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ARTICLE

Anthropogenic influence on extreme precipitation
over global land areas seen in multiple
observational datasets
Gavin D. Madakumbura 1✉, Chad W. Thackeray 1, Jesse Norris 1, Naomi Goldenson 1 & Alex Hall 1

The intensification of extreme precipitation under anthropogenic forcing is robustly projected

by global climate models, but highly challenging to detect in the observational record. Large

internal variability distorts this anthropogenic signal. Models produce diverse magnitudes of

precipitation response to anthropogenic forcing, largely due to differing schemes for para-

meterizing subgrid-scale processes. Meanwhile, multiple global observational datasets of

daily precipitation exist, developed using varying techniques and inhomogeneously sampled

data in space and time. Previous attempts to detect human influence on extreme precipitation

have not incorporated model uncertainty, and have been limited to specific regions and

observational datasets. Using machine learning methods that can account for these uncer-

tainties and capable of identifying the time evolution of the spatial patterns, we find a

physically interpretable anthropogenic signal that is detectable in all global observational

datasets. Machine learning efficiently generates multiple lines of evidence supporting

detection of an anthropogenic signal in global extreme precipitation.
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Extreme precipitation can have devastating direct societal
impacts such as flooding, soil erosion, and agricultural
damage1, as well as causing indirect health risks and

impacts2. Anthropogenic warming acts to intensify Earth’s
hydrologic cycle3. This intensification is manifested in
part through increased extreme precipitation as a result of
greater atmospheric moisture with warming following the
Clausius–Clapeyron relationship. However, circulation changes
can act to enhance or reduce this increase4–7. Future projections
by climate models following climate change scenarios show a
robust increase in extreme precipitation, globally and on regional
scales8–11. Moreover, increased variation between wet and dry
extremes is projected, which could have devastating societal
impacts12,13. These changes in extreme precipitation may have
already become apparent on a regional basis14–16.

Recent studies have detected anthropogenic influence in his-
torical changes to extreme precipitation across the domains of
North America17,18, Europe18,19, Asia18–20, and Northern
Hemisphere land areas as a whole21. These attempts are part of a
larger category of studies known as Detection and Attribution
(D&A)22–24. Often, they initially extract the spatial or spatio-
temporal patterns of climate-system response to anthropogenic
forcing (so-called fingerprints) from an ensemble of global cli-
mate models (GCMs). Projection of observations onto these
fingerprints allows for detection of the signal24,25. The presence of
a signal that can be statistically distinguished from internal
variability confirms the influence of external forcing. Thus, tra-
ditional D&A methods rely on long-term observations24,26. In the
case of extreme precipitation, traditional methods may be difficult
to apply globally due to inordinately short records and large
observational uncertainty, reflected in multiple global datasets
produced with very different assumptions27–30. Another key
difficulty with traditional methods is that the models produce a
large spread in the extreme precipitation response to historical
anthropogenic forcing31. This spread, the model uncertainty,
occurs alongside large internal variability in the models’ simula-
tions of the historical period. These two effects create significant
uncertainty in the character of the true anthropogenic signal. In
past research, spread in the response has been suppressed by
assuming the anthropogenic fingerprint can be derived from the
ensemble-mean change in extreme precipitation32. Here, we aim
to take these uncertainties fully into account, by making no
assumptions about how to derive the anthropogenic signal from
GCM data.

Machine learning-based methods for the detection of anthro-
pogenic influence (DAI) have been shown to overcome the reli-
ance on trends33,34 and are even capable of detecting the human
influence from weather data on a single day35. An artificial neural
network (ANN) is trained to predict a proxy of external forcing
(e.g., the year of the data) based on the spatial maps of the target
variable from an ensemble of GCM simulations. Under this
supervised learning approach, the ANN learns the spatial patterns
that best represent the external forcing from the background
noise arising from the internal variability and model
uncertainty33,34. Observations can then be fed to this trained
ANN to assess the presence of an anthropogenic signal in
observations33–35. This ANN DAI method can identify the
nonlinear combinations of the forced signal, internal climate
variability, and intermodel variability34. This method also has the
advantage of being able to explicitly include internal variability
and model uncertainty. It does not assume that any model or any
model-derived quantity, such as the ensemble mean of the
models, is the true anthropogenic signal. It uses the raw GCM
data, with GCM internal variability included. In addition,
novel visualization techniques allow for the interpretability of
the ANNs formerly considered as black boxes, making them

explainable36,37, or interpretable in terms of physical processes or
system behavior. The use of these visualization techniques
alongside the ANN DAI method allows one to capture the time-
varying dynamic fingerprints of each input and evaluate their
physical credibility34,38.

In this study, we apply the ANN DAI method and the ANN
visualization technique known as Layer-wise Relevance Propa-
gation (LRP)39,40 to global maps of annual maximum daily pre-
cipitation (Rx1day) over land. Using Coupled Model
Intercomparison Project, phase 5 (CMIP5)41 and phase 6
(CMIP6)42 model ensembles, we first aim to understand how the
ANN is detecting the anthropogenic signal and interpret it phy-
sically. Then we use the ANN to detect the anthropogenic
influence on Rx1day in several land-only observational and rea-
nalysis datasets. Thus, we are agnostic about which GCM is
correct, and which gridded dataset is a true representation of the
observed record. In this way, we efficiently generate multiple lines
of evidence as to the presence of an anthropogenic signal in the
various instantiations of the observed record.

Results
ANN-identified fingerprints of anthropogenic influence. We
first discuss the ability of the ANN to predict the year of occur-
rence for a series of simulated annual Rx1day maps. Predictions
of the simulated Rx1day year (Fig. 1a, b) show that the ANN
struggles during roughly the 1920–1970 period. But prediction
accuracy gradually increases, noticeably starting from the late
twentieth century. This characteristic, a near-constant predicted
year followed by a positive trend, is consistent with the emergence
of the anthropogenic signal from the noise of natural variability43.
Compared to when this technique is applied to global-mean
temperature (ref. 33), there is a lag in the emergence of the
anthropogenic signal in extreme precipitation. This delay is likely
due to larger internal and intermodel variability in extreme pre-
cipitation. We estimate this time of emergence (departure year) as
the year after which the ANN prediction continuously exceeds a
selected base period (1920–1949)33,43. In GCMs, the predicted
year departs from the base period in the 1970s, but the departures
mostly occur later, with lower and upper quartiles of 1993
and 2014, respectively (Fig. 1c). The ANN suggests that there is
a detectable anthropogenic signal in the GCM’s Rx1day during
the historical period, consistent with traditional statistical
methods44.

Figure 1d shows the importance of each grid box for the ANN
to identify the anthropogenic signal (hereafter called relevance
patterns, see “Methods”), averaged over the period 1982–2015.
Positive (negative) values in the relevance patterns correspond to
an increase (decrease) in the predicted year. Therefore, areas of
positive relevance can be interpreted as the regions with a positive
contribution to the prediction (i.e., the year) and negative values
are the regions with a negative contribution. The sum of all grid
cell values is equal to the predicted year (“Methods” and
Supplementary Text). By learning how to predict the year of
the data, the ANN is able to detect the spatial patterns that best
reflect the changing climate from background noise33,34. There-
fore, the relevance patterns observed above can be considered as
the ANN-identified fingerprints of anthropogenic influence on
Rx1day (e.g., ref. 35).

The regions with positive relevance include the East Asian and
African monsoon regions, and the North Pacific and Atlantic
storm tracks (Fig. 1d and Supplementary Fig. 1). The regions with
negative relevance include arid and semi-arid subtropical zones
such as Northern African and Middle Eastern deserts, Southern
South Africa, Australian arid and semi-arid regions, and wet
regions such as central and northwestern parts of South America.
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Regions with negative relevance coincide with areas where the
dynamical component of the Rx1day trend (i.e., the contribution
from the change in vertical velocity4) is largely negative (ref. 45,
their Fig. 3b). This offsets the Rx1day increase stemming from the
thermodynamic contribution (i.e., the contribution from the
increase in atmospheric moisture with warming3–5) and produces
only a weak and inconsistent increase in Rx1day45. The
uncertainty associated with the dynamical component has been
identified as a major concern for D&A of precipitation46.

To understand the physical nature of the relevance patterns, we
next assess the signal, and the noise components arising from
internal variability and the model uncertainty. The negative
relevance of the forced response is associated with a lower signal-
to-noise ratio (S:N) than the regions with positive relevance

(Fig. 1e, f). The S:N is lower for both internal variability and
model variability. This reflects both the higher uncertainty
regarding the change in extreme precipitation projected by
GCMs for a majority of global arid land regions, as well as larger
internal variability in those regions.

The ANN-based relevance patterns are consistent with the idea
that previously observed long-term trends of terrestrial Rx1day
are anthropogenic in origin (e.g., ref. 21, their Fig. 1). Many
wetland regions, such as the Asian, African, and South American
monsoon regions, have experienced a robust increase in Rx1day
to date15,16, whereas in arid and semi-arid subtropical zones no
such trend can be seen16. The selection of regions in these
previous studies (e.g., ref. 16) seems to overlap with regions of
higher relevance in Fig. 1d.

Fig. 1 Fingerprint of external forcing in simulated Rx1day learned by the neural network. a, b Actual year vs predicted year for training data derived from
CMIP5 and CMIP6 global climate models (GCMs) (a) and testing data derived from CMIP5 and CMIP6 GCMs (b) for a single neural network. Each GCM
is represented by a different color. c The year of departure from the base period, 1920–1949. Whiskers represent the 5th–95th percentiles, while blank
circles represent outliers. d Multimodel, ensemble-mean, layer-wise-relevance-propagation-based relevance maps for annual maximum daily precipitation
(Rx1day) input for the period 1982–2015 from all models. Relevance is the contribution of each grid value to the neural network’s decision (see “Methods”).
e, f Signal-to-noise ratio (S:N): two-dimensional Gaussian kernel density (2D GKD) estimation plots for grid cells with a positive relevance (e) and negative
relevance (f) in panel (d). Signal is defined as the multimodel mean change in Rx1day between the base period 1920–1949 and 2070–2099. Noise is
defined in two ways: the first stems from internal variability and is calculated as the multimodel ensemble mean of the standard deviation in Rx1day during
the base period. The second pertains to intermodel variability and is calculated as the intermodel standard deviation of the signal from each GCM.
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Time-varying fingerprints. One of the main advantages of using
an ANN to detect anthropogenic influence over traditional D&A
methods is that time-varying signals can be accounted for34,38.
Changes in the signals could be due to the nonlinear evolution of
the climate system or temporal and spatial variations in the
forcing itself. Figure 2a shows the difference between the rele-
vance maps for our baseline period (1920–1949) and the end of
the twenty-first century (2070–2099). While the sum of the
relevance maps derived using LRP is larger for later years in the
time series (“Methods”), local differences can explain the redis-
tribution of the importance with time. This ability to aggregate
over regions and different samples has been identified as an
advantage of using LRP to interpret deep-learning models40.
Notably, the relevance increases with time across Africa and Asia,
which is likely to be associated in part with the enhancement of
the monsoon systems47. A similar increase in relevance can be
seen in North Pacific and North Atlantic land regions, possibly
associated with the poleward shift of storm tracks48. South
African and South American Mediterranean climate regions also
show an increase in relevance, associated with subtropical drying,
a robust pattern of climate change49,50. This indicates that even
though dry regions have a smaller S:N compared to wet regions in
terrestrial Rx1day (Fig. 1d–f), some dry regions show an increase
of the signal and/or decrease in noise with time, yielding an
increase in the relevance (Fig. 2a). Among the regions with

decreasing relevance, a majority of South America and the
Western US stand out, possibly due to an increase in model
uncertainty of Rx1day as the twenty-first century progresses.

To assess the physical validity of the change in relevance
determined by the ANN, we break the terrestrial Rx1day record
down into its forced signal and changes in noise components
between the two periods. Results show that grid cells with
increasing relevance have a comparable change in Rx1day, but
much less increase in both internal variability and intermodel
variability, compared to grid cells with decreasing relevance
(Fig. 2b). Therefore, the change of relevance over time is in accord
with the tradeoff between increasing noise and increasing signal
with time.

Origins of the spread in the predicted year. We next investigate
why the ANN predicts such a large range of years depending on
the data of the underlying GCM used to predict the year. This
intermodel spread in the predicted year is especially pronounced
before the warming signal emerges (Fig. 1a, b). Here, we select
four GCMs with the highest average predicted year, and four
GCMs with the lowest average predicted year, during the baseline
period (1920–1949). We obtain the relevance heatmaps for each
year of the baseline period for these eight models and calculate
the composite difference (i.e., models with high-versus-low pre-
dicted year; Fig. 3a). Large positive values are seen in the African
and Asian monsoon regions. The models predicting later years
also have larger twentieth-century mean state Rx1day values in
these regions (Fig. 3b). Thus, the GCMs that predict a later year
in the baseline period have more future-like patterns of Rx1day in
their baseline climatologies compared to other models. When
projected onto the fingerprints identified by the ANN, these
patterns result in a later predicted year compared to the opposite
subset. This exercise suggests a potential use of ANN-based DAI
methods to understand how biases in historical simulations
project onto future changes31.

Fig. 2 Change in the relevance patterns learned by the neural network
through time. a Multimodel average change of relevance maps between
2070–2099 and 1920–1949. Relevance is the contribution of each grid
value to the neural network’s decision, obtained using layer-wise relevance
propagation (see “Methods”). b Multimodel ensemble-mean change in
annual maximum daily precipitation (Rx1day) vs change in intermodel
variability of Rx1day, (dMV, top panels), change in Rx1day vs change in
internal variability of Rx1day (dIV, bottom panels), between 2070–2099
and 1920–1949. Two-dimensional Gaussian kernel density (2D GKD)
estimation is shown. Left panels show results for grid cells where relevance
increases with time in panel (a) and right panels show results for grid cells
where relevance decreases. Internal variability is calculated as the standard
deviation of Rx1day time-series and intermodel variability is calculated as
the standard deviation of mean Rx1day from all models for each time
period. Prior to the calculation of internal variability, the forced Rx1day trend
at each grid cell was removed by regressing onto 41-year lowess filtered
annual global-mean surface temperature85.

Fig. 3 Differences between subsets of models with high and low
predicted years by the neural network during the baseline period
(1920–1949). a, b The difference in their relevance maps (a) and annual
maximum daily precipitation (Rx1day) (b) between the four models with
the highest mean predicted year and the four models with the lowest mean
predicted year (as shown in Fig. 1a, b). Relevance is the contribution of each
grid value to the neural network’s decision, obtained using layer-wise
relevance propagation (see “Methods”).
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Detected anthropogenic signal in historical Rx1day records.
With these physical interpretations of the ANN results and
relevance patterns, we use the GCM-trained ANNs to detect
whether there is a forced signal in observations. According to
previous studies, a steady global warming trend can be seen since
the 1970s51 and, in GCMs, the anthropogenic signal of global-
mean Rx1day has started to emerge as of the 1970s44, Therefore,
according to the theoretical basis of the response of extreme
precipitation to warming3–5, one could hypothesize that GCM-
simulated and observed Rx1day should have a positive significant
trend during the historical period analyzed here, 1982–2015.
Confirming this, GCMs show a positive trend in globally averaged
Rx1day (significant at 99% in 36 out of 44 models), which cannot
be explained by natural variability alone (Supplementary Fig. 2).
In observations and reanalyses, only seven out of the eleven
datasets show a significant trend (significant at 99%) in globally
averaged Rx1day for the historical period 1982–2015, ranging
from 0.02 to 0.09 mm/day/year (Supplementary Table 1). Taken
at face value, this large disparity in observations suggests that the
observational evidence for anthropogenic influence on recent
changes in extreme precipitation is weak. However, when we
apply the ANN trained on Rx1day data from GCMs, to the same
eleven datasets, a different story emerges.

If an observational dataset exhibits the same forced response as
the GCMs, the time series of predicted year from that dataset
should have a positive correlation (r) with the actual year and
linear regression of these two variables should produce a positive
slope25,34. The metric r can be considered as an indicator of the
presence of an anthropogenic signal whereas the slope is an
indicator of the strength of that signal. Figure 4 shows these two
metrics for observations, reanalyses and testing GCMs, from 51

different ANNs trained using randomly selected training GCMs.
We also calculated the two metrics (r and slope) for the
predicted-versus-actual year given for GCM simulations with
radiative forcing held constant at pre-industrial levels, which is
used as a measure of natural variability (see “Methods”). All
observations and reanalysis have positive r values (Fig. 4 and
Supplementary Fig. 3), even in datasets that do not show a
significant positive trend in global-average Rx1day (Supplemen-
tary Table 1). This contrast is because the ANN detects a signal in
the spatial distribution of Rx1day, as opposed to the global
average. The r values for all observational datasets are
substantially larger than those expected by natural variability
(gray-shaded area in Fig. 4e, f). When looking at the slope, two
observational datasets (MSWEP and GPCC) are in line with
GCMs, along with four reanalyses (JRA55, MERRA2, W5E5, and
20CRv3). The two REGEN datasets, ERA5 and CFSR, show lower
slopes, whereas NCEP2 has the highest slope among the datasets
considered here. In general, observational and reanalysis products
show similar r values and slopes as the GCMs for the same
historical time period (compare the black circles and the green
bands in Fig. 4e, f). This indicates that the observational and
reanalysis products show anthropogenic influence on Rx1day that
is comparable to what is shown by GCMs.

To estimate the statistical significance of the signal detected in
the observations and reanalysis, we first estimate the noise as the
standard deviation of the distribution of the slopes representing
natural variability (Fig. 4e, f). Then S:N is calculated in all datasets
by dividing the mean slope by noise. Following the two-tailed z
test, S:N larger than, for instance, 1.96 corresponds to a statistical
significance level of 95%25,52,53. Out of the four observations,
MSWEP, GPCC, and REGEN_ALL show a 95% significance and

Fig. 4 Metrics of the forced signal in observation-based estimates of precipitation during 1982–2015. a–d Actual year vs predicted year obtained from
51 different artificial neural networks (ANNs) with different training/validation/testing sets, for four observational datasets, MSWEP (a), GPCC (b),
REGEN_ALL (c), and REGEN_LONG (d). Green lines show results from each ANN. The blue line is the mean slope. Each predicted year time series is
standardized in the figure for a better comparison between datasets. e Correlation (r) between the actual years and predicted years, (f) slope of the
regression line between actual years and predicted years for observational and reanalysis data (black circle with a line), and testing models (green-shaded
regions). Gray shading represents a measure of natural variability derived from 220 nonoverlapping 34-year segments obtained from pre-industrial control
(piControl) simulations (see “Methods”). The error bar range and the range of the green and gray-shaded area show the ±0.5 standard deviation range.
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REGEN_LONG shows a 84% significance. Among reanalyses,
ERA5 and CFSR show a 90% significance while the rest show a
95% significance.

These results demonstrate that the absence of a significant
linear trend in globally averaged Rx1day cannot be taken to mean
there is no evidence of an anthropogenic signal in Rx1day. This
underscores the importance of exploiting the spatial pattern of
the response to external forcing to extract the forced signal in
observations, as opposed to the trend-based analysis35,38,54. In
particular, areas with higher internal variability can act to
suppress the trend in the global mean. Further evidence of the
importance of spatial patterns can be seen in the fact that the
average ANN-predicted values vary widely and systematically
across the observational datasets (Supplementary Fig. 3). This is
an indicator of systematic and large relative biases in the Rx1day
climatologies of the various datasets (as pointed out above in the
discussion of ANN applied to the GCMs, the average predicted
value of the year depends on the magnitude of the Rx1day in the
climatology (Fig. 3 and Supplementary Text)). Yet it is significant
that the ANN can put the years in close to the correct order, as
demonstrated by the significant correlations between actual and
predicted years, even if the absolute value of the years is incorrect.
This is a strong indicator that the subtle patterns and time
variations of the simulated anthropogenic signal are present in
the observational datasets and are shared among them, despite
the fact that they are systematically biased relative to one another
and likely the real world55,56.

Discussion
Detecting anthropogenic signals in observations of extreme pre-
cipitation has been a challenging task due to the large internal
variability of rare events, as well as climate model uncertainty.
The limited sampling in observations adds additional uncertainty,
due in part to a dataset development process that involves a
variety of homogenization, extrapolation, and interpolation
techniques to produce global gridded products30. Using a recently
introduced ANN DAI method, we utilized the time evolution of
spatial maps of Rx1day in GCMs, for historical simulations and
future projections. The ANN yields fingerprints of anthropogenic
signals that are physically consistent with the time evolution of
the forced signal and can be distinguished from the noise arising
from internal variability and substantial model uncertainty. Using
this ANN DAI method, we show that the anthropogenic signal
can be detected in all global terrestrial Rx1day records considered
in this study. This robust detection occurs despite large systematic
biases and large discrepancies in data sources and homogeniza-
tion methods.

While previous trend-based D&A assessments of Rx1day have
demonstrated the human influence in this variable in some
regions, those studies assume the ensemble mean of the GCMs is
the anthropogenic signal. This leads to questions as to whether
further steps are needed to fully consider model uncertainty32,57.
We made a simple attempt to examine this issue by applying the
ANN DAI method to the same widely used, quality-controlled
Rx1day record used in the previous trend-based D&A assess-
ments. We applied the method twice, once using the same mul-
timodel approach discussed elsewhere in this study, and once
using a large ensemble dataset which only accounts for internal
variability. Our results show that including internal variability
and model uncertainty in the forced response could reduce the
power of detection (Supplementary Text). Therefore, the detected
signal in multiple global terrestrial Rx1day datasets in this study,
with internal variability and model uncertainty being taken fully
into account (Fig. 4), is a definitive affirmation of a human
influence on extreme precipitation in the historical record. Note

that while all observations show this anthropogenic influence, the
signal magnitude varies considerably, on par with that seen in the
GCMs. This large observational uncertainty underscores a diffi-
culty in constraining future projections of extreme precipitation
with historical climate model simulations and observations31,58.

Several caveats of the machine learning-based detection
method should be noted. Compared to regression-based tradi-
tional D&A methods59, the assessment of the influence of indi-
vidual forcings (e.g., anthropogenic aerosols, land-use change,
and natural forcings such as volcanic and solar activities) in the
presented framework is challenging. We did not attempt such a
breakdown in this study, and this would require methodological
modifications60. In addition, the training GCMs might be
undersampling the low-frequency natural variability such as
Atlantic Multidecadal variability and Pacific Decadal Oscillation.
This may be remedied by inflating the training dataset with
paleoclimate data61. However, even with adequate sampling of
natural variability in the training dataset, the underestimation of
the precipitation response to natural forcings such as volcanic
activities and natural variability such as El Nino Southern
Oscillation in GCMs could still affect the results62. We also note
that different ANN visualization techniques are available63–65,
and those should be explored to understand the sensitivity of the
extracted fingerprints to the ANN visualization technique.
Despite these limitations, it is clear that ANN DAI methods with
ANN visualization techniques are very useful and efficient in
identifying the human influence on variables that are highly
uncertain in GCMs, and poorly characterized in observations,
such as extreme precipitation.

Methods
Data. We use daily precipitation rate output from a collection of climate models
participating in CMIP5 and CMIP6 (Supplementary Table 2). Data from each
ensemble’s historical forcing scenario are combined with future projections fol-
lowing a high-emissions scenario to create a time series from 1920 to 2099 for each
model. Future projections from CMIP5 follow the Representative Concentration
Pathway 8.5 (RCP 8.5)66, while CMIP6 projections follow the Shared Socio-
economic Pathway 5–8.5 (SSP 5–8.5)67. To increase our sample size, we combine
both CMIP5 and CMIP6 model subsets into one ensemble, which is justifiable
considering the very similar time evolution of the total anthropogenic forcing in
RCP 8.5 and SSP 5–8.5 scenarios (ref. 67, their Fig. 3c). We regrid all daily pre-
cipitation data to a 2° × 2° spatial grid and compute the Rx1day value for each year
at each land-grid point.

To assess the influence of natural variability, we also use pre-industrial control
simulations (piControl), which are GCM simulations with radiative forcing held
constant at pre-industrial levels. As the length of the piControl simulations vary
between GCMs, we selected the same number of samples from a collection of 20
CMIP6 models used here (Supplementary Table 3). We extract 34-year
nonoverlapping samples from each simulation (so as to match the length of the
observational record) to represent natural variability. Each GCM provided
14 samples of this length and after removing the first three samples of each
simulation to avoid climate drift42, we were left with 220 pre-industrial samples
with which to assess natural variability.

We use four datasets of observational estimates of daily precipitation rate with
global coverage: Multi-Source Weighted-Ensemble Precipitation, version 2
(MSWEP)68, Global Precipitation Climatology Centre (GPCC) version 201869, and
Rainfall Estimates on a Gridded Network (REGEN)70, including both
REGEN_ALL and REGEN_LONG. MSWEP is a hybrid reconstruction using
in situ, satellite, and reanalysis data, whereas GPCC and the REGEN datasets are
developed from ground-based measurements. REGEN_ALL is developed by
interpolating all considered station data, whereas REGEN_LONG is developed
using only the stations with a data record of 40 years or longer. We further use
seven widely used reanalysis products for comparison: European Centre for
Medium-Range Weather Forecasts ERA571, Japanese 55-year Reanalysis
(JRA55)72, Modern-Era Retrospective analysis for Research and Applications,
Version 2 (MERRA2)73, NCEP Climate Forecast System Reanalysis (CFSR)74, the
bias-corrected ERA5 precipitation dataset compiled for phase 3b of the inter-
sectoral impact model intercomparison project (W5E5)75,76, NCEP-DOE
Reanalysis 2 (NCEP2)77 and NOAA-CIRES-DOE Twentieth Century Reanalysis
version 3 (20CRv3)78. These observational and reanalysis datasets are selected
considering the availability of full global land coverage and data for at least three
decades. We selected the period 1982–2015 for observational analysis as it is the
common temporal range for all datasets. All observation and reanalysis data were
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regridded to the same 2° × 2° spatial grid as the models, and then Rx1day was
calculated at each grid point for each year.

Neural network-based detection method. Here, we apply the method in ref. 33 to
predict the year with which given annual Rx1day maps from GCMs are associated,
a regression task. This requires the ANN to learn the signature of the forced
response in simulated Rx1day. By feeding the ANN data from forced simulations, it
learns to distinguish the forced signal from internal climate variability. The use of
multiple GCMs helps the ANN learn the common elements of the forced response
most relevant to the prediction task, a process that fully considers model uncer-
tainty as well as internal climate variability. Input to the ANN from each model is a
vectorized spatial map of Rx1day (2° × 2° spatial grid= 16,200 grid values) for each
year from 1920 to 2099. Our primary goal is to detect the anthropogenic signal in
extreme precipitation over land (excluding Antarctica). Thus, we mask out data
over the ocean at this stage, resulting in 6082 land-grid values. The ANN archi-
tecture consists of two hidden layers with ten nodes each. The Rectified Linear Unit
activation function is used for all hidden units.

Approximately 60% of the models (26) are used for training the ANN, while the
rest of the models are divided equally to use as validation and testing sets (9 models
each). The mean squared error between the actual and predicted year of Rx1day is
used as the loss function to be minimized during the training. For the optimizer
which updates the ANN based on the gradient of the loss, we select rmsprop.
Climate variables inherently contain spatial autocorrelation. To account for this
dependence among adjacent input data points, we use L2 regularization79 between
inputs and the first hidden layer, which adds the sum of squared weights as a
penalty term to the loss function. By iterating over L2 values of leading order of
magnitudes and inspecting the tradeoff between low-prediction error and
generalizability (Supplementary Fig. 4), we found L2= 0.001 to be a suitable value
for our analysis. We trained the model for 1000 epochs. Early stopping was enabled
to reduce the overfitting by monitoring the validation loss with a patience value of
50 epochs80. We repeated the training process for 51 different training sets
obtained by random combinations of GCMs, resulting in 51 different ANNs. We
found that increasing the number of hidden units or changing the other
hyperparameters did not result in a substantial increase in accuracy.

Neural network interpretation using layer-wise relevance propagation (LRP).
Assume that for a given input map, x, we get an output f xð Þ, in our case, the
predicted year. LRP conservatively back-propagates this value through hidden
layers until it reaches the input map. This process generates a relevance heatmap,
indicating the areas of importance influencing the value f xð Þ. The conservation
property is shown in Eq.1, for relevance propagation between two hidden layers j

and k, where k is the upper layer (i.e., closer to the output). ∑
d

i¼1
Pi denotes the sum

of the relevance of the d input features. The summation operation for each hidden
layer (e.g., ∑

k
Pk) is the summation of the relevance (P) of all hidden units in that

layer, where Pk is the relevance of a single unit in layer k. The activation, ak (Eq. 2)
is the information coming from all units in layer j, to a target unit in layer k. In
Eq. 2, aj values are the individual activations of each unit in the layer j, wjk values
are the weights associated with the relationship between each unit in layer j and the
target unit in layer k, and bk is the bias of that target unit.

∑
d

i¼1
Pi ¼ ¼ ¼ ∑
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0
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The relevance-propagation rule from layer k to a unit in layer j is given in Eq. 3.
This general form is also known as the αβ-rule39,40. The components ðÞþ and ðÞ�
indicate only positive and negative parts are being considered, respectively. The α
and β coefficients represent the relative amount of positive and negative relevance
to be propagated, respectively. As shown in Eq. 3, positive relevance (i.e., excitatory
influence) and negative relevance (i.e., inhibitory influence) are associated with
positive and negative weights, respectively. The α and β coefficients are to be
chosen with the constraints α� β ¼ 1 and β≥ 0. The combination α ¼ 2 and
β ¼ 1 (LRPα2β1) has been experimentally inferred as suitable, and has been adopted
in previous research39,40,81–83. Here we adopt the LRPα2β1 rule
(Supplementary Text).

Data availability
CMIP data used are available at https://esgf-node.llnl.gov/projects/esgf-llnl/.
Observational and reanalysis data used are available at the following links: MSWEP:
http://www.gloh2o.org/, GPCC: https://www.dwd.de/EN/ourservices/gpcc/gpcc.html,
REGEN_ALL: https://doi.org/10.25914/5ca4c380b0d44, REGEN_LONG: https://doi.org/

10.25914/5ca4c2c6527d2, ERA5: https://cds.climate.copernicus.eu/, JRA55: https://rda.
ucar.edu/datasets/ds628.0/, MERRA2: https://disc.gsfc.nasa.gov/, CFSR: https://www.
ncdc.noaa.gov/data-access/, W5E5: https://esg.pik-potsdam.de/, NCEP2 and 20CRv3:
https://psl.noaa.gov/data/.

Code availability
Neural network analysis was conducted using Python libraries TensorFlow (https://www.
tensorflow.org) and Keras (https://keras.io). Neural network interpretation was carried
out using the library iNNvestigate84 (https://github.com/albermax/innvestigate). Python
scripts developed for the analysis and figures are available publicly at https://doi.org/
10.6084/m9.figshare.14479659.
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