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ARTICLE

Proteostasis by STUB1/HSP70 complex controls
sensitivity to androgen receptor targeted therapy
in advanced prostate cancer
Chengfei Liu1, Wei Lou1, Joy C. Yang1, Liangren Liu2, Cameron M. Armstrong1, Alan P. Lombard1, Ruining Zhao3,

Onika D.V. Noel1, Clifford G. Tepper 4,5, Hong-Wu Chen4,5,6, Marc Dall’Era1,5, Christopher P. Evans1,5 &

Allen C. Gao1,5,6

Protein homeostasis (proteostasis) is a potential mechanism that contributes to cancer cell

survival and drug resistance. Constitutively active androgen receptor (AR) variants confer

anti-androgen resistance in advanced prostate cancer. However, the role of proteostasis

involved in next generation anti-androgen resistance and the mechanisms of AR variant

regulation are poorly defined. Here we show that the ubiquitin-proteasome-system (UPS) is

suppressed in enzalutamide/abiraterone resistant prostate cancer. AR/AR-V7 proteostasis

requires the interaction of E3 ubiquitin ligase STUB1 and HSP70 complex. STUB1 dis-

associates AR/AR-V7 from HSP70, leading to AR/AR-V7 ubiquitination and degradation.

Inhibition of HSP70 significantly inhibits prostate tumor growth and improves enzalutamide/

abiraterone treatments through AR/AR-V7 suppression. Clinically, HSP70 expression is

upregulated and correlated with AR/AR-V7 levels in high Gleason score prostate tumors. Our

results reveal a novel mechanism of anti-androgen resistance via UPS alteration which could

be targeted through inhibition of HSP70 to reduce AR-V7 expression and overcome resis-

tance to AR-targeted therapies.
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Proteomic equilibrium including protein folding, trafficking,
maturation, and degradation controls mammalian cell
biological function and maintains physiological environ-

ment stabilization. Protein homeostasis (proteostasis) is regulated
through a comprehensive network, including molecular chaper-
one proteins, the ubiquitin–proteasome system, and the autop-
hagy system1–5. Imbalanced proteostasis disrupts protein
clearance and increases abnormal deposition of protein aggre-
gates which facilitates cancer cell survival and progression. Thus,
overexpression of oncogenic proteins mediated by proteostasis is
a potential mechanism that contributes to drug resistance in
cancer cells. Understanding the mechanisms of protein post-
translational regulation in order to find strategies to correct
proteostasis-imbalance in anti-androgen resistant prostate cancer
is warranted.

Enzalutamide and abiraterone are the second-generation anti-
androgen drugs approved for the treatment of castration-resistant
prostate cancer (CRPC). Even though they are effective at first,
resistance to both drugs occurs frequently. Considerable evidence
from both clinical and experimental studies demonstrate that
truncated androgen receptor (AR) variants, particularly AR-V7,
plays vital roles in promoting CRPC progression during androgen
deprivation therapy and in the induction of resistance to enzalu-
tamide and abiraterone therapy6–9. Rearrangements that alter AR
gene structure and splicing patterns have been described in prostate
cancer cell lines, and xenografts which suggests the origin of AR-V7
might be derived from intragenic AR gene rearrangements or
premature translation termination by aberrant mRNA splicing10–12.
However, post-translational regulation of AR-V7 and the
mechanisms of AR-V7 proteostasis have not been fully explored.

The chaperone protein family, including heat shock proteins
(HSPs), regulates the activity and stability of many oncogenes that
control cancer cell survival and progression3,13–15. The HSP70s
family, including stress inducible member HSP70 (HSPA1A/
HSPA1B) and constitutively expressed member HSC70 (HSPA8),
plays important roles for protein maturation and correct folding in
cancer cell signal transduction and regulation16–18. STUB1 is a co-
chaperone protein and functional E3 ubiquitin ligase that links
HSP70’s polypeptide-binding activity to the ubiquitin proteasome
system. HSP70 interacts with STUB1 and controls protein stabili-
zation. Binding of STUB1 to HSP70 can halt the proper folding of
HSP70 substrate proteins and concomitantly facilitate the U-box-
dependent ubiquitination of HSP70-bound substrates19–21. As AR’s
co-chaperone protein, HSP70 assists the folding and maturation of
AR protein22–24. However, understanding of the interaction among
AR-V7, HSP70, and STUB1 in next generation anti-androgen
resistance remains elusive.

In the present study, we discover that the ubiquitin-mediated
proteolysis pathway and proteasome activity are suppressed in
enzalutamide and abiraterone-resistant prostate cancer cells which
stabilizes AR-V7 protein in these cells through ubiquitin–proteasome
alteration. The STUB1/HSP70 complex regulates full length AR (AR-
FL) and AR variant proteostasis which confers next generation anti-
androgen resistance. HSP70 inhibition significantly disrupts AR and
AR-V7 gene programs and re-sensitizes resistant cells to enzaluta-
mide and abiraterone treatment both in vitro and in vivo. Notably,
the levels of HSP70 are correlated with AR-V7 in tumors from
patients with high Gleason scores. These results suggest that targeting
the proteostasis pathway through inhibiting HSP70 might be a
valuable strategy to overcome next generation anti-androgen resis-
tance and improve drug therapy in CRPC patients.

Results
UPS suppressing confers AR-FL/AR-V7 protein stabilization.
Enzalutamide and abiraterone-resistant CWR22Rv1 and C4-2B

MDVR cells express both AR-FL and AR-V7 as demonstrated by
RNA transcriptome sequencing. The AR mRNA splice junction
was analyzed by Integrative Genomics Viewer (IGV) 2.4. C4-2B
MDVR and CWR22Rv1 cells showed abundant splice junctions
between AR exon3 and exon4 (Fig. 1a). Among the products
derived from these splice junctions are AR-V1, AR-V3, AR-V7,
and AR-V9, with AR-V7 being the most abundant AR variant in
both C4-2B MDVR (depth 22 reads) and CWR22Rv1 cells (depth
111 reads). Both C4-2B MDVR and CWR22Rv1 cells express
higher AR-FL and AR-V7 mRNA and protein levels compared to
C4-2B cells as confirmed by real-time reverse transcription-PCR
(qRT-PCR) and Western blot (Fig. 1b). Consistently, C4-2B
MDVR and CWR22Rv1 xenograft tumors express significantly
higher levels of AR-V7 protein compared to C4-2B parental
xenograft tumors as measured by IHC (Fig. 1c). To understand
the potential mechanisms that may be involved in overexpression
of AR-V7 protein in enzalutamide-resistant cells, we determined
whether AR-V7 protein stabilization was altered in C4-2B MDVR
cells. C4-2B parental and C4-2B MDVR cells were treated with
cycloheximide (CHX), AR-V7 and AR-FL protein levels were
examined at different time points. Both AR-V7 and AR-FL pro-
teins were more stable in C4-2B MDVR cells compared to the C4-
2B parental cells (Fig. 1d). Half-life of AR-V7 protein in C4-2B
cells was ∼2 h, while AR-V7 half-life in C4-2B MDVR cells was
significantly increased (>8 h). Half-life of AR-FL protein was also
increased in C4-2B MDVR cells. We next analyzed global gene
microarray data from C4-2B parental, C4-2B MDVR, and C4-2B
AbiR cells by ingenuity pathway analysis (IPA) and GSEA. The
protein ubiquitination pathway was the second highest altered
pathway in enzalutamide-resistant cells (p= 1.93 × 10−7)
(Fig. 1e). GSEA revealed that the ubiquitin-mediated proteolysis
pathway was significantly suppressed in C4-2B MDVR and C4-
2B AbiR cells (p < 0.05). The results were also confirmed in other
independent enzalutamide-resistant cells (LNCaP EnzaR and
CWR-R1 EnzaR)25 and LuCaP castration-resistant (LuCaP CR)26

patient-derived xenograft (PDX) models overexpressing AR-V7
(Fig. 1f and Supplementary Fig.1a). The ubiquitin-mediated
proteolysis pathway was significantly suppressed in LNCaP
EnzaR (p < 0.001), CWR-R1 EnzaR (p < 0.001) cells, and LuCaP
CR PDX tumor models (p < 0.001). Further proteasome activity
fluorometric assay revealed that resistant C4-2B AbiR, C4-2B
MDVR, and CWR22Rv1 cells produced significantly lower pro-
teasome activity compared to C4-2B cells (Fig. 1g). Moreover, AR
and AR-V7 ubiquitination were significantly suppressed in all
resistant cells (Fig. 1h). Taken together, the results suggest that
AR-V7 is overexpressed in resistant prostate cancer cells via
enhanced protein stability through ubiquitin proteasome system
alteration.

STUB1/HSP70 complex regulates AR variants protein expres-
sion. Heatmap analysis of global gene microarray data from
enzalutamide/abiraterone-resistant cells and LuCaP CR tumors
showed that the core enrichment genes involved in protein ubi-
quitination were downregulated. One of the most significantly
downregulated genes in the resistant cells and LuCaP CR tumors
was E3 ubiquitin ligase STUB1 (Fig. 2a and Supplementary Fig.
1b). We found that STUB1 expression was significantly reduced
in AR-V7 positive prostate cancer cells, such as C4-2B MDVR,
C4-2B AbiR, CWR22Rv1, and VCaP cells compared to the AR-
V7 negative LNCaP cells (Fig. 2b). Next, we determined whether
STUB1 and HSP70 (a STUB1- binding protein) bind to AR-V7 or
AR-FL by co-immunoprecipitation (Co-IP) assays in the 293 cell
system. We first confirmed that STUB1 binds with HSP70
(Supplemental Fig. 1c top). Then we found that AR-V1, AR-V3,
AR-V7, AR-V9, AR-V12 (AR567es), and AR-FL directly bind to
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STUB1 and HSP70 (Fig. 2c, Supplementary Fig. 1c middle and
bottom). Similar results showed that STUB1 and HSP70 bind to
endogenous AR-FL and AR variants in both C4-2B MDVR and
CWR22Rv1 cells (Supplementary Fig. 1d).

To further investigate the effect of STUB1 on regulation of AR-
V7 expression, we transiently transfected STUB1 into C4-2B
MDVR and CWR22Rv1 cells and found that overexpression of
STUB1 significantly suppressed AR-V7 protein expression but
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did not affect mRNA expression (Fig. 2d and Supplementary Fig.
2a). STUB1 suppressed while HSP70 increased AR-V7 transcrip-
tional activity in C4-2B cells (Supplementary Fig. 2b). We then
investigated whether STUB1 affects AR-V7 and AR-FL protein
stability. As shown in Fig. 2e and Supplementary Fig. 2c, STUB1
overexpression significantly shortened the half-life of AR-V7
protein (around 2 h) in CWR22Rv1 and C4-2B MDVR cells
compared to the vector-transfected controls (around 8 h). The
AR-FL protein half-life was also shortened by STUB1 over-
expression in both CWR22Rv1 and C4-2B MDVR cells. To
determine whether decreased AR-V7 protein expression by
STUB1 expression is mediated through the ubiquitin–proteasome
pathway, proteasome inhibitor MG132 was added into C4-2B or
293 cells transfected with AR-V7 and STUB1. STUB1 decreased
AR-V7 expression, while addition of MG132 blunted the STUB1
effects (Fig. 2f and Supplementary Fig. 2d). Furthermore,
STUB1 significantly induced AR-V7 ubiquitination (Fig. 2g),
suggesting that STUB1-mediated AR-V7 protein degradation is
through the induction of AR-V7 ubiquitination. In addition,
HSP70 formed complexes with AR-V7/AR-FL, while STUB1
disassociated AR-V7/AR-FL from HSP70 binding (Fig. 2h and
Supplementary Fig. 2e). These results indicate that the STUB1/
HSP70 complex regulates AR-V7 and AR-FL protein expression
through the ubiquitin–proteasome pathway. Since AR-V7 is
associated with enzalutamide resistance, we tested if STUB1
affects cell sensitivity to enzalutamide. CWR22Rv1 and C4-2B
MDVR cells expressing lower level of STUB1 were transiently
transfected with STUB1 and subsequently treated with enzaluta-
mide or abiraterone for 3 days. STUB1 overexpression re-
sensitized drug- resistant cells to enzalutamide or abiraterone
treatment (Fig. 2i). These results suggest that STUB1 modulates
cells sensitivity to enzalutamide/abiraterone treatment possibly
through downregulation of AR-V7 protein expression.

STUB1/HSP70 complex regulates sensitivity to anti-androgens.
As a co-chaperone protein of STUB1, HSP70 assists oncogenic
proteins folding and maturation. We found that HSP70 but not
HSP90 (HSP90AA1) was overexpressed in enzalutamide-resistant
prostate cancer cells and LuCaP CR tumors (Fig. 3a and Sup-
plementary Fig. 2f). HSP70 overexpression blocked STUB1 and
AR-V7 binding as demonstrated by Co-IP (Fig. 3b left) and
decreased AR-V7 ubiquitination (Fig. 3b right). To elucidate
whether HSP70 is also involved in resistance to enzalutamide and
abiraterone, HSP70 was knocked down by two independent
siRNA in CWR22Rv1 and C4-2B MDVR cells. Following siRNA
transfection, the cells were treated with enzalutamide or abir-
aterone. Knockdown of HSP70 significantly re-sensitized both
CWR22Rv1 and C4-2B MDVR cells to enzalutamide (Fig. 3c) and

abiraterone treatments (Supplementary Fig. 3a). Notably,
knockdown of HSP70 significantly decreased AR-V7 as well as
AR-FL expression in both CWR22Rv1 and C4-2B MDVR cells
(Fig. 3d left) and consequently suppressed PSA luciferase activity
(Fig. 3d right). To further demonstrate HSP70-conferred enza-
lutamide and abiraterone resistance is through the AR/AR-V7
regulation, human normal fibroblast cells IMR90 and immorta-
lized prostate epithelial cells PZ-HPV7 were used. As shown in
Supplementary Fig. 3b, IMR90 and PZ-HPV7 cells are AR and
AR-V7 negative cells and they expressed significantly lower levels
of HSP70 compared to C4-2B MDVR cells. Knockdown of
HSP70 in IMR90 and PZ-HPV7 did not affect enzalutamide and
abiraterone sensitivity (Supplementary Fig. 3c-d). These results
suggest that HSP70 confers resistance to next generation anti-
androgen treatments through AR-V7 regulation, indicating that
HSP70 could serve as a therapeutic target.

Apoptozole (APO)27 and Ver155008 (VER)28 are HSP70
inhibitors that function through binding to the HSP70 active
pocket and suppressing its ATPase activity (Supplementary Fig.
3e-f). We determined that APO and VER significantly suppressed
the growth of the resistant prostate cancer cells in a dose-
dependent manner but had moderate effects on PZ-HPV7 and no
effects on IMR90 cells (Fig. 3e). APO and VER significantly
reduced AR-V7 protein expression in both C4-2B MDVR and
CWR22Rv1 cells (Fig. 3f). Both APO and VER suppressed the
PSA luciferase activity in CWR22Rv1 and C4-2B MDVR cells
(Supplementary Fig. 3g). Additionally, APO and VER suppressed
DHT and AR-V7-induced PSA luciferase activity, especially the
HSP70- induced AR-V7 transcriptional activity in C4-2B cells.
However, enzalutamide only suppressed DHT-induced PSA
luciferase activity but not HSP70-induced AR-V7 transcriptional
activity in C4-2B cells (Supplementary Fig. 3h). Glucocorticoid
receptor (GR) has been linked to enzalutamide resistance
previously29. We found the STUB1/HSP70 complex also
regulated GR activity. APO and VER treatment or STUB1
overexpression significantly suppressed GR activity (Supplemen-
tary Fig. 3i-j). We next determined if APO and VER affect mRNA
expression of AR variants and their targets genes in C4-2B
MDVR cells (Supplementary Fig. 4a-g). Intriguingly, APO slightly
decreased the levels of AR-V7 mRNA, but significantly decreased
the levels of AR-FL, AR-V1, AR-V3, and AR-V9 mRNA. VER
significantly decreased the levels of AR-V3 and AR-V9 but not
the levels of AR-FL and AR-V7 mRNA. These results suggested
that APO and VER alter AR/AR variants expression at both
mRNA and protein levels. However, addition of proteasome
inhibitor MG132 largely recused APO and VER effects on AR/AR
variants suppression (Supplementary Fig. 4f), suggesting AR and
its variants suppression by APO and VER is largely due to the
protein degradation.

Fig. 1 UPS suppressing confers AR-FL/AR-V7 protein stabilization. a RNA transcriptome sequence data from C4-2B parental, C4-2B MDVR, and
CWR22Rv1 cells were viewed by IGV2.4 and AR splicing conjunction around exon3 was analyzed by sashimi plot. b Total RNA from C4-2B parental, C4-2B
MDVR, and CWR22Rv1 cells was extracted and mRNA levels of AR-FL, AR-V1, AR-V3, AR-V7, AR-V9, and AR-V12 were examined by qRT-PCR. AR-V7 and
AR-FL protein level in C4-2B parental, C4-2B AbiR, C4-2B MDVR, and CWR22Rv1 cells were examined by western blot. c AR-V7 immunohistochemistry
staining of the tumor sections isolated from the C4-2B parental, C4-2B MDVR, and CWR22Rv1 xenograft tumors. Scale bar 100 µm (low) and 20 µm
(high). d C4-2B parental and C4-2B MDVR cells were treated with 50 µg/mL cycloheximide, total cell lysates were collected at 0, 2, 4, and 8 h after
treatment. AR-V7 and AR-FL was examined by western blot and the half-life of AR-V7 was calculated. e Global gene microarray data from C4-2B parental
and C4-2B MDVR cells was analyzed by IPA, the top five canonical pathways were altered in C4-2B MDVR cells. f Global gene microarray data from C4-2B
parental, C4-2B MDVR, and C4-2B AbiR cells, LNCaP and LNCaP EnzaR cells were analyzed by GSEA, ubiquitin- mediated proteolysis gene set was
enriched in resistant cells. g C4-2B, C4-2B MDVR, C4-2B AbiR, and CWR22Rv1 cells were harvested and proteasome activity was determined by
proteasome Activity Fluorometric assay kit. ΔRFU was monitored at different time points (left) and the proteasome activity was quantified (right). hWhole
cell lysates from C4-2B, C4-2B MDVR, C4-2B AbiR, and CWR22Rv1 cells were harvested and immunopreciptated with AR antibody and blotted with anti-
Ubiquitin, AR-V7, and AR antibodies. *p < 0.05. Results are the mean of three independent experiments (±s.d.). Statistical analysis was performed using
two-tailed Student’s t-test. AR-FL full-length AR, AR-Vs AR-Variants, Ub Ubiquitin, s.e. short exposure, l.e. long exposure
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independent experiments (±s.d.). Statistical analysis was performed using one-way ANOVA. AR-FL: full-length AR, AR-Vs: AR-Variants, Ub: Ubiquitin
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Fig. 3 STUB1/HSP70 complex regulates sensitivity to anti-androgens. a Total mRNA and whole cell lysates from LNCaP, C4-2B, C4-2B AbiR, C4-2B
MDVR, and CWR22Rv1 cells were collected and subjected to qRT-PCR and western blot, respectively. b 293 cells were co-transfected with Flag-STUB1,
AR-V7, HA-Ub with or without HSP70 for 3 days, whole cell lysates were immunopreciptated with anti-Flag or AR-V7 antibodies and blotted with AR-V7,
HSP70, Flag or HA antibodies. c CWR22Rv1 and C4-2B MDVR cells were transiently transfected with two independent HSP70 siRNA (#5 and #6) and
then treated with 20 μM enzalutamide. Total cell number was determined at 3 and 6 days. d C4-2B MDVR and CWR22Rv1 cells were transiently
transfected with two independent HSP70 siRNA, whole cell lysates were collected and subjected to western blot. PSA luciferase activity was determined. e
IMR90, PZ-HPV7, C4-2B MDVR, and CWR22Rv1 cells were treated with different concentrations of APO and VER for 3 days, total cell numbers were
determined. f C4-2B MDVR and CWR22Rv1 cells were treated with 5 and 10 μM APO or VER for 48 h, total cell lysates were collected and subjected to
western blot. g C4-2B MDVR cells were treated with 5 μM APO and VER with or without 20 μM enzalutamide or 5 μM abiraterone, total cell number was
determined at 3 and 6 days. h C4-2B MDVR cells were treated with 5 μM APO or VER with or without enzalutamide and abiraterone, colonogenic assay
was performed and colonies were quantified. *p < 0.05. Results are the mean of three independent experiments (±s.d.). Statistical analysis was performed
using one-way ANOVA. AR-FL: full-length AR, AR-Vs: AR-Variants, Ub: Ubiquitin, ENZA: Enzalutamide, AA: Abiraterone acetate, APO: Apoptozole, VER:
Ver155008, RLU: Relative luciferase unit
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Next, we examined the combinational effects of APO or VER
with next generation anti-androgens. As shown in Fig. 3g and
Supplementary Fig. 5a, both APO and VER profoundly enhanced
enzalutamide and abiraterone treatments in CWR22Rv1 and C4-
2B MDVR cells in a time-dependent and dose-dependent
manner. However, there were no combination effects in PZ-
HPV7 and IMR90 cells (Supplementary Fig. 5b). These results
were also confirmed by clonogenic assay (Fig. 3h and Supple-
mentary Fig. 5c). To further demonstrate these two HSP70
inhibitors in clinical applications, conditionally reprogrammed
cells (CRCs) were established from a Gleason 10 score prostate
cancer patient based on the published protocol 30. As shown in
Supplementary Fig. 6a, these cells displayed highly heterogeneous
phenotype and overexpressed AR and HSP70 in both cytoplasm
and nucleus. These cells were resistant to enzalutamide and
abiraterone treatment but showed dose response to APO and
VER treatment (Supplementary Fig. 6b). Combination of APO or
VER with enzalutamide further suppressed cell proliferation in
these CRCs (Supplementary Fig. 6c). Taken together, these results
suggest that targeting HSP70 can improve next generation anti-
androgen treatment in advanced prostate cancer.

HSP70 inhibitors promote AR-V7 ubiquitination via STUB1.
To determine if inhibition of HSP70 promotes AR-V7 degrada-
tion through enhanced ubiquitination, 293 cells overexpressed
with AR-V7, HSP70, and HA-Ubiquitin were treated with either
20 μM VER or 20 μM APO overnight, along with 5 μM MG132
during the incubation to prevent degradation of ubiquitinated
AR-V7. We found that both APO and VER resulted in enhanced
ubiquitination of AR-V7 compared to DMSO-treated control
cells (Fig. 4a top). The results were also observed in C4-2B
MDVR cells (Fig. 4a bottom). Additionally, both APO and VER
significantly increased the binding of AR-V7 to STUB1 in 293
cells (Fig. 4b left) and AR/AR variants to STUB1 in C4-2B MDVR
cells (Fig. 4b right), suggesting that binding of HSP70 to AR-V7
potentially protects AR-V7 protein from degradation, and inhi-
bition of HSP70 promotes STUB1 and AR-V7 binding which
leads to AR-V7 protein degradation. Additionally, we confirmed
our findings by dual immunofluorescence staining. As shown in
Fig. 4c, STUB1 and AR-V7 were not co-localized in 293 cells
when HSP70 was overexpressed. AR-V7 was dominantly present
in the nucleus; however, STUB1 was mostly localized in the
cytoplasm when HSP70 was overexpressed. APO and VER
treatment significantly enhanced AR-V7 and STUB1 co-
localization. We also found that knockdown of STUB1 in C4-
2B MDVR cells rescued AR and AR-V7 suppression by APO and
VER treatment, suggesting that AR/AR-V7 degradation induced
by APO and VER is mediated by STUB1 (Fig. 4d). Furthermore,
AR-V7 and HSP70 overexpression significantly rescued APO and
VER-mediated growth inhibition in prostate cancer cells. As
shown in Fig. 4e, overexpresstion of both HSP70 and AR-V7 into
C4-2B cells significantly increased cell growth in CS-FBS condi-
tion. APO and VER still suppressed the cell proliferation but
showed higher rate than the vector transfected and single HSP70
or AR-V7-transfected cells. HSP70 overexpression stabilized AR/
AR-V7 protein in C4-2B cells (Fig. 4f). These results suggest that
HSP70 stabilizes and protects AR-V7 from degradation. Inhibi-
tion of HSP70 promotes AR-V7 ubiquitination and degradation
by STUB1.

HSP70 inhibition suppresses AR-FL and AR-V7 signaling. To
further explore the gene regulating mechanisms underlying the
downregulation of HSP70 in drug-resistant prostate cancer cells,
we performed RNA sequencing analyses using C4-2B MDVR and
CWR22Rv1 cells treated with APO or VER to identify gene

programs that are affected by HSP70 inhibition. There are 10,773
genes and 10,317 genes that were differentially expressed in APO
or VER treated C4-2B MDVR cells, respectively, and 7905 genes
that were commonly regulated by both APO and VER (fold
change > 1.2; Fig. 5a). The top pathways upregulated by HSP70
inhibition include unfolded protein response (UPR), the p53
pathway and post translational protein modification pathway.
The down-regulated pathways include cell cycle, androgen
response, E2F targets, and Myc targets as analyzed by GSEA
(Fig. 5b and Supplementary Tables 2–5). APO and VER-regulated
genes were mainly clustered in two major groups compared with
DMSO treatment as plotted by heatmap using hierarchical clus-
tering with the genes found as commonly regulated by APO and
VER, indicating a high degree of concordance in the expression
changes that were induced by APO and VER treatment (Fig. 5c
left). At the individual gene level, we observed upregulation of
UPR genes (for example, XIAP1, ATF4, and ATF6) in both APO
and VER-treated cells. We also found that AR and AR-V7-
regulated genes (for example, KLK3, FKBP5, UBE2C, and AKT1)
were suppressed by APO and VER treatment (Fig. 5c right).
Further GSEA revealed AR and AR-V7 pathways were sig-
nificantly blocked by APO and VER treatment in both drug-
resistant cell lines. As shown in Fig. 5d left, the classical PID-AR
pathway was significantly suppressed. Both APO and VER
robustly disrupted AR and AR-V7 target gene programs (Fig. 5d
right). qRT-PCR verified that AR and AR-V7 target genes, such
as KLK2, KLK3, NKX3-1, FKBP5, UBE2C, and Myc were sup-
pressed by both APO and VER treatment. Notably, genes such as
UBE2C and Myc, which are preferentially upregulated by AR-V7,
were significantly suppressed by APO and VER treatment (Fig. 5e
and Supplementary Fig. 7).

HSP70 inhibition enhances enzalutamide therapy in vivo. To
examine if targeting HSP70 enhances enzalutamide treatment
in vivo, we generated enzalutamide-resistant xenografts derived
from CWR22Rv1 cells, as well as HSP70 and AR-V7 over-
expressing LuCaP35CR PDX model and treated with APO and
VER (Fig. 6a). CWR22Rv1 tumors were resistant to enzalutamide
treatment (p= 0.73), both APO and VER significantly inhibited
tumor growth (p= 0.0095 and p= 0.016, respectively). Combi-
nation of APO or VER with enzalutamide further inhibited tumor
growth of CWR22Rv1 xenografts (p= 0.0012 and p= 0.0045,
respectively) (Fig. 6b, c). Survival was improved in the APO and
VER groups compared to the vehicle or enzalutamide-treated
groups. Combination treatment of APO or VER with enzaluta-
mide further improved animal survival (Fig. 6d). Treatments did
not affect mouse body weights (Supplementary Fig. 8a, left). Vital
organs, such as liver and kidney, were harvested for histopatho-
logic examination and no significant pathological changes were
found in the organs from any group. As shown in Supplementary
Fig. 8b, livers did not show any vacuolar changes; and there was
no sign of inflammation at the renal pelvis in single or combi-
nation treatment groups. Immunohistochemical staining of AR-
V7 and Ki67 showed AR-V7 expression and cell proliferation
were significantly inhibited by APO or VER treatment alone and
further inhibited by the combination treatments (Fig. 6e).

To further characterize the effects of HSP70 inhibition on
tumor growth in vivo, the LuCaP 35CR PDX model was utilized
as described in Fig. 6f. As shown in Fig. 6g, h, enzalutamide
slightly suppressed LuCaP 35CR tumor growth but did not reach
significance (p= 0.54), APO significantly suppressed LuCaP
35CR growth (p= 0.026), while combination of APO and
enzalutamide further reduced tumor growth (p= 0.0087). Treat-
ments did not alter mouse body weights (Supplementary Fig. 8a
right). Enzalutamide treatment slightly, but insignificantly,
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suppressed tumor PSA expression (p= 0.28), APO treatment
significantly suppressed PSA (p= 0.029), and the combination
treatment further reduced the PSA levels (p= 0.0053) (Fig. 6i).
APO and the combination treatments also improved survival

compared to either vehicle or enzalutamide treatment alone
(Fig. 6j). Immunohistochemical staining of Ki67 showed cell
proliferation was significantly inhibited by APO, and further
inhibited by the combination treatment (Fig. 6k). Taken together,
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these results suggest that inhibition of HSP70 by APO or VER
reduces enzalutamide-resistant tumor growth, and combination
of enzalutamide with either APO or VER further suppresses
tumor growth.

HSP70 level is correlated with AR/AR-V7 in prostate tumors.
To determine the relationship between HSP70 and AR expression

in human prostate cancer, we first analyzed HSP70 and AR-FL
expression in GEO and Oncomine databases. Levels of HSP70
and AR-FL are significantly upregulated in metastatic castration-
resistant prostate cancer (mCRPC) patients compared to benign
prostate and primary prostate cancer in four independent GEO
databases (Fig. 7a). In addition, the level of HSP70 expression is
significantly increased in high Gleason score prostate cancer in
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two independent datasets from the Oncomine database (Fig. 7b).
To examine whether HSP70 expression is correlated with AR and
AR-V7 expression in advanced prostate cancer, 26 high Gleason
score (≥8) patients’ samples were collected and the levels of
HSP70, AR-V7, along with HSP90 and AR-FL were examined by
qRT-PCR (Supplementary Table 1). As shown in Fig. 7c, d,
HSP70 levels were significantly correlated with AR-V7 levels (r=
0.792, p= 0.00000143) and AR-FL levels (r= 0.689, p=
0.00000993). However, there is no significant correlation between
HSP90 and AR-V7/AR-FL in these samples (Supplementary Fig.
9a). Figure 6e shows the expression of HSP70 protein in a
representatively low (Gleason 6) and high (Gleason 9) Gleason
grade prostate cancer by IHC. We also interrogated the
GSE32269 and GSE6919 databases including 51 and 90 prostate
tumor samples, respectively. As shown in Supplementary Fig. 9b,
HSP70 significantly correlated with AR-FL in both databases.
Collectively, these results suggest that HSP70 is significantly
overexpressed in advanced stage prostate cancer and the level of
HSP70 expression is correlated with AR-V7 and AR-FL
expressions.

Discussion
Our study uncovers a balanced crosstalk between proteostasis and
next generation anti-androgen resistance through regulation of
the STUB1/HSP70/AR-V7 complex. We discovered that the
ubiquitin-mediated proteolysis pathway and proteasome activity
are suppressed in enzalutamide and abiraterone-resistant prostate
cancer cells, and play a critical role in the degradation of the AR
and its variants, particularly AR-V7. Modulation of AR and AR-
V7 proteostasis balance could be achieved by inhibition of
HSP70, which may provide a valuable strategy to overcome
resistance to next generation anti-androgen therapies. Our find-
ings suggest that alteration of the
chaperone–ubiquitin–proteasome system may represent a general
mechanism for the regulation of AR variants protein stability.
With that, we provide rationale targeting proteostasis through
inhibition of HSP70 as a potential therapeutic strategy to over-
come drug resistance to AR-targeted therapies in CRPC.

Emerging evidence suggests that proteomic instability, such as
protein misfolding and aggregation play pivotal roles in cancer
cell survival and progression31. Proteomic equilibrium may be
altered during tumorigenesis, and consequently leads to onco-
genic activation at the protein level32. Our study determined that
the imbalance of proteostasis brought on by anti-androgen
treatment in prostate cancer cells might be a critical mechanism
conferring drug resistance. Deficiency of proteostasis and lack of
proteasome activity in enzalutamide and abiraterone-resistant
prostate cancer might trigger overexpression of onco-proteins,
such as AR and its variants through an inability of protein
clearance. Previous reports suggested that constitutively active AR
variants confer the CRPC phenotype and resistance to next
generation anti-androgens in both pre-clinical and clinical

models6,7,33–35. Among these AR variants, overexpression of AR-
V7 and AR-V9 was reported in enzalutamide and abiraterone-
resistant prostate cancer patients, which is consistent with our
findings in this study7,36. The literature suggests that AR variants
are generated from intragenic AR gene rearrangements that alter
AR gene structure11 and aberrant mRNA splicing and premature
translation termination evident in prostate cancer cell lines and
xenografts10. In the present study, we determined that AR var-
iants are not only generated through mRNA splicing but also
through protein stabilization via protein ubiquitin proteasome
alteration in drug-resistant prostate cancer. The half-life of AR-
V7 is significantly extended in enzalutamide-resistant prostate
cancer cells compared with parental cells, suggesting that next
generation anti-androgen treatments might alter the prostate
cancer ubiquitin-proteolysis system and stabilize AR-V7 protein.
Notably, the proteasome activity is significantly suppressed in
enzalutamide and abiraterone-resistant prostate cancer cells and
the E3 ligase STUB1 and its binding chaperone protein HSP70
might control the AR-V7 proteostasis and confer the resistance.

STUB1 is one of the important E3 ligases regulating several
nuclear receptors, such as GR37, ERα38, and AR39–41. Over-
expression of STUB1 in cultured cells promotes ubiquitination of
cystic fibrosis transmembrane conductance regulator (CFTR), c-
Myc and Raf kinase42–45. The importance of STUB1 involved in
oncogenic proteins regulation was reinforced by our discovery
that STUB1 bound with AR/AR-V7 and enhanced their ubiqui-
tination and degradation. The AR-V7 co-chaperone protein,
HSP70, formed a complex with AR-V7 and assisted AR-V7
protein maturation. STUB1 blocked HSP70 and AR/AR-V7
complex formation, leading to AR/AR-V7 protein degradation.
Targeting HSP70 enhances STUB1 and AR/AR-V7 binding and
leads to AR/AR-V7 ubiquitination and degradation (Fig. 7f). Our
findings related to the HSP70/STUB1/AR-V7 complex are
important as this mechanism may represent a general
chaperone–ubiquitin–proteasome mechanism for the regulation
of AR variants protein stability that may involve in treatment
resistance in advanced prostate cancer.

HSP70 consists of an N-terminal ATPase domain (or
nucleotide-binding domain) and a C-terminal substrate-binding
domain (SBD) that recognizes polypeptide substrates. HSP70s
together with HSP40s are the prominent chaperone families
involved in chaperone-assisted proteasomal degradation of mis-
folded proteins46–48. After misfolded protein is depleted in the
cells, STUB1 mediates the HSP70 turnover itself and reduces
HSP70 to physiological level 19. Here we discovered that HSP70
was overexpressed in anti-androgen-resistant prostate cancer cells
and mCRPC tumors, which is consistent with reports showing
that HSP70 is overexpressed in various cancers49–51. Notably,
HSP70 expression was correlated with AR-V7 level in high
Gleason score prostate tumors. The homeostasis of the HSP70/
STUB1 complex might play a substantial role in controlling AR-
V7 protein levels. HSP70 binds with AR-V7 and protects it from

Fig. 5 HSP70 inhibitors suppress AR and AR-V7 signaling. a Venn diagram of RNA-seq analysis of the two comparisons: APO vs. DMSO and VER vs.
DMSO in C4-2B MDVR cells. b GSEA of top enriched gene sets in C4-2B MDVR cells treated by HSP70 inhibitors. The upregulated and down regulated
gene sets from the Hallmark, KEGG and Rectome platforms were output by GSEA. c Heatmap and hierarchical clustering of the differentially expressed
genes (DEGs) between APO and VER treatment in C4-2B MDVR cells with fold change (FC) > 1.2, as compared to vehicle (DMSO). The genes were
displayed in rows and the normalized counts per sample were displayed in columns. Red indicates up-regulated and blue designates down-regulated
expression levels. Middle and right, UPR, AR, and AR-V7 activity-signature genes that were altered in expression are displayed. d GSEA of the PID-AR
pathway in C4-2B MDVR cells treated with HSP70 inhibitors, as compared to DMSO (left). GSEA of the AR and AR-V7 gene signatures in C4-2B MDVR
cells treated with HSP70 inhibitors (right). The signature was defined by genes that underwent significant expression changes as a result of AR and AR-V7
knockdown in prostate cancer cells 6. e qRT-PCR analysis of the indicated genes in C4-2B MDVR cells treated with DMSO or with HSP70 inhibitors (10
μM) for 48 h. *p < 0.05. Results are the mean of three independent experiments (±s.d.). Statistical analysis was performed using two tailed Student’s t-test.
APO apoptozole, VER Ver155008
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degradation by STUB1. Our study suggests that STUB1 remains
in the cytoplasm while HSP70 is overexpressed. HSP70 inhibition
significantly promotes STUB1 entering the nucleus and binds to
AR-V7. Therefore, targeting HSP70 might be a logical approach

to treat AR-V7 overexpressing CRPC patients. Using specific
siRNA to target HSP70 or HSP70 inhibitors to suppress HSP70
activity significantly blocked AR-V7 expression and suppressed
its transcriptional activity. These results suggest that HSP70 is a
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potential therapeutic target that drives AR-V7 expression, drug
resistance, and prostate cancer progression.

Studies over the last decades support the concept of targeting
chaperone proteins in cancer therapy. The most well-known
therapies targeting chaperone proteins currently in drug devel-
opment are HSP90 inhibitors. HSP90 assists several oncogenic
proteins including AR and facilitates their maturation52. How-
ever, HSP90 binds with the AR ligand-binding domain (LBD)
which is missing in constitutively active AR variants. This makes
HSP90 inhibition irrelevant in the treatment of AR variant
dominated prostate cancer. Additionally, targeting
HSP90 significantly increased HSP70 expression, suggesting a
compensating role of HSP70 as co-chaperone protein53. Several
categories of HSP70 inhibitors have been pursued in drug
development, such as targeting the peptide-binding domain
(PBD), amino-terminal ATPase domain (ABD), or HSP70 co-
chaperones54. In the present study, we provide a proof of concept
by using HSP70 inhibitors (APO and VER) targeting ABD to
treat AR-V7 overexpressing and drug-resistant prostate cancer.
Through the bioinformatics analysis, we found that inhibition of
HSP70 using APO and VER suppresses AR/AR-V7 signaling
pathways in resistant cells. Additionally, APO and VER activate
the UPR pathway and suppress cell cycle. UPR activation induces
the caspases which localize to the endoplasmic reticulum (ER)
membrane and trigger apoptotic pathways55. Notably, tumors
that are resistant to enzalutamide are highly sensitive to APO and
VER treatments. APO and VER significantly enhanced enzalu-
tamide treatment both in vitro and in vivo. Our promising pre-
clinical data shed light on future clinical trial development by
using HSP70 inhibitors in advanced prostate cancer treatment.

In conclusion, our study suggests that the ubiquitin proteasome
system is suppressed in enzalutamide and abiraterone-resistant
prostate cancer models. The STUB1/HSP70 complex is involved
in AR and AR variant stabilization and regulates the sensitivity to
next generation AR-targeted therapy. Additionally, we provide a
proof of concept study showing that targeting HSP70 could be a
valuable strategy to treat AR-V7 overexpressing CRPC and
improve enzalutamide treatment. Clinically, HSP70 level is cor-
related with AR and AR-V7 in high Gleason score prostate
tumors, suggesting that HSP70 might serve as a potential marker
to indicate prostate cancer progression and therapeutic resistance.

Methods
Cells lines and tissue culture. LNCaP, C4-2B, and CWR22Rv1 were maintained
in RPMI1640 supplemented with 10% fetal bovine serum (FBS), 100 units per ml
penicillin, and 0.1 mg per ml streptomycin. IMR90, 293, and VCaP cells were
maintained in DMEM supplemented with 10% FBS, 100 units per ml penicillin,
and 0.1 mg per ml streptomycin. PZ-HPV7 cells were maintained in keratinocyte
serum-free medium (K-SFM) with the required supplements (Invitrogen). All
experiments with cell lines were performed within 6 months of receipt from the
American Type Culture Collection (ATCC) or resuscitation after cryopreservation.
C4-2B cells were kindly provided and authenticated by Dr. Leland Chung, Cedars-

Sinai Medical Center (Los Angeles, CA). The resistant cells were isolated and
referred to as C4-2B MDVR (C4-2B enzalutamide resistant) and C4-2B AbiR (C4-
2B abiraterone resistant)56,57. C4-2B MDVR and C4-2B AbiR were maintained in
20 μM enzalutamide containing medium and 10 μM abiraterone acetate containing
medium, respectively. Parental C4-2B cells were passaged alongside the resistant
cells as an appropriate control. All cell lines have been routinely tested mycoplasma
free by PCR and authenticated by short tandem repeat (STR) method. All cells
were maintained at 37 °C in a humidified incubator with 5% carbon dioxide.
Enzalutamide, abiraterone acetate, Apoptozole (APO), and Ver155008 (VER) were
purchased from Selleck Chemicals.

Plasmids and cell transfection. For small interfering RNA (siRNA) transfection,
cells were seeded at a density of 0.5 × 105 cells per well in 12-well plates or 2 × 105

cells per well in six-well plates and transfected with 20 nM of siRNA (Invitrogen)
targeting the HSP70 sequence (HSPA1A/HSPA1B, Catalog# 262305 and 262306),
STUB1 sequence (Catalog# 215046), or control siRNA (Catalog# 12935300) using
Lipofectamine-iMAX (Invitrogen). The effect of siRNA-mediated gene silencing
was examined using qRT-PCR and western blot 2–3 days after transfection. Cells
were transiently transfected by expressing plasmids for vectors, AR-FL, AR-V1,
AR-V3, AR-V7, AR-V9, AR-V12 (AR-V567es), Flag-STUB1, HA-Ubiquitin, or
HSP70 (HSPA1B, OriGene, Catalog# SC116767) using Lipofectamine 2000
(Invitrogen).

Protein extraction and western blotting. Whole cell protein extracts were
resolved on SDS–PAGE and proteins were transferred to nitrocellulose mem-
branes. After blocking for 1 h at room temperature in 5% milk in PBS/0.1% Tween-
20, membranes were incubated overnight at 4 °C with the indicated primary
antibodies AR (441), AR (N-20), AR (C-19), HSP70 (F-3 and H-300), STUB1
(H231 and G-2), MDM2 (HDM2-323), HSP90 (4F10), HA (F-3), Ubiquitin (P4D1
and FL76), 1:1000 dilution, Santa Cruz Biotechnology, Santa Cruz, CA; STUB1
(C3B6, 1:100 for IP, Cell Signaling antibody); AR-V7 (AG10008, Mouse mono-
clonal antibody, 1:1000 dilution, precision antibody); FLAG® M2 monoclonal
antibody (F1804, 1:1000 dilution for western blot, 1:200 for IP, Sigma-Aldrich, St.
Louis, MO); and Tubulin (T5168, monoclonal anti-α-tubulin antibody, 1:5000
dilution, Sigma-Aldrich, St. Louis, MO). Tubulin was used as loading control.
Following secondary antibody incubation, immunoreactive proteins were visua-
lized with an enhanced chemiluminescence detection system (Millipore, Billerica,
MA). All uncropped scans of Western Blot are attached in Supplementary Figs. 10
and 11.

Luciferase reporter assay. C4-2B, CWR22Rv1, or C4-2B MDVR cells were plated
into 12-well plates (1 × 105) and grown to 80% confluence and transiently trans-
fected using Lipofectamine 2000 (Invitrogen). pGL3-PSA6.0 luciferase construct
was co-transfected with pRL-TK (TK promoter-Renilla luciferase construct as
internal control). Briefly, pGL3-PSA6.0 luciferase construct and pRL-TK along
with HSP70 siRNA, AR-V7, or HSP70 were mixed and transfected. The luciferase
activity was determined 48 h after transfection using a dual-luciferase reporter
assay system (Promega). Cell lysates (35 μL per well) were used for measurement of
luciferase activity in a luminometer by first mixing the cell lysates (25 μL) with 20
μL luciferase assay reagent for measuring firefly luciferase activity and subsequently
adding 20 μL Stop-Glo reagent for measuring Renilla luciferase activity. Data were
normalized to Renilla luciferase activity.

Cell growth and survival assay. C4-2B MDVR or CWR22Rv1 cells were seeded
on 12-well plates at a density of 0.3 × 105 cells per well in RPMI 1640 media
containing 10% FBS and transfected with HSP70 siRNA or STUB1 plasmid and
then treated with 20 μM enzalutamide or 5 μM abiraterone for 3 days. Total cell
numbers were determined at 0, 3, and 6 days. CWR22Rv1 cells and C4-2B MDVR
cells were seeded on 12-well plates at a density of 0.5 × 105 cells per well in RPMI
1640 media containing 10% FBS and treated with 5 μM APO or VER with or

Fig. 6 HSP70 inhibitors enhance enzalutamide treatment in vivo. a Total cell lysates from C4-2B parental, C4-2B MDVR cells, and LuCaP35CR xenograft
tumors were extracted and subjected to western blot. HSP70, AR-V7, and AR-FL protein expression levels were determined. b, c Mice bearing CWR22Rv1
xenografts were treated with vehicle control, enzalutamide (25 mg/kg p.o.), APO (5mg/kg i.p.), VER (15 mg/kg i.p.), APO plus enzalutamide, or VER plus
enzalutamide for 3 weeks (n= 7). Tumor volumes were measured twice weekly. Tumors were photographed and weighed. Scale bar 1 cm. Data represent
means ± s.d. from 7 mice per group. d Kaplan–Meier curves showing survival benefits of HSP70 inhibitors single treatment, HSP70 inhibitors, and
enzalutamide combination treatment in CWR22Rv1 xenograft tumors. e IHC staining of AR-V7 and Ki67 in each group was performed. Scale bar 50 µm
(outside) and 20 µm (inside). f Treatment scheme on LuCaP 35CR PDX model. g, hMice bearing LuCaP 35CR xenografts were treated with vehicle control,
enzalutamide (25mg/kg p.o.), APO (5mg/kg i.p.), or their combination for 5 weeks (n= 6). Tumor volumes were measured twice weekly. Tumors were
photographed and weighed. Scale bar 1 cm. Data represent means ± s.d. from six mice per group. i PSA expression in mice serum was examined in different
treatment groups. j Kaplan–Meier curves showing survival benefits of APO single treatment, APO and enzalutamide combination treatment in LuCaP 35CR
tumors. k IHC staining of Ki67 in each group was performed. Scale bar 50 µm (outside) and 20 µm (inside). *p < 0.05. Statistical analysis was performed
using one-way ANOVA. AR-FL: full-length AR, AR-Vs: AR-Variants, ENZA: Enzalutamide, APO: Apoptozole, VER: Ver155008
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without 20 μM enzalutamide or 5 μM abiraterone in media containing FBS. Total
cell numbers were counted after 3 and 6 days.

Clonogenic assay. CWR22Rv1 cells or C4-2B MDVR cells were treated with 5 μM
APO or VER with or without 20 μM enzalutamide or 5 μM abiraterone. Cells were
plated at equal density (800 cells per dish) in 60 mm dishes for 3 weeks; the
medium was changed every 7 days. The colonies were rinsed with PBS before
staining with 0.5% crystal violet/4% formaldehyde for 30 min and the number of
colonies was counted.

Real-time quantitative RT-PCR. Total RNA was extracted using TriZOL reagent
(Invitrogen). cDNA was prepared after digestion with RNase-free RQ1 DNase
(Promega) and then subjected to real-time reverse transcription-PCR (RT-PCR)
using Sso Fast Eva Green Supermix (Bio-Rad) according to the manufacturer’s
instructions58. Each reaction was normalized by co-amplification of actin. Tripli-
cates of samples were run on default settings of a Bio-Rad CFX-96 real-time cycler.
The primer sequences are shown in Supplementary Table 6.

Co-immunoprecipitation assay. Equal amounts of cell lysates (1500 µg) were
immunoprecipitated using 1 µg of Flag antibody, HSP70 antibody, AR-V7 anti-
body, AR (N20) antibody, or STUB1 antibody with 50 µL of protein A/G agarose
with constant rotation overnight. The immunoprecipitants were washed with 10
mM HEPES (pH 7.9), 1 mM EDTA, 150 mM NaCl, and 1% Nonidet P-40 twice
with 1 mL each. The precipitated proteins were eluted with 30 µL of SDS–PAGE
sample buffer by boiling for 10 min. The eluted proteins were electrophoresed on
8% SDS–PAGE, transferred to nitrocellulose membranes, and probed with indi-
cated antibodies.

Dual immunofluorescence assay. 1 × 104 293 cells were plated in four-well Nunc™
Lab-Tek™ II Chamber Slides and transfected with AR-V7, HSP70, and Flag-STUB1
for 3 days and then treated with 10 µM APO or VER for another 24 h. Cells were
fixed with 4% paraformaldehyde, permeabilized with 0.5% Triton X-100, and
incubated with 1% BSA to block nonspecific binding. Cells were incubated with
anti-AR (N20, Santa Cruz Biotechnology) and anti-Flag antibodies (Sigma) over-
night. Intracellular AR-V7 was visualized with FITC-conjugated secondary anti-
bodies, Flag-STUB1 was visualized with Texas red conjugated secondary antibodies
and nuclei were visualized with DAPI by all-in-one fluorescence microscope (BZ-
X700).

Proteasome activity assay. 2 × 106 C4-2B parental, C4-2B AbiR, C4-2B MDVR,
and CWR22Rv1 cells were harvested and homogenized with 0.5% NP-40 in PBS.
The proteasome activity was determined by Proteasome Activity Fluorometric
Assay Kit (Biovision, Catalog #K245-100). Briefly, AMC standard curve was pre-
pared as described in the instruction. 10 μL samples plus 90 μL assay buffer were
added into opaque white 96 microwell plate. 1 μL of the proteasome inhibitor was
added into one of the paired wells and 1 μL of the proteasome substrate was added
to all the wells. The kinetics of fluorescence was developed at Ex/Em= 350/440 nm
in a microplate reader (Molecular Devices, Llc.) at 37 °C for 0–120 min. ΔRFU=
RFU (without proteasome inhibitor) – iRFU (with proteasome inhibitor). Protea-
some activity=AMC amount of samples/(ΔRFU at linear time point 2 reading−
ΔRFU at linear time point 1 reading) × sample volume × sample dilution factor=
nmol per min per ml.

RNA sequence data analysis. C4-2B MDVR and CWR22Rv1 cells were treated
with vehicle or the HSP70 inhibitors APO (10 μM) and VER (10 μM) for 48 h
before RNA extraction. RNA-seq libraries from 1 μg total RNA were prepared
using Illumina Tru-Seq RNA Sample, according to the manufacturer’s instructions.
mRNA-Seq paired-end library was prepared through Illumina NGS on HiSeq 4000:
2 × 150 cycles per bases (150 bp, PE). Around 30M reads per sample were gener-
ated. Data analysis was performed with a Top Hat–Cufflinks pipeline and sequence
read mapping/alignment using HISAT. StringTie Data was mapped to and

quantified for 60,658 unique genes/transcripts Gene and transcript expression is
quantified as Fragments Per Kilobase of transcript per Million mapped reads
(FPKM). Principal component analysis (PCA) was conducted on the FPKM gene-
level data for all genes/transcripts passing filter (filtered on expression > 0.1) in the
raw data. The relatedness of the differentially expressed genes from APO and VER
treatment was depicted with a Venn diagram. The common regulated genes by
APO and VER treatment were clustered with Hierarchical Clustering algorithm by
StrandNGS software.

Gene set enrichment analysis (GSEA). GSEA was performed using the Java
desktop software (http://software.broadinstitute.org/gsea/index.jsp)59. Genes were
ranked according to the shrunken limma log2 fold changes, and the GSEA tool was
used in ‘pre-ranked’ mode with all default parameters. KEGG-Ubiquitin-mediated
proteolysis pathway was used in the GSEA analysis.

Ingenuity pathway analysis. Pathway analysis of transcripts with changed
expression in C4-2B parental and C4-2B MDVR cells was performed using IPA
(www.ingenuity.com) and canonical pathways were determined. The p-value
associated with a pathway is a measure of the likelihood that the association
between a set of focus genes in the experiment and a given process or pathway is
the result of random chance; in general, a p-value (calculated using the right-tailed
Fisher exact test) < 0.05 indicates a statistically significant value.

Gene expression omnibus (GEO) and Oncomine analysis. Four separate data
sets from NCBI GEO were screened independently for expression levels of AR and
HSP70. GSE32269 compared localized primary prostate cancer and metastatic
prostate cancer. GSE6919, GSE27616, and GSE3325 compared benign prostate
specimens, primary prostate tumor, and metastatic prostate cancer. Data generated
from two prostate carcinoma data sets (Lapointe prostate and Singh prostate) from
Oncomine were analyzed and HSP70 expression in different Gleason score tumors
was determined.

Docking and binding analysis with Autodock/Vina and PyMOL. The X-ray
crystallographic structure of HSP70 ATPase domain was retrieved from RCSB
Database (PDB code: 1S3X). The Ligands (APO and VER) preparation and grid
box creation were completed using Graphical User Interface program AutoDock
Tools (ADT). AutoDock saved the prepared file in PDBQT format. AutoGrid was
used for the preparation of the grid map using a grid box. The grid size was set to
50 × 50 × 50 xyz points with grid spacing of 0.375 Å and vina search space center
was designated at dimensions (x, y, and z): 17.3821, 28.7233, and 16.0554. Auto-
Dock/Vina was employed for docking using protein and ligands information along
with grid box properties in the configuration file. During the docking procedure,
both the protein and ligands are considered as rigid. The results <1.0 Å in posi-
tional root-mean-square deviation (RMSD) was clustered together and represented
by the result with the most favorable free energy of binding. The pose with lowest
energy of binding or binding affinity was extracted and aligned with receptor
structure. The obtained docked poses were analyzed with ADT using PyMOL.

Human prostate cancer patient sample analysis. The tumor samples were
harvested through the University of California, Davis (UC Davis) central bior-
epository under an approved Institutional Review Board (IRB) protocol in Urology
Department (#GU001). The informed consent was obtained from all participating
patients. Biopsy samples were taken from patients and immediately frozen into
liquid nitrogen before the RNA extraction. Twenty-six tumors were classified into
high Gleason score (≥8) groups, including 13 HSPC (hormone sensitive prostate
cancer) and 13 CRPC (castration-resistant prostate cancer) samples (Supplemen-
tary Table 1). In the 13 CRPC samples, nine were from prostate biopsies, two from
bone biopsies, and two from lymph node biopsies. Total RNA from these patient
samples was extracted by RNeasy mini plus kit (QIAGEN) and cDNA was pre-
pared after digestion with RNase-free RQ1 DNase (Promega). qRT-PCR was run
using Sso Fast Eva Green Supermix (Bio-Rad) according to the manufacturer’s

Fig. 7 HSP70 level is correlated with AR/AR-V7 in prostate tumors. a In four independent GEO data bases (GSE32269, GSE6919, GSE27616, and
GSE3325), AR and HSP70 gene expression levels were determined in benign prostate (BP), primary prostate cancer (PCaP), and metastatic prostate
cancer (MCaP) tumor samples. *p < 0.05. Statistical analysis was performed using two-tailed Student’s t-test. b In two independent Oncomine databases,
HSP70 gene expression was determined in different Gleason score prostate tumors. c, d Total RNA from 26 high Gleason score tumors was isolated and
mRNA expression of AR-FL, AR-V7, and HSP70 was determined by qRT-PCR. The AR-FL/HSP70 correlation and AR-V7/HSP70 correlation were
determined by Spearman rank correlation. The correlation coefficient was determined. e The prostate tumor biopsies from two prostate cancer patients
(Gleason 6 and Gleason 9, respectively) were fixed and HSP70 immunohistochemistry staining of the tumor sections was determined. Scale bar 50 µm
(outside) and 20 µm (inside). f Proposed pathway of HSP70/STUB1/AR-V7 complex in next generation anti-androgen resistance and prostate cancer
progression. HSP70 forms complex with AR-V7 and increases AR-V7 transcriptional activity, STUB1 binds with HSP70 and disassociates HSP70 and AR-
V7 binding, the ubiquitin ligase U-box domain of STUB1 binds with AR-V7 and promotes its ubiquitination and degradation. HSP70 inhibition by APO or
VER promotes STUB1 and AR-V7 binding and ubiquitination
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instructions and as described. AR-FL, AR-V7, HSP70, and HSP90 expression levels
were determined. The primer sequences are shown in Supplementary Table 6.

Conditionally reprogramed cells (CRCs) culture. Primary cells from malignant
human prostate tissues were isolated according to the protocol30. Briefly, human
prostate tissues were minced and digested with collagenase/hyaluronidase/dispase
at 37 °C for 1–3 h. The dissociated cell suspension was filtered through a 100 µM
cell strainer and collected. Cells were plated with mixtures of complete F medium/
conditioned medium of irradiated J2 culture, supplemented with 10 µM Y-27632.
Subculturing was performed with trypsin treatments when needed.

Animal studies and treatment regimens. All animals used in this study received
humane care in compliance with applicable regulations, policies, and guidelines
relating to animals. All experimental procedures using animals were approved by
the Institutional Animal Care and Use Committee of UC Davis. CWR22Rv1 cells
(3 million) were mixed with matrigel (1:1) and injected subcutaneously into the
flanks of 4–5-week-old male C.B17/lcrHsd-Prkdc-SCID mice (ENVIGO). Tumor-
bearing mice (tumor volume around 50–100 mm3) were randomized into six
groups (seven mice per group) and treated as follows: (1) vehicle control (15%
Cremophor EL, 82.5% PBS, and 2.5% dimethyl sulfoxide (DMSO), intraperitoneal
(i.p.)), (2) enzalutamide (25 mg/kg, per os (p.o.)), (3) APO (5 mg/kg, i.p.), (4) VER
(15 mg/kg i.p.), (5) enzalutamide (25 mg/kg, p.o.) plus APO (5 mg/kg, i.p.), and (6)
enzalutamide (25 mg/kg, p.o.) plus VER (15 mg/kg, i.p.). Tumors were measured
using calipers twice a week and tumor volumes were calculated using length ×
width × width × 0.52. Tumor tissues, liver, and kidney were harvested and weighed
after 3 weeks of treatment. Tumor tissues, liver, and kidney were paraffin
embedded and H/E stained.

To assess the effect of combination of HSP70 inhibitors with enzalutamide on
the growth of PDX tumors, the LuCaP35 CR model was obtained from the
University of Washington and established in the UC Davis Cancer Center. Briefly,
3–4 weeks C.B17/lcrHsd-Prkdc-SCID mice (ENVIGO) were surgically castrated.
Two weeks later, ∼20 to 30-mm3 pieces of LuCaP 35CR tumor were implanted into
the pre-castrated SCID mice. When tumors reached 50–100 mm3, mice were
randomized into four groups (six mice per group) and treated as follows: (1)
vehicle control (15% cremophor EL, 82.5% PBS, and 2.5% DMSO, i.p.), (2)
enzalutamide (25 mg/kg, p.o.), (3) APO (5 mg/kg, i.p.), and (4) enzalutamide (25
mg/kg, p.o.) plus APO (5 mg/kg, i.p.). Tumors were measured using calipers twice a
week and tumor volumes were calculated using length × width × width × 0.52.
Tumor tissues were harvested and weighed after 5 weeks of treatment. Serum was
collected for PSA determination.

Measurement of mouse serum PSA. Mouse blood from the LuCaP 35CR tumor
model was collected and the serum was harvested. PSA levels were measured using
a PSA ELISA Kit (United Biotech, Inc., Mountain View, CA) according to the
manufacturer’s instructions.

Immunohistochemistry. Tumors were fixed by formalin and paraffin-embedded
tissue blocks were dewaxed, rehydrated, and blocked for endogenous peroxidase
activity. Antigen retrieving was performed in sodium citrate buffer (0.01 mol per
Litter, pH 6.0) in a microwave oven at 1000W for 3 min and then at 100W for 20
min. Nonspecific antibody binding was blocked by incubating with 10% FBS in
PBS for 30 min at room temperature. Slides were then incubated with anti-HSP70
(F-3, at 1:300; Santa Cruz), anti-Ki67 (at 1:500; Neomarker), or anti-AR-V7 (at
1:200; Precision) at 4 °C overnight. Slides were then washed and incubated with
biotin-conjugated secondary antibodies for 30 min, followed by incubation with
avidin DH-biotinylated horseradish peroxidase complex for 30 min (Vectastain
ABC Elite Kit, Vector Laboratories). The sections were developed with the dia-
minobenzidine substrate kit (Vector Laboratories) and counterstained with
hematoxylin. Nuclear staining of cells was scored and counted in five different
vision fields. Images were taken with an Olympus BX51 microscope equipped with
DP72 camera.

Statistical analysis. Statistical analyses were performed with SPSS16.0. Raw data
was summarized by means, standard deviations (SD), and graphical summaries
and transformed if necessary to achieve normality. Data from the in vitro
experiments are presented as means ± SD from three independent experiments.
Differences between individual groups were analyzed by two-tailed Student’s t tests
for single comparisons or one-way analysis of variance (ANOVA) followed by the
Scheffé procedure for multiple group comparisons. In the tumor growth experi-
ments, size of the tumor at sacrifice serves as the primary response measure. The
tumor growth and PSA across groups was analyzed by ANOVA. Concordance
between AR-FL, AR-V7, HSP70, and HSP90 level in clinical patient samples was
determined by Spearman rank correlation. p < 0.05 was considered statistically
significant.

Data availability
The RNA sequence data and Microarray data in the present study have been
deposited in Gene Expression Omnibus (GEO) with the accession number

GSE120006. The hyperlink of the dataset is: https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE120006. All data are available from the authors upon rea-
sonable request.
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