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Background—We propose a two-step model-based approach, with correction for ascertainment,
to linkage analysis of a binary trait with variable age of onset and apply it to a set of multiplex
pedigrees segregating for adult glioma.

Methods—First, we fit segregation models by formulating the likelihood for a person to have a
bivariate phenotype, affection status and age of onset, along with other covariates, and from these
we estimate population trait allele frequencies and penetrance parameters as a function of age
(N=281 multiplex glioma pedigrees). Second, the best fitting models are used as trait models in
multipoint linkage analysis (N=74 informative multiplex glioma pedigrees). To correct for
ascertainment, a prevalence constraint is used in the likelihood of the segregation models for all
281 pedigrees. Then the trait allele frequencies are re-estimated for the pedigree founders of the
subset of 74 pedigrees chosen for linkage analysis.

Results—Using the best fitting segregation models in model-based multipoint linkage analysis,
we identified two separate peaks on chromosome 17; the first agreed with a region identified by
Shete et al. who used model-free affected-only linkage analysis, but with a narrowed peak: and the
second agreed with a second region they found but had a larger maximum log of the odds (LOD).

Conclusions/Impact—Our approach has the advantage of not requiring markers to be in
linkage equilibrium unless the minor allele frequency is small (markers which tend to be
uninformative for linkage), and of using more of the available information for LOD-based linkage
analysis.

Keywords
Glioma; model-based linkage; segregation; age of onset; prevalence constraint

Introduction
Successful linkage analysis of complex diseases, when performed to obtain log of the odds
(LODs), requires a number of assumptions related to both the markers and the trait of
interest (See Supplemental Table S1). Both model-based and model-free linkage analysis,
where the term “model” refers to the genetic model for the trait undergoing analysis,
typically assume known marker genotypic frequencies in pedigree founders, known
recombination fractions between markers, and lack of interference between markers. Both
models usually assume all markers are in Hardy-Weinberg equilibrium. A key difference
between these two types of linkage analysis, once certain model parameters are assumed to
be known, is the direction of the approach: typically, model-free linkage analyzes the
markers conditional on the trait, whereas model-based linkage analyzes the trait conditional
on the markers. In model-free linkage analysis the markers must be independent or their
dependencies must be correctly modeled. Conversely, in model-based linkage analysis, the
pedigree members’ trait values must be independent, or their dependencies must be correctly
modeled. Hence the models differ in their assumptions regarding linkage equilibrium of the
markers: model-free linkage requires linkage equilibrium, though this assumption may be
ignored when comparing affected sib pairs to discordant sib pairs (2); model-based linkage
does not require one to assume linkage equilibrium among the markers – but we do typically
assume random ascertainment of markers when estimating their genotypic frequencies.

With respect to the trait, model-free linkage analysis does not require known genotypic
frequencies in the pedigree founders or any penetrance parameters. Model-based linkage
analysis requires known penetrance parameters. The assumption that the penetrance
parameters are known is a major obstacle to carrying out model-based linkage studies, and
represents the main reason why most linkage studies of complex diseases are conducted
using a model-free approach.
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Age-of-onset data can be incorporated into segregation models to determine the penetrance
parameters of the different genotypes as functions of age. Segregation models can then be
used to empower subsequent linkage analysis (3, 4). Prior studies have shown use of age-of-
onset data can increase the significance levels of linkage analysis, and hence the statistical
power, of any joint method of analysis (5). One approach to studying age of onset has been
to analyze it as a right-censored quantitative trait (6). This was done by extending the
program Loki, which uses a general segregation/linkage Markov chain Monte Carlo
Bayesian framework (7) to analyze a quantitative trait. Daw et al (6) suggested the location
of linkage could be well estimated even though there may be appreciable bias in the
estimated model parameters generated in this manner.

Adjustment for ascertainment has only been well understood for sibship studies or for cases
of true single ascertainment. Elston (8) proposed a pedigree likelihood for segregation
analysis that can allow for both ascertainment and age of onset. Allowance for single
ascertainment has been incorporated into Loki (9). A very general likelihood approach to
allow for ascertainment in general pedigrees has been formulated by Ginsburg et al. (10, 11),
but this approach requires the true pedigree structures and the proband sampling frame (12)
to be well defined, and full phenotypic information must be available on all members of the
sampled pedigree who fall within the proband sampling frame. To resolve some of the
assumptions of a model-based analysis, we have developed a segregation-linkage approach
with correction for ascertainment by setting a prevalence constraint to determine the best
fitting segregation model, and this paper illustrates its application, assuming a bivariate
phenotype (affection status and age of onset) on a set of families collected to study the
inheritance of glioma for which a model-free analysis has been previously performed (1).
This dataset required us to allow for multiplex ascertainment (13, 14) based on the presence
of a proband and an additional affected relative in the family, and then to allow for further
selection of families genotyped for linkage analysis. To our knowledge, no joint
segregation-linkage analysis with appropriate correction for multiplex ascertainment has
been developed, though joint analyses have been successfully performed using Loki with an
incorrect ascertainment model (6). In this paper, we develop an approximate method to
adjust for multiplex ascertainment, in both segregation and linkage analysis, and illustrate its
use for a trait, the occurrence of glioma, with variable age of onset. We justify its use with a
simulation study, incidentally noting a problem that occurs when attempting to perform a
Bayesian analysis on the same data without appropriate adjustment for ascertainment.

Materials and Methods
Data

The segregation analysis was performed on 6983 individuals in 281 pedigrees (Table 1), all
ascertained from GLIOGENE study sites in the United States (15). Families were
ascertained by the presence of a proband (i.e. an individual affected with a glioma) with a
first- or second-degree relative also affected with glioma. Three pedigrees had loops which
were all formed by two siblings in one nuclear family married to two siblings in another
nuclear family. These loops were cut by assigning the siblings most distant to the
segregating relatives as pedigree founders. Although the pedigree structure of all 6983
individuals was used, only those pedigree members whose affection status and age were
known could enter the analysis: for affected persons, age was age at onset of glioma or age
at examination; for unaffected persons, age was the age at which last known to be
unaffected.

The linkage analysis dataset comprised a subset of 74 of these 281 pedigrees, chosen to be
genotyped on the basis of their informativity for linkage (1), and both affected and
unaffected persons were genotyped using the Illumina Human370 chip.
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Fitting segregation models—The SEGREG program in the Statistical Analysis for
Genetic Epidemiology (S.A.G.E.) version 6.1 package was used to fit diallelic monogenic
models for a binary trait with variable age of onset, to define individual-specific age-
dependent penetrance parameters to be used in multipoint linkage analysis. To find the best
model to conduct linkage analysis, we fitted to the pedigree data two types of models that
represent a mixture of two genotypic distributions: those in which there are two
susceptibilities and a common age of onset distribution, and those with two age of onset
distributions and a common susceptibility. Susceptibility is defined as the probability of
disease if the individual lived to an infinite age and need not equal 1. Sex was included in
the model as a covariate of either the logit of susceptibility or of the mean or variance of age
of onset, so in all we fitted six distinct segregation models, each of which could result in
dominant or recessive inheritance. The logistic density function was assumed for age of
onset, but a Box-Cox (16) power transformation parameter (λ1) was also simultaneously
estimated, to allow for departure from this distributional form. Further details are given in
the Supplemental Methods.

In addition to assuming single ascertainment (i.e. conditioning the likelihoods on the
phenotypes of the probands) a prevalence constraint was included in the model. For this we
assumed the population prevalence was on average 0.04%, with the prevalence for males
being 1.5 times higher than that for females. Rather than fixing the disease prevalence, as
was often typically done in early segregation analyses, we specified prevalence using two
numbers as implemented in SEGREG - the number of affected individuals (R) in an
independent sample of size (N) (see Supplemental Methods). For this analysis, these
numbers were set to be 144 and 300,000 for males, and 96 and 300,000 for females. The
lifetime prevalence R/N was taken to be the prevalence at 90 years old, and N=300,000; this
was calculated from prevalence rates obtained from the Central Brain Tumor Registry of the
United States registries (17).

For those relative pairs genotyped for linkage analysis, the recorded relationships were
verified using genome-wide genotype data with the program RELTEST in S.A.G.E. Five
MZ twin pairs were identified, and one out of each pair of the MZ twin pairs was excluded
from both the segregation and the linkage analyses.

Three segregation models that best fit the data on the basis of Akaike's A Information
Criterion (AIC) were selected for linkage analysis. We re-estimated the trait locus allele
frequency among founders of the 74 families chosen for linkage analysis by re-maximizing
the likelihoods of the three best-fitting segregation models, but fixing every parameter (other
than the allele frequency at the trait locus) at the values estimated in the whole set of
families. The rationale for doing this is that genotypic frequencies need to reflect those of
the founders of the specific pedigrees used in the linkage analysis. No prevalence constraint
was used when re-estimating allele frequencies, because that would have resulted in the
population genotypic frequencies rather than the frequencies among founders of the linkage
family subset. We thus assume selection of the families for linkage analysis, enriched by
affected members, has only a minor effect on the penetrance parameters, but a major effect
on the pedigree founder genotype frequencies. Larger likelihoods and smaller AIC values
resulted after including single ascertainment in the model when re-estimating the trait locus
allele frequency, so this was done.

Model-based multipoint linkage analysis
In the linkage subset, large pedigrees were trimmed to reduce the number of inheritance
vector bits to 21 or less, as required for ease of computing, as follows:

A. Eliminated all linkage uninformative branches (e.g. where no DNA was available)
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A.1 Trimmed off all the antecedent branches with no DNA.

A.2 Trimmed off all the descendant branches with no DNA.

A.3 Trimmed off all siblings with no DNA nor descendant branches.

B. Eliminated a few genotyped persons

B.1 In one pedigree we eliminated three genotyped unaffected siblings
farthest away from the part of the pedigree segregating for the trait.

B.2 If, upon eliminating according to the above rules, the number of bits for
a pedigree was still too large, the youngest unaffected genotyped
offspring was eliminated. This resulted in eliminating an additional 11
unaffected genotyped offspring. In total, apart from monozygotic twins,
we eliminated only 14, largely linkage-uninformative, genotyped
offspring.

The SNPs used in the genome-wide multipoint linkage analysis were selected to have minor
allele frequency (MAF) ≥ 0.3 to increase informativeness, and genetic distance between any
two neighboring SNPs ≥ 0.4 cM to have a more accurate estimate of genetic (as opposed to
physical) distance, while allowing for as many appropriate markers as possible for
multipoint linkage across the genome. A total of 3404 markers were thus selected.

To analyze a linkage region discovered on chromosome 17, two sets of SNPs were used.
The first set consisted of the 138 SNPs originally used by Shete et al (1), which were
selected to have MAF ≥ 0.05 and pairwise linkage disequilibrium (LD) r2 ≤ 0.004. The
second set included the SNPs in the first set after excluding those with intervals between
consecutive SNPs < 0.2 cM, but adding in those with MAF > 0.3 and interval ≥ 0.2 cM.
There were 173 SNPs in this set, where some SNPs were in strong LD as there was no
selection of SNPs based on LD. Thus, the limitation in the second set was based on genetic
distance and MAF rather than LD. SNPs were also excluded if they were more than 10 cM
away from any position, because the assumption of no interference only applies up to a
distance of ~10 cM; note within 10cM the Haldane and Kosambi map functions are almost
identical (18).

The founder allele frequencies of SNPs were estimated by maximum likelihood with the
program FREQ in S.A.G.E. Model-based multipoint linkage analysis was performed with
the MLOD program, specifying the Kosambi map function to obtain recombination fractions
between consecutive markers from the genetic distances in the deCODE map (19). We
performed multipoint linkage analysis using the three best segregation models, but with the
trait locus allele frequencies re-estimated in the linkage pedigrees. We assumed locus
homogeneity across the 74 pedigrees, and multipoint LODs were estimated at each SNP and
at every 2 cM.

Simulation study to investigate type I error and power
To study the performance of our approach, we conducted a small simulation study. To
minimize computation time, we applied the model to nuclear family, rather than extended
pedigree, structures. To approximate the amount of information in our pedigrees, we used
220 nuclear families each comprising 6 siblings and two parents.

On each dataset, we simulated two marker SNPs with two different values of LD between
them, and one unobserved trait locus that was either linked or not linked to these two
simulated SNPs. LD between the two SNPs was set as r2 = 0, 0.4 and 0.8, and for each case
we set the MAF at 0.1, 0.2, 0.3, 0.4 or 0.5 for both SNPs. The genetic distance between the
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two SNPs was 0.2 cM and the unobserved trait locus was in linkage equilibrium with the
two marker SNPs, 0.2 cM away from the closest of the two SNPs to simulate linkage. The
penetrance functions that best fitted the segregation glioma dataset (model 1 in figure 1)
were then applied to the trait locus genotypes. Because the penetrance function is age
related, age was first assigned according to the age distribution in the glioma data, i.e.,
according to the distributions of mother's age, of the age difference between mother and her
first child, between consecutive siblings, and between couples. For each affected individual,
the age is age at exam, and the age of onset was assigned according to the mean difference
between age of onset and age at examination in the glioma data. One affected offspring in
each family was taken to be the proband, with probability assigned according to the glioma
data. We simulated families until we had 100 datasets - of 220 nuclear families each - that
satisfied the criterion of containing an offspring proband and at least two affected members.
From these we selected those sibships (without parents) with at least two affected members
to form the linkage data subsets. There were 60 to 94 sibships in each linkage dataset. We
analyzed each of these 100 datasets using the same procedure used to analyze our glioma
pedigrees. We assumed Hardy-Weinberg proportions for the trait locus and each marker
locus.

We analyzed each of the 100 simulated segregation data sets using the same setting of the
prevalence constraint as for the glioma data. Then we re-estimated the allele frequencies at
the trait locus in the corresponding simulated linkage dataset. Type I error and power were
respectively evaluated using the LOD thresholds 0.588 and 1.175, which correspond the p-
values 0.05 and .01 for a single linkage test. The proportion of data sets with maximum
LODs greater than those thresholds are reported as the type I error and power.

Results
Table 1 shows the general characteristics of the segregation and linkage pedigrees. All six
segregation models using the 281 pedigrees showed an autosomal dominant model with a
rare trait locus allele (allele frequency=0.00047). Three models that fit the data best (Table
2) on the basis of their AICs were subsequently used for the linkage analyses. These three
models are: susceptibility dependent on genotype and mean age of onset dependent on sex
(model 1); mean age of onset dependent on genotype, with that mean dependent on sex
(model 2); and mean age of onset dependent on genotype, with susceptibility dependent on
sex (model 3). In practical terms the three models are identical: in models 1 and 2 the
susceptibilities for the AA and AB genotypes are virtually 1 (see Supplemental Methods)
and Figure 1 shows the cumulative distribution of age of onset for males and females,
respectively, for all three models shown in Table 2 (see Supplemental Methods). Up to age
100, the distributions of age of onset under the three models are very close, with males being
more susceptible than females for AA and AB genotype carriers. Penetrance of the BB
genotype is always virtually 0 up to 100 years old, for both males and females. The re-
estimated trait allele frequency in the 74 linkage pedigrees was 0.13 for all three models.

All three models gave similar genome-wide multipoint linkage results (Supplemental Figure
S1). The strongest evidence for linkage was identified on chromosome 17, with two peaks at
the positions 72.3 cM and 87.3 cM from pter, the multipoint LODs being respectively 2.5
and 3.1 at these two positions (Figure 2). No strong linkage was found on any other
chromosome region (Supplemental Figure S1). It should be noted, when a linkage analysis
was performed using the segregation models shown in Table 2, i.e. without re-estimating the
allele frequencies to reflect those of the families actually used for the linkage analysis, all
multipoint LODs were negative, across the whole genome. When analyzing the region
within 10 cM of each linkage peak on chromosome 17, the first set of SNPs yielded lower
information content (20) than the second set, as expected. At the first linkage peak, where
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the model-free analysis showed stronger linkage evidence, the second SNP set produced a
maximum multipoint LOD 0.3 lower than the first SNP set. At the second peak, the two
SNP sets resulted in similar maximum LODs.

Table 3 summarizes the findings from the simulation study. Power only considers maximum
LODs within 2 cM of the trait locus. We initially used the same criterion for type I error,
finding it to be inflated only when the MAF is 0.1, but the inflation increased when taking
the maximum LOD at any position. However, for LOD > 1.175, the type I error is much
better controlled, though perhaps increased for a small allele frequency. Note that otherwise
the estimated type I error is never larger than that found for r2=0.

Discussion
This study showed that by utilizing a segregation analysis procedure with a prevalence
constraint, and then re-estimating the trait model allele frequencies appropriate for the actual
linkage sample, a model-based multipoint linkage analysis is possible when single
ascertainment was not followed. The simulation study, based on the particular model found
for the glioma data, provides justification for the two-step procedure used here. The
substantive findings for the dataset analyzed are similar to those of model-free linkage in the
same data set (1), but yield stronger evidence for linkage at a second region in the same
chromosome, 73.7 cM from pter. The observation that the LODs drop below 0 between
these two regions suggests there may be two separate loci of interest on chromosome 17q.
The best segregation models were consistent with autosomal dominant inheritance of a rare
disease allele, consistent with a recessive cellular effect under Knudson's two-hit model, the
second hit having a variable age of occurrence (21). The estimated trait locus allele
frequency was 1 in 2000 in the population but 13% among the founders of the multiplex
pedigrees selected for linkage, and the penetrance (i.e. probability of a heterozygous
genotype becoming homozygous) by age 60 was ~20%. These segregation analysis results
do not differ considerably from those used previously for homozygosity mapping in
Northern Sweden (22). That study found autosomal recessive inheritance models gave better
results for homozygosity mapping as compared to dominant models when assuming a higher
population allele frequency (1 in 1000) and penetrance (40% in one model and 60% in the
other), but without allowing for age of onset. Differences in penetrance between men and
women in our analysis are, by assumption of the penetrance constraint, consistent with the
known sex difference in population incidence of gliomas (17).

The cumulative age of onset distributions for all three best-fitting models were similar (up to
100 years old), and the model-based linkage results based on the three models were nearly
the same, which argues for the reliability of this analysis approach and our results. In fact, a
less precise prevalence constraint did not have a large effect on our segregation models: the
prevalence function is nearly the same when assuming the same mean prevalence but with
two quite different precisions (Figure 3).

Model-based linkage analysis including both affected and unaffected persons does not
require the assumption of linkage equilibrium of the markers, unlike affected-only linkage
analysis, because the likelihood function of phenotypes is conditional on markers rather than
the other way around. That linkage equilibrium of the markers is an unnecessary assumption
was also demonstrated by Xing et al. (2) for model-free linkage analysis when both affected
and unaffected persons are included. When comparing the allele sharing with that expected
under linkage equilibrium, which is the essence of affected-only model-free linkage
analysis, there is a clear bias introduced by LD. However, if the bias in the allele sharing is
similar for both affected and discordant pairs, the overall result is that the two biases cancel
each other out when both phenotypes are included. In our study, because we included
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unaffected relatives, bias would only occur as a result of mis-specifying the ascertainment of
families (which led to elimination of unaffected persons, but was corrected for using the
prevalence constraint) or by ignoring residual correlations among family members (which
we checked by including a polygenic component in the model used for analysis and finding
it to be not significant).

All current approaches to linkage analysis make the assumption of accurate specification of
recombination fractions between markers, so using more SNPs in the linkage analysis could
potentially provide even more linkage information (provided the genetic intervals between
consecutive SNPs are accurate). Use of additional informative SNPs with intervals ≥ 0.2 cM
resulted in lower multipoint linkage at the first peak, whether these markers were in LD or
not. It is important to note that there would have been absolutely no evidence for linkage had
we not re-estimated the trait allele frequencies in the subset of families used for the linkage
analysis. Our simulation study shows the validity and efficiency of this two-step analysis.

We calculated family specific multipoint LOD scores across the region on chromosome 17
and found that 30 families contributed positive LODs to both peaks, 13 to the first peak, and
9 to the second peak. The largest family specific multipoint LOD under a peak was 0.59,
under the first peak. That the family-specific LODs are small is not surprising, given the low
penetrance of glioma – < 0.2 at the average age of 54 (see Figure 1). Therefore we did not
calculate heterogeneity LODs, though this would be the next step if there had been higher
penetrance, and hence more linkage-informative pedigrees.

We also analyzed our age of onset data on chromosome 17 using the multipoint linkage
package Loki, where age of onset for the unaffected is assumed right censored and a
posterior distribution is obtained for all unknown parameters. The form of the model
assumed is similar to our model 2, but with 6 sex-dependent normal age-of-onset
distributions, two for each genotype, rather than 4 sex-dependent logistic age-of-onset
distributions after power transformation (assuming dominance) (Supplemental Methods).
Loki identified four possible linkage locations on chromosome 17 (Supplementary Figure
S2), including the two found by our method but shifted slightly, with more evidence for
linkage at 87-89 cM from pter (further details are given in the Supplemental Methods and
Supplementary Figures S2, S3 and S4). But by far the highest peak, expressed as a Bayes’
factor - the posterior probability divided by the prior probability, was found at 2.5 cM from
pter on chromosome 17. The estimated model at all three peaks was one of over-dominance,
which simulation studies have suggested could be due to not allowing for ascertainment,
though estimation of the linkage location does not seem to be affected (23). Because neither
our model-based analysis nor the previous model-free analysis found any peak at this
location, and because there is evidence that the Monte Carlo Markov Chain sampler was not
mixing well at that location (Supplementary Figure S3), this new linkage peak could well be
a type I error. With hindsight we repeated all the Loki analyses disallowing overdominance,
but then no linkage signals were found on chromosome 17 (Supplementary Figure S4).

Our study provides an approach for linkage analysis for a bivariate trait (comprising a binary
disease affection status and a censored quantitative age of onset) when there is multiplex
ascertainment. Recent advances in genome-wide sequencing often reveal thousands of low
penetrance, low frequency sequence variants. Hence, it can be challenging to filter out true
deleterious variants from those that are benign. Linkage methods can both help decide true
genomic areas of interest and screen families that will be most informative for sequencing.
In our two-step analysis, we fitted segregation models for both disease affection status and
age of onset using the whole sample, while we adjusted the likelihood for ascertainment
(together with a correction for single ascertainment) by incorporating a prevalence constraint
to obtain estimates of the penetrance parameters, and then we re-estimated the trait allele
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frequencies that correspond to those of the founders of the linkage pedigrees. Therefore, this
method provides a practical solution to model-based linkage analysis for disease affection
status with variable age of onset for the kinds of pedigree data often collected for linkage
analysis.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Cumulative age of onset distribution for genotypes AA and AB as estimated from the
segregation models. The upper plot is for males, the lower one is for females.
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Figure 2.
Model-based multipoint linkage LODs on chromosome 17 using the three trait locus
segregation models. Multipoint LOD scores have been truncated at -3, some scores are
below -3.
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Figure 3.
Cumulative age of onset distribution taking into account the prevalence constraint (for
genotypes AA and AB) as estimated from the segregation models. Averaging over the two
sex groups, R= 240 and N= 600,000 for the precise prevalence constraint and R=2.4 and
N=6,000 for the less precise prevalence constraint. The upper plot is for males, the lower
one is for females. Note that R and N do not need to be integers.
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