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Abstract 

 

The food web for the sand flats at Palmyra Atoll 

 

by 

 

John Peter McLaughlin 

 

This dissertation describes and analyzes the Palmyra Atoll sand flat food web. This food 

web is unique in measuring the body sizes, densities, and feeding links for all life stages of 

free-living and parasitic metazoans. Chapter 1 puts the research in context by reviewing the 

roles of parasites in marine food webs. Chapter 2 starts by describing the physical attributes 

(sediment particle size, water depth, temperature) of the 35 random sampling sites. It then 

lists the 22 sampling methods used to estimate the body size and abundance of 670 life stages 

comprising 275 species. The resulting free-living community contains represents 195 free-

living species across 18 phyla, and 389 separate life stages. Chapter 2 then describes how 

parasites were measured from >2500 hosts collected and dissected to reveal a parasite 

community with 80 species across 9 phyla, and 281 separate life stages.  Chapter 3 then uses 

stomach contents, field observations, literature, and natural history to estimate 24,575 trophic 

interactions, ontogenetic development and parasite transmission pathways among the 670 

nodes in Chapter 2. Chapter 4 compares the Palmyra sand flat food web with the only 

published food web described in similar detail, the west coast estuary food web. In both 

systems, parasites make contributions to richness, abundance, and biomass comparable to 



 ix

free-living consumer groups, such as birds. Further, in both systems parasites dominate 

network structure in ways that free-living consumers cannot. These results suggest that 

parasites make general and important contributions to ecosystem structure. Our 

understanding of food webs is incomplete without them. 
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1 Parasites in marine food webs 

1.1 Introduction 

“Marine disease” is often used as an epithet to express disdain about parasites that 

infect fisheries species, species we cherish, or ourselves. As such, “Marine disease ecology” 

is often a crisis discipline like conservation and veterinary science (or their offspring, 

conservation medicine), whose aim is to understand and solve problems created by marine 

diseases. In contrast, the marine parasitology discipline sits within the scientific tradition that 

observes species, whether they be whales or whale lice, with a more dispassionate, neutral 

eye characterizing them as neither good nor bad. This impartial view, taken in this chapter, 

can provide context to marine disease ecologists, better equipping them to find and solve 

infectious disease problems by providing a broader perspective on the role parasites play in 

marine ecosystems. Here, we use food webs as a conceptual lens to focus on the question: 

What can we learn from parasites in marine ecosystems? 

From sperm whales eating giant squid, to abyssal sponges filtering organic debris, 

marine biology is often about food webs. In 1966, Robert Paine changed marine ecology 

forever when he applied a food-web perspective to the rocky intertidal (Lafferty and 

Suchanek 2016; Paine 1966), and ecologists have since assembled food webs for more than 

100 marine systems (Fig. 1). By tracing energy flow through ecosystems, food webs function 

like ecological maps illustrating potential indirect effects, bottom-up processes, trophic 

cascades and resource competition. One way marine ecologists describe and compare food 

webs is with network theory (Dunne et al. 2004). Networks have two elements: nodes 

(sometimes called vertices) and links (sometimes called edges). In food webs, nodes are 
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often species or life-stages (e.g. larvae or adults), whereas the links connect who eats whom. 

Ecologists analyze food webs to measure ecological complexity and estimate ecological 

stability. Food web complexity is often defined as species richness and the link distribution 

among those species (May 1973). Food webs, like any complex system, have additional 

structure. When plotted, some are short and squat, others are tall and thin, some are dense, 

and others sparse. Such structure, or topology, can be described with graph theory tools, just 

as shipping routes have topologies that distinguish busy ports from smaller harbors. One of 

the best-cited marine food webs describes 203 links between 29 nodes in the Benguela 

current fishery (Yodzis 1998). On average, the shortest distance between nodes in marine 

webs is just a few links, suggesting that marine systems are less modular than terrestrial 

systems and perturbations such as over-fishing could spread rapidly through the entire system 

(Dunne et al. 2004). As for the Benguela web, most marine food webs omit parasites (Fig. 

1.1). With parasites absent from a major conceptual framework, it is no wonder that 

ecologists have often ignored parasites.   
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Figure 1. 1 Marine food webs. Most marine food webs do not include parasites. 

 

1.2 Parasites Affect Food Webs 

Whether or not ecologists think about them, parasites might be the most abundant 

organisms in the oceans, and parasitism the most common lifestyle. Viruses, described as “a 

piece of bad news wrapped up in a protein” (Medawar and Medawar 1985), rule the sea at 10 

billion per liter (Fuhrman 1999). Most viruses are bacteriophages, with about 1023 viral 

infections occurring in the ocean every second (Suttle 2007). But all marine species have 

viruses and other specialist parasites (Dobson et al. 2008; Théodoridès 1989), suggesting that 

there could be more parasitic than free-living species (Windsor 1998). Although we don’t 

know their exact contribution to biodiversity, when researchers have counted them, parasites 
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increase taxonomic and functional diversity in marine systems. In estuaries, over a third of 

metazoan species are parasites (Hechinger, Ryan F. et al. 2011). This contribution to 

taxonomic diversity by parasites extends beyond species counts. Some marine taxa are all 

(e.g. Orthonectida) or mostly (e.g. Platyhelminthes) parasitic, and including parasites adds 

six new phyla to estuarine webs. In addition to extending taxonomic diversity, parasites bring 

unique consumer strategies (e.g. parasitoidism, castration) to food webs. Furthermore, 

parasites balance how consumer-resource body size ratios change with trophic level (Lafferty 

and Kuris 2002). For instance, even as gray whales ingest tiny benthic amphipods from the 

muddy seafloor, tiny parasitic amphipods (whale lice) eat the whale’s flaking skin. 

Pervasiveness and uniqueness makes it possible for parasites to affect marine food web 

structure and dynamics.  

Comparing food-web topology with and without parasites helps illustrate how 

parasites affect food-web structure. Almost all published marine food webs that include 

parasites are from temperate estuaries (Dunne, J. A. et al. 2013). In these food webs, 

parasites increase complexity (Dunne, J. A. et al. 2013), dominating food web structure by 

participating in 75% of trophic interactions (Lafferty, Dobson, et al. 2006), links that would 

not be accounted for if parasites were omitted. Including parasites increases food web 

complexity and nestedness, and trophic level resolution, challenging our current ideas about 

food web structure (Dunne, J. A. et al. 2013; Lafferty, Dobson, et al. 2006) (Fig. 1.2). 

Although we now understand that by omitting parasites ecologists have underestimated food 

web complexity, we are just beginning to investigate the implications of this for energy flow 

through marine systems. 
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Figure 1. 2 Palmyra food webs. Parasites alter structure and energy flow in the Palmyra 
marine food web. Spheres indicate species (green, basal; blue, free-living; red, parasites), 
grey lines indicated feeding links and vertical height indicates trophic level. 

 

As consumers, parasites take energy from hosts for their own maintenance, growth, 

reproduction and metabolism. Therefore, their direct effects should be proportional to their 

biomass in marine ecosystems. In estuarine food webs, parasite have the same biomass 

density as similar-sized free-living species, after accounting for trophic level (Hechinger, R. 

et al. 2011). This suggests that as a group, energetic contributions from parasites are 

proportional to those from other consumer groups. Indeed, parasite biomass exceeds bird 

biomass, the top predators in estuaries (Kuris et al. 2008). But parasites alter energy flow 

beyond the host tissue they eat. Hosts can try to avoid infection, often at some cost 

(Weinstein et al. 2018). Infection risk alone forces hosts to invest in immune systems (Moret 
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and Schmid-Hempel 2000). An important innate immune response was discovered in a 

marine organism, when in 1882, Ilya Mechnikov observed phagocytes attacking a splinter he 

had introduced into a sea star larva (Tauber 2003). Furthermore, hosts must repair and 

replace tissue damaged by parasites (Allen and Wynn 2011), a cost that does not occur in 

predator-prey interactions. For these reasons, the impact that parasites have on food webs 

extends far beyond their biomass density, just as some predators affect prey populations as 

much through the fear they induce as by the individuals they eat.  

 

1.2.1 Parasites as consumers 

Most marine ecosystems build on the photosynthesis done by phytoplankton, 

macroalgae, or algae-coral symbioses (Falkowski et al. 2004), and these primary producers 

are also subject to infection. Viruses, which infect nearly all phytoplankton (Fuhrman 1999), 

can end phytoplankton blooms (Bratbak et al. 1993) and density-dependent dynamics have 

been demonstrated in the lab (Brussaard 2004). Parasites also infect benthic macrophytes, 

sometimes with dramatic effect. Between 1931-34 a wasting disease (caused by Labyrinthula 

zosterae) reduced eel grass populations by 90% in the temperate Atlantic (Muehlstein 1989). 

Caribbean elkhorn coral (Acropora palmata) have been decimated by white pox disease 

caused by an enterobacterium (Serratia marscens) associated with the human gut (Patterson 

et al. 2002). Elkhorn coral declines have simplified reef structure, increased algal cover and 

altered invertebrate communities (Aronson and Precht 2001; Gladfelter 1982). Although 

parasites can act as herbivores in marine systems, they can also benefit phytoplankton by 

releasing iron from lysed bacteria (Poorvin et al. 2004). Further, viral infection can increase 

nitrogen uptake and diversify the nitrogen sources an infected cell can use (Monier et al. 
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2017). Finally, viruses can increase phytoplankton diversity by infecting fast growing 

species, preventing them from displacing slower growing, but more resistant species (Suttle 

2007). Thus, frequency-dependent infectious processes can reduce or increase marine 

primary producers, whereas density-dependent process can and regulate their populations. 

Although marine plants can host parasites, parasites can also indirectly affect marine 

plants through trophic cascades. For instance, sea urchins can increase to densities that 

defoliate temperate kelp beds, creating urchin barrens. However, urchins can also reach 

densities that support disease outbreaks, which, in turn decimate urchin populations. Kelp 

then increases after diseases knock urchin populations back below densities that support 

disease (Behrens and Lafferty 2004; Scheibling 1986). Although sea urchin epizootics can 

protect kelp forests, they can harm coral reefs. Perhaps the best example of marine disease 

altering a food web, was in 1983-84 when an unknown pathogen in the Caribbean reduced 

urchin (Diadema antillarium) densities by 94% (Lessios 1988). This disease-driven urchin 

die-off led to a phase shift from coral to macroalgae (Dudgeon et al. 2010) that has yet to 

recover. Consumer mass mortalities caused by disease can have destabilizing impacts that 

extend beyond indirect effects on primary producers. 

Marine diseases sometimes cause mass mortalities in other echinoderms, altering the 

important roles they play in marine systems (Uthicke et al. 2009). The latest example 

occurred between 2013-15, when Sea Star Wasting Disease (hypothesized as a virus) 

devastated sea star populations along the West coast of North America, from Baja California 

to Alaska (Montecino-Latorre et al. 2016). The dominant sea star in rocky intertidal habitats, 

Pisaster ochraecus, experienced population declines between 59-84% (Menge et al. 2016) 

depressing predation rates on the foundational mussel species, Mytilus californianus (Menge 
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et al. 2016). A similar mass mortality occurred in 1978, when an unknown pathogen 

devastated Heliaster kubinji populations in the Gulf of California (Dungan et al. 1982). This 

keystone predator was the “most common, obvious and widely distributed shore starfish in 

the Gulf” (Steinbeck and Ricketts 2009), but as late as 2008 the sun star population had not 

recovered at most sites (Herrero-Pérezrul 2008). What led to these various echinoderm mass 

mortalities remains a mystery, though warming or pathogen introductions are speculated to 

be involved (Harvell et al. 1999). Other invertebrate mass mortalities are better understood. 

In 1994, the largest remaining black abalone populations experienced mass mortalities in 

Southern California (Lafferty and Kuris 1993) due to a novel Rickettsial pathogen that 

increases in lethality with temperature and in infectivity with temperature variation (Ben-

Horin et al. 2013). The black abalone population has since failed to recover and the intertidal 

encrusting community underwent a phase shift (Miner et al. 2006). Marine mass mortalities 

illustrate how parasite-driven trophic cascades (Buck and Ripple 2017) can shift marine 

ecosystems states in directions that people value or regret. 

If sea urchin and sea star diseases can alter food webs, the same might apply to 

marine mammal parasites. Toxoplasma gondii is an apicomplexan parasite that can only 

reproduce in cats, but can infect and kill marine mammals. For instance, Toxoplasma gondii 

may increase the mortality rate of sea otters (Enhydra lutris) which are exposed to this 

terrestrial parasite by freshwater runoff. About half of all sea otters test positive for T. gondii, 

and dead sea otters are twice as likely to test positive (Miller et al. 2002). Otters are keystone 

predators (Estes and Palmisano 1974), suggesting otter diseases could destabilize kelp 

forests. Morbilliviruses infect marine mammals worldwide (Van Bressem et al. 2001) and 

epizootics are triggered when naive populations are exposed to new viruses. Such outbreaks 
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have caused mass die-offs in pinniped (Härkönen et al. 2006) and cetacean populations 

around the world (Guardo et al. 2005). These marine mammal mass mortalities could have 

indirect effects, because many marine mammals feed at high trophic levels and have high 

caloric requirements (Hammill and Stenson 2000).  

 

1.2.2 Parasites as resources 

Incorporating parasites into food webs leads to an unusual question: What eats 

parasites? The answer is many things; parasites are prey in over half the interactions in 

estuarine food webs. Some predators eat parasites on purpose, such as topsmelt that pick lice 

off gray whales in the whales’ estuarine breeding grounds (Swartz 1981), and cleaning 

symbioses are common in marine ecosystems (Grutter 1999). Many parasites have free-living 

infective stages that might be food for planktivores (Johnson et al. 2010). Indeed, planktonic 

viruses are important resources for heterotrophic flagellates (González and Suttle 1993), and 

zoospores produced by fungi that infect algae can be important resources for small grazers 

and filter feeders in coastal systems (Gleason et al. 2011). Trematodes in marine snails 

produce many free-swimming cercariae (Thieltges et al. 2008), with annual biomass 

production in temperate estuaries exceeding 20 kg per hectare (Kuris et al. 2008). These free-

swimming cercariae are eaten by filter feeding invertebrates and fishes (Hechinger, Ryan F. 

et al. 2011; Kaplan et al. 2009). These and other free-living infective stages could be an 

abundant energy source for low-trophic level consumers in marine systems. 

More often, predators eat parasites by accident. In estuaries, tertiary consumers like 

crabs (predating snails), fish and birds (predating invertebrates and fish) eat parasites by 

eating their hosts. When a host is eaten, most parasites (71%) suffer concurrent predation and 
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are digested, creating a signature triangular link motif between a parasite, its host, and the 

host’s predator. Concurrent predation accounts for 31% of all links in estuary food webs. At 

Palmyra Atoll, blacktip reef sharks (Carcharhinidae melanopterus) eat three mullet 

(Mugilidae) species, hosting over a dozen parasites that cannot use blacktip sharks as hosts 

(McLaughlin et al. in press). But some parasites can survive their host being eaten by 

infecting the predator in a process known as trophic transmission (Lafferty and Shaw 2013). 

These parasites use predation to transmit from a prey host to a predator host. Forty-eight 

percent of Palmyra Atoll trematodes require their intermediate fish host to be eaten by a Jack 

(Carangidae) to complete their lifecycle. Including parasites as potential as resources reveals 

one unexpected way that parasites affect food-web structure (Dunne, J. A. et al. 2013). 

Although traveling through food webs can be treacherous, some parasites bend food 

webs to their advantage. The trematode Euhaplorchis californiensis encysts on the killifish 

brain (Shaw et al. 2010) and tilts the odds of trophic transmission in its favor. To complete 

its life cycle, the trematode must navigate the estuarine food web to get from the fish’s brain 

to a bird’s gut. Encysted on the fish’s brain, the parasite manipulates monoamine 

neurotransmitters (Shaw et al. 2009), causing its fish host to exhibit behaviors that increase 

bird predation (Lafferty and Morris 1996). This behavior manipulation (Kuris 2003; Lafferty 

and Shaw 2013) and may be common in marine systems (Poulin 2010), potentially altering 

the amount and direction of energy flow through marine systems. 

Putting parasites in food webs shows how parasite diversity and host use adds to food 

web complexity. Furthermore, substantial parasite biomass alters energy flows. More 

relevant to marine biologists might be the extent to which parasites affect free-living species. 

Parasites infect plants and compete with herbivores. Parasites infect herbivores, releasing 
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plants from grazing. Parasites infect predators, leading to trophic cascades, and even 

manipulating prey susceptibility to predators. Parasites even contribute to food webs when 

they release edible infectious stages. These are all reasons that ecologists should consider 

parasites in food webs. But to what extent should marine disease ecologists consider food 

webs when trying to understand marine diseases? Next, we consider how food webs create 

challenges and opportunities for parasites, and how changes to food webs can increase or 

decrease infectious diseases. 

 

1.3 Food webs affect parasites 

Food webs create opportunities for parasites. The more free-living species in a food 

web, and the more links among these free-living species, the more parasite species a food 

web should support (Hechinger and Lafferty 2005). In other words, parasite diversity should 

respond to food-web complexity (Lafferty 1997). Complexity in marine food webs is related 

to substrate type (Bellwood and Hughes 2001) structural heterogeneity (Gratwicke and 

Speight 2005), latitude (Bellwood and Hughes 2001; Roy et al. 1998), and physiological 

stressors (Sanders 1968). Comparing parasites across food webs that differ in integrity can 

reveal the relationship between food-web complexity and parasite community richness.  

Parasites appear to be more sensitive to disturbance than their hosts. Frequent or 

strong disturbance tends to simplify food webs (Connell 1978), so sites protected from 

disturbance have more parasites (Lafferty 1997), and parasites are often the last thing to 

recover after disturbance. In a restored estuary, the full suite of trematode species infecting 

the California horn snail (Cerithideopsis californica) took six years to recover (Huspeni and 

Lafferty 2004). A similar pattern was observed in the Yucatan Peninsula following a 
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hurricane (Aguirre-Macedo et al. 2011). Snails returned to a coastal lagoon 6 months after 

the hurricane, but it took another 8 months for any trematodes to be found in the snails. It 

took four years for the trematode community to recover (Aguirre-Macedo et al. 2011). 

Similarly, fish parasites in the Gulf of Mexico took over two years to recover from Hurricane 

Katrina (Overstreet 2007). Parasites are often the first species lost and the to return following 

perturbations to food webs. 

Invasions have less predictable effects on parasites than hurricanes because they don’t 

always simplify food webs. Sometimes invaders can bring their parasites with them. For 

instance, adding two fish species to a sub-Arctic lake created opportunities for five new 

parasites to complete their life cycles (Amundsen et al. 2013). But when invaders displace 

native hosts, native parasites can suffer. The invasive Japanese mud snail (Batillari cumingi) 

can exclude native snails (C. californica) from California estuaries (Torchin et al. 2005). C. 

californica is the only first-intermediate host for about 20 native trematode species, so when 

the snail is excluded, all its parasites go locally extinct (Torchin et al. 2005). Many invaders 

leave their parasites behind, and in places like San Francisco Bay where most free-living 

species are exotic, parasites are rare (Foster 2012; Torchin et al. 2003). Thus, how parasites 

respond to species invasions is tied to how invaders affect free-living diversity.  

 Parasites don’t all respond the same to food web changes (Strona and Lafferty 2016; 

Wood and Lafferty 2015). Generalist parasites are more “robust” to changes in food web 

structure, whereas specialists and parasites with complex life cycles that function as serial 

specialists are sensitive  to host extinctions (Lafferty and Kuris 2009; Rudolf and Lafferty 

2011; Strona and Lafferty 2016; Wood and Lafferty 2015). Because natural disturbances can 

be common, parasites evolve to specialize on dependable hosts (Strona and Lafferty 2016). 
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Although parasite diversity declines with free-living species loss and food web 

simplification, the details are important. If some hosts benefit from food web simplification, 

their parasites will have increased opportunities for transmission. Furthermore, it remains 

difficult to predict how parasite prevalence and intensity will respond to food-web 

complexity. On balance, complex marine food webs with intact trophic structure (such as 

protected reefs) should promote diverse parasite faunas, whereas simplified or diffuse webs 

(such as disturbed or over-fished environments) should be dominated by generalist parasites, 

or by parasites that infect weedy species (with lower parasite diversity overall).  

 

1.3.1 Fishing affects parasites 

One way to observe how food webs affect marine disease is to contrast parasites in 

fished and unfished areas. Fishing removes larger, older, higher trophic level species first, so 

the system becomes dominated by smaller, younger, lower trophic level organisms, with a 

trend toward food-web simplification (Pauly et al. 1998). So, we expect fishing to reduce 

some parasite populations. Within marine protected areas in Chile, parasites are more 

ecologically abundant (per square meter) than in fished areas, but only one parasite species 

was more abundant per host, suggesting that fishing can reduce parasite populations by 

reducing host populations (habitat and resources for parasites) (Wood et al. 2013). This 

process was supported by a meta-analysis that found parasite abundance in fished species 

was lower in fished areas than unfished areas (Wood and Lafferty 2015). Fishing effects 

might percolate through complex life cycles. Differences in top predator abundance probably 

explain why parasite diversity was higher in reef fish at unfished Palmyra Atoll than at fished 

Kiritimati Atoll (Lafferty, K. et al. 2008). Wood et al. (2014) investigated this idea further by 
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contrasting parasite abundance at fished vs. unfished sites spanning six Line Islands, finding 

that trophically transmitted parasites decreased with increased fishing pressure, whereas 

parasites with direct life cycles increased. Thus, parasite responses to changes in food-web 

structure can vary with parasite life cycle, host specificity, and transmission strategy (Wood 

et al. 2014). Although fishing can decrease parasitism in direct response to host loss, other 

parasites might increase in abundance due to compensatory increases in host abundance. 

Cascading indirect effects between fishing and parasites are also possible, especially 

when fishing predators increases prey abundance. We might expect increased directly 

transmitted parasites in prey at fished populations, and this has been reported in urchin 

populations released from predation by the spiny lobster fishery in Southern California 

(Behrens and Lafferty 2004). By the same mechanism, fishing grazers might increase disease 

in plants. Sea turtle declines are a hypothesized factor contributing to sea grass wasting 

disease. Low water flow and accumulated detritus facilitate infection in dense sea-grass beds, 

conditions that occur when sea grasses are not cropped short by grazing sea turtles (Jackson 

et al. 2001). Indirect effects are easier to predict for simple food chains. In more complex 

food webs, predictions are harder to make. For instance, fishing removes sea urchin predators 

from Galapagos reefs, so it was predicted that the denser urchin populations in fished areas 

would be infected with more parasitic snails. However, sea urchin predators also eat 

mutualistic crabs, which eat the parasitic snails. Parasitic snails were therefore less abundant 

at fished sites because fishing indirectly increased crab predation pressure on parasitic snails 

(Sonnenholzner et al. 2011). Greater knowledge of food-web complexity and parasite life-

cycle complexity are necessary to predict how particular parasites will respond to food-web 

changes. With change, there will be winners and losers. 
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1.3.2 Host quality affects parasites 

In terms of host selection, a parasite’s success can depend on whether one considers it 

as a parasite species or an individual. An individual parasite’s growth and fecundity depends 

on host quality. Well-fed hosts may have surplus energetic stores that parasites can tap, 

especially when parasites have high energetic demands or strong within host competition 

(Mideo 2009). Trematodes in starved snails produce fewer and poorer quality transmission 

stages (Seppälä et al. 2008), acanthocephalans in amphipods grow to smaller size when hosts 

are food deprived (Labaude et al. 2015), and parasitic mussel larvae grow larger in fish hosts 

that are better in condition (Österling and Larsen 2013). Well-fed hosts grow more and can 

attain a larger size, which leads to more habitat for parasites (Lo et al. 1998). Resource 

quality can also influence host behavior and alter parasite transmission rates. Zooplankton 

fed low-quality food grow to smaller sizes, have lower size-corrected feeding rates, and thus 

encounter fewer parasite spores (Penczykowski et al. 2014). Large zooplankton offered low 

quality food also reduce their feeding rate, so they encounter fewer parasite spores as well 

(Penczykowski et al. 2014). Well-fed hosts also live longer, which increases parasite life 

spans and lifetime reproduction (Penczykowski et al. 2014). Infected snails survive better 

when they are well fed, so their trematode parasites also live longer (Krist et al. 2004). 

Although host quality should benefit individual parasite success, food-web dynamics might 

lead to tradeoffs between host quality and abundance. Predators, for instance, might keep 

prey at low densities, thereby preventing crowding, and improving prey as hosts for parasites, 

while also making these hosts harder to contact. Further, it is not clear that a well-fed host is 

a better host if malnourished hosts have weakened immune response (Cohen, Beaver, et al. 
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1993). However, crowded phytoplankton (Tillmann et al. 1999) and snails (Krist et al. 2004) 

are not necessarily better hosts, perhaps because benefits gained from weakened immune 

defenses are outweighed by consequent limited resources for parasites and decreased host life 

span (Tillmann et al. 1999). The relative importance of host density and host quality for 

parasite fitness remains understudied and is likely to be context-dependent. The host is both 

habitat and food for its parasites, so having a well-fed host is like living in a house with a 

well-stocked refrigerator and a good landlord (or maybe living with your parents). When it’s 

time to move, it might be easier to find a vacant run-down property, but would you want to 

live there?  

Putting parasites into food webs helps us to better understand marine diseases. 

Changes to food webs alter host diversity, abundance and quality, and this has corresponding 

effects on parasite diversity, transmission success, and fitness. As food webs change, whether 

from fishing, climate disruption, or species invasions, we can expect parasite communities to 

change as well. Such changes might not be welcome. They could introduce new parasite 

species to which native hosts have little evolutionary history, or they could lead to parasite 

extinctions that add to biodiversity loss, and change the relative abundance of hosts. A theory 

for how food webs affect parasites will help us better understand why a particular infectious 

disease has become problematic, give insight into how restoration might reduce a costly 

marine disease, or let us use parasites as indicators to follow changes to food web 

complexity. Combining dispassionate parasitology with food webs can help marine disease 

ecologists identify how parasites may threaten or contribute to marine biodiversity. 
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1.4 Summary 

1. Complex life histories enmesh parasites into marine food webs differently than free-

living consumers. 

2. Parasites make substantial and unique contributions to marine food web structure and 

dynamics. 

3. Parasites make contributions to energy flow in marine systems (both as consumers 

and resources) that are on par with their free-living counterparts. 

4. Infectious processes can directly or indirectly structure marine communities. 

5. Parasites can be impacted by perturbations to food webs (such as overfishing). 

6. Understanding parasites in marine food webs will help us better conserve and manage 

marine ecosystems. 
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2 Body size, density, biomass, and life stages of organisms from the 

intertidal sand flats at Palmyra Atoll 

 

2.1. Introduction 

 We measured the diversity, body sizes and densities for the unicellular and 

multicellular eukaryotic organisms living in and on the 3.14 ha of intertidal sand flats at 

Palmyra Atoll. The survey has several noteworthy inclusions: (1) parasites (infectious agents) 

on the same empirical footing as their free-living hosts, (2) biomass-density information, (3) 

ontogenetic stages for each species, and (4) body-size estimates for each of these stages. The 

dataset contains 670 life stages, comprising 275 species from 51 orders and 22 phyla. The 

data set also includes descriptive information on the habitat affiliations, consumer strategy, 

life style and taxonomy of all individual life stages. Most estimates of species life stages 

were collected using consistent sampling methods scaled to abundance and body size. We 

also include quantitative descriptions of the physical habitat at each of 35 focal sampling 

sites. We provide detailed metadata for all of our species and habitat data. We plan to use 

these data to address several general questions about ecological communities, and encourage 

potential collaborators to contact us.  In particular, we will combine these data with a partner 

dataset on feeding interactions to create a detailed food web for the Palmyra Atoll sand flat 

community. 
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2.2 Research Motivation 

Quantitative information on species abundances and body sizes has advanced our 

understanding of community structure and dynamics, but few systems have been 

comprehensively surveyed (e.g. see Berlow et al. 2009; Brose, U et al. 2006; Cohen et al. 

2003; Cohen et al. 2009; Woodward et al. 2005). The biotic survey data are part of a broader 

effort to build a detailed food web for Palmyra Atoll. Food webs are ecological maps that 

describe feeding links between consumers and resources. We focused our efforts on the 

intertidal sand flats because they contain a trophically intact community (with large biomass 

of top-predators) in a tropical system that is qualitatively different from most published food 

webs that include parasites (i.e. Amundsen et al. 2009; Hechinger, Ryan F. et al. 2011; 

Mouritsen et al. 2011; Preston et al. 2012; Thieltges et al. 2011; Zander et al. 2011). We 

included parasites as nodes because they can affect food web structure (Dunne, J. A. et al. 

2013; Lafferty, Dobson, et al. 2006). We separated species by life stage because ontogenetic 

diet shifts and growth are common between stages (Rudolf and Lafferty 2011). We measured 

body size because this can give information about energetics and inform predator-prey 

relationships (Woodward et al. 2005). We include descriptions of the physical habitat, as 

these can affect food web structure (Gibert and DeLong 2014; Rezende et al. 2009). In 

addition to using these data to build and analyze a food web, we plan to investigate 

hypotheses about community structure that require body-size abundance information. 

Collected between, Aug-2009 and Dec-2015, these data also contribute a biological and 

physical inventory of a large habitat within the Palmyra Atoll National Wildlife Refuge and 

throughout the tropical Pacific. We are making these data public to foster additional analyses 

and seek collaborations. 
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2.3 System description  

We completed a biotic survey for the intertidal sand flats of Palmyra Atoll. Located 

1680 km south of Hawai’i, Palmyra is a remote and relatively pristine coral atoll. Palmyra 

was designated as US National Wildlife Refuge in 2001 and incorporated into the Pacific 

Remote Islands Marine National Monument in 2014. During WWII, several thousand 

servicemen were stationed at Palmyra, but the atoll was abandoned after the war (Collen et 

al. 2009). Palmyra has never supported permanent human habitation or a commercial or 

subsistence fishery. As a result, the marine food web is intact, with a high apex-predator 

biomass (DeMartini et al. 2008; Sandin et al. 2008; Stevenson et al. 2007). Previous studies 

indicate the prevalence, intensity of infection and richness of parasites of reef-fish is higher 

at Palmyra compared to an inhabited island in the same island chain (Lafferty, K. et al. 2008; 

Wood et al. 2015). 

  Comprising 3.14 hectares, the intertidal sand flats of Palmyra Atoll are habitat for a 

rich species assemblage and provide a diverse set of ecosystem services. At Palmyra, 275 

species comprising 51 orders from 22 phyla call the sand flats home. Globally, intertidal flats 

provide shoreline protection, nursery habitat for fish, foraging habitat for migratory birds, 

and support subsistence and recreational fisheries (Beaumont et al. 2007). For example, 

recreational fishing on intertidal sand flats habitats generates more than $140 million dollars 

in annual revenue for the Bahamas, alone (Fedler 2010). Like coastal zones around the 

world, intertidal sand flats face a number of anthropogenic threats, including nutrient 

pollution, increasing turbidity, overfishing, rising sea-levels, habitat loss through 

development, erosion and invasive species (Brown and McLachlan 2002; Davenport and 
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Davenport 2006; Defeo et al. 2009; Lafferty and Kuris 2009; Murray et al. 2015). Intertidal 

sand flats are an important and understudied system, both at Palmyra Atoll and globally. 

 

2.3.1 Habitat information 

To estimate species abundances at Palmyra Atoll we multiplied density estimates by 

total available habitat. To delineate the habitat area available, we used Google Earth to create 

polygons around the intertidal soft-bottom habitats of the flats, whereas we mapped rocky 

intertidal habitat during on-the ground surveys before creating polygons in Google Earth. To 

calculate their area, all polygons were exported as a KMZ file to 

http://www.zonums.com/online/kmlArea/. The rocky intertidal is 0.005 percent of the total 

habitat area, while the sand flats comprise the remaining 0.995 percent. Some of our 

sampling methods were restricted to one habitat or the other. To accommodate this difference 

we present both corrected and uncorrected estimates of density and biomass density. 

Uncorrected estimates reflect the density of organisms in a habitat. Corrected estimates 

reflect density or organisms in the system. Corrected estimates were generated by 

multiplying uncorrected estimates by the fraction of total system area that habitat comprises.  

 

2.3.2 Site characterization 

We focused our sampling effort at 35 randomly selected sites on the intertidal sand 

flats. To select these sites, we mapped potential sampling areas by placing a grid of points, 

set 100 m apart, across the entire Atoll. We then retained only those points that fell within the 

sand flat habitat designated above. We then randomly selected 35 of those points as sampling 

sites (Figure 2.1). At each site, we sampled the density and sizes of organisms. Sampling 
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within each site was restricted to the soft-sediment sand flats. At each focal site, we 

performed the following sampling: walking transects (high and low tide), snorkel transects, 

quadrats and cores (Figure 2.2 details the sampling orientation at focal sites). To minimize 

disturbance, cores and quadrats were collected after the other sampling methods had been 

completed at a site. Samples were pooled by method at each site so variance in our density 

estimates uses sites as replicates. We supplemented our sampling at these focal sites with 

additional sites or methods as necessary (e.g., when a taxon was not adequately measured by 

the methods above). 
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Figure 2. 1 A map of Palmyra, the intertidal sand flats and a locations of the 35 focal 
sampling sites. 
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Figure 2. 2 An illustration of the sampling protocol undertaken at each focal sampling 
site. 

 

For intertidal species, solar irradiation increases primary productivity and temperature.  

Environmental temperature can affect consumer-resource interactions because ectotherm 

metabolism (most species on the sand flats) increase with temperature. To characterize 

temperature and light intensity, we placed loggers (Onset HOBO 

Pendant® Temperature/Light 64K Data Logger) which measure temperature and lux at the 35 

focal sites between 19 October 2009 to 10 November 2009. We assumed this time window 

would be sufficient to characterize the sites due to minor seasonality in light and temperature 

at Palmyra Atoll. Each logger took light and temperature measurements every 12 minutes, 
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(except for the logger at site Banjoes.1, which recorded every 17 minutes), resulting in 2613 

measurements for all sites with the following exceptions: 

• Banjoes.1 had 1845 measurements due to the measurement interval  

• Cookies.2 logger was bitten and destroyed 

• Sixes.4 and Down.East.2 were partially buried and excluded from light intensity 

estimates 

Some loggers recorded unrealistically high temperatures and light intensities, so we 

capped the highest temperature at 43 °C and lux at 120,000. To match the water depth at each 

site to each temperature/light record, we fit a spline to the times and heights of the high and 

low Palmyra Atoll tides for that time period.  From this spline, we estimated the site- water 

level for each time point associated with a temperature/light record. We then subtracted the 

site elevation from the tidal height to estimate water depth for each light/intensity 

measurement. 

Temperature and light intensity varied over the day, less so from day to day, and even 

less so from site to site. The mean temperature across sites was 31.2 °C (variance across site 

means = .036 °C). The lower a site’s elevation (e.g., sites that tended to be deep), the higher 

was its mean and variance in temperature. Temporal variation in temperature within a site 

was higher than among sites (average within site variance = 8.8 °C), and mostly increased 

with hourly light intensity and depth. At a particular depth, temperature decreased with the 

incoming tide at night and increased with the incoming tide during the day. To characterize 

the light environment at a site with a metric meaningful for primary productivity, we 

converted lux values over time to the average Daily Light Integral (DLI) (or integrated 

PPFD). Average DLI was 13.79 moles of photons per m2 per day (S.D. = 6.0) and tended to 
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increase with site elevation due to light attenuation during submergence. These readings 

show that most of our sample sites were both warmer and brighter relative to the conditions 

experienced by most marine species. 

To estimate the densities of phytoplankton, zooplankton and fishes, we needed 

accurate estimates of average water volume present on the sand flats as well as the fraction of 

time that water was above certain minimum depths required for animals of different body 

sizes. To do this, we compared changes in water depth at 35 focal sites to tidal changes 

predicted at the Honolulu Reference Station (1612340) over one year. Tides in Hawaii are 

reported in Imperial units, which we report here for convenience, but convert to metric when 

estimating biomass densities. The offsets for Palmyra Atoll relative to the Honolulu 

Reference Station are (A) Time: (high tide: 79 minutes, low tide: 73 minutes), (B) Height: 

(high tide: +0.60 feet, low tide: -0.20 feet). There is no offset recommended for mean sea 

level. The observed difference at 25 inches on the reference tide stick at Palmyra Station (9-

Sep-2009) and sea level height in Honolulu was 0.95 inches, which was due to coarse 

measurement and about 0.5 inches of wind chop. We calculated the site elevation by 

comparing depth at the site with the depth at the Palmyra Station reference tide stick. One 

observer measured depth at a site while a second observer simultaneously noted tidal height 

at the station tide stick (elevation is tidal height minus depth). Measured depths were 

standardized to 25 inches on tide stick and corrected relative to this baseline. We then 

calculated the water depth (presented in cm) at each site for every high and low tide over the 

course of a year. Any negative water depths were set to zero. The height and time estimates 

for the high and low tides over the course of one year (2009) were generated from 1334 

estimates of water depth at each of 35 sites. From these, we estimated average water volume 
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on the flats by multiplying the average depth across sites by the area of the sand flats. We 

were also able to estimate the fraction of time that there was sufficient water to meet the 

various fish species minimum depth requirements or to exclude various shorebird species.  

  

2.4 Species quantification  

Biotic surveys usually organize species as irreducible units. Here, we disaggregate 

species into their component life stages. Broken into broad groups based on their trophic 

level and lifestyle, species are presented in the following order: (i) detrital, (ii) autotroph (iii) 

mixotroph (iv), free-living consumer, (v) commensal consumers and (vi) infectious 

consumers. Body size is the most common axis along which food web matrices are organized 

(Brose, Ulrich, Williams, Richard J., et al. 2006; Loeuille and Loreau 2005; Otto et al. 2007; 

Rezende et al. 2009; Zook et al. 2011), and within these broad groups species are ordered 

according to the mass of their adult stage. Below, we provide additional background 

information on the species.  

We sought to create a comprehensive list, from viruses to vertebrates, of the species 

and life stages that occur on the intertidal sand flats at Palmyra Atoll. Below, we describe the 

methods used to quantify the density, body size and biomass density of these organisms. In 

some instances, we also sought to augment our direct observations (species life stages) with 

logical inference. For example, we had direct observations of the prevalence of bucephalid 

trematode parthenitae in clams, but could not identify them to species because of their larval 

status. But, we were able identify bucephalid trematode metacercariae in fish to species. 

These metacercariae in fish must have come from the parthenitae in clams. So to match the 

stages we partitioned the prevalence of bucephalid trematode parthenitae in clams according 
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to the relative abundance of bucephalid trematode metacercariae species in fish. This 

approach to assembly creates a more accurate and realistic species list, as opposed to the 

other options: creating unreal life cycle gaps or artificially inflating species richness. Some 

organisms have life stages that we know occur on the flats but we were not able to identify to 

species because quantification would have been impractical, our sampling methods did not 

capture them, or because larvae could not be identified to species. To fill these gaps, we 

quantified life stages indirectly when possible (e.g. trematode cercaria). We apportioned the 

observed biomass of trochophore larva, crab megalopae, crab zoeae, shrimp zoeae, copepod 

nauplii and fish larvae to separate species according to the relative abundance or biomass of 

adult species. This results in the larvae of species within these groups having identical body 

sizes but different densities, this prior to being used in any abundance to body size 

comparisons, these larvae should be reaggregated (e.g. all trochophore larvae). When we 

could not quantify a life stage (e.g. helminth eggs, oncomiracidia, miracidia) we omitted it 

from density and biomass estimates, but assigned it a body-size estimate. While, these life 

stages may not be major contributors to species’ biomasses, they may be important 

contributors to food web structure and population dynamics. Including species for which we 

have no abundance information is helpful because it permits including those species in 

topological analyses of network structure. Our methods for estimating the species properties 

are described below. 

Most entries in the species list for the Palmyra Atoll intertidal sand flats represent life 

stages. This level and evenness of resolution is higher than most biotic surveys. We identified 

organisms to the lowest taxon possible, although we sometimes used a morphospecies 

designation for difficult to ID organisms in the “Common.Name” column. Although, these 
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species are not identified to the lowest possible taxonomic category, they do represent 

distinct species life stages, and are accompanied by all the taxonomic information we could 

provide.  

We have provided several different classification schemes for species in order to 

facilitate analyses and interpretation. For example, each species has a unique code that can be 

used to aggregate life stages. We have also provided an “Organismal.Group” designation for 

each node to make interpretation easier. The columns: "Feeding type" (i.e. feeding, non-

feeding, autotrophic), "Lifestyle" (e.g., free-living, infectious, commensal), "Consumer 

Strategy" (e.g., predator, macroparasite, pathogen, detritivore), and "Native" or “Non-native” 

status all provide additional information. The “Residence” column describes the general 

vagility of individual life stages on seasonal time scales; the “Mobility” column does this at a 

daily time scale. These columns allow us to consider the expected proportion of a species’ 

interactions that are captured in the system. For example, several shorebirds undergo 

seasonal migrations between Palmyra and breeding grounds in Alaska. 

 

2.5 General sampling methods: Free-living 

Our general sampling methods were designed to survey free-living organisms based 

on their habitat (e.g., planktonic, benthic) and body size, regardless of taxonomic affiliation. 

These general methods are detailed directly below. Some free-living Taxa required special 

treatment. 
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2.5.1 Bird surveys 

To estimate shorebird density on the flats, we conducted nine bird surveys between 

June 2012 and December 2015. During each bird survey, all flats habitat was exhaustively 

surveyed at low tide by 2-3 experienced birders (using binoculars and spotting scopes), each 

of whom followed different prescribed routes and observation points chosen to allow 

observation of the entire flat while minimizing double counting. Each observer carried aerial 

photographs of the flats. If a bird was observed interacting with the habitat (e.g., roosting, 

feeding, but not high-altitude flyovers), its position was marked on the photograph in the 

field. Bird locations were transferred from paper photos, to Google Earth, from which we 

derived a latitude and longitude for each observation. These georeferenced observations 

could then be analyzed in a GIS program, allowing us to estimate, for example, average bird 

densities in each flat or within a radius from a sampling site. 

 

2.5.2 Fish transects 

We used walking transects to estimate the densities and body sizes of non-gobioid 

fishes and large benthic invertebrates (e.g. sea cucumbers and mitre snails). Walking 

transects were conducted by a single trained observer at medium to high tide. To better 

sample fish we supplemented our 35 focal sites, with 36 randomly chosen sites for walking 

transects only (71 total). Two 50 m x 2 m band transects were conducted at all 71 sites during 

the day and the 35 focal sites at night. We identified and counted all fish and large benthic 

invertebrates in a moving window, estimating their total length to the nearest centimeter (we 

also estimated sea cucumber body width). The size of the moving observation window was 

determined by local visibility. Counts were pooled across transects at each site, giving us a 
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sample area of 100 m2 at each site. The section on “Taxon-specific methods: Free-living” 

below has more information on the density, body size and biomass density estimation of non-

gobioid fish. By combining density and body size estimates from walking transects with our 

estimates of water depth (above) we were able to estimate the biomass density of non-

gobioid fish species present on the Palmyra sand flats. 

 

2.5.3 Shrimp transects 

We used specialized methods to estimate the densities of large burrowing shrimp. 

Ghost shrimp were difficult to sample because their burrows can extend several meters into 

the substrate, and adult ghost shrimp consistently evaded our sample cores. There is typically 

one adult per burrow (Kinoshita 2002) and previous surveys have used burrow counts to 

estimate ghost shrimp density (Ohshima 1967; Tamaki 1988). The ghost shrimp on Palmyra 

produce burrows with several incurrent openings, visible as depressions surrounding a central 

excurrent opening, a volcano-shaped mound. To estimate adult ghost shrimp density at the 35 

focal sites, we used transects to count the volcano-shaped excurrent mounds. The shrimp 

transects were identical to our walking transects (100 m2 sampled per site) except that they 

were performed at low tide. Adult ghost shrimp body size was estimated from specimens 

collected for parasitological analysis. We estimated ghost shrimp biomass density by 

combining density estimates from shrimp transects with body size estimates from our 

parasitological collections. 

The zebra mantis shrimp (Lysiosquillina maculata), which is the largest mantis shrimp in 

the world, is present on the Palmyra sand flats. These shrimp create U-shaped burrows, 

whose openings are uniformly circular and flush with the surrounding substrate. We 
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confirmed that breeding pairs occupy a single burrow with collections for parasitological 

analysis. We estimated zebra mantis shrimp density along shrimp transects, estimating one 

shrimp per burrow opening. We estimated adult zebra mantis shrimp body size separately, 

with specimens collected for parasitological analysis. We estimated zebra mantis shrimp 

biomass density by combining density estimates from walking transects with body size 

estimates from our parasitological collections. 

 

2.5.4 Snorkel transects 

We estimated the density and body size of goby species on snorkel transects. During 

daytime medium to high tides, we conducted two 25 m x 1 m snorkel transects at the 35 focal 

sites. As a single observer moved along the transect, all gobies within a moving window 

ahead of the observer were identified, counted and had their total lengths estimated to the 

nearest centimeter. Goby counts were pooled across both transects at a site, giving an 

effective sample area of 50 m2 at each site. We used length-weight relationships derived from 

our parasitological dissections and from the literature to estimate the mass of each individual 

observed in the field. We combined our estimates of mass and density to estimate goby 

biomass density on the flats. 

 

2.5.5 Quadrats 

We estimated the density and body size of medium-sized, near-surface benthic 

organisms (e.g. common snails, acorn worms and small stomatopods) using circular quadrats 

that were 0.25 m2 in area. Eight quadrats were placed at the 35 focal sites during medium to 

high tides. While snorkeling, an observer carefully flushed away the top 3 cm of sediment by 



 33

slowly waving their hand above the substrate, which revealed soft-bodied organisms, such 

acorn worms, without damaging them. All organisms in a quadrat were identified and 

counted. Counts were pooled across quadrats within a site, giving a pooled sample effort of 2 

m2 per site. At each site, for each species, we measured the length and width of the first ten 

individuals encountered. We used length-weight relationships derived from our dissections to 

estimate the mass of each individual measured. Species biomass density estimates for each 

site were based on the average individual mass estimates multiplied by our density estimates.  

 

2.5.6 20cm Substrate cores 

To estimate the density and body size of large benthic infauna (e.g. fiddler crabs and 

clams), we sank four 20 cm diameter (314.2 cm2) cores at each site. Cores were sunk quickly 

to 50 cm or until the coral matrix prevented further penetration. All sediment from the cores 

was passed through nested sieves (5 mm followed by 1 mm pore size) and all organisms 

collected were counted and identified. Organism counts were pooled across cores within 

sites, giving a sample area of 1256.6 cm2 at each site. We also measured the body size (e.g. 

usually total length or carapace width for crabs) of the first ten individuals encountered of 

each species encountered at a site. We used length-weight relationships derived from our 

dissections to estimate the mass of each individual measured. Species biomass density 

estimates for each site were based on the mean mass estimates multiplied by our density 

estimates. 
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2.5.7 10 cm Substrate cores 

To estimate the density and body size of medium-sized benthic infauna (e.g. 

polychaete worms, phoronids, sand anemones), we sank four 10 cm diameter cores (79 cm2) 

at each site, alongside our larger 20 cm cores. Cores were sunk quickly to 50 cm or until the 

coral matrix prevented further penetration. All sediment was passed through nested sieves (5 

mm followed by 1 mm pore size) and all organisms collected were counted and identified. 

Organism counts were pooled across cores within a site, for a total sample area of 314 cm2 

per site. For each species, we also measured the body size (length and width) of the first ten 

individuals encountered at each site. We used length-weight relationships derived from our 

dissections to estimate the mass of each individual measured. Species biomass density 

estimates for each site were based on mean mass estimates multiplied our density estimates. 

 

2.5.8 3 cm Substrate cores 

To estimate the density and body size of small benthic infauna (e.g. parchment tube 

worms, and small sea cucumbers), we sank four 3 cm diameter cores (7.07 cm2) to a depth of 

5 cm at each site. All the sediment from each site was aggregated (total sample area of 28.28 

cm2 at each site) and passed through nested sieves: 1 mm, 0.5 mm, 0.125 mm and 0.063 mm. 

We then weighed each sediment size class and removed a sample for processing, which we 

also weighed. The ratio between these sediment weights was used to estimate the density of 

organisms identified and counted in the subsample. Samples were processed under a confocal 

microscope. Because no organisms were recovered from sediment 0.063 mm - 0.125 mm in 

size we stopped processing this sediment size class after 15 sites. We measured the body size 

(total length, width and height) of each individual encountered. Organisms were assigned to a 
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shape, which was used to estimate their biovolume. An individual organism’s mass was 

estimated by multiplying its biovolume by a tissue density of 1.1 g/mL (Peters 1986). These 

mass estimates were then multiplied by morphospecies density estimates to generate biomass 

density estimates for each site. 

 

2.5.9 Diatom cores 

To estimate the body size and density of substrate surface-dwelling diatoms, we 

collected and processed samples after (Byers 2000). We used modified 3 cc syringes to take 

sediment cores with an area of 64 mm2 and a depth of 4 mm giving a total volume of 151 

mm3 (accounting for the displacement of the plunger) in each sample. At the 35 focal sites 

we took 4 samples totaling an area of 256 mm2. We immediately preserved the aggregated 

samples in 6% Lugol’s solution and packed them on ice for transport back to the lab. We 

diluted samples with 1 mL filtered water and stirred samples for 1 min to uniformly suspend 

all sediment particles. After this, we pipetted off 350 µL of solution and placed it on an 18 

mm cover slip. We estimated the shape and body size (length, width, and height) of all 

diatoms counted along two haphazardly selected transects at 100x magnification, which gave 

us a field of view of 2 mm on each transect and a combined transect area of 72 mm2. To 

estimate diatom density at each site, we summed our counts across transects and multiplied 

them by the ratio of total transect area to coverslip area (4.5). We then multiplied this by the 

ratio of the volume examined (350 µL) to the volume of the entire sample (1.604 mL), which 

was 4.58. Diatoms were separated into 17 volume based logarithmic size classes or 

morphospecies. The shape (ellipsoid, disc, etc.) of each morphospecies was used to estimate 

the biovolume (Sun and Liu 2003) of each of its individual members. The mass of each 
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individual was estimated by multiplying its biovolume by a tissue density of 1.1 g/mL (Peters 

1986). These individual mass estimates were then multiplied by morphospecies density 

estimates to generate biomass density estimates for each site. 

 

2.5.10 Protozoan cores 

We estimated the size and density of individual benthic protozoa in the same manner 

as diatoms, using identical but separate syringes and a different container. We collected four 

samples at 34 focal sites (one site was lost). We did not add Lugol’s solution to the protozoan 

samples after collection. With these exceptions, Protozoa cores were processed in the same 

manner as diatom cores. We estimated individual protozoan mass by multiplying their 

biovolume by a tissue density of 1.1 g/mL (Peters 1986). Protozoans were separated into 

volume based logarithmic size classes or morphospecies. Multiplying individual mass 

estimates by observed densities observed allowed us to generate biomass density estimates 

for 21 protozoan morphospecies at each site. 

 

2.5.11 Zooplankton 

To estimate zooplankton density and body size, we collected zooplankton in a 63 μm 

mesh net with a 30cm diameter mouth. Using this net, we sampled 2.85 m3 of water in each 

sample. Zooplankton samples were collected at each site, one during the day (35 sites) and 

one at night (33 sites). We estimated planar (m2) zooplankton densities by multiplying mean 

volumetric zooplankton densities (stratified by sample time) by the average water volume on 

the flats (see “Water Volume Estimates” above) and then dividing by the total area of the 

flats. We calculated degrees of freedom using the Satterthwaite approximation (Satterthwaite 
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1946; Thompson 1992) for stratified samples, which can generate fractional degrees of 

freedom. Zooplankton samples were fixed in buffered 10% formalin. All zooplankton 

samples were sorted to morphospecies (e.g. large harpacticoid copepod, chaetognath) or 

stage (e.g. nauplius, zoea, megalops, trochophore, etc.) and counted. A subset of individuals 

from each morphospecies was measured (length, width, height) and converted to a 

biovolume. Each individual’s mass was estimated by multiplying its biovolume by a tissue 

density of 1.1 g/mL (Peters 1986). We multiplied mean mass of zooplankton morphospecies 

by their density to estimate biomass density at each site. 

 

2.5.12 Phytoplankton 

To estimate phytoplankton biomass density, at each of the 35 focal sites, on two 

different occasions we collected 1 L of seawater from three depths: surface, mid-water, 

bottom. All 70 samples were collected during the day at high tide and placed in the dark, on 

ice and transported back to the lab for processing. While total water depth was often less than 

a meter (samples generally separated by less than 0.5 m) to account for the variation in 

chlorophyll a concentrations with depth, we amalgamated all samples for each site. Prior to 

analysis, samples were gently shaken to uniformity, and 120mL of water was extracted and 

passed through each Type A/E glass fiber filter (Whatman). Filters were put in the dark and 

frozen. Samples were processed and analyzed for chlorophylls a, b, c1 + c2 and 

phaeopigments according to Arar and Collins (1997) on a Thermo Scientific GENESYS 20 

spectrophotometer. We were able to successfully extract chlorophyll a from 39 of the 70 

samples. Both chlorophyll b and phaeopigments were also present in the samples so we used 

Lorenzen’s monochromatic equation to correct our estimates of chlorophyll a concentration 
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(Arar and Collins 1997). We estimated the biomass density for two size classes of 

phytoplankton: microphytoplankton and nanophytoplankton. Relationships between 

chlorophyll a concentrations and phytoplankton density and biovolume were estimated using 

equations from Jiménez et al. (1987). Biomass density was estimated by converting 

multiplying biovolume by a tissue density of 1.1 g/mL (Peters 1986).  

 

2.5.13 Rocky intertidal zone 

To estimate the density of organisms associated with rocky intertidal zone that was 

sometimes adjacent to the sand flats, we conducted transects at 28 randomly chosen locations 

in the rocky intertidal habitat. Transects extended the length (height) of the habitat and 

transect width ranged between 10 cm and 50 cm, depending on gastropod density (narrower 

transects where snails were denser). All organisms within the transect boundaries were 

collected and brought back to lab for identification and counting. The first 20 individuals of 

each species on each transect were measured and weighed. We derived biomass density 

estimates for each transect from transect specific mean body-size measurements multiplied 

by our density estimates. The biomass density for the habitat was the mean of these transect 

biomass densities.  

  

2.6 Taxon-specific methods: Free-living 

Our general methods were designed to survey organisms based on their habitat (e.g. 

planktonic, benthic) and body size regardless of taxonomic affiliation. However, density 

estimates for some Taxa required either the development of additional, specific sampling 

methods or special statistical treatment. We detail those cases for free-living taxa below. 



 39

 

2.6.1 Birds 

Our density estimates for birds reflect the mean bird counts across our surveys, 

adjusted by habitat availability. We only included bird species that interact with the habitat, 

and not birds that simply overfly the habitat (e.g. boobies and frigatebirds). At Palmyra, 

shorebirds forage on the flats during the daytime low tides. For each bird species we 

estimated the maximum water depth in which they will forage (Helmers 1992). We then used 

tidal information to determine the fraction of daylight hours during which water levels were 

shallower than these depths. This estimate of habitat availability was then used to correct the 

observed bird densities. In other words, to estimate average bird densities we discounted the 

densities observed at low tide by the fraction of daylight hours when the flats were 

sufficiently shallow for birds to feed. Body size information for birds was obtained from the 

literature or from birds measured at Palmyra. Multiplying these corrected densities by our 

body-size estimates allowed us to estimate the mean biomass density on the flats at Palmyra. 

 

2.6.2 Non-gobioid fish 

We estimated the individual mass of each non-gobioid fish observed by developing 

length-weight relationships. First, non-gobioid fish species were broken into size classes 

based on age at maturity, ontogenetic diet shifts, shared consumers and field observations of 

population structure and spatial distributions at Palmyra Atoll. We estimated the length (total 

length or fork length) of each of the 6926 individual fish observed on our walking transects. 

We converted length estimates into mass estimates using slopes (a) and intercepts (b) derived 

from species-specific linear regressions of log length and log weight from 648 individual fish 
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collected from the intertidal sand flats. For some species, the number of individuals collected 

at Palmyra was inadequate for regression and length-weight relationships for these species 

were collected from FishBase (Froese and Pauly 2012) and other sources.  

Most fish leave the flats when they are exposed at low tide. To estimate average fish 

densities at Palmyra, we determined the minimum depth requirements of each fish species 

size class and then adjusted our observations by the fraction of time during which the habitat 

met those requirements. We used walking transects to estimate the densities of fish species 

by size classes. We estimated the minimum water depth required for each species size class 

based on the shallowest water level at which it was observed on a fish transect. Transects that 

did not meet the minimum depth required for a fish species size class were removed from the 

density estimates for that fish size class. For example, if the water level was too shallow for 

an adult surgeonfish in two of seven transects, only the five transects with sufficient water 

were used to estimate fish density. Next, we integrated fish densities at each site across the 

tidal series by calculating the fraction of time water depth exceeded the minimum 

requirements for a species size class at each site over the course of a year (see “Water 

Volume Estimates”). We corrected site-specific density estimates by multiplying them by the 

fraction of time with suitable water depth. For instance, if the water level was suitable for an 

adult surgeonfish 70% of the time, we multiplied fish density (accounting for water depth as 

described above) by 0.7. Density estimates were computed using the “survey” package in R 

(Lumley 2016) and stratified across sample time (Night & Day). Degrees of freedom were 

calculated using the Satterthwaite approximation (Satterthwaite 1946; Thompson 1992) for 

stratified samples, which can generate fractional degrees of freedom. A few species size 

classes were estimated in a different manner due to lack of data. We used these density and 
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mass estimates to generate biomass density estimates for each non-gobioid fish species size 

class. 

 

2.7 General sampling methods: Parasite 

Our general methods were designed to survey parasitic organisms based on their 

host’s lifestyle and their abundance in those hosts. Those general parasitological methods are 

detailed immediately below. The density estimates for some parasite taxa required additional 

treatments, which are explained in the “Taxon-specific methods: Parasite” section 

 

2.7.1 Fish parasitology 

For parasitological analyses, we captured a subset of fishes from various flats, using 

IACUC approved methods. Fish were processed so that every tissue type was examined for 

parasites as described in Kuris et al. (2008); Shaw et al. (2005); Vidal-Martínez et al. (2012); 

and Vidal-Martínez et al. (2017). All eukaryote parasites were identified to species and 

counted. A subset of parasites from each species were measured (total length, maximum 

width, maximum height), assigned a shape and converted to a biovolume. A parasite’s mass 

was estimated by multiplying its biovolume by a tissue density of 1.1 g/mL (Peters 1986).  

To estimate parasite abundances in non-gobioid fish, we applied a host-length to parasite-

count regression from the dissected fish to the size-frequency abundance data described 

above. This allowed us to estimate the number of parasites in each non-gobioid fish that we 

counted but did not dissect. We evaluated the six models below by  regressing  each against 

fish total length and then fish weight (12 total models of parasite distribution), for each of the 

413 individual parasites interactions (Zuur et al. 2009): 
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• Generalized linear model with Poisson distribution 

• Generalized linear model with negative binomial distribution 

• Zero-adjusted model with Poisson distribution 

• Zero-adjusted model with negative binomial distribution 

• Zero-inflated model with Poisson distribution 

• Zero-inflated model with negative binomial distribution 

We ordered models by AIC and selected the one that best fit the observed data, not 

necessarily the model with the lowest AIC. For some fish-parasite interactions there was 

insufficient data for any models to converge. In these cases, we combined host-parasite 

records by fish family, parasite group (e.g. nematode, trematode) and parasite stage (e.g. 

larval, adult) and evaluated the same 12 models. To estimate parasite biomass density, we 

summed modeled projections of parasite abundances in each fish at each site and then 

multiplied these by the mean mass of each parasite species stage. 

To estimate parasite abundances in gobies, we first separated each goby species into 

adult and juvenile size classes. We then multiplied the size-frequency abundance data for 

each goby species-size class by the prevalence and mean intensity of each parasite species in 

that goby species-size class. 

 

2.7.2 Invertebrate parasitology 

To estimate parasite abundances in invertebrates we collected, euthanized and 

processed invertebrate hosts for parasites, then modeled their abundances. Each parasite 

encountered was identified and counted. A subset of parasites from each species was 

measured (total length, maximum width, maximum height), assigned a shape and converted 
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to a biovolume. The parasite mass was estimated by multiplying their biovolume by a tissue 

density of 1.1 g/mL (Peters 1986). Biomass estimates were derived from the mean species 

mass. Unless noted otherwise, parasite abundances in invertebrate hosts were estimated using 

prevalence and mean intensity. To estimate parasite biomass density we summed modeled 

projections of parasite abundances in each invertebrate, at each site and then multiplied these 

by the mean mass of each parasite species stage. 

 

2.7.3 Bird parasitology 

We were not able to collect birds for parasitological analyses, so we had to infer the 

identity of their parasites and model their abundances. Our efforts focused on endohelminths, 

which are important for trophic structure (Hechinger and Lafferty 2005). While ectoparasites 

(e.g. lice and mites) are likely present on the birds, we did not include them because we not 

able to infer their identities and we were not able to find any literature for ectoparasites on 

Palmyra bird species. We inferred the identities of endohelminthes in birds from trophic 

interactions and personal observations. For example, USFWS provided us some estimates of 

Philophthalmus sp.1 on Bristle-thighed Curlews (Numenius tahitiensis). With the exception 

of Philophthalmus sp.1, bird parasite body sizes were obtained from the literature. To 

estimate parasite intensities and prevalences we compared Palmyra birds to ecologically 

analogous birds (Table: Bird.Parasitology), for which we were able to obtain records of 

parasite body size and intensity (K. Sheehan, pers. comm.). We estimated the average 

biomass for each parasite group differentiated by within-host habitat (e.g. gut trematodes, 

blood trematodes) of each bird analog. The biomass of each group was then converted into a 

fraction of host biomass, which we applied to our Palmyra bird analogs. When multiple 
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species of trematodes occurred in a host species and shared the same habitat within that host 

species (e.g. gut) we partitioned the total trematode biomass within that host according to the 

relative biomass of the trematode species in their molluscan first-intermediate hosts at 

Palmyra. Parasite abundances in birds were estimated as the difference between average 

estimated biomass of a parasite species and its average body size. Thus, we were able to infer 

endohelminth biomass density in birds at Palmyra.  

 

2.8 Taxon-specific methods: Parasite 

Our general methods were designed to survey organisms based on their habitat (e.g. 

planktonic, benthic) and body size regardless of taxonomic affiliation. However, density 

estimates for some Taxa required either the implementation of additional, specific sampling 

methods or special statistical treatment. We detail those cases for parasitic taxa below. 

 

2.8.1 Clonal trematodes in molluscs 

Infections by philophthalmid and schistosomatid trematodes were easily identified 

and their prevalences calculated. We pooled all unidentified trematode infections by 

molluscan host and partitioned the prevalence according to the relative density (g/ha) of the 

metacercarial stage of each unaccounted for trematode species. Trematodes exhibit clonal 

growth in their molluscan first-intermediate hosts. We estimated the mass of individual 

infections of these clonal parasite colonies by estimating the fraction of host tissue they had 

replaced and multiplying this fraction by the total mass of the molluscan host’s soft tissue. 

Single species infections by clonal trematodes are generally the rule (Kuris 1990; Kuris and 

Lafferty 1994; Lafferty et al. 1994), and the lack of observed double infections at Palmyra 
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Atoll confirm this. Hence, we estimated total clonal trematode biomass densities as a product 

of host densities, infection prevalence, and mean individual mass.  

 

2.8.2 Free-swimming trematode cercaria 

Cercariae are free-living trematode infectious stages that are shed into the water 

column. Cercariae were not preserved well in our sampling methods, and thus we were not 

able to estimate their densities from our zooplankton samples. We obtained the body size and 

mean daily cercariae shed rate from Thieltges et al. (2008). Assuming they live for 24 hours, 

cercariae density estimates were obtained by multiplying mean daily shed rates by the 

density of the clonal trematodes that give rise to them. We estimated cercarial biomass 

density by multiplying these mean densities by body size estimates for individual cercaria 

obtained from the literature. 

 

2.8.3 Adult flatworms in elasmobranchs 

Cestode parasites are important in the sand flats habitat, but we were not permitted to 

sample two of their elasmobranch hosts: the sicklefin lemon shark, Negaprion acutidens and 

the spotted eagle ray, Aetobatus ocellatus. The most common elasmobranch is the black tip 

reef shark, Carcharhinus melanopterus, which we collected and dissected as per the fish 

parasite protocol described above. The sicklefin lemon shark was too rare to sample, so we 

based its cestodes on the intensities observed in C. melanopterus, (we assumed these species 

had sufficient diet overlap to share trophically transmitted prey). We were also not able to 

collect the spotted eagle ray for parasitological analysis so we used published records to infer 

the identity and intensities of cestodes that we assume they acquired by eating benthic 
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invertebrate hosts. For example, the most important second intermediate host at Palmyra is 

the conch Conomurex luhuanus, which is infected with larval cestodes similar to those found 

in eagle rays elsewhere. Monogenean parasites have been reported from eagle rays elsewhere 

(White et al. 2010), but we did not include them because there are few monogeneans present 

in other fishes at Palmyra (Vidal-Martínez et al. 2017). We estimated adult cestode biomass 

density in these two elasmobranch hosts as the product of their host’s density, parasite 

abundance and parasite body size. The contribution of these adult cestodes to total parasite 

biomass is relatively inconsequential but they are important components of network 

structure. 

 

2.8.4 Parasites in zooplankton 

We did not perform systematic parasitological analyses on zooplanktonic organisms. 

However, some of the observed parasite species (particularly nematode and cestodes) belong 

to taxa known to use zooplanktonic organisms as their first intermediate hosts (Marcogliese 

1995). Parasite host identity and prevalence estimates were gathered from the literature for 

various parasite groups (i.e. nematodes and cestodes) (Marcogliese 1995). If the prevalence 

of a parasite group described more than one parasite species (e.g. cestodes in calanoid 

copepods) that prevalence was apportioned according to the relative biomass of the 

succeeding stages of the parasites it described. Parasite density estimates were obtained by 

multiplying host density by parasite prevalence and mean parasite intensity. Parasite biomass 

density estimates were obtained by multiplying parasite density by mean parasite body mass. 
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2.9 Limitations and potential enhancements 

Although the biotic survey for the intertidal sand flats at Palmyra Atoll is well 

resolved, we welcome input from colleagues allowing its improvement and will update the 

dataset if we acquire substantial new data. We also recommend contacting the authors to 

make sure no updates are pending. Below, we outline data limitations, as well as some 

prospects for their improvement. 

 

2.9.1 Species inclusion 

The data’s primary limitation is the under-representation and omission of some 

groups. Ectoparasites of birds are omitted, as are symbiotic bacteria for all species. 

Meiofauna, which includes the smallest free-living metazoans (e.g. nematodes, turbellarians 

and loraciferans) are underrepresented. We plan to systematically incorporate meiofauna in 

the near future. The parasites of meiofauna organisms are also poorly known. The taxonomic 

diversity of unicellular organisms (both free-living and symbiotic) is also underrepresented, 

with most aggregated by size classes. The free-living copepod fauna is divided into six 

morphospecies that might represent species aggregations. The parasites of zooplankton are 

also not well known and none were directly observed in our samples. Because of this, we 

only included parasite life stages in the zooplankton that were necessary to complete the 

lifecycles of parasites that were directly observed in other hosts. We also did not quantify the 

parasites of the phytoplankton (e.g. parasitic dinoflagellates, chytrids or perkinsids). Users of 

this data base should be aware of these limitations when drawing conclusions about certain 

groups or subwebs. 
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2.9.2 Body size  

Body size is a common descriptive measure in ecology and organizing metric food 

web analyses (Brose, Ulrich, Jonsson, Tomas, et al. 2006; Cohen et al. 2003; Woodward et 

al. 2005). Our body size estimates span 9 (total length) and 22 (mass) orders of magnitude. 

The magnitude of this variation should diminish the influence of sampling error on the 

approximation for any node in most analyses. There are two kinds of body size estimates that 

can be improved. First, any organism for which we used a proxy could benefit from direct 

measurement. Second, we used size classes to distinguish morphospecies for some 

unicellular organisms (e.g. benthic diatoms, ciliates, phytoplankton). It would be beneficial to 

confirm that these size-based (total length) groups accurately describe discrete 

morphospecies.  

 

2.9.3 Density 

There are two broad groups whose density estimates can be improved. The first group 

consists of organisms whose density we estimated indirectly. This group includes adult 

organisms for which we used proxies and the larval stages of many free-living organisms and 

trematode cercariae. Density estimates for larval stages could be obtained empirically (Kuris 

et al. 2008; Thieltges et al. 2008). The second broad group consists of organisms whose 

densities we did not quantify. These organisms can be broken into two types: (1) life stages 

that we know are present, (2) life stages for species that are likely present but which we did 

not adequately describe. The first type includes helminth-associated life stages like eggs, 

miracidia and oncomiracida. Helminth egg production and survivability of other infective 

stages can vary and will need to be quantified on a specific basis (Kearn 1986; Llewellyn 
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1963; Poulin 1997). The second unquantified group includes species that may have been 

aggregated into morphospecies types: mostly unicellular groups like phytoplankton, diatoms 

and ciliates. These groups must be disaggregated and described before the densities of their 

constituent species can be estimated. All the groups mentioned above require more attention 

to elevate them to the same empirical footing as more consistently well-documented groups 

like birds and commercially important fishes and invertebrates. 

 

 

 

 

 

 

 

 

 

3 A food web including infectious agents and life stages for the intertidal 

sand flats at Palmyra Atoll 

 

3.1 Introduction 

We assembled an interaction network for the unicellular and multicellular eukaryotic 

organisms living in and on the 3.14 ha of intertidal sand flats at Palmyra Atoll. The food web 

has several noteworthy inclusions: (1) parasites (infectious agents) on the same empirical 
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footing as their free-living hosts, (2) life stage information for both free-living and infectious 

organisms, (3) 22 types of interactions. The nodes in the network are 670 life stages, 

comprising 275 species from 51 orders and 22 phyla. There are 24,575 individual links 

describing the interactions between these nodes. The data set compliments a partner data set 

describing a quantitative survey of these same organisms, together they create a detailed 

description the Palmyra Atoll sand flat community. We plan to use these data to address 

several general questions about ecological communities, and encourage potential 

collaborators to contact us.  

Although most food webs only include consumer-resource interactions between free-

living organisms, such as predator-prey and herbivore-plant interactions (Lafferty, Dobson, 

et al. 2006), we recognize 22 possible interaction types (described here and below), that are 

differentiated by consumer strategy (Lafferty et al. 2015; Lafferty and Kuris 2002). Non-

trophic interactions, such as commensalism and transmission, that are informative about 

system structure and dynamics are also included. Due to ontogenetic shifts in diet or host, 

trophic interactions must be delineated by life-history stages, in addition to species. The 

number of possible interactions in a network is the square of the number of nodes in the 

network being evaluated. There are 448,900 possible interactions in the Palmyra sand flats 

network, which makes the direct observation of all interactions unfeasible. To subsidize our 

directly observations (i.e. field observation, gut content analysis, parasitological analysis) we 

also included interactions in the literature, expert opinion and the known interactions of 

similar species (Hechinger, Ryan F. et al. 2011; Polis 1991).  

The network is organized along two niche axes. First, the network is ordered according to 

broad consumer strategy. Species are separated into broad groups based on their trophic level 
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and lifestyle, and in the following order: (i) detrital, (ii) autotroph (iii) mixotroph (iv), free-

living consumer, (v) commensal consumers and (vi) infectious consumers. Body size is the 

most common axis along which food web matrices are organized (Brose, Ulrich, Williams, 

Richard J., et al. 2006; Loeuille and Loreau 2005; Otto et al. 2007; Rezende et al. 2009; 

Zook et al. 2011), and within these broad groups species are ordered according to the mass of 

their adult stage (or next largest stage if the adult stage is not present in the habitat). 

For explanatory purposes, below we have broken our network into four subwebs 

(quadrants). Quadrants are organized around organism lifestyle (free-living or parasitic) and 

trophic role (consumer or resource) (Lafferty, Dobson, et al. 2006). This representation of 

consumers is symmetrical, all organisms have the potential to consume one another. Free-

living organisms are consumers and resources in the first quadrant, while parasites are 

consumers and resources in the fourth quadrant. Parasites are consumers and hosts are 

resources in the second quadrant, and predators are consumers while parasites are resources 

in the third quadrant. Thus, including information about link type provides an additional 

framework for organizing food web structure. 

 

3.2 Predator-prey interactions 

The predator-prey quadrant is comprised of interactions between free-living 

organisms. In this quadrant, the link types we recognize are predation, social predation, 

micropredation, facultative micropredation, detritivory, scavenging, decomposition, 

predation on free-living non-feeding stage, and acquisition of dissolved nutrients. Predator-

prey interactions that were directly observed were based on gut content analyses, field 

observations and inference from parasitological information (i.e., if a host had a parasite that 
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it could only get from eating a particular prey item, we concluded it fed on that prey item). 

The trophic links in this quadrant are the same as those represented in almost all published 

food webs. 

 

3.3 Parasite-host interactions 

Infectious agents, such as parasites and pathogens, are often omitted from food webs 

(Cohen, Beaver, et al. 1993; Marcogliese and Cone 1997). In the host-parasite quadrant, we 

integrate parasites into the food web as consumers. Interaction types found in this quadrant 

include: parasitic castration, pathogen infection, macroparasitism, parasitoidism, trophically 

transmitted parasitic castration, trophically transmitted pathogenism, trophically transmitted 

macroparasitism and trophically transmitted commensalism. With the few exceptions all 

parasite-host interactions were based on direct observations. Recognizing and differentiating 

between these different interaction types is critical to the precise inclusion of parasites in 

food webs. 

 

3.4 Predator-parasite interactions 

Including parasites in food webs requires us to consider them as potential resources. 

Including interactions that recognize parasites as resources has important impacts on network 

structure (Dunne, J. A. et al. 2013; Johnson et al. 2010; Lafferty, Dobson, et al. 2006). 

Parasites are resources in the predator-parasite quadrant, which includes the interaction types: 

concurrent predation on symbionts (safely eating parasites hosted by a prey species), trophic 

transmission denotes an infection pathway (eating parasites in prey that can infect the 

predator), predation on free-living non-feeding stages, and transmission (when eating a free-
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living infectious stage leads to transmission). Trophic transmission and transmission indicate 

the process of infection and should not be included in analysis of trophic structure. 

Concurrent predation on symbionts might not represent energetically significant resources for 

a predator and therefore are not relevant for estimating node trophic level or food web 

robustness (Lafferty, Hechinger, et al. 2006; Lafferty and Kuris 2009). However, these 

mortality sources for transmission stages could be important for control of parasite 

abundance in subsequent hosts – a bottom up effect. Including these link types in trophic 

level estimates will elevate predator trophic levels and lower parasite trophic levels, and 

including them in robustness analyses will lead to erroneous outcomes. We can infer the 

presence of trophic transmission interactions, transmission and concurrent predation on 

symbionts from the predator-prey and host-parasite quadrant. Predation on free-living non-

feeding stages and Predation on commensal non-feeding stages, are based on our 

observations in other systems (Hechinger, Ryan F. et al. 2011; Kaplan et al. 2009; Mouritsen 

et al. 2011; Thieltges et al. 2011; Zander et al. 2011). 

 

3.5 Parasite-parasite interactions 

Antagonistic interactions between parasite species (Parasite Intraguild Antagonism) 

can be important (Graham 2008; Kuris et al. 1979; Telfer et al. 2010) and may be common 

(Pedersen and Fenton 2007). They are also difficult to observe. We restrict our examination 

of antagonistic interactions between parasites to interactions among larval trematodes in their 

molluscan first intermediate hosts. Intraguild predation appears to be the primary force 

structuring larval trematode communities in their molluscan first intermediate hosts (Kuris 

1990; Kuris and Lafferty 1994). Dominance hierarchies dictate the outcome of intraguild 
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predation between trematodes in their first intermediate hosts. More dominant trematodes can 

completely replace infections by subordinate species. We used relevant sources (Rohde 

1981), and principles for a putative dominance hierarchy outlined in Kuris (1990), based on 

indirect evidence of dominance, and recent experimental evidence (Garcia-Vedrenne et al. 

2016; Hechinger, Ryan F et al. 2011) to assemble dominance hierarchies for these larval 

trematode communities (to indicate which species were predators or prey). Interactions 

between parasites in hosts can be important determinants of their distribution, prevalence and 

abundance (Esch et al. 1990; Lafferty et al. 1994). 

 

3.6 Limitations and potential enhancements 

The primary limitation of the network is the under-representation and non-

representation of some groups. These limitations are outlined explicitly in the partner data set 

providing a quantitative survey of the organisms on the intertidal sand flats at Palmyra Atoll. 

Of the 24,575 links in the Palmyra Atoll intertidal flats food web, only 1456 were 

directly observed. The remaining 94% of links are inferred. The method used to infer each 

link is included in the Links_List data table and defined in the Variable_Description 

metadata table (Table 2B). The fraction of inferred links in food webs is not well 

documented, but the ratio reported here is similar those reported in the few webs for which 

this information has been published (Kuris et al. 2008; Preston et al. 2012; Warren 1989). 

Inferring the presence of links is necessary because, even significant investment in direct 

observation of trophic interactions often only captures a fraction of organism’s actual diet 

(Polis 1991). Thus, limiting webs to directly observed interactions ensures the omission of 

consumer-resource interactions, especially in speciose systems like Palmyra. However, while 
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modeling should improve overall network quality, it will not capture all unobserved links and 

some modeled links will not actually occur. Link information could be improved by 

including experimental information. For example, consumer-resource interactions in 

mesocosms are particularly useful for excluding interactions that do not occur. Direct 

observations could also be improved by applying new molecular techniques to gut content 

analyses. 

 

 

 

 

 

4 Parasites make important and general contributions to ecosystem 

structure 

 

4.1 Introduction 

If all parasites disappeared, what would we lose? At the biosphere scale, we would lose 

many species (Dobson et al. 2008). Even though parasitism is the most common lifestyle on 

Earth (Price 1980), we know less about the role parasites play in local communities (Lafferty, 

K. D. et al. 2008; Marcogliese 2003; Marcogliese and Cone 1997) than we do about species 

from other groups (e.g. megaherbivores, predators, pollinators, mycorrhizal fungi). Although, 
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some ecological studies have incorporated parasites on the same empirical footing as their 

free-living counterparts (Amundsen et al. 2009; Preston et al. 2012), most are restricted to 

estuarine systems (Hechinger, Ryan F. et al. 2011; Huxham et al. 1995; Mouritsen et al. 

2011; Thieltges et al. 2011; Zander et al. 2011). Temperate estuaries on the Pacific coast of 

North America represent the only three places where all parasites in a system have been 

systematically counted and measured (Hechinger, Ryan F. et al. 2011). In these temperate 

estuaries, parasites make significant contributions to diversity (Lafferty, Hechinger, et al. 

2006), abundance (Hechinger, R. et al. 2011), biomass (Kuris et al. 2008), trophic structure 

(Lafferty, Dobson, et al. 2006) and network topology (Dunne, J. A. et al. 2013). They 

comprise one third of estuarine diversity (Lafferty, Hechinger, et al. 2006), and after 

accounting for their high trophic level, estuarine parasites are as abundant as free-living 

consumers (Hechinger, R. et al. 2011). With their biomass exceeding that of birds, parasites 

make important contributions to estuary energetics (Kuris et al. 2008). Parasites also modify 

energy-flow by participating in 70% of trophic interactions (Lafferty, Dobson, et al. 2006), 

and altering food-web topology in unique ways (Dunne, Jennifer A et al. 2013). Removing 

parasites would strongly alter temperate estuaries. 

Some estuary attributes suggest that these contributions by parasites may not extend to 

other systems. First, in west coast estuaries, California horn snails (Cerithidiopsis 

(Cerithidia) californica) are the most abundant free-living species and are obligate first 

intermediate hosts for >20 parasite species (Kuris et al. 2008). Second, birds are the most 

diverse free-living group and serve as definitive hosts for the majority of estuarine parasites 

(Hechinger, Ryan F. et al. 2011). Third, the estuaries studied are temperate systems with 

relatively few species and high productivity (Correll 1978; Nixon 1980), conditions that 



 57

might favor parasitism. This leads to the question we address here: Are parasites important in 

any other systems? 

To test whether parasites alter community structure beyond Pacific coast estuaries, we 

assembled a quantitative food web for the intertidal sand-flats habitat of Palmyra Atoll, a 

low-lying coral atoll, located in the central Pacific, 1600 km south of Hawaii. The Palmyra 

dataset incorporates parasites on the same empirical footing as the estuarine datasets, making 

the two comparable (McLaughlin, In Review). Other physical and biological similarities 

between the systems facilitate comparison. Both Palmyra and the estuarine systems are soft-

sediment, intertidal systems protected from wave-energy. They are also similar in size. The 

area encompassed by the Palmyra sand flats (314 ha) is close to the mean area of the three 

estuaries (304 ha, SD = 351 ha) (Hechinger, Ryan F. et al. 2011). The systems are similar in 

diversity. Palmyra has more total species than any estuary, but falls within the range of 

species per unit area (0.88 species ha-1) found in the estuaries (mean = 1.4 species ha-1, SD = 

1.2 species ha-1). Thus, we can compare systems with similar habitats, areas and complexity.  

There are several important physical differences in the systems. The systems differ in 

their physical heterogeneity. The estuaries incorporate four habitats (vegetated marsh, 

unvegetated pans, mudflats and channels), whereas the Palmyra sand-flats are relatively 

homogenous planes, intermittently bordered by narrow rocky-intertidal zones. The mobile 

vertebrate consumers in these systems also have access to different adjacent habitats. Kelp 

forests and sandy beaches are adjacent to estuaries. Estuarine birds, especially sandpipers and 

plovers forage on the sandy beaches, whereas, Palmyra birds forage almost entirely on the 

sand flats at low tide. In Palmyra, large fishes, like blacktip sharks and giant trevally, move 

between the sand flats and the adjacent lagoons, reef flats and the fore reef. The systems also 
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differ in latitude; Palmyra is tropical while the estuaries are temperate. As a result, Palmyra 

experiences little seasonal variation and higher ambient temperatures. The average 

temperature on the flats at Palmyra (31.2 C) is outside the range experienced in the estuaries 

(mean 20.2 C, SD = 1.3 C). Finally, the systems differ in their proximity to similar 

ecosystems. The sand flats at Palmyra are much farther (375.5 km) from other sand flats, 

than estuaries are from other estuaries (mean = 38.5 km, SD = 23.1 km). These physical 

differences could alter ecological communities, including parasitism. 

Although the systems are similar in overall diversity they do differ in species and 

community composition across trophic levels, the sanderling (Calidris alba) is only shared 

species. Estuaries are some of the most productive ecosystems on Earth, and include 

flowering (terrestrial) plants with nutrient inputs derived from terrestrial runoff. Palmyra, like 

many low-lying coral atolls is a nutrient poor system, with nutrients derived from pelagic 

inputs. As for primary consumers, although similar snails are present in Palmyra, no single 

species dominates biomass as does Cerithideopsis (Certihidia) californica in the estuaries. 

Birds dominate higher trophic level diversity in estuaries, where as fish dominate in Palmyra. 

An outcome of this role reversal is that the dominant consumers at Palmyra (fish) eat each 

other, whereas in estuaries the dominant consumers (birds) do not. Intraguild predation (or 

lack thereof) among definitive hosts may have implications for parasite diversity and their 

ability to navigate the trophic network. Thus, Palmyra and estuarine systems are different 

enough in their species composition and ecosystem attributes that any similarities between 

them are informative about the general role of parasites in ecosystems. If parasites have 

similar roles across systems, then we would expect to see similar patterns in their 
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contributions to diversity, biomass, abundance, trophic structure and network topology would 

be similar in estuaries and Palmyra. 

If parasites make similar contributions to diversity across systems, then after accounting 

for free-living consumer richness, there should be little difference in parasite richness 

between Palmyra and the estuaries. To make this comparison valid, parasitological surveys in 

both systems incorporate all infectious agents they encountered, but focus on eukaryotic 

organisms generally omitting viruses and bacteria. Comparing parasite richness in these 

systems informs our understanding of parasites diversity at different latitudes, trophic levels 

and host groups. 

In estuaries, parasites are as abundant as similar free-living consumers, after controlling 

for trophic level. To evaluate if this pattern applies to Palmyra, we test whether parasites and 

free-living organisms share the same abundance-body size scaling after controlling for 

trophic level. We also evaluate the consistency of this relationship across systems. If these 

scaling relationships are maintained, is suggests that metabolic ecology applies to all 

consumers. 

Parasite biomass is substantial in estuaries. If parasites make consistent contributions 

across systems, we expect parasite biomass density to be similarly high in Palmyra. We can 

further evaluate whether the distribution of biomass is further conserved among parasitic and 

free-living species. By comparing biomass distributions across systems, we gain insight into 

energy flow between compartments and how such compartments differ from system to 

system. 

Parasites dominate trophic interactions in estuaries (Lafferty, Dobson, et al. 2006). To 

evaluate if parasites make similar contributions to trophic structure at Palmyra, we can 
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examine the fraction of food-web interactions in which parasites participate. Body size is 

correlated with many ecological traits (Peters 1986), and serves as useful metric for 

organizing food webs (Woodward et al. 2005; Zook et al. 2011). As a result, many food web 

models assume that resource body size range is correlated with consumer body size 

(Williams and Martinez 2000; Yodzis and Innes 1992). Being smaller than their hosts, 

parasites in estuaries extend the body-size range over which consumer-resource interactions 

occur (Lafferty and Kuris 2002). We can determine if these effects are general by comparing 

the frequency distributions of consumer-resource biomass ratios across systems.  

If parasites have similar effects on network topology across systems, we expect Palmyra 

and estuary food webs will have similar topological metrics (e.g. directed connectance, 

nestedness) and motif proportions. In food webs there are two types of three-node motifs: 

motifs without mutual predation (single) and motifs with mutual predation (double) (Fig. 

4.1). In estuarine food webs, parasites increase double motifs due to concurrent predation 

(parasites are consumed when a predator eats their host)(Dunne, Jennifer A et al. 2013). 

Comparing the roles of parasites in the networks at Palmyra and the estuaries provides 

insight into the role parasites play in food webs. 
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Figure 4. 1 Food web motifs. The 13 variations of three-node motifs possible in food webs. 
S1-S5 are single motifs. D1-D8 are double motifs. 

 

4.2 Materials & methods 

To compare parasite affects on community structure, we analyze two datasets describing 

the food webs for three Pacific estuaries and Palmyra (Hechinger, Ryan F. et al. 2011). Both 

datasets were assembled using similar quantitative, random sampling. Unlike most studies, 

that aggregated all life stages into a species node, the finest organismal units quantified in 

these datasets are species’ individual life stages. We standardized the Palmyra data to match 

the less-finely resolved estuarine food web data by removing or aggregating nodes from 

Palmyra that were not adequately sampled in the estuaries. We removed from Palmyra, larval 

stages of free-living species (except gastropod trochophores and bivalve veligers), parasite 
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eggs, oncomiracidia, miracidia, bacteria, heterotrophic flagellates, planktonic ciliates, 

tardigrades and free-living nematodes. When appropriate, we aggregated Palmyra nodes to 

make them comparable to aggregated estuarine nodes. We aggregated phytoplankton, benthic 

diatoms, benthic protists, calanoid copepods and harpacticoid copepods into their respective 

nodes and Palmyra detritus into five comparable nodes. Any links duplicated by node 

aggregation at Palmyra were removed. More detailed description of the sampling methods 

employed in both systems can be found in the original data sets described in chapters 1 and 2.  

To compare parasite affects on community structure between Palmyra and the 

estuaries, we estimated free-living and parasite species diversity. Species richness was 

calculated from standardized surveys of free-living organisms in both systems. Sampling 

effort and method varied with the abundance and body size of target groups. For example, 

birds were counted in the field with binoculars, whereas polychaetes were collected with 

10cm diameter cores, and then sorted and identified under microscope in the lab. Parasites 

were sampled in hosts collected by both random and targeted sampling. In both systems, 

most individual parasites were difficult to identify juvenile stages. To accurately estimate 

their diversity, expert taxonomists identified all parasites with morphological and molecular 

techniques (Hechinger and Miura 2014; Vidal-Martínez et al. 2012; Vidal-Martínez et al. 

2017).  

To compare how parasites affect abundance scaling relationships across systems, we 

plotted density versus body size after controlling for trophic level and temperature, as done 

for estuaries by Hechinger et al. 2013. We estimated short-weighted trophic level for 

Palmyra nodes in R (Team 2016) with the cheddar (Hudson et al. 2013) package. Ambient 

temperature corrections for abundance at Palmyra were based on the mean of 82,848 
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individual measurements taken over a month at 32 sites McLaughlin et al. (In review). We 

used general linear models to evaluate all abundance-body size scaling relationships. We 

used 95% quantile regressions to evaluate the under saturation of smaller species at Palmyra. 

Statistical controls were conducted for trophic level and body size in JMP 14 (Institute 2000) 

and general linear models evaluated in R. We conducted a one-way ANOVA to compare 

parasite trophic level across systems. 

To compare parasite biomass in Palmyra with parasite biomass in estuaries, we estimated 

the biomass density for each node by multiplying the mean individual body size by density. 

For free-living organisms, body size is the mean body mass for individuals of each life-stage 

as they occurred in random sampling. For most birds in both systems, body size estimates are 

from the literature. Parasite body sizes are direct weights or were estimated by multiplying 

organismal volume by a tissue density of 1.1 g ml-1. All biomass density comparisons were 

made with two-sample t-tests, with an FDR adjustment to control for multiple comparisons. 

To compare parasite affects on trophic structure across systems, we first categorized links 

into four types: (1) free-living: links between free-living species, (2) predation on free-living 

infectious stages: free-living organisms consuming parasites in the environment, (3) 

concurrent predation: free-living organisms consuming parasites in hosts, (4) parasitism: 

parasites consuming hosts. We used two-sample t-tests (controlling for multiple comparisons 

with an FDR adjustment) to compare the fraction of total interactions that these link types 

comprise, and evaluate the contribution of parasites to trophic structure across systems. To 

determine if parasites extend the size range of consumer-resource interactions, we first 

compared the frequency distribution of parasite consumer body-size ratios to that of free-

living species at Palmyra. To see if these effects are similar across systems we compare the 



 64

frequency distribution of parasite consumer body-size ratios at Palmyra to those of parasites 

in the estuaries. We used two-sample t-tests (adjusted with an FDR control) to compare the 

frequency distributions of the consumer body-size ratios within Palmyra and across systems. 

To compare how parasites affect network topology across systems we analyzed two 

different food-web assemblies for each system: (1) A version containing only stages of free-

living species, and (2) a version containing stages of both free-living and parasitic species. 

To make our results comparable to previous analyses (Dunne, J. A. et al. 2013) we 

aggregated life stages at the species level. The food web version including parasitism also 

includes concurrent predation. We can evaluate network similarities by comparing 

descriptive topological metrics and motif representation. For both food-web versions we 

estimated nine metrics that describe network topology and trophic structure (Table 4.1). We 

also compared how parasites affect motifs that represent mutual consumption (also known as 

double motifs) across systems. We estimated parasite effects as the difference in double-

motif proportions between free-living and parasite versions. However, because such versions 

differ in species richness (which can affect motif proportions), we used the niche model to 

simulate webs of equal richness but containing only free-living species. We used two-sample 

t-tests (adjusted with an FDR control) to compare parasite effects with richness effects. To 

evaluate the consistency of these contributions across systems, we plotted the parasites 

effects on double motifs in Palmyra vs estuaries. All network analyses were conducted in R 

(Team 2016) with the cheddar (Hudson et al. 2013) and igraph (Csardi and Nepusz 2006) 

packages which can accommodate large networks. 
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4.3 Results 

4.3.1 Diversity 

Parasites made similar contributions to community structure at Palmyra and in the 

estuaries (Fig. 4.2). The richness of both free-living and are parasitic consumers was 

consistent across systems, and we failed to reject the null assumption of no difference. 

Although there was no difference in total free-living richness (Palmyra = 119, Estuary mean 

= 107, SD ± 15), potential differences in sampling effort between the projects limit the 

determining which system has the most species. With respect to relative richness, birds were 

the richest vertebrates in estuaries (p < 0.01, Palmyra = 6, Estuary mean = 43, SD ± 2), 

whereas at Palmyra fishes were the richest vertebrate group (p < 0.01, (Palmyra = 41, 

Estuary mean = 41, SD = 0) (Fig. 4.3). It is remarkable that parasites comprised at least one-

third (33-40%) of diversity in both systems (Fig. 4.2). 
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Figure 4. 2 Richness. Similar richness for free-living (blue) species in estuaries (light 
bars, mean +/- S.D.) and at Palmyra (dark bars), and similar richness for infectious (red) 
species in estuaries (light bars, mean +/- S.D.) and Palmyra (dark bars). 

 



 67

 
Figure 4. 3 Bird and fish richness. Bird diversity was higher in estuaries (light bars, mean 
+/- S.D.), whereas fish diversity was higher at Palmyra (dark bars). (** p < 0.01). 

 

4.3.2 Abundance 

After correcting for trophic level, a single linear model (F2,203 = 91.06, p < 0.0001) 

described the abundance-body size scaling of parasites free-living and organisms at Palmyra 

(log10 abundance  = 1.5 – 0.49 x log10 body size; r2 = 0.47, slope 95% confidence limits ± 

0.071) (Fig. 4.4), indicating that parasites at Palmyra have the same abundance-body size 

power law as comparable free-living species. Although, a shared power law for parasites and 

free-living species is consistent with past results for estuaries, the model parameters for free-

living organisms and parasites were different at Palmyra than for the estuaries (p = 0.0001). 

Specifically, the model for all three estuaries (F1,458 = 1387, p < 0.0001) had a steeper slope 
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and higher intercept (log10 abundance  = 2.1 – 0.72 x log10 body size; r2 = 0.75, slope 95% 

confidence limits ± 0.039) (Fig. 4.4), indicating that abundance was lower at Palmyra, but 

fell less sharply with body size than in estuaries, perhaps due to temperature, differences 

between birds and fishes, differences in productivity, energetic subsidies from adjacent 

habitats or tidal effects on transient species. 95% quantile regressions suggest that the 

maximum slope at Palmyra (-0.70) may be closer to the mean estuary slopes (-0.74 - -0.77). 

It may be a general finding that parasites are as abundant as similar free-living species (Fig. 

4.4). 

Figure 4. 4 Abundance. Parasites (red circles) are as abundant as similar-sized free-living 
species (blue) in estuaries and at Palmyra. Crosses are invertebrates; squares are fishes; 
diamonds are birds. Abundances are temperature corrected and statistically control for 
trophic level.  
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4.3.3 Biomass 

Parasite biomass density was lower at Palmyra than in the estuaries (p < 0.001; Palmyra 

= 1.8 kg ha-1, Estuary mean = 21.8 kg ha-1, SD ± 13.2 kg ha-1) (Fig. 4.5). Monogenes (p < 

0.001, Palmyra = 0.0005 kg ha-1, Estuary mean = 0 kg ha-1) and nematodes (p < 0.001, 

Palmyra = 0.97 kg ha-1, Estuary mean = 0.07 kg ha-1, SD ± 0.01 kg ha-1) had more biomass at 

Palmyra, but other groups did not differ in their biomass density (Fig. 4.6). This lower 

parasite biomass occurred even though Palmyra had more free-living biomass (p < 0.05; 

Palmyra = 2960 kg ha-1, Estuary mean = 1856 kg ha-1, SD ± 905 kg ha-1), resulting in a lower 

parasite:free-living biomass ratio for several host groups at Palmyra (Fig. 4.7). The lower 

parasite biomass ratio was due, in part, to several lightly parasitized invertebrate groups 

(especially hemichordates, holothuroideans and polychaetes) that are less abundant or not 

present in estuaries, but contributed substantial biomass at Palmyra (p < 0.001, Palmyra = 

29.8 kg ha-1, Estuary mean = 3 kg ha-1, SD ± 3.5 kg ha-1) (Fig. 5). Fish (p < 0.01, Palmyra = 

176.4 kg ha-1, Estuary mean = 22.1 kg ha-1, SD ± 10.9 kg ha-1) and polychaetes (p < 0.01, 

Palmyra = 480 kg ha-1, Estuary mean = 19.5 kg ha-1, SD ± 13.4 kg ha-1) also had more 

biomass at Palmyra than the estuaries (Fig. 4.8). There were no significant differences in the 

biomass of small arthropods, bivalves, snails, crabs, burrowing shrimp or birds. Bivalves and 

snails drove the parasite-biomass : host-biomass relationship in estuaries (Fig. 4.8). While 

these hosts were not less abundant at Palmyra they supported less parasite biomass (Fig. 4.8). 

The lower parasite biomass at Palmyra is a result of few parasites in the most abundant hosts. 

This shows how a few key hosts can affect parasite biomass at the ecosystem level. 
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Figure 4. 5 Total biomass. Estuaries (light bars, mean +/- S.D.) had less free-living biomass 
(blue) but more parasite biomass (red) than Palmyra (dark bars). (* p < 0.05). 
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Figure 4. 6 Parasite biomass. Mongeneans and nematodes had lower biomass density in 
estuaries (light bars, mean +/- 95% C.I.) than at Palmyra (dark bars). (*** p < 0.001). 
Taxa ordered from relatively lower in estuaries than at Palmyra to relatively higher in 
estuaries than at Palmyra. 
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Figure 4. 7 Free-living biomass. Fishes and several invertebrate groups had lower 
biomass densities in estuaries (light bars, mean +/- 95% C.I.) than at Palmyra (dark bars). 
(** p < 0.01; *** p < 0.001). Taxa ordered from relatively lower in estuaries than at 
Palmyra to relatively higher in estuaries than at Palmyra. 
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Figure 4. 8 Host biomass versus parasite biomass. The association between host biomass 
and parasite biomass is much stronger in estuaries, because the most abundant estuarine 
hosts had the most parasite biomass, whereas this relationship was less strong at Palmyra. 

 
 

4.3.4 Trophic structure 

Parasites made consistent contributions to the fraction of link types across systems (Fig. 

4.9). As a proportion of total links, free-living links (Palmyra = 0.36, Estuary mean = 0.33, 

SD ± 0.02), concurrent predation links (Palmyra = 0.33, Estuary mean = 0.37, SD ± 0.02), 

predation on infectious stages (Palmyra = 0.19, Estuary mean = 0.09, SD ± 0.04) and 

parasitism links (Palmyra = 0.11, Estuary mean = 0.21, SD ± 0.05) were not significantly 

different from estuaries (all p > 0.08). Parasites had the same affects on the range of 

consumer-resource body size ratios in both systems (Fig. 4.10). Notably, parasites extended 
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the range of consumer-resource body size ratios at Palmyra across nine orders of magnitude 

(min = 1: 8.3e-14), whereas in the estuaries parasites extended the range over two orders of 

magnitude (min = 1: 1.0e-9). Micropredators (i.e. mosquitoes) with small consumer-resource 

body size ratios, which are present in the estuaries but not Palmyra are the primary reason for 

the estuaries already having a wide range in body size ratios without parasites. The mean 

parasite-host body size ratio (1:5.1e-3 g) was 10 orders of magnitude lower than the mean 

predator-prey body size ratio (1:9.6e7 g) at Palmyra (p < 0.0001), in the estuaries the 

difference in means was between nine and ten orders of magnitude (CSM p < 0.0001, 

parasite mean = 1:2.6e-3, predator mean 1: 2.3e7; BSQ p < 0.0001, parasite mean = 1:4.3e-3, 

predator mean = 1:4.6e5 EPB p < 0.0001, parasite mean = 1:3.9e-3, predator mean = 1:2.0e6). 

The mean parasite-host body size ratio at Palmyra was not significantly different from the 

estuaries (CSM p = 0.3; BSQ p = 0.8; EPB p = 0.7). The extent that parasites dominate food 

web links in estuaries and Palmyra greatly extends consumer-resource body-size ratios. 
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Figure 4. 9 Link proportions. Similar link proportions in estuaries (light bars, mean +/- 
95% C.I.) and at Palmyra (dark bars) for links that don’t include parasites (blue bars) and 
links that do include parasites (red bars).  
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Figure 4. 10 Consumer-resource body size ratios. Parasites (red curve) extended the range 
of consumer-resource body size ratios in estuaries less than they do at Palmyra. The blue 
curve represents free-living links. The left mode in free-living links in estuaries (which is 
lacking at Palmyra) represents mosquitoes feeding on birds. 

 

4.3.5 Network topology 

Parasites had similar affects on network topology at Palmyra and in the estuaries (Table 

4.1). In particular, including parasites increased directed connectance and degree distribution, 

but had little effect on mean distance and maximum chain length. Parasites increased the 

double motifs by between 0.1 - 12% relative to generic increases in free-living diversity (all p 

< 0.05), with slightly larger effect in estuaries (Fig 4.11). The biggest increases associated 

with adding parasites were for motifs that combine mutual consumption with either apparent 
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competition (D3) or exploitative competition (D4). The mutual consumption in these double 

motifs results from concurrent predation on parasites. 

 

System Pal Pal CSM CSM BSQ BSQ EPB EPB 
Assembly FL + P FL FL + P FL FL + 

P 
FL FL + P FL 

Nodes 209 129 166 109 172 120 215 140 
Links 3689 1303 3709 1008 3721 1087 5654 1703 
Connectance 0.08 0.08 0.13 0.08 0.13 0.08 0.12 0.09 
Degree 
distribution 

17.65 10.10 22.34 9.25 21.63 9.06 26.30 12.16 

Clustering 
coefficient 

0.30 0.23 0.37 0.27 0.28 0.21 0.32 0.31 

Generality 1.28 1.06 0.93 1.01 1.05 1.29 1.08 1.05 
Vulnerability 0.91 0.92 0.72 1.01 0.69 0.99 0.70 0.98 
Max chain 
length 

7 6 6 5 5 5 6 6 

Intervality 4264 1343 3798 858 3133 621 6277 1152 
Mean 
distance 

2.55 1.90 2.20 2.29 2.13 2.25 2.25 2.22 

 
Table 4.1  Network topology metrics. System indicates networks from Palmyra (Pal) and 
the estuaries (Carpinteria salt marsh, CSM; Bahia San Quintin, BSQ; Estero de Punta 
Banda, EPB). Assembly indicates networks that include parasites (FL + P) and those that 
only include free-living species (FL).  
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Figure 4. 11 Parasite affects on double motifs. Parasites increased double motifs in ways 
that free-living species did not in estuaries and at Palmyra. Axes indicate the difference in 
motif proportions between free-living webs and those containing increases in diversity. 
The y-axis indicates the effect of increasing parasite diversity on motif proportions, 
whereas the x-axis indicates the effect of increases in generic free-living diversity 

 

4.4 Discussion 

Parasites had similar effects on two food webs with different physical and biological 

features. Parasite diversity was comparable between Palmyra and estuaries and parasites in 

both systems were as abundant as were similar free-living species. Parasite biomass in both 

systems exceeded that of bird biomass. At Palmyra and the estuaries, parasites made similar 

contributions to trophic structure and increase double motif frequencies. This suggests that 

the remarkable roles that parasites play in estuaries are not an anomaly. 
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The host community drove parasite richness and parasite community composition at 

Palmyra and in the estuaries. Thus, differences in free-living communities led to differences 

in their parasite communities. It might be surprising that host diversity was comparable 

between a tropical and temperate system, but because it is small and remote, Palmyra is 

difficult to reach for free-living species (MacArthur and Wilson 2001). Hosts often leave 

their parasites behind when colonizing new places (Lafferty et al. 2010; Torchin et al. 2003; 

Torchin et al. 2001), but parasites able to reach Palmyra are likely to thrive in the relatively 

pristine and trophically intact system (Lafferty, K. et al. 2008; Sandin et al. 2008; Vidal-

Martínez et al. 2012; Vidal-Martínez et al. 2017). Parasite diversity in the estuaries is 

dominated by parasites that mature in birds, which dominate upper trophic levels in estuaries. 

Whereas, fish were the most diverse definitive hosts at Palmyra and the parasite community 

was dominated by parasites that mature in fish, including bucephalid trematodes, tetraphyllid 

cestodes and Pulchrascaris nematodes. Thus, parasites at Palmyra add a new dimension to 

the theory, first proposed for estuaries that host diversity begets parasite diversity (Hechinger 

and Lafferty 2005), namely that host composition begets parasite composition. For this 

reason, parasite composition in estuaries can indicate ecosystem integrity (Hechinger et al. 

2007) and parasite composition in the fore reefs adjacent to intertidal sand flats indicates 

fishing pressure across the Northern Line Islands(Lafferty, K. et al. 2008; Wood et al. 2014). 

Thus, parasites are likely to make similar significant contributions to richness in other 

systems with intact host communities regardless of composition, but parasite composition 

should follow from host composition, which varies considerably from system to system.  

Although parasites were as abundant as similar free-living species in both systems, 

the relationship between abundance and body size differed between systems. Specifically, 
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small organisms (i.e. parasites and invertebrates) were less abundant and large organisms 

were more abundant at Palmyra relative to estuaries. One possible explanation is that at 

Palmyra, large fish like jacks, sharks and rays are more abundant than expected because they 

augment their diets with resources from adjacent habitats (e.g. deep-water lagoon, fore reef), 

which they move to at low tides (McCauley et al. 2012). At Palmyra, these mobile species 

tend to be large, whereas smaller species may be under saturated relative to their maximum 

abundances, as suggested by quantile regressions. Accounting for subsidies to large mobile 

organisms would steepen the abundance-body size scaling relationship at Palmyra, making it 

more similar to the estuaries, with parasites and free-living organisms exhibiting similar 

abundance-body size scaling across systems. 

Differences in host identity led to higher parasite biomass densities in estuaries than 

at Palmyra. A few taxa explained the higher free-living biomass at Palmyra. The significantly 

higher polychaete biomass at Palmyra was driven by a single spionid species (Malacoceros 

sp.) that was abundant in low-flow habitats where few other infauna can survive. 

Furthermore, bioturbators like hemichordates (acorn worms) and small infaunal sea 

cucumbers made important contributions to free-living biomass at Palmyra but do not have 

ecological analogs in the estuaries. For example, hemichordate biomass was greater than 

shark biomass. Despite their disproportionate contributions to free-living biomass at Palmyra, 

these groups hosted few parasites. Because parasite biomass is a simple product of host 

abundance and parasite biomass per host, most of the variation in parasite biomass (and its 

taxonomic compostion) is determined by parasites in the most abundant host species. For 

instance, Conomurex luhuanus had the highest biomass density of any species at Palmyra and 

hosts two parasite species (both cestodes), which therefore comprise substantial parasite 
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biomass at Palmyra. Likewise, in the estuaries, the abundant snail, Cerithideopsis 

(Cerithidia) californica is host to 23 parasite species, which, together, dominate parasite 

biomass in estuaries. One key measure for parasite biomass was the same for both systems; 

parasite biomass exceeded bird biomass. Thus, although parasite biomass varied across 

systems, parasite biomass in both systems compares with the biomass of free-living taxa that 

most ecologists consider to be important in food webs. 

Being smaller than their resources, parasites extend the range of consumer-resource body 

size ratios in a new direction (Lafferty and Kuris 2002). This contrasts with current 

assumptions for how body size ratios constrain food-web structure and dynamics (Cohen, 

Pimm, et al. 1993; Yodzis and Innes 1992). In particular, when parasites invert consumer-

resource body size ratios these ratios, it challenges both the niche model that underlies food 

web structure (Warren et al. 2010; Williams and Martinez 2000) and predictions for how 

size-ratio distributions facilitate stability (Emmerson and Raffaelli 2004; Loeuille and Loreau 

2005). New theory is needed to consider how parasite-host body size ratios affect network 

dynamics. 

Parasite impacts on network metrics are similar to previous analyses, with one 

important exception. Unlike previous analyses, we found parasites increased connectance, a 

fundamental measure of network structure (Dunne, J. A. et al. 2013). This also runs counter 

to the negative interaction between connectance and species richness that is generally 

reported (Dunne, J. A. et al. 2002). Robustness indices increase with connectance because 

consumers have broader diets in well-connected networks (Dunne, Jennifer A. et al. 2002). 

Therefore it seems important to understand why our results differ. One possibility is that 

Dunne et al. (2013) compared webs that varied in resolution and assembly method, whereas 
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here, we standardized network assembly methods across the systems, because without 

standardization it is difficult to tell if differences in topology derive from parasite effects or 

assembly differences. This calls into question previous studies that compared structure 

between networks whose assembly methods generate different resolutions.  

Parasite affects on motif distribution were primarily due to concurrent predation 

(Cirtwill and Stouffer 2015), which describes how parasites are eaten along with their 

hosts. Double motifs featuring mutual consumption (Fig. 1) become common when parasites 

are included in food webs (Dunne, J. A. et al. 2013), but are otherwise rare (Stouffer et al. 

2007). In particular, parasites increased D3, the double motif that illustrates apparent 

competition and mutual consumption. Although double motifs are little studied, apparent 

competition (without mutual consumption) is thought to be a transient phenomenon, 

persisting only in stable systems (Holt and Bonsall 2017). Those effects are not likely to 

apply to D3 motifs involving parasites, as parasites are not usually important resources for 

consumers. Furthermore, although an increase in double motifs suggests that parasites should 

increase system robustness to secondary extinction, concurrently predated parasites do not 

expand predator diets and therefore do not increase robustness (Rudolf and Lafferty 2011). 

Although predators don’t gain additional energy from digesting parasites, infected prey might 

be easier to catch, or have reduced energy content.  

Not only do parasites compete with their host’s predators they are killed by them. 

Therefore, the importance of the D4 motif that depicts exploitative competition with mutual 

predation depends on the extent that parasites compete with predators. If this occurs 

concurrent predation might amplify perturbations, such as predator loss, if following a 

reduction in predation, parasite densities increase faster than competing predator densities. 
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For instance, removing predatory spiny lobsters increases the abundance of their urchin prey, 

which both destabilizes kelp forest dynamics and increases bacterial epidemics in sea urchin 

populations (Lafferty 2004). Furthermore, classic models show that parasite-induced host 

mortality can regulate parasite population dynamics (Anderson and May 1978). Therefore, if 

heavily infected hosts are selectively predated, concurrent predation could regulate 

parasitism by the same mechanism. How parasite affect network stability through double 

motifs is still uncertain, but a better understanding could improve our ability to control 

parasites and predict indirect effects when parasites are removed (Johnson et al. 2010). 

In showing that metazoan parasites have important effects on food webs across 

systems, we give an example for how to add more detail to food webs. Many other taxa 

deserve better inclusion in food webs. Notably, fungal, protist, bacterial and viral pathogens 

have yet to be systematically incorporated in any food web. As microparasites, these groups 

are likely to be important in habitats with high host densities (e.g. plankton, temperate rocky 

intertidal) or clonal host populations (e.g. coral reefs). On land, different host compositions 

and transmission strategies will favor parasite taxa different from those seen in Palmyra and 

estuaries. For example, many terrestrial insects will function as parasites or pathogens on 

plant hosts (and such insects will have their own parasitoids), whereas parasites with aquatic 

larval stages like trematodes seem likely to be less successful in purely terrestrial food webs. 

Finally, future efforts could consider how network resolution and assembly rules, such as 

disaggregating species into ontogenetic life stages, can affect the role parasites play in food 

webs (Rudolf and Lafferty 2011) 

Our results suggest that parasite contributions to ecosystem structure are both important 

and general. Their intimate life style makes parasites more susceptible to secondary 
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extinctions (Lafferty and Kuris 2009), and they are easily lost when food webs simplify. If an 

ecosystem were to lose its parasites, the change in richness, abundance and energetics would 

be equivalent to that incurred by losing other consumer groups, such as birds. Perhaps most 

importantly, losing parasites is not just about reducing species richness. Parasites make 

contributions to network structure that are distinct from those made by free-living consumers. 

For all these reasons, we have an incomplete understanding of food-web structure without 

parasites (Fig. 4.12). 

 

 

Figure 4. 12 Parasites dominate food web links in estuaries and at Palmyra. Blue lines 
indicate free-living consumer feeding interactions, red indicates parasitism. Node size 
indicates species biomass. Green nodes indicate basal species, blue nodes indicate free-
living species, red nodes indicate parasites. Vertical height indicates node trophic level. 
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