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Is the Noble Gas‐Based Rate of Ocean Warming During
the Younger Dryas Overestimated?
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S. A. Marcott6 , and J. P. Severinghaus1

1Scripps Institution of Oceanography, University of California, SanDiego, CA, USA, 2Climate and Environmental Physics,
Physics Institute and Oeschger Center for Climate Research, University of Bern, Bern, Switzerland, 3Laboratory for Air
Pollution/Environmental Technology, Empa, Dübendorf, Switzerland, 4Department of Geography and Environmental
Sciences, Northumbria University, Newcastle, UK, 5College of Earth, Ocean, and Atmospheric Sciences, Oregon State
University, Corvallis, OR, USA, 6Department of Geoscience, University of Wisconsin‐Madison, Madison, WI, USA

Abstract Noble gases in ice cores enable reconstructions of past mean ocean temperature. A recent
result from the clathrate‐containing WAIS Divide Ice Core showed tight covariation between ocean and
Antarctic temperatures throughout the last deglaciation, except for the Younger Dryas interval. In the
beginning of this interval, oceans warmed at 2.5 °C/kyr—three times greater than estimates of modern
warming. If valid, this challenges our understanding of the mechanisms controlling ocean heat uptake.
Here we reconstruct mean ocean temperature with clathrate‐free ice samples from Taylor Glacier to test
these findings. The two records agree in net temperature change over the Younger Dryas, but the Taylor
Glacier record suggests sustained warming at the more modest rate of 1.1 ± 0.2°C/kyr. We explore
mechanisms to explain differences between records and suggest that the noble gas content for the
Younger Dryas interval of WAIS Divide may have been altered by a decimeter‐scale fractionation during
bubble‐clathrate transformation.

Plain Language Summary Oceans have taken up most of the additional heat trapped by
greenhouse gases, mitigating the current rate of surface warming. In order to understand changes in
ocean heat uptake over time, we use atmospheric noble gases measured in ice cores to estimate past ocean
temperature change. This method works because the amount of noble gases dissolved in seawater changes
with temperature. A recent ocean temperature reconstruction identified a 700‐year interval during the
transition from the last ice age to the current warm period when oceans warmed three times faster than they
are currently warming. This result challenged our understanding of how oceans warm as an ice age ends.
We tested this finding with a new ice core record and found that ocean warming during this interval
occurred at a rate that is comparable to today, which is more consistent with our understanding of ocean
heat uptake. We suggest that the noble gas record in the original ice core was altered by a process that affects
how atmospheric gases are distributed in ice and is unrelated to ocean temperature change. From these
findings we suggest caution in interpreting noble gas records in ice cores where this process may occur.

1. Introduction

Ocean heat uptake plays a crucial role in regulating the rate of planetary warming. To understand mechan-
isms controlling ocean warming on centennial‐millennial timescales, it is necessary to consult paleoclimate
archives. Reconstructions of atmospheric noble gas ratios (Kr/N2, Xe/N2, and Xe/Kr) from trapped air in ice
cores reflect past mean ocean temperature (MOT) due to the temperature‐dependent changes of gas solubi-
lities in seawater and thus the relative partitioning of noble gases between the ocean and atmosphere
(Headly & Severinghaus, 2007; Ritz et al., 2011). The MOT proxies reflect volume‐averaged ocean tempera-
ture change; the rate of MOT change (or ocean heat uptake) depends on both the magnitude of the surface
forcing and on ocean mixing/circulation. A recent MOT study covering the last deglaciation from the
Antarctic WAIS Divide (WD) ice core showed features in MOT change that were not apparent in traditional
ocean temperature reconstructions from marine sediment cores, including covariation between MOT and
Antarctic temperature (Bereiter, Shackleton, et al., 2018). The exceptional resolution and age control of this
record enabled strong constraints on rates of ocean temperature change. The most surprising feature of this
record was a 1.6 °C MOT warming in the first 700 years of the Younger Dryas (referred to as YD1), which is
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roughly triple the rate of modern ocean warming. This interval represents the only significant deviation of
the MOT trend from that of Antarctic temperature during the last deglaciation (Figure 1).

The Younger Dryas (12.75–11.55 ka BP) was marked by abrupt cooling of Greenland and the North Atlantic
(Broecker et al., 1988) and gradual warming in Antarctica (Blunier et al., 1997), as a result of reduction in
Atlantic Meridional Overturning Circulation (AMOC; Broecker et al., 1989). The Younger Dryas ended with
abrupt recovery of the AMOC (McManus et al., 2004). Modeling studies suggest that MOT and ocean heat
content should increase through the duration of AMOC reduction at a rate roughly one quarter of that found
at WD for YD1 (Galbraith et al., 2016; Pedro et al., 2018). As of yet, no evidence for major changes in climate
or ocean circulation have been found that shed light on the YD1 warming.

Because of the important implications of the rapid YD1 MOT warming, we sought to replicate this MOT
change with another ice core record. We analyzed samples from Taylor Glacier, Antarctica, a blue ice area
where ice from the last glacial cycle can be found in abundance (Baggenstos et al., 2017). Importantly, the air
in Taylor Glacier ice is enclosed entirely in the form of bubbles and lacks clathrates due to the relatively shal-
low depth of the glacier, while WD is a deep ice core in which the Younger Dryas is within fully clathrated
ice, approximately 400 to 500 m below the bubble‐clathrate transition zone (BCTZ; Fitzpatrick et al., 2014).

2. Methods and Site Description

Sixteen ice core samples from Taylor Glacier covering 13.4–11.0 ka BP were collected along a previously
established sampling line, which contains a well‐dated, high‐resolution record of the last deglaciation
(Baggenstos et al., 2017). Samples were analyzed for isotopes of nitrogen, argon, and krypton and Kr/N2,
Xe/N2, and Xe/Kr following Bereiter, Kawamura, et al. (2018). Results are reported in delta notation, relative
to the modern atmosphere.

Ice core Kr/N2, Xe/N2, and Xe/Kr are influenced by gravitational (Schwander, 1989; Craig et al., 1988) and
thermal (Severinghaus et al., 1998) fractionation. Because the effects of gravitational and thermal fractiona-
tion are well understood for the measured gases, the isotope ratios can be used to correct Kr/N2, Xe/N2, and

Figure 1. Mean ocean temperature (MOT) records for publishedWAIS Divide (WD; left; Bereiter, Shackleton, et al., 2018)
and Taylor Glacier (right) derived from Kr/N2 (red), Xe/N2 (blue), and Xe/Kr (green) with 1σ uncertainties (scale on
right). Open circles in left panel show WD data corrected with the least squares method applied in this study. Antarctic
temperature stack (ATS; Parrenin et al., 2013) is shown in purple (scale on left). MOT and ATS data are displayed as
anomalies relative to modern. Gray bars highlight the Younger Dryas.
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Xe/Kr to derive their original atmospheric compositions. We solve for fractionations using all measured iso-
tope ratios in a linear least squares system of equations (Baggenstos, 2015; and supporting information).

To derive MOT, Kr/N2, Xe/N2, and Xe/Kr were input into the four‐box ocean‐atmosphere model of Bereiter,
Shackleton, et al. (2018). To estimate uncertainty in the rate and magnitude of MOT change in the Taylor
Glacier record, we run 10,000 Monte Carlo simulations of the data, propagating analytical uncertainties,
sample age uncertainties, and uncertainties in the sea level record used in the box model (Lambeck et al.,
2014) through the full evaluation routine.

3. Results/Discussion

Figure 1 shows the MOT results for Taylor Glacier compared to WD. The Taylor Glacier record shows sus-
tained warming over the whole Younger Dryas interval at 1.1 ± 0.2 °C/kyr (1σ) for a total warming of 1.3 °C
over 1,200 years. Overall, trends for Taylor Glacier are consistent with those of Antarctic temperature. While
theWD record suggests similar net warming of 1.4 °C during the Younger Dryas, MOT change occurs in two
phases. There is a rapid (2.5 ± 0.5 °C/kyr) warming in the first 700 years (YD1), followed by ~0.8 °C/kyr cool-
ing in the final 500 years of the Younger Dryas. The Taylor Glacier and WD MOT records agree (within
uncertainty) for much of the Younger Dryas, but they differ significantly in the warming rate during YD1
(supporting information). These rates are tightly constrained for each record, due to the high sampling reso-
lution within this interval. Potential explanations for the differences between the records are explored below.

3.1. Lab Artifacts and Data Processing

Because the WD and Taylor Glacier records were measured using the same analytical method, we can rule
out laboratory artifacts as the source of disagreement between the two records. However, for Taylor Glacier
we applied a different method to correct for firn fractionations and slightly different parameterizations to the
box model compared to the WD study. If we apply the same firn corrections and box model parameters to
WD as we used for Taylor Glacier (open circles, Figure 1), we find that the whole record shifts to warmer
MOT by ~0.4 °C, but the record structure remains essentially unchanged, and there is no significant change
to the rate of warming during YD1. This suggests that the differences between records are likely a result of
some unaccounted‐for physical process within the firn or ice.

3.2. Smoothing of the Taylor Glacier MOT Record

An important consideration when comparing the WD and Taylor Glacier records is the effect of signal
smoothing in the firn column (Spahni et al., 2003). Compared to the atmosphere, fast variations in gas
records in ice cores are low‐pass filtered because (1) gases within firn mix slowly with the atmosphere
through molecular diffusive transport and (2) bubble enclosure occurs gradually over a depth range of
~15 m (Schwander et al., 1988). In effect, gases within an ice layer do not have a single age, but a distribution
of ages. This smoothing process has greatest impact on gases that undergo fast atmospheric changes (e.g.,
CH4), but if bubble close‐off occurs gradually enough, it may also affect slower atmospheric changes such
as the noble gas trends observed during YD1.

The degree of smoothing depends on site conditions; cold, low accumulation sites tend to have the widest gas
age distributions and thus experience the most smoothing (Spahni et al., 2003). Because of its high accumula-
tion and relativelymoderate temperature,WDhas an exceptionally narrow gas age distributionwidth (20 to 60
years; Rhodes et al., 2017); the noble gasMOT record should be virtually unaltered by smoothing at this site. In
contrast, the Taylor Glacier deposition site has lower accumulation and colder temperatures, so a wider gas age
distribution is expected. The YD1 MOT warming suggested byWD is quite rapid; one possible explanation for
the differences between the two records is that the noble gas record is smoothed at Taylor Glacier.

In order to quantify the differences between the two MOT records due to smoothing, we compare abrupt
CH4 transitions at the onset and termination of the Younger Dryas between Taylor Glacier (Bauska et al.,
2016) and WD (Rhodes et al., 2015). Because these atmospheric CH4 changes are rapid (several hundred
ppb over a few hundred years), they should be more affected by smoothing than the MOT record. From
the degree of smoothing of the Taylor Glacier CH4 record compared toWD, it is possible to predict the degree
of smoothing of the Taylor Glacier MOT record.
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The Taylor Glacier age scale was developed through gas synchronization between Taylor Glacier and WD
frommeasurements of CH4, CO2, and δ18Oatm (Baggenstos et al., 2017). A dynamic programming algorithm
(Lisiecki & Lisiecki, 2002) was employed to optimize the fit of the Taylor Glacier gas records to those of WD
on the WD2014 chronology (Buizert et al., 2015; Sigl et al., 2016), while maintaining a physically realistic
(i.e., smooth) distance‐age relationship. Because CH4 data are used to constrain the age model, it is some-
what circular to compare rates of CH4 transitions between WD and Taylor Glacier on the published
Taylor Glacier age scale. To circumvent this issue, we reran the dynamic algorithm with δ18Oatm alone.
While the age model is still tied to WD2014, δ18Oatm variations are several orders of magnitude slower than
those of CH4, so the effect of smoothing on δ18Oatm is negligible.

On the new Taylor Glacier timescale, rates of CH4 change (d[CH4]/dt) at the transitions are comparable to
those of WD, suggesting no substantial smoothing of the Taylor Glacier record relative to WD (Figure 2). In
fact, the Younger Dryas termination d[CH4]/dt is actually greater at Taylor Glacier than at WD. This is the
more abrupt of the CH4 transitions, so wewould expect it to bemore sensitive to smoothing. Comparing CH4

transitions between Taylor Glacier and WD, it is important to note that the Taylor Glacier CH4 data are in
much lower resolution than for WD, so there is greater uncertainty in Taylor Glacier d[CH4]/dt. However,
high‐resolution field measurements of CH4 at Taylor Glacier confirm the d[CH4]/dt of the lower resolution
lab‐based measurements (supporting information), and uncertainties in d[CH4]/dt have little impact on
smoothing estimates.

We convolved the WD CH4 and MOT records with a log‐logistic function to predict the degree of smoothing
of the MOT record at Taylor Glacier from the observed CH4 smoothing at Taylor Glacier relative to WD. A
log‐logistic function was chosen to approximate the gas age distribution at Taylor Glacier and realistically

Figure 2. Comparison in rates of CH4 and mean ocean temperature (MOT) change at Taylor Glacier (TG) compared to
WAIS Divide (WD). (a) CH4 records from TG (discrete, orange; Bauska et al., 2016) and WD (continuous, blue; Rhodes
et al., 2015). Gray bar highlights CH4 data used to estimate smoothing at TG. (b) Splined MOT records for TG
(orange) and WD (blue; Bereiter, Shackleton, et al., 2018). Crosses indicate location of MOT data used to produce spline.
Reported TG d[MOT]/dt is for the YD1 interval, which differs slightly (but agrees within uncertainty) with the d[MOT]/dt
reported for the full Younger Dryas interval. Gray bar highlights YD1. (c) Modeled reduction of d[MOT]/dt versus
d[CH4]/dt at TG (relative toWD) due to smoothing. Purple dot shows observed reduction of TG d[CH4]/dt and the expected
reduction of d[MOT]/dt. Dashed teal line indicates the observed reduction of d[MOT]/dt for TG compared to WD.
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simulate smoothing (supporting information). However, results are insensitive to the shape of the
smoothing function; a simple boxcar function yields a similar relationship between the degree of
smoothing of the CH4 record and the MOT record.

As expected, the CH4 record is significantly more sensitive to smoothing than the MOT record. The observed
18% reduction of d[CH4]/dt at Taylor Glacier (compared to WD) at the Younger Dryas onset gives an expected
reduction in the YD1MOT rate of 0.5% at Taylor Glacier relative toWD. Accounting for uncertainties in Taylor
Glacier d[CH4]/dt, an upper bound on smoothing of the CH4 record (59%) predicts an upper estimate onMOT
smoothing of 6% in the Taylor Glacier record. However, the observed rate ofMOTwarming at Taylor Glacier is
64% reduced compared toWDduringYD1. From these results, we can confidently reject the hypothesis that the
difference between the Taylor Glacier and WDMOT records is the result of smoothing.

3.3. Outliers in the WD Record Due to Clathrate Layering

In addition to higher rates of MOT warming during YD1, the WD record also has more high frequency varia-
bility than Taylor Glacier during and just after the Younger Dryas (Figure 3). Here we consider the possibility
that high frequency variations in the WD noble gas record during the Younger Dryas and Early Holocene are
not atmospheric and are instead related to fractionation of noble gases due to layering during bubble‐clathrate
transformation. Taylor Glacier samples are entirely in bubbly ice and therefore free of any such effect.

The proposed mechanism was originally invoked to explain centimeter‐scale variations in CO2 and O2/N2

measurements within and just below the BCTZ (Lüthi et al., 2010). The effect is summarized as follows:
the fractionation of gases in the BCTZ is due to the differential permeation of gases from bubbles to growing
clathrates. Clathrate formation does not occur gradually with increasing depth but in layers. Layers in which

Figure 3. Evidence for spatial fractionation of noble gas ratios in and below the bubble‐clathrate transition zone (BCTZ)
atWAIS Divide. Standard deviations for replicatemeasurements of (a) CO2 (this study andMarcott et al., 2014), (b) O2/N2,
and (c) Ar/N2 (Seltzer et al., 2017) versus depth. Dark gray paneling indicates the depth range of the BCTZ, and medium
gray paneling marks the depth intervals below the BCTZ for which standard deviations are significantly elevated
compared to the deepest (2,500–2,600 m) depth interval. Gravitationally and thermally corrected (d) Xe/N2, (e) Xe/Kr,
and (f) Kr/N2 within and below BCTZ (Bereiter, Kawamura, et al., 2018; Bereiter, Shackleton, et al., 2018). Dark gray
paneling indicates the depth range of the BCTZ, medium gray paneling marks the depth intervals where standard
deviations for all three indicator gases are elevated, and light gray paneling marks where only standard deviations of CO2
show significant elevation. Black bar indicates the YD1 depth interval.
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clathrates first form are more enriched in gases with higher bubble‐to‐clathrate permeation rates, even after
all surrounding bubbles have transformed to clathrates. Below the BCTZ, gas content slowly rehomogenizes
via molecular diffusion through the ice lattice, which can take tens of thousands of years (Bereiter et al.,
2009). The proposed mechanism would introduce systematic error within the BCTZ and random error to
samples below the BCTZ that decreases with depth, as gases have more time to rehomogenize and thinning
of layers enhances diffusion.

In the BCTZ (where bubbles and clathrates coexist), we observe systematic error in gases influenced by
clathrate layering. For CO2, this is due to the preferential sampling of bubbles over clathrates during gas
extraction (Stauffer & Tschumi, 2000). For O2/N2 and Ar/N2 (and likely Kr/N2, Xe/N2, and Xe/Kr), there
is preferential sampling of clathrates, because of gas loss from bubbles from core cracking during drilling
due to the brittle nature of ice in the BCTZ (Bender & Sowers, 1995; Kobashi et al., 2008). In contrast, for
samples just below the BCTZ (in fully clathrated ice), we expect random error associated with this clathrate
layering process, depending on whether the depth interval preferentially contains earlier or later‐formed
clathrates. Bereiter, Kawamura, et al. (2018) showed that Kr/N2, Xe/N2, and Xe/Kr are systematically frac-
tionated in the BCTZ at WD, and noble gas samples in this region were rejected from the MOT record.
However, spatial fractionation of Kr/N2, Xe/N2, and Xe/Kr beyond the BCTZ (and the associated random
error) was not considered, because samples were averaged over a length (~30 cm) that earlier studies suggest
should have homogenized the spatial variability caused by clathrate layering.

Lüthi et al. (2010) suggested that samples averaged over more than 10 cm provide reliable gas measurements.
However, the estimate of averaging length of Lüthi et al. (2010) came from a single ice core (EDML) from high‐
resolution CO2measurements. Unfortunately, we do not have high resolution gas data to estimate the required
averaging length at WD, but it is possible that the length scale of clathrate layering varies between sites. It is
important to note that the processes driving clathrate layering are not fully understood but that the limiting step
in bubble‐clathrate transformation is clathrate nucleation. Factors including grain size (Faria et al., 2010), bub-
ble size (Lipenkov, 2000), and ice chemistry (Ohno et al., 2010; Shimada&Hondoh, 2004) may influence clath-
rate nucleation.While a consensus has yet to be reached on the relative importance of these factors, they are all
either directly or indirectly related to ice impurity content. Ice chemistry data from the Younger Dryas depth
interval atWDsuggest layering of impurities on the order of tens of centimeters (Sigl et al., 2016, and supporting
information), so we find it plausible that the 30‐cm MOT samples may still be affected by this process.

Because little is known about the permeation rates of gases from bubbles to clathrates, we look to empirical evi-
dence to estimate the range of gas rehomogenization below the BCTZ. One indication that clathrates at a given
depth below the BCTZ have not fully rehomogenized is the elevation of CO2 pair differences with respect to
deeper/older samples for which rehomogenization has already occurred (Lüthi et al., 2010). In addition to
CO2, we consider pair differences in O2/N2 and Ar/N2 to identify the depth range of clathrate rehomogeniza-
tion. In order to identify the influenced depth range, we bin data of standard deviations for replicate samples
of WD CO2 (Marcott et al., 2014), O2/N2, and Ar/N2 (Seltzer et al., 2017) into 100‐m depth intervals and use
a Student t test to determine if the standard deviations within a given depth interval are greater (at the 95% con-
fidence level) than the deepest (2,500–2,600 m) bin. The standard deviations for all three gases are clearly ele-
vated within and just below the BCTZ (Figure 3). O2/N2 and Ar/N2 standard deviations show statistically
significant elevated values down to 2,000 m, while CO2 standard deviations are significantly higher down to
2,100 m. The WD Early Holocene data are within the depth range identified from all three gas measurements,
and the YD1 interval (2,034–2,094m) iswithin the range identified byCO2. If a larger bin size is used to identify
the range of affected data (e.g., 200m) so that there aremore data per bin, the range extends even deeper (2,200
m for O2/N2 and Ar/N2 and 2,400 m for CO2). From these observations, we find it plausible that the noble gas
ratios have still not fully homogenized at WD for the YD1 interval, and the spatial fractionation may still be in
effect for deeper MOT samples. This spatial fractionation may have randomly altered a few WD data points
within the Younger Dryas to create the observed two‐phase pattern of MOT.

If we compare the standard deviation of the CO2, O2/N2, and Ar/N2 replicate data within the YD1 depth
interval to that of the deepest bin (2,500–2,600 meters), we find that the standard deviations are on average
37%, 49%, and 53% elevated for CO2, O2/N2, and Ar/N2, respectively, within YD1, compared to the deepest
samples. To estimate the magnitude of the error in MOT associated with clathrate layering, we artificially
increase the reported WD MOT error within YD1 and run Monte Carlo simulations of the data to
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determine the increase inWDMOT error required so that the difference between the Taylor Glacier andWD
YD1 warming rates is no longer statistically significant at the 95% confidence level (supporting information).
We estimate a 35% increase in error due to clathrate layering within YD1. Note that we expect the error asso-
ciated with clathrate layering to increase closer to the BCTZ, where clathrates have had less time to rehomo-
genize, so uncertainties in the early Holocene MOT data may be even larger than those estimated for the
YD1 interval.

3.4. Reliability of WD Versus Taylor Glacier MOT Records

While we posit that clathrate layering in the WD record is the most likely cause for the disagreement
between the WD and Taylor Glacier records, there is not enough evidence to conclusively reject the
Younger Dryas in WD. However, there are several reasons that suggest the Taylor Glacier record is more
plausible than that of WD. The first is the agreement between MOT proxies. MOT records derived from
Kr/N2, Xe/N2, and Xe/Kr at Taylor Glacier show excellent agreement in overall trends and absolute MOT.
While WDKr/N2, Xe/N2, and Xe/KrMOT records are in general agreement, they showmore spread in abso-
lute MOT, and the duration and magnitude of the YD1 MOT change differ slightly between the three
proxies (Figure 1).

In addition, the Taylor Glacier record is more physically consistent with the expected response of MOT to
ocean circulation changes during the Younger Dryas inferred from models. Proxy evidence for ocean circu-
lation (McManus et al., 2004; Stieglitz et al., 2011) suggests that AMOC strength within the Younger Dryas
was weakened, but relatively stable. Model simulations under weakened (and stable) AMOC conditions
show sustained MOT warming (Galbraith et al., 2016; Pedro et al., 2018), which is consistent with the
Taylor Glacier record. The modeled rates of MOT warming are about 40% lower than the Taylor Glacier
record; however, these simulations were run under conditions that are more consistent with Heinrich
Stadial 1 and are consistent with MOT warming rates found for Heinrich Stadial 1 (Bereiter, Shackleton,
et al., 2018).

Interestingly, proxy evidence would suggest that the rate of MOT warming during Heinrich Stadial 1 may
exceed that of the Younger Dryas, because the relative magnitude of AMOC reduction is greater during
the former (McManus et al., 2004). However, the scaling between the AMOC reduction and rate of ocean
warming has not (to our knowledge) been rigorously explored. In addition, the higher obliquity during
the Younger Dryas (relative to Heinrich Stadial 1) results in higher annually averaged insolation at high lati-
tudes, where deep‐water formation occurs (Bereiter, Shackleton, et al., 2018). The increased insolation at
these sites during the Younger Dryas may help to explain the higher rate of MOT warming found compared
to Heinrich Stadial 1.

4. Conclusions

We suggest that a previously identified form of fractionation of CO2 in ice cores may also affect Kr/N2,
Xe/N2, and Xe/Kr measurements in ice samples below the BCTZ, adding random noise to the derived atmo-
spheric noble gas ratios. While sample rejection within the BCTZ has been previously recommended for
MOT records, we caution in interpreting high‐frequency variations in samples several hundred meters
below the BCTZ and suggest that the uncertainty in MOT within this depth region may be significantly lar-
ger than the analytical uncertainty of the method. Future work must be done to find more direct evidence of
this mechanism and to better understand its effect on Kr/N2, Xe/N2, and Xe/Kr.

Considering these findings, we posit that the Taylor Glacier record shows a more plausible scenario of MOT
warming over the Younger Dryas than that of WD and that MOT and Antarctic temperature covaried
through the entirety of the last deglaciation. The rate of MOT warming (1.1 ± 0.2 °C/kyr) from the Taylor
Glacier record is significantly smaller than that fromWD, but the Younger Dryas MOT warming rate found
for this study is still about 70% greater than that of Heinrich Stadial 1 and 40% greater than estimates of
ocean heat uptake from 1955 to 2010 (Levitus et al., 2012). The differing rates of ocean heat uptake between
the Younger Dryas and Heinrich Stadial 1 are not fully understood, though models have successfully cap-
tured the rate of ocean warming during Heinrich Stadial 1. Future simulations of the Younger Dryas may
serve as a valuable opportunity to distinguish between internal (ocean circulation) and external (greenhouse
gas and insolation) controls on ocean heat uptake.
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