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Introductory Paragraph

In the mostly pristine Congo Basin, agricultural land-use change has intensified in recent years. 

One potential and understudied consequence of this deforestation and conversion to agriculture is 

the mobilization and loss of organic matter from soils to rivers as dissolved organic matter. Here, 

we quantify and characterize dissolved organic matter sampled from 19 catchments of varying 

deforestation extent near Lake Kivu over a two-week period during the wet season. Dissolved 

organic carbon from deforested, agriculturally-dominated catchments was older (14C age: ~1.5kyr) 

and more biolabile than from pristine forest catchments. Ultrahigh-resolution mass spectrometry 

revealed that this aged organic matter from deforested catchments was energy-rich and 

chemodiverse, with higher proportions of nitrogen- and sulfur-containing formulae. Given the 
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molecular composition and biolability, we suggest that organic matter from deforested landscapes 

is preferentially respired upon disturbance, resulting in elevated in-stream concentrations of 

carbon dioxide. We estimate that while deforestation reduces the overall flux of dissolved organic 

carbon by ~56%, it does not significantly change the yield of biolabile dissolved organic carbon. 

Ultimately, the exposure of deeper soil horizons through deforestation and agricultural expansion 

releases old, previously stable, and biolabile soil organic carbon into the modern carbon cycle via 

the aquatic pathway.
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dissolved organic carbon; soil organic carbon; deforestation; agriculture; Congo

Introduction

Tropical soils are major reservoirs of soil organic carbon (SOC) and are estimated to contain 

approximately one-third of the global first-meter SOC stock (~1325 Pg)1. The stability of 

these vast tropical SOC stocks is threatened by increasing anthropogenic disturbance in the 

form of deforestation and associated land-use change. A recent global meta-analysis found 

that the conversion of tropical primary forest to croplands resulted in an average relative 

SOC loss of 25%2. Given the relevance of these stocks to the global carbon (C) cycle, there 

is a growing need for fundamental and mechanistic research into how anthropogenic 

pressures may alter the tropical C cycle.

It is well established that deforestation and land-use change release carbon dioxide (CO2) 

via the in-situ respiration of SOC in disturbed soils2–5. A relatively understudied effect of 

soil disturbance, however, is the leaching and mobilization of SOC as dissolved organic 

carbon (DOC)6. In northern ecosystems, forest loss and soil disturbance has generally been 

found to increase DOC losses to streams7–9, although decreases have also been 

reported10,11. The effect of deforestation on DOC mobilization in tropical ecosystems is not 

well documented, but recent work in SE Asia has shown increases following forest loss, 

secondary regrowth, and increased freshwater fluxes12,13. In addition to changes in DOC 

concentration and fluxes, the export of aged DOC has been documented in disturbed soils 

and is shown to be positively correlated with human disturbance globally, suggesting that 

DOC is an important indicator of SOC stability12,14,15. Historically, aged DOC sourced from 

terrestrial ecosystems is assumed to be chemically stable and resistant to 

biodegradation16,17. Recent studies on aged DOC in Arctic aquatic ecosystems and 

elsewhere, however, suggest that it can be highly biolabile and rapidly oxidized by microbes 

upon release to surface waters, depending on the physico-chemical conditions under which it 

was developed and preserved (i.e. in complexes with minerals, permafrost, anoxia, reducing 

conditions, etc.)18–20. Little is known about the relationship between DOC biolability and 

age within tropical ecosystems. Bridging this knowledge gap is important given that the 

‘lateral’ aquatic loss of aged DOC reintroduces aged C into the modern C cycle and is thus 

analogous to the combustion of fossil fuels, provided the mobilized C is microbially or 

photo-oxidized to CO2.
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Central Africa’s relatively understudied Congo Basin (~3.7 million km2) represents an ideal 

tropical forest ecosystem to investigate these processes. The Congo Basin is estimated to 

contain 20 Pg of SOC in its top meter of soil21, not including the more than 30 Pg recently 

mapped and quantified in the inundated swamp forests of the Cuvette Centrale22. Currently, 

the extensive SOC reservoir in the Congo Basin is mostly undisturbed, as the interior 

lowland forests that protect the soils have remained relatively free from intensive 

deforestation23,24. Deforestation near the Basin’s eastern and western borders, however, has 

accelerated due to rapid population growth concurrent with agricultural expansion and 

charcoal production. For example, the Kivu region of eastern Democratic Republic of Congo 

(DRC) is estimated to have lost more than 2,400 km2 of primary forest from 2000 to 2010, 

~2.7% of the region’s forest cover25.

To assess the impact of deforestation and subsequent conversion to agricultural lands on 

lateral C losses from tropical soils of the Congo Basin, we measured the concentration, age, 

and biolability of DOC, in addition to the composition of dissolved organic matter (DOM) 

exported by 19 catchments of varying deforestation extent near Lake Kivu, DRC. Prior to 

human settlement and agricultural proliferation in the region, South Kivu was covered by 

dense tropical forest26. Today, the remaining pristine forests in the region are protected 

within the borders of Kahuzi-Biéga National Park. Our 19 study catchments span 0.7º 

latitude, range in area from 0.25 to 85.2 km2, and vary by extent of deforestation from 0.0 to 

100.0% (Fig. 1).

Mobilization of Aged Sub-Soil C with Land-use Conversion

Our isotopic results point to land-use as a primary control of DOC source and age. The 

extent of deforestation within a catchment, predominantly a function of agricultural land-

use, was negatively related to the bulk radiocarbon age of DOC (Fig. 2a, Table S1). The 

DOC from completely deforested catchments had a bulk ∆14C value of -179 ± 16‰, 

representing a radiocarbon age of ~1,500 yr BP. These deforested tropical Congo ∆14C-DOC 

values were slightly more enriched but similar to those measured from other disturbed 

temperate and Amazonian catchments (-230‰ for urban or agricultural watersheds)14. In 

contrast, the pristine catchments draining areas of Kahuzi-Biéga National Park with 100% 

forest cover displayed a bulk ∆14C-DOC value of +19.0 ± 17.9‰, indicating the export of 

modern DOC.

Deforestation extent was positively correlated with δ13C-DOC enrichment (Fig. 2b, Table 

S1), with fully deforested and forested values of -22.3 ± 0.4 and -27.4 ± 0.5‰, respectively. 

A coupled isotopic ∆14C and δ13C-DOC plot shows how deforestation results in both older 

and more δ13C enriched values (colored points, Fig 2c). Soil isotopic signatures to 75cm 

from the pristine forest of Kahuzi-Biéga National Park revealed a very similar ∆14C vs. 

δ13C-SOC gradient with depth as DOC with deforestation (black dotted line, Fig 2c, Table 

S2). Organic carbon from litter and O-horizons was modern and relatively depleted in δ13C 

(-28.5‰), whereas deeper horizons became older and more enriched in δ13C (Fig 2c, Table 

S2). δ13C-SOC enrichment profiles like the one observed in Kahuzi-Biéga National Park are 

generally attributed to higher contributions of microbially-derived and processed C with 

depth27 and the Suess effect28. Together, these coupled DOC and SOC isotopic values 
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suggest that deforested catchments export aged C from deeper soil horizons while forest-

dominated catchments export modern terrestrial C leached from near the soil surface.

Changing DOM Composition with Land-use Conversion

In addition to DOC age and source, the molecular composition of DOM was strongly 

controlled by the extent of deforestation in a catchment. Using ultrahigh-resolution mass 

spectrometry (FT-ICR MS, see methods) of solid-phase extractable DOM, we detected 

17,560 distinct molecular formulae across all catchments, with an average of 10,493 

formulae present in each sample (Table S3). The average mass and aromaticity index, a 

measure of molecular stability with regard to biological degradation29, of DOM were found 

to be negatively correlated with deforestation extent (Fig S1a and b, respectively). In other 

words, DOM mobilized from deforested catchments was on average smaller and less 

aromatic in character than DOM exported from forested catchments, suggesting that it is 

vulnerable to microbial degradation. The chemodiversity of DOM, defined as the presence 

and proportion of other elements besides C and H, such as oxygen (O), nitrogen (N), and 

sulfur (S), is another important indicator of DOM source and quality30. Past studies have 

shown that anthropogenically impacted river catchments export DOM with greater relative 

abundances of N- and S-containing formula30,31. On average, DOM from deforested 

catchments in this study exhibited higher fractions of N- and S-containing formulae (CHON 

and CHOS, respectively) relative to pristine catchments (Fig S2, Table S3).

Furthermore, the fraction of a sample’s total relative abundance (signal magnitude) 

comprised by formula classified as peptide-like, polyphenolic, unsaturated phenolic low-

O/C, sugar-like, and condensed aromatic (see supplemental methods), were all found to be 

significantly correlated with deforestation extent. The fraction of total relative abundance 

from peptide-like and unsaturated phenolic low-O/C molecules increased with deforestation 

extent (Fig S1c and d), while polyphenols, condensed aromatics, and sugar-like decreased 

(Fig S1e, f, g, Table S3). The fraction of total relative abundance from aliphatics and 

unsaturated high-O/C phenolics did not significantly correlate with deforestation extent (Fig. 

S1h and i, Table S3). These compound class results show that DOM sourced from deforested 

soils is highly reduced and more likely to contain N compared to DOM sourced from 

pristine, forested catchments.

To delve beyond the broad compound classes and assess how the relative abundances of 

individual molecular formula correlated with deforestation extent and other environmental 

variables, we performed Spearman’s rank correlations for each formula present in more than 

50% of all samples (to include formulae sourced uniquely from forested or deforested end-

members). FT-ICR MS detected 10,115 formulae present in at least half of all samples, 

5,270 (52.1%) of which had relative abundances that were significantly correlated with 

deforestation extent (average absolute-value Spearman’s rank correlation coefficient, ρs = 

0.64; p < 0.05). Formulae with similar ρs values and signs were found to be grouped into 

two distinct assemblages in van Krevelen space (Fig. 3a). Formulae with relative intensities 

that were positively correlated with deforestation extent (ρs > 0) generally had high H/C and 

moderately-low O/C ratios, whereas negatively correlated formulae (ρs < 0) displayed the 

opposite trend with the exception of one small cluster of high H/C (~1.25) and low O/C 
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(~0.3) formulae commonly ascribed to lipid-like compounds32. Nearly identical groups of 

formulae were found to be correlated with δ13C-DOC (Fig. 3b) and biolabile DOC (BDOC, 

Fig. 3c). When formulae relative abundances were correlated with forest extent, ∆14C-DOC, 

and DOC concentration, the same two assemblages emerged with inverse coefficient signs 

(Fig 3d, e, and f).

The two compositional assemblages revealed by FT-ICR MS correspond well to modern 

forest vegetation and aged SOC as end-member sources for exported DOM. Vascular plant 

derived DOM is generally low H/C, high O/C, and aromatic in nature33–35, similar to the 

assemblage of formulae positively correlated with forest extent (Fig. 3d). Aged SOC, 

however, displays a composition similar to microbial biomass, with high H/C ratios, high N 

content from proteins, and low aromaticity35–38. Our FT-ICR MS results show that formulae 

with this ‘microbial’ signature are strongly positively correlated with deforestation extent 

(Fig 3a) and negatively correlated with ∆14C-DOC (Fig 3e). Overall, these patterns 

correspond well with our isotopic results, as well as with recent research on the controls of 

DOM composition that link landscape disturbance to the export of aged, aliphatic, protein-

like, and microbial DOM18,30,38,39. Consequently, we believe that the observed clear 

delineation of DOM composition concurrent with deforestation extent highlights the 

potential for future studies to fingerprint as well as develop unique molecular tracers for 

land-use change.

High Biolability of Aged DOC

To understand how deforestation controls the fate of DOM mobilized from disturbed soils, 

we conducted 28-day biolability incubations of stream water DOC inoculated with ambient 

microorganisms. We found the fraction of biolabile DOC (BDOC %) increased significantly 

with deforestation extent (Fig. S3a, Table S1) and was negatively correlated with ∆14C-DOC 

(Fig. 2d, Table S1). Our linear model predicts that 19 ± 3% of DOC was biodegraded and 

respired to CO2 in completely deforested catchments, compared to only 6.1 ± 3.1% in the 

pristine forested catchments.

Our data indicate that aged DOC mobilized from disturbed soils is substantially more 

biolabile than recently fixed C sourced from forested catchments. The compositional 

differences outlined in the section above explain this observed difference in biolability; 

DOM found in the deforested catchments with high H/C ratios (i.e. energy-rich), high 

abundance of N-containing formulae, and low aromaticity, is known to be highly 

biolabile40,41,42. Indeed, our results show that the relative abundance of such formulae were 

positively correlated with BDOC (red points, Fig 3c). Conversely, molecular formulae 

assigned as polyphenolics and condensed aromatics are often stable over the timescale of 

water transit within these catchments43. Formulae with these characteristics were negatively 

correlated with BDOC (blue points, Fig 3c).

The high biolability of aged DOC derived from deforested and agriculturally impacted soils 

observed in this study adds support to the emerging understanding that DOM biolability is 

independent of age. Recent glacier and permafrost studies have challenged the paradigm that 

old DOC is refractory by demonstrating high biolability of aged C20,43–45. Taken together 

with the results here this suggests biolability is driven by the physico-chemical conditions 
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under which OM is formed and preserved and not just solely time since photosynthesis46–48. 

In deeper soil horizons of the forested catchments in the Congo Basin, SOC has most likely 

been stabilized via organo-mineral complexation and/or physical disconnection from 

decomposers and enzymes. Subsequent deforestation and removal of surface soils then alters 

the physico-chemical conditions of these deeper layers, resulting in the breakdown of 

organo-mineral complexes and the loss of physical protection, ultimately leading to the 

release and mobilization of aged but chemically biolabile OM to aquatic ecosystems.

The observed high biolability of DOC in deforested catchments may lead to higher rates of 

respiration of OC relative to forest catchments. In both forested and deforested catchments, 

dissolved oxygen (DO) undersaturation indicates that respiration dominates over 

photosynthesis (Fig S4b, Table S1). In the deforested streams, however, the byproduct of 

respiration, dissolved CO2, was ~900 ppm higher than in forested streams (Fig S4c, Table 

S1). Moveover, stream water temperatures were ~5º C higher (Fig. S4d, Table S1), 

potentially facilitating faster rates of bacterial respiration49. Similar agricultural land-use 

driven warming of stream ecosystems has been observed in the Amazon Basin and was 

attributed to the loss of both riparian shade and forest transpiration50. Collectively, these 

BDOC, DO, CO2, and temperature results suggest that deforested catchments mineralize a 

greater proportion of DOC than forested catchments. Hence, streams draining deforested 

catchments are likely to outgas both more and older C as CO2.

Impact of Land Use Change on Carbon Yields

Ultimately, the absolute impact of the loss of pristine tropical forests on the mobilization of 

DOM depends on the difference in size and quality of DOM fluxes between deforested and 

forested catchments. Across our 19 catchments, DOC concentration was negatively related 

to deforestation extent (Fig. S4d). To estimate water yields for the forested and deforested 

endmembers, we used a regionally calibrated precipitation model (See methods) that 

incorporates infiltration and plant evapotranspiration (ET). Owing to the higher rates of ET 

in the pristine forest catchments, our model predicts they export 0.41 m yr-1 of water while 

deforested catchments export 0.59 m yr-1 (Table 1).

Given these water yields and the DOC concentrations measured during the wet season (when 

>90% of annual discharge occurs, Fig. S5a), we estimate that pristine forests yield ~1,597 kg 

DOC km-2 yr-1, more than double the yield than that of deforested catchments (~708 kg 

km-2 yr-1, Table 1, Fig. S5b). We attribute this to the simple fact that in general, above- and 

below-ground productivity in central African forests is significantly higher than croplands, 

and therefore more OC is available to be mobilized into streams2,51. Importantly, despite the 

significantly higher bulk DOC yields from forests, they do not export more BDOC than 

deforested catchments (Table 1, Fig. S5c). This is due to the higher BDOC concentrations 

observed in the deforested catchments. These estimated yields, together with the higher CO2 

concentrations and temperatures observed in deforested catchments, suggest that the loss of 

forests and conversion to agriculture increases both the rate of aquatic C respiration and the 

proportion of mineralized SOC available for outgassing from streams.

Using the above DOC yields, we tested whether the observed DOC isotopic and DOM 

compositional trends with deforestation could have resulted simply from loss of modern 
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forest vegetation that masked background inputs of old OC in the forest sites. An isotopic 

mass-balance model was used to derive the hypothetical Δ14C value of modern DOC 

(DOCyoung) needed to mask old DOC inputs and produce a composite forest signature 

(DOCforest) of 19.0‰ (Fig. 2a). The model yielded a super-modern DOCyoung value of 

177‰, which is significantly higher than recent leaf litter (~25-30‰), the most enriched 

SOC in Kahuzi-Biega (65.2‰, 2.5cm depth, Table S2), and sites from throughout the Congo 

Basin (50.4-93.7‰)52. This suggests that forests could not realistically mask the equivalent 

export of old DOC as from deforested catchments (supplemental methods). Moreover, DOM 

from deforested catchments exhibited unique molecular formulae relative to forested 

catchments (Fig. S6). These formulae were predominantly heteroatomic and nearly identical 

to the assemblage correlated with older DOC (blue points, Fig. 3e). Simply put, these 

formulae do not exist in the forested catchments and thus represent an additional and likely 

older source of DOC to deforested catchments.

Reversing the Forest Carbon Sink

Our results suggest that deforestation and the subsequent disturbance from agricultural land 

use reverses microbially-mediated C stabilization in deep (forest) soils and increases the 

downstream export of biolabile and aged OC derived from deeper soil horizons. 

Deforestation therefore interrupts these natural C-cycling pathways and hastens the 

mobilization, biomineralization, and transfer of old soil C to the atmosphere via the aquatic 

pathway.

Our coupled isotope results of catchment DOC and pristine forest SOC suggest that SOC 

originating from at least 0.5m is being mobilized to rivers in deforested catchments (Fig. 

2c). This half-meter soil denudation depth may also be conservative, since the higher rates of 

biomineralization of aged OC from deeper soils may preferentially remove old C and result 

in a more enriched ∆14C-DOC signature (shifting the apparent bulk signature towards a 

younger, shallower source). Regardless, this process signals a rapid loss of post-

deforestation surface soils that have accumulated over hundreds to thousands of years of 

weathering.

The population of the DRC has grown from 15 million to 81 million people since the end of 

the Belgian colonial era in 1960 and is projected to grow more than 4-fold by 210053,54. To 

prevent an exacerbation of the patterns observed in this study and reduce erosion, maintain 

soil fertility, and retain previously stabilized C, the implementation of modified agricultural 

techniques based as soil conservation practices (e.g., terracing, buffer strips, incorporation of 

organic residues, etc.) will be required55. Ultimately, we suggest that the retention of old and 

biolabile SOC that is currently stabilized and isolated from the modern C cycle is dependent 

on the conservation of forests and the related deceleration of land-use conversion in eastern 

Congo.
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Methods

Site Description and Deforestation Extent Classification

The 19 catchments sampled for this study lie on the western side of Lake Kivu to the north 

and south of the city of Bukavu, Democratic Republic of Congo (Figure 1). We selected the 

region near Bukavu for this study due to the proximity of contrasting agricultural land-use 

and pristine forests. The pristine forest catchments, found almost exclusively within the 

protected Kahuzi-Biéga National Park boundaries, are dominated by a mixed, evergreen, 

broadleaf tree assemblage. Areas of deforested cropland are nearly treeless with a patchwork 

of small agricultural plots usually containing a mix of maize, beans, sorghum, banana, 

onion, cassava, and unplanted bare soil. Catchment boundaries were delineated using the 

TauDEM terrain analysis tool56 along with a 1 arc second (c. 30m) digital elevation model 

(DEM)57 and the GPS locations of our sampling points. Catchments were then uploaded to 

Google Earth Engine and analyzed for the fraction deforested using the MODIS 2013 Land 

Cover dataset (MCD12Q1)58. Because historically forests covered the entire Kivu region 

prior to widespread human settlement26, all non-forested land cover was considered 

“deforested” for the purpose of this study. As a result, deforested fractions were calculated 

as the fraction of the catchment containing no evergreen broadleaf forest or mixed forest, the 

only two forest classifications contained by the study catchments (MODIS classifications 2 

and 5, respectively). Temporal changes in deforestation extent were assessed with historic 

ESA Climate Change Initiative (CCI) Land Cover data (http://maps.elie.ucl.ac.be/CCI/

viewer/index.php) and found to be minimal over the past decade.

Sample Collection and Measurement

Water was collected from 19 streams near lake Kivu, Democratic Republic of Congo during 

the wet season in April of 2017. The wet season was chosen because it comprises more than 

9 months of the year and represents nearly all of the annual water flux through streams 

(>90%). Streams were well mixed and varied in width from approximately 1 to 3 meters. All 

samples were collected from the thalweg of the streams at approximately 15cm depths below 

the water surface. Field measurements for dissolved oxygen (DO), pH, and temperature 

were taken with a pre-calibrated YSI ProDSS multimeter sonde. Dissolved carbon dioxide 

(CO2) concentrations were measured with a pre-calibrated EOSense CO2 Concentration 

probe (eosGP) that was allowed to equilibrate with the streamwater for at least 45 minutes. 

All water samples were filtered in the field with pre-combusted (450°C > 5 hours) 0.7 um 

glass microfiber filters into pre-washed and 1N HCl acid-leached polycarbonate bottles. 

Water samples were preserved via acidification to a pH of 2 with 12N HPLC-grade HCl the 

same day of sampling. The acidified water samples were analyzed for dissolved organic 

carbon (DOC) concentrations via high-temperature catalytic oxidation on a Shimadzu TOC-

L CPH total organic carbon analyzer at Florida State University, Tallahassee, FL, US using 

established methodology59. Soil samples were taken from three 22.5cm and one 75cm soil 

cores extracted from the pristine forest in Kahuzi-Biéga National Park (S2.31314, 

E28.75471). In addition, plant litter samples were taken from the forest floor around the soil 

cores. From each depth, approximately 100 grams of soil were collected and air-dried for 48 

hours before being sealed and transported to the laboratory at ETH Zurich where soils were 

dried in a drying oven (50ºC) and subsequently ball milled.
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Carbon Isotope Analyses

For each site, 500ml of filtered and acidified water were sent to the National Ocean Sciences 

Accelerator Mass Spectrometry (NOSAMS, http://www.whoi.edu/nosams/home) laboratory 

in Woods Hole, MA for analysis of δ13C-DOC and ∆14C-DOC. Prepared soil and litter 

samples were analyzed at ETH Zurich for δ13C-SOC using an elemental analyzer (Flash 

EA, Thermo Fisher Scientific, MA, US) coupled to a DeltaplusXP Isotope Ratio Mass 

Spectrometer via a 6-port valve and a ConFlo III interface (both Finnigan MAT, Bremen, 

Germany)60,61. Soil sub-samples were sent to the Max Planck Institute for Biogeochemistry 

in Jena, Germany for ∆14C-SOC analysis. Soil samples were combusted and graphitized 

following Steinhof et al. (2017)62 prior to analysis on a MICADAS 14C AMS system 

(Ionplus AG, Dietikon, Switzerland). Leaf litter samples were assigned a modern 

radiocarbon value (+25‰) based on the 2016-2017 atmospheric CO2 radiocarbon content63.

FT-ICR MS Analysis

DOM in stream water samples was isolated for FT-ICR MS analysis via solid-phase 

extraction (SPE) with 100mg Bond Elut (Agilent Technologies) styrene-divinylbenzene 

copolymer (PPL) columns. Depending on a sample’s DOC concentration, the volume used 

for extraction was adjusted such that 50 µg of C was eluted with 1ml of HPLC-grade 

methanol into a pre-combusted glass vial. The molecular composition of PPL-extracted 

DOM was determined using the 21-Tesla FT-ICR MS at the National High Magnetic Field 

Laboratory (NHMFL) at Florida State University, Tallahassee, FL, USA64,65. Negative ions 

were generated by injecting the extracted sample into the mass spectrometer via negative 

electrospray ionization (negative ESI) at a flow rate of 500 nL min-1. Mass spectra were 

generated as the sum of 100 individual spectra scans for each sample. See supporting text for 

formula assignment methods.

Biolability Incubation Experiments

Bioincubations of DOC (BDOC) were performed using established methods59. Briefly, 

bioincubations were initiated by injecting 30mL of 0.7um filtered stream water into six pre-

evacuated and pre-weighed 60mL borosilicate serum vials. Three serum vials were 

immediately acidified to a pH of 2 (t0) using 12N HPLC-grade HCl and the remaining three 

vials were allowed to incubate in the dark at room temperature for 28 days (t28) before 

acidification to a pH of 2. Each serum vial was then weighed, re-pressurized with helium, 

and allowed to equilibrate for one day before the concentration of CO2 in the headspace was 

analyzed on a gas chromatograph at Florida State University, USA. Using Henry’s law, CO2 

concentrations (equivalent to total dissolved inorganic carbon (DIC) concentrations at pH of 

2) were determined by the volume of water in each serum vial and the concentration of CO2 

in the headspace. The difference in DIC concentrations between the averaged t28 and t0 

timepoints was attributed to CO2 produced by microbial respiration during the 28-day 

incubation. BDOC percentages were calculated by the ratio of C as CO2 produced to the 

initial (t0) DOC concentration59.
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Water and DOC Yield Estimates

Area-weighted annual water yields were determined for the pristine forested and deforested 

endmembers using the US Army Corps of Engineers Hydrologic Engineering Center’s 

Hydrologic Modeling System (HEC-HMS, http://www.hec.usace.army.mil/software/hec-

hms/) paired with soil-infiltration, vegetation transpiration, and geomorphologic constraints 

for the Lake Kivu region. The model was calibrated with hourly-precipitation and runoff 

data sourced from the Goma Volcanic Observatory in Goma, DR Congo on the north side of 

Lake Kivu. Sampling point GPS-located Tropical Rainfall Measuring Mission (TRMM, 

https://pmm.nasa.gov/TRMM) precipitation data extrapolated over the total catchment area 

were used to estimate total annual precipitation (m3 yr-1) for each catchment. End-member-

weighted water yields (proportion of precipitation as runoff, mm yr-1) were then assigned to 

each catchment by deforestation extent. Total annual water yields for each catchment were 

then calculated by multiplying the modeled water yields by the total catchment area. 

Approximate annual DOC and BDOC yields were then calculated by multiplying the 

catchment-specific wet-season DOC and BDOC concentrations by the modeled annual water 

yields.

Statistical analyses

All least squares regression analyses, including the determination of 95% confidence 

intervals, were performed with Graphpad Prism 6.0 software. Standard errors of predicted 

values were calculated using the Statsmodels python package66. FT-ICR MS data analysis 

for compound class statistics, heteroatomic content, and Spearman’s rank correlations were 

performed with the fouriertransform Python package67 (https://github.com/FluvialSeds/

fouriertransform).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Sampling locations (yellow points) and catchment delineations for this study (n=19).
Study catchments are colored from green to red according to their deforestation extent. 

White numbers overlaying each catchment indicate the areal percent of deforestation. 

Inlayed pictures show an aerial view of pristine forest (top) and deforested cropland 

(bottom). Basemap imagery sourced from Copernicus Sentinel-2 satellite data [2017].
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Figure 2. Isotopic indicators of stream DOC age, sources, and biolability.
a, least-squares regressions between the fraction of deforestation and ∆14C-DOC (y=-197.7x

+19.0) and b, fraction of deforestation and δ13C-DOC (y=5.16x-27.4) for all 19 catchments. 

c, ∆14C versus δ13C for streamwater DOC from 19 catchments (colored circles) and SOC at 

different soil depths (given on the right y-axis) from a core taken in the pristine forest (black 

triangles with dotted line). Litter (black square) represents leaves and detritus from the forest 

floor above the core. Green-to-red color bar indicates the fraction of deforestation of each 

catchment represented by the DOC point. Black error bars of the SOC data represent the 

standard deviation of values from the same depth of multiple cores, when available. d, least-

squares regression between ∆14C-DOC and biolabile DOC (BDOC) for all 19 catchments 

(y=-0.056x+8.12). The deforestation extent of each point is represented by the color bar in 
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panel c. Gray bands indicate 95% confidence intervals for panels a, b, and d. ‘Modern’ 

radiocarbon value is +25‰ for panels a, c, and d.
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Figure 3. Van Krevelen diagrams of molecular formulae as a function of six environmental 
variables.
Spearman-rank correlations of relative intensities for each molecular formulae and a, 

deforestation extent; b, δ13C-DOC; c, BDOC; d, forest extent; e, ∆14C-DOC; and f, DOC 

concentration. Colors represent the correlation coefficient (ρs) between the relative intensity 

of each molecular formula and the given environmental variable. Red formulae (positive ρs) 

are more abundant in samples where the given environmental variable is high while blue 

formulae (negative ρs) are more abundant when the variable is low. The nsig is the number of 

significantly correlated formulae for each variable. Proportion of common formulae 

comprised by nsig are shown in parentheses. Also listed are the mean (μ) and standard 

deviation (σ) of the absolute value of |ρs| for all formulae displayed in each panel.
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Table 1
Predicted area-weighted annual fluxes of water, dissolved organic carbon, and biolabile 
dissolved organic carbon from pristine forest and deforested end-member catchments.

Error ranges are the standard error of the predicted end-member values from the linear regression. The Change 

(%) is the relative difference of the deforested fluxes compared to the pristine. Note that the percent change for 

BDOC is not statistically significant (n.s.).

Water
(m yr-1)

DOC
(kg km-2 yr-1)

BDOC
(kg km-2 yr-1)

Pristine Forest 0.41 1597 ± 262 78 ± 26

Deforested 0.59 674 ± 228 126 ± 22

Change (%) +44% -56% +66% (n.s.)
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