
UC Irvine
ICS Technical Reports

Title
Reusable software engineering : a statement of long-range research objectives

Permalink
https://escholarship.org/uc/item/45p16900

Author
Freeman, Peter

Publication Date
1980-11-10
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/45p16900
https://escholarship.org
http://www.cdlib.org/


REUSE PROJECT

REUSABLE SOFTWARE ENGINEERING:

A Statement of Long-Range

Research Objectives

Technical Report 159

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Peter Freeman

Department of Information and Computer Science
University of California, Irvine

Irvine, California 92717

November 10, 1980



•ibA'i 1



Page 1

INTRODUCTION

This' report:

1. Outlines a set of long-range research objectives that
focus on the reuse of the workproducts of software
engineering (e.g. specifications, designs, programs);

2. Presents some of the basic philosophy underlying the
research approach that will be followed in addressing
these objectives;

3. Describes a coordinated set of research efforts
entitled the REUsable Software Engineering (REUSE)
Project.

The major sections contain the following:

PRIMARY RESEARCH OBJECTIVE PAGE 3

Briefly explains that the purpose of this research is
to develop principles, methods, and tools that permit
the effective reuse of the results of software
engineeriing.

DEFINITION OF TERMS PAGE 4

Notes that there are two types of "reuse" and that the
primary focus of this research is on a new type of
reuse in which code is not the primary object of reuse.

EXAMPLES OF REUSE PAGE 6

The examples toward which we are working center on the
reuse of designs and the use of software components.

MOTIVATION FOR RESEARCH ON REUSABLE SOFTWARE ENGINEERING
PAGE 9

There are strong pragmatic as well as fundamental
reasons for studying this problem.

CHARACTERIZATION OF THE REUSABILITY PROBLEM PAGE 14

The characterization is in terms of a set of questions
that must be answered in order to reuse a software
engineering workproduct.

BASIC RESEARCH QUESTIONS PAGE 15

Three underlying questions are outlined: what
information is relevant to the description of program
collections, how it is generated, and how should it be



Page 2

represented.

RESEARCH PLAN PAGE 16

A means-enjs structuring of our research activities is
presented.

CURRENT RESEARCH PAGE 18

Two on-going pieces of work that are central to
reusability are described. Several related pieces of
work are also mentioned.

CONCLUSION page 21

The existence of other approaches is reiterated.



Page 3

PRIMARY RESEARCH OBJECTIVE

The primary objective of this research is to develop
principles, methods, and tools that permit the effective
reuse of the results of software engineering.

The results of software engineering may be any of a
wide group of workproducts such as an analysis, a
specification, a design, a program, an integration test, or
a performance evaluation. The reuse of a workproduct means
that one may use it in a situation other than the original
one for which it was created with less effort than would be
required to create a new workproduct for use in that
situation.

We call this concept reusable software engineering.
Note that there are two interpretations of this phrase
(reusable software engineering and reusable software
engineering) which are simply different views of the same
end result — the reuse of previous efforts. The second
interpretation, however, is more limited in scope in that it
focuses on the reuse of software while the first connotes
the reuse of a wider range of artifacts.

This is an extremely broad objective. As will be made
clearer in this report, our initial efforts are directed at
a much narrower objective — the reuse of the results of
analysis and design.

. A fundamental hypothesis underlying this research is
that present knowledge and techniques are inadequate to
permit significant reuse of software engineering results.
No detailed defense of this hypothesis will.be presented
here. However, those desiring some justification are
directed toward two sources: a) Conversation with anyone
involved in the creation of large software-intensive systems
(ask them how much they are able to reuse previous designs);
b) The book edited by Wegner (1979) in which almost all the
research discussed is concerned with the initial creation of
various software engineering workproducts.

It should be noted at the outset that we believe this
to be a sufficiently important and difficult research
objective to require a relatively long time for completion.
As will be seen below, some of the specific research
objectives are open-ended and thus can extend indefinitely.
Even the more bounded objectives may take a number of years
to reach — even if it is possible to reach them.

The time frame that we are using in planning this
research is the next ten years. That is more of an
arbitrary date than one calculated from a PERT-chart. We
have chosen it because we believe that within 5 years there
will be substantial, but perhaps not revolutionary changes
in the way that software is produced, but that within 10



Page 4

years the pressures outlined below will be so great that,
revolutionary changes will be necessary.

It is the purpose of the research outlined here to help
lay the groundwork for changes in the way we obtain needed
software.

DEFINITION OF TERMS

The discussions in this report will be aided by the
following definitions.

software - one or more programs (usually more)
that may be either systems programs (e.g. operating
systems) or applications programs (e.g. accounting
program). ,

collection of software - any set of programs,
related or otherwis^^ includes systems (collections in
which the elements are related in particular ways).*

lifecycle - a sequence of phases in the existence
of a piece of software.

The sequence is often thought to be chronological, but
may not be in practice (e.g. a system in the testing phase
may be returned to the design phase if major problems
arise). A typical lifecycle is shown in Figure 1; we
assume that any piece of software goes through such a
lifecycle, although in specific cases one or more phases may
be non-existent or trivial. (E.g. Redesign of an existing
operating system that is intended to preserve its
functionality will probably not have an extensive analysis
phase). Further discussions of lifecycles can be found in
Kerola and Freeman (1980).

*This usage is similar to, but broader than, Belady &
Lehman's usage of the same term (p. 118 in Wegner (1979)).



NEEDS ARISE

V
ANALYSIS

V
DESIGN

CONSTRUCTION

OPERATION/EVOLUTION

Page 5

Figure 1: Typical System Lifecycle

It should also be noted that some of the phases (e.g.,
analysis and design) bear the name of an activity; this
activity is usually dominant at that point in the life of
the software, but this does not mean that the activity isn't
also performed at other times (e.g., analysis and design is
often done during evolution in order to adapt the software
to new conditions).

analysis - an activity aimed at understanding a
problem to be solved and at bounding the set of
acceptable solutions to it.

design - the activity of defining and structuring
a system organization in order to meet the requirements
laid out in analysis. The essence of design is choice
from a set of alternatives.

construct ion - in software, programming and
testing (both unit and integration testing).

evolution (a.k.a. maintenance) repair.

adaptation, and enhancement of a software system.

workproduct - the result of performing an activity
like analysis, design, or construction; we will always
mean a tangible result that can be read and about which
we can ask questions (e.g., a requirements definition



Page 6

containing certain information or a design specifying
the modules of a system and their interconnections).

reuse - a) use of an element of a collection of
executable software (e.g. a member of library, a
module fro; system, a subsystem that is part of a
larger sys' in a new collection.

This is the conventional meaning of reuse of software
and is currently practiced widely with well-defined pieces
of code.

b) use of non-executable workproducts (e.g. a
requirements definition, a design, a test plan) in the
lifecycle of a piece of software other than the one for
which it was originally produced.

This is a new kind of reuse in that it is rarely
practiced at present in the software domain.

EXAMPLES OF REUSE

This section presents several examples of reusable
software engineering, both current and future.

1. A subroutine used to build and initialize a particular
kind of table; written and used by a programmer and a
few other colleagues.

2. Mathematical subroutine package; supplied with a
language processor by a vendor; used by anyone capable
of using the language system.

3. A general-ledger package written in Basic and operable
under the operating system of a particular vendor;
built by a software house; used in many different
types of business and many different machine
configurations (but each of which uses the same
operating system).

4. A system generator that configures an operating system
for a specific hardware configuration; built by the
vendor that build the operating system; usable by
systems programmers for a specific type of hardware and
a specific operating system.

5. An applications generator that produces report
generating programs able to access a database, perform
some statistical analyses, and display the results;
built by a software house; usable with a specific
database system, particular analysis operations, and
specific display formats



Page 7

6. A language system (e.g., UCSD Pascal) built in itself
or some intermediate language that can be implemented
on a new piece of hardware by writing a very small'
subset of the total system in the language of the new
machine and "porting" the remainder of the system over
from an existing system; built by a software group;
usable (with respect to putting it on a new machine)
only by experts.

7. An entire applications subsystem (e.gtelemetry data
processing) that is used in toto in a new system;
typically usable only by or with the aid of the people
that built it originally.

All of these are examples of current artifacts that
permit valuable reuse of software. The expectation (see,
for example, Business Week, September 8, 1980) is that such
reuse will expand rapidly in coming years.

These examples (which cover the range of current
reusability) share several characteristics:

1. Reuse involves code; in most cases, executable code;
in some, recompilable code in a higher—level language.

2. The design and analysis that went into producing the
code is being reused, but only implicitly.

3. The object being reused is either^ completely
encapsulated and thoroughly described (e.g.
mathematical subroutines) or requires the intervention
of an expert to permit reusage (e.g. applications
subsystem).

4. No applications-level function (e.g. a particular
calculation or display format) can be created (without
additional programming) that is not built-in to the
system. ,

While there are undoubtedly other examples that differ
in some respects, we believe that these commonalities
substantially characterize our current ability to reuse
software engineering. We believe that there are other
patterns of reuse that would be useful but that are
impossible as long as these constraints apply. Further
discussion of this point can be found in Belady and Lehman
(1979) and Neighbors (1980).

Some examples of reusability that we would like to see
include:

1. A general-purpose table builder; created by a software
vendor and readily available; usable by any programmer



Page 8

working in any language; simple to use and no major
execution or space penalties involved in using the
tables it b, ilds.

This requj - the reuse of an analysis of the domain of
tables and a -;hanism that permits the generation of
efficient coi and storage structures to permit
implementation of specific instances. Neighbors (1980)
provides a mechanism to support this type of reusability.
The example v/ould also require careful packaging and
distribution of the analysis and associated mechanism; in
general, that has not been done.

2. An operating system design (the functional design plus
the internal logical design as represented by the
modularization of the system) that could be implemented
on a variety of different machines; the functional
design would not change in a reuse; the modularization
would not change (except perhaps for minor additions or
deletions)the internal design of each module (as
expressed in a PDL, for example) might remain the same
or might be redesigned in response to the
characteristics of the new machine.

The reuse of this design would begin at the level of
the modularization. That is, once the decision had been
made that the functional design was what was desired for a
new machine, the implementors would begin working with the
architectural design document (the modularization).
Initially, they - would use this design (along with other
information^ such as the characteristics of previous
implementations of this design on other machines) to
determine the feasibility of implementing it on the new
target machine.

Assuming the new implementation appeared feasible, it
would proceed on a module—by—module basis. In cases where
the internal design of a module could remain the same (a
command parser, for example), the PDL could be used
directly; in cases where the new machine demanded a new
internal design (an I/O handler, for example), a new
internal design would be done. Once all of the internal
design was completed, coding could then take place.

At this point, another artifact could be reused:

3. The detailed test plan (test specifications) and
construction strategy (order in which modules are built
and integrated); the plans would have been prepared
along with the design of the operating system and used
on previous implementations.



Page 9

Both of these types of reuse can he found in other
disciplines. It is very common to build a house from a
standard set of plans that have been modified in particular
ways (for example, to fit the terrain of a particular site)
and in ways that permit local variation (for example, in the
choice of materials or finishes). Implementation plans are
often reused; for example, computer vendors have standard
procedures to follow in setting up a new computer
installation.

It is clear to us that this reuse of previous software
engineering efforts is needed and could save enormous
amounts of effort. Yet, we know of no standard operating
system design that can be purchased and implemented on a
variety of machines. Yet, how many really different
operating systems are there in existence today? We see very
few, implying that a large amount of effort is being
expended in the repetitive design of a few basic systems.

Another example is;

4. A set of software components used to construct a large
system (for example, a military command and control
system); the components were not built specifically
for this type of system, but rather come from a supply
of components used in other systems as well (for
example, inventory control systems, telephonic systems,
and natural-language communication programs).

The lure of software components is obvious and has been
discussed in various forms for some time (see Mcllroy
(1968), Corwin and Wulf (1972) and Belady and Lehman
(1979)). While software components are now used in
productive ways, there are still serious limitations to
their generality and effectiveness. Work by Neighbors
(1980) , however, has pointed the way to new techniques for
building systems from software components; that work is
described in more detail below and forms the basis for some
of the.current work on the Reuse Project,

MOTIVATION FOR RESEARCH ON REUSABLE SOFTWARE ENGINEERING

We assume the reader of this document is sufficiently
knowledgeable in both the pragmatic world of software
development and the theoretical/conceptual world of computer
science to share with us a large amount of common
perception. In this section we will limit our discussion to
points that have motivated us to pursue this particular line
of research.



Page ]0

Pragmatic (software engineering) Motivation

We perceive- i number of pragmatic reasons motivating
research aimed enhancing the reuse of prior development:

Cost. The ;h and ever-increasing cost of producing
software is a minant theme in the computer field today.
Since most of that cost is directly attributable to labor
costs, anything that makes some segment of the development
process less time-consuming will lower total costs.
Obviously, if v/e can completely reuse some segment of
development, then it will require much less (approaching
zero) labor.

Dua1 nature of current reuse. There is, of course, a
good deal of reuse of software engineering results today.
It is our observation, however, that this reuse is either an
all or nothing proposition. Entire application systems are
reused with only minor changes made: A genera]-ledger
system built for one type of business is modified slightly
and works well for a different type of business; an
excellent example of reuse. A message-switching system
built for one application is reused for a new application
with only minor changes.

At the other end of the spectrum, very small pieces of
code may be reused: Mathematical subroutines, data
filtering processes, functions of a 1000 different types.
In the extreme, we reuse single lines of code!

While both of these types of reuse are valuable, we
believe them to be insufficent to meet the demands we see on
the horizon. In particular, they do not include reuse of
pieces of systems in-between the two extremes of
single-function subroutines and complete systems.

The problem with reusing an entire system is that you
have little flexibility (with current technology) in reusing
the system for new purposes. While this is fine for some
purposes, the software development situation we sion
envision for 1990 will demand a much wider set of total
systems than can be created in this way.



HIGH

Effort

required
to reuse

code

LOW

SMALL

(high effort to build
new system out of
small components)

size of reused code

Figure 2; Reusability Tradeoffs

Page 11

LARGE

(low effort, but
low probability
that large com
ponents can be
reused in toto)



Page 12

When we analyze the other alternative — reuse of
individual functions at the lowest level — we also see
problems. The ifoary one is that if one wishes to reuse
small pieces c de to build a large or complex system
then, in gen< , a large amount of effort by a
sophisticated 'der is needed. The result is low savings
of effort. Fi 2 illustrates this tradeoff. (It should
be noted that we know only the end points on these curves;
their shape is unknown).

A second, and not inconsiderable, problem with the
reuse of small pieces of code is that we have no pragmatic
way of describing large numbers of modules so that large
numbers of programmers can access them. It is as though we
had a large library in which the books had no titles on the
covers and there was no card catalog!

A third problem, of course, is that we have no standard
ways of interfacing pieces of code (except in restricted
domains limited to a particular language and usually to a
particular application).

Single dimens ion of current reuse. A more critical
problem with current reuse is that it is largely confined to
the single dimension of reuse of code.

We have argued above that reuse of code alone is
limited in its effectiveness due to the inflexibility of
large bodies of it and the sophistication needed to use
small pieces. As we learn more about how to develop
systems, we increasingly understand that the harder problem
is the analysis and design activity. Most people today urge
that more time and effort be spent on the analysis and
design for good reason — it not only is the harder activity
but if it is done properly then later stages of the
lifecycle of a system, most especially evolution, will be
much easier.

The motivation we take from this is that we must learn

how to reuse the results of analysis and design efforts. In
fact, we believe this to be the critical issue in making
reusability of software engineering a reality

The advent of microcomputers. The rapid growth of
capabilities of microcomputers and their rapid drop in cost
is producing two main effects with respect to the need for
the results of system development. First, the exploding use
of small computers has only begun. One is tempted to
compare it to use of electricity which started with only a
few applications and rapidly expanded to its present
ubiquitous role in modern society. The implication for
software development should be clear. The low hardware cost
and high payoff of using computers in many diverse
situations will place enormous pressures on the software
community to produce an incomprehensibly wide set of



Page 13

systems. We''̂ cannot possibly produce this multitude of
applications with our current software technology.

Again, we believe that one way (but certainly not the
only) to attack this is through the reuse of analysis and
design. Also critical is the reuse of system parts larger
than individual functions but smaller than an entire system.

Second, the obvious advantage of using microcomputers
in a multitude of engineering, scientific,^ and data
processing applications is rapidly bringing many
professional engineers, scientists, and others into
situations in which they must use the computer directly in
order to get their job done. A current example is the
design engineer on a piece of equipment. Instead of^ using
traditional electrical systems to control the piece of
equipment, increasingly he must program microcomputer
(perhaps many of them) to carry out functions previously
handled by other technology.

These people are not programmers (let alone software
system designers) and do not wish to become programmers.
Especially because their knowledge of software is meager,
they need more powerful tools. To permit them to do their
job we must be able to provide concepts and tools necessary
to reuse the results of someone else's problem analysis and
design. In this way they will be able to reuse portions of
a prior piece of software engineering work and get on with
their primary jobs.

Scientific (computer science) Motivation

As v/ill be seen when we discuss some of the specific
research questions to be answered, most of them deal with
how we describe and manipulate collections of programs.

Programs are fundamenta1. It is clear from the
research that lias been done and from the problems that are
still unsolved that programs and the phenomena surrounding
their creation and execution are the fundamental pheonomena
of computer science. Most of the work in computer science
so far, however, deals primarily with individual programs.

Increasingly, however, in the practical world, it is
the system (of programs), not individual programs that is
the element of primary concern. It creates the problems and
holds out the promise of increased power. It is clear to us
that computer science must learn to deal with systems just
as much as it deals with individual programs.

•What is relevant? What information is relevant to the
description and manipulation of collections of programs?
This is a basic question of computer science (when expanoed
to deal with systems of programs) . Yet, it is one that v;e



Page 14

have no formal or organized body of knowledge about-

How are pro< . n systems organized? What laws govern
the compos it ion ; .lavior, and modification of systems of
programs? Agair i basic question about which we have very
little informat

We will outline more fully below several questions that
are fundamental to the reuse of software engineering. These
questions, if answered or even partially answered, would
contribute significantly to computer science. This in turn
would provide a basis of knowledge applicable to many
different problems.

CHARACTERIZATION OF THE REUSABILITY PROBLEM

This section provides a characterization of the
reusability problem following Freeman (1976). We view
reusability as basically one of description.

We assume that in a given system development situation
(that is, a specific system and a specific point in the
development lifecycle) an existing software engineering
workproduct (such as a specification, a design, or a test
plan) may be considered for reuse.* Four questions must then
be answered:

1. • In what ways does the existing workproduct not meet our
needs?

2. In what ways can the workproduct be changed so that it
does meet our needs?

3. What side-effects (unintended changes in the
workproduct characteristics) will these changes induce?

4. What effects will there be on subsequent workproducts
that are derived from the workproduct in question?

We call these the reusabili ty questions.

The basic question we seek to answer then, is:

"How can a complex software system be described so that
one can effectively answer reusability questions?

Operationally, there are six questions that must be answered
in order to answer this overall question:

1. (definition problem) What ae the relevant
characteristics of software?

*Whether or not there is such an existing workproduct — and
locating it — is a difficult question. Here we are
assuming that (somehow) a candidate has already been
located.



Page 15

2. (collection problem) How do we efficiently develop the
information needed to answer the reusability questions?

3. (selective abstraction problem) How do we abstract only
the information of interest?

4. (decision interaction problem) How do we represent the
relationships between abstract aspects^ of the
workproduct (assumptions, constraints, decisions)?

5. (system interaction problem) How do we represent the
relationships (both physical and conceptual) between
parts of the system that the workproduct describes?

6. (location problem) Given a specific set of requirements
for a workproduct, how do we locate the information
necessary to answer the reusability questions?

An additional question that carries us beyond the basic
question of determining reusability, but that is essential
in practice to decide if specified changes will work, is the
following:

7. (changed assumption problem) How do we determine the
effects of proposed changes?

There are many interpretations of these problems. We
could explore each in considerable detail, considering
ramifications, connections to other research problems in
computer science, previous work and so on. Likewise, there
are many different approaches to solving these problems that
could be taken. It is one of the primary objectives of the
Reuse Project to explore' these and other questions in
considerable detail, but we shall not do so here. The
current research described later in this report does provide
an indication of how we are approaching them, however.

BASIC RESEARCH QUESTIONS

It is useful to identify a small number of basic
questions that underlie the large number of more specific
questions that are asked in the course of a research
project. In fact, the purpose of many research projects,
when viewed from a perspective, of time or distance, is
primarily to discover what the right questions really are.
Thus, we cannot state with 100% certainty that the following
are the basic questions; however, we have studied these
areas for a number of years in different ways and always
come back to the opinion that they are indeed basic
questions.

Our focus is on the reuse of software engineering. To
answer the questions that these goals imply, we believe that
the following four, highly interrelated questions must be



Page 16

addressed:

Inf oriTio . I on question: What information is
relevant the description and manipulation of
collection f programs? (i.e., what are the relevant
software e eering workproducts?)

Generation/usage question; What are the basic
operations used in the creation and usage of
•information about program collections? (i.e., how are
the workproducts created?)

Representation question; How should information
about program collections be represented to facilitate
reuse? (i.e., what form should, workproducts take?)

Structure question; What "laws" govern the
composition and manipulation of software systems?

In each of these basic questions we have used the word
"programs" because that is the ultimate entity with which we
are concerned. It should be clear, however, that
information about program collections may include the full
range of software engineering results — designs, analyses,
requirements, and so on.

These are the basic research questions that we believe
our research on the reusability of software engineering will
eventually help answer in part. We believe it is important
to keep in mind what the underlying questions are for
several reasons.

First, by being aware of the larger or more basic
questions, we can more easily use results from other areas
of computer science to help advance our knowledge on our
specific research goal of reusable software engineering.
Second, we believe that the pragmatic research question of
reusability and the underlying scientific questions of
software characteristics, composition, generation, and
manipulation are inextricably intertwined; the pragmatic
question cannot be answered without (partially) answering
the basic research questions and they cannot be answered
without a specific context (such as reusability) in which to
explore.

RESEARCH PLAN

We do not have, nor do we feel it is appropriate to
have, a completely mapped out research plan. We have been
describing and bounding a research area, not a specific
single-thread research project. We do have some specific,
immediate research plans which are briefly described below.
In this section we want to describe the general paradigm we
are following to guide our long-term research activity.



Page 17

Fundamentally, we believe that progress will be made
through the iterative cycle of the scientific method, as
shown in Figure 3. Given some concepts or theories about
reusability, (derived initially from observations of and
experience with attempts to reuse software engineering), we
must put those ideas to the test of experimentation and
actual practice. That activity, when properly evaluated,
should yield information about the validity of those ideas
as well as information that can be used to improve them and
to generate new theories. This cycle can be seen in the
immediate research plans described below.

OBSERVATION

OF BE PRACTICE —> EXPERIMENTATION —> EVALUATION —> RESULTS

I " .
<I.

Figure 3; Basic Research Paradigm

This basic paradigm becomes more specific when we
consider the nature of the phenomenon we are studying —
reusability. Figure 4 shows five aspects of the reusability
phenomenon that we must study (the structure of systems,
development information, methods for generating development
information, methods for reusing such information, and tools
to help with generating and reusing development information)
and four types of research activity that (in general) must
be carried out (perhaps repeatedly) on each aspect of the
phenomenon,

This table can be read in several ways. Note that the
column titles can be interpreted as means of providing
information about the ends (system structure, definition of
development information, etc.) in which we are interested.
Another interpretation is that the activities are ways of
helping us understand the observable artifacts of the
situation. A third observation is that the artifacts become
more complex as we go down in the table (i.e., methods for
generating development information are more complex subjects
of study than the information itself).

In the context of reusability, we believe that we must
first characterize what we know about the particular aspect
of the phenomenon (such as development information) and then
formulate requirements on this aspect with respect to
reusability. The nature of the phenomenon coupled with the
requirements will then permit us to generate an experimental
concept or object that can be tested through actual
experimentation (and its accompanying evaluation).



A

R

T

I

F

A

C

T

S

SYSTEM

STRUX

DEVEL

INFO

GENRATING

METHODS

REUSE

METHODS

TOOLS

ACTIVITIES

C1 A 1ACTERIZE FORMULATE

..CMOMENA REUSE

REQUIREMENTS

Ico models
rep study

SE theory

Draco-80

rep study

PROPOSE

CONCEPT OR

ARTIFACT

Page 18

CARRY OUT

EXPERIMENTS

rep study rep study

Draco-80 ' Draco-80

Freeman-76 Draco-81

Draco-80 Draco-80

Draco-81

Figure 4: Specific Research Activities

The body of this table contains specific research
activities that help us address particular aspects of the
problem of reuse„ For example, our current research on the
representation used by various development methods will
primarily address the aspect of development information.

CURRENT RESEARCH

The specific research activities noted in Figure 4 are
the following:

Draco-80

This was an extensive piece of research resulting in
the Ph.D. thesis of James M. Neighbors (1980). The most
tangible aspect of the research is a system (Draco 1.0) that
makes it possible to build applications systems using
preexisting software components. The software components
are organized into domains of knowledge about subjects (for
example, data structures, natural language parsers,
algebraic computations). Each domain encapsulates the
operations and operands that are needed to express any
desired actions in a domain; each operation and operand is
implemented as a software component; the semantics of each
component are expressed in terms of some other domain that
Draco already knows about.



Page 19

Draco then permits one to refine statements made in the
language of one domain into the underlying domains used to
express its semantics. (There may be more than one possible
refinement of a component into another domain). Draco also
permits you to optimize the resulting refinements in order
to obtain the required efficiency of the resulting code.

The largest example that Draco has dealt with so far is
the creation of a small relational data base system with a
natural language front-end. It permitted the construction
of this example system from preexisting components in a
fraction of the time that it would have taken to build the
system from the ground up. While this is obviously due to
the fact that most of the pieces had already been built,
these pieces could (and were) used in other systems as well.

Neighbors (1980) describes this work and also provides
a number of insights into the philosophy behind the use of
software components. While this work deals primarily with
components, it clearly is a seminal piece of work for
reusability since it permits one to reuse analysis and
design as well as actual code. Its primary focus (in the
reusability area) is on defining an effective method of
reusing analysis and design and on providing a tool that
makes this possible.

D r a c o - R 3.

Work has already begun on exploring the limits of the
reusability method and tool incorporated in the Draco
system. This will essentialy be an experiment in which
Draco is built up to a level that will permit the rapid
construction of many different systems of a particular type
for a variety of target machines. The system type chosen
for this experiment is the class of dedicated,
specia1-purpose relational data base systems with natural
language interfaces.

Within two years we expect to be able to generate
systems such as inventory control, student information,
sales/order information, vehicle location, and customer
information. Each system might be on the order of 10,000
executable instructions, run on an.Apple, a PDP-10, or a
large mainframe, and take no more than a v^eek to create once
a complete and consistent description of the desired system
is presented.

Dr. Neighbors is continuing this work under the
direction of the author and with the assistance of Bruce
Porter. Outside funding is being sought.



Page 20

Representation Study

Work has also started on a study of analysis and design
representations that is aimed at establishing a firm set of
requirements for ' !.e reusability of a design or analysis and
proposing a fir •' step in the direction of an improved
representation to Ifill these requirements. The core of
this work will b^ c. set of experiments to shed light on the
ability of current representations to support reusability.

This work is being done by the author with the
assistance of Jerry Hamilton, Ruben .Prieto-Diaz, and Annette
Collard. Outside funding is being sought.

Freeman-7 6

In Freeman (1976) we proposed a projective method of
obtaining the necessary information for reusing a piece of
software. We have not explored that concept further to
date; however, that proposal shaped much of thought in this
report and that concept still appears fruitful.

Li fecycle Models

This work, and that described in the following section,
was not undertaken with reusability uppermost in mind;
nonetheless, it is relevant to our work on reusability and.
will be continued.

The paper by Kerola and Freeman (1980) takes a first
step toward analyzing the lifecycle definitions that are
used to organize the software engineering activity. This is
relevant to reusability since it helps us understand the
points in development at which it is "natural" to define a
wo rkproduct.

SE Theory

In 1978 and 1979, in the course of working on a
textbook in software engineering, we attempted to define
some fundamental operations of software engineering and to
describe these operations in terms of SADT models. This
work has not been published nor continued in any systematic
way. However, it appears to be relevant to reusability in
that it helps us characterize the methods by which the
information we wish to reuse is developed in the first
place. This, in turn, is the first, step in making sure that
those methods produce information that is reusable.



Page 21

CONCLUSION

We believe that the problems facing the computing
community and the software profession in particular are
significant when we look far enough ahead. Essentially,
those problems are ones of being able to deliver on the
expectations that the phenomenonal growth in computing
capability are rapidly building in our society as a whole.

We also continue to be excited by the intellectual
challenge of understanding the nature of this artificial
science that is being created. Even if there weren't
pressing pragmatic questions to be answered,^ the
intellectual challenge could keep us busy for a long time.

We must reiterate that we in no way believe that the
research area outlined here is the only answer. We do
believe, however, that it is sufficiently important to
warrant our primary research efforts for the forseeable
future.

Finally, we want to stress the dual nature of the
research outlined. The methods of reusability, when
sufficiently understood and developed, should provide us
tangible help in dealing with the coming flood of demands
for highly varied software. For the even longer term, the
focus on reusability will provide us the right orientation
to study effectively the underlying nature of software and
the processes surrounding its creation and usage.



Page 22

acknowledgements

A number of people have discussed reusability with ii.c
and to all of them I owe a debt for taking the time to
understand, think about, and provide feedback on these
Ideas. Les Bel-^dy of IBM Research and Dennis Kibler of UCI
were especiallN elpful in carefully reading an earlier
draft. Jim Neighbors has long been more of a colleague than
a doctoral student, and it is a pleasure to acknowledge the
contribution that he has made to these ideas. Finally, Tony
Wasserman, in ways direct and indirect, has again
contributed to my understanding of software and the
activities surrounding it.

me



Page 23

REFERENCES

Belady, L.A. &• N.M. Lehman. "The Characteristics of Large
Systems," in Wegner, 1979.

Corwin, W. & W. Wulf. "SL-230: A Software Laboratory,"
Technical Report, Carnegie-Mellon University, 1972.

Freeman, Peter. "Reusable Software", Research proposal, ICS
Department University of California, Irvine, 1976.

Kerola, Pentti and Peter Freeman. "A Comparison of
Lifecycles," accepted for publication in Proc. 5th Intl.
Conference in Software Eng ineering, 1980. (Preprint
available from authors)

Mcllroy, M.D. "Mass Produced, Software Components", 1968
NATO Conference on Software Engineering- Also in J.M.
Buxton, P. Naur, and B. Randell (eds.) Software
Engineering Concepts and Techniques, Petrocel1i/Charter,

Neighbors, James M. Software Construction Using Components,
Ph.D. Thesis, University of California, Irvine, 1980.
Available as ICS TR #160.

Wegner, Peter (ed.) Research Directions in Software
Technology MIT Press, 1979.




