
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Diffusion-Controlled Evaporating Completely Wetting Meniscus in a Channel

Permalink
https://escholarship.org/uc/item/45p8h6vn

Author
Njante, Jean-Pierre

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/45p8h6vn
https://escholarship.org
http://www.cdlib.org/


Diffusion-Controlled Evaporating Completely Wetting Meniscus
in a Channel

By

Njante Jean-Pierre Nchuiwo

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering–Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Stephen Morris, Chair
Professor Van P. Carey
Professor Clayton Radke

Spring 2012



Abstract

Diffusion-Controlled Evaporating Completely Wetting Meniscus in a
Channel

by

Njante Jean-Pierre Nchuiwo

Doctor of Philosophy in Engineering

University of California, Berkeley

Professor Stephen Morris, Chair

We consider the evaporating meniscus of a perfectly wetting isochemical liq-
uid formed in the gap between two horizontal flat plates. The plates are
initially at common temperature with the surroundings, and liquid evapo-
rates into a binary mixture of its own vapour and an inert component. The
liquid evaporates because the partial pressure of the vapour decreases from
its saturation value ps at the bulk meniscus to φps at the channel mouth.
Evaporation draws liquid into the contact region. Near the wetted walls, the
resulting pressure differences distort the phase interface, creating an appar-
ent contact angle Θ. To keep the interface stationary, liquid is continuously
fed into the channel at the same rate 2ṁ as it is being evaporated.

To determine both Θ and ṁ, we make the following simplifying assump-
tions. (a) Liquid and vapour at the interface are in local thermodynamic equi-
librium; as a result, evaporation is limited by diffusion of vapour molecules
in the surrounding gas. (b) Evaporation is sufficiently slow that the system is
effectively isothermal; though evaporation induces liquid temperature differ-
ences, they are kinetically negligible. Given (a) and (b), the vapour partial
pressure is related to the liquid pressure by the Kelvin equation. Because
the system is completely wetting, the visible meniscus is preceded by a thin
wetting film; we assume that the channel gap thickness 2a is significantly
large compared with the hydrostatic solution for the wetting film thickness.
This disparity in length scales gives the theory an inner and outer structure.
Within the small scale inner region, the lubrication approximation holds, and
diffusion in the gas is one-dimensional along the axis. As a result, the inner
problem is reduced to a pair of second order nonlinear ordinary differential
equations for the liquid pressure and interface shape. Because the capillary
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number, based on the velocity of the induced flow, is assumed negligible, the
large scale outer region is approximated by a circular arc meniscus.

We analyse the inner problem numerically using the spline collocation
method. Though the hydrostatic contact angle is zero for a completely wet-
ting system, Θ is found to be an increasing function of the imposed pressure
difference ps(1 − φ). We derive a formula for Θ as a function of material
properties and ps(1−φ). Though microphysics must be included in the inner
problem to resolve a singularity in the hydrodynamic equations, Θ is insen-
sitive to the microphysical details. Our analysis shows that Θ is determined
chiefly by a capillary number Ca = µℓVs/γ based on surface tension γ, liquid
viscosity µℓ, and a velocity scale Vs for liquid flow set by evaporation.

Because the vapour pressure above the outer circular arc meniscus is
uniform, the total evaporation from the capillary is determined within the
inner region. Our analysis shows that because the Stefan diffusion theory,
described by Bird et al (2006, pg 545)43, does not account for mass loss from
the thin precursor film, it significantly under-estimates the total evaporation
from small (typically µm-sized) capillaries. Even though the simplified anal-
ysis by Derjaguin et al1 describes only film thicknesses less than the precursor
film thickness for hydrostatic equilibrium, we find that their simplified equa-
tions correctly determines the total evaporation from capillaries if the length
of the gas column L is large compared with the channel gap thickness 2a.
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Chapter 1

Introduction

Temperature control by evaporation of completely wetting liquids is of critical
importance to many heat transfer processes and devices ranging from micro
heat pipes to grooved evaporators. In these examples, evaporation is driven
by an imposed heat flux. This thesis focuses on the opposite situation where
there is no applied wall superheat; the drop and surroundings are initially at
the same temperature, and the pure liquid evaporates into a binary mixture
of its own vapour and an inert component in response to a concentration
gradient of the vapour molecules in the gas. Recent interest in this field has
been aroused by the so called coffee-stain problem. As observed by Deegan
et al (2000, fig 1)19, a drop of coffee left to dry on a counter-top leaves a ring,
rather than a uniform spot, of solute deposits. Given that the coffee solute
was uniformly distributed in the liquid prior to drying, its segregation to the
drop edge is intriguing. Ring deposits are commonly observed when drops
containing dispersed particles evaporate on cool surfaces; everyday examples
include mineral rings left on washed glassware, banded deposits of salt on
the side-walk during winter, and enhanced edges in water colour paintings.

Understanding evaporation-driven deposition is critical to many indus-
trial processes and devices. In ink-jet printing, for instance, the liquid beads
are deposited on a substrate and attempts are made to control segregation by
controlling the evaporation profile of the drying beads4. Paint manufactures
use various additives to ensure that the pigments remain evenly dispersed
during and after drying. While segregation effects are undesirable in the
above examples, they could become indispensable for other processes such
as in DNA patterning for gene expression analysis5, production of nano-
fibres using dry spinning techniques6, and in drop coating deposition Raman
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method for drug discovery7. It is therefore obvious that a thorough under-
standing of the segregation process is of critical importance, especially to
those practitioners who must enhanced5−7 or eliminate4 the process.

Despite its apparent simplicity, modelling evaporation near three-phase
contact lines involves evaporation kinetics coupled with momentum, mass,
and energy transfer between the phases. It is this coupling of the different
physics between the phases that complicates the analysis; in effect, even when
transport processes in the solid phase are not considered, the reduced set of
governing equations are still of significant complexity8,9. The problem is
further complicated because the free interface location is not known a priori,
and so is obtained as part of the solution to the free boundary problem.

The degree of complexity is reduced by making the following simplifying
assumptions: (i) The thermal conductivity of the liquid is significantly small
compared with that of the solid; this allows us to neglect temperature differ-
ences within the solid phase, and to take the wall temperature as uniform,
and because the liquid does not penetrate the wall, transport processes in
the solid phase are not considered. (ii) The gas thermal conductivity, den-
sity, and viscosity are small compared with those of the liquid; however, the
gas-liquid density ratio is retained in the interface mass balance relation be-
cause it multiplies the gas velocity, which may be large relative to the liquid
velocity. Condition (ii) ensures that the momentum and energy equations
for the gas are not considered. Therefore given (i) and (ii), evaporation near
three-phase contact lines can be described by a system of differential equa-
tions consisting of the Navier-Stokes and energy equations in the liquid phase
and the diffusion equation for the vapour in the gas phase; these equations
are coupled through boundary conditions at the interface, and are further
simplified by exploiting the disparity in length scales associated with thin
film flows. For vanishingly small contact angles, the lateral length scales are
much larger than the vertical ones, giving rise to small aspect ratios; this, in
turn, opens the door to lubrication approximation. Numerical solutions25 of
the Stokes equations shows that the lubrication approximation is applicable
even for contact angles as large as 40°. For the sufficiently slow evaporation
processes considered in this analysis, convective non-linearities are negligibly
small and the contact angles are usually less than 5°, making the lubrication
approximation appropriate. Since the flow is approximately two-dimensional
near the drop edge, Oron et al38 integrated the liquid equations, written in
the lubrication limit, to show that the drop profile h satisfies,
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where A is the dispersion constant, γ the surface tension, ν the liquid kine-
matic viscosity, ρℓ the liquid density, J(x, t) the evaporative mass flux normal
to the interface, x the wall coordinate, and t the time variable.

1.1 Existing theories used to Predict J

Cazabat and Guena12 have recently reviewed these theories. Transport pro-
cesses in the liquid are coupled to those in the gas through J . This coupling
of the different physics between the phases complicates the analysis; it is
for this reason that researchers in this field have resorted to approximations
that have ended up splitting the literature into two different bodies. In either
body of research, the evaporative flux is computed by ignoring the dynamics
in one of the phases; which phase to ignore depends on the boundary condi-
tion driving evaporation in the first place. In the thermal model, a heat flux
is imposed, and evaporation is assumed to be controlled by heat conduction
in the liquid layer; in the Langmuir diffusion model, a concentration gradient
is imposed in the gas phase, and stationary diffusion of the vapour molecules
in the gas is assumed to be the limiting mechanism for the evaporation rate.

1.1.1 The Langmuir Diffusion Theory

The evaporation of isolated spherical droplets in quiescent atmosphere has
been studied by Morse2. The mm-sized spheres were placed in a microbalance
and weighed at intervals until they disappeared. The experiments indicated
that the rate of mass loss was proportional to the radius of the sphere and not
to its surface. This result is surprising. Due to spherical symmetry, the local
evaporative flux is uniform at the drop surface, and one would have expected
the total evaporation rate to scale with the drop area. Langmuir3 explained
Morse’s result by first assuming that the gas just above the drop surface
is saturated with the liquid’s vapour, and that evaporation is controlled by
stationary diffusion of the vapour molecules in the surrounding gas. He then
posed the following boundary value problem for the vapour density ρv,
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▽2ρv(r) = 0; ρv(R) = ρsat, ρv(∞) = φρsat, J = −Dvρ
′

v(R) (1.2a-d)

where R is the drop radius, Dv the binary diffusion coefficient, ρ′v differentia-
tion with respect to the radial coordinates r. The vapour density ρv is given
in units of kg/m3. Because the liquid evaporates into a mixture, the vapour
concentration is non-uniform above the drop. At the drop surface, the vapour
concentration is fixed at its saturation value ρsat at system temperature. Far
from the drop surface, ρv = φρsat, where φ is the relative humidity in the
distant gas. The concentration difference ∆ρ = ρsat(1 − φ) drives evapora-
tion in accordance with the diffusion equation (1.2a). Langmuir integrated
this equation to show that M ′(t) = −4πRDv∆ρ, which is in agreement with
Morse’s observation. Here, M(t) is the drop mass at time t. Because the
drop volume scales like R3, its radius scales like

√
tf − t, where tf is the time

it takes the drop to disappear. The evaporative flux J = Dv∆ρ/R.
In what follows, we use evaporation from sessile droplets as example of a

flow in which evaporation is diffusion controlled, and for which contact angles
have been observed and measured by Benichou et al (2003, fig 14)16. Now a
substrate comes into play, and the wetted area is limited by a contact line.
The only modification to problem (1.2) is to impose a zero flux ahead of the
contact line; this assumes that the system is partially wetting, and that the
vapour does not penetrate the wall. Picknett and Bexon21 find J by solving
an equivalent electrostatic problem, in which ρv is the electrostatic potential
and the drop surface a conductor at fixed potential. For small contact angles,
the electrostatic equivalence is a flat disc, for which solutions are given by

dM

dt
= −4DvR∆ρ, J =

2Dv∆ρ

π
√
R2 − r2

, M = ρℓ
πθ

4
R3 (1.3a-c)

The evaporative flux J diverges at the contact line r = R. Deegan et al18 used
this divergence to explain ring formation, in which the coffee flows towards
the fixed contact line in order to replenish mass lost from evaporation, and
once there, the solvent evaporates leaving the solutes to form the stain. For
pinned contact lines, say due to surface inhomogeneity or dispersed particles
in the liquid, equations (1.3a,c) predict that the contact angle and drop mass
each scales like (tf − t), where tf is the time it takes the drop to disappear.
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This prediction is observed in experiments21,18 on partially wetting system.
In the Picknett and Bexon solution, it is assumed that the drop maintains

a spherical cap during the drying process; this requires two things. First, the
drop radius must be small compared with the capillary length so that surface
tension, which tends to make drops spherical, is large compared with grav-
itational forces, which tend to flatten the drops. Secondly, the evaporative
induced liquid flow must be very weak so that the drop shape is not altered
by the liquid motion. This second point is questionable near the leading edge
of the drop, where evaporation is strongest. Physically, liquid flows from the
bulk meniscus into the contact region in order to compensate for evaporation.
Near the drop edge where evaporation is strongest, the flow becomes strong
enough to distort the interface and creates a contact angle. Therefore, the
spherical cap assumption must be reconsidered near the leading edge of the
drop, where the flow can no longer be separated from the drop shape.

The diffusion process is quasi-stationary if the time taken for the drop to
dry is significantly larger than the time td = R2/Dv required for a vapour
molecule to travel a distance of order R. For a millimetre-sized water droplet
evaporating in still air, the diffusion time scale td ∼ 0.1s, which is far less
than the time taken for a water drop to dry. The same conclusion is reached
with the alkanes. The assumption of a quasi-stationary diffusion process is
therefore valid in usual cases. We have assumed that evaporation is suf-
ficiently slow that fluid inertia is everywhere negligible. Experiment using
hanging drops of alkanes and water shows that unless there is an imposed air
draft, convection in the gas has negligible effects on the evaporation rate17.

Picknett and Bexon assumed that the system is effectively isothermal,
even though the latent heat consumption caused by evaporation at the inter-
face induces temperature gradients in the drop, substrate, and surrounding
gas. Because the gas thermal conductivity is generally small compared with
that of the drop, thermal exchanges with the gas phase are usually ignored,
and only the drop and substrate are considered when writing the energy bal-
ance. The simple case is when the thermal conductivity of the substrate is
large compared with that of the drop, so that thermal gradients in the sub-
strate are negligible. Then the substrate temperature is uniform, equalling
that in the distant gas, and the local temperature along the drop surface can
be computed using the energy equation in the liquid. An order of magnitude
analysis, see table A.1 in appendix A.2, shows that temperature differences
across the drop are negligible for thin drops. This scaling law is consistent
with numerical solutions by Hu et al24. The assumption of isothermal evap-
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oration therefore holds for drops with small contact angles. For thick drops,
temperature differences can be huge, and the resulting gradients in surface
tension can significantly modify the hydrodynamic flow in the drop24.

In the Picknett and Bexon solution, it is assumed that liquid and vapour
at the interface are in thermodynamic equilibrium at wall temperature; this
requires that the rate of transfer of molecules across the interface be fast so
that diffusion of the vapour molecules in the gas becomes the rate-limiting
step controlling the evaporation rate. This condition is met if the drop radius
is large compared with the mean free path Λ of the vapour molecules in the
surrounding gas. For small drops, the evaporation rate is no longer controlled
by stationary diffusion, but by the rate of transfer of molecules across the
interface. The recent theory by Sultan et al11 for thin films accounts for
both transfer of molecules across the interface and stationary diffusion in the
gas phase, where it is reported that the rate of transfer of molecules across
the interface becomes the rate-limiting step controlling the evaporation rate
once the film thickness becomes small compared to Λ; otherwise, diffusion
controls the evaporation rate. For most liquids in practice, Λ ∼ 0.1µm.

A macroscopic drop on a surface is surrounded by a thin precursor film,
typically a few tens of nanometres thick. In the Picknett solution, it is as-
sumed that evaporation from the precursor film is negligible. However, the
recent experiments by Benichou et al (2003, figs 12,13)16 not only observe a
film growing ahead of the contact line, but also observe significant evapora-
tion from the precursor film. It is only recently that the completely wetting
system has been studied in the literature, noticeably by Cazabat et al12−17.
Now, the contact line moves freely through the whole drop life, and there is
no pinning. As shown in Cazabat et al (2010, fig 8)12, the drop first spreads
because the liquid is wetting, the radius reaches a maximum value where
it stays approximately constant for some time, and then recedes because of
evaporation. Benichou et al (2003, fig 14)16 have observed and measured
contact angles for completely wetting evaporating droplets. If evaporation is
controlled by stationary diffusion, then the Langmuir diffusion theory pre-
dicts that the radius R ∝ (tf − t)1/2. This prediction has been compared
with experimental data; Cazabat et al (2010, table 2)12 fitted the data to
the power law behaviour R ∝ (tf − t)y, and measured values for y that are
indeed close to 0.5. In contrast, the power law θ ∝ (tf−t)x is not well obeyed
for the contact angle. Poulard et al15 concluded that whereas the dynamics
of the drop radius is well described by the Langmuir diffusion theory, the
contact angle is very sensitive to all of the parameters involved.
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1.1.2 The Thermal Model

All the work discussed so far are based on the assumption that the sessile
drop and its surroundings were initially at the same temperature; tempera-
ture gradients, if any, are due solely to the drop’s own evaporation. There
is another body of research which concentrates on cases where the substrate
is slightly superheated. In this case, the interface is not at thermodynamic
equilibrium, and evaporation is controlled by the rate of transfer of molecules
across the interface. The simplest case is when the liquid evaporates into its
own vapour. Then the dynamical processes in the gas phase are ignored
for the purpose of computing the evaporation rate. This approach has ex-
tensively been used to describe stationary meniscus of completely wetting
isochemical liquid evaporating into its own vapour (Wayner et al26−31, Moos-
man and Homsy32, Morris35−37). The evaporation rate is determined by heat
conduction in the liquid film, and is given by the Herz-Knudsen equation,
see equation (11) in Camenga42. The controlling parameter is the applied
wall superheat, and the apparent contact angle is an increasing function of
superheat. See Oron et al38 for a comprehensive review of the thermal model.

1.2 Evaporation from capillaries

In the model of the Stefan diffusion tube described by Bird et al. (2006, pg
545)43, the concentration field is assumed to be one–dimensional. However, as
we now argue, local analysis of the contact region implies that for a wetting
system (contact angle < π/2), this picture is incomplete, even before we
consider the effect of the precursor film.

Substrate

Gas

Liquid

θΘ

r

Figure 1.1: Contact Region

Figure 1.1 shows the geometry of the contact region: the contact angle
measured through the liquid is denoted by Θ, (r, θ) are polar coordinates
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with θ = 0 on the substrate–gas interface. As formulated by Deegan et al.18,
near the contact line the vapour density ρv satisfies the following boundary
value problem: for 0 < θ < π −Θ

▽2ρv(r, θ) = 0 within the gas (1.4a)

at θ = 0,
∂ρv
∂θ

= 0 (1.4b)

at θ = π −Θ, ρv = ρsat (1.4c)

As discussed by Jackson (1975,p.77)46, separation of variables can be used
to determined a basis of solutions for this problem; only members of that
basis for which the corresponding flux is integrable at r = 0 are physically
pertinent. The dominant eigenfunction satisfying this condition is

ρv − ρsat = rn cosnθ, n = 1/(2− 2Θ/π). (1.5a,b)

In the discussion in Bird et al. (2006, pg 545)43, it is implicitly assumed that
the contact angle Θ = π/2. According to equation (1.5), in that case, n = 1;
because the corresponding gradient is finite at r = 0, there is no possibility
for concentration of evaporation near the contact line. This prediction of
a local analysis is, of course, consistent with the solution of the boundary
value problem describing the concentration field ρv throughout the entire Ste-
fan diffusion tube: that boundary value problem admits a one–dimensional
solution in which ρv depends only on distance x from the interface.

For Θ < π/2, the phase interface is curved, and the boundary value
problem for the entire tube no longer admits a one–dimensional solution.
According to (1.5b), n < 1; because the corresponding gradient is singular
at r = 0, local analysis allows the possibility that for a wetting system,
evaporation is concentrated near the apparent contact line. For a sessile
liquid droplet evaporating from a substrate on which the contact angle is
less than π/2, Deegan et al. (1999, Fig.13)19 show that the flux is indeed
singular at the contact line, in quantitative agreement with the local analysis.

Though not accounting for the precursor film, the Deegan et al. analysis
shows that for wetting systems evaporation is concentrated in the contact re-
gion. We might expect that for completely wetting systems, those for which
the spreading coefficient is positive, the precursor film existing ahead of the
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apparent contact line will also contribute to the total evaporation. This pos-
sibility is considered by Derjaguin et al.1; they conclude that the precursor
film can contribute significantly to the mass transport near the state of hy-
drostatic equilibrium if the evaporation is weak. Though we confirm this
conclusion, we are chiefly interesting in the Derjaguin limiting case as check
on our numerical work.

1.3 Scope and Outline of Thesis

In the drop geometry, one will have to match a two dimensional flow near
the drop edge to a three dimensional flow in the distant gas. This matching
is extremely difficult and un-necessary since we are only interested in the
dynamical processes near the contact line. For this reason, we study the
corresponding problem for the channel geometry, where the outer flow is
simplified. The channel geometry has been used by Derjaguin et al1 to study
evaporation from small (µm-sized) tubes. They find, both theoretically and
experimentally, that as the tube diameter is reduced, the Stefan diffusion
theory significantly under-estimates the total evaporation from capillaries;
they explained the discrepancy by accounting for evaporation from the thin
precursor film. Derjaguin et al simplified the description of the bulk meniscus
in a way that does not allow for the existence of a contact angle; our work is
an advance over their analysis because including surface tension γ allows us
to calculate the shape of the whole meniscus and to predict contact angles.

Because the system is completely wetting, the seemingly un-wetted walls
are actually covered with a thin wetting film. We assume that the thickness
of that wetting film is significantly small compared with the channel gap
thickness. In chapter 2, we simplify the analysis by taking advantage of the
disparity in length scales to separate the meniscus into an inner and outer
structure. Within the large scale outer region II, the interface is approxi-
mated by a circular arc because for vanishing capillary number, the induced
flow is too weak to alter the shape of the bulk meniscus. Within the small
scale inner region I, the induced flow is strong enough to perturb the interface
so that the pressure fields on both sides of the interface, together with the
interface shape are described by a free boundary problem coupling wetting
physics to evaporation kinetics, lubrication theory, and axial diffusion of the
vapour molecules in the gas. Our formulation includes as limiting cases the
diffusion theories of Stefan and Derjaguin et al.
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Four independent parameters appear in the theory. One of them, denoted
here by χ, is the ratio of the length L−a of the precursor film to the capillary
radius a, where L is the length of the gas column. Chapter 3 uses asymptotic
analysis to show that the Derjaguin solution correctly determines the total
evaporation only for large χ. We use numerical solutions to show that for
χ → ∞, the resistance from taking mass out of the channel must came from
the thin film, which explains the success of the Derjaguin solution. A second
parameter α is the ratio of the pressure difference ρℓpsat(1− φ)/ρsat driving
flow in the liquid to the pressure-difference γ/a across the bulk meniscus.
Asymptotic analysis of the free boundary problem shows that an apparent
contact angle is established for α/χ → ∞.

Chapter 4 uses numerical solutions to the free boundary problem to test
the predictions of asymptotic analysis. Our analysis shows that even though
the static contact angle for a completely wetting system is zero, the stationary
meniscus of a completely wetting liquid in a channel exhibits an apparent
contact angle Θ that is determined chiefly by a capillary number, based on
a velocity scale set by evaporation. Though microphysics must be included
in the free boundary problem in order to resolve a hydrodynamic singularity
at the contact line, Θ is insensitive to the microphysical details.

In appendix B, we describe the numerical scheme used to solve the free
boundary problem. Appendix A contains the derivation of major equations.
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Chapter 2

Boundary Value Problem

Figure 2.1 shows the geometry of interest. An evaporating meniscus of a
completely wetting liquid is formed in the gap between two horizontal flat
plates. The plates are held at common temperature Tw equalling that of
the surrounding gas. The liquid is chemically pure, but the gas into which
the liquid evaporates consists of a mixture of the liquid’s vapor and an inert
component. Liquid evaporates because the partial pressure of the vapour de-
creases from its saturation value ps at the bulk meniscus to φps at the mouth
of the channel. Evaporation draws liquid into the contact region. Near the
wetted walls, the resulting pressure differences distort the interface, creating
an apparent contact angle, Θ. The length L of the gas column is determined
by the initial location of the meniscus; to keep L fixed, liquid is continuously
fed into the channel at the same rate 2ṁ as it is being evaporated.

O

LiquidGas

2a2m

Tw

Tw

φ

I

II

Θ

Figure 2.1: The evaporating meniscus in a channel as seen on the scale of the channel
gap thickness 2a. The origin is at O; coordinate axis not shown in the figure.
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2.1 Dimensional Equations

We begin with notations: Let µ be the dynamic viscosity, ν the kinematic
viscosity, ρ the density, γ the surface tension, φ the relative humidity at the
channel mouth, A the dispersion constant, p the total pressure within the
gas, pb the bulk liquid pressure, ρs the saturation density, Rv the specific gas
constant, Dv the binary diffusion coefficient, and 2a the channel gap thick-
ness. Subscripts ℓ and v denote the liquid and vapour phases respectively.
All properties are evaluated at wall temperature Tw. Lets define;

Ca =
µℓVℓ

γ
, Vℓ =

ṁ

ρℓa
, Θ2

s =

(

A

γa2

)
1

3

(2.1a-c)

where Ca is a capillary number based on a velocity scale Vℓ set by evap-
oration. Because the liquid is completely wetting, the visible meniscus is
preceded by a thin wetting film; we assume that within that film, disjoin-
ing pressure Π is related to film thickness h∗ by Π = A/h3

∗
. At hydrostatic

equilibrium, the wetting film thickness far from the apparent contact line
approaches the uniform value (aA/γ)1/3; Θ2

s is the ratio of (aA/γ)1/3 to the
capillary radius a. Since the molecular length scale (A/γ)1/2 is small com-
pared with the channel gap thickness 2a, we assume that Θ2

s << 1; Renk et
al33 used this disparity in length scales to separate the hydrostatic meniscus
into an inner and outer structure, in which an outer semicircular meniscus
having radius a matches to an inner solution describing a quasi-parallel wet-
ting film. To ensure that the outer solution is not altered by evaporation, we
analyse for the double limit (Θ2

s, Ca) → 0; because surface tension is then
large, the induced flow can distort the phase interface only within the small
scale inner region. We therefore augment the equations posed by Renk et al
within the inner region to include both evaporation and diffusion in the gas.
Because the induced flow perturbs the interface within the inner region, the
vapour partial pressure p∗v and the liquid pressure p∗ℓ are obtained, together
with the interface shape h∗, by solving the free boundary problem,
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ṁ =
h∗3

3νℓ

dp∗ℓ
dx∗

+
aDv

RvTw

dp∗v
dx∗

, (2.2a)

p− p∗ℓ = γ
d2h∗

dx∗2
+

A

h∗3
, (2.2b)

p∗v = ps +
ρs
ρℓ
(p∗ℓ − pb); (2.2c)

p∗v(a− L) = φps, p∗v(x
∗ → a) → ps, (2.2d,e)

h∗(a− L) =

(

A

p− p∗ℓ

)
1

3

,
d2h∗

dx∗2
(x∗ → a) → 1

a
(2.2f,g)

Because the mass flow rate ṁ is obtained as part of the solution, the capillary
number is not known a priori; however, we assume that Ca → 0, and then
check for consistency at the end of the analysis. In practice, Θs is very small,
typically some few 10−2rad for µm-sized channels or less for larger capillaries.

Equation (2.2a) is a statement of mass balance across a cross-section of
the channel. It expresses the mass flow rate ṁ due to evaporation in the
lower half of the channel as the sum of the mass flow rates occurring within
the liquid and gas phases. On the right hand side, the first term describes
the mass flow due to a Poiseuille flow within the thin quasi-parallel liquid
film; the second term describes the mass flow by axial diffusion of vapour
through the gas, which is merely the simplified form of Fick’s first law,

ṁx = − aDv

RvTw

dp∗v
dx∗

, J∗ =
dṁx

dx∗
(2.3a,b)

Equation (2.3) neglects the motion induced within the gas mixture; it is a
good approximation when the saturation vapour pressure is small compared
with the total pressure in the gas. The full form of that equation, including
induced motion in the gas, is given as equation (A.10a) in appendix A.3.

Equation (2.2b) is a statement of force balance normal to the interface. It
states that the pressure force on an interfacial element balances the resultant
force due to capillarity and disjoining pressure. On the right hand side, the
first term gives the equation of capillarity for a slowly tapered film, whose
slope is significantly small compared with unity; the second term describes
the disjoining pressure for a uniform film. Here, the adsorption forces are re-
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stricted to the London-van der Waals dispersion forces. Even though Truong
and Wayner30 showed that the inverse cube dependence is appropriate only
for film thicknesses less than 20nm, we use it here as the effects of disjoining
pressure become insignificant for film thicknesses greater than that. In the
corresponding equation (9) of Deryaguin et al1, they set γ = 0. Including
surface tension γ allows us to calculate the shape of the whole meniscus.

The kinetic equation (2.2c) is a simplification of the Hertz-Knudsen equa-
tion, see the discussion in appendix A.1. It states that liquid and vapour at
the interface are in local thermodynamic equilibrium; as a result, the rate-
limiting step controlling evaporation is the stationary diffusion of the vapour
molecules in the surrounding gas. Liquid temperature differences induced by
evaporation have been assumed kinetically negligible; the system is effectively
isothermal for the slow evaporation processes considered in this analysis.

Boundary condition (2.2d) fixes the vapour pressure at the channel mouth.
Boundary condition (2.2f) on the film thickness at the channel mouth is ob-
tained by neglecting capillarity in equation (2.2b). The other two boundary
conditions, equations (2.2e,g), are obtained by matching the outer limit of
the lubrication solutions to the inner limit of the outer solutions. Specifically,
boundary condition (2.2g) ensures that the interface curvature at the outer
edge of the lubrication region matches smoothly to the uniform curvature
of the outer circular arc meniscus; the other boundary condition (2.2e) is a
matching condition on the vapour partial pressure. The vapour pressure at
the outer edge of the lubrication region is equal to the saturation pressure
because for vanishing capillary numbers, changes in liquid pressure along the
outer meniscus are negligibly small. Therefore p∗ℓ = pb to a first approx-
imation, and it follows from equation (2.2c) that p∗v = ps along the outer
meniscus. Because the film thickness grows parabolically with distance, ac-
cording to (2.2g), the effects of disjoining pressure are insignificant at the
outer edge of the lubrication region. Therefore, the outer limit of the normal
stress equation (2.2b) requires that we chose the bulk liquid pressure to be

pb = p− γ/a, (2.4)

This same boundary condition is used by Deryaguin et al1, see their equation
(11), even though their boundary value problem does not include capillarity,
and therefore does not match smoothly to the outer circular arc meniscus.

Equation (2.2a,b) is related to that of Hervet et al (1984, Eq 5)39 in that
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they are both limiting cases of a spreading volatile meniscus. Whereas we
neglect boundary motion and study the evaporating stationary meniscus;
they neglect evaporation and study the spreading isothermal meniscus.

2.2 Dimensionless Equations

We non-dimensionalize (2.2) by letting,

hs = aΘ2
s, xs = aΘs (2.5a,b)

where the slope unit Θs is defined in (2.1c); it is proportional to Θ, and
measures the ratio of the molecular length scale

√

A/γ to the channel gap
thickness 2a. For φ = 1, there is no evaporation; for this case, the wetting
film approaches a uniform value hs far from the apparent contact line. xs is
the horizontal length scale at which capillarity balances disjoining pressure,
when the film thickness is of order hs. Using the above choice for scales, we
introduce dimensionless variables (without asterisks) by

pℓ =
a

γ
(p∗ℓ − pb), x =

x∗

xs

, h =
h∗

hs

. (2.6a-c)

To non-dimensionalize (2.2), we first eliminate the vapour pressure in favour
of the liquid pressure using equation (2.2c); then substituting (2.6) into the
resulting problem (2.2), we find that the unknowns h and pℓ satisfy the
following dimensionless boundary value problem: for −χ ≤ xΘs < 1,

d

dx

[(

h3

3
+ β

)

dpℓ
dx

]

= 0, (2.7a)

1− pℓ =
d2h

dx2
+

1

h3
; (2.7b)

pℓ(−χ/Θs) = −α, pℓ(x → 1/Θs) → 0, (2.7c,d)

h(−χ/Θs) =

(

1

1 + α

)
1

3

, h(x → 1/Θs) →
x2

2
(2.7e,f)
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Equation (2.7a) has been differentiated once so as to eliminate the integration
constant ṁ. The interface curvature cannot be prescribed as a boundary
condition because the differential equations are second order in h∗; as a result,
matching condition (2.2f) on the interface curvature far from the apparent
contact line is integrated and replaced with (2.7f). Because the independent
variable now appears explicitly in the boundary condition, the problem is no
longer autonomous; as a result, the origin is fixed at the apparent contact line
and can no longer be arbitrarily chosen. Because Θs << 1, the matching
conditions (2.7d,f) are imposed at x → ∞. Four independent parameters
appear in the dimensionless boundary value problem; α, β, χ, and Θs.

α =
aρℓ
γρs

ps(1− φ), β =
νℓρsγDv

ρℓRvTwA
, χ =

L− a

a
(2.8a-c)

According to equations (2.2c, d, e), the liquid pressure decreases from pb at
the bulk meniscus to pb−ρℓps(1−φ)/ρs at the channel mouth; the parameter
α is the ratio of the pressure-difference ρℓps(1 − φ)/ρs driving the resulting
liquid flow to the pressure-difference γ/a across the bulk meniscus. For fixed
α and position x, the parameter β controls the fraction of the total mass flow
transported by axial diffusion in the gas. The other parameter χ measures
the aspect ratio of the channel. For use in subsequent analysis, we define

f =
ṁ

ṁs
, ṁs =

aDvps
RvTwL

(1− φ), ω =
α

χ
Θs (2.9a-c)

According to the simplified form of Fick’s law, ṁs is the diffusive transport
caused by a gradient (1 − φ)ps/L of vapour concentration. The integration
constant f is the ratio of the total evaporation from the capillary to ṁs. The
parameter ω is the ratio of pressure gradients driving flow within the contact
region to pressure gradients driving flow within the bulk meniscus.

Table 2.1 shows representative values for the parameters in the theory.
The table uses A = 10−21J for the dispersion constant, φ = 0.3 for the relative
humidity in the distant gas, L = 50µm for the length of the gas column, and
a = 10µm for the capillary radius. The size of β is very sensitive to the value
of the dispersion constant; 0.01 < β < 1 whereas α is generally large.
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Liquid 10−4α β Θs ω
Heptane 0.5529 0.2072 0.0282 38.9394
Octane 0.4550 0.3107 0.0277 31.5431
Water 1.3280 0.2113 0.0228 75.5533

Table 2.1: Estimates of parameters
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Chapter 3

Asymptotic Analysis

This chapter studies the parameter rich problem (2.7) for special limiting
values of the parameters. The results of that asymptotic analysis are tested
against numerical solutions to the complete problem in chapter 4

3.1 Analysis for χ → ∞ with Θs fixed

For χ → ∞ with Θs fixed, the length of the gas column becomes significantly
larger than the channel gap thickness. This disparity in length scales gives
the theory an inner and outer structure. Within the long inner thin film re-
gion, the governing equations simplify because capillarity is negligible. The
simplified equations are identical to those posed by Derjaguin et al1. We sim-
plify the outer analysis by assuming that the pressure within the outer region
is uniform, equalling the bulk liquid pressure, even though the inner problem
does not describe the bulk meniscus. We revisit this approximation in the
next chapter, where we point out when it breaks down. For now, we estab-
lish the above structure for the meniscus on the lower wall using asymptotic
analysis for large χ. To begin, the governing equations are rescaled using the
inner variable ξ = xΘs/χ to show that for χ → ∞ with Θs fixed, we get

(

h3

3β
+ 1

)

dpℓ
dξ

= αf, 1− pℓ =
1

h3
; with pℓ(−1) = −α (3.1a-c)

and a matching condition at ξ → 0, to be determined. The mass balance
equation (2.7a) has been integrated once, with αβfΘs/(χ+1) the integration
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constant. The total mass flow f , a constant, is determined by matching the
inner solution to the outer solution. Because capillarity is negligible, liquid
flow within the inner region is driven by gradients in disjoining pressure only.
Because the inner problem (3.1) is identical to the boundary value problem
posed by Derjaguin et al1, we shall occasionally refer to its solution as the
Derjaguin solution. Integration shows that the liquid pressure pℓ satisfies,

log

(

1 + α

1− pℓ

)

+ 3β (α + pℓ) = 3αβf (ξ + 1) (3.2)

Since the inner solution (3.2) does not describe the bulk meniscus, one will
need a boundary condition on the liquid pressure at the outer edge of the
inner region in order to determine f . That boundary condition is obtained
by solving an outer problem, and then matching to the inner solution. To
simplify that outer analysis, we assume that the pressure within the outer
region is uniform, equalling the liquid pressure at the bulk meniscus. Match-
ing then requires that boundary condition (2.7d) on the liquid pressure at
the bulk meniscus be imposed at the outer edge of the inner region; i.e,

pℓ → 0 as ξ → 0 (3.3)

The identical boundary condition is used by Derjaguin et al1, consult their
equation (11). The results of this section are therefore going to be identical
to those already reached at by Derjaguin et al, the difference being that
our analysis is systematic. Equations (3.1b) and (3.3) predict a maximum
film thickness that is equal to the precursor film thickness for hydrostatic
equilibrium. The film thickness in the inner region therefore decreases from
a maximum of h = 1 at the outer edge to a minimum of h = (1 + α)−1/3 at
the channel mouth. We now imposed the matching condition (3.3) onto the
inner solution (3.2) to show that the total evaporation from the capillary,

ṁ

ṁs
= 1 +

log(1 + α)

3αβ
as χ → ∞ (3.4)

According to equation (3.4), with increasing α, the ratio ṁ/ṁs decreases
monotonically from its maximum value of 1+1/3β at α = 0; by its definition
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(2.8a), α → 0 corresponds to a(1− φ) → 0; as concluded by Derjaguin et al,
the effect of the precursor film is most significant for capillaries of small radius
a when the system is near hydrostatic equilibrium (φ → 1). As α is reduced,
the film thickness at the exit is increased. According to (2.7a), transport
along the liquid film varies as h3; doubling h increases the film transport by
almost an order of magnitude. This explains the increased contribution from
the precursor film as φ → 1 or as the bulk meniscus is reduced in size.

3.2 Analysis for ω → ∞ with β fixed

Liquid flows from the bulk meniscus into the contact region in order to re-
plenish mass lost from evaporation. For α → ∞, with the channel length
fixed, the flow becomes strong enough to distort the interface, and as a result,
creates an apparent contact angle, Θ. Increasing the channel length reduces
the value of Θ because pressure gradient driving diffusion in the gas, and
hence the liquid flow, reduces as we increase the length of the gas column.
We therefore expect Θ to be an increasing function of ω. To prove that, we
carry out an asymptotic analysis for large ω, with the parameter β fixed.

Figure 3.1 outlines the structure of the meniscus that we are about to
establish for the contact region on the lower wall. For ω → ∞ with β fixed,

x=O(a),  h=O(a)

Θ
O

p

II

Ic

Ib
Ia

wall

Figure 3.1: Structure of the meniscus on the lower wall for ω → ∞.

the inner lubrication region can be systematically divided into three sub-
regions. Sub-region Ia describes the Stefan diffusion model. Sub-region Ic is
described by a parabolic arc meniscus, above which the gas is saturated with
the liquid’s vapour. For ω → ∞, evaporation occurs within the intermediate
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region Ib, where the apparent contact angle Θ is also established. The above
structure is now established using asymptotic analysis for large ω.

To begin, we rescale (2.2) by letting

ηs = aβ
1

3Θ2
s, ξs = aΘs

(

β
1

3

ω

)
1

3

, ∆p =
γ

a

(

ω2β
1

3

)
1

3

(3.5a-c)

The scales suggested in equation (3.5) ensures that all three terms in the mass
balance equation (2.2a) are comparable when the film thickness, horizontal
length scale, and pressure differences across the interface are respectively of
order ηs, ξs and ∆p. Physically, ηs is the film thickness at which a Poiseuille
flow within the liquid film balances diffusion in the gas; ξs the tangential
length scale at which evaporation balances the divergence in mass flow rate,
when pressure differences across the interface are of order ∆p. For a mm-sized
channel, we find that ξs ≃ 0.5µm and ηs ≃ 15nm; whereas for a µm-sized
channel, both length scales are typically some few nanometres.

Next, we define intermediate variables by

η =
h∗

ηs
, ξ =

x∗

ξs
, p =

p∗ℓ
∆p

(3.6a-c)

Substituting the intermediate variables into problem (2.2), and then take the
limit as ω → ∞ with β fixed, we find that the unknowns η and p satisfy the
following dimensionless boundary value problem: for −∞ < ξ < ∞,

(

η3

3
+ 1

)

dp

dξ
= f, −p =

d2η

dξ2
; with η′′(∞) = 0 (3.7a-c)

Equations (3.7) are supplemented with matching conditions at −∞, to be
determined. The constant f is defined in (2.9). The domain is the real line
because ξ → ∞ as ω → ∞ with x fixed. The limit ω → ∞ is singular for two
reasons: first, disjoining pressure is negligible; an inner region Ia is therefore
necessary to satisfy the thin film boundary conditions. Secondly, because
the interface curvature vanishes at ∞, problem (3.7) does not describe the
parabolic arc meniscus. An outer region Ib is therefore necessary; otherwise,
matching to the circular arc meniscus will be impossible. The intermediate
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problem is thus defined by (3.7), and integration shows that for ξ → ∞,

dη

dξ
= k − 3f

2k3
ξ−1 + o (1) , p = − 3f

2k3
ξ−2 + o (1) (3.8a,b)

We give equation (3.8b) to stress that the vapour pressure approaches its
saturation pressure at the outer edge of the intermediate region. Pressure
gradients driving diffusion above the parabolic arc meniscus are therefore
asymptotically negligible; as a result, the total evaporation from the parabolic
arc meniscus is negligibly small. Evaporation thus occurs within the inter-
mediate region. On a similar note, we give the second term on the right hand
side of equation (3.8a) to stress that the slope approaches a limit at infinity.
Because the slope approaches a limit at the outer edge of the intermediate
region, a contact angle is established there. Specifically, Θ = bΘs, where

b → kω1/3β2/9 as ω → ∞ (3.9)

We have used the definition Θ = h∗

x∗ and equation (3.8a). The integration
constant k can be found by solving the intermediate problem, subject to
matching conditions at minus infinity. However, we take a different approach;
we instead obtain k using numerical solutions to (2.7), see §4.2. Because the
parameter β is independent neither on φ nor on L, the solutions to the
intermediate problem can only be a function of β as ω → ∞. Consequently,
the constant k = k(β) only, independent on ω. This point is very important
because as we shall see in chapter 4, it guides us in choosing the scaling
necessary for collapsing the numerical solutions onto a single curve. We define
a capillary number Ca, based on a velocity scale Vs set by evaporation, as

Vs =
ps(1− φ)

L− a

(

aD

ρℓRvTw

√

ρℓ
µℓρs

)
2

3

, Ca =
µℓVs

γ
(3.10a,b)

Observe that the dispersion constant A doesn’t appear in the definitions of
the velocity scale and capillary number. This observation is used below to
show that micro-physics affects Θ only through the constant k. To begin, we
obtain a relation between contact angle and capillary number by substituting
the definition (3.10) of Ca into the scaling relation (3.9) to show that,
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Θ = kCa1/3 where k = k(β) (3.11)

Because the capillary number is not a function of the dispersion constant,
micro-physics affects Θ only through the constant k = k(β); we recall that the
definition (2.8b) of β contains the dispersion constant A. This result is tested
in the next chapter using numerical solutions to (2.7) without approximation.

Similarly, the channel size affects Θ only through the capillary number.
The functional relationship between Θ and capillary size must however be
explained with caution: For a channel, the length of the wetting film is of
order of the channel length, and as a result, Θ ∝ (a2/3/L)1/3; for a droplet,
the length of that film is of order of drop size, and as a result, Θ ∝ a−1/9.
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Chapter 4

Numerical Results and
Discussion

The governing equations (2.7) are numerically solved using the NAG routine
D02TKF, which uses the collocation method to approximate the solution
at certain specified locations within the problem domain; solution values at
anywhere else within the domain are obtained using polynomial interpola-
tion. The routine uses variable steps in x with deferred correction. Because
the slope unit Θs << 1, we solve for Θs → 0; and for α → ∞ because then
a contact angle is established. These limiting solutions complicate the anal-
ysis for the following two reasons: first, the resulting system of non-linear
algebraic equations, for the coefficients of the basis functions, becomes very
ill-conditioned as α → ∞; secondly, the problem domain becomes infinite in
the limit as Θs → 0. This work alleviates both difficulties by using continu-
ation in the parameters α and Θs. The equations are first mapped onto the
open interval [−χ, 1) using the transformation x̂ = xΘs, which is equivalent
to using x̂ = x∗/a. We use the closed interval [−χ, x1] in the computations,
where the distance x1 is chosen such that 0 << x1 < 1. The solutions are
independent on the value of x1, so long as it is not too far from unity.

Next, we describe the numerical scheme: Numerical solutions are first
obtained for the hydrostatic case α = 0 and Θs > 0 using the initial approx-
imations; p = 0 and h = 1. The obtained solutions are then used as initial
guesses in the solution for α = α + ∆α and Θs = Θs − ∆Θs. The process
is repeated until we obtain solutions for the values α and Θs that we desire.
If that value of Θs is not too small, then continuation in Θs is unnecessary.
For a desired value of Θs → 0, continuation must be used in order to avoid a
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possible numerical singularity in the Jacobian used in the Newton iteration.
The numerical scheme is discussed and presented at length in chapter B.

Figure 4.1 compares the numerical solution of problem (2.7) without ap-
proximation with the asymptotic solution (3.2) of Derjaguin et al. Within
the long slowly tapered section of the meniscus, capillarity is negligible. This
explains the good agreement between the two solutions in that part of the
meniscus. The agreement also confirms the robustness and accuracy of our
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Figure 4.1: Liquid pressure (p∗ℓ − pb)a/γ as a function of position x∗/a: open circles,
equation (3.2); solid curve, computed without approximation from (2.7). With χ = 3,
α = 10, β = 0.2, and Θs = 0.01: for χ, α, β, and Θs, see (2.8) and (2.1) respectively.

numerical scheme. It is also clear from the figure that the Derjaguin solution
correctly describes the meniscus up to the apparent contact line.

In the thermal model, DasGupta et el26 integrate the governing equations
using the shooting method. This problem differs from the thermal problem
because the solution continues to depend on both constants in the starting
series. It is for this reason that we decided to solve the problem as a boundary
value problem. One consequence of solving the problem as a boundary value
problem is that the contact angle cannot be directly obtained from the model
problem using a local analysis around the contact region; unless the slope
parameter is obtained using some iterative process. It is for this reason
that we scale the problem, making sure that the interface curvature does
not vanish at the outer edge of the problem domain. Once the numerical
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solutions are obtained on these set of scales, the apparent contact angle can
then be extracted from the computed values of h as explained in section 4.2.

4.1 The total evaporation ṁ

Figure 4.2 compares the total evaporation from the capillary computed with-
out approximation from problem (2.7) with the approximate solution of Der-
jaguin et al, equation (3.4). We observe that the numerical solution asymp-
totically approaches the Derjaguin solution as χ → ∞, irrespective of the size
of the parameter β. This result is consistent with the asymptotic analysis of
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Figure 4.2: Mass flow f = ṁ/ṁs computed from (2.7) without approximation as a
function of channel length χ: α = 10; Θs = 0.008; bottom curves, β = 100; top curves,
β = 0.1. The limiting solutions, dotted lines, are computed using the Derjaguin solution,
equation 3.4, for the same α and β. For α, β, and ṁs, see (2.8) and (2.9) respectively.

section 3.1 which claims that for χ large and arbitrary β, the Derjagun so-
lution is sufficient for computing the total evaporation from capillaries. The
graph shows the numerical solution departing from the Derjaguin solution
as the parameter χ → 1. The large departure means that the Derjaguin so-
lution significantly under-estimates the total evaporation from the capillary,
when the length of the gas column is comparable to the capillary radius.

Figure 4.3 shows the vapour pressure computed from (2.7) without ap-
proximation as a function of position along the channel. The figure shows
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Figure 4.3: Vapour pressure (p∗v−ps)aρℓ/γρs as a function of position x∗/xs. The curves
are computed without approximation from problem (2.7) using χ = 1, curve A; χ = 5,
curve B; and χ = 100, curve C. With α = 10, Θs = 0.01, and β = 0.3 all fixed. For the
definitions of χ, α, β, and Θs, see equations (2.8) and (2.1) respectively

that as χ is increased, the pressure becomes uniform over an increasing por-
tion of the channel length. For fixed α, increasing the channel length reduces
pressure gradients driving diffusion in the gas. As a result, both diffusion
along the gas column and film flow becomes slow. Because it is then dif-
ficult to remove vapour from the meniscus, the pressure becomes uniform
over a distance that is an increasing function of L. Consequently, more and
more of the resistance to taking mass out of the channel must came from the
thin wetting film as L increases. This explains why the Derjaguin solution
correctly determines the total evaporation for large χ, see figure 4.2.

Figure 4.4 shows the evaporative mass flux J normal to the interface as
a function of position along the wall, with β as a parameter. As can be
seen from the graphs, evaporation is shifted into the thicker portions of the
meniscus as β increases. This means that evaporation from the precursor
film decreases as β increases, which is consistent with the approximate so-
lution of Derjaguin et al. Physically, liquid flows from the bulk meniscus
into the thin film region to compensate for evaporation. Because β is pro-
portional to liquid viscosity, increasing β increases the viscous resistance to
the compensatory flow; as a result, liquid is prohibited from flowing into the
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Figure 4.4: Evaporative mass flux J∗νℓ/(γΘ
4

s) computed from (2.7) without approxi-
mation as a function of position x∗/a using α = 2000, χ = 2, and Θs = 0.01: solid curve,
β = 0.2; dotted line, β = 0.3. See equations (2.1), (2.5) and (2.8) for the parameters.

precursor film. Reducing β lowers the viscous resistance, thereby increasing
evaporation from the precursor film. Consequently, for fixed α, β controls the
distribution of evaporation along the meniscus; by equation (2.7a), evapora-
tion occurs at a film thickness that is of order β1/3. For h3 << β, evaporation
ceases because transport in the liquid film becomes negligibly small, making
transport along the gas column independent on x. Towards the bulk menis-
cus, evaporation ceases because the pressure above the outer visible meniscus
is uniform, equalling the saturation pressure ps. Here, we are assuming that
the capillary number, based on the velocity of the induced flow, is negligible.

Given the above argument about β, one would have expected the inner
problem (2.7) to break down as β → ∞; because then, evaporation will
be occurring at a film thickness large compared with the inner dimensions.
However, this is not the case, because as we explained above, pressure gra-
dients above the outer meniscus are negligibly small. This explains why all
the evaporation occurs within the inner region, irrespective of the size of β.
The large value of β used in computing figure 4.2 is to demonstrate this fact.
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4.2 The apparent contact angle, Θ

According to boundary condition (2.2f), the interface curvature approaches a
constant at the outer edge of region I; the film thickness thus grows parabol-
ically with distance as x → ∞. If the parabola so defined has a zero, then a
contact angle is defined by the slope at h = 0. Since the entire interface does
not have a constant curvature, an apparent contact angle is defined by first
computing the constant curvature profile for large h, and then extrapolate
down to h = 0. To give a precise definition of Θ using this method, we follow
Morris36 and multiply the asymptotic relation d2h/dx2 ∼ 1 by 2dh/dx, and
then integrate once in x to show that (dh/dx)2 ∼ 2h + b2, where b2 is the
integration constant. We therefore define the contact angle Θ = bΘs, where

b2 = lim
ω→∞

lim
h→∞

(

h2
x − 2h

)

(4.1)

The integration constant b is equivalent to the constant b defined in the
asymptotic relation (3.9); we refer to b as the slope parameter. In (4.1), the
outer limit ω → ∞ ensures that the liquid flow is strong enough to create
an apparent contact angle. The other limit h → ∞ picks out the constant
curvature part of the interface, and also ensures that the apparent contact
angle defined by equation (4.1) is independent of film thickness. Numerical
solutions are now used to establish the existence of a contact angle.

Figure 4.5 shows d2h/dx2 computed from (2.7) without approximation
as a function of h; as defined by (2.9), ω = αΘs/χ is proportional to the
potential difference ps(1− φ) driving evaporation. On the right hand side of
the figure, d2h/dx2 → 1, as required by boundary condition (2.7f). Near the
origin, however, d2h/dx2 → 1 has a local maximum for 3 of the 4 curves. The
maximum value is an increasing function of the driving potential difference.
Physically, for ω > 0, liquid flows from the bulk meniscus into the contact
region to compensate for evaporation. For ω → 0, the flow is too weak to
alter the interface shape, bottom curve. For ω → ∞, however, the flow
becomes strong enough to perturb the interface, and creates an apparent
contact angle. Figure 4.5 thus supports the outer limit defined in (4.1).

In figure 4.6, we show (dh/dx)2 computed from (2.7) without approxima-
tion as a function of h; as expected, (dh/dx)2 is an increasing function of the
driving potential difference. On the right hand side of the figure, we observe
that (dh/dx)2 grows linearly with h; consistent with a constant curvature
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mation from the inner problem (2.7) as a function of film thickness (γ/aA)1/3h∗. Broken
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region. The figure shows that the interface curvature becomes uniform only
for film thicknesses h > 10. Therefore to extract b from the computed values
of h, we first discard all data for h < 10, and then fits a straight line to the
rest using the least square method. The intercept of that line determines b2.

Figure 4.7 shows b as a function of ω1/3β2/9. The choice for the indepen-
dent variable ω1/3β2/9 is suggested by the scaling relation (3.9). According to
that scaling relation, a plot of b against ω1/3β2/9 should give a straight line,
whose slope k is a function of β. The small scatter in the numerical solutions
is a clear indication that k is a very weak function of β. We therefore take
advantage of that information and plot b as a function of βδω1/3β2/9, where
the exponent δ is chosen, by trial and error, so as to collapse all the numerical
solutions onto a single straight line. Based on figure 4.7, we expect δ → 0.

Figure 4.8 shows that the choice δ = 4/225 collapses the numerical solu-
tions onto a single straight line as ω1/3β6/25 → ∞; this implies that the slope
parameter b → sω1/3β6/25 as ω1/3β6/25 → ∞, where s is the slope of the line.
The figure shows that the numerical solutions collapse onto the straight line
only for values of ω1/3β6/25 > 3. Therefore, to obtain s from the numerical
solutions, we first discard all data for ω1/3β6/25 < 3, and then fits a line to
the rest using the least square method. The slope of that line determines s.
Using this method, we find that s ≃ 1.76. The related expression for b is

b → 1.76ω1/3β6/25 as ω1/3β6/25 → ∞ (4.2)

Comparing this result to the scaling relation (3.9), we find that the integra-
tion constant k = 1.76β4/225, which is a very weak function of β as suggested
in figure 4.7. Equation (4.2) provides a useful correlation between b, ω, and
β. The corresponding expression for Θ, following equation (3.11), is

Θ = kCa1/3 where k = 1.76β4/225 (4.3a,b)

Figure 4.9 shows k as a function of β. The graph shows that the contact
angle depends very weakly on micro-physics, except for β → 0. Physically,
the film thickness at which the contact angle is established is proportional
to the parameter β1/3. Therefore for β → 0, the contact angle is established
at the scale where disjoining pressure is significant. This also explains why
the contact angle varies weakly with β for large β; here, Θ is established at
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Figure 4.9: Effects of micro-physics on Θ.

a scale where disjoining pressure is insignificant. These effects can also be
explained by first noting that β measures the viscous resistance to liquid flow;
which implies that for large β, liquid motion, and hence the distortion of the
interface, occurs at a much larger scale than that at which disjoining pressure
is significant. Figure 4.9 covers a sufficiently wide range of β, including the
range typical in applications. Specifically, it covers 10−3 ≤ β ≤ 103, and the
figure shows that over this range of β, the integration constant

1.5 < k < 2.0 so that Θ = 1.75Ca1/3 (4.4a,b)

with very little error. Equation (4.4b) expresses the apparent contact angle
as a function of a single parameter Ca depending only on well-known macro-
physical properties. The finding that Θ is insensitive to microphysics has
been obtained for the thermal problem by Stephan et al34 and by Morris36.
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Chapter 5

Conclusion

In the title problem, a completely wetting pure liquid with uniform surface
tension γ evaporates into a binary mixture consisting of its own vapour and
an inert component. Because the system is completely wetting, the visible
meniscus is preceded by a wetting film; we assume that within this film,
disjoining pressure Π is related to film thickness h by Π = A/h3 , where A is
the dispersion constant. Together A and γ define a length scale (A/γ)1/2; this
length scale is of molecular dimensions. The extended meniscus consisting of
the visible meniscus and its precursor film occupy a channel of gap thickness
2a; we assume that the gap is large compared with the molecular scale;
1 ≫ [A/(a2γ)]1/2. At the channel exit, the partial pressure of the vapour is
φps, where ps is the saturation pressure at the uniform temperature Tw of the
channel walls. For φ = 1, the system is in hydrostatic equilibrium; for this
case, Renk et al33 show that for 1 ≫ [A/(a2γ)]1/2 the extended meniscus has
an inner–and–outer structure: the outer visible meniscus is a semicircle of
radius a; the inner solution consists of a non–uniform wetting film in which
the capillary and disjoining pressures are comparable in magnitude. Far from
the apparent contact line, the thickness of the wetting film approaches the
uniform value (aA/γ)1/3; this thickness is, of course, small compared with a.
In this thesis, we have analysed the effect of evaporation on that picture.

For φ < 1, the partial pressure at the exit is less than the value required
for the liquid to coexist in equilibrium with its vapour. As a result, liquid
evaporates from the extended meniscus. Though heat must be conducted
from the walls to the liquid–vapour interface to drive evaporation, we have
assumed that in the presence of the inert component, mass transfer along
the gas column is rate–limiting. Consequently, we have assumed the system
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to be isothermal; this approximation is justified in Appendix A.2.
To analyse the evaporating meniscus, we have used the separation of

scales described above. The inner region now consisting of the quasi–parallel
liquid film, and the corresponding portion of the gas column. Within this
region, the lubrication approximation holds within the film and, across the
gas column, the partial pressure is uniform. Owing to these two conditions,
the unknowns depend only on distance along the wall, and the mass transport
within the inner region is determined by the boundary value problem (2.2)
containing only ordinary differential equations. For the gas, the outer region
is bounded by the visible circular arc meniscus, and the chord joining the
points where that meniscus intersects the channel walls. Within this region,
the vapour partial pressure pv satisfies the steady diffusion equation subject
to the boundary condition that on the gas–liquid interface, pv = psat, together
with the boundary condition that on the chord, pv matches to the solution
of the inner problem. Because the linearized Kelvin equation (2.2c) requires
pv → psat as the film thickness becomes large, everywhere on the closed
curve bounding the outer region, pv = psat. Throughout the outer region, pv
is therefore uniform and equal to psat. The first conclusion of this work is
that the liquid and vapour flow is completely determined by the solution of
the inner problem (2.2). We have solved the boundary value problem (2.2)
numerically to obtain the following results.

(a) By setting γ = 0, Derjaguin et al1 were able to obtain an approximate
solution describing evaporation from a capillary. According to our numer-
ical solution of the complete boundary value problem (2.2), the Derjaguin
solution correctly determines the evaporation rate if the length L of the gas
column is large compared with the channel gap thickness 2a; see Figure 4.2.
Because the Derjaguin solution is obtained by setting γ = 0, but our condi-
tion is independent of γ, we have used our numerical solution to show that the
Derjaguin approximation works because for L/a → ∞, pv is asymptotically
equal to psat throughout the entire region in which the capillary pressure bal-
ances the disjoining pressure; see Figure 4.3. As a result, evaporation occurs
only in the region in which the disjoining pressure Π determines the liquid
pressure. This explains the success of the Derjaguin solution.

(b) As discussed in §1.1, existing experiments show that the diffusion–
controlled meniscus of a perfectly wetting system exhibits an apparent con-
tact angle; Θ vanishes when the system is in hydrostatic equilibrium, and is
an increasing function of the potential difference (1 − φ)ps driving evapora-
tion. For the first time, we have posed and solved a boundary value problem
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whose solution exhibits an apparent contact angle. We give the condition
under which the apparent contact angle will be observed; as Figure 4.5, we
give numerical results demonstrating this condition. Lastly, as equation (4.2)
we give a scaling law describing the dependence of Θ on the relevant control
parameters.

(c) Unlike the thermal problem, the apparent contact angle for a diffusion
controlled evaporating meniscus is a function of the capillary size. To explain
why, we first note that the contact angle increases with the evaporation rate,
irrespective of the boundary condition driving the evaporation. In the case
of a diffusion-controlled evaporating system however, the rate of evaporation
is proportional to the capillary radius. This explains why the contact angle
here increases with the outer length scale. In the thermal problem, the outer
length scale enters the problem only through an outer boundary condition
describing the bulk meniscus. Because a local analysis around the contact
region does not include that outer boundary condition, the apparent contact
angle for the thermal problem is independent of the outer length scale.

(d) Even though the static contact angle for a completely wetting system
is zero, the stationary meniscus of a completely wetting liquid in a channel
exhibits an apparent contact angle Θ that is determined chiefly by a capillary
number Ca = µℓVs/γ based on surface tension γ, liquid viscosity µℓ, and a
velocity scale Vs set by evaporation. Though microphysics must be included
in the boundary value problem in order to resolve the hydrodynamic singu-
larity at the contact line, Θ is insensitive to the microphysical details. The
insensitivity of Θ to the value of A has been used by Morris36 to derive a
simple formula for Θ, although for the case of an applied wall heat flux.

In the drop geometry, one will have to match a two dimensional solution
near the edge of the drop to a three dimensional solution in the distant
gas. This matching is extremely difficult and un-necessary since we are only
interested in the dynamical processes near the contact line. For this reason,
we have chosen to first study the related problem for the channel geometry,
where the outer flow is largely simplified. We have analysed the simpler case
of a stationary meniscus. Subsequent work accounts for boundary motion.
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Appendix A

Derivation of the Governing
Equations

A.1 Conditions Under Which The Simplified

Kinetic Equation (2.2c) Holds

Let P(T, p∗ℓ) be the local co-existence pressure; i.e the vapor pressure required
for liquid and vapor to co-exist at temperature T and pressure p∗ℓ . Then by
kinetic theory, CJ∗/λ = (P − p∗v), see Cammenga42. Liquid thus evaporates
at any point along the interface if the vapor pressure on the gas side of the
interface is less than the co-existence pressure. Also, let po be the vapor
pressure at the exit of the channel, and To the temperature at which liquid
and vapor co-exist when both are at pressure po. Then following Morris35,
the kinetic equation is simplified by expanding (P − p∗v) in a Taylor series
about the reference state (po, To). To a first order approximation, we obtain

CJ∗

λ
=

ρsQ

To
(T − To) +

ρs
ρℓ

(p∗ℓ − po)− (p∗v − po) (A.1)

where ρℓ is the liquid density, Q the latent heat of vaporization, C the speed of
sound in the gas, λ =

√

2σ/π a kinetic constant, σ the specific heat ratio, and
ρs the saturation vapour density at temperature To. In the thicker portions
of the meniscus, i.e on the scale of the channel gap thickness, diffusion is
rate limiting; as a result, the term on the left of (A.1) vanishes far from the
contact line. Hence, we apply the condition that J → 0 at infinity to obtain
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0 =
ρsQ

To
(Tw − To) +

ρs
ρℓ

(pb − po)− (ps − po) (A.2)

where far from the wall, the interface temperature is assumed to be equal to
the wall temperature; evaporative cooling is therefore taken as negligible at
infinity. ps is the saturation pressure at temperature To. Equation A.2 gives
To as a function of the boundary values pb, ps, po, and Tw which are all given
as part of the solution. By subtracting equation A.2 from A.1, we obtain

CJ∗

λ
=

ρsQ

To
(T − Tw) +

ρs
ρℓ

(p∗ℓ − pb)− (p∗v − ps) (A.3)

In equation A.3, To can be replaced by Tw because |Tw − To| << To in appli-
cations. We have therefore eliminate To and po in favour of known boundary
values. Because there is no build up of mass at the interface, specie mass bal-
ance there requires that the rate of transfer of molecules across the interface
be equal to the diffusion flux evaluated at the interface. Specifically

−Λ
∂p∗v
∂n

=
ρsQ

Tw
(T − Tw) +

ρs
ρℓ

(p∗ℓ − pb)− (p∗v − ps) (A.4)

where Λ = CDv/λRvTw is the mean free path of the vapor molecules in
the gas. The mixed boundary condition (A.4) couples the dynamical pro-
cesses in the surrounding gas to those in the liquid phase. This coupling of
the different physics make direct analysis difficult. We therefore make the
following simplifying assumptions: (i) The continuum approximation holds
within the surrounding gas; as a result, liquid and vapor at the interface are
in local thermodynamic equilibrium. (ii) The system is effectively isother-
mal; though evaporation induces liquid temperature differences, they are
kinetically negligible for the slow evaporation processes considered here.

Given (i) and (ii), equation A.4 simplifies to

p∗v = ps +
ρs
ρ
(p∗ℓ − pb) (A.5)
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A.2 Conditions for Isothermal Evaporation

The latent heat consumption caused by evaporation at the interface induces
temperature gradients within the drop, substrate, and surrounding gas. One
can estimate the order of magnitude for temperature differences within the
drop by making use of the energy balance κ▽T · n1 = QJ∗ at the interface,
where κ is the liquid thermal conductivity, n1 the unit normal to the interface
with the other parameters defined above. The energy balance states that all
heat conducted from the wall to the interface is absorbed as latent heat.
Because there is no build up of mass at the interface, the evaporative flux
term J is estimated using Fick’s law J = Dv▽c · n2, where n2 is the unit
normal at the interface into the gas and c = p∗v/RvTw. Eliminating J between
the two equations, Fick’s law and energy balance, we find that at the interface

κ
∂T

∂n1
=

QDv

RvTw

∂p∗v
∂n2

(A.6)

To a first approximation, the vapour flow occurs in a half-space and so has
just one length scale δ/Θ, where δ is a characteristic film thickness. Near
the contact line, where temperature differences across the drop are highest,
the liquid flow occurs in a wedge of contact angle Θ, and so has two length
scales δ/Θ and δ. Then, according to equation A.6, we estimate that

∆T ∼ Θ
QDv

κRvTw
ps(1− φ) (A.7)

where ps is the saturation vapour pressure, φ the relative humidity in the dis-
tant gas, and ∆T the characteristic temperature difference across the drop.
According to equation A.4, temperature differences within the drop are kinet-
ically negligible if the first term on the right is negligibly small as compared
to the third term; i.e if ρsQ∆T/Tw << ps(1− φ), which translates to

ǫ =
ρsQ

2DvΘ

κRvT 2
w

<< 1 (A.8)

Both ǫ and ∆T depend on the drop size through Θ. The parameter ǫ is given
in Sultan et al (2005, row 7, table 2)11 as the ratio of a thermal expansion
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number to a kinetic Peclet number; in their notation ǫ = χ/Pek.
In table A.1, we give some estimates for the parameters. Values of Θ for

the first two rows are taken from Cachile et al14; the last row from Deegan
et al19. The relative humidity φ = 0 for the organic liquids and φ = 0.4 for
water. The table shows that temperature gradients, and hence Marangoni

Liquid Θ(rad) ∆T (K) ǫ
Octane14 0.015 0.10 0.007
Heptane14 0.030 0.23 0.011
Water19 0.26 15.62 1.56

Table A.1: Estimates for ∆T and ǫ

flows, become increasingly significant as the drop thickness increases; i.e for
drops with large Θ. This does not mean that heat conduction becomes the
controlling mechanism because for that to happen, the drop size must be
small compared with the mean free path Λ of the vapour in the gas.

A.3 Derivation of Equation (2.2a)

To simplify the problem, we assume that transport of the vapour molecules in
the gas is by axial diffusion only; though there are concentration gradients in
the radial direction, they are negligibly small in the limit a/L → 0. Balancing
mass on the differential control volume in figure 2.1a requires that

ṁx + ṁg − ṁx+dx =
d

dt
msys (A.9)

Where ṁx is the rate at which mass is entering the control volume, ṁg the
rate at which mass is generated within the control volume, ṁx+dx the rate
at which mass is leaving the control volume, and msys the total mass within
the control volume at any given instant. These quantities are given as
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ṁx =
Dvp

RvTw
Ac(x)

d

dx
ln

(

1− pv
p

)

(A.10a)

ṁg = J(x)dAs (A.10b)

ṁx+dx = ṁx +
dṁx

dx
dx (A.10c)

Where Ac(x) is the cross-sectional area of the channel, dAs the surface area
of the differential element, pv(x) the vapour pressure, J(x) the evaporative
mass flux normal to the interface, p the total gas pressure, Dv the binary dif-
fusion coefficient, Rv the specific gas constant, and Tw the wall temperature.
Equation A.10a expresses Fick’s first law; it assumes that the medium into
which evaporation occurs is stationary, and that the gas mixture is ideal.
Taylor expanding equation A.10a gives us A.10c. For a channel made up
of two parallel plates, Ac(x) = a − h(x) and dAs = dx per unit depth of
channel. Due to symmetry, we have considered only the lower half of the
channel. Under steady state conditions, equations A.9 and A.10 gives

J =
Dvp

RvTw

d

dx

[

(a− h)
d

dx
ln

(

1− pv
p

)]

(A.11)

Using lubrication theory, the mass flow rate in the thin quasi-parallel liquid
film is related to the local evaporative mass flux J by

d

dx

[

h3

3ν

dpℓ
dx

]

= J (A.12)

Equation (A.12) neglects shear stress at the interface. We now eliminate J
between equations (A.11) and (A.12); then integrate once to show that

h3

3ν

dpℓ
dx

− Dvp

RvTw
(a− h)

d

dx
ln

(

1− pv
p

)

= −ṁ (A.13)

For pv/p → 0 and for h << a, equation (A.13) reduces to (2.2a).
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Appendix B

Numerical Analysis

This chapter describes the use of the general-purpose code d02tkf, together
with its associated routines d02tvf, d02txf, d02tyf, and d02tzf; all obtained
from the NAG numerical library. The code is based on modified versions of
the codes COLSYS and COLNE, Ascher et al44 and Ascher and Bader45, and
is capable of solving mixed-order systems of ordinary differential equations in
boundary value problems. First, d02tvf is called to specify the initial mesh,
error requirements, and other details. Then d02tkf is called to solve the
boundary value problem in question. After successful computation, d02tzf
is used to examine details about the final mesh. Finally, d02tyf is used to
approximate the solution anywhere on the solution domain using polynomial
interpolation. In case of a continuation, as it is with this problem, d02txf
allows the solution values computed in the previous call to d02tkf to be used
as an initial guess to the solution in the next call to d02tkf. This avoids the
overhead of a complete initialisation when the setup routine d02tvf is called.

Consider a mixed-order system of n nonlinear ordinary differential equa-
tions of orders 1 ≤ k1 ≤ k2 ≤ ... ≤ kn ≤ 4 over the interval a ≤ x ≤ b,

y
(ki)
i = fi (x; z(y)) , i = 1, 2, .....n (B.1)

where y = (y1, y2, ...yn) is the solution vector and y
(k)
j the kth derivative of the

jth solution component. Hence, y
(0)
j = yj and z(y) is the vector of unknowns,

z(y) =
(

x, y1, y
(1)
1 ..., y

(k1−1)
1 , y2, y

(1)
2 ..., y

(k2−1)
2 , ...yn, y

(1)
n ..., y

(kn−1)
n

)

, that would

result from converting (B.1) into a system of first order equations. The sys-
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tem is subjected to p nonlinear boundary conditions at a and q nonlinear

boundary conditions at b, where p + q =
n
∑

l=1

kl. The left and right nonlinear

boundary conditions at a and b are therefore defined respectively as,

gi (a; z(y)) = 0, i = 1, 2, .....p (B.2a)

gj (b; z(y)) = 0, j = 1, 2, .....q (B.2b)

The ode solver d02tkf, and its associated routines, uses the method of spline
collocation to solve equations (B.1) and (B.2). Approximate solutions are
computed on a sequence of automatically selected meshes until a user speci-
fied set of tolerances for the solution components y are satisfied. A damped
Newton method is used for the nonlinear iteration. The user must supply a
set of subroutines for evaluating the functions fi given x and z(y), the partial
derivative of fi with respect to z(y), the partial derivative of gi with respect
to z(y), boundary conditions, and initial approximations to z(y).

B.1 Fortran Program Listing

To solve problem (2.7) using the ode solver d02tkf described above, the equa-
tions are first expressed in the form of the mixed order system (B.1). Because
the slope unit Θs << 1, the problem domain is infinite. This example uses
continuation in the parameters α and Θs. The equations are first mapped
onto the interval [−χ, 1) using the transformation x̂ = xΘs to yield,

p′′ℓ = −3h2h′p′ℓ
(

h3 + 3β
)

−1
, (B.3a)

h′′ =
(

1− pℓ − h−3
)

λ2. (B.3b)

For convenience, we have replaced Θs with λ−1. The system of two equations,
each of second order, are subject to the following boundary conditions

pℓ(−χ) + α = 0, h(−χ)− ho = 0, (B.4c,d)

pℓ(1) = 0, h′(1)− λ2 = 0 (B.4e,f)
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where ho is the film thickness at the channel mouth; h3
o = (1 + α)−1. Super-

scripts h′ represents differentiation with respect to x̂. The numerical scheme
first obtain solutions for the simple case α = 0 and λ > 1 using the initial
approximations p = 0 and h = 1. The obtained solutions are then used as
initial guesses in the solution for α = α+∆α and λ = λ+∆λ. The process
is repeated until we obtain solutions for the values α and λ that we desire.

B.1.1 Main Program

!********************************************************************
! odesolver.f90
!
! FUNCTIONS:
! odesolver - Entry point of console application.
!
!
! PROGRAM: odesolver
!
! PURPOSE: solves a general two-point boundary value problem for a
! non-linear mixed order system of ordinary differential equations.
!
!********************************************************************

program odesolver

! use statements

use nag library, only : d02tkf, d02tvf, d02txf, d02tyf, d02tzf

use odesolver mod, only : λ, ffun, fjac, gafun, gajac, gbfun, gbjac, &
guess, m1, m2, mmax, nag wp, neq, nin, &
nout, nrbc, zero, one, α, two, beta, six, N2, &
LB, RB, nlbc, chi

! implicit none statement

implicit none
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! local scalars
real (kind=nag wp) :: dx, λ init, ermx, α init, xx
integer :: i, iermx, ifail, ijermx, j, nmesh, &

liwork, lrwork, mxmesh, ncol, ncont

! local arrays
real (kind=nag wp), allocatable :: mesh(:), rwork(:)
real (kind=nag wp) :: tol(neq), y(neq,0:mmax-1)
integer, allocatable :: ipmesh(:), iwork(:)
integer :: m(neq)

!**************************************************
! Begin user-supply parameter values
!**************************************************

! Parameters and boundary locations
beta = 0.1 nag wp ! See equation 2.8
chi = 5.0 nag wp ! See equation 2.8
LB = - chi ! Left Boundary
RB = one ! Right Boundary

! executable statements
write (nout,*) ’D02TXF: Research Program in Progress’
write (nout,*) ’**********************************’
ncol = 6 ! Number of collocation points;

! Constraint: mmax ≤ ncol ≤ 7
nmesh = 5.0 nag wp + two*chi ! Number of initial mesh points,

! Constraint: 6 < nmesh < mxmesh/2
mxmesh = 10000 ! Maximum number of mesh points allowed,

! Constraint: mxmesh ≥ 2(nmesh− 1)
tol(1:neq) = (0.0000001,0.0000001) ! tolerance for each solution component
liwork = mxmesh*(11*neq+6) ! do not modify
lrwork = mxmesh*(109*neq**2+78*neq+7) ! do not modify
allocate (mesh(mxmesh),rwork(lrwork),ipmesh(mxmesh),iwork(liwork))

! Enter initial parameters
λ init = 30.0 nag wp ! Initial value of λ
α init = zero ! initial value of α
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! Initialize data
λ = λ init
α = α init
m(1) = m1 ! order of the first differential equation
m(2) = m2 ! order of the second differential equation
dx = (RB-LB)/real(nmesh-1,kind=nag wp) ! step size
mesh(1) = LB ! left boundary point

!******************************************************************
! End user-supply parameter values:
!******************************************************************

do i = 2, nmesh-1
mesh(i) = mesh(i-1) + dx ! initial mesh points

end do

mesh(nmesh) = RB ! right boundary point
ipmesh(1) = 1 ! a constraint; fixes the left boundary point
ipmesh(2:nmesh-1) = 2 ! 1 for fixed internal mesh points; 2 for otherwise
ipmesh(nmesh) = 1 ! a constraint; fixes the right boundary point

! initial integrator for given problem
ifail = 0 ! Error indicator
call d02tvf(neq,m,nlbc,nrbc,ncol,tol,mxmesh,nmesh,mesh,ipmesh,rwork, &

lrwork,iwork,liwork,ifail)

ncont = 2000 ! number of continuation steps in λ and α
cont: do j = 1, ncont
! solve problem
ifail = -1
call d02tkf(ffun,fjac,gafun,gbfun,gajac,gbjac,guess,rwork,iwork,ifail)
if (ifail/=0) exit cont
! extract mesh
ifail = 0
call d02tzf(mxmesh,nmesh,mesh,ipmesh,ermx,iermx,ijermx,rwork,iwork,ifail)

! select mesh for continuation and update continuation parameters
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if (j<ncont) then
λ = λ + 100.0 nag wp/real(ncont-1,kind=nag wp)
α = α + one
nmesh = (nmesh+1)/2
ifail = 0
call d02txf(mxmesh,nmesh,mesh,ipmesh,rwork,iwork,ifail)
end if
end do cont

write (nout,99997) tol(1), λ, α
! print mesh and error statistics
write (nout,99996) nmesh, ermx, iermx, ijermx
! print solution components on mesh
write (nout,99999)
dx = (RB-LB)/real(N2-1,kind=nag wp) ! Evaluate at N2 uniform grid points
xx = LB ! Begin evaluation at left boundary
open (2, file=’beta04.txt’) ! open file
do i = 1, N2
ifail = 0
call d02tyf(xx,y,neq,mmax,rwork,iwork,ifail)
write (2,99998) xx, y(1,0), y(2,0) ! write to file
xx = min(one,xx + dx)
end do
close (2, status=’keep’) ! close file; includes last solution only

99999 format (//4X,’x’,16X,’p’,16X,’h’)
99998 format (1X,F16.8,2(1X,F20.8))
99997 format (//’tolerance = ’,E8.1,’ λ =’,F12.3,’ α =’,F12.3)
99996 format (/’used a mesh of ’,I4,’points’/’maximum error = ’,E10.2, &

’ in interval ’,I4,’ for component ’,I4)

end program odesolver

B.1.2 The Module

!***************************************************
! Parameters and user-defined subroutines: This module
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! contains seven user-defined subroutines, namely; ffun,
! fjac, gafun, gbfun, gajac, gbjac, and guess
!***************************************************

module odesolver mod

! use statements

use nag library, only : nag wp

implicit none

real (kind=nag wp), parameter :: zero = 0.0 nag wp
real (kind=nag wp), parameter :: one = 1.0 nag wp
real (kind=nag wp), parameter :: two = 2.0 nag wp
real (kind=nag wp), parameter :: three = 3.0 nag wp
real (kind=nag wp), parameter :: four = 4.0 nag wp
real (kind=nag wp), parameter :: six = 6.0 nag wp
real (kind=nag wp), parameter :: nine = 9.0 nag wp
integer, parameter :: m1 = 2, m2 = 2, mmax = 2, neq = 2, N2 = 10000, &

nin = 5, nlbc = 2, nout = 6, nrbc = 2
real (kind=nag wp) :: λ, α, beta, LB, RB, chi

! ********************************************************
! Parameter Definitions
! ********************************************************
! m1 = order of first ode (equation B.3a)
! m2 = order of second ode (equation B.3b)
! nlbc = number of left boundary conditions
! nrbc = number of right bcs
! neq = number of differential equations to be solved
! λ, chi, α, beta : parameters in the boundary value problem
! mmax = maximum order of the differential equations
! N2 = Number of interpolation points
! ********************************************************

contains ! user-defined subroutines
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! ************************************************************
! subroutine ffun: Lists the system of neq
! differential equations to be solved
! ************************************************************

! y(m,n) = the nth derivative of the mth component

subroutine ffun(x,y,neq,m,f)

implicit none

real (kind=nag wp), intent (in) :: x ! the independent variable
integer, intent (in) :: neq ! number of differential equations to be solved
real (kind=nag wp), intent (out) :: f(neq)
real (kind=nag wp), intent (in) :: y(neq,0:*)
integer, intent (in) :: m(neq)
real (kind=nag wp) :: t1, y21, y20, y11
y20 = y(2,0) ! = h
y21 = y(2,1) ! = h′

y11 = y(1,1) ! = p′

t1 = three*beta + y20*y20*y20
f(1) = - three*y20*y20*y21*y11/t1 ! equation B.3a
f(2) = λ*λ*(one-y(1,0)-(one/(y20*y20*y20))) ! equation B.3b
return
end subroutine ffun

! *******************************************************
! subroutine fjac: Jacobian for the system of equations
! *******************************************************

! f(1) = p′′(p,p′,h,h′) and f(2) = h′′(p,p′,h,h′). Then
! dfdy(i,j,k) = df(i)dy(j,k), where y(j,k) = [p,p′,h,h′]
! i = 1,2...neq
! dfdy(i, j, k) = ∂fi/∂y

(k)
j

subroutine fjac(x,y,neq,m,dfdy)

implicit none
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real (kind=nag wp), intent (in) :: x
integer, intent (in) :: neq
real (kind=nag wp), intent (inout) :: dfdy(neq,neq,0:*)
real (kind=nag wp), intent (in) :: y(neq,0:*)
integer, intent (in) :: m(neq)
real (kind=nag wp) :: t1, y21, y20, y11
y20 = y(2,0) ! = h
y21 = y(2,1) ! = h′

y11 = y(1,1) ! = p′

t1 = three*beta + y20*y20*y20
dfdy(1,2,1) = - (three*y20*y20*y11)/t1
dfdy(1,1,1) = - (three*y20*y20*y21)/t1
dfdy(1,2,0) = (nine*y21*y11*(y20**four))/(t1*t1) - six*y21*y11*y20/t1
dfdy(2,2,0) = three*λ*λ/(y20*y20*y20*y20)
dfdy(2,1,0) = - λ*λ
return
end subroutine fjac

! ***********************************************************************
! Subroutine gafun: Evaluates the boundary conditions at the left
! hand end of the solution domain. First entry in ya(a1,a2) gives the
! solution component; second entry gives the order of the derivative.
! For example ya(1,0) = p; ya(1,1) = p′; ya(2,0) = h; ya(2,1) = h′.
!************************************************************************

subroutine gafun(ya,neq,m,nlbc,ga)

implicit none

integer, intent (in) :: neq, nlbc
real (kind=nag wp), intent (out) :: ga(nlbc)
real (kind=nag wp), intent (in) :: ya(neq,0:*)
integer, intent (in) :: m(neq)
ga(1) = ya(1,0) + α ! p(-1) = -α
ga(2) = ya(2,0) - (one/(one+α))**(one/three) ! h(-1) = (1/(1+α))**(1/3)
return
end subroutine gafun
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! ***********************************************************
! Subroutine gbfun: Evaluates the boundary conditions at the right
! hand end of the solution domain. Entries as described in gafun
!************************************************************

subroutine gbfun(yb,neq,m,nrbc,gb)

implicit none

integer, intent (in) :: neq, nrbc
real (kind=nag wp), intent (out) :: gb(nrbc)
real (kind=nag wp), intent (in) :: yb(neq,0:*)
integer, intent (in) :: m(neq)
gb(1) = yb(1,0) ! p(1) = 0
gb(2) = yb(2,1) - λ*λ*RB ! h′(1) = λ*λ*x
return
end subroutine gbfun

! ***********************************************************
! Subroutine gajac: Evaluates the Jacobian at the left hand
! end of the solution domain. Entries as described in fjac
!************************************************************

subroutine gajac(ya,neq,m,nlbc,dgady)

implicit none

integer, intent (in) :: neq, nlbc
real (kind=nag wp), intent (inout) :: dgady(nlbc,neq,0:*)
real (kind=nag wp), intent (in) :: ya(neq,0:*)
integer, intent (in) :: m(neq)
dgady(1,1,0) = one
dgady(2,2,0) = one
return
end subroutine gajac

! ***********************************************************
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! Subroutine gbjac: Evaluates the Jacobian at the right hand
! end of the solution domain. Entries as described in fjac
!************************************************************

subroutine gbjac(yb,neq,m,nrbc,dgbdy)

implicit none

integer, intent (in) :: neq, nrbc
real (kind=nag wp), intent (inout) :: dgbdy(nrbc,neq,0:*)
real (kind=nag wp), intent (in) :: yb(neq,0:*)
integer, intent (in) :: m(neq)
dgbdy(1,1,0) = one
dgbdy(2,2,1) = one
return
end subroutine gbjac

! *********************************************
! Subroutine guess: user-supplied initial guesses for
! the solution components, h and pℓ
! *********************************************

subroutine guess(x,neq,m,y,dym)

implicit none

real (kind=nag wp), intent (in) :: x
integer, intent (in) :: neq
real (kind=nag wp), intent (out) :: dym(neq)
real (kind=nag wp), intent (inout) :: y(neq,0:*)
integer, intent (in) :: m(neq)
y(1,0) = zero ! p; example: y(1,0) = x**2 + one
y(1,1) = zero ! p′

y(2,0) = one ! h
y(2,1) = zero ! h′

dym(1) = zero ! p′′

dym(2) = zero ! h′′

return
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end subroutine guess

end module odesolver mod
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