(θ|d) = p(d|θ)
p(d)

p(θ), (1.24)

in terms of the functions p(d|θ) (likelihood), p(θ) (prior), and p(d) (evidence). Ordinarily,
we are not interested in the normalization of the posterior p(d), and need only to find a
way to supply p(d|θ) and p(θ). Most commonly, p(d|θ) is assumed to have a known (usually
Gaussian) form p(d|θ) = L(d, µ, C|θ) where the mean µ is usually zero, and the covariance C
is either known analytically, generated from many realizations of synthetic data, or estimated
from the data itself, i.e. via jackknife resampling. The prior, p(θ), must be supplied by the
person doing the inference based on domain knowledge.

The process of inference proceeds generally in two steps - the first is a determination of
the model parameters θ that best characterize the data (according to either the likelihood
or posterior) and the second is characterizing the uncertainty on the estimate of θ. The
first step is achieved through optimization algorithms, which use the value of the function
in question (e.g. likelihood or posterior) as well as potentially other information (like the
gradients of that function) to find the optimal value of θ through a series of steps. With this
optimum in hand, it can be used as a starting point for quantifying the uncertainty on θ.

In practice, for any reasonable number of parameters θ, obtaining parameter uncertainty
estimates by working directly with high-dimensional distributions like p(θ|d) is classically
intractable. Instead, we can obtain an approximation of the posterior through Markov
Chain Monte Carlo (MCMC) sampling, a recipe by which parameters θ are drawn starting
from the prior and weighted by the likelihood through a procedure that eventually produces
posterior samples - the details of which have been the subject of a vast literature going
back 70 years [34]. The so-obtained posterior samples can then be used to estimate the

12This image is already quite out of date - see Ch. 25 of Ref. [1] for a compilation of somewhat more
recent LSS measurements in the less pedagogical context of cosmological parameter measurements.
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(usually unnormalized) density of the posterior, its marginal distributions, or other statistics
of interest. Increasingly in cosmology, alternatives to this process of sampling are being
considered in the literature due to advances in computation and machine learning [35, 36],
but sampling methods remain central to most cosmological data analyses. We will discuss a
procedure for optimization that makes use of a machine learning method to approximate a
target distribution in Chapter 5.

1.6 Outline

The history of the universe that the community has constructed is not only gratifying to
behold, but also physically diverse - relying on the language of general relativity, quantum
field theory, and statistical and fluid mechanics. Numerical methods and phenomenological
models are required to carry this foundational language up to the high precision of modern
observations of the sky. This thesis touches on several developments of said tools, specifically,
with a focus on using modern statistical methods to sharpen existing models. These additions
are especially relevant when dealing with physical effects that are relatively uncertain -
primarily as related to the galaxy-halo connection and the general process of non-linear
structure formation.

In detail, Chapter 2 develops a phenomenological model of tracer and matter power spec-
tra aimed at approximately capturing both of these complications, while Chapter 3 relates
careful numerical treatment of nonlinear structure formation with N-body simulations in
the presence of massive neutrinos. The uncertainty of the galaxy-halo connection also mo-
tivates empirical models for connecting galaxy populations in surveys with their underlying
dark matter halos, for which cosmological information is more accessible. Chapter 4 out-
lines a method for using a machine learning method trained with hydrodynamical simulation
information as such an empirical model in the context of primordial non-Gaussianity.

Finally, the precision of observations leads to a large number of input parameters needed
in suitable models. This begets a computational problem, as forward models even for the
usual compressed statistics (such as the power spectrum of galaxies) require of order several
seconds to evaluate, and must often be evaluated hundreds of thousands or millions of times
for parameter inference. One strategy for addressing this problem is to use approximate
models at the the level of the probability distribution of interest (the likelihood p(d|θ) or the
posterior p(θ|d)), and optimize these to jump-start the inference process before performing
costly corrections using the exact distribution. Such a strategy is the subject of Chapter 5.
The application of these methods makes a small but significant stride toward preparing for
a landscape of survey data that is richer and vaster than ever before.
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Chapter 2

Halo Zel’dovich Perturbation Theory

This chapter was originally published as: James M. Sullivan, Uroš Seljak, and Sukhdeep
Singh. “An Analytic Hybrid Halo + Perturbation Theory Model for Small-scale Correlators:
Baryons, Halos, and Galaxies”. In JCAP 2021, 11, 026, DOI:10.1088/1475-7516/2021/11/026,
arXiv:2104.10676 [astro-ph.CO]

In this chapter, we update Halo Zeldovich Perturbation Theory (HZPT, [37]), an analytic
model for the two-point statistics of dark matter, to describe halo and galaxy clustering, and
galaxy-matter cross-correlation on nonlinear scales. The model correcting Zeldovich has an
analytic Fourier transform, and therefore is valid in both configuration space and Fourier
space. The model is accurate at the 2%-level or less for Pmm (k < 1 h/Mpc), Phm (k <
1 h/Mpc), Phh (k < 2 h/Mpc), Pgm (k < 1 h/Mpc), Pgg (k < 1 h/Mpc), ξmm (r >
1 Mpc/h), ξhm (r > 2 Mpc/h), ξhh (r > 2 Mpc/h), ξgm (r > 1 Mpc/h), ξgg (r > 2 Mpc/h),
for LRG-like mock galaxies. We show that the HZPT model for matter correlators can ac-
count for the effects of a wide range of baryonic feedback models and provide two extended
dark matter models which are of 1% (3%) accuracy for k < 10 (8) h/Mpc. We explicitly
model the non-perturbative features of halo exclusion for the halo-halo and galaxy-galaxy
correlators, as well as the presence of satellites for galaxy-matter and galaxy-galaxy correla-
tion functions. We perform density estimation using N-body simulations and a wide range
of HOD galaxy mocks to obtain correlations of model parameters with the cosmological
parameters Ωm and σ8. HZPT can provide a fast, interpretable, and analytic model for
combined-probe analyses of redshift surveys using scales well into the non-linear regime.

2.1 Introduction

The goal of large-scale structure (LSS) analysis is to extract cosmological information from
the nonlinear matter density field. Nearly all modern cosmological analyses are built upon
two-point statistics that probe this field [38, 39]. Increasingly precise measurements of two-
point correlators in modern galaxy surveys demand percent-level accuracy of theoretical
models of these correlators. This is especially true on smaller scales where the effect of
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survey sample variance is minimal and non-perturbative effects dominate. However, models
of two-point statistics require a tradeoff between the scales they access and the amount of
theoretical control they have.

Perturbation theory (PT) provides an analytic model of the density field on large scales
[15]. Two-point correlators in perturbative models are limited by the scale at which nonlinear
effects dominate the dark matter dynamics which is a much larger scale than the minimum
scale to which current surveys are sensitive [40]. However, PT models remain attractive due
to the control over theoretical errors they afford in their domain of validity. Extensions of
perturbation theory based on an effective fluid description of the density field (EFT) have
pushed deeper into the quasi-linear regime [41, 42, 43, 44, 45]. Such extended perturbation
theory models have recently been used successfully for analysis of cosmological parameters,
though with nuisance parameters that are fitted to numerical simulations (e.g. [46, 47,
48]). However, there is a limit to any perturbative model, even in the EFT framework, as
non-perturbative effects and nonlinear gravitational evolution dictate the behavior of the
density field on scales less than a few Mpc/h. In fact, it is clear that perturbation theory
does not actually converge to the fully nonlinear result on smaller scales, at least in one
dimension, at infinite order [49, 50]. This is due to the fundamentally non-perturbative
nature of small-scale dark matter dynamics.

An alternative analytic model that includes non-perturbative effects in the form of halo
formation is the halo model [51, 52, 25, 53]. The halo model assumes that all dark matter
is tied up in gravitationally bound, non-overlapping halos, which have a prescribed density
profile and an abundance set by the halo mass function. Two-point matter correlators are
computed by way of mean halo profiles integrated over the halo mass function and halo bias.
The halo model has seen success in the last few decades, and is used in modern analyses,
albeit usually with some modifications, to model fully nonlinear scales (e.g. [54]). However,
the halo model struggles in the so-called “transition regime” between the one-halo and two-
halo terms. The halo model also fails to ensure large-scale conservation laws are satisfied,
and as a result cannot be completely correct in its original form [55]. Despite the successes
of both PT and the halo model in complementary regimes, it is clear that neither of these
analytic models alone are adequate to fully describe the nonlinear density field.

Without sufficiently accurate analytic models of matter clustering, simulations can in-
stead act as a model of nonlinear dynamics. N-body simulations provide Monte Carlo real-
izations of Newtonian dynamics in the fully-nonlinear regime, producing a nonlinear matter
density field for a given cosmological model. As with PT and the halo model, N-body sim-
ulations are limited by a fundamental assumption - namely that evolution of the matter
distribution is fully described by collisionless cold dark matter obeying Newtonian gravity.
However, this assumption does not limit the scales accessible to the model or the types of
nonlinear structures it can produce, which are constrained only by numerical resolution. Re-
cent advances in computing have led to the rise of large-volume, high-resolution simulations
(e.g. [56, 57, 58, 59, 60]), albeit with questions of convergence at the percent-level [61]. With
these have come approximate methods of simulation that aim to obtain comparable solutions
with much less computation time [62, 63, 64]. As redshift surveys push to larger volumes
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and higher number density, the intractability of running many sufficiently resolved simula-
tions at multi-Gpc volumes (necessary for capturing large modes and estimating covariance)
to produce two-point statistics has motivated various fitting functions and interpolations of
two-point statistics produced by high resolution simulations (e.g. [54, 65, 66, 67, 68]). At the
smallest scales probed by observations, baryonic effects on the matter distribution are also
a concern [69, 70], and to properly simulate their impact on large-scale structure requires a
full understanding of galaxy formation and hydrodynamic simulations that include feedback
[71, 72]. There have been some recent efforts to correct for baryons and mitigate this issue
by modifying the output of dark-matter-only simulations [73, 74, 75].

In practice we do not observe the nonlinear matter density field, but instead its trac-
ers. Modeling the connection between tracers and the underlying density field is a complex
task, and there are several prevailing approaches to this problem. The large-scale bias ap-
proach extends the philosophy of perturbation theory to parameterize the tracer field as
a linear combination of locally-leading gravitational observables [40]. These models have
been successful on large scales, but face the same issue of PT for modeling dark matter,
namely the presence of a nonlinear scale that characterizes the dark matter dynamics [76].
On top of this fundamental limit, there is an additional limiting scale, the nonlocality scale,
which characterizes the formation of the tracer (e.g. halos/galaxies) and is not necessarily
coincident with the nonlinear scale. Recently, some pragmatic semi-analytic models have
partially circumvented this issue by considering bias with respect to a fitting function for
the non-linear matter power [77], using bias templates measured from simulations [78], or by
extending the halo model via functions fit to simulations [79]. In the halo occupation model
approach, luminous tracers are assigned to a catalog of dark matter halos via a prescription
for stochastically populating the halos - this is the Halo Occupation Distribution (HOD)
framework [80, 51, 81]. HOD models, usually combined with halos found in N-body simula-
tions, are used for some modern analyses that include small-scale galaxy clustering [54, 82].
There are also more involved models of the galaxy-halo connection that are less frequently
used in cosmological analyses [26]. Finally, hydrodynamic simulations that include bary-
onic/gas physics attempt to model galaxy formation more directly, albeit with stochastic
subgrid models mixed in [71]. These simulations are extremely computationally expensive
to run, and typically cannot be run at the sufficient number of realizations or volume to be
relevant for modern redshift surveys.

Given the limitations of existing models for the nonlinear density field and its tracers, a
lofty goal is then to produce an interpretable, analytic model that is accurate across all scales
of cosmological interest. Toward this goal we build upon the hybrid PT-halo model approach
put forward by [83] (MS14) and [37] (SV15) for modeling dark matter two-point correlators
- Halo-Zeldovich Perturbation Theory (HZPT). There have been several other efforts in this
hybrid-modeling direction for dark matter only correlators [84, 55, 85, 86]. However, both
HZPT in its original incarnation and these previous works do not account for baryonic effects
on the matter two-point correlators or the more observationally-relevant modeling of general
tracer two-point correlators. We address these shortcomings in this paper.

The purpose of this paper is twofold. First, we aim to provide a fast, analytic, and
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accurate model for two-point correlators of matter (accounting for baryonic effects) and
tracers on small scales, which necessitates modeling of halo exclusion and satellite galaxies.
In addition, we provide power-law fits for matter correlators, and a joint distribution of
cosmology and HZPT parameters for describing LRG-type (mock) galaxies as the foundation
for an emulator-like approach to analysis of two-point statistics. We restrict our attention to
real space correlators, as the most immediate application of HZPT is to projected statistics
in a ”3x2pt”-style analysis.

We first describe the N-body simulations and HOD mocks used in this paper in Section
2.2. We review the HZPT model and outline its basic structures in Section 2.3. We apply
the model to dark matter correlators and discuss the impact of baryons in Section 2.4. We
apply the model to halos in Section 2.5, and provide a detailed discussion of halo exclusion
before moving on to mock galaxies in Section 2.6 and concluding in Section 2.7.

2.2 N-body Simulations and Halo Occupation

Distribution

CrowCanyon simulations and CM HOD mocks

We use particle output and halo catalogs from the CrowCanyon N-body simulations to
test the HZPT model on matter and halo statistics. These simulations were run using
FastPM [62] with Np = 61443 particles, a box size of Lbox = 3200 Mpc/h, a boost factor
B = 2 (for a 122883 PM force grid and Nyquist wavenumber kNyq ≈ 12 h/Mpc), using the
Planck15 cosmological parameters [28] (without neutrino effects). CrowCanyon halos were
identified using the nbodykit FoF halo finder [87] with linking length b = 0.2. We com-
puted simulation power spectra using nbodykit [88] with a FFT mesh using Nmesh = 2048
(kNyq ≈ 2 h/Mpc) using a correction for compensation [89], and a Triangular Shaped Cloud
interpolation window. Similarly, we computed correlation functions using FFTs on large
scales with Nmesh = 1024, matched at r = 10 Mpc/h to the result of the corrfunc [90]
pair counting algorithm (as included in nbodykit) with 100 logarithmically-spaced bins and
a maximum bin of 10 Mpc/h. Power spectra are sample variance cancelled using unitary
amplitude (“paired-fixed”) power spectra [91] at the same random seed as the N-body sim-
ulation initial conditions. To compute the linear theory power spectrum we use CLASS [11].
To quickly compute the Zeldovich power spectrum we modify a version of the FFTLog-based
code employed in [92] and [93]. Fits are performed using the scipy implementation of the
“Trust Region Reflective” optimization algorithm.

We used the nbodykit [88, 94] implementation of the simple 5-parameter Zheng ’07 HOD
model [95] to populate CrowCanyon halos with galaxies. This implementation modulates the
satellite occupation by that of the centrals, assumes no halo-central mis-centering, and places
satellite galaxies in halos according to an NFW profile. We use 100 sets of HOD parameters
sampled from a symmetric latin hypercube with a number density fixed to near the BOSS
CMASS [96] value (n̄g = 4.2 × 10−4 h3 Mpc−3) at z = 0.55 (Fig. 2.1). The parameter
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logMmin is not drawn from the hypercube, and is instead fixed by integrating over the
CrowCanyon halo mass function to reproduce the appropriate n̄g. The ranges of parameters
considered are: α ∈ [0.5, 1.0], logM1 ∈ [13.5, 14.5], logM0 ∈ [11, 13.5], σlogM ∈ [0.01, 0.8].
This results in a large range of satellite fractions (fsat ≈ 0.01 − 0.6), which is discussed
further in Section 2.6. We refer to this HOD mock galaxy sample as the “CM” sample since
it approximates the BOSS CMASS galaxy number density, redshift, and roughly follows the
HOD parameterization of the CMASS analysis of [82].

Figure 2.1: Halo occupation space. CM refers to the wider HOD sample space corresponding
to the larger-volume CrowCanyon simulations, while LZ refers to the LOWZ-like HOD sample
space corresponding to the Aemulus simulations. R14 and W19 refer to the halo occupations
using the (fiducial) mean constrained HOD parameters (using the model of [95]) for the BOSS
CMASS and LOWZ data from [82] and [54], respectively.

Aemulus simulations and LZ HOD mocks

We similarly generate LOWZ-like HOD mock catalogs from the Aemulus simulations [60].
We use 10 different cosmologies (Boxes 0-9) with 20 HODs per cosmology. We use a number
density close to the LOWZ value (n̄g = 3 × 10−4 h3 Mpc−3), and use a snapshot at z =
0.25. Halos are populated according to the 200b mass definition of the NFW radius and
concentration. We computed simulation power spectra using nbodykit [88] with a FFT mesh
using Nmesh = 1024 using a correction for compensation [89], a Triangular Shaped Cloud
window, and interlaced anti-aliasing [97]. We extend the maximum corrfunc pair count bin
to 20 Mpc/h and use an FFTCorr grid of 5123 for correlation function measurements. We
use a similar range of parameters as [54]: α ∈ [0.5, 1.5], M1

Mmin
∈ [2.5, 20.0], M0

M1
∈ [0.0, 0.4],
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σlogM ∈ [0.01, 0.8]. For each set of HOD parameters, the minimum halo mass parameter
logMmin is fixed to match the LOWZ number density once all of the other parameters have
been chosen. This value is determined by an integral over the halo mass function - to
account for variation of the mass function with cosmology, we use the Aemulus emulator for
the halo mass function trained on the simulations [98]. We refer to this HOD mock galaxy
sample as the “LZ” sample since it approximates the BOSS LOWZ galaxy number density,
redshift, and HOD parameterization of the LOWZ analysis of [54]. Figure 2.1 shows the halo
occupations corresponding to these parameters (as well as the same for the CM sample).

2.3 Review of Halo-Zeldovich Perturbation Theory

In this section, we review the HZPT model for two-point statistics as developed in MS14,
SV15, and [99] (H17), briefly recounting the relevant aspects of the halo model. We discuss
each of the terms, their PT/halo model origin, and the scales at which they are relevant.
Previous iterations of the HZPT model were applied only to matter and halo-matter corre-
lators, and discussion in this section is restricted to these models, though we expand upon
them more generally for tracers in Sections 2.5 and 2.6.

The halo model

The halo model [51, 52, 25, 53] makes the assumption that all matter resides in virialized
halos of massMvir =

4
3
πR3

vir∆virρ̄m, and splits the two-point statistics of the matter field into
correlations between halos (two-halo term) and correlations within a single halo (one-halo
term):

Pmm(k) = P1h(k) + P2h(k), ξmm(r) = ξ1h(r) + ξ2h(r). (2.1)

The ingredients of the halo model are: the halo mass function dn(M) with n(M) the number
density of halos at fixed mass M , along with halo bias b(M), and the spherically averaged
halo profile ρM(r)(e.g. NFW [100]). The usual halo-model one-halo and two-halo expressions
are then:

P1h(k) =

∫
dn(M)

M

ρ̄
|uM(k)|2, (2.2)

P2h(k) =

(∫
dn(M)b(M)uM(k)

)2

PL(k), (2.3)

with linear power PL(k), and where the configuration space quantities are given by the
Fourier transform of eqns. 2.2 and 2.3. Here uM(k) is the Fourier transform of the density
profile normalized by the mass enclosed in the halo:

uM(k) =
4π

M

∫ Rvir

0

dr r2ρM(r)j0(kr), (2.4)
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with j0 denoting the 0th-order spherical Bessel function. The profile is usually parameterized
in terms of a characteristic scale radius rs, (which can be written in terms of the halo
concentration cdef(M) = Rdef

rs
):

ρM(r) =
ρ0(

1 + r
rs

)2 (
r
rs

) . (2.5)

We only explicitly compute halo model quantities in Appendix 2.8, and in that case use the
NFW concentration-mass relation of Ref. [101] and the 200c mass definition.

Two-halo - Zel’dovich

The HZPT model replaces the traditional halo model two-halo term (eqn. 2.3) with the
Zel’dovich Approximation (ZA), or the leading-order Lagrangian perturbation theory (LPT)
power spectrum1 [16, 17, 102, 103]. The ZA provides a beyond-linear-theory description of
large scales, including large-scale nonlinear bulk flows. A benefit of the ZA is that the IR
resummation that would be necessary in Eulerian perturbation theory (SPT) or in an EFT
extension thereof is not required at several-percent accuracy, [85, 76, 42], as the Baryonic
Acoustic Oscillation (BAO) wiggles are already captured quite well by the ZA [45]. More
importantly for the purpose of this paper, ZA provides a useful ansatz for halo model exten-
sion, since a compensated halo profile added to ZA provides a description which is consistent
with perturbation theory in the regime of its validity on large scales (Section II of SV15). To
address the known deficit in power in the ZA power spectrum on large scales, SV15 matched
the ZA power spectrum to that of SPT to write the amplitude of the one-halo term that
also describes small scales, which we now address.

One-halo - Broadband Beyond Zel’dovich

The central feature of the small-scale HZPT model is the Broadband Beyond Zel’dovich
(BB) term. In its initial formulation (MS14), this term replaces the one-halo term (eqn 2.2)
to express a contribution to the power that is provided by an expansion of the Fourier
transform of the halo profile in even powers of comoving wavenumber k. The coefficients of
this expansion can in principle be obtained by integrating r2n-moments of a prescribed halo
profile up to a chosen “halo radius” at which the profile is truncated, though this was not
done in MS14 or SV15 and these coefficients were simply fitted to simulations (expressions
given in Appendix 2.8). To prevent large-k divergences, SV15 took this expansion in even
powers of k and replaced it with a Padé-type term:

PBB(k) = A0F (k)

∑m=nmax−1
m=0 (kRm)

2m∑n=nmax

n=0 (kRnh)2n
(2.6)

1Using an alternative perturbative substitute for the two-halo term can also prove fruitful, and we provide
an example in Section 2.4, but by default in this paper we stick with the ZA.
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The Padé approximation to the the k2 expansion improves the range of validity of the model
greatly by forcing the expansion to smoothly transition to zero as k → ∞. Not only does
this resummation remove high-k divergence due to polynomial terms, but it also increases
the maximum wavenumber k up to which the BB term is a decent approximation to the
Fourier transform of an idealized halo profile, which also transitions to zero for large k. We
note that in the EFT sense, the BB term is not “stochastic”, since we do not enforce that
it is uncorrelated with the ZA term. The two-point correlation function (2PCF) is given by
the Fourier transform of this expansion, which is analytic2, and an expression for which (for
nmax = 0, 1, 2) can be found in Appendix 2.8.

Compensation

A well-known limitation of the original halo model is that mass and momentum are not
conserved on large scales [55]. In the k → 0 limit, conservation of these quantities requires
limk→0 Pmm ∝ k4 [104]. The violation of this requirement for the halo model arises from
the k0 contribution of the one-halo term, which is due to the Poisson contribution from a
finite number of halos [51]. The HZPT model addresses this by multiplying the BB Padé
expansion term by a compensation kernel F (k), which suppresses the low-k k0 contribution
(though at leading order this term goes like k2). It is possible to explore more complicated
forms of the compensation kernel (MS14), or to compensate the functional form of the halo
profile iteslf [105], but here we keep with the previous iterations of HZPT and use the simple
Lorentzian kernel with a single parameter R:

F (k) =

(
1− 1

1 + k2R2

)
. (2.7)

SV15 matched to SPT to find a value of the compensation parameter R that was in good
agreement with simulation measurements (R ≈ 26 [Mpc/h] at z = 0). We discuss compen-
sation for tracer-matter cross-correlations in Appendix 2.9.

The full model

The contributions to the model from the ZA and different BB terms are shown in Figure
2.2. The parameters are: A0, which is related to the one-halo amplitude ρ̄−2

m

∫
dn(M)M2

and does not depend on the profile, the Rnh, which are associated to the r2n-moments of the
halo profile, and the compensation scale R. A detailed discussion of these terms is provided
in Appendix 2.8. There we also provide a full review of the original machinery of MS14 for
the expansion in even powers of k. In the main text we will take a pragmatic approach,
always fitting for the model parameters.

2To clarify, we take “analytic” in the sense of closed-form (as in [51]), rather than in the technical sense
of functions.
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Figure 2.2: Left: Illustration of separate components of our model in Fourier space, as well
as a comparison to linear theory. Right: The same components of the model in configuration
space.

2.4 Matter Correlators & Baryons

We present the HZPT model for real-space two-point correlators of matter, including the
effects of baryonic physics, which are most relevant for weak lensing observations. We review
a calculation of MS14 of the profile expansion coefficients in the presence of a single model
of AGN feedback, before performing an expanded calculation in the context of HZPT using
several baryonic physics models. We also present a higher-nmax model that fits down to
k ≈ 8 h/Mpc at the 3% level, as well as a model with an augmented two-halo term that fits
close down to k ≈ 10 h/Mpc at the 1% level.

Before turning to baryons we briefly remark on the use of HZPT as a model of dark matter
two-point correlators. Slightly generalizing the results of SV15, we show the fits over a range
of redshifts (0 ≤ z ≤ 2.5) of the HZPT model to the power spectrum and correlation function
in the CrowCanyon simulations in Figure 2.3. The fits for Pmm(k) (ξmm(r)) are accurate to
≈ 2% for k > 1 h/Mpc (r < 1 Mpc/h) for all but the highest redshift considered. Fits
are performed in Fourier space, and these best-fit parameters are provided as input to the
Fourier space model.

Modeling baryonic physics

To avoid biasing inferred cosmological parameters obtained through the matter two-point
correlators, we must account for the effect of baryons on the matter distribution. Baryons
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Figure 2.3: Left: Fits to the CrowCanyonmatter power spectrum using the base HZPT model
for a range of redshifts (z = 0− 2.5). Right: The same for the matter correlation function.
Colored bands are at 1% and 2%.

modify the dark-matter-only (DMO) halo profile in several ways, which has been explored in
detail (e.g. [61, 71, 106, 75, 72]). In the presence of baryons, gas and stars must be accounted
for in the halo profile in addition to dark matter. AGN and supernova feedback effects also
move gas away from the halo center, which redistributes dark matter within the halo profile.
From the perspective of the HZPT model, the effect of baryons should only be to modify
the BB terms (see Appendix 2.8 for an illustrative calculation using halo profiles). Baryons
should not affect the large scales relevant for the halo compensation R or the one-halo
amplitude A0, assuming conservation of mass between the DMO and DM+baryon scenarios
(up to two-fluid corrections in the ZA [107, 108, 109, 110]). This is the same rationale used
to motivate scale cuts (e.g. [111]). MS14 fitted changes in the power spectrum due to a
single AGN model of feedback in the coefficients for the first three terms of the k2 profile
expansion up to k = 0.8 h/Mpc. They found that the change in A0 (which is the same as
our A0 up to small changes due to the compensation term) is almost an order of magnitude
lower than changes in the higher-order parameters, which change at the ∼ 5% level, and if
they fix A0 the change in the other terms is larger but still effectively captured by the profile
expansion.

We achieve a similar but improved result compared to MS14 using a more involved com-
parison. We use a larger k-range, fitting out to k = 1 h/Mpc using the matter power
spectrum from simulations. We also employ a more diverse range of baryonic physics mod-
els by multiplying the dark-matter only CrowCanyon matter power at z = 0 by the ratio
Pbaryon/PDMO for 13 different models from [112, 113, 114, 115, 116, 117, 106] as used in [118].
Figure 2.4 shows fits to dark-matter-only power spectra and power spectra including the
effects of baryons for several models with A0 and R fixed to their DMO values. Clearly the
Rn,nh parameters are flexible enough to accurately account for feedback, and marginalizing
over them should remove biases in cosmological parameter constraints. We note that while
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all models are fit to the 1% level down to k = 1 h/Mpc, the simulations with the largest
deviations in the Rnh parameters from the DMO case are Illustris and Horizon-AGN. This is
the case for Illustris since it has been shown to have an unrealistically strong feedback model
(compared to other hydrodynamic simulations) in terms of its effects on the power spectrum
for k ≤ 1 due to low baryon fraction (compared with the observed value in galaxy groups) in
high mass halos [72]. For Horizon-AGN, there is a large-scale 1% excess of the Pbaryon/PDMO

ratio above unity that causes a relatively large change in the HZPT Rnh parameters (the
source of this deviation is discussed in Appendix A of [106], and may not be physical).

Figure 2.4: Top: Residuals for the power spectrum at z = 0 for all baryonic models consid-
ered. Shaded area corresponds to a 1% deviation. Bottom: HZPT parameter values fit for
the different feedback models. DMO fits are denoted by the dotted lines and shaded areas
denote rms deviations from the DMO case.
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Extended power spectrum model

We briefly explore two extended models, which probe smaller scales where the effects of
baryons are stronger, as modern cosmic shear measurements probe angular scales that receive
contributions from these length scales. The first extension focuses on the one-halo term, as
well as cosmology dependence of those parameters, and the second focuses on the two-halo
term. We compute the power spectrum using nbodykit as described in Section 2.2 but
with a finer mesh in the call to FFTPower with Nmesh = 10240, and additional interlaced
anti-aliasing [97]. This grid corresponds to a kNyq ≈ 10 h/Mpc and using the above settings
should be trustworthy out to this scale [88].

Extending the one-halo term

We extend the model for Pmm(k) to include one higher-order BB term (nmax = 3) to get
to 3%-level accuracy out to k ≈ 8 h/Mpc. We see an upturn in Figure 2.5 beginning at
k = 8 h/Mpc which the model fails to fit. We see that the Rnh parameters can account
for the strongest baryonic feedback (Illustris), which is perhaps not surprising given the fact
that we have added two parameters - which are interpretable as the k6 expansion coefficient
reprocessed through the Padé expression.

Figure 2.5: Fits to the matter power spectrum for dark-matter only in our simulations as well
as with baryonic feedback effects included through the power spectrum ratio Pbar/PDMO for
Illustris, the most extreme feedback model we consider, at z = 0 using the high-k extended
model with nmax = 3. We also show the alternate two-halo HZPT model described in Section
2.4 (red line). Colored regions are shown at 1,2, and 3%.

Following SV15, we here provide fitted power-law dependence of all nmax = 3 parameters
for the Pmm(k) (DMO) model described in the previous section at z = 0 (Eqn. 2.8). To
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quickly obtain matter power spectra for cosmologies with different values of the matter
density parameter Ωm and the matter density variance in spheres of 8 Mpc/h σ8, we use
CosmicEmu [66], using 100 randomly generated power spectra with values of Ωcb = ΩEMU

m ∈
[.26, .34] and σ8 ∈ [.7, .9] and 20 test spectra in the same range (Fig. 2.6). For the other
emulator parameters we fix h = 0.6774, Ωb = 0.0486, Ων = 0.0014, ns = 0.9667 w0 = −1,
and wa = 0

A0 = 777
( σ8
0.8

)4.33(Ωcb

0.3

)−1.83

(2.8)

R = 25.3

(
Ωcb

0.3

)−0.58

R1h = 8.56
( σ8
0.8

)2.34(Ωcb

0.3

)−2.19

R1 = 7.34
( σ8
0.8

)2.37(Ωcb

0.3

)−1.39

R2h = 2.93
( σ8
0.8

)1.56(Ωcb

0.3

)−1.24

R2 = 1.99
( σ8
0.8

)1.16(Ωcb

0.3

)−0.96

R3h = 1.51
( σ8
0.8

)1.12(Ωcb

0.3

)−0.96

The 3-parameter power law is accurate with rms residuals of 1% or less for the test set
on all scales. In the context of this computation, this level of accuracy is competitive with
state-of-the-art non-linear matter power spectrum models [119] - we provide a comparison
to the right panel of Fig. 2.6 in Appendix 2.8. The few large-k residuals that go slightly
past 2% correspond to the most extreme values of ΩEMU

m at the edge of our range. We
find positive exponents for all parameters with respect to σ8 and generally negative ones for
the parameters with respect to ΩEMU

m . We note that fitted value for the exponent on the
compensation scale R is close to zero (< 10−15), so the value of R is essentially independent
of the value of σ8, and so we treat R only as a function of ΩEMU

m .

Alternate two-halo term

As mentioned in Section 2.3, one might consider alternatives to ZA for the two-halo term in
the HZPT model, and we briefly explore such an extension here3. One such alternative is
based on the power due to the linear correlation function shifted by the ZA displacement:

Palt(k) = 4π

∫
dqq2ξL(q)e

−kikjAij(q) (2.9)

where ξL is the linear correlation function and Aij(q) is the LPT displacement difference
cumulant [43, 120, 17, 45, 121]. A benefit of taking Palt as the starting point for a new
two-halo term is that it remains easy to compute while preserving many of the advantages
of ZA, and also provides slightly more power than ZA on quasi-linear scales. This modified

3We are grateful to Zvonimir Vlah for suggesting the main idea of this section.
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Figure 2.6: Left: Residuals of power law fits in the training set of 100 values of σ8 and
ΩEMU

m = Ωcb. Right: Residuals of power law fits in the test set of 20 values of σ8 and ΩEMU
m .

Colored bands show 1 and 2 %. See Fig. 2.17 for a comparison to HMCode2020.

version of ZA can be further augmented in a manner similar to the models of [122, 45] by
adding a transfer function style polynomial term multiplying Palt, such that

Palt,HZPT(k) =
(
1 + αk2 + βk4

)
Palt(k) + PBB(k) (2.10)

where α, β are free parameters. This model keeps with the HZPT spirit of an analytic
Fourier transform and provides a converged inverse Fourier transform due to the Gaussian
term of the ZA-like term4. For nmax = 2, this model has the same number of parameters
as the nmax = 3 model described in Section 2.4. The success of this model in fitting the
CrowCanyon matter power spectrum is demonstrated by the red line in Fig. 2.5. Clearly for
the same number of parameters, Palt,HZPT outperforms the nmax = 3 model, achieving 1%
residuals up to k = 10 h/Mpc. We also find that fixing β = 0 results in similar performance
to the nmax = 3 model, with one fewer parameter. This illustrates the power of the form of
the HZPT model and that it is possible to further improve beyond the models we present
in this paper within the HZPT framework by more carefully balancing the work sharing
between the HZPT two-halo and one-halo terms.

We anticipate that using the form of eqn. 2.10 may also improve the accuracy of tracer
HZPT models, and also results in exact expression for tracers using linear bias. We find that
since for tracers we mostly limit our attention to wavenumbers below 1 − 2 h/Mpc, using
ZA alone suffices for our purposes. It would be quite interesting to further explore HZPT
models of tracers based on Palt or other similar two-halo terms.

4We find that fits to ξmm using ξalt + ξBB with nmax = 2 are also accurate at the percent level.
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2.5 Halos and Exclusion

In this section we present the HZPT model for halo-halo and halo-matter two-point statis-
tics in configuration and Fourier space. While these quantities are not directly observable,
understanding them is key to accurately modeling non-perturbative effects in the transition
regime - namely, the discreteness of the halo field, and halo exclusion.

Small-scale halo clustering

The HZPT model was successfully applied to halo-matter cross-correlation two-point statis-
tics, but was not applied to halo clustering (auto-correlation) statistics. H17 showed that
fits for the power spectrum and correlation function to simulations were accurate to 2%
to k = 1 h/Mpc (r ∼ 4 Mpc/h) between z = 0 − 1 for several halo mass bins between
1013 − 1014M⊙. The model H17 used was the base HZPT model for dark matter with
nmax = 2 and with an additional linear bias parameter b1. The HZPT parameters were fixed
as fitted power laws of the linear halo bias b1 and σ8. Allowing all parameters (including
b1) to be free, we find that we can produce fits for these halo-matter correlators that are
slightly more accurate on large scales corresponding to those of H17 (our bins 6-8) and also
for a wider range of halo-mass bins (see Table 2.2) as shown in the right panels of Figs. 2.7
and 2.8. With the Rnh free we are able to fit down to smaller scales that H17 struggled with
in modeling the correlation function. H17 attributed this failure of the configuration-space
model to one-halo effects since the dependence on profiles cannot be fully described with
a simple power law in b1, and suggested a more complete treatment of nonlinear/nonlocal
bias. We examine where the model fails and succeeds in more detail in the next section, but
first turn to the non-perturbative features present in halo auto-correlations.

Non-perturbative modeling is necessary to accurately capture small-scale halo cluster-
ing. Ref [123] (B13) conducted a detailed study of halo exclusion and halo auto-correlation
stochasticity using N-body simulations. Manufacturing a discrete halo field from the con-
tinuous matter field introduces Poisson noise from the finite number of resulting objects
in a given volume. This contributes at zero-lag in configuration space and on all scales
in Fourier space as the well-known “Poisson shot noise” or fiducial stochasticity. In the
k → 0 limit, however, because the tracer field is discrete, there is a constant contribution
to the power spectrum that involves an integral over the correlation function. This means
that the constant noise on all scales in Fourier space may be sub- or super-Poisson. The
sub/super-Poisson noise has been investigated in detail [124, 125, 126, 123].

In addition to the scale-independent contribution from discretizing the field, the phe-
nomenon of halo exclusion introduces a scale-dependent contribution to the two-point statis-
tics. Halo exclusion follows directly from the foundational assumption of the halo model -
that all matter is contained in non-overlapping collapsed dark matter halos. If halos are
idealized as spherical, the phenomenon of exclusion appears quite straightforward. Since
halos may not overlap, it is not possible for the (spherical) halo field to be correlated on
scales below the sum of halo radii. This is reflected in a discontinuous drop to a value of -1
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in the halo correlation function at the exclusion scale. For this simplified case of spherical
halos at fixed mass, we can write the following expressions of B13 for the discrete (auto)
correlation function for halos:

ξ
(d)
hh (r)−

1

n̄
δ(D)(r) =

{
−1 r < Rexc

ξ
(c)
hh (r) r ≥ Rexc,

(2.11)

or, writing the two-point function, we have ξ
(d)
hh (r) − 1

n̄
δ(D)(r) = (ξ

(c)
hh (r) + 1)ΘH(r − R) −

1, where Rexc = Rexc(M) is the exclusion scale, and in the notation of B13, (d) signifies
“discrete” as to be distinguished from (c) “continuous”5.

For the power spectrum the corresponding expression is:

P
(d)
hh (k) =

1

n̄
+ P

(c)
hh (k)− Vexcl

(
WR(k) +

[
WR ∗ P (c)

hh

]
(k)
)
, (2.12)

where WR(k) is the spherical top-hat window in Fourier space and ∗ is the convolution
operator. We will consider these easily-interpretable toy expressions as conceptual references
in a somewhat more realistic models of exclusion. In these models we introduce the exclusion
scale Rexc as a free parameter.

In reality halos are not spherical, and even for a fixed-mass sampling of the halo field
the scale at which exclusion sets in (the effective “exclusion radius”) must necessarily reflect
the fact that triaxiality leads to a distribution of “true” exclusion scales. However, if one
interprets halos in the context of Lagrangian density peaks, then based on the 1-D findings
of [127] (where no triaxiality can be present) peak exclusion is dominated by dependence
on peak height, bin width, and peak curvature. These results appear to hold in 3-D as well
[128], so the effect of triaxiality on exclusion is likely subdominant. Similarly, [129] found
that triaxiality, substructure, and concentration scatter were negligible in modeling exclusion
in halo two-point correlation functions. We also find it unnecessary to model these effects for
percent-level accuracy. The criterion used to define the halo also has an impact on exclusion,
which we return to in Section 2.6 and Appendix 2.10.

Correlation function results

In Fig. 2.7, we show the correlation functions from simulations (black points for halo-matter,
gray points for halo-halo) as well as various HZPT models for different mass bins (see Ap-
pendix 2.9, Table 2.2) at z = 0.55. The linearly-biased ZA (black curves) agrees well with
the simulations on the largest scales considered here, but significantly underestimates the
correlation function at the several percent starting at r = 40− 60 Mpc/h.

The second row of Figure 2.7 illustrates this deviation from linearly biased Zeldovich,
which is fit by the BB terms. There are at least three scales in the enhancement over

5Here and in the remainder of this work, we take ξ(c) to contain any nonlinear or non-perturbative
clustering outside the exclusion scale.
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Zeldovich in both the halo-matter and halo-halo correction functions that the BB terms
must fit to account for all halo masses considered here. These scales are 1. a large-scale
enhancement (LSE) at ∼ 10 Mpc/h (corresponding to the nmax = 1 parameter) 2. a small-
scale enhancement (SSE) outside the halo exclusion scale (corresponding to the nmax = 2
parameter) and 3. the halo exclusion scale. These scales are clearly visible in the second
row of panels in both halo-matter and halo-halo (though are more easily seen in halo-halo).
We will first describe how these scales vary with halo mass (as seen in row 2 of Fig. 2.7) and
then will describe how the HZPT models explicitly account for these scales.

The enhancement in the correlation function over ZA becomes more complicated for lower
mass halos. For the largest halos (M > 1013.5 M⊙/h, right two columns), there is only one
scale or “bump” visible in the enhancement - the LSE and SSE coincide at several Mpc/h.
Just below this unified scale is the exclusion scale, which presents itself as a vertiginous
climb to profile-dominated scales in the halo-matter CF, and as a precipitous drop to zero
correlation in the halo-halo CF. For smaller halos, the single scale splits into the LSE and
SSE, which are clearly visible at ∼ 5 − 10 Mpc/h and ∼ 1 − 2 Mpc/h, respectively, for
halos with M < 1013 M⊙/h. Physically, the SSE may be connected to the non-perturbative
enhancement outside the exclusion scale observed in peak clustering observed by Ref. [128],
while the LSE may be more related to nonlinear bias (e.g. [130, 79]). It would be interesting
to consider an expanded hybrid modeling approach in which the LSE is modeled with a more
complex nonlinear biasing model than linearly-biased ZA as the two-halo term.

We reproduce the result of H17 - halo-matter CFs are well-fit by the nmax = 2 model
above scales up to a few times the exclusion scale for all halo masses (green curve). This
is because the nmax = 2 model captures two scales - the LSE and SSE - quite well, and
in the larger halo mass case the values of the Rnh parameters increase and become much
closer to each other, reflecting the unification of the LSE and SSE. We attempt to slightly
improve upon the nmax = 2 model by adding a term to account for the halo profile dominance
near the exclusion scale by adding a second BB term with nmax = 1 (purple dashed curve)
without compensation 6. This model does not show dramatic improvement over the nmax = 2
model, but does fit the outer portion of the profile dominated region quite well. There are
small deviations in the halo-matter correlation function just outside the exclusion scale for
both models - we speculate that these are the result of a too-simple treatment of halo
compensation.

The halo-halo correlation function is well modeled for large masses by accounting only
for the equal LSE-SSE scale and the exclusion scale through a modified nmax = 1 model. To
model the step in the halo (auto)correlators we model the exclusion step in a similar manner
to B13 using the function Fexc(r)

1 + ξ
(d)
hh (r) = Fexc(r)

[
1 + ξ

(c)
hh (r)

]
, (2.13)

6We set the compensation parameter of this additional term to be very large, 109, which is effectively
the same as ignoring it.
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where ξ
(c)
hh = b1 ξhzpt. The function Fexc(r) is an approximation to a more complete physical

model for exclusion [127, 128] (we further discuss choices for this model in Appendix 2.9), and
also return to it in the context of the power spectrum in Section 2.5. This model works quite
well for the largest two halo mass bins (blue curve), but begins to fail dramatically when the
LSE and SSE diverge at lower halo mass. To address this, we take the same strategy as for
the halo-matter CF and upgrade the BB term to nmax = 2 (red dashed curve). This results
in excellent fits on scales for all halo masses in the halo-halo CF.

Power spectrum results

In Fourier space, the nmax = 2 model is sufficient to capture the halo-matter cross power
spectrum for all halo mass bins at 2% accuracy to k = 1 h/Mpc, and at 1% for almost all
mass bins on the same scales (Fig. 2.8). For the halo-halo power spectrum, the nmax = 1
HZPT model in Fourier space with an added effective (not necessarily Poisson) shot noise
term 1

n̄
appears to be accurate (thin lines in bottom panel of Fig. 2.8). In this scenario, R1h

should be thought of as a more general k2 term rather than as a moment of the halo profile
as is the case for matter. We discuss the small effect of removing R from the auto-correlation
model in Appendix 2.9.

The nmax = 1 model does not explicitly account for the Fourier space effects of exclusion,
but fits quite well down to k = 0.9 − 1 h/Mpc at the 2%. For all halo masses, the scale-
dependent correction due to exclusion is sub-dominant to the constant shot noise, (as seen
in the left panel of Fig. 2.8), and for lower halo masses the model fails to be accurate at 1-2%
at slightly lower k. This seems consistent with the results of [78], who are able to fit Phh(k)
to lower maximum k using a Lagrangian bias expansion, including a k2 term. However,
exclusion must be properly modeled for percent-level accuracy in both configuration and
Fourier space, and we return to this point in the following section, where we provide context
for interpretation of the quoted accuracies in configuration and Fourier space with regard to
exclusion.

As in the configuration space picture, modeling exclusion (using the Exp model presented
in 2.9) as well as the LSE and SSE through the nmax = 2 BB term extends the range of scales
accessible to the power spectrum model. Proper exclusion modeling suppresses the observed
deviations in the (thick) residuals to 1% below k = 2 h/Mpc and eliminates the need for a
free constant shot noise parameter. In the fits shown in the thick residuals in the bottom
panel of Fig. 2.8, the shot noise is fixed to Poisson, and the correction comes entirely from
the exclusion model. Using the exclusion model with an nmax = 1 BB term suffices at the
same level of accuracy for the highest two mass bins, but (as discussed in 2.5) for the lower
mass bins the results are worse since the SSE and LSE are distinct and must be modeled
separately by something more flexible than the nmax = 1 BB term. While we only go to
k = 2 h/Mpc here, the Fourier space exclusion model is accurate to even smaller scales (see
Section 2.5).
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Figure 2.7: Fits to the halo-halo and halo-matter correlation functions in several logarithmic
mass bins. The top panels show the halo-halo and halo-matter correlation functions (multi-
plied by r2 and divided by the b21 and b1, respectively), the center panels isolate the correction
to ZA by subtracting it out, and the bottom panels show residuals with a shaded band at 2%.
The columns correspond to increasing halo mass from left to right. Green (purple dashed)
lines show the nmax = 2 (nmax = 2 + 1) HZPT halo-matter correlation function, while blue
(red dashed) lines show the HZPT nmax = 1 (nmax = 2) halo-halo correlation function. Black
points show the halo-halo simulation correlation function, and grey points the halo-matter
simulation correlation function. Errors are Fourier transformed diagonal Gaussian+Poisson,
which are meant as a visual guide only as errors are correlated. The number of residual
points with errorbars in the bottom panel has been reduced for visibility. Vertical dotted
lines mark the minimum scale used to fit each mass bin, which is roughly the lower limit of
the transition regime for each mass bin (∼ RLag/2).

Transforming the two-point statistics

Exclusion and non-perturbative clustering present themselves differently in configuration
and Fourier space. To better understand how to interpret the accuracy of the HZPT model
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Figure 2.8: Left: Halo-halo power spectra residuals from and the best fit HZPT models at
different halo masses. Thin lines are residuals for the nmax = 1 model with a free shot noise
parameter, while thick lines are due to the model of exclusion with nmax = 2 similar to the
best model in Fig. 2.7. Right: Fits for halo-matter power spectra using the nmax = 2 model.
Colored bands are shown at 1 % and 2 %.

at the different scale cuts in k and r, we provide a narrow comparison of models that include
and exclude the non-perturbative effects of exclusion in configuration and Fourier space for
a single halo mass bin (bin 7 - though the result for other bins is similar7) in Fig. 2.9.

In the left panel of Fig. 2.9, we show two realistic models for the exclusion step in
configuration space - the ErfLog model (solid orange) is the model of B13 (with free σexc, Rexc,
two free parameters total), and the qualitatively similar Exp model (one free parameter Rexc,
green dash-dotted) are both described in Appendix 2.9. The Exp model fits the step quite
well, though the shape is not quite right at the smallest scales of the step, and the ErfLog
model clearly captures the exclusion step even better than the Exp model. The ErfLog model
is relatively insensitive to σexc - fixing σexc = 0.1 (similar to B13) only mildly degrades the
accuracy of ξhh(r) in the nmax = 1 model (which is sufficient here for bin 7) with respect
to the shape at the small-scale end (similar to the slight inaccuracy of the Exp model). A
benefit of the Exp form of the exclusion step is that it permits an analytic Fourier transform
of Fexp(r) (see Appendix 2.9), which explicitly displays the non-trivial k-dependence of the
exclusion (it is not as simple as k2) and keeps with the spirit of the HZPT model. Clearly
both of these models are capturing the correct features of non-perturbative halo clustering
on the smallest scales.

For comparison, we also show the TH model (blue dashed), which is given by the simple
Heaviside truncation of the nmax = 1 HZPT model fit down to r = 2.5 Mpc/h, as well as
the same model fitted using a larger minimum scale r = 10 Mpc/h (solid purple), which
we refer to as the ”ls” (large-scale) model. Similar to the quadratic biasing model of B13,

7However, for lower mass bins, the large-scale finite-size correction is super-Poisson rather than sub-
Poisson, which is expected from the explanation of B13.
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the ls model describes the LSE but fails to capture both the full extent of the SSE outside
the exclusion scale, and totally misses the exclusion step. The un-truncated TH model
(ξ(c)) correctly describes the SSE but fails to account for the exclusion step - by adding the
Heaviside truncation, the TH model provides a qualitatively correct description of both the
SSE and the exclusion step. However, quantitatively the TH model does somewhat worse
than the ErfLog and Exp models by failing to account for the finite width of the step.

Figure 2.9: Illustration of (HZPT) contributions to exclusion for bin 7 (logMh ∈ [13.5, 14].
Left: Correlation function with several different exclusion models. ErfLog denotes the model
of B13 (with σexc free), while Exp denotes the model described in Appendix 2.9 (that has
correction with analytic FT). TH denotes the simple thresholding of the continuous model,
and is clearly not sufficient to capture the width of the exclusion step. Right: Corresponding
power spectra (evaluated via FFTLog). P (c) denotes the (analytic) continuous model using
best-fit HZPT parameters to the correlation function. TH in this case is equivalent to the
window function expression terms of B13 (but without truncating the expansion). The solid
purple curve denotes the large-scale model P (ls) resulting from fitting ξ(ls) above 10 Mpc/h.

Fourier transforming, we look to see what happens under the various treatments of ex-
clusion in configuration space. The result is shown in the right panel of Fig. 2.9. Here the
quantity on the vertical axis (top panel) is a measure of the error induced by not treating
the exclusion step and simply using the “continuous model” ξ(c) with fiducial (Poisson) shot
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noise 1
n̄
. P (c)(k) is the (analytic) Fourier transform of ξ(c)(r) that is fit up to the peak of

the halo correlation function (TH in the top left panel but without the threshold). The
simulation points in the top-right panel and the red curve in the lower-right panel illustrate
that modeling the SSE but totally ignoring the exclusion step induces a 5% error on scales
between k = 0.1 − 1 h/Mpc, which is actually larger than if we had simply used P (ls), the
Fourier transform of large-scale model ξ(ls). This can be understood from the fact that the
non-Poisson correction in the large-scale limit (k → 0) is given by the integral

∫
d3rξd(r).

The large-scale model ξ(ls) both underestimates ξ(d) on scales where the SSE is relevant and
overestimates it when the discrete correlation goes to zero, resulting in an accidental, but
only partial, cancellation in the integral. This results in the wrong non-Poisson correction,
but one that produces a smaller residual in the bottom-right panel Fig. 2.9 than for the con-
tinuous model P (c). P (c) only includes positive contributions to this integral, and produces
a too super-Poisson correction without the negative contributions from the exclusion step.
Adding the simple Heaviside threshold qualitatively accounts for both types of correction
and tames the residuals to be about 2-3%. Using the more accurate exclusion step models
produces negligible error at a fraction of a percent.

We note that these residuals are computed with respect to the discrete power spec-
trum (which includes fiducial shot noise), so all errors would be amplified were shot noise
subtracted8. Since the effect of ignoring exclusion is scale-dependent, it is not possible to
cleanly relate cutoffs at a particular scale in configuration space with cutoffs at a particular
wavenumber k in Fourier space. Furthermore, we see through the comparison of the residuals
of P (ls), P (c), and the step models that starting on quasi-linear scales and fitting a config-
uration space model down to progressively smaller scales induces an exclusion correction in
Fourier space that initially increases before decreasing to approach the correct non-Poisson
value. It would be interesting to further quantify how this behavior affects other biasing
models that stop at a particular minimum scale rmin such that Rexc < rmin < 10 Mpc/h.

By way of this example, we see that ignoring the effects of exclusion (or stochasticity in
general) as is sometimes done in small-scale biasing models of the tracer correlation functions,
will necessarily result in incorrect behavior over a relatively wide range of wavenumbers in
Fourier space. Coming back to our fits to the power spectrum, this is seen in Fig. 2.8, where
percent-level excursions are visible in Phh. These excursions seem more pronounced at lower
mass, reflecting the fact that the distinct LSE and SSE identified in the correlation function
are not well-modeled by a single nmax = 1 BB term. The apparently smaller residuals for
higher mass bins is, however, partially a consequence of shot noise constituting a larger
fraction of the total power on small scales due to lower halo number density at higher mass.

Despite the fact that the nmax = 1 fits in Fig. 2.8 do not explicitly include exclusion, they
are still relatively accurate since the Fourier space BB term and free shot noise terms are
implicitly modeling exclusion. This may be explained by the fact that at leading order the

8This amplification would of course get worse at higher k as the amplitude of the continuous power
spectrum decreases - in practice quick calculations residuals with respect to the shot noise subtracted power
spectrum for bin 6 can be above 10% at k = 1 h/Mpc
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nmax = 1 BB term and the simple threshold model scale as k2, so the BB term (or any k2

term) might capture the leading-order behavior of exclusion. However, a more realistic model
of exclusion (e.g. the Exp or ErfLog model) is more complicated than a simple k2 term (see
Appendix 2.9 for the form of this expression for the Exp model). These models introduce an
additional parameter Rexc to the HZPT model, but knowledge of this parameter exactly gives
the value of the non-Poisson correction in the large-scale limit, eliminating the need for the
free shot noise parameter in the power spectrum. We conclude that percent-level accuracy
of a model without exclusion in Fourier space is largely due to the relative importance of the
free shot noise term and the leading-order k2 behavior of exclusion, and not due to a correct
model of high-k behavior, which must include the non-perturbative effects associated with
halo exclusion.

2.6 Galaxies and Satellites

The transition regime for galaxy-galaxy and galaxy-matter correlators is affected by both the
details of satellite occupation and halo exclusion. The model of Section 2.5 for halos already
includes exclusion, and we build upon that model by accounting for the presence of satellite
galaxies in this section. We consider two different galaxy samples produced according to
the HOD prescriptions presented in Section 2.2 to test the flexibility of this model. We
focus on configuration space fits and use them to estimate joint density with cosmology but
also provide fits to power spectra. We take a pragmatic approach throughout this section,
using the minimal HZPT model necessary to achieve percent-level accuracy for the galaxy
two-point correlators at k ≈ 1 h/Mpc and r ≈ 1− 2 Mpc/h.

Small-scale galaxy clustering

The galaxy-matter correlators are analogous to the case of halo-matter correlators, but are
slightly complicated by the presence of satellites. On the largest scales considered here,
galaxy-matter correlators are well-described by linear bias with ZA and compensation. In
addition to the correlation between a particular central galaxy and the matter profile of
its host halo, there is now another contribution from the correlation between matter and
satellites. The satellite fraction will impact the amplitude of the intra-halo correlations,
which in turn will affect the slope and location of the transition feature described in Section
2.5. The smallest scale correlations are then completely governed by the halo dark matter
and satellite profiles. In our simple HOD mocks, satellites are drawn from an NFW profile.
However, since the form of the BB term is profile-agnostic due to the general form of the
Padé expression, there should be no great difficulty in modeling other qualitatively similar
profiles (i.e. more complicated satellite profiles).

The galaxy-galaxy correlation function ξgg is more complicated than the auto-correlation
function for halos. In addition to the steep drop in the correlation function near the effective
exclusion scale that is expected for halos, we must consider the role of satellite galaxies.
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As explored in detail by [131] (see their Fig. 1) and H17, there are additional types of
correlations: 1. between centrals and satellites in different halos, 2. and centrals and satellites
in the same halo, as well as 3. between satellites in different halos, and 4. satellites in the
same halo. While 2. and 4. essentially serve to change the correlation function on scales
relevant to the satellite profiles (i.e. roughly the combination of the profile and its self-
convolution), 1. and 3. effectively introduce contributions that are versions of the central-
central correlation function (with the exclusion step) that have been smoothed out over the
halo scale. This smoothing of the exclusion scale will serve to broaden the exclusion step
present for halos in the galaxy auto-correlation.

To deal with these complications, we introduce some additions to the HZPT model. We
do not model each of the terms outlined in [131] separately, instead lumping some of them
together into an effective HZPT model for ξgg(r). We allow for the smoothing of the exclusion
step through freeing σexc to be larger than the value (≈ 0.1) that was acceptable for halos.
Additionally, we add a satellite profile term (an additional BB term with nmax = 1) that has
two free parameters (with subscript 1s), since we fix R1s = 103. On these scales, this choice
is the same as providing no compensation for the satellite profile. The A1s and R1s will vary
depending on the details of the satellite occupation, e.g. with the amplitude scaling with the
satellite fraction. So the full equation for galaxies with exclusion (in configuration space) is:

ξ(exc)gg (r) = ξhh(r) + b1ξ
nmax=1
BB,1s (r)

= b1
[
Fexc

(
ξZA + ξnmax=1

BB

)
+ ξnmax=1

BB,1s (A1s, R1h,1s)
] (2.14)

where the bias b1 is free (not fixed to the halo bias value) and we suppressed arguments
except for the new parameters in the second line. Here the 1s BB term is compatible with
the usual BB interpretation and we can think of it (correctly) as a k2 expansion in the
satellite profile. Adding this term does not ruin the analytic Fourier transform, which will
have a form that is the product of two Lorentzians (as for matter) in Fourier space.

The effects in the transition regime for HOD mock galaxy clustering will necessarily
be more complicated than that of halos (even ignoring satellites) since the HOD applies a
threshold for the central occupation which spans the equivalent of several halo mass bins.
This means that the “cross-stochasticity” (B13, [124]) of exclusion in different bins will
contribute more strongly to the central auto-correlations. However, we find that this is not
something that needs to be modeled explicitly when fitting, which may have to do with the
fact that the cross-stochasticity is either close to constant or of a similar scale dependence to
that of the auto-stochasticity (c.f. H17 Fig 4). We also do not explicitly account the effects
of central galaxy off-centering [132, 133], which are relevant for an accurate treatment of
the small-scale galaxy-galaxy lensing signal. Since this effect may be accurately modeled by
a modification of the profile, we anticipate that our Padé term may be general enough to
account for such effects.
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Two HOD mocks

The CM and LZ samples are produced using two different underlying simulations, and com-
plement each other in the trade-off of resolution and number of simulated cosmologies. The
CM sample is produced from a simulation with a factor of 10 larger volume than the LZ
sample and allows for a cleaner test of model accuracy due to a reduction in resolution ef-
fects.9 Fits to mocks from the LZ sample have increased noise with respect to to CM mocks
due to smaller volume and a resulting smaller number of HOD galaxies, but still allow us to
map the HOD basis of parameters onto the HZPT basis of parameters and provide a joint
distribution of the HZPT parameters and cosmological parameters.

The CM sample covers a wide range of HOD parameters that are centered on the BOSS
CMASS parameter space to illustrate the flexibility of the HZPT model (parameter space
described in Section 2.2). The parameter space covers a wide range of satellite fractions
(fs = 0.01 − 0.65), the highest values of which are still consistent with observed galaxy
samples [135] (though these may differ significantly from BOSS). We emphasize that this
choice of “CMASS” parameters is not to be taken too literally, as we do not enforce that
the HOD mocks reproduce the CMASS clustering, only approximately the CMASS number
density and are produced at a similar redshift. The HOD parameter ranges are based on
[82], but are taken to be more general - and use FoF rather than SO halos. The purpose
of this sample is more illustrative and conceptual - to demonstrate that a wide range of
HOD parameters can expose halo exclusion for certain mock galaxy samples, and that HZPT
provides a good description of two-point correlators even in this case. The LZ sample is more
realistic in the sense that the HOD parameters are close to those favored by LOWZ clustering
[136, 137]. These differences mean that a different minimal HZPT model is necessary to reach
percent-level accuracy for each sample at the scales we address in this section.

Configuration space results

The galaxy-matter cross correlators in both the CM and LZ mock samples are well fit by the
same model used for halo-matter cross correlation - the base HZPT model with nmax = 2
with the linear bias b1. Despite the presence of satellites, the transition regime (including
the outer part of the halo profile for CM) is well-modeled by the Rnh parameters. Fits are
performed from r = 1− 70 h/Mpc in configuration space (and from k = 0.01− 1 h/Mpc in
Fourier space). Errors for fits to the LZ power spectra include diagonal Gaussian+Poisson
covariance and variance estimated from repopulating HODs at 10 different random seeds
(which we take as independent of any particular HOD realization), while the CM power
spectrum errors are based only on Gaussian+Poisson covariance.

9The qualitative features of the exclusion step do not appear to depend much on the use of FastPM.
Using a subset of the same HOD parameters (albeit at a slightly different cosmology) we check the qualitative
features (and scales) of the exclusion feature are similar using FoF catalogs produced by a TreePM code
([134], described in H17).
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The nmax = 2 HZPT model is sufficient to attain several-percent accuracy in both the
galaxy-matter and galaxy-galaxy correlation function (generally 1-2%, but this is limited by
uncertainty due to resolution in the case of LZ - the rms error is always less than 1% [2%]
below 40 Mpc/h for ξgm [ξgg]) down to r = 2 Mpc/h for LZ. For CM the nmax = 2 model
is also sufficient for 2%-level accuracy ξgm r = 1 Mpc/h, but for ξgg we require the model
of eqn. 2.14 to capture the complications due to the satellites and exclusion effects present
in this sample to produce an accuracy of 2% above r = 2 Mpc/h. We find that for most
choices of HOD parameters, fits in both gm and gg (with the satellite terms) provide fits
accurate to 1% down to r ≈ 0.5 Mpc/h for the CM sample. However, to be conservative and
accommodate all HOD parameters considered, here we fit ξgg only down to r = 2 Mpc/h.
The galaxy-matter correlation function ξgm is fit to 1 % accuracy down to r = 1 Mpc/h for
all but three of the highest satellite fraction HODs, in which case the accuracy quoted is 2%
(Fig. 2.10). All CM mock HODs with fs > 0.55 (very high for realistic LRG samples even
given the general parameterization used here) have correlators plotted as gray curves in the
figures. There is a downward shift in scale in the transition regime between the two samples,
which we discuss in Section 2.6.

Figure 2.10: Left : Galaxy-galaxy correlation function residuals for the 100 CM HOD mocks.
Right : Galaxy-matter correlation function residuals for the 100 CM HOD mocks. Grey
curves correspond to HOD mocks with fs > 0.55. Colored regions mark 1% (red), and 2%
(blue), errors are diagonal Gaussian+Poisson (these are meant as a visual guide only, and
the errors are correlated). The HZPT model used in these fits is the nmax = 2 model for ξgm
and the satellite-enhanced nmax = 1 model with exclusion (eqn. 2.14) for ξgg.

Fourier space results

As discussed in Section 2.5, exclusion in Fourier space is largely suppressed by scale-independent
shot noise, and the nmax = 1 model performs decently well for Pgg(k). We see that for all
but three of the HOD mock power spectra considered, the residuals are always less than 3%,
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Figure 2.11: Left: Residuals for the nmax = 2 model for ξgg for all 200 cosmology and
HOD parameter combinations. (Right:) The same for ξgm. Colored bands show 1 and 2%,
and errors (black dashed) give 1σ Gaussian+Poisson variance (these are meant as a visual
guide only, and the errors are correlated), with additional stochastic HOD error added in
quadrature to the ξgg error. The HZPT model used in these fits is the nmax = 2 model for
both ξgm and ξgg. The more involved model of eqn. 2.14 is not necessary for percent-level
accuracy for the LZ sample.

and are usually less than 1%. Again, gray curves correspond to HOD mocks with fs > 0.55,
and account for the residuals exceeding 2%. The three offending curves correspond to the
fs > 0.5 cases mentioned for the correlation function. From the top panel of Fig. 2.12, we
can see that these are the highest-biased cases and the wiggle-shape of the excursions in the
transition regime are what would be expected from ignoring exclusion, as we have done here.
Contrary to the case of halos, the number density is fixed in the CM sample, so the fiducial
shot noise is kept fixed as the preference for population of galaxies in halo masses changes.
For the highest mass halos, we would not expect to see the transition wiggle feature due to
the high value of shot noise, but for these high satellite fraction models high-mass halos are
preferred and we essentially reduce to the case of a high-mass halo bin where the exclusion
feature is smoothed and shot noise is reduced (satellites act to up-weight the importance of
the halo correlation with respect to the shot noise).

The fits in the power spectrum should not be taken to mean that exclusion is not impor-
tant for an accurate description of two-point statistics, and the lessons of mapping between
configuration space and Fourier space recounted in 2.5 still apply.

We find that the nmax = 2 HZPT model used for the galaxy-matter correlators is sufficient
to attain several-percent accuracy (generally 2-3%, as limited by uncertainty due to resolution
- the rms error is always less than 2% over the range of fit) down to k = 1h/Mpc for the
galaxy auto-correlators for the LZ sample. For the LZ HOD mocks, the exclusion feature is
essentially undetected by the fits on the scales we consider (and the feature is totally absent
for 90% of the HOD mock correlation functions) and is not present by eye in Fig. 2.11.
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Figure 2.12: Left : Galaxy-galaxy power spectra and residuals for the 100 CM HOD mocks.
Right : Galaxy-matter power spectra and residuals for the 100 CM HOD mocks. Grey curves
correspond to HOD mocks with fs > 0.55. Colored regions mark 1% (red), and 2% (blue).
The HZPT model used in these fits is the nmax = 2 model for Pgm and the nmax = 1 model
without exclusion for Pgg.

Figure 2.13: Left: Residuals for the nmax = 1 model for Pgg for all 200 cosmology and HOD
parameter combinations. Right: The same for the nmax = 2 model (without exclusion) for
Pgm. Colored bands show 1 and 2%, and errors (black dashed) give 1σ Gaussian+Poisson
variance, with additional stochastic HOD error added in quadrature to the Pgg error.

Thus, the more complicated model including exclusion described above (and necessary for
CM) is totally unnecessary. This is due to the position of the exclusion feature for the LZ
sample, which is at particularly small scales, and which we discuss in the next section.

We find that using an augmented two-halo term similar to the one described in Section 2.4
can result in fits that are accurate at k ≈ 10 h/Mpc with a single transfer function parameter
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for Pgm in some HOD realizations. We also find that exclusion modeling in addition to a
k-space version of the satellite profile term similar to eqn. 2.14 can result in improved fits
in Pgg. An extension of the results presented in this section to higher k using an augmented
two-halo term and exclusion is therefore an interesting direction for future work employing
HZPT modeling.

Comparison of mocks

Exclusion is much more prevalent in the CM sample than in the LZ sample. When exclusion
does occur, it does so on scales of 0.6 − 0.7 Mpc/h in LZ10 rather than around 2 Mpc/h
as seems typical for CM. For logM ∈ [13.5, 14] (bin 7), which is completely covered by the
selection of halos populated by the HODmocks, the CM exclusion step spans 1.3−2.6 Mpc/h,
while for LZ it spans 0.7 − 1.0 Mpc/h. This is consistent with the scales of the dips of the
exclusion features in the galaxy-galaxy correlation function for both samples (Fig. 2.14). For
the LZ mocks, exclusion is only visible for very low satellite fractions (fs < .05), while for
the CM sample it is present the majority of the time (≈ 80%). For CM, in fact, the only
time the model does not seem to show exclusion is when σlogM is very large - suggesting
that the sharp climb of the halo occupation may to some extent be driving the visibility the
exclusion feature.

A reason for the difference between CM and LZ is that both the choices of halo finder
and halo mass used strongly influence the exclusion feature. The halo catalog for LZ was
produced by ROCKSTAR and uses “strict SO” 200b masses, which includes unbound particles
that are not part of the ROCKSTAR group in a given halo. The CM halo catalog simply uses
FoF (as implemented in nbodykit) masses with linking length b = 0.2. We describe this
effect in further detail in Appendix 2.10.

Literature to date focusing on exclusion has relied on both FoF halos (e.g. B13, [128])
and SO halos (e.g. [129]). If one is consistent in a choice of FoF halos or SO halos in a
mock-based analysis using HOD galaxies, the treatment of exclusion will also be consistent.
The LZ implementation is thus more realistic in the sense that the analysis of [82] used a
SO halo finder to obtain the HOD constraints. But even within the context of SO masses,
the effect of SO vs strict SO masses can have an effect on the correlation function due to the
rapid growth of the exclusion feature at small scales (Fig. 2.21). In HOD-based modeling
it is then desirable to in some sense marginalize over halo definition. Ref. [136] used a free
parameter (Rrescale) to do this, using the justification that the main effect of varying halo
definition is the effect on halo radii as related to matter and satellite profiles. However,
as shown here, the impact of halo definition on tracer correlators is not just through the
one-halo term, but also through the two-halo term via exclusion.

While in Section 2.5, finding the minimum effective HZPT model that is accurate at the
percent level required careful modeling of non-perturbative halo clustering, for mock HOD

10This comparison was performed using Box 20 of the Aemulus simulations, which is close to the cosmology
used to generate CM, but for more disparate cosmologies the effect may be significant (already the fact that
some boxes exhibit exclusion and some do not may point in this direction)
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galaxies we find the reality to be more complicated. Depending on the galaxy sample and
host halo definition, exclusion may or may not be an effect that is necessary to model at
this level of accuracy. The CM sample contains HOD populations that often require a more
involved model of halo exclusion and satellite contributions, while the LZ sample only shows
exclusion on scales smaller than 1 Mpc/h, so we can safely ignore them when aiming for
percent-level accuracy above these scales.

Figure 2.14: Comparison of fits to galaxy correlators for different samples when exclusion is
present. Correlation function for mock galaxies for a single HOD from the CM sample (with
satellite fraction fs = 0.29). Right: Correlation function for mock galaxies for a single HOD
from the LZ sample (with satellite fraction fs = 0.01).

Correlations with cosmological parameters

We use the LZ sample and the best-fit HZPT parameters for galaxy-matter and galaxy-galaxy
two-point correlators to outline an approach to estimating a joint prior of HZPT model
parameters and cosmological parameters. In particular, we use Sliced Iterative Generator
(SIG) [138] to perform density estimation using the best-fit HZPT parameters obtained
from the set of 200 LZ correlation functions as training points. Potential analyses employing
HZPT as the model for two-point correlators could then use such a density as a prior for
analysis. Fig. 2.15 shows projections of a reduced density (considering only Ωm and σ8) for
HZPT parameters that vary significantly with Ωm and σ8. The fitted R,R

2
1, R2h parameters

not shown do vary significantly with Ωm and σ8, but have strong degeneracies with R1h so
have been removed for visibility. We also note that, as mentioned in the previous section,
we are usually not fitting non-perturbative effects near halo scales in the LZ sample.

This approach trades interpolation error (as in a standard emulator) for approximation
error (through density estimation) and is more flexible than a typical emulator, as one can
tweak the priors manually without running a new set of expensive simulations. Of course,
there should be a physical reason for shifting or narrowing the priors, but simply broadening
the priors may account for increased uncertainty about a particular galaxy or tracer sample.
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Figure 2.15: Projection of density estimated from the best-fit HZPT parameters for the LZ
sample using 10 of the Aemulus simulations (Ωm, σ8). Best-fit parameters used for training
are overplotted as black points. The R, R2

1 and R2h parameters also fitted are not shown for
visibility, and are often strongly degenerate with the displayed parameters.

We also anticipate that constructing such an emulator-style tool from HZPT would require
fewer training samples evaluated at distinct values of cosmological parameters. This is
because the forms of the HZPT correlators are more restrictive than the form of a typical
emulator.

The galaxy-galaxy and galaxy-matter A0 parameters show a negative correlation with Ωm

and a positive correlation with σ8, both of which are consistent with the sign of the power
laws fitted for the matter power spectrum in Section 2.4 and in SV15 (for σ8). The parameter
R1h seems to have the opposite relationship, which might at first appear surprising. However,
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note the relationship between cosmological parameters shown in the top left panel. This is
a reflection of the design strategy of the Aemulus simulations, which are based on Planck
constraints [60]. Since Ωm increases as σ8 decreases, it is not straightforward to meaningfully
disentangle dependence on Ωm and σ8 individually. In any event, it is clear that the HZPT
parameters shown are not independent of cosmology, and depend strongly on at least some
combination of Ωm and σ8 with scatter that is captured in the density width. We aim to
provide a more quantitative comparison of the effect of different HZPT priors on cosmological
constraining power in future work.

2.7 Conclusions

In this paper we expand the Halo-Zeldovich Perturbation Theory approach to accurately
model two-point correlators of matter and tracers well into the nonlinear regime. For all
correlators, the models are generally accurate at the percent level down to k < 1 h/Mpc
(r > 2 Mpc/h) in Fourier (configuration) space. A summary of HZPT models used in this
paper is provided in Table 2.1. An additional benefit of two-point correlators in HZPT is that
the corrections to the (linearly biased) ZA contributions have analytic Fourier transforms,
and we provide expressions and fits for both forms of the correlators. Being analytic, this
model is well suited to fast inference and gradient-based sampling, and we make the model
and gradients available through a lightweight python package11.

Model Parameters (kmax, rmin)
mm : nmax = 2 {A0, R,R1h, R1, R2h} (1, 1)
mm : nmax = 3 {A0, R,R1h, R1, R2h, R2, R3h} (8, · )

mm : alt + nmax = 2 {A0, R,R1h, R1, R2h, α, β} (10, · )
hm : nmax = 2 {b1, A0, R,R1h, R1, R2h} (1, 2)
hh : nmax = 1 { 1

n̄eff
, b1, A0, R,R1h, } (1, · )

hh : nmax = 2 + exc {b1, A0, R,R1h, R1, R2h, Rexc, (σexc)} (2, 2)
gm : nmax = 2 {b1, A0, R,R1h, R1, R2h} (1, 2)
gg : nmax = 1 { 1

n̄eff
, b1, A0, R,R1h, } (1, · )

gg : nmax = 2 {b1, A0, R,R1h, R1, R2h} ( · , 2)
gg : nmax = 1 + exc + 1s {b1, A0, R,R1h, Rexc, σexc, A1s, R1s,1h} ( · , 2)

Table 2.1: A subset of HZPT models used in this paper and their ranges of validity for
different correlators. Free shot noise constants 1

n̄eff
are only applicable for power spectra.

Scales are quoted in units of ( [h/Mpc], [Mpc/h]) in the last column when available. The
accuracy of all models in this table is at least 2%, but see individual sections for details.

11https://pypi.org/project/gzpt/ �

https://pypi.org/project/gzpt/
https://github.com/jmsull/gzpt


CHAPTER 2. HALO ZEL’DOVICH PERTURBATION THEORY 48

We demonstrate that the effect of a wide range of baryonic feedback models on the
matter power spectrum - as implemented by hydrodynamical simulations - can be accounted
for within the HZPT framework. These changes can be understood in terms of the halo
model (see Appendix 2.8). We also provide two extended models extending the one and
two-halo terms. The extended two-halo term improves upon the ZA and can reach 1%
accuracy out to k = 10 h/Mpc when paired with the nmax = 2 BB term for dark matter.
The extended one-halo term model is of comparable accuracy to contemporary nonlinear
models (Appendix 2.8) out to k ≈ 8 h/Mpc for matter (including a high-feedback model of
baryonic effects) and we provide power law scalings to account for variation in dark matter
correlators with respect to the cosmological parameters Ωm and σ8.

Halo-matter and halo-halo correlators are well-described by the HZPT model when the
non-perturbative phenomenon of halo exclusion is accounted for. Halo clustering is char-
acterized in configuration space by a large-scale enhancement above ∼ 10 h/Mpc, a non-
perturbative small-scale enhancement above the exclusion scale, and a sharp step at the
exclusion scale. We provide a one-parameter analytic model for the exclusion step that has
analytic Fourier transform, and the small-scale enhancement is well-modeled by the BB cor-
rection term. Properly modeling halo exclusion in configuration space guarantees the correct
behavior in Fourier space, including exactly accounting for sub/super-Poisson shot noise in
the large-scale limit. Including shot noise in the residuals, the amplitude of the exclusion
contribution with respect to the total halo-halo power spectrum is relevant at the several
percent level for k > 0.1 h/Mpc and the contribution is scale-dependent. We emphasize
that perturbative models of halo bias that attempt to describe small scales are necessarily
incomplete without a (non-perturbative) model of halo exclusion, and will fail dramatically
in configuration space near the exclusion scale. We find that without explicitly modeling
exclusion in the power spectrum, we obtain residuals less than 2% below k ≈ 0.7 h/Mpc,
as the nmax = 1 BB term along with a free constant shot noise appears to account for
the leading-order effect of exclusion. However, we warn that perturbative models of halo
clustering that appear accurate in Fourier space at these higher k are in part modeling the
scale-dependent effects of non-perturbative exclusion.

Galaxy-galaxy and galaxy-matter correlators are accurately captured by HZPT in the
context of LRG-like HOD mock galaxies. Exclusion can be relevant in the simulated galaxy-
galaxy correlation function for certain choices of HOD parameters, halo mass, and halo
finder. We provide an estimated density that captures the relation of HZPT parameters
with Ωm and σ8 for HOD mocks that closely resemble the BOSS LOWZ sample. Recently,
emulators for tracer two-point statistics have become extremely popular [65, 139, 67, 140, 54,
141, 142, 136, 143, 144], and have provided useful and effective interpolations of simulation
statistics. However, these surrogate models are usually complicated to construct and are
often dependent on a number of hyperparameters, making them opaque to interpretation
even beyond the inability to write down a simulation as a closed-form model. One can easily
use HZPT to build a more interpretable tool similar to an emulator through the simple
approach outlined in Section 2.6 using estimated priors to quantify uncertainty.

For certain galaxy samples, it is possible that exclusion may stand out in the observed



CHAPTER 2. HALO ZEL’DOVICH PERTURBATION THEORY 49

projected correlation function (depending on satellite fraction, host halo mass, or selection
effects - there is perhaps a hint of this in right panel of Fig. 3 of [145]). Whether or not halo
exclusion is important to include in an effective model for use in analyses is at the very least
an assumption that should be checked, especially as more diverse tracers become widely used
in future surveys.

One aspect of tracer auto-correlations we did not treat in this paper is the effect of
cross-stochasticity, which might be especially relevant for combining populations of tracers
occupying significantly different mass halos. We did not explore the redshift dependence of
the model parameters for tracers, but anticipate it may be fit relatively simply as in H17.
We also have not treated redshift-space distortions or other observational systematics, which
of course are essential for connecting to observed two-point statistics. Finally, assuming
Lagrangian density peaks are the sites of halo formation, halo exclusion will also depend on
cosmology at some level [127], and so is of particular interest as measurements of cosmological
information through large-scale two-point statistics of LSS are saturated and small scales
remain potentially under-extracted.

HZPT serves to bring analytic descriptions of two-point correlators further into the transi-
tion and nonlinear regimes, and is a fast and interpretable complement to simulation-based
models. The success of HZPT on small scales illustrates the flexibility of Padé-type ex-
pressions for modeling two-point correlators. The form of these expressions is quite simple
compared to multi-loop PT, modified halo and HOD models, and most emulators. We expect
that the small-scale treatment of so-called “3x2pt” analyses can be significantly improved
by leveraging HZPT.
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2.8 Appendix A: Details of Halo-Zeldovich

Perturbation Theory

Full Model (nmax ≤ 2)

Here we provide the full HZPT model in its basic form, with explicit expressions for nmax =
0, 1, 2.

Pmm = PZel + Pmm
BB (2.15)

P tm = btm(PZel + P tm
BB) (2.16)

P tt =
1

n̄t

+ b2tt(PZel + P tt
BB) (2.17)

PBB = A0

(
1− 1

1 + k2R2

) nmax−1∑
n=0

k2nR2n
n

nmax∑
n=0

k2nR2n
nh

(2.18)

nmax = 0

PBB(k) = Fcomp(k) = A0

(
1− 1

1 + k2R2

)
(2.19)

ξBB(r) = Fcomp(r) = −A0
e−

r
R

4πR2
(2.20)
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nmax = 1

PBB(k) = PBB = Fcomp(k)
1

1 + k2R2
1h

(2.21)

ξBB(r) = Fcomp(r)

(
1−

(
R

R1h

)2
e
−R−R1h

RR1h
r

)
(
1−

(
R1h

R

)2) (2.22)

nmax = 2

PBB(k) = Fcomp(k)
1 + k2R2

1

1 + k2R2
1h + k4R4

2h

(2.23)

ξBB(r) = Fcomp(r)


(
1− (R1

R
)2
)
+ Ae

r

(
1
R
−
√

R2
1h

−S
√
2R2

2h

)
+Be

r

(
1
R
−
√

R2
1h

+S
√
2R2

2h

)
(
1− (R1h

R
)2 − (R2h

R
)4
)

 , (2.24)

S =
√
R4

1h − 4R4
2h, (2.25)

A =
R2(−2R4

2h +R12(R2
1h − S)) +R4

2h(R
2
1h − S) +R2

1(−R4
1h + 2R4

2h +R2
1hS)

2SR4
2h

, (2.26)

B = −R
2(−2R4

2h +R12(R2
1h + S)) +R4

2h(R
2
1h + S) +R2

1(−R4
1h + 2R4

2h −R2
1hS)

2SR4
2h

. (2.27)

In this work, we reparameterize R2h as R2h ≡ R1h√
2R12

and vary the parameter R12 in our

fits. We enforce R12 ≥ 1, since otherwise the nmax = 2 correlation function BB term takes
on imaginary values. Analytic gradients in the python package are adjusted accordingly to
be gradients of R12.

We show the BB term gradients for nmax = 1, 2 in Fig. 2.16.

Profile expansion

This closely follows Section 2 of MS14. Starting from 2.4, we expand the j0(kr) integral in
its argument:

uM(k) =
4π

M

∫ Rhalo

0

dr r2 ρM(r)

(
1− k2r2

3!
+
k4r4

5!
− ...

)
(2.28)

and the modulus squared of the profile is

|uM(k)|2 = |F0(M)k0 −F1(M)k2 + F2(M)k4 − ...|2 (2.29)

where

Fn(M) ≡ 4π

(2n+ 1)!M

∫ Rhalo

0

dr r2(1+n) ρM(r). (2.30)
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Figure 2.16: Gradients of the PBB(k) (left) and r
2 ξBB(r) (right). Solid lines are gradients

for the nmax = 2 model, while dashed lines are for the nmax = 1 model. For visibility for PBB

the A0 and R gradients have been multiplied by 100 and 10, respectively. For visibility for
ξBB the A0 and R gradients have both been multiplied by 1000.

Then the one-halo term becomes

P1h(k) =

∫
dn(M)

M

ρ̄

(
F2

0k
0 − 2F0F1k

2 + (F2
1 + 2F0F2)k

4 − ...
)
, (2.31)

which, for order nmax, has Padé approximant with the same roots as given by the BB term
in the previous section.
Introducing clarifying notation for the first few terms

P1h(k) = A0(1− R̃2
1k

2 + R̃4
2k

4 + ...), (2.32)

where A0 is the same as in the BB term. Explicitly, for nmax = 1, the relation between the
BB parameters and the profile expansion parameters is simply R1h = R̃1, while for nmax = 2
the relations are the following:

R2
1h =

(
R̃2

1R̃
4
2

R̃4
1 − R̃4

2

)
, (2.33)

R4
2h =

(
R̃8

2

R̃4
1 − R̃4

2

)
(2.34)

,

R2
1 =

(
2R̃2

1R̃
4
2 − R̃6

1

R̃4
1 − R̃4

2

)
. (2.35)

For R2
1 ≥ 0, we have R̃1 ≥ R̃2 ≥ R̃1√

2
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Deriving Rn,nh from the halo model with baryonic effects

To illustrate that it is possible to derive the HZPT Rn,nh profile parameters in the context
of baryonic effects from the halo model, we calculate them for the simple case of the mass
function of [59] (M200c) and NFW profile [100] (with concentration c = 5 for simplicity). We
approximate the impact of baryons on the HZPT parameters via “baryonified” profiles as
modeled in [152] (and constrained by X-ray data). These profiles incorporate the presence of
stellar mass and satellite galaxies, gas that has been pushed by feedback toward the edge of
the halo, and the resulting response of the dark-matter profile to these changes (see Section
2 of [152]). We fix the free parameters of the baryon-matter profile to the best-fit values of
[152] corresponding to the “Model B-avrg” scenario: ηcga = 0.6, ηstar = 0.32 for the stellar
profile, and Mc = 6.6× 1013M⊙/h, µ = 0.21, θej = 4 in the determination of the gas profile.

Performing the integrals of eqn. 2.30, we find, for the dark matter only (dmo) profile,
that (A0,R1h,R

2
1,R2h)dmo = (1114 [h/Mpc]3, 6.1 Mpc/h, 35 [Mpc/h]2, 2.9 Mpc/h), and,

for the baryon and dark matter profile (dmb), that (A0,R1h,R
2
1,R2h)bdm = (1112 [h/Mpc]3,

5.1 Mpc/h, 24 [Mpc/h]2, 2.6 Mpc/h).
The difference in A0 is negligible, as we would expect since A0 is essentially the one-halo

amplitude (which was fixed in Section 2.4 along with R). However, the relative changes in
the Rn,nh parameters are significant, and are similar to those discussed in Section 2.4 (though
the correspondence is not exact given the idealized setting). Here we may clearly identify the
source of the change in parameters (after translating mass-integrated profile moments R̃n to
Padé parameters Rn,nh). The F1(M) and F2(M) values both grow uniformly in mass with
respect to the dmo case, since in the dmb case the gas is pushed out toward the outskirts of
the halo, where matter contributes more to the r4, r6 moments.

The radius at which to truncate the Fn integrals is somewhat unclear, but here we use a
scale close to the truncation radius of the NFW profile for definiteness (with Rhalo =

9
8
ϵr200c

with ϵ = 4). This choice of truncation radius results in good agreement in the enclosed
masses of the dmo and dmb profiles, and is small enough to prevent the integrals from being
sensitive to two-halo contributions (as modeled in [152]). There is a very small difference
(∼ 0.1%) in enclosed masses that is the source of the negligible difference in A0 for the
two profiles. Given the uncertain nature of realistic matter profiles (e.g. scatter in the
concentration-mass relation), it remains advantageous to take an agnostic attitude toward
halo profile details and avoid integrating directly as we do in the main text.

Comparison to HMCode2020

Figure 2.17 shows residuals of matter power spectrum predictions from HMCode2020 [119]
with respect to the test set drawn from the Mira-Titan CosmicEmu [66]. The HMCode2020

predictions are as provided through CAMB [150]. Compared with Fig. 2.6, the residuals
are similar on the largest scales, slightly larger residuals on quasi-linear scales, and very
slightly smaller on the smallest scales. The residuals on quasi-linear scales appear larger
than presented in Fig. 2 of [119], but are consistent with residuals with respect to Mira-
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Titan quoted in their Fig. D1 (we have CosmicEmu in the numerator, so our residuals are
inverted with respect to theirs). The largest residuals at low k trend with low-σ8 models
and the largest residuals at 0.1 h/Mpc < k < 1 h/Mpc trend with both low-σ8 models and
high-Ωcb models. From this comparison, it is clear that the HZPT model is competitive when
varying σ8 and Ωcb.

Figure 2.17: Residuals for HMCode2020 with respect to the same CosmicEmu test set shown
in the right panel of Figure 2.6.

2.9 Appendix B: Halo correlator model components

Model for ξhh and Phh including halo exclusion

Considering a general configuration-space model for the exclusion step Fexc(r), the two-point
function of the discrete halo field is modeled as

ξdhh(r)−
1

n̄
δD(r) = Fexc(r) [1 + ξchh(r)]− 1 (2.36)

which gives in Fourier space

P d
hh(k) =

1

n̄
+ F (Fexc(r) [1 + ξchh(r)]− 1) (2.37)

=
1

n̄
+ [F (Fexc(r)) ∗ F (1 + ξchh(r))] (k)− δ(D)(k) (2.38)

=
1

n̄
+ Fexc(k) +

[
Fexc(k) ∗ P (c)(k)

]
, (2.39)
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where we have dropped the zero-lag Dirac delta in the final expression.
We may also write this expression in a slightly clearer way conceptually, conforming to

the convention of B13 (see eqn. 2.36). Instead of specializing to the too-simple top-hat model
for the exclusion step (c.f. Figure 2.9), we assume only that we may write Fexc(r) = 1−W (r),
where W (r) is a function with analytic Fourier transform. Then, the expression is identical
to eqn. 2.12, but we have taken the tiny step of generalizing the top-hat window to something
more realistic:

P d
hh(k) =

1

n̄
+ P (c)(k)− W̃ (k)−

[
W̃ ∗ P (c)

]
(k). (2.40)

Also, we may define a finite-size stochastic contribution as the deviation of the true discrete
power spectrum from the continuous model and the fiducial (Poisson) constant arising from
discreteness:

S(k) = P (d)(k)− 1

n̄
− P (c)(k) (2.41)

= −W̃ (k)−
[
W̃ ∗ P (c)

]
(k) (2.42)

This is the quantity plotted in the right-hand panel of Figure 2.9, which quantifies the failure
to include a model for exclusion in Fourier space.

As described in Section 2.5, we consider two effective models for the halo exclusion step,
both of which perform much better than the simple top-hat. The ErfLog model (almost the
same as B13) is:

Fexc(r) =
1

2

erf
 log10

(
r

Rexc

)
σexc

+ 1

 (2.43)

and the Exp model is

Fexc(r, Rexc) =

[
1− exp

(
−
(

r

Rexc

)4
)]2

. (2.44)

The ErfLog model has no analytic Fourier transform, which must be computed numeri-
cally. However, the Exp model has analytic Fourier transform, where the Fourier transform
of the squared quantity is given by (defining the function f):

δ(D)(k) + f(k,Rexc) = δ(D)(k) − R3
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where 0F2 is the generalized hypergeometric function. The full expression is then Fexc(k) =

δ(D)(k)−2f(k,Rexc)+f(k, 2
− 1

4Rexc). It is helpful to consider this function from the perspec-
tive of modeling the nonperturbative exclusion effect in Fourier space (i.e. in the context of a
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Fourier space analysis), and in clearly disentangling the shape of the terms due to finite halo
size and due to nonlinear clustering. This form of the model is potentially computationally
inefficient, but is presented for conceptual completeness, and convolutions may be sped up
via FFTLog-based algorithms (e.g. [153]).

Halo mass bins

The halo bins used here are provided in Table 2.2. We do not show bins 0 and 3 in the main

Bin [logMmin, logMmax]
1 [12.5, 13.5]
2 [13.5, 14.5]
3 [11.5, 12.0]
4 [12.0, 12.5]
5 [12.5, 13.0]
6 [13.0, 13.5]
7 [13.5, 14.0]
8 [14.0, 14.5]

Table 2.2: Halo mass bins in M⊙/h

text since these low mass halos are almost certainly very poorly-resolved. We also show the
halo-matter and halo-halo correlation functions for wider bins that are the combination of
the narrower two bins described in the main text (Fig. 2.18, Fig. 2.19). The width of the
bins seems not to adversely affect the accuracy of the model.

Compensation R for halos

Fixing R for halo auto-correlation to some very large value (1010, essentially infinity for
our purposes) has no real effect (fraction of 1%) on the quality of fit in the halo auto-
correlation for the nmax = 1 model with free shot noise. For halo-matter, the scale at which
the compensation is relevant is different for different sized halos and increases with halo mass
(we find this in the fitted values of R for halo-matter). Fixing R to any particular value
that works well for a certain mass bin produces significantly worse fits on large scales for
other mass bins - so the compensation is not something that can easily be fixed for the cross
correlation. Disentangling compensation from nonlinear bias is also challenging since we
expect both the physical compensation scale and nonlinear bias to change with halo mass.
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Figure 2.18: Same as Fig. 2.7, but for the combined bins.

Figure 2.19: Same as Fig. 2.8, but for the combined bins.

2.10 Appendix C: Impact of Halo Finder and Mass

Definition on Halo Exclusion

The halo finder used has a significant impact on the scale and amplitude of the exclusion
feature in the halo-halo correlation function. The halo mass definition also has a moderate
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effect on the scale and significant impact on the amplitude of the feature.
We saw in Section 2.6 that the exclusion feature presented itself at much smaller scales

(≈ 0.7 Mpc/h) in the LZ correlation functions than in the CM correlation functions (≈
1.5 Mpc/h). To check if this effect is due to the choice of halo finder, we ran FoF on the
Aemulus dark matter particle snapshots that were used to create the ROCKSTAR strict SO
M200b halos provided in the Aemulus halo catalogs. Fig. 2.20 shows the correlation function
for both FoF halos and ROCKSTAR strict SO (SSO) halos. It is clear that the correlation
function of FoF halos exhibits an exclusion feature at much larger scales that the one for
SSO halos does. To check that this is not an effect unique to the Aemulus simulations, and

Figure 2.20: Halo-halo correlation function for the default Aemulus ROCKSTAR “strict SO”
(SSO) M200b halos (includes unbound particles) in green, and for FoF (linking length 0.2)
halos in red.

to provide a direct comparison of SO and SSO mass definitions using the same halo centers,
we use the publicly available Abacus halo catalogs [56]. The halo catalogs used correspond to
Planck cosmology with box size 1100 Mpc/h at z = 0.5, and details of the FoF and ROCKSTAR

catalogs are provided in [56]. Fig. 2.21 shows the same as Fig. 2.20 for the Abacus halos,
but with additional curves for SO virial halos as well as default ROCKSTAR virial halos. We
consider only bin 7 here, but this effect persists for all halo mass bins considered in Table 2.2
(the only real differences being the absolute scales and smoother curves for lower-mass halos
due to increased number density at lower mass).

It appears that for strict SO halos, halo mass definition does not change the exclusion
feature significantly. However, the use of default ROCKSTAR halo masses instead of SSO
masses is already quite different in terms of the exclusion feature. The exclusion features for
the ROCKSTAR halo masses lie in the middle of those of the SSO and FoF halos. The change
in amplitude along with the change in scale is perhaps not that surprising, as it qualitatively
seems to be what would be expected of applying the exclusion step to the continuous model



CHAPTER 2. HALO ZEL’DOVICH PERTURBATION THEORY 59

for ξhh(r) described in Section 2.5 at a smaller Rexc. Naively this would seem to mean that
the SSO halos display clustering behavior indicative of a smaller exclusion scale (at fixed
halo finder) than that exhibited by the ROCKSTAR halos (and the same goes for FoF halos).
This may be related to the well-known scatter in the relation between FoF (b = 0.2) and
M200b halos (e.g. [154],[155]). It would be interesting to connect this difference with a
more intuitive description of exclusion, perhaps informed by peaks similar to [128]. Figs.

Figure 2.21: Halo-halo correlation function for the Abacus ROCKSTAR default halos (blue),
“strict SO” (SSO) virial halos (orange), SSO M200b halos (green), and for FoF with linking
length 0.186 halos (red).

2.20 and 2.21 show features that are similar to Fig. A1 of [156] that compares different
percolation strategies in a modified version of ROCKSTAR (but did not investigate ξhh(r)
in detail). It would be interesting to draw clearer connections between the differences in
percolation strategies, the differences we observe here, and the effect on halo exclusion in
two-point correlators.

2.11 Appendix D: Cross-correlation coefficient rcc

The cross correlation coefficient provides an additional view of the non-perturbative effects
present in small-scale two point statistics. The cross correlation coefficient for two-point
statistics is defined as rxmcc (X) = Xxm√

XmmXxx , where x denotes the tracer type (galaxies or

halos) and X is the two-point statistic in question P or ξ. We present cross-correlation
coefficients measured from the simulations and from the HZPT model for halos and galaxies
in Figure 2.22. The cross correlation coefficient for halos and galaxies is very close to 1 for
all halo mass bins and HOD parameter choices in configuration space above r ∼ 4 Mpc/h.
On smaller scales, non-perturbative effects become obvious - the cross-correlation coefficient
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first drops in the region of the SSE and attains a minimum before blowing up as r drops
below rexc at the exclusion step before becoming undefined as ξhh(r) crosses zero.

For HOD galaxies, the picture is similar to the case of halos in a mass bin around
log M

M⊙/h
∈ [13, 13.5], but with significant scatter due to the details of the halo occupation.

For many choices of halo occupation, this leads to rgmcc (r) > 1 (but with a less severe growth
toward small scales than for halos). The undefined behavior at small scales for halos is also
no longer present for galaxies since the satellite profile gives a non-zero contribution to ξgg(r)
on the scales at which ξhh(r)→ −1.

In Fourier space, the situation is perhaps more complicated due to finite halo size effects
that manifest partially as sub/super-Poisson shot noise - a more complete picture of finite-
halo size effects is given by the modeling described in Section 2.5. By k ∼ 0.1 h/Mpc rcc(k)
already deviates from unity significantly for both halos and galaxies. For halos, there is
an offset from unity due to finite halo size (“sub/super-Poisson shot noise” on large scales)
that is more pronounced for larger halos, as expected. Higher mass halos give rhmcc (k) with a
weaker scale dependence, leveling off quickly compared to lower mass halos, which continue
to drop as k increases.
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Figure 2.22: Top Left: Cross-correlation coefficient for halos in configuration space. Top
Right: Cross-correlation coefficient for halos in Fourier space. Middle Left: Cross-correlation
coefficient for (LOWZ) HOD galaxies in configuration space. Middle Right: Cross-correlation
coefficient for (LOWZ) HOD galaxies in Fourier space. Shot noise is not subtracted for
the Fourier space cross-correlation coefficients. Bottom Left: Cross-correlation coefficient
and model for HOD galaxies in configuration space for single LOWZ and CMASS HOD
realizations. Bottom Right: Cross-correlation coefficient and model for HOD galaxies in
configuration space for single CMASS HOD realization. Shot noise is not subtracted for the
Fourier space cross-correlation coefficients.
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Chapter 3

Accurate and high-performance
numerical simulations with neutrinos

This chapter was originally published as: James M. Sullivan, J. D. Emberson, Salman
Habib, and Nicholas Frontiere. “Improving initialization and evolution accuracy of cosmo-
logical neutrino simulations”. In JCAP 2023, 6, 003, DOI:10.1088/1475-7516/2023/06/003,
arXiv:2302.09134 [astro-ph.CO]

In this chapter, we update existing methodology for simulating the impact of massive
neutrinos on the cosmological density field using high-precision numerical methods. Neutrino
mass constraints are a primary focus of current and future large-scale structure (LSS) surveys.
Non-linear LSS models rely heavily on cosmological simulations – the impact of massive
neutrinos should therefore be included in these simulations in a realistic, computationally
tractable, and controlled manner. A recent proposal to reduce the related computational
cost employs a symmetric neutrino momentum sampling strategy in the initial conditions.
We implement a modified version of this strategy into the Hardware/Hybrid Accelerated
Cosmology Code (HACC) and perform convergence tests on its internal parameters. We
illustrate that this method can impart O(1%) numerical artifacts on the total matter field on
small scales, similar to previous findings, and present a method to remove these artifacts using
Fourier-space filtering of the neutrino density field. Moreover, we show that the converged
neutrino power spectrum does not follow linear theory predictions on relatively large scales
at early times at the 15% level, prompting a more careful study of systematics in particle-
based neutrino simulations. We also present an improved method for backscaling linear
transfer functions for initial conditions in massive neutrino cosmologies that is based on
achieving the same relative neutrino growth as computed with Boltzmann solvers. Our
self-consistent backscaling method yields sub-percent accuracy in the total matter growth
function. Comparisons for the non-linear power spectrum with the Mira-Titan emulator at a
neutrino mass of mν = 0.15 eV are in very good agreement with the expected level of errors
in the emulator and in the direct N-body simulation.
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3.1 Introduction

The non-zero mass of neutrinos is perhaps the most well-established manifestation of beyond
Standard Model physics [157, 158, 159]. Constraints on total neutrino mass are available
from terrestrial experiments with a current upper limit of 0.8 eV, which is expected to be
eventually reduced to a mass sensitivity of ∼ 0.2 eV [160]. Current cosmological limits
from the cosmic microwave background and large-scale structure (LSS) surveys have tighter
bounds, at the level of 0.1 eV [3, 161] with some sensitivity to the modeling of systematic
effects. LSS observations play an important role in constraining neutrino masses due to the
characteristic suppression of the matter power spectrum, Pm(k), below the neutrino free-
streaming scale. This scale is roughly kfs(z) ≈ (mν

eV
)
√
Ωma h Mpc−1 in matter domination

[2]. Since the free-streaming scale is proportional to the neutrino mass, mν , and the total
amplitude of suppression is proportional to the neutrino energy density, Ων , observational
probes of large-scale structure afford the opportunity, at least in principle, to probe both the
individual and total neutrino masses.

The approach to constraining neutrino mass based on cosmological observations comple-
ments particle physics-based probes such as oscillation experiments [e.g., 162, 163] that are
sensitive to mass-squared differences between mass eigenstates and tritium β-decay experi-
ments [164, 165, 166, 167] that aim to constrain the absolute neutrino mass scale. Although
disentangling individual neutrino masses from cosmological observations remains challenging
in practice [168], upper bounds placed on the total mass are becoming increasingly precise.
For instance, DESI is expected to measure the total mass with an error of 0.02 eV [169] or
less when combined with CMB-S4 [170], which is an order of magnitude improvement over
the lower limit of Ref. [160].

The uncertainty on measurements of matter two-point statistics in modern surveys is
small enough that the effect of massive neutrinos needs to be included for accurate modeling
thereof as measured, e.g., by gravitational lensing or spectroscopic galaxy surveys [171, 172,
173, 38, 174, 175, 39, 176, 177, 178, 179]. The effect of neutrinos on LSS has also been
highlighted through alternative probes such as voids [180, 181, 182, 183, 184], which have
been shown to be particularly sensitive to neutrinos in simulations (however, see Ref. [185]),
or through higher-order statistics like the bispectrum [186, 187, 188]. Accurate modeling of
the total matter density field over a wide range of scales is required to exploit these probes. In
particular, it is well-known that neutrinos produce scale-dependent growth of the matter field
on scales below their free-streaming scale, which is of order kfs ∼ 0.1 h Mpc−1 for a neutrino
of mass mν ∼ 0.1 eV (at z = 0). However, the detailed effect of massive neutrinos on the
small-scale matter distribution remains less well understood due to non-linear evolution at
k ≳ 0.1 h Mpc−1, especially for statistics beyond the matter power spectrum. While halo
model based approaches can be pursued [189, 190], more accurate modeling of the matter
field on these nonlinear scales is attainable, in principle, through N-body simulations that
model the growth of structure in the presence of massive neutrinos.

Cosmological simulations may account for the presence of massive neutrinos at several
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levels of detail1. The simplest prescription is to treat massive neutrinos explicitly only at
the level of the homogeneous and isotropic background, and including the neutrino per-
turbations through linear theory, effectively a leading-order expansion in the parameter
fν = Ων/Ωm [191, 192, 193]. This method has been used in the Mira-Titan power spec-
trum emulator [194], to which we will compare our results in Section 3.4. At the next level,
massive neutrino perturbations are evolved on a mesh following linear theory and are added
as a background component to the gravitational potential during the cold matter (cold dark
matter and baryons) force calculation [195]. This approach is potentially problematic, as the
choice to evolve cold matter non-linearly while evolving massive neutrinos at the linear level
violates momentum conservation [196], in addition to obviously discarding the impacts of
non-linear neutrino growth. Various classes of “linear response” methods [197, 198, 199] take
this another step further by allowing the background neutrino mesh to evolve perturbatively
in response to the instantaneous non-linear cold matter field of the simulation. Alternative
simulation techniques have also been proposed including the computationally ambitious ap-
proach of directly solving the Vlasov-Poisson equation in phase space [200], or to solve the
neutrino evolution with a Boltzmann hierarchy expansion [201, 202, 203].

Perhaps the most accurate, yet still feasible, choice for non-linear LSS modeling is to
treat both cold species and massive neutrinos on equal footing in multi-species particle
simulations. The idea of multi-species simulations, with separate particles for the cold matter
and neutrinos, is far from new [e.g., 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214,
215, 216] and, while superficially straightforward, has a number of subtleties leading to
variations in its implementation. A comparison campaign between a number of particle-based
approaches as well as some approximate techniques has been recently performed in Ref. [217].
Variations in the particle method typically stem from numerical difficulties associated with
modeling fast-moving thermal neutrino particles at early times. One way to overcome this
challenge is to adopt a “hybrid” approach [218, 219, 220] where the mesh-based strategies
described above are utilized at high redshift while switching to particle-based schemes at
later times when the neutrino thermal motion has been sufficiently damped. Given the
motivation to constrain neutrino masses via cosmological observations, there has also been
a recent effort to extend the physical fidelity of neutrino simulations by including baryons
as an additional species treated numerically with hydrodynamics [221, 222, 223].

One of the main challenges posed by neutrino particle simulations is that they are typi-
cally limited by shot noise effects due to the high thermal motion of neutrinos at early times.
These effects overwhelm the cosmological neutrino signal in the power spectrum unless an
extreme number of neutrino particles are simulated [212]. To address this issue, Ref. [224]
introduced a method of setting initial conditions for neutrino particles that involves a sym-
metric sampling of the neutrino momenta across the simulation domain. This symmetry
drastically reduces the scale-independent shot noise that has plagued earlier simulations,
allowing the use of many fewer neutrino particle tracers. For this reason, a variant of this

1The following techniques can be applied to any massive thermal relic species, but we will restrict our
attention to massive neutrinos.
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symmetric scheme (hereafter “tiling”, to refer to the angular tiling of momenta on the sphere)
has been explored by other particle-based neutrino simulations (e.g., Refs. [213, 214, 215]).
However, while tiling succeeds in suppressing neutrino shot noise, it can also introduce nu-
merical artifacts in both the neutrino and cold matter density fields, as well as their growth,
as we will show.

Another challenge with neutrino simulations relates to how the Newtonian approximation
complicates the construction of initial conditions. To initialize the cold matter and neutri-
nos, linear theory transfer functions, generally computed using a Boltzmann solver, must be
provided to the simulation as input. To recover the correct observationally-relevant linear
matter power spectrum on large scales at low redshift, one cannot simply provide the trans-
fer functions at the initial redshift of the simulation. Boltzmann codes (correctly) include
non-negligible radiation and metric perturbation terms in the linear equations of motion of
the evolved species, which are not included in the Newtonian simulation. It is possible to
include the radiation (and massive neutrino) perturbations explicitly when performing the
N-body simulation [225, 226], but usually some form of “backscaling” is employed instead
[227]. For simulations including massive neutrino particles, a linear two-fluid approximation
for backscaling transfer functions to account for scale-dependent growth of matter due to
neutrinos was developed in Ref. [228]. Massive neutrinos, however, do not constitute a fluid.
We address the benefits and shortcomings of treating them as such, and introduce our own
improved backscaling scheme.

In this paper, we focus on the two main challenges outlined above. First, we present
an iterative backscaling method in Section 3.2 that is designed to create a self-consistent
initial condition framework for massive neutrino cosmologies. Next, we follow the tiling ap-
proach [224], by implementing it within the Hardware/Hybrid Accelerated Cosmology Code
(HACC; [229]). We describe our custom implementation of the tiling scheme in Section 3.3
along with the extra code modifications required to efficiently simulate neutrino particles in
a high-performance setting. We present a suite of neutrino simulations in Section 3.4 that
are used to perform a numerical convergence study on the internal parameters of the tiling
scheme. We also show results from a mitigation strategy used to remove numerical artifacts
arising from the discretization of the initial condition neutrino grid. We compare our final
results for the total matter power spectrum with the Mira-Titan emulator and find good
agreement. Furthermore, we use our backscaled neutrino transfer functions to show that
the simulated neutrino power spectrum systematically deviates from linear theory at early
times. We finish with concluding remarks in Section 4.5.

3.2 Iterative Backscaling

Setting up the initial conditions of the cold matter and neutrino particles requires the density
and velocity fields at the starting redshift of the simulation, zini. These fields can be obtained
in linear theory using a Boltzmann solver such as CAMB [230] or CLASS [231]. The only caveat
is that cosmological simulations typically do not perform the correct linear evolution between
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the time the species are initialized and the final simulation redshift, zfin. In particular,
simulations generally employ a Newtonian forward model that omits the radiation and metric
perturbations included in the evolution equations of Boltzmann codes. As such, the usual
convention is to construct the initial conditions in such a way that the final growth in density
perturbations matches the linear theory total matter power spectrum, Pm(zfin, k), at the end
of the simulation. This process is referred to as “backscaling”. For z > zfin, the simulation
and Boltzmann code power spectra will disagree at the linear level, with this disagreement
greatest on large scales and early times (see Figure 3.2 for an example). In the absence
of massive neutrinos, the growth of total matter density perturbations in the Newtonian
forward model will be scale-independent meaning that the zfin linear transfer function can
simply be rescaled using a multiplicative factor, D, known as the growth factor.

The procedure for computing the scale-independent growth factor in a massless neu-
trino cosmology involves solving the coupled set of continuity, Euler, and Poisson equations,
expressed below at the linear level [e.g., 232]:

∂δm
∂a

+
θm
a2H

= 0, (3.1)

∂θm
∂a

+
θm
a

= − 1

a2H
∇2ϕ, (3.2)

∇2ϕ =
3

2
H2Ωma

2δm, (3.3)

where θ ≡ ∇ ·vm is the velocity divergence field and the subscript m denotes the combined
matter field (cold dark matter plus baryons). The solution2 to these equations is found by
assuming that δm can be factored into a component that depends only on space and a com-
ponent that depends only on time. The time-dependent component is known as the growth
factor since it describes the growth of density perturbations in time: δm(a) ∝ D(a). It fol-
lows from the continuity equation that θm(a) ∝ a2H(a)dD/da. From the above expressions,
it is clear that the growth factor depends on the particular cosmology, via the background
expansion in the Hubble parameter H, as well as through the gravitational source term of
the Poisson equation, set by the total matter density, Ωm. For reasons made clear below, we
emphasize the latter dependence by writing the growth factor as D(a,Ωm).

Once the growth factor has been computed, backscaling is accomplished by rescaling the
transfer function that encodes the time evolution of matter perturbations in linear theory
obtained from the Boltzmann code at the final redshift, Tm(zfin, k), in the following manner:

T bs
m (zini, k) =

D(zini,Ωm)

D(zfin,Ωm)
Tm(zfin, k), (3.4)

where the superscript “bs” denotes the backscaled transfer function used as an input to
the simulation initial conditions. In the event that cold dark matter and baryon particles

2There are two independent solutions to this set of equations but we focus only on the “growing” mode
while ignoring the “decaying” mode that becomes subdominant at late times.
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are treated as separate species (e.g., in hydrodynamics simulations) then their respective
backscaled transfer functions follow as:

T bs
α (zini, k) = Fα(zini, k)

D(zini,Ωm)

D(zfin,Ωm)
Tm(zfin, k), (3.5)

where the subscript α ∈ {c, b} denotes cold dark matter and baryons, respectively, and we
define the term

Fα(z, k) ≡ Tα(z, k)/Tm(z, k). (3.6)

It is important that Fα is used in this manner to ensure that each species is initialized with
the correct proportion relative to the total matter field at zini (i.e., backscaling by simply
replacing Tm in equation (3.4) with Tα would be incorrect due to the fact that the individual
solutions for δc,b cannot be factored into spatial- and time-independent components as could
be done with δm). The initial particle velocities are computed by defining an initial velocity
transfer function, Tθ,α, for each species. This is computed from the continuity equation as
the time derivative of the backscaled density transfer function evaluated at the initial time:

T bs
θ,α(zini, k) = −a2H(a)

dT bs
α

da

∣∣∣∣
z=zini

. (3.7)

In practice, this can be computed using a finite difference of equation (3.4) evaluated at
zini ± ϵ [206, 211] (here we use ϵ = 0.1). If only the combined matter field is desired, as
is the case in standard single-species simulations, then it follows from equation (3.4) that
the time derivative of T bs

m in equation (3.7) reduces to the time derivative of D, meaning
that the velocity transfer function is proportional to the density transfer function. For this
reason, single-species simulations generally do not use an explicit velocity transfer function,
but rather just numerically evaluate the time derivative of D.

In the presence of massive neutrinos, backscaling is complicated by the fact that the total
matter field no longer evolves in a scale-independent manner, even in the Newtonian forward
model. The reason is related to the large thermal component of neutrino motion that induces
a characteristic free-streaming scale, kfs. In short, neutrinos cluster like cold matter on scales
k ≪ kfs but possess sufficient kinetic energy to evade capture in the gravitational potential
sourced by cold matter on scales k ≫ kfs. In other words, neutrinos contribute to the growth
of density perturbations only on scales much larger than the free-streaming scale. Hence,
the usual backscaling prescription presented above would only be valid on the large scales
for which neutrinos contribute to the growth of density perturbations.

In principle, the solution to this problem is to solve the coupled set of growth equations
for both the cold matter and neutrinos in order to compute the scale-dependent growth
factor that can be used in equation (3.4). The difficulty with this approach is that the
neutrino Euler equation includes a pressure gradient term that is not trivially expressible in
an analytic framework. One strategy is to model neutrinos using the fluid approximation so
that a tractable solution can be obtained. This is the approach taken in the code REPS [228]
which has attained widespread usage in cosmological simulations [214, 233, 215, 221, 234,
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185, 235, 236, 144, 186, 237, 238, 217]. The drawback of this approach, however, is that the
neutrino growth predicted by the fluid approximation can result in ∼ 100% discrepancies
compared to Boltzmann codes. This feeds back as an error in the total matter growth
function (albeit with a much smaller amplitude that scales like fν) meaning that the initial
conditions will not be seeded in a manner that is consistent with the actual neutrino growth
predicted by the Boltzmann solver. Moreover, such large discrepancies in the neutrino growth
rate invalidate the use of the fluid approximation in checking whether or not the neutrino
particles end up growing correctly in the simulation.

We propose an alternative strategy that replaces the use of the fluid model with an
iterative scheme that assumes the neutrino growth relative to cold matter follows exactly
from the output of the Boltzmann code. The basic idea of our method is to replace the
value of Ωm in the gravitational source term of the Poisson equation with a scale-dependent
quantity, Ωeff

m (k), defining the total amount of matter contributing to the growth of density
perturbations on scale k. We make use of the known asymptotic limits for growth in massive
neutrino cosmologies: on large scales neutrinos contribute to growth so that Ωeff

m (k ≪ kfs)→
Ωcbν while on small scales neutrinos free-stream meaning that Ωeff

m (k ≫ kfs) → Ωcb. On
intermediate scales, we should observe a monotonic transition between the asymptotic limits.
This is then used to compute a scale-dependent growth factor, D(z,Ωeff

m ), that is calculated in
the same manner as is commonly done for massless neutrino cosmologies except that the Ωm

term in the gravitational source term is replaced with Ωeff
m (k). The determination of Ωeff

m (k)
is performed iteratively until we arrive at a self-consistent solution for all k. We circumvent
the use of approximate models for neutrino growth by interpolating from the direct output
of Boltzmann codes for the neutrino growth relative to cold matter. Of course, this method
is still approximate as we collapse the impact of the time-varying neutrino free-streaming
length into a single time-integrated quantity Ωeff

m (k) used to scale the growth between zini
and zfin. However, as shown below, the errors introduced in this approximation are small
and notably improved compared to the commonly adopted approach.

The first step in each iteration of our scheme is to set up the initial densities and velocities
of the cold dark matter and baryons at the starting time, zini, of the simulation. The densities
are set by specifying δα = T bs

α following equation (3.5) with the growth factor evaluated
using the scale-dependent Ωeff

m (k) of that iteration. Note that only the Ωm appearing in
the gravitational source term in the growth factor is replaced with Ωeff

m and not any of the
background terms in the Hubble factor. The velocities are set by specifying θα = T bs

θ,α

following equation (3.7) with T bs
α evaluated at zini±0.1 using the scale-dependent D(z,Ωeff

m ).
From here, we use a fourth-order Runge-Kutta method to evolve the coupled set of continuity,
Euler, and Poisson equations from aini = 1/(zini + 1) to afin = 1/(zfin + 1) with steps taken
in lna:

dδc,b
dlna

= − θc,b
aH

,

dθc,b
dlna

= −
(
θc,b +

3

2
aHΩmδm

)
, (3.8)
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where Ωm = Ωcbν and δm = fcδc+ fbδb+ fνδν (with fα ≡ Ωα/Ωm) is the total non-relativistic
matter contribution at time a. Note that Ωm in this expression is fixed as Ωcbν in order to
match how the gravitational forces are solved in the simulation. In other words, Ωeff

m is used
only in the calculation of the growth factor used to set the initial conditions and does not
appear anywhere else in the iterative procedure.

Obviously, evaluating the expression above in a self-consistent manner requires knowl-
edge of δν(a). The approach used in the REPS code of Ref. [228] is to couple the neutrinos
in the integration of equation (3.8) with an additional neutrino pressure term that is mod-
eled with the fluid approximation. Instead of attempting to directly model the growth of
neutrino perturbations we rather interpolate from the output of the Boltzmann code. More
specifically, we store the ratio Rν = Tν/Tcb from CAMB at a series of scale factors between aini
and afin (the ratio is deliberately used – over interpolating only Tν – so as to cancel out the
scale-dependencies associated with the relativistic contributions ignored in the Newtonain
forward model). This is then used to set δν(a) = δcb(a)Rν(a) where δcb(a) is evaluated at the
instantaneous a of the time integrator and Rν(a) is linearly interpolated from the sample
points. In this way, we avoid the use of any approximations in the modeling of the neutrino
pressure term. More importantly, this method is self-consistent since the ultimate goal of
the simulation is to model the neutrinos in such a way that their growth relative to the total
matter follows the linear theory predictions of the Boltzmann code at early times.

The first iteration in our scheme involves setting Ωeff
m = Ωcbν for all k in the backscaled

growth factor. At the end of the first iteration, we find that the final solution for δm(zfin, k)
matches with that expected from the unmodified CAMB density transfer function on large
scales. On smaller scales, however, we find that δm(zfin, k) is suppressed since the initial den-
sity perturbations were backscaled under the incorrect assumption that neutrinos contribute
to growth on those scales. At the end of the first iteration, we mark as sufficiently converged
any k for which δm(zfin, k) is within ϵ = 10−6 of Tm(zfin, k). In the second iteration, we set
Ωeff

m = Ωcb for all remaining unconverged scales. The result at zfin is the opposite of the
first iteration: on small scales we find that δm matches Tm(zfin, k) while on larger scales δm
is enhanced with respect to CAMB since those scales were backscaled using an insufficiently
small value for the gravitational source term. We again mark as converged any scales k that
are within ϵ of the target solution. The result after two iterations is that the largest and
smallest scales are converged while the results on intermediate scales can be linearly inter-
polated to make a guess for Ωeff

m (k) on the next iteration. This procedure is continued with
each individual k updating its bracketing bounds of Ωeff

m (k) around either side of the root of
the equation y = δm(zfin, k)/Tm(zfin, k)− 1 until convergence is reached. In practice, we find
that four iterations are usually sufficient to satisfy our convergence criteria for Ωeff

m (k).
We show in Figure 3.1 the converged result for Ωeff

m (k) for three different neutrino masses
(mν = 0.05, 0.15, and 0.45 eV) and three different initial redshifts (zini = 40, 20, and 10).
In each case we set zfin = 0 and use the cosmological parameters (Ωc, Ωb, Ων , ΩΛ, h, Neff) =
(0.2684, 0.0491, mν/(93.14h

2), 1− Ωcbν , 0.6711, 2.046). For each case, we find the expected
result that Ωeff

m → Ωcbν (Ωcb) on large (small) scales with a smooth transition between these
limits on intermediate scales. The scales at which Ωeff

m makes the transition between the two
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Figure 3.1: Converged Ωeff
m (k) for various neutrino masses and initial redshifts (normalized

so that Ωcbν is unity and Ωcb is 0). For reference, the vertical shaded lines show the neutrino
free-streaming scale evaluated at z = 20 for the corresponding neutrino mass.

asymptotic limits will roughly span the neutrino free-streaming scales covered between zini
and zfin. For reference, the vertical lines in Figure 3.1 show kfs evaluated for each neutrino
mass at z = 20. Note that the departure from the large-scale limit of Ωeff

m = Ωm occurs
on larger scales as zini is increased with fixed neutrino mass. The reason is that kfs ∝

√
a

meaning that the inclusion of earlier times will reflect neutrino suppression on progressively
larger scales. Hence, Ωeff

m (k) depends not only on mν , but also on the specific choices of zini
and zfin.

In Figure 3.2, we show the resulting backscaled total matter density transfer func-
tion, evaluated using the converged Ωeff

m (k) in equation (3.4), at various redshifts for the
mν = 0.15 eV case with zini = 40. For reference, we show the backscaled transfer function
divided by the unmodified CAMB transfer function evaluated at each redshift. By construc-
tion, our transfer function matches exactly with CAMB at zfin = 0 and deviates at higher
redshift. In order to get a rough idea of the level of disagreement we expect with CAMB

at high redshift, we also plot as dotted lines the ratio of backscaled transfer functions to
CAMB for a massless neutrino cosmology. In this case, we use the same cosmological param-
eters as the massive neutrino cosmology but absorb Ων into Ωc and set Neff = 3.046. The
backscaled transfer function in this case uses the scale-independent growth factor evaluated
with Ωm = Ωcb. We do not expect the solid and dotted lines to exactly match, given that
they do not correspond to the same cosmology and have differing levels of relativistic neu-
trino contributions, but we do observe qualitatively similar behavior in terms of how the
backscaled transfer functions deviate from CAMB. In particular, we find that most of the
discrepancy appears as an enhancement on large scales at early times. However, we do see
slightly different behavior in the range of scales 10−2 ≲ k/(Mpc−1h) ≲ 10−1 with a small
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Figure 3.2: Total matter transfer functions from our iterative backscaling procedure (SONICC,
solid lines) normalized to the unmodified CAMB transfer functions at various redshifts for a
massive neutrino cosmology with mν = 0.15 eV, zini = 40, and zfin = 0. For comparison, the
dashed lines show corresponding results from REPS while the dotted lines show results from
a massless neutrino cosmology. For the latter, we use the same cosmological parameters as
the massive neutrino case except that we absorb Ων into Ωc and also increase Neff from 2.046
to 3.046.

enhancement (suppression) relative to the massless neutrino result at z = 5 (40). This differ-
ence reflects the approximate nature of integrating the impact of the time-varying neutrino
free-streaming scale into the quantity Ωeff

m (k). Nevertheless, this error appears at only the
∼ 0.1% level and is confined to only those scales in the known transition region around kfs.

To further illustrate the benefits of our approach, we add dashed lines in Figure 3.2 that
correspond to the backscaled transfer functions evaluated using REPS for the same massive
neutrino cosmology3. It is clear that the backscaled REPS transfer functions are behaving in
a qualitatively different manner than both our iterative backscaling as well as the massless
neutrino cosmology. In particular, the REPS transfer function exhibits ∼ 1% enhancement
on scales 10−2 ≲ k/(Mpc−1h) ≲ 10−1 at z = 40 and seems to plateau to a different value
on large scales than would be expected from comparison with the massless neutrino result.
These features arise from the fluid approximation built into REPS which predicts neutrino
growth that deviates from Boltzmann codes at the ∼ 100% level (see Figure 3 of [228]).

3Following the choices made here, we use their “Scenario 4” method that assumes neutrino particles are
simulated with a constant mass throughout their evolution.
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This feeds back into the cold matter component, leading to the minor distortions seen in the
effective growth factor for the total matter on intermediate scales. An additional drawback
from this approach is that the inaccuracies of the fluid model in predicting neutrino growth
make it difficult to check if the neutrinos end up growing correctly in the simulation. In this
work, we use our backscaled transfer functions to perform a more careful analysis on how
well the simulated neutrino growth matches expectations from the Boltzmann code.

We finish this section by noting that many massive neutrino simulations initialize the
cold matter at an earlier redshift, zcbini, than is used for the neutrinos, zνini. In fact, this is the
default strategy used by HACC and employed in the simulations presented in the following
sections. In this case, the backscaling method requires an additional modification in order
to reflect the fact that the cold matter will grow in a scale-independent manner during the
time zνini ≤ z ≤ zcbini. The first step is to further backscale the cold dark matter and baryon
transfer functions obtained from the iterative method at zνini to the earlier starting time:

T bs
α (zcbini, k) = Fα(z

cb
ini, k)

D(zcbini,Ωm)

D(zνini,Ωm)
T bs
cb (z

ν
ini, k), (3.9)

where T bs
cb (z

ν
ini, k) is obtained from the iterative backscaling procedure while Fα(z

cb
ini, k) ≡

Tα(z
cb
ini, k)/Tcb(z

cb
ini, k) is taken directly from CAMB. Similarly, for the velocity transfer function

we compute:

T bs
θ,α(z

cb
ini, k) = Fθ,α(z

cb
ini, k)

Ḋ(zcbini,Ωm)

Ḋ(zνini,Ωm)
T bs
θ,cb(z

ν
ini, k), (3.10)

where T bs
θ,cb(z

ν
ini, k) is obtained from the iterative backscaling procedure, the factor Fθ,α(z

cb
ini, k) ≡

Ṫ bs
α (zcbini, k)/Ṫ

bs
cb (z

cb
ini, k) with the dots denoting that we apply the finite difference method

to the backscaled density transfer functions obtained with equation (3.9), and we define
Ḋ ≡ a2H(dD/da). Note that these equations preserve the familiar scale-independent rela-
tions Tcb ∝ D and Tθ,cb ∝ Ḋ seen for the cold matter field in massless neutrino cosmologies.

It is important to note that the Ωm used in equations (3.9) and (3.10) is set to Ωcbν for
all scales even though the neutrinos are not simulated above zνini. In order for the simulation
to achieve consistent growth, this convention requires that Ων be absorbed into the cold
matter particle masses for z > zνini. We have chosen this setup since it guarantees that
the cold matter densities and velocities after evolution to zνini end up matching with the
backscaled transfer functions previously computed at zνini, but only on the large scales for
which Ωeff

m ≃ Ωcbν . On smaller scales, we incur an inconsistency with the cold matter densities
(velocities) being slightly suppressed (enhanced) at the sub-percent level compared to the
T bs
α (zνini, k) [T

bs
θ,α(z

ν
ini, k)] previously computed from the iterative method. This is not an issue

since the total matter still converges to the same answer at zfin, but does mean that we
end up with a sub-percent inconsistency in the initial neutrino component as it is set using
the T bs

ν (zνini, k) that assumed slightly different cold matter density and velocity amplitudes
on small scales. An alternative approach would be to set Ωm = Ωcb in equations (3.9) and
(3.10) without changing the simulation particle masses between zcbini and z

ν
ini, but this would

just mean that we incur a minor inconsistency on large scales instead of small scales. In
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general, starting the cold matter at an earlier time than the neutrinos requires that we incur
an inconsistency somewhere due to the discontinuous nature of transitioning from scale-
independent to scale-dependent growth at zνini. Pushing this inconsistency to small scales is
preferable since these will be the first to undergo non-linear growth that tend to wash out
small errors in the initial conditions. Either way, we stress that the inconsistency manifests
at the sub-percent level in the neutrino component meaning that its impact on the total
matter is exceedingly small.

For convenience, we have created a public code named SONICC4 (Scale-dependent Omega
for Neutrino Initial Condition Codes) that uses the iterative backscaling procedure pre-
sented above to generate initial density and velocity transfer functions for cold dark mat-
ter, baryons, and neutrinos for an arbitrary choice of cosmological parameters as well as
starting and stopping redshifts (including the ability to start the cold matter earlier than
neutrinos). The code is written in Python3 and uses the public camb module to com-
pute Boltzmann transfer functions at the initial and final times as well as interpolate the
relative neutrino growth between these endpoints. It was shown in Ref. [202] that the neu-
trino transfer functions produced by CAMB are sensitive to the choice of accuracy settings
accuracy boost and l accuracy boost. Our default choice is to take accuracy boost = 4
and l accuracy boost = 5, which means that the neutrino transfer functions are accurate
at the few-percent level for k ≳ 0.1 h Mpc−1. With these accuracy settings, the typical
runtime of the backscaling code is about 8 minutes, with the bulk of this coming from the
computation of CAMB transfer functions. This can be reduced to under a minute by decreas-
ing the default accuracy settings, but doing so comes at the expense of decreased accuracy
in the neutrino transfer functions as well as the resulting Ωeff

m (k).

3.3 Neutrino Initial Conditions and Evolution

Theoretical modeling of the growth of LSS in the presence of massive neutrinos will require
an equal or better level of precision as that of observational measurements. Cosmological
simulations of structure formation are vital in this regard. In this work, we extend the code
HACC [229] to evolve neutrinos as an additional N-body particle species alongside the cold
matter. HACC is a cosmological simulation code designed to run performantly with extreme
computational loads on all modern supercomputing systems. This performance is inherited
here since the inclusion of neutrino particles mainly involves modifications to the initial
conditions while preserving the core code structure and algorithmic choices. Recently, a
hydrodynamic extension to HACC, known as CRK-HACC [239], was developed and we plan to
merge the work presented here with the hydrodynamic extension so that fully self-consistent
three-species (cold dark matter, baryons, neutrinos) simulations can be performed efficiently
at scale.

There are two main challenges associated with the cosmological simulation of neutrino
particles: 1) the ambiguities associated with properly backscaling massive neutrino cosmolo-

4https://git.cels.anl.gov/hacc/sonicc

https://git.cels.anl.gov/hacc/sonicc
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gies in a way that is consistent with the Newtonian forward model; 2) dealing with the high
thermal motion that tends to randomize neutrino particles across the simulation domain. To
overcome the first issue, we use the iterative backscaling procedure presented above to cre-
ate more accurate initial transfer functions that are valid for all three non-relativistic matter
species. For the second issue, we make use of the “tiling” procedure [224], which utilizes
symmetries in the neutrino thermal momentum sampling in order to significantly reduce
the level of shot noise associated with randomization of the neutrino particles. We briefly
describe this method below and expand on the minor modifications to its implementation
that were used in this work.

In the standard picture, the cosmic neutrino background (CNB) constitutes a thermal
relic species from the early universe. More specifically, massive neutrinos decoupled from
the early plasma when the universe was roughly one second old and remained free of all in-
teractions save gravity until the present day. During this time, the temperature of the CNB
cooled with the expansion of the universe and has a current temperature Tν,0 ≃ 1.95 K. At
early times, the neutrinos behave as a relativistic radiation component while later tran-
sitioning into a non-relativistic matter component when the temperature-to-mass ratio,
(kBTν,0)/(amν), drops below O(1). The massive neutrino comoving momentum magnitudes,
q, are set by the relativistic Fermi-Dirac distribution that describes the neutrino phase space
after decoupling:

f0(q) =
gs

2π2ℏ3
q2

e
q

kBTν + 1
, (3.11)

where q ≡ ap, with p the neutrino momentum magnitude and gs, the spin factor.
It is common in cosmological simulations to initialize neutrino particles in an analogous

manner to cold matter. First, the neutrino particles are placed on a uniform lattice containing
N3

ν points with gravitationally-induced displacements and peculiar velocities computed from
the initial transfer functions. However, unlike the cold matter, a thermal velocity is also
added to each neutrino particle with a random direction vector and random magnitude drawn
from the Fermi-Dirac distribution. Occasionally, this stage is modified so that each lattice
site initializes a pair of neutrino particles with the pair having random thermal velocities
equal in magnitude but opposite in direction [204]. In any event, the main drawback of
this method is that the thermal velocities are so large that using a random draw results
in a density field that is essentially a Poisson sampling of the spatial neutrino distribution,
resulting in a shot noise term in the power spectrum that is inversely proportional to the
total number of neutrino particles, Pshot ∝ N−3

ν . Since free-streaming suppresses neutrino
perturbations on small scales, a prohibitively large number of particles may be required to
resolve the intrinsic neutrino signal below the shot noise level.

In the “tiling” method [224], the shot noise is reduced by imposing symmetries on the
initial neutrino velocity distribution. To begin, this method preserves the use of a neutrino
grid containing N3

ν points, but associates a total of NSHELL × NDIR particles to each grid
point. This collection of neutrino particles is viewed as a set of NSHELL independent spherical
shells that each contain NDIR particles. The thermal velocity magnitude is varied across the
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different shells, but held fixed for all particles within the same shell. Hence, only a total of
NSHELL unique velocity magnitudes are used for the thermal velocities and these are chosen
in such a way as to optimize the sampling of the full Fermi-Dirac distribution. Within
each shell, the velocity directions are chosen by taking a symmetric discretization of NDIR

points on the unit sphere. In the original implementation, these direction vectors are set
using HEALPix [240], though other variations including minimizing the Coulomb potential
of point charges on a sphere [213] and utilizing a Fibonacci grid [215] yield similar results.
The crucial aspect of the tiling method is that this discretization of the velocity magnitudes
and directions is replicated at each of the N3

ν grid points so that a constant flux of neutrino
particles pass through adjacent volumes in the simulation domain, thereby suppressing the
shot noise.

In the HACC simulations presented here, our general setup is to initialize a grid of N3
cb

cold matter particles with an N3
ν neutrino grid that is maximally offset from the cold matter

grid in order to reduce the potential impact of artificial particle coupling [241]. We split
the Fermi-Dirac distribution into NSHELL bins of equal probability mass and associate the
mean value in each bin to the neutrino shells whose limits {qmin

i , qmax
i } are determined by

the inverse Fermi-Dirac cumulative distribution function:

qi =

√√√√√∫ qmax
i

qmin
i

dqq2f0(q)∫ qmax
i

qmin
i

dqf0(q)
(3.12)

In the simulations presented here, we use HEALPix to assign the NDIR initial momentum
directions. We have also experimented with the use of a Fibonacci grid, but did not observe
any significant difference compared to HEALPix for a fixed number of directions. The HEALPix

directions are parameterized by the internal variable NSIDE which gives, e.g., NDIR = (12,
48, 192) for NSIDE = (1, 2, 4). Motivated by the results of Ref. [213], we modify the original
tiling scheme so that the direction vectors are rotated between shells. In particular, for shell
i, we rotate the NDIR direction vectors by an amount (i/NSHELL)(π/2) about the symmetry
axis of the HEALPix discretization (which we align with the z axis). As shown later, this
method helps to mitigate numerical effects associated with the tiling scheme symmetries,
particularly for smaller NSIDE. In the recent work of Ref. [215], the authors advocate for
radially displacing each shell from the grid site by an amount proportional to its momentum
magnitude in order to reduce a spurious coupling with the cold matter. We do not use this
method here (meaning that each shell is sourced at the same grid location), but rather apply
a spectral filter in the force solver, discussed below, in order to minimize the back-reaction
of the neutrino grid on the cold matter.

The initial displacements and (non-thermal) velocities of the cold matter and neutrino
particles are computed using the Zel’dovich approximation (ZA) evaluated on an N3

cb grid
with the backscaled transfer functions of each respective species. The same random phases
are used for each species with a rotation applied in Fourier space for the neutrino particles to
account for their real-space offset from the cold matter grid where the displacement field is
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sampled. We only consider the (unphysical) case of a single massive neutrino here, but plan
to accommodate multiple mass eigenstates, and the complexities therein, in future work.
By default, we initialize the cold matter at zini = 200 while starting the neutrinos at a
lower redshift zνini (we consider zνini within a range of 10-40). There are competing effects to
consider when choosing the starting neutrino redshift, and the values used here are chosen
as a compromise between the two limiting regimes. On the one hand, starting neutrinos too
early is complicated by the fact that a significant fraction will still be relativistic – meaning
that both their initialization as a non-relativistic species as well as their subsequent evolution
will be incorrectly modeled within the Newtonian dynamics of the simulation [242]. On the
other hand, starting neutrinos too late means that they become less well-described by linear
theory, particularly for the slower-moving population. One way of pushing the starting
redshift lower would be with the use of higher-order Lagrangian perturbation theory for
initializing both species [243] (rather than just the ZA, or 1LPT). The impact of starting at
lower redshift using higher-order perturbation theory has been studied by several groups [e.g.,
244, 245]; however, a fully self-consistent multi-species approach is not currently available.

The gravitational force calculation in HACC is decomposed into two parts: (1) the long-
range force evaluated using a spectral particle-mesh (PM) method that solves the (filtered)
Poisson equation in Fourier space; (2) the short-range force evaluated using direct pairwise
interactions with an algorithm optimized for the given hardware (i.e., we employ a particle-
particle method on accelerated systems and a tree method on CPU platforms). The two
components are delineated by the force-matching scale, rs, that is roughly equal to three
times the length of an individual cell in the PM mesh. Our default choice is to use a PM
mesh that is of the same size as the initial cold matter particle grid. The main time step is
governed by the PM force evaluation while the short-range force is evaluated on a shorter
“subcycled” time-scale. For the simulations presented here, we take 625 PM steps between
zini and zfin with 4 short-range force evaluations per PM step, following the typical integration
procedure used in HACC gravity-only simulations [229].

The force decomposition and time-stepping remain unchanged with neutrinos except for
two minor modifications. Firstly, we have added the flexibility to exclude neutrino particles
from the short-range force calculation. This is simply achieved by sorting neutrinos to the
end of the particle arrays and only passing the cold matter portion of those arrays to the
short-range kernel. This reduces the computational cost of the short-range force calculation,
but implicitly assumes that the gravitational impact of neutrinos below the force-matching
scale can be safely ignored. We use this method for the simulations presented here, which
we justify by the fact that the force-matching scale rs ∼ 1 h−1Mpc while the free-streaming
scale 1/kfs ≳ 10 h−1Mpc for the neutrino mass and box sizes considered here. The second
modification is that we have implemented an optional filter that smooths the neutrino density
field in Fourier space during the long-range PM force calculation. This is achieved using a
simple sharp-k smoothing filter applied in Fourier space via the transformation:

ρsmν (k) = Θ(kcut − |k|)ρν(k), (3.13)

where ρν(k) is the Fourier transform of the neutrino density field, computed in real space
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using a cloud-in-cell (CIC) interpolation to the PM mesh, and Θ is the Heaviside step
function with kcut = πNν/L chosen to be the Nyquist frequency, kνNyq, of the neutrino grid.
As shown in Section 3.4, this is done to avoid potential imprinting of the neutrino grid onto
the cold matter density field, which we have found to occur if the neutrino mass resolution
is sufficiently coarse. Again, this smoothing assumes that neutrinos are not significantly
clustering below the cutoff scale, which we justify since kνNyq ≳ 10kfs for the main runs
presented here.

The final consideration that we make is in regards to the particle “overloading” performed
in HACC. In general, the global simulation volume is subdivided across MPI ranks with each
rank assigned a subvolume with side lengths on the order of a few 10− 100 h−1Mpc along
each axis. This “alive” zone of each rank is then extended 2− 10 h−1Mpc at the edge of
each boundary and filled with particle replicants from the alive zones of neighboring ranks.
This is done to ensure proper boundary conditions are utilized in the short-range force for
particles at the edge of the alive zone. The overload zone is refreshed at regular intervals
(typically every 1-20 PM steps) with the cadence chosen as a balance between minimizing
the MPI communication overhead and the propagation of gravitational force errors from the
edge of the overload zone inwards to the alive zone (see Ref. [229] for more details).

One of the challenges with neutrino simulations is that the higher momentum neutrinos
are still moving relatively fast near the initialization redshift. The problem is that if a
neutrino particle is capable of moving further than the width of the overload zone during
one refresh cycle then it is possible that all of its replicants end up outside the alive zone at
the next refresh. The outcome is that the particle will be removed from the simulation and
we may end up carving out neutrinos near the boundaries of each MPI rank. The trivial
solution is to increase the refresh rate and/or increase the overload zone. For the simulations
presented here, we use a refresh every PM step and increase the overload to 20 h−1Mpc at
early times. This choice adds a significant computational overhead and in the future we
plan to avoid large overloads by implementing a method to manually pass neutrino particles
across MPI ranks when they would otherwise be removed from the simulation.

3.4 Results

We present here results from a suite of HACC runs that vary the internal parameters of
the neutrino tiling scheme as well as the simulation resolution. The full set of runs are
enumerated in Table 3.1. In addition to varying the two main parameters of the tiling
scheme – the number of momentum shells NSHELL and the number of directions per shell
NDIR (as set by the HEALPix parameter NSIDE) – we also vary the size of the neutrino grid
Nν . This allows us to check for numerical convergence in the power spectra as one parameter
is varied while the others are held fixed. The main set of runs use a simulation box of width
L = 250 h−1Mpc containing N3

cb = 5123 cold matter particles though we also consider two
other runs with a larger box of L = 1000 h−1Mpc. We also explore the impact of the neutrino
starting redshift by varying zνini = (10, 20, 40) with zcbini held fixed at 200.
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Name Ncb Nν NSHELL NDIR zνini Filter L Rotate ϕ
fid nophi 512 128 5 12 20 Yes 250 F
fid nofil 512 128 5 12 20 No 250 T

fid 512 128 5 12 20 Yes 250 T
med Nν 512 256 5 12 20 Yes 250 T
hi Nν 512 512 5 12 20 No 250 T

med NDIR 512 128 5 48 20 Yes 250 T
hi NDIR 512 128 5 192 20 Yes 250 T
med NSH 512 128 10 192 20 Yes 250 T
hi NSH 512 128 20 192 20 Yes 250 T

coarse hi NDIR 512 64 5 192 20 Yes 250 T
lo z 512 128 5 192 10 Yes 250 T
hi z 512 128 5 192 40 Yes 250 T

lb loN nofil 256 64 5 12 40 No 1000 T
lb loN 256 64 5 12 40 Yes 1000 T

Table 3.1: Simulation suite considered in this work. All simulations initialize the cold matter
at zcbini = 200 in a box of side length L while the neutrinos are initialized later, at zνini. In
each case, we use the cosmological parameters, (Ωc, Ωb, Ων , ΩΛ, σ8, h, Neff) = (0.2684,
0.0491, mν/(93.14h

2), 1-Ωcbν , 0.8, 0.6711, 2.046), for a single massive neutrino species with
mν = 0.15 eV. The cold matter contains N3

cb particles while the total number of neutrino
particles is given by the product N3

ν × NSHELL × NDIR. In each run, the long-range force
is calculated using a PM mesh containing Ng = Ncb cells per side; the short-range force is
evaluated only on the cold matter and uses a Plummer softening length of 0.1L/Ng. The
“Filter” column denotes whether the sharp-k force filter in equation (3.13) is applied to
the neutrino density field during the long-range force evaluation. The “Rotate ϕ” column
indicates whether the momentum shells were individually rotated, as described in Section
3.3.

In Section 3.4 we present a numerical convergence study for the neutrino tiling param-
eters. We then show in Section 3.4 that one challenge with the tiling method is that the
Fourier imprint of the neutrino grid can transfer onto the cold matter power spectrum if
the simulation resolution is sufficiently coarse. We proceed in Section 3.4 with a comparison
of the simulated total matter power spectrum to emulator predictions [194] and finish in
Section 3.4 with a closer look at the linear theory growth of neutrino power. In all of the
further analysis, we examine the power spectra of the cold matter and neutrino components
which are computed using a CIC interpolation of each species onto a mesh containing 5123

cells.



CHAPTER 3. ACCURATE AND HIGH-PERFORMANCE NUMERICAL
SIMULATIONS WITH NEUTRINOS 79

Convergence Study of Neutrino Initialization Parameters

We begin by varying NDIR with all other parameters held fixed. In Figure 3.3 we show the
cold matter and neutrino power spectra at redshifts z = 9, 1, and 0 for the fid nophi, fid,
med NDIR, and hi NDIR runs. All runs contain N3

cb = 5123 cold matter particles with an
N3

ν = 1283 neutrino particle grid consisting of NSHELL = 5 momentum shells. In addition,
all of the runs except for fid nophi use the method described in Section 3.3 of rotating the
direction vectors of each shell. Comparing the dashed orange and dot-dashed green lines in
Figure 3.3 show that this rotation has a significant impact on the neutrino power spectrum,
both at early and late times. This behavior was observed previously [213] and likely reflects
the fact that the rotation reduces the correlation in neutrino particle trajectories of adjacent
momentum shells. Though not shown here, we find that the relative impact of the rotation
decreases as we increase NDIR. This can be attributed to the fact that the direction vectors
become increasingly isotropic as the discretization is made increasingly fine.

Comparing the dot-dashed green, dotted red, and solid blue lines in Figure 3.3 shows
that the neutrino power spectrum is quite sensitive to the number of direction vectors. At
z = 9, the NDIR = 12 and 48 runs are converged to the NDIR = 192 run at the 10% level up
to k ≃ 0.1 and 0.3 h Mpc−1, respectively. This improves at z = 0 with the 10% agreement
extending to k ≃ 0.3 and 0.7 h Mpc−1 for the two runs. Hence, the NDIR = 192 run appears
to be reasonably converged (at the ∼ 10% level) up to half the Nyquist frequency of the
neutrino grid at z = 0, though more directions may be required to reach a similar level of
convergence at higher redshift. Note, however, that as we increase NDIR, the neutrino power
spectrum on scales k ≳ 0.1 h Mpc−1 converges to a result at z = 9 that is markedly below
the linear theory curve; we will discuss this discrepancy in Section 3.4. The large differences
in neutrino power spectra for k > kνNyq simply reflect different levels in the effective neutrino
shot noise of each run. The shot noise level is governed by the total particle count, as shown
by the horizontal line tracing Pshot = L3/(N3

νNSHELLNDIR) for the hi NDIR run. This is also
the level at which the neutrino power spectrum saturates to in standard simulations that
draw random velocity magnitudes and directions. The fact that we are able to resolve the
neutrino power spectrum below Pshot for k ≤ kνNyq thus confirms the utility of the tiling
method, as also verified in Refs. [224, 215, 213]. Note that the neutrino power spectrum still
saturates to Pshot for k > kνNyq with the presence of noticeable spikes observed at the Fourier
modes of the neutrino grid. We will explore this topic in more detail in Section 3.4.

Despite the large variance observed in neutrino power spectra with varying NDIR, we
see that the cold matter power spectra are relatively unchanged between each run. This is
particularly true at high redshift and linear scales though we do observe a ∼ 0.5% scatter
near the cold matter Nyquist frequency at z = 0. As further shown below, we generally find
that the neutrino power spectra exhibit systematic numerical convergence as one parameter
is varied while all others are held fixed. The cold matter power spectra, on the other hand,
mainly show small random noise on non-linear scales. We attribute this to the fact that
minor changes in the neutrino distribution are not strong enough to significantly alter the
cold matter on linear scales (since fν is small), but are able to seed noise, particularly in the
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Figure 3.3: Cold matter (upper two rows) and neutrino (lower two rows) power spectra for
different choices of number of neutrino particle velocity directions (fid [green dash-dotted],
med NDIR [red dotted], hi NDIR [blue solid]), as well as without rotating HEALPix momentum
shells (fid nophi [orange dashed])). The ratio of the power spectrum at each choice of
parameters relative to the power spectrum of the hi NDIR run (NDIR = 192) is shown in the
residual panels (second and fourth rows). Shaded bands in the residual panels are at 0.5%
for cold species and 10% for neutrinos. Plots are shown at several redshifts in the different
columns. Backscaled linear theory is also shown for reference as the thin black curves. In
the third row of panels, the dashed blue line corresponds to the expected Poisson shot noise
for the hi NDIR run which contains the largest neutrino particle count. The vertical dashed
black line in the upper panels is the Nyquist mode of the initial cold species grid, while the
dash-dotted black line in the lower panels is the same for the initial neutrino grid.

shot-noise dominated regime, that becomes amplified with non-linear growth. Given that
the noise is random in nature (i.e., it fluctuates between runs in a non-systematic manner)
and confined to highly non-linear scales, its presence does not indicate that the tiling scheme
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fails to numerically converge, rather that care must be taken to understand the amplitude
of random error in the total matter distribution on small scales.

Next we consider the case where we varyNSHELL while keeping the other parameters fixed.
Similar to Figure 3.3, Figure 3.4 shows cold matter and neutrino power spectra at redshifts
z = 9, 1, and 0 for the fid, med NSH, and hi NSH runs, which have NSHELL = 5, 10, 20
respectively (all at NDIR = 1925). On the largest scales we find good agreement, with all
three runs following linear theory closely. On intermediate scales, the neutrino power in the
three runs starts to diverge at around k ≈ 0.2 h Mpc−1 at the 10% level. As expected,
the NSHELL = 10 neutrino power agrees more with that of the NSHELL = 20 run than the
NSHELL = 5 run does, and this is true at all redshifts. For k > kνNyq, the difference between
the neutrino power spectra is due to a change in shot noise since the NSHELL = 20 (10)
run has four times (twice) as many neutrino particles as the NSHELL = 5 run. Meanwhile,
the cold species power is essentially unaffected by the change in NSHELL at the 0.1% level
for linear scales. At later times, we again see fluctuations in the cold matter power on the
non-linear scales near the Nyquist mode. The random nature of this noise is evident in the
flipping and reordering of the green and orange curves when comparing the z = 1 and z = 0
residual panels. Overall, we find a less dramatic effect on the power spectra of both species
when varying the number of shells compared to the number of directions; in agreement with
the initial exploration of Ref. [224].

Having characterized how the cold species and neutrino power spectra change with NDIR

and NSHELL, we now consider varying the resolution of the neutrino grid Nν in Figure 3.5.
Following our earlier convention, we show the cold matter and neutrino power spectra for
several values of Nν in different colors, where solid (dashed) lines correspond to runs with
NDIR = 12 (192) and NSHELL = 5 held fixed in each case. Since all simulations have
Ncb = 5123, we can consider this analysis to represent making different choices of the ratio
Nν/Ncb. In terms of the neutrino power spectra, the general trend of increasing Nν/Ncb is
independent of the value of NDIR. Namely, we find that the neutrino power spectrum is
insensitive to the choice of Nν/Ncb up until the Nyquist frequency of the neutrino particle
grid. This is easily seen in the bottom panel, where each line traces a residual of zero up until
the vertical dotted line indicating its Nyquist wavenumber. As mentioned before, comparing
the two sets of NDIR runs show that the neutrino power spectrum is significantly enhanced on
intermediate scales for NDIR = 12. Furthermore, Figure 3.5 shows that up until a comoving
wavenumber of k ≈ 3.0 h Mpc−1 (at z = 0), the Nν = 256 and Nν = 512 neutrino power
spectra agree at the 10% percent level. This comparison is important for considering the
computational cost of the tiling method, as the former run has a factor of 8 fewer neutrino
particles than the latter. We see the same general behavior in the cold matter power as
was shown in the previous two tests. Namely, the cold matter power displays random noise
on small non-linear scales. As before, the cold matter is relatively insensitive to changes in
Nν/Ncb on linear scales.

5We also found qualitatively similar results when varying NSHELL when the number of directions was
fixed to NDIR = 12.
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Figure 3.4: Cold matter (upper two rows) and neutrino (lower two rows) power spectra for
different choices of number of neutrino momentum bins (fid [green dash-dotted], med NSH

[orange dashed], hi NSH [blue solid]). All simulations have NDIR = 192. The ratio of the
power spectra with respect to the hi NSH run with NSHELL = 20 is shown in the residual
panels (second and fourth rows). Shaded bands in the residual panels are at 0.5% for cold
species and 10% for neutrinos. Plots are shown at several redshifts in the different columns.
The vertical dashed black line in the upper panels is the Nyquist mode of the initial cold
species grid, while the dash-dotted black line in the lower panels is the same for the initial
neutrino grid. Backscaled linear theory is also shown for reference as the thin black curves.

The results presented above show that numerical convergence at the ∼ 10% level in the
neutrino power spectra requires NDIR ≳ 100 direction vectors and NSHELL ≳ 10 momentum
shells. The cold matter power is not significantly impacted by choices in these parameters
on linear scales, but does exhibit random noise at the ∼ 1% level on non-linear scales at late
times. We suspect that this error is seeded by shot noise from the neutrinos on small scales
(which scales inversely with the total number of neutrino particles) and becomes amplified
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by non-linear growth. The main challenge with the tiling method is that the requirement
NDIR ≳ 100 and NSHELL ≳ 10 implies that Nν/Ncb ≲ 1/10 for the number of neutrino
particles to not significantly exceed the cold matter count. The coarseness of the neutrino
particle grid limits the smallest scale at which neutrinos are effectively resolved and, as shown
below, requires extra care to prevent discreteness effects from artificially back-reacting on
the cold matter.

Suppression of Neutrino Grid Artifacts

The runs shown in Figure 3.5 display characteristic small-scale spikes in the neutrino power
spectra with locations that depend on the value of Nν . These spikes were also observed in
Ref. [213] and correspond to resonances in the neutrino particle grid which are picked up as
essentially delta functions in Fourier space. More specifically, these spikes occur at multiples
of the Nyquist frequency of the neutrino particle grid (e.g., the first two spikes occur at 2kνNyq

and 2
√
2kνNyq). Of course, this is not a feature unique to the neutrino particles; if we were

to measure the cold matter power spectrum on a fine enough mesh then we would likewise
observe a series of spikes at the Fourier modes corresponding to the cold matter particle
grid [246]. In other words, single-species N-body simulations also contain the Fourier imprint
of the initial conditions grid that are subsequently captured in the force solver provided the
force resolution is finer than the particle grid separation. These grid features are generally
considered to insignificantly impact evolution in the single-species case due to the efficient
gravitational transfer of power from large to small scales [e.g., 247]. The result is that gravity
tends to broaden the spikes in Fourier space until the gravitational growth on small scales
surpasses the shot noise level, erasing the spikes altogether. This gravitational broadening
can be seen in the lower panels of Figure 3.5 for the neutrinos and is also examined more
extensively in Ref. [213]. However, it is not clear what impact these features may have
in multi-species simulations especially if the Nyquist frequencies of the particle grids are
mismatched, as is the general case here.

To study this issue more closely, we ran two simulations with Nν < Ncb and varying
mass resolutions to test whether we could clearly identify the imprint of the neutrino grid
on the cold matter. Indeed, we found that for sufficiently coarse resolutions, it is possible
for the neutrino grid to transfer its Fourier signal onto the cold matter power spectrum.
This is demonstrated in Figure 3.6 where we show the power spectrum at z = 5 for the
lb loN nofil simulation that contains N3

cb = 2563 cold matter particles with an N3
ν = 643

neutrino particle grid in an L = 1000 h−1Mpc box. First, we see the characteristic spikes
in the neutrino power spectrum which extend prominently above the neutrino shot noise
level. Furthermore, we also clearly observe a small spike in the cold matter power spectrum
situated at the location of the first neutrino spike, as shown in the plot inset. The presence
of this spike unambiguously demonstrates that the numerical imprint of the neutrino particle
grid is being transferred onto the cold matter density field via the force solver. We checked
for similar spikes in the cold matter power spectra of two other simulations, fid nofil and
fid, but did not observe any, indicating that this imprinting depends on the simulation
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Figure 3.5: Cold matter (upper two rows) and neutrino (lower two rows) power spectra while
varying the resolution of the neutrino particle grid, Nν , for runs with NDIR = 12 (solid lines)
and NDIR = 192 (dashed lines). Residuals are shown with respect to the Nν = 512 run (blue
solid line, hi Nν) for the NDIR = 12 runs, and with respect to the Nν = 128 run (orange
dashed line, coarse hi NDIR) for the NDIR = 192 runs (i.e., they are made with respect to
the largest value of Nν for each set of NDIR runs). Plots are shown at several redshifts in
the different columns. Shaded bands in the residual panels are at 0.5% for cold species and
10% for neutrinos. The vertical dashed black line in the upper panels is the Nyquist mode
of the initial cold species grid, while in the lower panels, the dotted colored lines correspond
to the Nyquist modes of the corresponding neutrino grid resolutions (with colors indicated
in the legend). Backscaled linear theory is also shown for reference as the thin black curves.

resolution. We suspect that the probability of the neutrino grid imprinting on the cold
matter field is enhanced when the neutrino shot noise is more comparable to the amplitude
of the cold matter power spectrum at early times. In other words, care must be taken to
control for this issue if the neutrino mass resolution – which, like the shot noise, scales as
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L3/(N3
νNSHELLNDIR) – is too coarse.

Of course, the absence of spikes in the cold matter power spectrum of the other two
simulations does not mean that the cold matter was not still influenced by the neutrino
shot noise level on small scales. This is the motivation behind the use of the sharp-k filter
described in Section 3.3 that forcefully removes any contributions from the neutrino grid in
the long-range force solver. For reference, the dark red dashed line in Figure 3.6 shows the
neutrino power spectrum measured when this filter is applied. The abrupt truncation of
the neutrino power spectrum for k > kνNyq means that the numerical signal of the neutrino
grid is completely hidden from the long-range force calculation. To test the impact of this
filter on the final result, the right panels of Figure 3.6 compare Pcb and Pν from the original
non-filtered run, lb loN nofil, with its filtered counterpart, lb loN. Here we observe that
the cold matter power spectrum of the filtered run is essentially unchanged below 2kNyq, the
location of the first neutrino grid spike. At higher wavenumbers, we see sharp spikes occurring
at the Fourier modes of the neutrino grid which correspond to the erasing of these signatures
from the cold matter field in the filtered run. At lower redshifts, gravitational broadening of
the spikes in the non-filtered run dissipates their signal on small scales. In the lower panel
showing the neutrino residuals, we see that the filtering leads to only precent-level changes in
the evolution of the neutrino density field. In other words, the filtering strategy effectively
removes clear numerical artifacts from the neutrino grid without strongly impacting the
small-scale growth of cold matter or neutrino density perturbations.

We reiterate that the sharp-k filter is only justified if neutrinos are not contributing to
the growth of density perturbations beyond kνNyq. This assumption becomes increasingly
inaccurate the closer kνNyq gets to the neutrino free-streaming scale, and therefore should
only be applied if the resolution is such that kνNyq ≫ kfs. This condition can be somewhat
alleviated if the filter is turned off at lower redshift when both the free-streaming length
is smaller and the intrinsic neutrino power has grown closer or above the shot noise level.
We note that Ref. [215] uses an alternative method to mitigate impacts associated with the
neutrino grid which involves radially displacing each neutrino shell during the initialization
by an amount proportional to its momentum magnitude. We tried this method but did not
find it to be effective for the lb loN nofil run presented above. In any event, we consider the
sharp-k filter to be a more direct method for preventing an artificial back-reaction from the
discretization of the neutrino grid. We also tested other functional forms for the filter, but
found that the smoothing required to adequately remove the neutrino spikes using obvious
candidates (Gaussian and Hann functions) was so broad that the filter artificially suppressed
cold matter growth on larger scales.

Emulator Comparison

To make contact between this work and nonlinear growth in total matter power predictions,
we compare to the 2022 version of the Mira-Titan Cosmic Emulator [194] in Figure 3.7.
The simulations used to train the emulator varied the neutrino overdensity parameter Ων ,
but were not multi-species simulations, so the influence of neutrinos was incorporated only
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Figure 3.6: Left : Cold species (blue) and neutrino (red) power spectra for the lb loN nofil

(thick shaded lines) and lb loN (thin solid lines) runs at z = 5. The vertical dotted black line
denotes twice the neutrino particle grid Nyquist frequency which corresponds to a prominent
spike in the neutrino power spectrum as well as the cold species power spectrum in the non-
filtered case (see the inset for a zoom-in on the cold species power spectra). The dashed
red line shows the neutrino power spectrum when the sharp-k filter is applied. Right : The
ratio of the cold species (top) and neutrino (bottom) power spectra from these two runs
at redshifts z = 9.1, 1.0, 0.0. Shaded regions are at ±0.1% for cold species and ±1% for
neutrinos.

through 1) adding the linear massive neutrino density power spectrum to the cold species
power spectrum (as described in Refs. [66, 248]), 2) in the computation of σ8 at z = 0,
and 3) in the rate of homogeneous and isotropic background expansion. As single-species
simulations, these computations neglected scale-dependent growth due to neutrinos in the
evolution of the N-body particles, so we do not expect our results for the total matter
power to exactly agree with the emulator predictions, aside from the errors intrinsic to
the construction of the emulator. Nevertheless, at small enough fν , there should be good
agreement. Figure 3.7 shows that this is indeed the case at the percent level (here fν ≈ 1% for∑
mν = 0.15 eV, where it should be noted that the method used to construct the emulator

in the nonlinear regime is effectively an expansion in the leading power of fν).
The total matter power spectra for the NSHELL = 20, NDIR = 192 run at several redshifts

approximately match the emulator power spectra at the several percent level. However, the
growth in the emulator prediction is systematically higher than the power in our simulation
run for wavenumbers that are low enough that the grid does not impact the power spectrum.
This offset is at approximately the 5% level, which is larger than the < 3% accuracy that
would be expected from the emulator test set error [194]. This effect is not the result
of our implementation of the neutrino N-body particle evolution, as a massless neutrino
“noν” cosmology shows a similar level of disagreement in Figure 3.7 (green curve). This
disagreement can instead be explained as due to the small box sizes we consider here, as
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Figure 3.7: Total matter power spectra in the hi NSH (NSHELL = 20, NDIR = 192) run [blue
solid], the lb loN nofil (L = 1000 h−1Mpc) run [orange dotted], and the 2022 version of
the Mira-Titan CosmicEmu [194] [black dash-dotted] at several redshifts. We also show
the matter power spectrum from a neutrino-less cosmology (“noν”, with Ων = 0, Ωcdm =
0.27201) [green dashed] that has the same numerical parameters as the fid nofil run. The
orange vertical line shows the Nyquist wavenumber for the lb loN nofil run. Lower panels
show residuals with shaded bands between ±5%. The residual for the “noν” line is with
respect to the CosmicEmu prediction for a neutrino-less cosmology (not shown in the upper
panel). See the text for a discussion of the finite-volume effects seen here (the shift between
the blue and orange curves).

in one of our larger box simulations (orange dotted curve), we see no such 5% offset, and
any disagreement between the simulation run and the emulator is at the expected level of
< 3% (below the grid scale of that simulation, which is k ∼ 1.0 h Mpc−1). These types of
finite-volume effects are characterized in more detail in Section 3.3 of Ref. [249], and can be
understood more broadly as a combination of a super-sample mode effect [250, 251, 252, 83,
253], as the small-box simulation is effectively missing large-scale power that is present in
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the larger simulation box (see e.g. Fig. 6 of Ref. [252]) and increased variance in individual
realizations at smaller box sizes. The estimated variation from the results of Ref. [249] is
consistent with that observed in the comparison. In conclusion, Fig. 3.7 shows that the
emulator results are consistent with the direct simulations as performed here within the
level of errors that are characteristic of both methods.

Examination of Neutrino Growth

We complete this section with a closer look at how well the simulated neutrino growth
compares to linear theory expectations. In Figure 3.8, we compare the linear neutrino
power spectra at various redshifts to the outputs from the fid, med NDIR, and hi NDIR

runs (previously shown in Figure 3.3). As discussed earlier, the neutrino power spectrum
on scales approaching kνNyq is very sensitive to the number of direction vectors. Ref. [213]
attributed this to a coherent sampling of the gravitational potential causing a spurious power
generation that diminishes as the number of direction vectors increases.6 At high redshift,
we would expect that the simulated power spectra numerically converge to linear theory
as the number of direction vectors increases, and that this happens most readily on larger
scales where the spurious power is weakest. However, while we do observe clear numerical
convergence as NDIR is increased, the converged result is noticeably below linear theory for
k ≳ 0.1 h Mpc−1. This systematic suppression is clear at z = 9 and persists until late
times when non-linear growth eventually dominates the signal. While this discrepancy is
relatively minor (the simulation with NDIR = 192 has neutrino power that is 15% smaller
than linear theory), and therefore unlikely to significantly impact the total matter field, it is
worth considering any potential systematic errors that could contribute to incorrect neutrino
growth.

There are a number of approximations made in the simulations presented here. In the
first place, the momentum-integrated neutrino transfer function is used to set the initial
displacement and non-thermal velocities for all momentum shells. In principle, this could be
made more accurate by initializing each shell with its own momentum-dependent transfer
function. However, given that we do not observe a significant dependence on NSHELL seen in
Figure 3.4, we do not expect this to be a large source of bias in the neutrino power spectrum.
Another potential issue is that high thermal motion at early times enables neutrino particles
to quickly traverse large distances from their starting point. This behavior may smooth out
the power spectrum initially seeded in the displacement field as the neutrinos dynamically
readjust to their rapidly changing environments. In this case, we would expect the smoothing
to be enhanced with earlier starting times when the thermal motion is more extreme. Another
possible bias stems from the non-relativistic treatment of neutrino particles in the simulation;
an approximation that becomes increasingly inaccurate at higher redshift and conflicts with
the relativistic treatment used in the linear theory reference curves. Finally, the neutrino

6Ref. [213] also found that this spurious power is more significant for higher momentum shells. By
inspecting q−dependent power spectra, we also find this to be the case, and that the higher-q shells are more
sensitive to the number of directions NDIR.
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initial conditions are set using the ZA which is known to be insufficient for cold matter at the
neutrino starting redshifts used here. It is unclear if the ZA is also problematic for neutrinos
at these redshifts despite their lower density amplitude, but it has been shown in Ref. [244]
that systematic power suppression occurs in cold matter simulations with late ZA starts.

We test the latter three possibilities more closely by running three simulations with
different neutrino initial redshifts. These are shown in the right panel of Figure 3.8 where
the lo z, hi NDIR, and hi z runs differ only by their use of zνini = 10, 20, and 40, respectively.
At z = 9, all three runs sit systematically below linear theory7 at k ∼ 0.2 h Mpc−1, with
this suppression persisting until non-linear growth dominates at z = 1. We do observe a
small dependence on zνini at high redshift, with the lo z run exhibiting tighter agreement
with linear theory compared to the other two simulations. However, this trend is quickly
erased by z = 3 at which point all three runs show strong agreement on all but the smallest
scales. On scales approaching kνNyq, we still see a clear trend with zνini which we attribute to
the earlier start times allowing a greater accumulation of spurious power due to the angular
discretization of the tiling method. Hence, the systematic suppression in power does show
minor dependence on the neutrino initial redshift, but this is only evident at early times.

More careful tests would be required to determine the exact cause of the neutrino power
suppression seen on intermediate scales. Furthermore, it is not clear if this suppression is
specific to the tiling scheme or would also be observed in a simulation using the random draw
strategy (assuming a sufficient number of particles are used to resolve the neutrino power
below the shot noise level). We note that analogous findings have also been observed in
mixed cold dark matter plus baryon simulations where the cold dark matter (baryons) grow
systematically fast (slow) relative to linear theory expectations when the force resolution is
below the mean inter-particle separation [254, 255, 256]. It is conceivable that the same issue
manifests in neutrino simulations and may even be exacerbated when the neutrino particle
grid is made coarser than that of the cold matter. Even though the discrepancy with respect
to linear theory is relatively minor, it is still worth investigating this topic in the future so
that systematics in neutrino simulations are properly identified and resolved.

3.5 Conclusions

A standard approach for initializing cosmological simulations is to backscale the final redshift
transfer functions to the initial redshift in a manner that is consistent with the Newtonian
forward model of the simulation. This procedure becomes complicated in massive neutrino
cosmologies since the simulated growth function acquires a scale dependence that is not
easily calculable. We have presented an improved backscaling method for massive neutrino
cosmologies that uses an iterative procedure to converge on a self-consistent initialization
strategy that preserves the relative neutrino growth predicted by Boltzmann solvers. Our

7The linear theory curves are calculated from the backscaling of the zνini = 20 run. There are minor
differences in the backscaling for the different zνini (see Figure 3.1) but these are small in comparison to the
spread in the simulation curves seen here.
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Figure 3.8: Neutrino power spectra from several simulation runs at several redshifts (colors)
compared to linear theory computed using our backscaled transfer functions (solid). Left:
Neutrino power for the fiducial neutrino initialization redshift (zνini = 20), with a varying
number of initial velocity directions: NDIR = 12 (dashed, fid), NDIR = 48 (dash-dotted,
mid NDIR), andNDIR = 192 (dotted, hi NDIR). Right: Neutrino power for the highest number
of initial velocity directions (NDIR = 192) at several choices of starting redshift for the
neutrino particles: zνini = 20 (dashed, hi NDIR), zνini = 40 (dash-dotted,, hi z), zνini = 10
(dotted,lo z). At each redshift, we show using a circle the non-linear scale, knl, defined
to be the largest scale for which the dimensionless total matter power spectrum, ∆2

m(z) ≡
k3Pm(k)/2π

2, exceeds unity. Lower panels show residuals with respect to (backscaled) linear
theory neutrino power spectra and gray bands are between ±15%.

method exploits the known asymptotic limits that the energy density contributing to growth
on large and small scales is set by Ωcbν and Ωcb, respectively. When compared to the direct
output of Boltzmann solvers at high redshift, our backscaled transfer functions show quali-
tatively similar behavior to what is seen in massless neutrino cosmologies. This is a notable
improvement compared to the common approach where the scale-dependent growth is solved
using a two-fluid model that assumes a much different level of neutrino growth compared
to Boltzmann solvers. Since our approach maintains the neutrino growth predicted with
Boltzmann codes, an added benefit is that we can readily compare the simulated neutrino
power spectra with our backscaling model to check that neutrinos are evolving with linear
theory expectations.

We applied this backscaling procedure to particle-based neutrino simulations performed
using the code HACC. The neutrino initial conditions follow the tiling framework presented
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in Ref. [224] with a number of important modifications. First, we introduce a simple rotation
scheme between adjacent momentum shells which reduces spurious power arising from the
angular discretization of momentum directions. Second, we omit neutrinos from the short-
range gravitational force and apply a sharp truncation to the neutrino density field in Fourier
space during the long-range force calculation. This filter can easily be applied in any PM-
based force solver and prevents an artificial back-reaction of the initial condition neutrino
grid onto the cold matter field. Without any filter, we found perceptible spikes emerge in
the cold matter field if the neutrino mass resolution, and the corresponding neutrino shot
noise level, is sufficiently coarse. Since this filter completely removes neutrino power below
the particle grid Nyquist frequency, it should only be applied if the particle grid resolution
is much finer than the neutrino free-streaming length. More sophisticated treatments would
involve applying this filter only at high redshift when both the free-streaming length is
larger and the neutrino shot noise level is more comparable to the intrinsic cold matter
power spectrum.

We performed a numerical convergence study on the internal parameters of the tiling
method. In agreement with Ref. [213], we find that the tiling method is highly sensitive to
the number of direction vectors and NDIR ≳ 100 is required to achieve ∼ 10% convergence
in the neutrino power spectrum on intermediate scales. The dependence on the number of
momentum shells is weaker and is generally converged at the ∼ 10% level with NSHELL ≳ 10.
In order to prevent the total number of neutrino particles from heavily dominating the total
particle count, these findings require a relatively coarse neutrino grid with Ncb/Nν ≳ 10.
The primary challenge is that the neutrino power spectrum saturates to the shot noise level
below the neutrino grid scale with prominent peaks at the grid resonance frequencies. This
issue is not unique to the tiling procedure per se, but becomes increasingly problematic as
a neutrino grid pushes the noise to larger scales. Hence, while the tiling method effectively
removes neutrino shot noise above the neutrino grid scale, the sacrifice is that care must be
taken to ensure that the number of neutrino particles per grid site is large enough to reach
numerical convergence and that the gravitational back-reaction from the grid is properly
handled. We found that the cold matter power spectrum is largely invariant to changes in
the tiling parameters on linear scales. On non-linear scales, however, we found that changes
in the tiling parameter choices lead to ∼ 1% random noise.

The simulations presented here converge to a neutrino power spectrum suppressed at the
15% level compared to linear theory for scales k ≳ 0.1 h Mpc−1 and redshifts z ≳ 1. We
have not determined the exact cause of this discrepancy nor is it clear if this result is unique
to the tiling method or would more generally be reproduced in other particle-based methods.
Obviously, there are a number of approximations made in the simulation that could preclude
accurate comparisons with linear theory. These include the use of the momentum-integrated
transfer function for all momentum bins in the initial conditions as well as the fact that we
omit all relativistic treatments of neutrinos. It is also possible that high thermal motion
at early times erases the initial condition power spectrum and/or that biases seen in mixed
dark matter plus baryon simulations extend to the neutrino case. The use of the ZA in
initializing the neutrinos at zνini = 10 − 40 may also be problematic, due to the associated
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power suppression characteristic of this approximation. Understandably, most studies have
focused only on numerical convergence in the total matter field, but it remains important to
isolate any errors directly impacting neutrino growth.

We compared the results from our N-body simulations for the total matter power spec-
trum with the predictions of the Mira-Titan emulator [194] for a neutrino mass sum of
0.15 eV, corresponding to fν ≈ 1%. The results obtained are very encouraging, the agree-
ment being nicely within the estimated errors intrinsic to both methods.

Looking forward, there are several applications where the lessons of this work might
be useful. For example, the methods used for simulating the nonlinear effect of massive
neutrinos on probes of LSS can be repurposed to investigate similar effects due to light
massive relics (LiMRs, e.g. Ref. [257]). Most forecasts of the sensitivity of LSS observations
to the presence of LiMRs have been at the level of linear theory or modified perturbation
theory [258, 259], though Ref. [260] recently gave a fully-nonlinear treatment with simulations
(using a randomized initialization). It would be interesting to consider both the reduced
computational cost due to shot noise reduction and to explore the relative significance of
the numerical artifacts of the tiling initialization in the context of LiMR simulations. This
work also serves to inform how best to include massive neutrinos in a computationally
efficient manner in three-species simulations, for example, in conjunction with CRK-HACC

[239]. Future work will more completely characterize to what extent the tiling initialization
can be reliably applied to three-species simulations, in particular focusing on the interaction
between baryons and neutrinos.
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Chapter 4

Multi-tracer Forecasts for Primordial
non-Gaussianity with
Machine-Learned Bias

This chapter was originally published as: James M. Sullivan, Tijan Prijon, and Uroš Sel-
jak. “Learning to Concentrate: Multi-tracer Forecasts on Local Primordial Non-Gaussianity
with Machine-Learned Bias”. In JCAP 2023, 8, 004, DOI:10.1088/1475-7516/2023/08/004,
arXiv:2303.08901 [astro-ph.CO]

In this chapter, we discuss the prospect of using the galaxy properties beyond host halo
mass of multiple tracers of large scale structure for constraining inflation-era physics. Local
primordial non-Gaussianity (LPNG) is predicted by many non-minimal models of inflation,
and creates a scale-dependent contribution to the power spectrum of large-scale structure
(LSS) tracers, whose amplitude is characterized by bϕ. Knowledge of bϕ for the observed
tracer population is therefore crucial for learning about inflation from LSS. Recently, it has
been shown that the relationship between linear bias b1 and bϕ for simulated halos exhibits
significant secondary dependence on halo concentration. We leverage this fact to forecast
multi-tracer constraints on f loc

NL. We train a machine learning model on observable properties
of simulated IllustrisTNG galaxies to predict bϕ for samples constructed to approximate DESI
emission line galaxies (ELGs) and luminous red galaxies (LRGs). We find σ(f loc

NL) = 2.3,
and σ(f loc

NL) = 3.7, respectively. These forecasted errors are roughly factors of 3, and 35%
improvements over the single-tracer case for each sample, respectively. When considering
both ELGs and LRGs in their overlap region, we forecast σ(f loc

NL) = 1.5 is attainable with
our learned model, more than a factor of 3 improvement over the single-tracer case, while the
ideal split by bϕ could reach σ(f loc

NL) < 1. We also perform multi-tracer forecasts for upcoming
spectroscopic surveys targeting LPNG (MegaMapper, SPHEREx) and show that splitting
tracer samples by bϕ can lead to an order-of-magnitude reduction in projected σ(f loc

NL) for
these surveys.
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4.1 Introduction

Cosmological observations of the Cosmic Microwave Background (CMB) and Large-scale
Structure (LSS) are currently in complete concordance with Gaussian initial conditions [261].
Yet, the tantalizing possibility that there are deviations from Gaussianity lurking beneath ob-
servational uncertainties remains. These deviations - or Primordial non-Gaussianity (PNG)
- come in several well-known forms, one of which is the local type (LPNG) parameterized by
the amplitude f loc

NL:
ϕ = ϕG + f loc

NL

[
ϕ2
G − ⟨ϕ2

G⟩
]
, (4.1)

where ϕ is the Bardeen potential [262] and ϕG a Gaussian random field. A detection of
f loc
NL ∼ 1 would definitively indicate the presence of multiple fields during inflation, and
provides a natural theoretical sensitivity target [263, 264].

The Planck satellite has placed the most stringent constraints on f loc
NL to date, finding

f loc
NL = −0.9 ± 5.1 [265], consistent with no local PNG. While future CMB missions should
improve on this uncertainty, they are not forecasted to reach σ(f loc

NL) ≲ 1 [266, 267]. However,
LSS surveys promise to supersede this sensitivity in the near-term [268, 269, 270, 271, 272,
273, 274]. In particular, the multi-tracer technique [275, 276, 277, 278, 274, 273, 279, 280,
281, 282] provides a powerful tool for using large-scale modes most affected by survey sample
variance.

The presence of local PNG modulates the halo density field in a scale-dependent manner
[283, 284]. This “scale-dependent bias” effect (LPNG bias) produces a signal in the halo
power spectrum that scales like k−2, becoming more important on larger scales. This be-
havior is fundamentally due to LPNG inducing a bispectrum that peaks in the squeezed
triangle configuration, which couples a long wavelength mode with two short wavelength
modes, effectively linking very large scales with the small-scale process of halo formation.
The amplitude of this effect is controlled by the LPNG bias bϕ, and while initially it was
believed that it only depends on the halo mass [283], it was soon realized secondary halo
properties such as merger history also affect its value [284]. This effect has been exploited
over the last 15 years in several LSS analyses to make significant progress toward a precision
measurement of f loc

NL [284, 285, 286, 287, 288, 289], though those constraints remain looser
than those from Planck - LSS has yet to take the lead in constraining f loc

NL. The above anal-
yses do not make use of the multi-tracer technique, and therefore can in principle be pushed
further in sensitivity. However, many these analyses make a simplifying assumption that the
relationship between the LPNG bias bϕ and the linear tracer bias b is perfectly known, or
otherwise only consider a few values of constant shifts from this relationship 1.

A slew of recent papers has called this knowledge, which was always approximate, into sig-
nificant question for simulated galaxies and other tracers [291, 292, 293, 290, 294]. Building
on the pioneering work of Ref. [295], Ref. [296] investigated to what extent several com-
monly considered assembly bias parameters affect the relationship between the linear halo

1Though more recent work has also considered priors on bϕ and constraining only bϕf
loc
NL [290, 289, 288]

to account for this uncertainty
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bias b1 and bϕ in dark matter only N-body simulations. For halo spin and sphericity, the
authors found only a modest effect, but, especially for lower halo masses and redshifts, they
found a significant secondary dependence of bϕ on halo concentration. There, the authors of
Ref. [296] argue that the strong sensitivity of bϕ to changes in concentration indicates that
existing constraints assuming a fixed form for bϕ(b1) are unreliable, but also acknowledge
that this sensitivity is an opportunity to better constrain f loc

NL with suitably defined galaxy
populations. The goal of this work is to identify such populations with the aid of a ma-
chine learning algorithm trained on observable galaxy properties and to use its predictions
to forecast the improvement on σ(f loc

NL) that such a definition furnishes.
By using simulated galaxy samples that approximate the DESI selections for emission

line galaxies (ELGs) and luminous red galaxies (LRGs), we can get a realistic estimate
for the current and near-term prospects of constraining f loc

NL by using observable quantities
beyond halo mass to which bϕ responds. We will show that, depending on the information
available and the galaxy sample properties, we are able to improve the forecasted error on
f loc
NL by factors of several for DESI-like galaxies using machine-learned bϕ predictions. We
also comment on the prospects for using this strategy in future spectroscopic surveys, where
naively one could expect an order of magnitude improvement on σ(f loc

NL) if halo concentration
were perfectly recoverable.

This paper is structured as follows: We briefly review the LPNG parameter bϕ in Sec-
tion 4.2 before moving on to the construction of the DESI-like simulated galaxy samples and
our machine learning methodology in Section 4.3. We then provide forecasts for σ(f loc

NL) in
Section 4.4, and provide some concluding remarks in Section 4.5.

4.2 Local PNG bias bϕ

We briefly review the salient facts about the scale-dependent bias signal induced by local
primordial non-Gaussianity and its amplitude bϕ.

In the peak-background split (PBS) formalism [21], the parameter bϕ is defined as the
response of the tracer mean density n̄t to the presence of a long-wavelength perturbation of
the Bardeen potential ϕ

bϕ =
∂ log n̄t

∂(f loc
NLϕ)

= 2
∂ log n̄t

∂ log σ8
. (4.2)

The second equality follows from the argument that the effect of LPNG on the tracer abun-
dance is equivalent to the effect of a rescaling of the amplitude of linear fluctuations [21].
We will accept this argument for the purposes of this work.

This bias enters the tracer power spectrum at linear order in δ and f loc
NL:

Ptt(k) = ⟨δt(k)δ∗t (k′)⟩′ (4.3)

L.O.
= b2PL(k) + 2bϕbM−1(k)PL(k), (4.4)

where the ′ indicates that we drop the missing momentum-conserving Dirac delta and as-

sociated (2π)3 prefactor, b is the linear bias, andM−1(k) =
3ΩmH2

0

2c2Dmdk2T̃ (k)
, where T̃ (k) is the
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transfer function normalized to 1 on large scales, and Dmd is the linear total matter growth
factor normalized to 1 in matter domination.

Reducing to the case of halos (n̄t = n̄h) with a universal mass function that only allows
halo abundance to depend on halo mass, gives the universality relation (or UMF [284]):

bϕ(b, p) = 2δc(b− p),

where the critical overdensity is δc = 1.686. For the case where we select all of the halos
of a given mass the universality relation gives p = 1. For dark matter halos there are
some deviations of this bϕ(b1) relationship observed [297, 290]. It has also been argued that
other values of p are more appropriate for certain sub-populations of halos, such as for halos
that have undergone a recent merger, which may host quasars [284]. However, the picture
becomes even more complicated for simulated galaxies, for which it was recently shown that
when selecting by stellar mass, a value of p = 0.55 is preferred when using the IllustrisTNG
galaxy formation model [291]. Presumably, if the stellar mass selection can be replaced with
halo mass selection, this would restore p = 1, which suggests that by choosing additional
observables one may be able to split galaxies by bϕ.

One such additional observable that has been found to be very sensitive to bϕ is halo
concentration c. With a fixed galaxy formation model, a value of the LPNG bias can be
estimated from Separate Universe (SU) simulations [e.g., 298, 299, 300, 301, 302, 303, 304,
305] in which two N-body simulations are run with two values of σ8 and the bias is then
estimated via finite difference with respect to the mean number density n̄h(M, c). We use
the reported results of Refs. [296, 291] at z = 1 to relate linear halo bias b1 (estimated from
power spectra) and SU LPNG bias bϕ to halo mass M and concentration c.

4.3 bϕ with machine learning

In this Section, we describe our machine learning method for obtaining predictions for bϕ.
Before diving into the details, we provide a brief overview of this process here.

First, we obtain b(M, c), bϕ(M, c) by interpolating the gravity-only Separate Universe
(SU) results of [296] in halo mass M and concentration c, and assign b(M, c), bϕ(M, c) to
each TNG galaxy’s host halo of mass M and concentration c . We then train the ML
model described below on galaxies where the values of bϕ are known to learn the relationship
between input features such as galaxy magnitude and bϕ. After making a prediction for bϕ on
test data, we rank order the bϕ predictions to determine a split of the sample into tertiles. We
then obtain predictions for a mean value of bϕ in each tertile by using the trained ML model
evaluated on the observable input features of galaxies in that tertile (magnitude, position,
etc.) and averaging. This final set of bϕ values in the tertiles are used as input to the Fisher
forecasts of Section 4.4.
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Figure 4.1: ELG and LRG-like galaxies in the part of the volume of the IllustrisTNG simula-
tions at redshift z = 1. Galaxies are presented in real space, and those closer than 5 h−1 Mpc
are linked for ease of presentation. The size of each galaxy marker is directly proportional
to its logarithmic stellar mass (logM∗).

We use simulated galaxy data from the IllustrisTNG-300 [306, 307, 308, 309, 310, 311]
simulation, a cosmological magnetohydrodynamical simulation that models the formation
and evolution of galaxies and covers the volume of V = 2053 [h−1 Mpc]3. The snapshot that
we use is at redshift z = 1, which is a compromise between being able to mimic Dark Energy
Spectroscopic Instrument (DESI) survey [312] observations of both emission-line galaxies
(ELGs) and luminous red galaxies (LRGs). A sub-volume of the simulation containing ELG
and LRG- like galaxies, as we define in Section 4.3, is shown in Fig. 4.1.
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Observables

The halos in the IllustrisTNG simulation are determined with the friend-of-friends (FoF)
algorithm [313], with linking length ℓ = 0.2.

We use the results of Ref. [296] to link bϕ and b to halo mass and concentration. We take
halo concentration from the IllustrisTNG supplementary data catalog [314]. It is defined as
c = R200c/Rs, where Rs is determined by fitting a Navarro-Frenk-White (NFW) [315] profile
to the dark matter density profile. We use the R200c halo mass definition. We note that
Ref. [296] used several halo mass definitions when using different simulations, though since
concentration was logarithmized, the effect of these differences should be reduced.

To avoid using halo properties that are unobservable by spectroscopic surveys to infer
halo LPNG bias, we only use stellar masses M∗, the r, g, and z magnitudes, and redshift-
space positions of the galaxies. We use the word “observable” somewhat loosely, as galaxy
stellar mass must be estimated from spectra, and dust models that affect the observed r, g, z
magnitudes are uncertain - we do not account for these aspects that would be relevant for a
real data analysis here. We choose the IllustrisTNG z-coordinate as the line-of-sight direction
to obtain positions in redshift space. The real-to-redshift space transformation is

s = x+
v(x)µ

H ẑ (4.5)

where x is the real-space galaxy position, v(x) is the galaxy velocity magnitude, ẑ is the
line-of-sight direction, µ = v̂ · ẑ, H is the conformal Hubble parameter, and s is the redshift-
space position. To simulate the effect of redshift-space distortions on galaxy observations,
we transform the galaxies to redshift space before computing input features and training the
machine learning algorithm to predict bϕ.

While each galaxy lies in exactly one halo, a halo can contain multiple galaxies inside.
When we report results in later sections, we predict bϕ of the halo for each galaxy separately.
Thus, it can happen that in the results, we have several (either the same or different)
predictions for the same halo if several galaxies lie in it. This approach is justified because
we, in reality, observe galaxies and cannot a priori know whether two galaxies belong to the
same halo. We emphasize that in the training we do not use any information about the halos
(for example, halo position), except the knowledge of to which parent halo a galaxy belongs.

ELG and LRG sample

Our data sample mimics the emission-line galaxies (ELGs), and luminous red galaxies
(LRGs), as observed by the DESI survey at redshift z = 1. We can construct these mock
galaxy samples either by color-space cuts or by galaxy selection based on specific star-
formation rate (sSFR, i.e., the SFR per stellar mass) and stellar mass (M∗) cuts [316, 317,
318]. We adopt the latter strategy and use sSFR and stellar mass cuts.

To obtain both ELG and LRG samples, we first make sSFR cuts and then take the
heaviest galaxies based on M∗ to get the desired target number densities. We made two
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Figure 4.2: Parent halo properties of ELGs and LRGs. As expected we see that LRGs live
in more massive halos with lower concentration. We also show the bϕ value associated each
halo. We can see that while it is a function of both halo mass and concentration, the latter
has a much greater impact. The halo mass is reported in the units of 1010 M⊙/h.

different sample selections using sSFR cut values of log10[sSFR] = −9.09 from [318], and
log10[sSFR] = −9.23 from [316]. The target number densities are taken from [319, 320].
The selection of ELG and LRG samples is summarized in Table 4.1. Here we find that the
mean b1 values of our mock samples are similar to those of Ref. [312] for ELGs (1.4) and
LRGs (2.6) at z = 1. With this selection, we also ensure that no galaxy is classified as an
ELG and an LRG simultaneously. In the next sections we report the results for all eight
galaxy samples presented here. We optimize hyperparameter separately for each sample (see
Section 4.3). However, because the samples are relatively similar, most hyperparameters
remain the same.

In Fig. 4.2, we compare the halo properties in which LRG and ELG galaxies lie, and
show their expected bϕ in the mass and concentration plane. We see an apparent trend that
LRGs lie in heavier halos and that their halos have lower concentrations. In Fig. 4.3, we
compare the stellar mass of ELGs and LRGs and its difference when applying different sSFR
cuts. While the difference in sSFR affects only the M∗ distribution of ELGs, it is evident
that LRGs are significantly heavier, in accordance with Refs. [312, 321].

All the results in this Section are reported for the samples selected with the sSFR cut
of log10 sSFR = −9.09, and with number densities of nELG = 5 × 10−4 [h−1 Mpc]−3, and
nLRG = 2×10−4 [h−1 Mpc]−3, as these are the DESI number densities at z = 1 in Refs. [320,
319].
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Type log10 sSFR n [h−1 Mpc]−3 min log10M
∗ b̄

LRG ¡ -9.09 2× 10−4 1.06 2.40
LRG ¡ -9.23 2× 10−4 1.06 2.40
ELG ¿ -9.09 5× 10−4 0.02 1.44
ELG ¿ -9.09 7× 10−4 -0.09 1.42
ELG ¿ -9.09 1× 10−3 -0.23 1.39
ELG ¿ -9.23 5× 10−4 0.23 1.46
ELG ¿ -9.23 7× 10−4 0.17 1.44
ELG ¿ -9.23 1× 10−3 0.07 1.42

Table 4.1: Selection criteria with number densities, minimum obtained stellar massM∗ (units
of 1010 M⊙h), and average b1 for each sample. We first apply the sSFR cut (units of h/yr),
as specified in the second column, and then select galaxies with the highest M∗ to achieve
the target number density. The number of galaxies (“size of dataset”) in each sample can be
calculated from number densities and the volume of the simulation (V = 2053 [h−1 Mpc]3),
and lie between 1500 and 7000.

Machine learning

Our objective is to predict the value of the continuous variable bϕ, based on M continuous
features (inputs) xi = (xi,1, xi,2, ..., xi,M) on N training examples, which are in our case
galaxies. We want to find a function f : RM → R that maps the inputs xi to the scalar value
of bϕ. When constructing such a function, we want to minimize the difference between its
output and the actual value of bϕ. The metric of the difference we are minimizing is our loss
function, which we take to be the most common root-mean-square error function (RMSE),

defined as L =
√

1
N

∑N
i=1(yi − ŷi)2, where yi and ŷi are the actual and predicted values of bϕ

for the ith training example.
The described problem is a single-target regression problem. However, rather than first

interpolating bϕ from halo mass and concentration (as described in Section 4.3) and directly
predicting it, we could make predictions for mass and concentration, and interpolate bϕ from
predicted values instead. In this case, we would be dealing with a multi-target regression
problem. We tried this approach and verified that it leads to worse results according to
the RMSE metric. The difference between the two approaches can be imagined only as a
difference in the loss function that is optimized. However, because we are only interested in
bϕ it is both simpler and more effective to focus on a single target regression.

The problem of inferring the halo properties from observable data has already been stud-
ied in the literature using various machine learning (ML) techniques. One approach is to use
structured data with a combination of graph neural networks (GNN) or convolutional neural
networks (CNN), while another approach uses unstructured data by calculating statistics
of the halo neighborhood [e.g., 322, 323, 324, 325, 326, 327, 328]. We focus on the latter
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Figure 4.3: The stellar mass of ELG and LRG-like galaxies selected by two different sSFR
cuts. LRGs are significantly heavier in both cuts, and it is apparent that the ELG and
LRG selected samples do not overlap. While the different sSFR cuts significantly affect
the M∗ of the ELGs, they have almost no influence on the M∗ of LRGs. The histograms
are normalized for easier visualization, as ELG and LRG samples do not contain the same
number of galaxies.

and used several different ML algorithms in combination with unstructured input features.
The main reason for this is that GNN and CNN would generally need a larger data sample
size, with higher number densities. We further justify this selection when we discuss the
interpretability of our model in Section 4.3.

Input features

Each galaxy belongs to exactly one halo whose bϕ we want to infer. However, it is not
necessarily true that the halo’s center coincides with this galaxy’s position. We define a
central galaxy as the galaxy with the largest M∗ within R = 1 h−1 Mpc of the galaxy whose
halo properties we want to infer. R is a hyperparameter of our model, which we optimize as
discussed in Section 4.3. We then use the central galaxy surroundings to describe the halo
environment more accurately.

We use 13 features that we found useful for predicting bϕ:

• r, g, z – AB magnitudes of r, g, and z bands of the central galaxy
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• logM∗ of the central galaxy

• NR; number of neighbor galaxies within R, for R ∈ {0.5, 1, 2, 3, 4, 5} h−1 Mpc

• Metric of anisotropy, defined as A =
∥∥∥∑i

Ri

∥Ri∥ ·H(RH −Ri)
∥∥∥
2

• Sum of stellar masses of the galaxies in the neighborhood; log (
∑

iM
∗
i ·H(RH −Ri))

• Sum of stellar mass to distances ratios; log
(∑

i
M∗

i

Ri
·H(RH −Ri)

)
.

Here Ri is the separation vector between the i-th neighbor galaxy and central galaxy in
redshift space, and H(RH−Ri) is the Heaviside step function that ensures that only galaxies
within the radius RH are included in the sum. RH is a hyperparameter of our model, for
which we useRH = 5 h−1 Mpc. The results are mostly insensitive to the choice ofRh, however
when considering a neighborhood much more distant than 5 h−1 Mpc, the results do not
improve, and rather start to deteriorate. The machine learning models can in theory learn
to ignore less important input features, however, we are limited by the size of our dataset.
For this reason, using fewer, only dominantly important features turns out to be better. All
the described features use the distances calculated in redshift space. The predictive power
of the model would increase if the features are calculated in real space, however we do not
focus on them, since spectroscopic surveys observe galaxies in redshift space.

The correlations between the most representative input features are presented in Fig. 4.4.
The intrinsic features of the galaxies are strongly correlated, with the correlation between
luminosity bands being almost exactly 1. For this reason, we tried performing principal
component analysis (PCA), which would reduce the dimensionality of the dataset. However,
the results did not improve, and we do not use PCA to produce final predictions.

The stellar mass of the central galaxy, sum of neighborhood stellar masses, and sum of
stellar-mass-to-distance ratios are all logarithmized before being used for machine learning.
They are approximately exponentially distributed, therefore very large (small) numerical
values could lead to potential numerical instabilities during the ML learning process. Fur-
thermore, we standardize all features, x̂i = xi−µi

σi
. Normalizing instead of standardizing

features lead to slightly worse results, probably due to the outliers present.
We experimented with utilizing alternative input features. We already commented on

the rationale behind restricting the input information to neighboring galaxies within a ra-
dius of RH . However, it would be possible to instead select the N nearest galaxies with the
objective of optimizing N. This approach appears to be less intuitive from a physical stand-
point, as it may not accurately capture the influence of clustering effects. We have indeed
checked and observed that it leads to slightly worse predictions for bϕ. Furthermore, we have
checked and observed that incorporating information on the luminosities and stellar masses
of the neighboring galaxies does not lead to any discernible improvements in the obtained
predictions.

In Table 4.1, we have 8 different datasets for which we want to make separate bϕ pre-
dictions. When we make predictions for ELG galaxies, we also include information about
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Figure 4.4: Pearson correlation coefficients of the most representative input features. The
coefficients are rounded and are not exactly 1 between different luminosity bands. While the
intrinsic features of galaxies (luminosity bands and stellar mass) are quite strongly correlated,
they are mostly uncorrelated with the distributions of the galaxies in the neighborhood.

nearby LRG galaxies (in redshift-space) and vice versa. In other words, we use both ELGs
and LRGs to calculate the number of neighbor galaxies or local anisotropy. However, we
train the model and make predictions only on one type of galaxy at a time - this procedure
could be performed on real data.

Models

We have tried using several different machine learning algorithms to predict bϕ from the
input features as described in Section 4.3. The top three best-performing models are Artifi-
cial Neural Networks (ANN), Support Vector Machines (SVMs), and gradient-boosted tree
models (XGBoost [329]). We discuss the process of hyperparameter optimization in Section
4.3.

We employ a technique known as model stacking to enhance the predictive performance
of the three best-performing models; ANN, SVM, and XGBoost. Model stacking integrates
individual predictions of multiple models and produces the final output from them. By
stacking models, we can reduce both prediction bias and variance. The prediction errors
arising from the individual models stem from distinct sources and thus can be partially
offset.

The effectiveness of model stacking relies heavily on the diversity and quality of the base
learners (the models whose predictions we are combining). A decrease in variance and new
sources of prediction bias may be introduced if the base models are not good enough. ANN,
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XGBoost, and SVM all perform well independently and have distinct modeling techniques
and assumptions (XGBoost is an example of a tree-based ensemble method, ANN is a type of
neural network, and SVM is a discriminative model). We tried including additional models
in the ensemble, which did not lead to an increase in predictive power.

After obtaining the predictions of the base models, we want to train a new meta-model
on them and map “base predictions” to bϕ. We want to find a function f : R3 → R, which
takes three continuous inputs (predictions of base learners) and outputs bϕ. We use a simple
ridge regression for this task to avoid overfitting.

Training

To optimize the hyperparameters of the algorithms described in Section 4.3, and features
described in Section 4.3, we perform a train-validation-test split of the dataset (of each
galaxy sample). The test set is held aside and is only used for the final evaluation. We use
3-fold cross-validation for training the meta-model.

Regarding the size of the train-test-validation split, we use a ratio of 70-20-10 %. Because
we are dealing with spatially distributed galaxies, having a random split would lead to data
leakage. The galaxies in the test (or validation) set may lie nearby the galaxies from the
training set and would thus be in an identical environment. It would allow the model
to perform well on the test set by simply memorizing the patterns from the training set,
but would not be able to generalize well. We adopt the solution of splitting the data into
spatially distinct regions based on x and y spatial coordinates, which are not the line-of-sight
directions.

Using the training and validation sets, we employ grid search to tune the hyperparam-
eters. We also evaluate the performance of other combinations of input features, differ-
ent options of feature transformations, different loss functions, different models, and the
performance of adopting a multi-target regression problem and predicting halo mass and
concentration over bϕ.

Examples of features that we optimized have already been mentioned in the section
4.3. The optimizations include adjusting the distances to capture information about the
surroundings and modifying the number of features that describe environmental density.

While optimizing the models, we explored a range of parameters. However, the optimiza-
tions improved the results only to some extent because the correlation between the input
features we use and the halo assembly bias is limited (in addition to being complex).

Regarding the artificial neural networks (ANN), we have tried a range of hidden layers
between 2 and 10, the number of neutrons per layer between 5 and 50, and we also changed
the dropout rate and the activation functions. Our final ANN architecture has four hidden
layers with 20 neurons per layer. In addition, we use dropout and the LeakyReLU activation
function. The kernel of the SVM model used is the radial basis function. All other values of
the hyperparameters and the values in the grid search grid are available on GitHub2.

2https://github.com/jmsull/ml_fnl_forecast

https://github.com/jmsull/ml_fnl_forecast
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Figure 4.5: Results for ELG (left) and LRG (right) predictions on the test set. We present
predicted versus actual values for each galaxy. The perfect predictions should lie on the red
line, which has a slope of 1. Only the bϕ predictions (top row) are relevant for the analysis.
However, we also show halo concentration and mass predictions (bottom two rows).

The final predictions made by the stacked model on the test set are presented in Fig.
4.5.. We also show the separate predictions for halo concentration and mass. We do not
use mass and concentration predictions elsewhere, but it is useful to see them since bϕ
is a function of these variables. We can see that for both ELGs and LRGs, halo mass
predictions are significantly better than both bϕ and concentration predictions. While the
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bϕ and concentration RSME are of the same magnitude, the RMSE of mass prediction is
roughly 10 times smaller.

It is hard to make direct comparison between ELG and LRG results, since the distribu-
tions of the target values are different, as seen in Fig. 4.2. However, it seems that the results
in terms of RMSE are generally better for LRGs. The reason for this could be that, as seen
in Fig. 4.2, LRGs live in more massive halos, which are correlated with larger environments
and higher central fractions. Moreover, LRGs are older than ELGs and are thus less affected
by hydrodynamical effects, which are hard to capture with the properties we are looking at.

In Fig. 4.6 we can see the average bϕ values of the tertiles, split based on predicted bϕ
from Fig. 4.5. The “Ideal” dots in Fig. 4.6 correspond to the values of bϕ for splits made by
actual bϕ values of the galaxy host halos. After these tertilles are defined we compute the
mean b1 of all halos in each tertile.
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Figure 4.6: b̄ϕ, for ELG and LRG samples. We split the sample into tertiles for the “Ideal”
case based on the actual bϕ value and report the average bϕ for each tertile. For the “Pre-
dicted” case, we make the split based on predicted bϕ, as shown in Fig. 4.5. The horizontal
axis on the plots is arbitrary and just denotes different tertiles.

We want to look at the interpretability of our model and see which information is most
important for the obtained results. For this purpose, we use Shapley Additive explanations
(SHAP) values, a technique for determining feature importance [330]. The SHAP feature
importance is calculated by permutating all features and summing the average contribution
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Figure 4.7: SHAP values of feature importance for predictions in redshift space. We can see
that for both ELG and LRG- like galaxies, intrinsic features of galaxies are of much greater
importance than the properties of the neighborhood. We can also observe that the feature
importance is similar for both ELGs and LRGs.

of each feature over all permutations. It provides a fair and accurate estimation of the
contribution of each feature, even if features are correlated, and can account for complex
interactions between features3.

The average SHAP values for each feature are presented in Fig. 4.7. The feature impor-
tance is presented for only two galaxy samples, however it remains practically the same for
others. We can notice that, for both ELG and LRG, the intrinsic properties of the galaxies
are significantly more important than environmental properties. Another interesting thing
to observe is that the feature importance is similar for ELG and LRG galaxies.

We can observe that the importance of NR does not converge to 0. This makes sense since
there is a high correlation between the number of neighbors within different R. Moreover,
we have explicitly checked that adding information about a larger environment does not
improve results. It just takes some importance from other NR features, while their sum
would remain the same. The reasons are that the information too far from the halo does not
affect the results, the dataset size is inadequate, and the correlation between halo properties
and those features is noisy.

In Fig. 4.7, we can see that the information from the local neighborhood is much less
influential than other features are when making predictions. Furthermore, we observed that
adding information about luminosities and stellar masses of nearby galaxies does not improve

3The more popular technique used is “permutation importance”, which has the main drawback of being
unable to deal with correlated features.
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the results. We can conclude that it thus makes sense to approach the problem with the
unstructured data instead of using GNN or CNN. Those could work much better in real
space, with a larger simulation (larger data size) and higher number densities.

4.4 Multi-tracer f locNL forecasts

In this Section we provide Fisher forecast results for σ(f loc
NL) using a slightly extended version

of the multi-tracer approach of Ref. [275]. In particular, we first provide forecasts for DESI
LRGs and ELGs using the bϕ(b1) relations found in Section 4.3 for mock versions of these
samples. We then provide more speculative forecasts for future planned spectroscopic surveys
(MegaMapper [331], SPHEREx [332]) that will target LPNG.

Forecast setup

Following [275], we perform forecasts of idealized constraints on f loc
NL, slightly generalizing

the expressions there to a 3-tracer analysis. To be consistent with IllustrisTNG, we will use
the Planck15 fiducial flat ΛCDM cosmology with Ωm = 0.3089, Ωb = 0.0486, ΩΛ = 0.6911,
h = 0.6774, σ8 = 0.8159, and ns = 0.9667 in these forecasts [333, 334], and do not marginalize
over ΛCDM parameters. While this choice might be considered optimistic, the multi-tracer
method is relatively insensitive to marginalizing over ΛCDM parameters (see Appendix C
of Ref. [335]). Furthermore, even without the multi-tracer method, we find that our single-
tracer forecasts produce σ(f loc

NL) that is 10% lower than the (marginalized) values quoted
in Ref. [269] or less (see Fig. 14 there) except for DESI ELGs, where the difference is
25%, though in this case, we do not use the same redshift distribution or redshift range as in
Ref. [269]. We will work entirely in linear theory at the power spectrum level (including linear
redshift space distortions b→ b+ fµ2), and use a simple linear bias model only. We do not
account for the Alcock-Paczynski effect [336]. We compute the linear matter power spectrum
using camb [337]. We use 101 linear µ bins between 0 and 1, Nz = 65 linear z bins between
zmin and zmax, and 100 k values between kmin (which is survey dependent) and 0.075 h/Mpc.
We verified that doubling the number of z or µ bins or k points beyond these values changes
the final forecasted error for the single-tracer forecasts by less than 1%. To be consistent with
Ref. [269], we perform all single-tracer forecasts with the UMF prediction with p = 1. For a
more detailed discussion of a careful treatment of the choice of p in the context of real data,
including the choice of priors, we refer the reader to Ref. [290]. We neglect wide-angle effects
and large-scale relativistic effects on the galaxy power spectrum. We neglect any additional
systematic effects that could contaminate a large-scale measurement of the power spectrum
(e.g. stellar contamination), though it is of course extremely important to characterize these
well in a real data analysis.

Here we describe the galaxy samples used in our forecasts. The primary samples we con-
sider are the Dark Energy Spectroscopic Instrument (DESI) Luminous Red Galaxies (LRGs)
and Emission Line Galaxies (ELGs). For the DESI LRG-like sample we use the redshift dis-
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tribution of [338], and for the DESI ELG-like sample we use the redshift distribution of [320].
For DESI fsky = 0.34 [312], kmin = 0.0023 h/Mpc, and zmin = 0.0, zmax = 2.0. For the linear
galaxy bias of the two DESI samples in the single-tracer analysis, we make the empirically
calibrated choice [312, 339] of bLRG = 1.7

D(z)
, bELG = 0.84

D(z)
, where D(z) is the linear growth

factor (normalized to 1 today) computed in our fiducial cosmology. For the multi-tracer
forecasts using the results of Section. 4.3, we assume the results evolve similarly with D(z)

(i.e. b(z) = D(z=1)
D(z)

b, and similarly for bϕ).

For the MegaMapper forecasts, we follow the prescriptions of Refs. [340, 269, 331, 341] for
the galaxy density n(z) and linear bias b(z), we assume fsky = 0.34, kmin = 0.0017 h/Mpc,
and zmin = 2.0, zmax = 5.0. For SPHEREx, we use fsky = 0.65, kmin = 0.001 h/Mpc, and
zmin = 0.1, zmax = 3.0. For the SPHEREx forecasts, we assign linear bias as a function
of redshift based on the procedure outlined in Ref. [332], but use the fitting functions of
Ref. [342] as implemented in COLOSSUS [343] (and have verified that this choice changes the
halo bias of individual redshift error samples by less than 1% with respect to the fitting
functions of Refs. [344, 345]). We consider the redshift-error samples (labeled by σz

1+z
) on

their own and in combination. We incorporate the SPHEREx redshift errors as described
in Ref. [332] for the various redshift error samples, multiplying the shot noise term by

exp(−
[
kµσz

dχ
dz

]2
). All non-SPHEREx forecasts in this paper assume zero redshift error.

When combining several redshift error samples, we always use the largest redshift error.
For the fully-combined SPHEREx sample, this corresponds to an assumed redshift error of
σz

1+z
= 0.2, so we deviate slightly from the treatment of Ref. [269], who used σz

1+z
= 0.05

for this full sample, and therefore we are more pessimistic in our forecasts. We compute an
effective bias for combined samples by weighting the bias by the sample number density.

We work in linear theory and at a fiducial cosmology where f loc
NL = 0, and so use the

Fisher matrix for δX(k, µ, z) which, in the Gaussian approximation is [346]:

Fαβ =
Nz−1∑
iz=1

∫ 1

0

dµ

∫ kmax

kmin

Nk,izTr
[
C,αC

−1C,βC
−1
]

(4.6)

where C can be either the two-tracer version C(2) or the three-tracer version C(3), with

C(2) =

(
CXX CXY

CY Y

)
, C(3) =

CXX CXY CXZ

CY Y CY Z

CZZ

 , (4.7)

where the field covariance and number of modes Nk,iz in a volume shell Viz are

CXY =
(
bX + µ2f + bXϕ f

loc
NLM−1(k)

) (
bY + µ2f + bYϕ f

loc
NLM−1(k)

)
PL(k) +

δDXY

n̄X

, (4.8)

Nk,iz =
dkk2Viz
2π2

, (4.9)
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respectively, and we neglect both tracer non-Poisson stochasticity and cross-stochasticity
between different tracer fields [347, 335, 348]. Here iz gives the index of the z−bin midpoint
used to compute Fisher matrix element, and Viz is a spherical shell computed using the
adjacent redshift bin edges and is scaled by fsky.

Here, in the notation of Ref. [275], α = b1
b2
and P2 = b22P (at our fiducial value of f loc

NL = 0),
where b1 and b2 are the linear biases of the first and second samples under consideration.
We define β ≡ b3

b2
analogously for the three-tracer case. Explicit expressions for the Fisher

matrix element Ff loc
NLf

loc
NL

are provided in Appendix 4.6 and in the public code accompanying

this paper (linked above).

Results for σ(f locNL)

DESI

Sample σST(f
loc
NL) σ2,MT(f

loc
NL) σ

(P )
2,MT(f

loc
NL) σ3,MT(f

loc
NL) σ

(P )
3,MT(f

loc
NL)

ELG, ideal 7.1 1.3 1.4 1.7 1.5
ELG, pred. . 10 2.5 12 2.3
LRG, ideal 5.0 3.0 2.6 3.5 3.4
LRG, pred. . 16 3.7 17 4.7

Table 4.2: Local primordial non-Gaussianity forecasts for single- and multi-tracer forecasts
for ELG and LRG-like simulated galaxies. For each column σ

(P )
i,XT , i denotes the number of

tracers used in each forecast, (P ) indicates whether the forecast includes P2 as a parameter,
and X = {S,M} is S for single-tracer and M for multi-tracer. For the 2-tracer forecasts, we
use the highest and lowest bϕ tertiles.

Here we present σ(f loc
NL) forecast results - we first perform forecasts for LRGs and ELGs

individually with several multi-tracer setup choices (Table 4.2), then present results illustrat-
ing the effect of selection choice on σ(f loc

NL) for ELGs (Table 4.3) before finally considering
the case of ELGs and LRGs in their overlap region (Table 4.4).

Table 4.2 shows the improvement of the multi-tracer forecasts over the single-tracer fore-
casts for several choices of multi-tracer setup for our fiducial choice of DESI mock galaxy

selection (n̄ELG = 5× 10−4 [h−1 Mpc]−3, log10

(
sSFR
h yr−1

)
= −9.09). Here we report results for

both the simulated LRG and ELG galaxy samples, for the ideal values of bϕ(b) in each tertile
(i.e. concentration information is recovered perfectly) and for the predicted (“pred.”) val-
ues using the machine learned relationship bϕ(b) from observable galaxy properties. While
clearly the ML model cannot access all the f loc

NL information contained in halo mass and
concentration, it recovers enough information to significantly improve the forecasted LPNG
amplitude error σ(f loc

NL). The improvement for the predicted relations is largest for ELGs,
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where we can obtain a forecasted error of σ(f loc
NL) = 2.3, a factor of 3 improvement over the

single-tracer case.
We show both 2-tracer and 3-tracer forecasts. The 2-tracer forecasts use the upper

and lower tertiles of the three-bin splits, while the 3-tracer forecasts use all three tertiles
(both cases use number density n̄/3 for each tracer) When making multi-tracer forecasts, we
compute the error on f loc

NL using two different procedures - first, when the only parameters
considered in the Fisher matrix is (are) the relative amplitude(s) α, (β), and second, when
both the relative amplitude(s) α, (β, ) and P2, the power spectrum corresponding to the
second sample are used. Since in the first case we use only the relative amplitude for the
two-tracer forecasts, we refer to the case of including P2 as a parameter as “(P )”, since we
are including the power spectrum as a parameter. Including P2 as a parameter generally
reduces the forecasted error, however, in the sample-variance limit P2 adds no information
(see discussion around eqn. 4.15). In multi-tracer forecasts used in the rest of this paper, we
include P2 as a parameter. Some brief further discussion of these forecasting aspects can be
found in Appendix 4.6.

log10

(
sSFR
h yr−1

)
-9.09 -9.23

nELG [h−1 Mpc]−3 ideal pred. ideal pred.
5× 10−4

7× 10−4

1× 10−3

1.5
1.6
1.6

2.3
2.3
2.5

1.4
1.5
1.5

2.3
2.2
2.2

Table 4.3: Multi-tracer σ(f loc
NL) Fisher forecasts for several choices of n̄g and sSFR for DESI

ELG-like simulated TNG galaxies. Results do not vary significantly with the choice of mock
galaxy selection.

Table 4.3 characterizes the effect of the simulated galaxy sample selection strategy on the
forecasts for σ(f loc

NL). These selections were mentioned already in Section 4.3 (in the context
of the learned bϕ(b) relation), but here we supplement this by checking the effect of the choice
of specific star formation rate split and stellar mass threshold, which determines the number
density for a fixed sSFR split, on the final forecasted f loc

NL error. We find that the final results
are mostly insensitive to these choices, as they vary only by a factor of 17% or less (within
the ideal or predicted cases). It may appear counter-intuitive that σ(f loc

NL) increases even in
the ideal case for both specific star-formation rates as the number density increases, but this
is due to the fact that the mean linear bias and, at first approximation, the LPNG bias both
shift downward as the number density increases. In more detail, while the bϕ values drop
uniformly across all tertiles with the mean, the b value in the highest tertile hardly changes
with increasing number density, but the lower tertile drops significantly, and this leads to a
lower change in linear bias between the upper and lower tertiles at higher number density,
which in turn leads to a smaller relative amplitude Jacobian factor in the Fisher matrix (see
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eqn. 4.10). In any event, the highest difference of 17% in σ(f loc
NL) between the two choices of

sSFR is for the highest number density sample (which is not used elsewhere).

ELG + LRG σ(f loc
NL)

p = 1 4.0
(2) (LRG, ELG), ideal 2.3
(2) (LRG, ELG), pred 2.3

(2) (LRG+, ELG+), ideal 1.4
(2) (LRG+, ELG+), pred 2.4

(3) (LRG-, LRG+, ELG-), ideal 0.8
(3) (LRG-, LRG+, ELG-), pred 2.0
(3) (LRG-, ELG+, ELG-), ideal 0.8
(3) (LRG-, ELG+, ELG-), pred 2.0
(3) (LRG-, ELG+, else), ideal 0.6
(3) (LRG-, ELG+, else), pred 1.5

Table 4.4: Local primordial non-Gaussianity amplitude f loc
NL multi-tracer forecasts for ELG-

LRG in their overlap region. The entries listed “(LRG, ELG)” use the mean bϕ(b) prediction
with the full number density of each sample Here “+” and “-” denote the top and bottom
tertile values of bϕ(b) of the respective samples, respectively. The row entries following the
(LRG, ELG) rows use (i)-tracer forecasts (i = 2, 3) with number densities of n̄/3 for each
sample. In the final two rows, the unused subsamples are combined with bias weighted by
their number densities.

Table 4.4 shows σ(f loc
NL) Fisher forecasts for several multi-tracer sample configurations

drawn from the ELG and LRG simulated galaxy samples. To represent the simplest possible
multi-tracer forecast setup using the undivided LRG and ELG samples, we report σ(f loc

NL) =
4.0 for the UMF bias prediction (eqn. 4.2) with the parameter p set to 1. This forecast
does not make use of the learned bϕ(b) relations presented in this paper. We next consider
a similar case that uses the mean of the bϕ(b) values for the simulated LRG sample and the
simulated ELG sample (with the fiducial choice of sample parameters: n̄ELG = 5 × 10−4,
n̄LRG = 2× 10−4, and log10(sSFR) = −9.09).

When we consider the multi-tracer forecasts that use two samples split by bϕ tertile,
we find a lower σ(f loc

NL). When using the upper tertile samples for both ELGs and LRGs
(LRG+,ELG+), we find a factor of 2.9 reduction in σ(f loc

NL) compared to the p = 1 UMF
forecast in the ideal case, where concentration and halo mass information are perfectly
recovered, and a factor of 1.7 reduction in σ(f loc

NL) when using the learned relation. We also
consider three-tracer forecasts for the ELG and LRG tertile samples. Using the lower and
upper tertiles for the LRGs and lower tertiles for the ELGs (LRG-,LRG+,ELG-), we find
smaller forecasted errors than in the two-tracer case, and using the lower and upper tertiles
for the ELGs along with the lower tertile for the LRGs (LRG-,ELG+,ELG-) provides similar
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results, reducing the forecasted error by a factor of 5 compared to the p = 1 UMF forecast
in the ideal case and a factor of 2 in the predicted case.

Finally, based on the promising results of the (LRG-,ELG+,ELG-) choice of subsamples,
we show in the last two rows of Table 4.4 forecasts for the case where ELG- in this triplet
is replaced with all the other sub-samples combined. In particular, the third sample is the
combination of ELG-, ELG0, LRG0, and LRG+, where “0” indicates the central tertile.
Bias values for these samples are weighted by their number density (as for the SPHEREx
redshift error σz

1+z
samples). In this case, we find the most constraining forecasts we report

for LRGs and ELGs, with σ(f loc
NL) = 0.6 and σ(f loc

NL) = 1.5 for the ideal and predicted bϕ
values, which are now factors of 6.7 and 2.7 reductions over the naive p = 1 multi-tracer
forecast, respectively.

We do not list all possible permutations of the ELG and LRG tertile samples (and their
combinations) for brevity, though some of the other combinations produce a lower σ(f loc

NL)
in the predicted case than we show here. It would also be interesting to further consider
optimally combining split subsamples in general [e.g. as for mass in 349, 335] - we took a
first step in exploring this here by using the “else” samples in Table 4.4, which produces
excellent results.

We now discuss the origin of the sizeable reduction in our forecasts for σ(f loc
NL) over the

single-tracer case. The Jacobian factor involved in converting from the Fisher information
on the relative amplitude multi-tracer parameters (Fij where i, j ∈ {α, β}) to that of LPNG
(Ff loc

NLf
loc
NL

) involves the factor (reproduced from Appendix 4.6):

∂α

∂f loc
NL

= α

(
bϕ,1
b1
− bϕ,2

b2

)
M−1(k), (4.10)

which is evaluated at f loc
NL = 0. For a fiducial choice of f loc

NL = 0, the Jacobian factor of
eqn. 4.10 is in fact the only place that the LPNG bias enters the Fisher forecast calculation.
A similar expression holds for b3, bϕ,3 and β in the 3-tracer case.

If we consider the limit where the relative amplitude α → 1, then clearly this factor is
proportional to ∆bϕ. This limit is exact in a 2-way split of a single halo mass bin if linear
bias does not evolve across the bin or with the splitting parameter.

We now make the even further simplification, for illustrative purposes, that each bϕ of
the two samples in question is described by a UMF relation for some choice of the parameter
p, and so bϕ,1 = 2δc(b1 − p1), bϕ,2 = 2δc(b2 − p2), and for α→ 1 we have ∆bϕ → 2δc∆p, and
∂α

∂f loc
NL
→ −2δc∆pM−1(k). From this demonstration, it would appear that we can drive our

forecasted error on LPNG as low as we wish as we take ∆p → ∞. We further discuss the
implications of this apparent conclusion in the next section.

Future LPNG surveys

To explore the potential of using samples with large differences in bϕ further, we apply our
multi-tracer forecasting framework to two future surveys that will target LPNG, MegaMap-
per [331], and SPHEREx [332] using the setup described in Section 4.4. We use the UMF
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relations as input for bϕ(b1) in these forecasts, as we do not have the information neces-
sary to construct detailed simulated galaxies and corresponding learned bϕ(b1) for the future
MegaMapper or SPHEREx galaxy populations. Since we do not have a solid basis for select-
ing ∆p for these forecasts, we instead consider forecasts at a range of ∆p. For the following
multi-tracer forecasts, we will set bϕ,i = 2δc(bi − [p ± ∆p]) where p = 1 unless otherwise
indicated4. The value p = 1 is the best choice to make contact with the literature, which
mostly uses the UMF with p = 1. In principle, if we were to choose a lower p, we should
only reduce σ(f loc

NL) (see Fig. 4.8) - this is closely related to the zero-bias effect discussed by
Ref. [350].

10 1 100 101 102

p

10 2

10 1

100

(f(lo
c)

NL
)

p=1, ST
MM, MT: 1 ± p
MM, ST: p p
MM, ST: p + p
MM, MT: 1 ± p, 2n
ideal: p
pred: p

Figure 4.8: (MegaMapper): The dependence of forecasted σ(f loc
NL) multi-tracer forecasts on

∆p, the difference in the UMF parameter, for the planned MegaMapper survey. The black
dashed line shows the single-tracer (ST) forecast with the original UMF scenario, for which
p = 1. The solid blue line shows the multi-tracer (MT) forecast for the case in which the
full MegaMapper sample is split into tertiles and the top and bottom tertiles are used with
equal number density bins of n̄

3
, each of which is assigned bϕ = 1±∆p. For comparison, the

dashed colored lines show the single tracer forecasts with p = 1 + ∆p (green dashed) and
p = 1−∆p (orange dashed). The red dotted line is the same as the blue line (multi-tracer
forecast), but with twice the number density. The horizontal dash-dotted lines in gray and
black show the approximate values of ∆p for the learned and ideal bϕ values for the mock
DESI galaxy samples.

4This is in a sense a somewhat pessimistic choice, see Appendix 4.6 for more discussion
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10 2 10 1 100 101 102

p

10 3

10 2

10 1

100
(f(lo

c)
NL

)

p = 1 , ST, Full sample
Sx, MT(2): 0.1(-), 0.2(+)
Naive MT(2),  p = 1 
Sx, MT(2): [0.003->0.1](-), 0.2(+)
Sx, MT(3): 0.1(-), 0.1(+), 0.2(-) 
Naive MT(3),  p = 1 
Sx, MT(3): [0.003->0.03](-), 
 [0.1->0.2](+), [0.1->0.2](-) 
ideal: p
pred: p

Figure 4.9: (SPHEREx ): Similar to Figure 4.8, but for multi-tracer forecasts involving
multiple SPHEREx redshift error samples. The black dashed line again shows the UMF
single-tracer forecast. The solid blue line shows the two-tracer (2) multi-tracer (MT) forecast
for the σz

1+z
= 0.01 and σz

1+z
= 0.2 redshift error samples, where the former has UMF parameter

p = 1−∆p (“-”) and the latter has p = 1+∆p (“+”). The orange dashed line shows the two-
tracer MT forecast where the first tracer is the lowest redshift error sample ( σz

1+z
= 0.003) with

p = 1−∆p and the second tracer is the combined sample of all other redshift error samples
(with p = 1 + ∆p). The green solid line shows the three-tracer (3) multi-tracer forecast for
the three splits of the redshift error samples - the σz

1+z
= 0.01 sample with p = 1 − ∆p (-),

the σz

1+z
= 0.1 sample with p = 1 + ∆p (+), and the σz

1+z
= 0.2 sample with p = 1−∆p (-).

The red dashed line shows another three-tracer (3) forecast using combined samples - the
combined σz

1+z
= 0.003, 0.01 samples with p = 1 −∆p (-), the combined σz

1+z
= 0.03, 0.1, 0.2

samples with p = 1 +∆p (+), and the second half of the same sample with p = 1−∆p (-).
Again, horizontal dash-dotted lines in gray and black show the approximate values of ∆p for
the learned bϕ for the mock DESI galaxy samples.

Figure 4.8 shows the resulting dependence of the two-tracer forecasted error σ(f loc
NL) on

∆p for MegaMapper. The solid blue line shows the two-tracer forecast for the scenario in
which the number density of the MegaMapper sample is split into thirds, and the top and
bottom tertiles of the sample are assigned the same linear bias b and an LPNG bias of either
bϕ = 2δc(b− (1±∆p)). When ∆p→ 0, we find that we approach the single-tracer results at
p = 1, (since for ∆p = 0 the relative amplitude Jacobian factors vanish and we are left with
only P2 information). It is immediately apparent that there is no bound on how much the
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multi-tracer forecast can improve upon the single-tracer forecast at fixed p.
To make a fairer comparison to the single tracer case, we also plot in the dashed lines

the single tracer forecasts with p = 1 + ∆p (green) and p = 1 − ∆p (orange). We can
see that by drastically increasing or decreasing p in the single-tracer case we can obtain
a large reduction in σ(f loc

NL) that is qualitatively similar to that of the multi-tracer case.
In the limit of ∆p → ∞ we see that the multi-tracer case always outperforms the single-
tracer case by a roughly constant factor, and both lines have similar slope. This is expected
due to SV cancellation and the fact that (for fixed b) in the large-p limit, we have that

σST (f
loc
NL) ∝ b

p
, and for large ∆p, σ

(2)
MT (f

loc
NL) ∝ b

∆p
. These single-tracer forecasts use the full

number density of the sample, so to account for this difference when comparing to multi-
tracer, we also artificially increase the number density by a factor of two in the multi-tracer
case as an additional point of comparison (red dotted line). Here we can see that the slight
improvement of single-tracer over multi-tracer around ∆p = 1 is due to the reduced number
density of the multi-tracer sample.

We also mark in vertical dash-dotted gray and dash-dotted black the values of ∆p that
are close to describing bϕ for the upper and lower tertiles of the ELG and LRG simulated
galaxies in the predicted and ideal cases, respectively5. While this exercise illustrates in part
where the improved constraints for DESI galaxies is coming from, the change in ∆p is of
course not the only thing driving a difference in the mulit-tracer and single-tracer forecasts.
As in the usual halo-mass-based multi-tracer application, b1 still plays a significant role in
both the Jacobian factor of eqn. 4.10 and the Fisher matrix elements of the multi-tracer
parameters (e.g. through factors of the form b2Pn̄). For anything but the idealized sample-
variance limit, the increased number density from splitting the full sample can also strongly
affect the final forecasted error. Further study of physical and practical limits on ∆p will be
the subject of future work.

We performed a similar exercise for SPHEREx in Figure 4.9, which shows forecasted
σ(f loc

NL) as a function of ∆p for several combinations of SPHEREx redshift error samples. In
black dashed we again show the single-tracer forecast for p = 1 for the combined sample of
all SPHEREx redshift error samples (using the most pessimistic redshift error). Multi-tracer
forecasts for individual redshift error samples (labeled by σz

1+z
∈ {0.003, 0.01, 0.03, 0.1, 0.2})

where we assign splits on ∆p are shown by the solid lines. We also show “naive” two-tracer
forecasts when considering different redshift error samples using the same p (but these sam-
ples have different b). To take advantage of the high number density of SPHEREx, we also
show multi-tracer forecasts for combinations of redshift error samples (for example, combin-
ing the two lowest redshift error samples to create one multi-tracer sample and combining
the three highest redshift error samples to create the second multi-tracer sample) as the
dashed lines. Here the “MT(i)” and (±) labels serve the same purpose as in Table 4.4,
indicating how many tracers are used in the forecast and whether the top or bottom tertile
of the ∆p-split sample is used.

5These values are simply calculated as ∆p = 1
2 (δ

c)−1(b+ϕ − b−ϕ ), so there is a symmetry here that isn’t
present in the ELG/LRG results. For more discussion see Appendix 4.6
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We find similar results to Fig. 4.8, in that the multi-tracer forecasts improve over the
single-tracer forecasts as ∆p increases. First, we discuss the case where we use individual
redshift error samples as the multi-tracer samples (solid lines). The naive forecasts (dotted
lines) are also for the individual redshift samples, and should be compared to lines of the
same color.

At low ∆p the improvement of the two-tracer ∆p multi-tracer forecast over the full single-
tracer forecast (black-dashed) with the full sample disappears since both are dominated by
the most pessimistic redshift error of σz

1+z
= 0.2. This is in fact worse than the naive multi-

tracer case (dotted blue line) due to the lower number density. Similar statements hold for
the three-tracer case, though the three-tracer results show what is effectively only the high
∆p regime of the 2-tracer case, and, we can see that the difference between the naive and
∆p-split three-tracer forecasts is larger than in the two-tracer case.

Turning now to the combined samples, we see that combining several redshift samples
(with the appropriated weighted linear biases) leads to a reduction in shot noise6 due to
increased number density of the sample, and this gives lower σ(f loc

NL) when ∆p → 0 as seen
in the difference between solid and dashed multi-tracer lines. We can also see from the red
dashed line that the improvement over single-tracer is similar to the red dotted curve in
Fig. 4.8, again suggesting that the uniform reduction in σ(f loc

NL) over the three-tracer single
sample forecast (green solid line) is due to the increased number density of the combined
samples. Essentially all of the lowest error multi-tracer forecasts come from the high redshift
error samples (or combinations that use the highest redshift error), as these have the highest
number density (roughly 2 − 3 × 10−3 [h−1 Mpc]−3), largest redshift range (extend out to
z = 3), and the measurement of f loc

NL is relatively insensitive to these errors.

Discussion

We are leveraging information about bϕ through the portal of halo mass and concentration,
but in galaxy survey data we only have access to observable galaxy properties, not the
concentration itself. We have fixed the galaxy-halo connection (GHC) that maps the halo
field to the galaxy field for a specific galaxy sample to that afforded by the IllustrisTNG
galaxy formation model. Even assuming this fixed GHC, we will inevitably lose information
about the halo mass and concentration when passing to simulated galaxies. For this reason,
we report multi-tracer forecasts for both “ideal” and “predicted” bϕ for the ELG and LRG
galaxy samples, where the predicted case captures the limitations of using only observable
galaxy properties rather than host halo properties. The former refers to the (fictitious)
scenario in which we could perfectly recover bϕ from the simulated galaxy sample based
on mass and concentration, and the latter to what the ML model of Section 4.3 recovers.
The “ideal” forecasts results should therefore be interpreted as quantifying the maximal
bϕ information available from the given galaxy sample, while the “predicted” forecasts tell

6The redshift error is unaffected, as we always choose the most pessimistic redshift error for a combined
sample.
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us what information about bϕ can be obtained by applying the ML predictions directly
to DESI data (assuming the TNG galaxy formation model, and that the observable input
features have actually been measured). Following this initial work, several strategies could
be employed to improve the ML prediction of bϕ. The larger MilleniumTNG simulation [351]
could be used, which would increase the size of the datasets used by a factor of almost 15.
We also found, as expected, that results were much improved in real space compared to
redshift space, so adding a reconstruction procedure [352] could potentially improve results.
Another option would be to use additional galaxy properties that are more challenging to
model as input features, such as stellar half-mass radius, metallicity, or maximum value of
spherically-averaged rotation curve.

We have made several simplifying assumptions in this work when applying the bϕ(b1)
results of Section 4.3 to the Fisher forecasts of this section. We have ignored the impact of
fiber collisions, which, for real galaxies, would impact the ability to determine close pairs
of galaxies and to compute the local environment statistics used for determining bϕ from
observables. However, we expect that since local environment features are significantly less
informative than the magnitude bands and stellar mass, including fiber collisions would have
a minimal impact on our results. We used the concentration-LPNG bias relation of Ref. [296]
which uses different simulations than those of IllustrisTNG itself, but since Ref. [296] uses
logarithmized concentration, we do not expect a significant effect from this choice. We
neglected the exact redshift dependence of the linear bias b, instead using the linear growth
factor to account for the redshift dependence as in Ref. [312]. While here we only worked with
halo concentration and mass, there is certainly no a priori reason to ignore halo properties
such as age (e.g. vis a vis recent mergers or formation time [284, 295]), and future work
should further address the connection of these properties with f loc

NL. The most significant
limitation of this work is that we used only the IllustrisTNG galaxy formation model -
further work should of course be done to consider alternative galaxy formation models to
establish the robustness of (or lack thereof) the ability to calibrate bϕ(b) using observable
galaxy properties. By using IllustrisTNG galaxy formation model only and working with
halo bϕ, we also neglect the response of galaxy halo occupation to LPNG, which has been
shown to be non-negligible [291, 294, 353].

While we were finishing this manuscript, the preprint of Ref. [354] appeared presenting a
two-tracer investigation of two IllustrisTNG galaxy populations selected by various secondary
properties (such as halo concentration and g − r color). While the focus of our work and
Ref. [354] are similar, here we focus on DESI ELG and LRG galaxies in redshift space,
specific future survey forecasts, and report σ(f loc

NL), rather than the improvement over single-
tracer information. We consider both Ref. [354] and our work to be complementary, as
Ref. [354] provides a clear and simplified explanation of the results of Ref. [275] applied to
secondary galaxy properties, while also characterizing systematic effects and priors on bϕ,
which we largely ignore here. In the other direction, we have provided a significantly more
realistic treatment of how splitting by bϕ on a secondary parameter (in the special case of halo
concentration) can be used in a multi-tracer setting for current and upcoming spectroscopic
surveys.
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We also developed the machine learning tools described in Section 4.3, which incorporate
several observable quantities to predict bϕ. Our ability to constrain f loc

NL is, however, limited
by the dependence of bϕ on concentration and mass, while Ref. [354] makes use of the
dependence bϕ on quantities such as (g− r) color directly through hydrodynamical Separate
Universe simulations. It would be interesting to go beyond both our work here and the work
of Ref. [354] to further explore the optimal choice of observable characteristics by which to
split a tracer population to obtain maximally different bϕ values with ML methods using
different galaxy formation models.

4.5 Conclusions

Galaxy surveys contain information about the field content of the inflationary universe
through the influence of local Primordial non-Gaussianity on dark matter halo formation.
To extract this information, we must assume a relationship between the number density of
LSS tracers and primordial fields, which is quantified by the LPNG bias parameter bϕ. In
this work, we trained a machine learning model to connect this parameter to observable
properties of DESI galaxies by way of host halo mass and concentration using simulated
IllustrisTNG galaxies. We then used the learned relationship between the linear bias b1 and
LPNG bias bϕ for simulated galaxies to perform multi-tracer Fisher forecasts for the ampli-
tude of LPNG f loc

NL in DESI using galaxy power spectra. We also illustrated that for future
LSS galaxy surveys that will target LPNG (MegaMapper, SPHEREx), there is potentially
significant untapped information on f loc

NL that can be extracted with the multi-tracer method
when the samples can be split by host halo concentration.
We summarize our major conclusions here:

• We find that when considering simulated IllustrisTNG galaxies in a realistic setting
(with observed DESI number densities, and including redshift-space distortions), the
ML method can only extract part of the information about halo concentration from
observable properties. This illustrates the challenge of using (unobservable) halo prop-
erties for accessing information on LPNG. We may however be limited by the small
size of IllustrisTNG training data, rather than by the predictive power of observables,
in which case our predictions are conservative.

• Nevertheless, our ML method extracts predictions for bϕ that contain enough informa-
tion to allow multi-tracer Fisher forecasts of σ(f loc

NL) to greatly improve upon single-
tracer forecasts. For certain sub-sample selections of DESI ELGs and LRGs, we find
reductions of σ(f loc

NL) that are frequently a factor of 50%, and up to a factor of 3.

• We also provide forecasts for the “ideal” case in which bϕ information is perfectly known
for each halo. In that case, even further reductions in σ(f loc

NL) are possible - up to a
factor of 5, motivating further improvement of the methods developed here.
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• We argue that future spectroscopic surveys targeting PNG (such as SPHEREx and
MegaMapper) could greatly improve their constraining power on LPNG by employing
a strategy similar to the one presented here, and support this argument with UMF-
based forecasts for these surveys using varying ∆p. More careful investigation of the
potential sub-sample multi-tracer gains in LPNG information from these surveys is
required.

It will be interesting to further explore to what extent the forecasts we have presented
are attainable in real data analyses, and to what extent it is physically possible to obtain
very large values of ∆bϕ in cosmologies that are consistent with observed data. While here
we have only explored the case of galaxy multi-tracer two-point functions; the multi-tracer
bispectrum [355], and cross-correlation with a matter tracer (e.g. via CMB lensing [270])
are potential directions in which to extend the methods presented here.
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4.6 Appendix A: Ff locNLf
loc
NL

expressions

We first reproduce the expressions for the 2-tracer case, where

C(2) = 1
V

(
α2P2 +

1
n̄1

rαP2

P2 +
1
n̄2

)
, and add FαP2 to the expressions for Fαα and FP2P2 of

Ref. [275]7.

Fαα =
α2r4 + r2(X2 + 1) (X1 − 3α2) + 2α2(X2 + 1)2

(α2 (−r2 +X2 + 1) +X1(X2 + 1))2

FP2P2 =
2α2X1 (r

2(X2 − 1) + 1) + α4 (2r4 − 2r2(X2 + 2) +X2(X2 + 2) + 2) +X2
1

2 (α2P2 (−r2 +X2 + 1) + P2X1(X2 + 1))2

FαP2 =
αr2X1X2 + α3 (−r2 +X2 + 1)

2

P2 (α2 (−r2 +X2 + 1) +X1(X2 + 1))2
,

7We find a slight difference here in the expression for FP2P2
with respect to Ref. [275], though this does

not affect any of the conclusions of Ref. [275] since they are all stated in the sample-variance limit, where
this difference disappears.
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where Xi ≡ 1
n̄iP2

quantifies the relative signal-to-noise.
In this work we used explicit symbolic expressions for the 3-tracer case, extending the

expressions of Ref. [275]. The Fisher matrix element for f loc
NL is given by the simple transfor-

mation:

Ff loc
NLf

loc
NL

=
∑
λ,λ′

∂λ

∂f loc
NL

Fλλ′
∂λ′

∂f loc
NL

(4.11)

where, in this work, λ, λ′ ∈ {α, β, P2}. This reduces to the two-tracer expressions when β is
neglected.

For the 3-tracer expressions, to make contact with the notation of Ref. [275], we can
write eqn. 4.7 as

C(3) =
1

V

α2P2 +
1
n̄1

r12αP2 r13αβP2

P2 +
1
n̄2

r23βP2

β2P2 +
1
n̄3

 (4.12)

The 3-tracer Fisher matrix element expressions for the multi-tracer parameters α, β, P2 are
then given by:

Nαα = α2r412(β
2 +X3)

2 − 4α2β2r312r13r23(β
2 +X3)

+ r212(α
2(β4(2r213(2r

2
23 +X2 + 1) + 3(r223 −X2 − 1))

+ β2X3(2r
2
13(X2 + 1) + 3r223 − 6(X2 + 1))

− 3(X2 + 1)X2
3 ) +X1(β

2 +X3)(β
2(−r223 +X2 + 1) + (X2 + 1)X3))

− 2β2r12r13r23(α
2(β2(2r213(X2 + 1) + 3(r223 −X2 − 1))

− 3(X2 + 1)X3) + β2X1(−r223 +X2 + 1)

+X1(X2 + 1)X3) + β2(X2 + 1)X3(r
2
13(X2 + 1)(X1 − 3α2) + 4α2(−r223 +X2 + 1))

+ β4(α2r413(X2 + 1)2 − r213(X2 + 1)(r223 −X2 − 1)(X1 − 3α2)

+ 2α2(−r223 +X2 + 1)2) + 2α2(X2 + 1)2X2
3

Dαα = (α2(X3(−r212 +X2 + 1)− β2(r212 − 2r12r13r23 + (r213 − 1)X2 + r213 + r223 − 1))

+ β2X1(−r223 +X2 + 1) +X1(X2 + 1)X3)
2

Fαα =
Nαα

Dαα

Nαβ = αβ(−r12r23 + r13X2 + r13)(β
2r13(α

2(r212 − 2r12r13r23

+ (r213 − 1)X2 + r213 + r223 − 1) +X1(r
2
23 −X2 − 1)) + α2r13X3(r

2
12 −X2 − 1)

+X1X3(−2r12r23 + r13X2 + r13))

Dαβ = (α2(X3(−r212 +X2 + 1)− β2(r212 − 2r12r13r23 + (r213 − 1)X2 + r213 + r223 − 1))

+ β2X1(−r223 +X2 + 1) +X1(X2 + 1)X3)
2

Fαβ =
Nαβ

Dαβ
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NP2α = α(α2r412(β
2 +X3)

2 − 4α2β2r312r13r23(β
2 +X3) + r212(2α

2(β4(r213(2r
2
23 +X2 + 1)

+ r223 −X2 − 1)

+ β2X3((r
2
13 − 2)X2 + r213 + r223 − 2)− (X2 + 1)X2

3 ) +X1(β
2r223X3 +X2(β

2 +X3)
2))

− 2β2r12r13r23(2α
2(β2((r213 − 1)X2 + r213 + r223 − 1)− (X2 + 1)X3)

+X1(β
2X2 + 2X2X3 +X3))

+ β4(r213r
2
23X1X2 + α2(r213(X2 + 1) + r223 −X2 − 1)2)

+ β2(X2 + 1)X3(r
2
13(X2 + 1)(X1 − 2α2)

+ 2α2(−r223 +X2 + 1)) + α2(X2 + 1)2X2
3 )

DP2α = P2(α
2(X3(−r212 +X2 + 1)− β2(r212 − 2r12r13r23 + (r213 − 1)X2 + r213 + r223 − 1))

+ β2X1(−r223 +X2 + 1) +X1(X2 + 1)X3)
2

FP2α =
NP2α

DP2α

NP2P2 = 2α2X1(β
4(2(r223 − 1)(r212 − 2r12r13r23 + r213 + r223 − 1)

+ 2(r213 − 1)(r223 − 1)X2 − (r213 − 1)X2
2 ) + β2X3(2r

2
12(r

2
23 +X2 − 1)

− 6r12r13r23X2 + r213X2(X2 + 2) + 2r223(X2 − 1) + 2) +X2
3 (r

2
12(X2 − 1) + 1))

+ α4(β4(4(r213 − 1)X2(r
2
12 − 2r12r13r23 + r213 + r223 − 1)

+ 3(r212 − 2r12r13r23 + r213 + r223 − 1)2

+ 2(r213 − 1)2X2
2 ) + 2β2X3(2(r

2
12 − 1)(r212 − 2r12r13r23 + r213 + r223 − 1)

+ 2(r212 − 1)(r213 − 1)X2

− (r213 − 1)X2
2 ) +X2

3 (2r
4
12 − 2r212(X2 + 2) +X2(X2 + 2) + 2))

+X2
1 (2β

2X3(r
2
23(X2 − 1) + 1) + β4(2r423 − 2r223(X2 + 2) +X2(X2 + 2) + 2) +X2

3 )

DP2P2 = 2P 2
2 (α

2(X3(−r212 +X2 + 1)− β2(r212 − 2r12r13r23 + (r213 − 1)X2 + r213 + r223 − 1))

+ β2X1

(−r223 +X2 + 1) +X1(X2 + 1)X3)
2

FP2P2 =
NP2P2

DP2P2

We do not write the expressions for FβP2 or Fββ since these are the same as FαP2 , Fαα

with interchanged arguments β ←→ α.
The Jacobian factors for the transformation in eqn. 4.11 for the parameters α and β are:

∂α

∂f loc
NL

= α

(
bϕ,1
b1
− bϕ,2

b2

)
M−1 (4.13)

∂P2

∂f loc
NL

= 2bϕ,2M−1P2

b2
(4.14)
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where we dropped the k-dependence of M and P2 to be consistent with the previous
expressions, and again the β expression is analogous to the α expression.

In the sample variance limit, at leading order in Xi, and assuming b1 = b2 = b3, the ratio
of the f loc

NL Fisher information is:

F
(3)

f loc
NL

F
(2)

f loc
NLf

loc
NL

=
2 ((bϕ,1 − bϕ,2)2 + (bϕ,2 − bϕ,3)2 + (bϕ,1 − bϕ,3)2)

3(bϕ,1 − bϕ,2)2
(4.15)

−
2X2

(
43b2ϕ,1 + 59bϕ,1bϕ,2 − 145bϕ,1bϕ,3 − 59b2ϕ,2 + 59bϕ,2bϕ,3 + 43b2ϕ,3

)
27(bϕ,1 − bϕ,2)2

F
(3,P )

f loc
NLf

loc
NL

F
(2,P )

f loc
NLf

loc
NL

=
F

(3)

f loc
NL

F
(2)

f loc
NLf

loc
NL

− 4bϕ,2X2

9(bϕ,1 − bϕ,2)4
[18b3ϕ,1 + b2ϕ,1(33bϕ,2 − 86bϕ,3)

+ 4bϕ,1
(
−4b2ϕ,2 + 4bϕ,2bϕ,3 + 13b2ϕ,3

)
+ 17b2ϕ,2(bϕ,2 − 2bϕ,3)]

(4.16)

when considering only relative amplitude parameters, and when including P2, respectively.
These expressions illustrate that these contributions both approach the first line of eqn. 4.15
as X2 → 0, but can be significantly different otherwise.

Similarly, when considering the ratio of the Fisher information when using P2 as a pa-
rameter or not for two tracers, we have:

F
(2,P )

f loc
NL

F
(2)

f loc
NLf

loc
NL

= 1 +X2
52bϕ,1bϕ,2

3(bϕ,1 − bϕ,2)2
. (4.17)

Again, we see that in the sample variance limit the Fisher information is equivalent, but
outside of the case where X2 → 0 the exact values of bϕ in each sample can drive the ratio
above or below one (e.g. in the latter case if the values of bϕ,1, bϕ,2 have different signs).

We now make a few brief comments about these expressions, which may be useful for
the interested reader of the main text. To be consistent with the notation of Ref. [275] we
have taken the two-tracer case to have LPNG biases bϕ,1 and bϕ,2, so care should be taken
to interpret these expressions appropriately (and not to simply associate bϕ,1 with b

−
ϕ or bϕ,3

with b+ϕ ). In Section 4.4, for future surveys we considered a symmetric ∆p for the upper
and lower tertiles, though in general this will not be the case. Eqn. 4.15 also indicates that
the exact departure from this symmetry may affect whether a 2-tracer of 3-tracer forecast is
desirable. We also note that, in general, both the linear bias b of the sample and the number
density n̄ will spoil these statements as we leave the sample variance limit and b changes
over the splits.
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Chapter 5

Deterministic Langevin Optimization

This chapter was originally posted as: James M. Sullivan, and Uroš Seljak. “Deterministic
Langevin Unconstrained Optimization with Normalizing Flows”. Submitted to Journal of
Global Optimization, DOI:10.48550/arXiv.2310.00745, arXiv:2310.00745 [cs.LG]

In this chapter, We introduce a global, gradient-free surrogate optimization strategy for
expensive black-box functions inspired by the Fokker-Planck and Langevin equations. These
can be written as an optimization problem where the objective is the target function to
maximize minus the logarithm of the current density of evaluated samples. This objective
balances exploitation of the target objective with exploration of low-density regions. The
method, Deterministic Langevin Optimization (DLO), relies on a Normalizing Flow density
estimate to perform active learning and select proposal points for evaluation. This strat-
egy differs qualitatively from the widely-used acquisition functions employed by Bayesian
Optimization methods, and can accommodate a range of surrogate choices. We demon-
strate superior or competitive progress toward objective optima on standard synthetic test
functions, as well as on non-convex and multi-modal posteriors of moderate dimension. On
real-world objectives, such as scientific and neural network hyperparameter optimization,
DLO is competitive with state-of-the-art baselines.

5.1 Introduction

Gradient-free global black-box optimization is perhaps the most widely-shared task among
scientific and engineering applications. Such problems are often non-convex, multi-modal,
and rugged - presenting a serious challenge for any local optimization strategy [356]. While
there are a host of well-known global methods with which to attack this problem (e.g.
population-based methods [357], gradient-based solvers with finite difference approximations
[358], evolutionary algorithms [359], simplex-based methods [360]), alternatives must be
considered in the limit of very expensive objective function evaluations. By comparison,
active learning (AL) [361] refers to a class of methods suited to problems where objective
evaluation is expensive and requires the next point in the input parameter space to be very
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carefully chosen. A popular form of active learning is Bayesian Optimization (BO), which
has demonstrated strong performance in the limit of expensive objective evaluation (which
translates into a small function call budget for fixed wall-clock time) [362, 363, 364, 365, 366,
367, 368]. BO is a probabilistic method that iterates over steps consisting of two components:
1. fitting a surrogate model to the objective function and 2. selecting new points at which
to evaluate the expensive objective (via an “acquisition function”) - the goal is to strike a
balance between exploitation and exploration. The details of BO then boil down to what
kind of surrogate model and acquisition function (AF) are chosen.

Gaussian Processes (GPs) are almost always the core of BO algorithms due to their
analytic form and interpolation properties [369, 370]. GPs provide both a surrogate model,
through the GP mean µ(θ), as well as, crucially, an estimate of uncertainty at unseen points,
through the GP error σ(θ) [371]. The uncertainty estimate is governed by the form of
the GP kernel and its hyperparameters, which effectively provide a smoothness prior on
the objective function, and is necessary to prioritize exploration to avoid getting stuck in
local optima. GP uncertainties, while theoretically compelling, are not the only tool for
exploration in the context of active learning. Due partially to the poor scaling of linear
algebra operations necessary for GP fitting and evaluation, and partially due to the related
GP issues in high-dimensional problems [372], BO-like AL methods have been proposed with
alternative surrogates. Such alternatives include methods that use neural networks (NN)
[373, 374], random forests [375], or radial basis functions [376] as surrogate models. However,
to produce an exploration strategy in the absence of GP uncertainty, such models employ
strategies such as model ensembling to estimate uncertainty. Ensembling is often empirically
effective, but can lead to overconfident uncertainty estimates and can be computationally
expensive for deep models like NNs [377, 378, 379, 380].

In this contribution we argue that there is another way to estimate the uncertainty of
the surrogate model, which is to use density estimation: if the local density of the sampling
points is relatively high in the parameter space of interest, then the surrogate uncertainty will
be lower than other locations in this space, and vice versa. We propose to use normalizing
flow (NF) density estimation of evaluated points to estimate this uncertainty. This allows
us to develop an exploration strategy using the NF density estimate by constructing a novel
acquisition function, which is theoretically motivated by deterministic Langevin dynamics.
We demonstrate that this acquisition function, when combined with a local-global hybrid
strategy similar to that recently proposed for the trust-region BO method of [381], meets
or exceeds the performance of this method as well as that of widely-used evolutionary and
finite-difference gradient algorithms on standard test functions and objectives relevant for
probabilistic inference in science and engineering.

5.2 Deterministic Langevin Optimization

We will phrase all discussion in terms of maximization of a scalar objective f(θ), input
parameters θ ∈ Rd, and in the context of the problem θ∗ ∈ argθ max f(θ). When the goal of
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optimization is minimization we change the sign of f .

Theoretical Motivation

The overdamped Langevin equation is a stochastic differential equation describing particle
motion in an external potential and subject to a random force with zero mean,

dθ

dt
= v = β∇θf(θ) + η, (5.1)

where ⟨η(t)⟩ = 0 and ⟨ηi(t)ηj(t′)⟩ = 2δijδ(t− t′) where ⟨⟩ denotes the expectation taken wrt.
the distribution of η, v is the velocity of the particles with position θ (with v, θ ∈ Rd), and
β is the inverse temperature. We set the diffusion coefficient to unity.

The Langevin equation can be viewed as a particle implementation of the evolution of
the (unnormalized) particle probability density q(θt), which is governed by the deterministic
Fokker-Planck equation, a continuity equation for the density,

dq(θt)

dt
+∇θ · J = 0, (5.2)

J = q(θt)∇θ[βf(θt) + V (θt)] ≡ q(θt)v. (5.3)

Here θt is the particle position at a some time t and we defined V (θt) = − ln q(θt) and
expressed the current J as density times velocity, where the two terms in the probability
current J correspond to the two velocity terms in the Langevin equation. When we reach
a stationary distribution where dq(θt)

dt
= 0, the corresponding density is given by q(θ) ∝

exp(βf(θ)). Thus the solution of the Fokker-Planck equation, combined with a suitable
temperature annealing, where we start with β = 0 and end with β →∞, will lead us to the
solution of the optimization problem.

In practice, solving the Fokker-Planck equation in high dimensions is difficult [382]. In-
stead, if we replace the stochastic velocity in the Langevin equation 5.1 with the deterministic
velocity in equation 5.3, we obtain the deterministic Langevin equation [383, 384], which in
discretized form is

θt+1 = θt + vϵ = θt +∇θ[βf(θt) + V (θt)]ϵ, (5.4)

where ϵ is the step size and Vt is the negative logarithm of the density defined by the positions
{θn} of all previous evaluations. The first term in brackets on the right-hand side of this
equation moves the particles in the direction of the target peak βf(θ), while the second
term moves them in the direction of low density as defined by the points that have been
previously evaluated. Equation 5.4 can thus be interpreted heuristically as a gradient-based
maximization of the objective βf(θ) + Vt(θ), or

θ⋆t+1 ∈ argmax
θ

[βf(θ) + V (θ)] = argmax
θ

ln
exp(βf(θ))

qt(θ)
. (5.5)
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This equation makes manifest the exploration versus exploitation nature of the deterministic
Langevin objective: we can either move into the region of the highest exp(βf(θ)) (exploita-
tion), or we can move into the region of the lowest qt(θ), which we may not have explored
yet (exploration). It is not our intention to mimic the diffusion process of the Fokker-Planck
or Deterministic Langevin equations, but to motivate the placement of the next sampling
point using the largest discrepancy between the current density and target density. This
target objective is time index t-dependent: as we explore a region by evaluating particles in
it, its density increases and this reduces the objective at that position. Furthermore, we can
also adjust the temperature annealing such that the target objective exp(βf(θ)) is shallow
initially, and peaked at the end.

Surrogate and DLO acquisition function

To make optimization of the objective of equation 5.5 into a working algorithm we still
need several ingredients. First, we need to be able to propose values of θ based on current
knowledge of f(θ) via an acquisition function, which requires a surrogate model. For the
surrogate model s(θ) of the target f(θ) in the acquisition function, we deploy Gaussian
Processes (GPs) in the main results of this work, as the GP is the standard surrogate choice
in Bayesian Optimization algorithms. However, we do not take advantage of the GP error
estimate, so other surrogates such as neural networks (NN) [373, 374], random forests [375],
or radial basis functions [376] could also be used. We provide a limited discussion extending
our results, which are presented for only moderate dimension, to higher dimension using
simple neural network surrogates in Appendix 5.9. The other ingredient of the acquisition
function is the uncertainty estimate, q(θ), which we return to in Section 5.2.

We incorporate the surrogate into the DLO objective equation 5.5 by employing the
following acquisition function

DLO(θ; β) ≡ s(θ; β)− ln qt(θ) = ln
es(θ;β)

qt(θ)
. (5.6)

Here the surrogate is fitted to the annealed target as s(θ; β) = GP({θ}, {β × f(θ)}) - i.e.,
the GP takes as arguments the current “data” given by {θ}, {β× f(θ)} pairs. In our default
implementation of DLO, s(θ) is a GP mean, while qt is an NF fitted to the sample density
after t sample evaluations.

Normalizing Flows

The main difficulty in solving equation 5.5 is in evaluating the instantaneous density term
qt(θ). Here we address this by feeding all previously evaluated points θ1, ...θt into a normal-
izing flow (NF) to evaluate the density of these samples.

Normalizing flows are deep generative models that provide a map from a simple “base”
distribution, such as a uniform or standard normal distribution, to a desired target distribu-
tion. Normalizing flows provide a powerful framework for density estimation and sampling
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Figure 5.1: A schematic depiction of the Deterministic Langevin Optimization algorithm.
The key elements of the algorithm are shown from top to bottom at an early (βi) stage of
the algorithm (with 7 calls) applied to a mixture of Gaussians. Top: The surrogate model
s(θ, βi) (solid) begins to fit the target objective (black dotted). Center: The density estimate
q(θ) gives a smooth density estimate. Bottom: The acquisition function DLO (equation 5.6)
determines where the next point will be selected (gray point). At this stage of DLO, the
algorithm has determined that the smaller peak is sufficiently explored (density q is high) and
now turns to explore the second local peak of surrogate containing the true maximum. The
next iteration following the one in the illustration identifies the true maximum at θ = −0.325.

[385, 386, 387, 138]. These models map the d-dimensional data θ to d-dimensional latent
variables z through a sequence of invertible transformations Ψ = Ψ1 ◦Ψ2 ◦ ... ◦ΨL, such that
z = Ψ(θ) and z is mapped to a base distribution π(z), which we choose to be a standard
Normal distribution N(0, I). The probability density of data θ can be evaluated using the
change of variables formula:

q(θ) ≡ e−V (θ) = π(Ψ(θ))| det(∂Ψ(θ)

∂θ
)|

= π(Ψ(θ))
L∏
l=1

| det(∂Ψl(θ)

∂θ
)|. (5.7)

The Jacobian determinant of each transform Jl = | det(∂Ψl(θ)/∂θ)| must be easy to compute
in order to evaluate the density, and the transformation Ψl should be easy to invert for
efficient sampling. In this paper we use the Sliced Iterative Normalizing Flow (SINF) [138]
NF algorithm. SINF scales well to high dimensions and shows good performance on small
training sets while using a low number of hyperparameters. The details of SINF are discussed
in the Appendix 5.7.
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Local Exploration

To optimize the DLO objective of equation 5.6 we could use gradient-based optimization,
since both the GP and NF are differentiable. However, this local strategy will be susceptible
to getting stuck in local extrema. Instead, we use a local exploration strategy that is common
in BO, drawing a fixed number of proposal samples Nsample around the points of higher DLO
objective. We choose Nsample = 100d.

To generate half of the proposal domain points, we adopt a local exploration strategy
similar to [381], generating domain points within a hyperrectangle (a Gaussian sphere also
works well) characterized by a length scale R that grows and shrinks with iteration. As in
[381], R is initialized to a prescribed starting value and grows and shrinks by a logarithmic
step dR depending on how many iterations have passed since ∆fi > 0.

The bijective map of the normalizing flow permits efficient sampling of the target distri-
bution. We make use of this capability by sampling the other half of proposal samples at
each iteration from the latent space of the density estimation normalizing flow qt(θ). This
is especially helpful for sharply-peaked high-dimensional objectives, as we avoid considering
proposals in large regions of essentially zero objective value (even within our local proposal
volume). We draw half of the proposal samples from a Gaussian sphere of radius R in the
latent space of the normalizing flow centered on θ∗ after it has been mapped into latent
space. Once the proposal points are chosen we evaluate their DLO objective of equation 5.6
and choose the highest value. For more details on the effect of removing local exploration
from DLO when applied to test objectives, see Appendix 5.10.

Simulated Annealing

We employ simulated annealing [388] to reduce the scale of variation of our target objective
early on in the DLO iteration procedure. The surrogate model fitted to the annealed posterior
is denoted s(θ, β), where β is the annealing parameter. It is well-known that simulated
annealing is beneficial for optimizing rugged or multi-modal objectives, and is also valuable
for population-based Bayesian sampling strategies applied to such challenging functions [389].
We want to design an annealing scheme, where we vary β between initial and final values β0
and βmax, such that we achieve a good simultaneous exploration and exploitation strategy.
We set the inverse temperature (β) simulated annealing schedule using Nβ logarithmically-
spaced steps in β, where Nβ is determined by the objective function call budget N and batch
size B (with B supplied by the user based on computational constraints), Nβ = (N−NI)/B,
where NI is the number of initial samples.

In our experiments we observe that there is no single value of βmax that gives the best
performance but on many examples βmax = 100 and βmax → ∞ perform well. The latter
ignores NF: this is a good strategy when the objective function is isotropic and broad. In
this case, NF density estimation does not help much with the optimization strategy. In other
situations, specifically for posterior objectives where large fractions of the input space have
very low density, NF exploration is essential for optimal results. We note that using only
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βmax = 100 still leads to competitive performance. As a result, we will choose between these
two values based on their performance, starting with an annealing scheme that combines
them with a 50-50 split, which can be adjusted during the annealing if needed according to
their performance.

We also need to set the initial annealing level β0. We select β0 such that the difference
between the largest and smallest value of f(θ) on NI = 2d initial samples is less than 15.
This ensures sufficiently smooth GP interpolation of initial samples such that early on, if
one initial function value dominates the rest by several orders of magnitude, the smaller
values are not ignored if they are non-zero (this is especially beneficial for very narrow high-
dimensional objectives). Choosing β0 ̸= 1 performs a similar function as standardizing the
objective function output (as is done, e.g., in [381] using an affine transformation).

Sometimes the β0 condition is already satisfied for βmax = 100. In this case we do
not anneal at all. For all of the synthetic objectives in Section 5.3, the range of objective
function variation is small enough that annealing is not needed. However, for posterior
objectives and hyper-parameter optimization (HPO) the annealing schedule is essential for
good performance. In practice, there is a broad range of β0 values that give the same
performance. For more details on the effect of removing the simulated annealing step from
DLO when applied to test objectives, see Appendix 5.10.

Algorithm

The high-level Deterministic Langevin Optimization algorithm is presented in Algorithm 1.
We rescale the domain of θ to the product of d unit intervals. Each update θt → θt+1 contains
a batch of B samples.

Algorithm 1 Deterministic Langevin Optimization

1: Evaluate f(θ1), .., f(θNI
) at NI initial points; select initial annealing level β0, rescale the

input θ domain to [0, 1]d, decide number of AF proposal points per iteration Nsample, and
the batch size B.

2: Assign a call budget N , fix the hyperparameters Nβ, R, dR.
3: for i < Nβ do
4: Estimate the normalizing flow density qi(θ) from θ1, .., θt.
5: Fit the surrogate si(θ, βi)) from f(θ1), ..f(θt) to annealed objective values.
6: Create proposal samples in [0, 1]d and in the latent space of qt drawing from Gaussian

spheres of radius R around the highest DLO(θj), j = 1...t.
7: Locally maximize the acquisition function DLO(θ) from Nsample proposal draws to

obtain the next batch of θt+1, .., θt+B to evaluate.
8: Evaluate f(θt+1), ..f(θt+B) and update βi.
9: end for
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5.3 Numerical Experiments

We test DLO on three types of test objectives in this section. We first show performance
on several standard gradient-free optimization test functions, before turning to posterior
objectives relevant for applying DLO to Bayesian posterior optimization relevant for inference
in science and engineering, and finally demonstrate that DLO is competitive on several
applied objectives, including Hyperparameter Optimization (HPO). We also compare our
new acquisition function eqn. 5.6 to several alternatives that hew closer to the literature.

We compare DLO to TuRBO, which, for general-purpose single-objective gradient-free
optimization, is an extremely popular highly-performing BO method. The local optimiza-
tion aspect of our method is based on a trust region strategy [381] - so this comparison is
especially relevant for illustrating the improvement furnished by our modified acquisition
function. We use the TuRBO hyperparameters and numerical setups as detailed in [381] un-
less otherwise stated. We further compare to differential evolution (DiffEv) [357] and the
covariance matrix adaptation evolution strategy (CMA-ES) [390], which give an indication
of how population-based and evolutionary strategies perform in the limit of a low number of
function evaluations, and to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm with
finite difference gradients. We also include a random search baseline. For all experiments
we consider only sequential evaluation (batch size of 1) function evaluations for DLO unless
otherwise noted. Details of the numerical experiments are provided in Appendix 5.6.

Synthetic Objectives

We consider two common synthetic test functions in the gradient-free optimization literature
in 10 dimensions - the Ackley function and Rastrigin function. Both functions are character-
ized by the presence of many local optima, with the Ackley function having a global optimum
that is narrow and much higher than the local minima, while the Rastrigin function has a
shallow global curvature with more pronounced local optima. We use domains of [−5, 10]10
and [−5.12, 5.12]d for the Ackley and Rastrigin functions, respectively. These functions are
usually given as minimization objectives. Since our method is formulated with posterior
inference applications in mind, we transform these synthetic objectives into maximization
problems as gmin → gmax ≡ log (g(θ∗)− g(θ)).

Results on these functions are presented in Figure. 5.2, where we see that DLO outper-
forms the other methods in the low function call budget regime (over 30 optimization runs).
On both objectives, DLO sees an extra jump in performance early on in the optimization
runs with respect to the other methods, which can be attributed to our modified acquisition
function. The evolutionary methods and BFGS, meanwhile, are not competitive with DLO
and TuRBO on these functions.
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Figure 5.2: Performance of DLO relative to other methods on converging to the optimum
on 10− d synthetic objectives. Left: Ackley function. Right: Rastrigin function. Solid lines
show the mean over all optimization runs, and shaded regions show the standard deviations.
The dark dashed line is the true value of the objective function at the global optimum.

Posterior Objectives

A key application of AL methods is to expensive scientific inference problems [35]. Such
problems (e.g. physical simulations [142]) may require model evaluations that take minutes,
hours, or days of wall-clock time on multiple nodes of high-performance computing facili-
ties. Efficient parameter estimation with as few samples as possible is thus of paramount
importance, and MAP optimization is faster than Monte Carlo Markov Chains, which are
often prohibitively expensive. With this wide class of applications in mind, we consider
several 10-dimensional test posterior objectives of the type that frequently arise in scientific
parametric inference applications.

A correlated Gaussian distribution is the simplest non-trivial posterior routinely encoun-
tered in statistical inference. We make this problem challenging by enforcing a high condition
number (ratio of maximum to minimum eigenvalues) of 200 in the test posterior. Figure 5.3
shows that DLO (and TuRBO) acheive the best performance, and are consistent with each
other, though DLO has a slight edge early-on. BFGS also attains decent performance, but
with a large variance between runs.

Posteriors that resemble Gaussian mixtures arise frequently in scientific inference (e.g.
in inferring gravitational wave merger parameters [391]). We consider a widely-separated
double Gaussian posterior with thin peaks that has a false maximum (one peak is higher
than the other, and contains 70% of the probability mass). While the difficulty of this
example produces a large variance between runs (especially for the evolutionary algorithms),
Figure 5.3 shows that DLO typically finds a point near the true maximum first, followed
by TuRBO, and eventually the evolutionary algorithms, while later-evaluation performance
of DLO and TuRBO is similar. For this example we note that the gradient-based BFGS
typically converges first - but this is to the wrong peak 9 times out of 30, and unlike the
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Figure 5.3: Performance of DLO relative to other methods on converging to the optimum
on 10d posterior objectives. Left : Correlated Gaussian with condition number 200. Right :
Widely-separated double Gaussian mixture. Bottom: Rosenbrock posterior. Solid lines show
the mean over all optimization runs, and shaded regions show the standard deviations.

other algorithms, has no chance at improving after this point.
We also consider the non-convex Rosenbrock function as a posterior (after suitable shift-

ing to ensure a positive objective), which is a test frequently considered by Bayesian sampling
methods [392] due to thin curving posteriors that frequently arise in scientific applications.
We find that DLO attains the best performance on this objective by far, jumping up to the
optimum before TuRBO and all other methods (including BFGS).

Applied Objectives

“Cosmological Constants”

The “Cosmological Constants” problem is the optimization of a 12d posterior objective
relevant for the analysis of cosmological parameters from Sloan Digital Sky Survey Luminous
Red Galaxy clustering data [393]. The dominant cost of the posterior evaluation is the
solution of a large system of stiff differential equations - the Einstein-Boltzmann equations.
For this problem we fix the neutrino mass to zero (making the problem 11d), which greatly
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Figure 5.4: Performance of DLO compared to two baselines (TuRBO and random search) on
converging to the optimum on several applied objectives. Left : “Cosmological Constants”
posterior Right : Neural network (Multi-layer Perceptron) HPO (blue line corresponds to
DLO). Solid lines show the mean over all optimization runs, and shaded regions show the
standard deviations.

reduces the time-to-solution of the Einstein-Boltzmann solver, but leave all other parameters
free. Figure 5.4 illustrates that DLO outperforms TuRBO (averaged over 15 runs).

Machine Learning Model Hyperparameter Optimization

BO-style AL methods are well-suited to hyperparameter optimization (HPO) for machine
learning models, and have begun to gain traction over random/grid search among prac-
titioners [394, 395, 396, 397] since they outperform such simple methods [398, 399, 400,
401]. In particular, the TuRBO baseline and its competitor-supplied variants performed well
in the 2020 Bayesian Black-Box optimization challenge for several simple models on pub-
licly available (scikit learn) datasets. We consider an example drawn from this challenge, in
particular we use the bayesmark1 experiment for multi-layer perceptron SGD applied to the
scikit-learn [402] “iris” dataset with the (negative) log likelihood objective, in Figure 5.4.
This Figure shows that DLO is competitive with TuRBO (over 15 replications) on this HPO
problem, and gives results that are consistent with TuRBO in this small-budget setting.

Modifying the acquisition function

We perform an acquisition function ablation study to characterize the extent to which the
NF density estimate equation 5.6 is responsible for the strong performance of DLO shown in
Sections 5.3-5.3. Figure 5.5 shows progress toward the optimum of DLO when applied to the
10d Rastrigin function for several common BO acquisition functions: Expected Improvement
(EI) [403], Upper Confidence Bound (UCB) [404], and Thompson Sampling (TS) [405, 406].

1https://bayesmark.readthedocs.io/

https://bayesmark.readthedocs.io/
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These AFs all incorporate the GP uncertainty estimate to guide the extent to which to
prioritize exploration, and, for reference, are given by:

EI(θ) = (µ(θ)− f ∗(θ))Φ

(
(µ(θ)− f ∗(θ))

σ(θ)

)
+ σ(θ)ϕ

(
(µ(θ)− f ∗(θ))

σ(θ)

)
(5.8)

UCB(θ) = µ(θ) + βUCBσ(θ), (5.9)

TS(θ) = f ∼ GP(µ(θ), σ(θ)). (5.10)

and we set βUCB = 1. Figure 5.5 shows that DLO (with βmax = 100) has a distinct edge
over the other acquisition functions, especially very early on in the optimization runs.

5.4 Related Work

Gradient-free optimization is one of the most active areas of global optimization and there is
a correspondingly vast literature covering many methods. We review some aspects of these
methods that are most relevant to DLO.

Local+global methods: The TuRBO strategy [381] has led to many follow-up methods
(e.g. [407]) and applications - including in constrained problems [408], BO with axis-aligned
features [409], and multi-objective problems [410]. Basin hopping has long been used by
the chemistry community for optimizing multi-modal functions [411], and other global BO
methods with local BFGS searches have recently been developed for atomic structures [412].
The DLO global strategy differs from these, while it can still take advantage of the many
possible local methods proposed in the literature.

Alternative uncertainty estimates: Several studies have explored supplying a differ-
ent surrogate model in place of a GP, which must come with a different uncertainty estimate.
Alternatives that have been explored include random forests (SMAC [375]), neural networks
(DNGO [373], BOHAMIANN [374]). While such surrogates differ from the standard GP, these
methods have retained versions of ([413]) Expected Improvement (EI) as their acquisition
functions by estimating the variance a GP would have provided from these surrogate models
(i.e. by looking at variation over RF trees or via a Bayesian last-layer treatment). NOMU [378]
incorporates a more complex NN uncertainty estimate by training two dependent NNs and
using a carefully constructed (non-EI) loss function. DLO replaces uncertainty quantifica-
tion with density estimation: the density of samples in some region is lower, it is expected
that the interpolation quality of the surrogate will be lower, which we can interpret as higher
surrogate uncertainty.

Modified acquisition functions: Ref. [414] proposed an acquisition function that
places increased weight on BO exploration with the goal of Bayesian posterior approximation.
This was employed in a BO framework applied to scientific simulators [415, 416], but was
restricted to relatively low-dimensional examples. Other recent work [417, 418, 418, 419] has
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explored non-myopic acquisition functions, which make the choice of which point to evaluate
based on predictions of future evaluations. These predictions are made by (approximately)
integrating over future GP predictions, and therefore employ GP uncertainty. Entropy-
based AF methods have also been proposed as an alternative to GP-based uncertainty for
AL [420, 421, 422]. DLO differs from these methods, as it works directly with the density
of the sampled points, rather than the density estimated by entropy-based methods. The
BORE method [423, 424] employs density-ratio estimation as part of its acquisition strategy
in the context of formulating EI as a classification task, which is distinct from our evaluated
sample density estimation. DLO AF differs from all of these methods, since it uses NF
density estimation as part of AF.

Figure 5.5: Performance of the DLO algorithm for several choices of standard GP acquisition
function on the 10d Rastrigin function. DLO shows a clear improvement over the other
acquisition strategies. Solid lines show the mean over all optimization runs, and shaded
regions show the standard deviations.

5.5 Conclusions

Probabilistic surrogate models are a powerful component of gradient-free black-box global
optimization. While variants of Gaussian Process-based Bayesian Optimization have demon-
strated enormous success on this class of tasks, using a Gaussian Process-based acquisition
strategy is not the only competitive choice. We have demonstrated that Normalizing Flow
density estimation provides an exploration strategy that is competitive, and frequently su-
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perior, to that provided by GP-based methods in the context of BO-like active learning
optimization when incorporated into the Deterministic Langevin acquisition function we
propose in this paper. We demonstrated this through the optimization of several standard
optimization test functions, common posterior objectives arising in Bayesian inference, and
real-world application objectives, such as cosmological inference and ML hyperparameter
optimization.

The proposed method is not without limitations. One is the choice of the hyperparameter
βmax and the annealing schedule. We do not expect that one choice will fit all problems, a
consequence of the no free-lunch theorem of global optimization: in some problems we can
use a greedy strategy and progress quickly towards the peak without much penalty, in others
we need more exploration to find all the existing peaks. This can be controlled by the choice
of βmax. In this paper we compare the performance between two different values of βmax, but
there may be better ways to do this.

Another limitation is that the wall-clock time of DLO is currently limited by the O(n3)
scaling of evaluation of the default Exact GP we employ in gpytorch [425]. This may be
alleviated through GPU-based methods for accelerating GP kernel operations when many
samples are present [426] (for the experiments presented here were run on a single 2.8 GHz
Quad-Core Intel Core i7 CPU), or through the use of a more efficient surrogate (we briefly
explore this in Appendix 5.9).
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5.6 Appendix A: Setup of Numerical Experiments

For all experimental results, we use N0 = 2d initialization points for each numerical experi-
ment for DLO and TuRBO sampled from a Latin hypercube (except when the implementation
of the algorithms, such as for BFGS ad CMA-ES, only permit a single initial value, which
is generated from a uniform distribution on the input space in that case). We use a total
function call budget of N0 +10d for each problem, except in Section 5.3, where we use twice
this budget. We use the scipy implementation of differential evolution and the CMA-ES
implementation of [427]. Though this comparison was already performed in [381], we also
include the scipy [428] implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-
gorithm [358] to demonstrate the challenges gradient-based methods face in the low-budget
regime on the objectives we consider. If BFGS converges before the function call budget is
reached, we set the rest of the values in the experiment to the converged value.
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The Ackley and Rastrigin functions are given (in 10 dimensions) by

F (θ) = 20
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)
,

respectively. Their domains are [−5, 10]10 and [−5.12, 5.12]10.
The posterior objectives we consider are the correlated Gaussian posterior, which is

simply a Gaussian distribution with mean µ = 1
5
u, where u is the 10d vector whose entries

are all ones, and covariance C such that for the singular values λi of C,
λ1

λ10
= 200, with

λ1 = 0.09.
The double Gaussian posterior is the mixture

F (θ) = 0.3pN(θ; 0.625, 0.1)

+ 0.7pN(θ;−0.325, 0.1)

where pN(θ;µ, σ) is the multi-variate Gaussian probability density. We restrict to the domain
[−2, 2]10 for both the correlated and double Gaussian posteriors. The Rosenbrock posterior
is given by

F (θ) =
9∑

i=0

(1− θi)2 + 100
(
θi+1 − θ2i

)2
on the domain [−5, 5]10.

The “Cosmological constants” example is described in the main text - but involves the
maximization of an 11d log likelihood for the galaxy power spectrum - a compressed statistic
of galaxy survey data - to obtain a point estimate of cosmological parameters. These param-
eters include the matter density, expansion rate, and various numerical factors that govern
the differential equation solver that serves as part of the model called by the likelihood.

The HPO example we consider uses the “iris” dataset and the bayesmark (sklearn)
implementation of a Multi-layer Perceptron which has parameters that are optimized through
SGD, and uses the (inverted) negative log likelihood as the objective. The hyperparameters
for this model are the number of hidden layers, the learning rate and its initialization, the
batch size, the tolerance, the momentum, a regularization parameter (alpha), and learning
rate scaling.
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5.7 Appendix B: DLO Hyperparameters

In this section we discuss the DLO hyperparameters.
The GP surrogate model is implemented in pytorch [429] and uses the gpytorch [425]

ExactGP implementation. Following [381], we use a GP with Matérn-5/2 covariance, but
force the GP noise to be smaller (between 10−6−10−4), and do not standardize the objective
function values. We optimize over the GP hyperparameters using 50 steps of ADAM [430].

For the normalizing flow we employ for density estimation (SINF), we use 5 itera-
tions, no regularization and up to 8 sliced Wasserstein directions (the default prescrip-
tion of [dai2021sliced]). The most important hyperparameter of SINF is a pre-factor bw
that modifies a Scott’s rule prescription for the SINF density estimation pre-factor (see
[dai2021sliced] equation 26). We demonstrate that variation of this hyperparameter has
very little effect on our results in Figure 5.6. In this study X = 1, though the bw dependence
does not greatly depend on this fact. Clearly, very small bw (less than 1) leads to some-
what reduced performance, while if bw is “large enough” there is no change in performance.
Intuitively this makes sense - a too small bw means that the density estimating flow q will
be close to zero except very close to the evaluated objective points, where it will be very
high. This will mean proposals in the support of the density (which is tightly hugging the
evaluated points) will have very low AF value. While a lower AF value in these regions
is somewhat desirable (otherwise there will never be any explicit exploration - exploration
would only be possible through the implicit error on s(θ; β)), if the already-evaluated points
are high in the objective, this will slow down convergence to the optimum. A larger bw
effectively regularizes the value of q to avoid the above scenario by softening the penalty
near already-evaluated points. We fix bw = 1.0 to avoid reducing performance - this is also
the default value in SINF.

Figure 5.6: Left: Dependence of progress toward the optimum on the NF bandwidth factor
for the GP-based version of DLO with mean and standard error estimated over 5 realizations.
Right: Dependence of progress toward the optimum on the AF coefficient X for the GP-
based version of DLO with mean and standard error estimated over 5 realizations.
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There is no a-priori way to know how much exploration should be weighted against
exploitation. While the standard acquistion functions EI and TS have no explicit hyper-
parameters in their functional form (that is, outside of those used in constructing the GP),
UCB (which we note performs best in our tests, c.f. Fig. 5.5) contains the hyperparameter
βUCB. While theoretical estimates have been provided for βUCB (e.g. in [404]), in practice,
the same authors choose a value that works better empirically. In our setting this is controlled
by the value βmax. We explore the effect of changing βmax on the double Gaussian example
in Figure 5.6. Clearly too-large values of X lead to over exploration and slow convergence,
while small values show improved convergence. We select X = 0.01 as our fiducial value
to avoid over-exploring. The DLO proposal volume evolution is similar to that of TuRBO

(which is drawn from the trust region literature). The volume starts at R = 1 and decreases
by dR if we do not improve (within a tolerance of 5× 10−6) on the best value f ∗ after two
iterations. After a successful improvement on f ∗, the volume increases by the same factor to
consider a larger proposal volume. Rather than using Automatic Relevance Determination
to fit an independent GP kernel lengthscale parameter in each coordinate dimension, when
not proposing in latent space, we scale the proposal volume along the coordinate axes by
the gradient direction unit vector.

5.8 Appendix C: Batch size

We show the effect of batch size on our method on the synthetic Ackley test function in
Figure 5.7 (here using X = 1 for all proposals). A too-large batch leads to somewhat
reduced performance, as would be expected due to each batch having less information to use
when selecting the next point with the acquisition function.

Figure 5.7: Left: Dependence of progress toward the optimum for the GP-based version of
DLO with mean and standard error estimated over 10 realizations. Right: Optimization
runs on the 10d Rosenbrock function, as in Figure 5.3, but changing the TuRBO batch size
from 10 (as provided by those authors for 10d test functions) to 1. We also show a random
search baseline.
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Figure 5.7 indicates the change in performance of TuRBO when the batch size is reduced
to 1 from the values prescribed in [381]. Following the results presented in Figure 7 of [381],
we see that the performance improves with reduced batch size, but only slightly.

5.9 Appendix D: Replacing the surrogate model

In the main text, we presented an implementation of the DLO algorithm that employed a
GP for the surrogate model and an NF, SINF, for the density estimate. However, as the
number of dimensions of the problem at hand increases, more data points are required to
obtain an accurate surrogate model. Since the cost of the GP surrogate scales as the number
of data points cubed, alternative surrogates may be preferred in high dimensions.

In this spirit, we consider a simple fully-connected neural network surrogate as a replace-
ment for the GP mean surrogate. In Figure 5.8 we use a FCN implemented in pytorch

with 2 hidden layers of width 100 trained with ADAM [430] and Tanh activation as the
surrogate and compare it to the progress toward the optimum on the Rastrigin function in
10d. We find slightly reduced performance but a generally comparable result, indicating
deep network surrogates can perform well as replacement for GPs. We have not expended
significant time or effort on finding a well-performing architecture, so results can likely be
specifically improved upon those shown here, but this is out of the scope of this work, as is
further exploration of higher dimensional problems. However, already it is empirically clear
that the NN surrogate is much more scalable than the GP. Table 5.1 makes this cost scaling
explicit, as while the neural network is always cheaper to fit and evaluate as a surrogate than
a GP in the context of DLO, the scaling of the GP cost is significantly worse with dimension
for the Ackley objective (here both methods obtain similar performance in terms of the final
objective value).
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Figure 5.8: Progress toward objective optimum on the 10-d Rastrigin test problem for both
a simple neural network surrogate and the default choice of a Gaussian Process surrogate.
Here we average over 15 realizations and provide the related confidence band.

d 2 5 10 20 50
Evaluation:
DLO-GP 0.02 0.03 0.07 0.15 6.07
DLO-NN 0.02 0.02 0.04 0.10 0.53
Fitting:
DLO-GP 0.17 0.26 0.44 1.71 46.65
DLO-NN 0.03 0.04 0.06 0.20 2.84

Table 5.1: Surrogate evaluation (top rows) and fitting (bottom rows) timings (in seconds)
for both Gaussian Process (GP) and fully-connected neural network (NN) surrogates at the
last iteration of optimization of the Ackely function for several choices of dimension d.

5.10 Appendix E: Annealing and local search ablation

To demonstrate that both the annealing and suggesting candidate points from a local search
volume (rather than from a global search) are necessary for the performance shown in the
main text, here we perform a simple ablation study and remove these two components of the
DLO algorithm. Figure 5.9 illustrates that for the 10-dimensional objectives, performance
suffers when annealing and the local bounding box for choosing candidate points are omitted.
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In particular, for the Ackley function, taking out the local volume search gives significantly
worse average performance (in terms of objective value obtained), while removing anneal-
ing has comparatively little effect. For the correlated Gaussian posterior, the situation is
reversed - removing the local volume search seems to have little effect, while the omission
of annealing causes more variation between runs and worse average empirical convergence
toward the optimum. The differences here are not surprising, as the two targets furnish
very different optimization problems. For one, the Gaussian target is convex, and has an
enormous dynamic range in objective (log p(θ)) value, which is dramatically reduced by the
temperature annealing. Meanwhile, the Ackley function has comparatively little dynamic
range, and has many local minima, so it is possible for the acquisition strategy to overfavor
far-away local minima if they have not yet been explored when there is no local candidate
search volume.

Figure 5.9: The effect of removing temperature annealing and the local volume search from
the DLO algorithm on performance in 10 dimensions for the Ackley function (left) and the
correlated Gaussian (right) objectives (averaged over 15 realizations).

5.11 Appendix F: Further synthetic test functions

We also show results on two additional test functions, the 8−dimensional Zakharov function
on [−5, 10]8 and the 12−dimensional Styblinski-Tang function, on [−5, 5]12. The Za-

kharov function is valley-shaped, and the Styblinski-Tang is only slightly multi-modal, sig-
nificantly different from the Rastrigin and Ackley functions. DLO is shown in both its GP
surrogate mode (“DLO-G”) and fully-connected network mode (“DLO-N”). We see that
DLO struggles somewhat with the Zakharov function but handily outperforms the other
methods for the Styblinski-Tang
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Figure 5.10: Similar to Fig. 5.2, but for the 8− d Zakharov (left) and the 12− d Styblinski-
Tang (right) objectives (averaged over 15 realizations, with standard deviation as the shaded
area).
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[51] Uroš Seljak. “Analytic model for galaxy and dark matter clustering”. In: MNRAS
318.1 (Oct. 2000), pp. 203–213. doi: 10.1046/j.1365-8711.2000.03715.x. arXiv:
astro-ph/0001493 [astro-ph].

[52] J. A. Peacock and R. E. Smith. “Halo occupation numbers and galaxy bias”. In:
MNRAS 318.4 (Nov. 2000), pp. 1144–1156. doi: 10.1046/j.1365- 8711.2000.
03779.x. arXiv: astro-ph/0005010 [astro-ph].

[53] Chung-Pei Ma and J. N. Fry. “Deriving the Nonlinear Cosmological Power Spectrum
and Bispectrum from Analytic Dark Matter Halo Profiles and Mass Functions”. In:
ApJ 543.2 (Nov. 2000), pp. 503–513. doi: 10 . 1086 / 317146. arXiv: astro - ph /
0003343 [astro-ph].

[54] Benjamin D. Wibking et al. “Emulating galaxy clustering and galaxy-galaxy lens-
ing into the deeply non-linear regime: methodology, information, and forecasts”. In:
MNRAS 484.1 (Mar. 2019), pp. 989–1006. doi: 10.1093/mnras/sty2258. arXiv:
1709.07099 [astro-ph.CO].

[55] Fabian Schmidt. “Towards a self-consistent halo model for the nonlinear large-scale
structure”. In: Phys. Rev. D 93.6, 063512 (Mar. 2016), p. 063512. doi: 10.1103/
PhysRevD.93.063512. arXiv: 1511.02231 [astro-ph.CO].

[56] Lehman H. Garrison et al. “The Abacus Cosmos: A Suite of Cosmological N-body
Simulations”. In: ApJS 236.2, 43 (June 2018), p. 43. doi: 10.3847/1538- 4365/
aabfd3. arXiv: 1712.05768 [astro-ph.CO].

https://doi.org/10.1088/1475-7516/2020/05/042
https://arxiv.org/abs/1909.05277
https://doi.org/10.1088/1475-7516/2020/05/005
https://arxiv.org/abs/1909.05271
https://doi.org/10.1088/1475-7516/2020/06/001
https://arxiv.org/abs/1909.07951
https://doi.org/10.1088/1475-7516/2016/01/043
https://arxiv.org/abs/1502.07389
https://doi.org/10.1088/1475-7516/2018/05/039
https://arxiv.org/abs/1710.01736
https://doi.org/10.1046/j.1365-8711.2000.03715.x
https://arxiv.org/abs/astro-ph/0001493
https://doi.org/10.1046/j.1365-8711.2000.03779.x
https://doi.org/10.1046/j.1365-8711.2000.03779.x
https://arxiv.org/abs/astro-ph/0005010
https://doi.org/10.1086/317146
https://arxiv.org/abs/astro-ph/0003343
https://arxiv.org/abs/astro-ph/0003343
https://doi.org/10.1093/mnras/sty2258
https://arxiv.org/abs/1709.07099
https://doi.org/10.1103/PhysRevD.93.063512
https://doi.org/10.1103/PhysRevD.93.063512
https://arxiv.org/abs/1511.02231
https://doi.org/10.3847/1538-4365/aabfd3
https://doi.org/10.3847/1538-4365/aabfd3
https://arxiv.org/abs/1712.05768


BIBLIOGRAPHY 151

[57] Douglas Potter, Joachim Stadel, and Romain Teyssier. “PKDGRAV3: beyond trillion
particle cosmological simulations for the next era of galaxy surveys”. In: Computa-
tional Astrophysics and Cosmology 4.1, 2 (May 2017), p. 2. doi: 10.1186/s40668-
017-0021-1. arXiv: 1609.08621 [astro-ph.IM].

[58] Katrin Heitmann et al. “The Coyote Universe. II. Cosmological Models and Pre-
cision Emulation of the Nonlinear Matter Power Spectrum”. In: ApJ 705.1 (Nov.
2009), pp. 156–174. doi: 10 . 1088 / 0004 - 637X / 705 / 1 / 156. arXiv: 0902 . 0429
[astro-ph.CO].

[59] Jeremy Tinker et al. “Toward a Halo Mass Function for Precision Cosmology: The
Limits of Universality”. In: ApJ 688.2 (Dec. 2008), pp. 709–728. doi: 10.1086/
591439. arXiv: 0803.2706 [astro-ph].

[60] Joseph DeRose et al. “The AEMULUS Project. I. Numerical Simulations for Precision
Cosmology”. In: ApJ 875.1, 69 (Apr. 2019), p. 69. doi: 10.3847/1538-4357/ab1085.
arXiv: 1804.05865 [astro-ph.CO].

[61] Aurel Schneider et al. “Matter power spectrum and the challenge of percent accuracy”.
In: J. Cosmology Astropart. Phys. 2016.4, 047 (Apr. 2016), p. 047. doi: 10.1088/
1475-7516/2016/04/047. arXiv: 1503.05920 [astro-ph.CO].

[62] Yu Feng et al. “FASTPM: a new scheme for fast simulations of dark matter and
haloes”. In: MNRAS 463.3 (Dec. 2016), pp. 2273–2286. doi: 10 . 1093 / mnras /

stw2123. arXiv: 1603.00476 [astro-ph.CO].

[63] Svetlin Tassev, Matias Zaldarriaga, and Daniel J. Eisenstein. “Solving large scale
structure in ten easy steps with COLA”. In: J. Cosmology Astropart. Phys. 2013.6,
036 (June 2013), p. 036. doi: 10.1088/1475-7516/2013/06/036. arXiv: 1301.0322
[astro-ph.CO].

[64] Martin White, Jeremy L. Tinker, and Cameron K. McBride. “Mock galaxy catalogues
using the quick particle mesh method”. In: MNRAS 437.3 (Jan. 2014), pp. 2594–2606.
doi: 10.1093/mnras/stt2071. arXiv: 1309.5532 [astro-ph.CO].

[65] Zhongxu Zhai et al. “The Aemulus Project. III. Emulation of the Galaxy Correlation
Function”. In: ApJ 874.1, 95 (Mar. 2019), p. 95. doi: 10.3847/1538-4357/ab0d7b.
arXiv: 1804.05867 [astro-ph.CO].

[66] Earl Lawrence et al. “The Mira-Titan Universe. II. Matter Power Spectrum Emula-
tion”. In: ApJ 847.1, 50 (Sept. 2017), p. 50. doi: 10.3847/1538-4357/aa86a9. arXiv:
1705.03388 [astro-ph.CO].

[67] Takahiro Nishimichi et al. “Dark Quest. I. Fast and Accurate Emulation of Halo Clus-
tering Statistics and Its Application to Galaxy Clustering”. In: ApJ 884.1, 29 (Oct.
2019), p. 29. doi: 10.3847/1538-4357/ab3719. arXiv: 1811.09504 [astro-ph.CO].

[68] Ryuichi Takahashi et al. “Revising the Halofit Model for the Nonlinear Matter Power
Spectrum”. In: ApJ 761.2, 152 (Dec. 2012), p. 152. doi: 10.1088/0004-637X/761/
2/152. arXiv: 1208.2701 [astro-ph.CO].

https://doi.org/10.1186/s40668-017-0021-1
https://doi.org/10.1186/s40668-017-0021-1
https://arxiv.org/abs/1609.08621
https://doi.org/10.1088/0004-637X/705/1/156
https://arxiv.org/abs/0902.0429
https://arxiv.org/abs/0902.0429
https://doi.org/10.1086/591439
https://doi.org/10.1086/591439
https://arxiv.org/abs/0803.2706
https://doi.org/10.3847/1538-4357/ab1085
https://arxiv.org/abs/1804.05865
https://doi.org/10.1088/1475-7516/2016/04/047
https://doi.org/10.1088/1475-7516/2016/04/047
https://arxiv.org/abs/1503.05920
https://doi.org/10.1093/mnras/stw2123
https://doi.org/10.1093/mnras/stw2123
https://arxiv.org/abs/1603.00476
https://doi.org/10.1088/1475-7516/2013/06/036
https://arxiv.org/abs/1301.0322
https://arxiv.org/abs/1301.0322
https://doi.org/10.1093/mnras/stt2071
https://arxiv.org/abs/1309.5532
https://doi.org/10.3847/1538-4357/ab0d7b
https://arxiv.org/abs/1804.05867
https://doi.org/10.3847/1538-4357/aa86a9
https://arxiv.org/abs/1705.03388
https://doi.org/10.3847/1538-4357/ab3719
https://arxiv.org/abs/1811.09504
https://doi.org/10.1088/0004-637X/761/2/152
https://doi.org/10.1088/0004-637X/761/2/152
https://arxiv.org/abs/1208.2701


BIBLIOGRAPHY 152

[69] Martin White. “Baryons and weak lensing power spectra”. In: Astroparticle Physics
22.2 (Nov. 2004), pp. 211–217. doi: 10.1016/j.astropartphys.2004.06.001.
arXiv: astro-ph/0405593 [astro-ph].

[70] Hu Zhan and Lloyd Knox. “Effect of Hot Baryons on the Weak-Lensing Shear Power
Spectrum”. In: ApJ 616.2 (Dec. 2004), pp. L75–L78. doi: 10.1086/426712. arXiv:
astro-ph/0409198 [astro-ph].

[71] Nora Elisa Chisari et al. “Modelling baryonic feedback for survey cosmology”. In: The
Open Journal of Astrophysics 2.1, 4 (June 2019), p. 4. doi: 10.21105/astro.1905.
06082. arXiv: 1905.06082 [astro-ph.CO].

[72] Marcel P. van Daalen, Ian G. McCarthy, and Joop Schaye. “Exploring the effects of
galaxy formation on matter clustering through a library of simulation power spectra”.
In: MNRAS 491.2 (Jan. 2020), pp. 2424–2446. doi: 10.1093/mnras/stz3199. arXiv:
1906.00968 [astro-ph.CO].

[73] A. J. Mead et al. “An accurate halo model for fitting non-linear cosmological power
spectra and baryonic feedback models”. In: MNRAS 454.2 (Dec. 2015), pp. 1958–
1975. doi: 10.1093/mnras/stv2036. arXiv: 1505.07833 [astro-ph.CO].

[74] Aurel Schneider and Romain Teyssier. “A new method to quantify the effects of
baryons on the matter power spectrum”. In: J. Cosmology Astropart. Phys. 2015.12,
049 (Dec. 2015), p. 049. doi: 10.1088/1475-7516/2015/12/049. arXiv: 1510.06034
[astro-ph.CO].

[75] Aurel Schneider et al. “Quantifying baryon effects on the matter power spectrum and
the weak lensing shear correlation”. In: J. Cosmology Astropart. Phys. 2019.3, 020
(Mar. 2019), p. 020. doi: 10.1088/1475-7516/2019/03/020. arXiv: 1810.08629
[astro-ph.CO].

[76] Zvonimir Vlah, Uroš Seljak, and Tobias Baldauf. “Lagrangian perturbation theory at
one loop order: Successes, failures, and improvements”. In: Phys. Rev. D 91.2, 023508
(Jan. 2015), p. 023508. doi: 10.1103/PhysRevD.91.023508. arXiv: 1410.1617
[astro-ph.CO].

[77] S. Pandey et al. “Perturbation theory for modeling galaxy bias: Validation with sim-
ulations of the Dark Energy Survey”. In: Phys. Rev. D 102.12, 123522 (Dec. 2020),
p. 123522. doi: 10.1103/PhysRevD.102.123522. arXiv: 2008.05991 [astro-ph.CO].

[78] Chirag Modi, Shi-Fan Chen, and Martin White. “Simulations and symmetries”. In:
MNRAS 492.4 (Mar. 2020), pp. 5754–5763. doi: 10.1093/mnras/staa251. arXiv:
1910.07097 [astro-ph.CO].

[79] Alexander Mead and Licia Verde. “Including beyond-linear halo bias in halo models”.
In: arXiv e-prints, arXiv:2011.08858 (Nov. 2020), arXiv:2011.08858. arXiv: 2011.
08858 [astro-ph.CO].

https://doi.org/10.1016/j.astropartphys.2004.06.001
https://arxiv.org/abs/astro-ph/0405593
https://doi.org/10.1086/426712
https://arxiv.org/abs/astro-ph/0409198
https://doi.org/10.21105/astro.1905.06082
https://doi.org/10.21105/astro.1905.06082
https://arxiv.org/abs/1905.06082
https://doi.org/10.1093/mnras/stz3199
https://arxiv.org/abs/1906.00968
https://doi.org/10.1093/mnras/stv2036
https://arxiv.org/abs/1505.07833
https://doi.org/10.1088/1475-7516/2015/12/049
https://arxiv.org/abs/1510.06034
https://arxiv.org/abs/1510.06034
https://doi.org/10.1088/1475-7516/2019/03/020
https://arxiv.org/abs/1810.08629
https://arxiv.org/abs/1810.08629
https://doi.org/10.1103/PhysRevD.91.023508
https://arxiv.org/abs/1410.1617
https://arxiv.org/abs/1410.1617
https://doi.org/10.1103/PhysRevD.102.123522
https://arxiv.org/abs/2008.05991
https://doi.org/10.1093/mnras/staa251
https://arxiv.org/abs/1910.07097
https://arxiv.org/abs/2011.08858
https://arxiv.org/abs/2011.08858


BIBLIOGRAPHY 153

[80] Andreas A. Berlind and David H. Weinberg. “The Halo Occupation Distribution:
Toward an Empirical Determination of the Relation between Galaxies and Mass”.
In: ApJ 575.2 (Aug. 2002), pp. 587–616. doi: 10.1086/341469. arXiv: astro-ph/
0109001 [astro-ph].

[81] Zhongxu Zhai et al. “The Clustering of Luminous Red Galaxies at z ∼ 0.7 from
EBOSS and BOSS Data”. In: ApJ 848.2, 76 (Oct. 2017), p. 76. doi: 10.3847/1538-
4357/aa8eee. arXiv: 1607.05383 [astro-ph.CO].

[82] Beth A. Reid et al. “A 2.5 per cent measurement of the growth rate from small-scale
redshift space clustering of SDSS-III CMASS galaxies”. In: MNRAS 444.1 (Oct. 2014),
pp. 476–502. doi: 10.1093/mnras/stu1391. arXiv: 1404.3742 [astro-ph.CO].

[83] Irshad Mohammed and Uroš Seljak. “Analytic model for the matter power spectrum,
its covariance matrix and baryonic effects”. In: MNRAS 445.4 (Dec. 2014), pp. 3382–
3400. doi: 10.1093/mnras/stu1972. arXiv: 1407.0060 [astro-ph.CO].

[84] P. Valageas and T. Nishimichi. “Combining perturbation theories with halo models”.
In: A&A 527, A87 (Mar. 2011), A87. doi: 10.1051/0004-6361/201015685. arXiv:
1009.0597 [astro-ph.CO].

[85] Oliver H. E. Philcox, David N. Spergel, and Francisco Villaescusa-Navarro. “Effective
halo model: Creating a physical and accurate model of the matter power spectrum
and cluster counts”. In: Phys. Rev. D 101.12, 123520 (June 2020), p. 123520. doi:
10.1103/PhysRevD.101.123520. arXiv: 2004.09515 [astro-ph.CO].

[86] Patrick Valageas. “Accuracy of analytical models of the large-scale matter distribu-
tion”. In: Phys. Rev. D 88.8, 083524 (Oct. 2013), p. 083524. doi: 10.1103/PhysRevD.
88.083524. arXiv: 1308.6755 [astro-ph.CO].

[87] M. Davis et al. “The evolution of large-scale structure in a universe dominated by
cold dark matter”. In: ApJ 292 (May 1985), pp. 371–394. doi: 10.1086/163168.

[88] Nick Hand et al. “nbodykit: An Open-source, Massively Parallel Toolkit for Large-
scale Structure”. In: AJ 156.4, 160 (Oct. 2018), p. 160. doi: 10.3847/1538-3881/
aadae0. arXiv: 1712.05834 [astro-ph.IM].

[89] Y. P. Jing. “Correcting for the Alias Effect When Measuring the Power Spectrum
Using a Fast Fourier Transform”. In: ApJ 620.2 (Feb. 2005), pp. 559–563. doi: 10.
1086/427087. arXiv: astro-ph/0409240 [astro-ph].

[90] Manodeep Sinha and Lehman H. Garrison. “CORRFUNC - a suite of blazing fast
correlation functions on the CPU”. In: MNRAS 491.2 (Jan. 2020), pp. 3022–3041.
doi: 10.1093/mnras/stz3157. arXiv: 1911.03545 [astro-ph.CO].

[91] Francisco Villaescusa-Navarro et al. “Statistical Properties of Paired Fixed Fields”.
In: ApJ 867.2, 137 (Nov. 2018), p. 137. doi: 10.3847/1538-4357/aae52b. arXiv:
1806.01871 [astro-ph.CO].

https://doi.org/10.1086/341469
https://arxiv.org/abs/astro-ph/0109001
https://arxiv.org/abs/astro-ph/0109001
https://doi.org/10.3847/1538-4357/aa8eee
https://doi.org/10.3847/1538-4357/aa8eee
https://arxiv.org/abs/1607.05383
https://doi.org/10.1093/mnras/stu1391
https://arxiv.org/abs/1404.3742
https://doi.org/10.1093/mnras/stu1972
https://arxiv.org/abs/1407.0060
https://doi.org/10.1051/0004-6361/201015685
https://arxiv.org/abs/1009.0597
https://doi.org/10.1103/PhysRevD.101.123520
https://arxiv.org/abs/2004.09515
https://doi.org/10.1103/PhysRevD.88.083524
https://doi.org/10.1103/PhysRevD.88.083524
https://arxiv.org/abs/1308.6755
https://doi.org/10.1086/163168
https://doi.org/10.3847/1538-3881/aadae0
https://doi.org/10.3847/1538-3881/aadae0
https://arxiv.org/abs/1712.05834
https://doi.org/10.1086/427087
https://doi.org/10.1086/427087
https://arxiv.org/abs/astro-ph/0409240
https://doi.org/10.1093/mnras/stz3157
https://arxiv.org/abs/1911.03545
https://doi.org/10.3847/1538-4357/aae52b
https://arxiv.org/abs/1806.01871


BIBLIOGRAPHY 154

[92] Zvonimir Vlah, Emanuele Castorina, and Martin White. “The Gaussian streaming
model and convolution Lagrangian effective field theory”. In: J. Cosmology Astropart.
Phys. 2016.12, 007 (Dec. 2016), p. 007. doi: 10.1088/1475-7516/2016/12/007.
arXiv: 1609.02908 [astro-ph.CO].

[93] Shi-Fan Chen, Zvonimir Vlah, and Martin White. “Consistent Modeling of Veloc-
ity Statistics and Redshift-Space Distortions in One-Loop Perturbation Theory”. In:
arXiv e-prints, arXiv:2005.00523 (May 2020), arXiv:2005.00523. arXiv: 2005.00523
[astro-ph.CO].

[94] Andrew P. Hearin et al. “Forward Modeling of Large-scale Structure: An Open-source
Approach with Halotools”. In: AJ 154.5, 190 (Nov. 2017), p. 190. doi: 10.3847/1538-
3881/aa859f. arXiv: 1606.04106 [astro-ph.IM].

[95] Zheng Zheng, Alison L. Coil, and Idit Zehavi. “Galaxy Evolution from Halo Oc-
cupation Distribution Modeling of DEEP2 and SDSS Galaxy Clustering”. In: ApJ
667.2 (Oct. 2007), pp. 760–779. doi: 10.1086/521074. arXiv: astro-ph/0703457
[astro-ph].

[96] Beth Reid et al. “SDSS-III Baryon Oscillation Spectroscopic Survey Data Release
12: galaxy target selection and large-scale structure catalogues”. In: MNRAS 455.2
(Jan. 2016), pp. 1553–1573. doi: 10 . 1093 / mnras / stv2382. arXiv: 1509 . 06529
[astro-ph.CO].

[97] E. Sefusatti et al. “Accurate estimators of correlation functions in Fourier space”. In:
MNRAS 460.4 (Aug. 2016), pp. 3624–3636. doi: 10.1093/mnras/stw1229. arXiv:
1512.07295 [astro-ph.CO].

[98] Thomas McClintock et al. “The Aemulus Project. II. Emulating the Halo Mass Func-
tion”. In: ApJ 872.1, 53 (Feb. 2019), p. 53. doi: 10.3847/1538-4357/aaf568. arXiv:
1804.05866 [astro-ph.CO].

[99] Nick Hand et al. “Extending the modeling of the anisotropic galaxy power spectrum
to k = 0.4 hMpc−1”. In: J. Cosmology Astropart. Phys. 2017.10, 009 (Oct. 2017),
p. 009. doi: 10.1088/1475-7516/2017/10/009. arXiv: 1706.02362 [astro-ph.CO].

[100] Julio F. Navarro, Carlos S. Frenk, and Simon D. M. White. “The Structure of Cold
Dark Matter Halos”. In: ApJ 462 (May 1996), p. 563. doi: 10.1086/177173. arXiv:
astro-ph/9508025 [astro-ph].

[101] Aaron A. Dutton and Andrea V. Macciò. “Cold dark matter haloes in the Planck
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