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PESTICIDE USAGE AND THE CHOICE OF PEST CONTROL STRATEGY:
A SWITCHING REGRESSION ANALYSIS

I. Introduction

The adoption of integrated pest management {IPM) as a substitute for
conventional chemical pest management {CPM) is an important jissue in current
agricultural and envirommental policy. The factors which influence growers'
decisions to adopt IPM and the effects of IPM adoption on agricultural
productivity and the intensity of pesticide usage are fundamental questions
which must be resolved before environmental control strategies can be
evaluated. The purpose of this paper is to develop a methodology for
analyzing these issues which is suitable for empirical application, using data
that can readily be obtained from grower surveys. After describing the
theoretical model and the procedures for estimating it, we will present an
example of an application using data on a sample of cotton growers in the San
Joaquin Valley in California.

The key to the model is the recognition that the "discrete” choice of
whether to employ IPM or CPM and the "'‘continuous” choice of how much

pesticides and other agricultural inputs to apply are interrelated. The

outcome of the one choice affects the outcome of the other, and both flow from
a single underlying profit maximization decision on the part of the grower.
This linkage between discrete and continuous choices shapes both the
formulation of the theoretical model and the statistical procedure which is
used to estimate the model. It also provides a way of unifying two separate
strands of literature on IMP--the literature on new technology adoption in

agriculture [for a survey, see Feder, Just, and Zilberman ( )1, which tends
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to focus exclusively on the discrete choices, and the literature on pesticide
demand functions [see, for example, Miranowski { 11 which tends to focus
exclusively on the continuous choices. To be sure, the empirical mathematical
programning models of grower hehavior [for example, Musser and Stamoulis
(1981) and Kaiser and Robinson (1979)] explicitly recognize the discrete/
continuous nature of the cheices faced by growers. But these are normative
rather than positive analyses, and there is a serious problem in validating
them. What is needed is a positive, statistical model of discrete/continucus
choices which is capable of being validated by data on actual grower
behavior. This is provided by the model developed in this paper.

The literature on statistical techniques for estimating switching
regression models emerged somewhat ahead of the literature on microeconomic
models of discrete/continuous choices. The basic statistical techniques were
worked out by Amemiya ( }, Heckman (1979 and 1980), and Lee and Trost
(1978); another type of estimation methodology which we will also consider was
developed by Tsur (1983%a, b). Early examples of theoretical microeconomic
models of simultaneous discrete/continuous choices include Just and Zilberman
(1979) and Just, Zilberman, and Rausser (1980) on the production side and
Novshek and Sonnenschein (1979) and Lancaster (1976 and 1979) on the consumer
demand side. However, these are deterministic, rather that stochastic, models
of micro behavior. Stochastic models combining utility~ or production-
theoretic models of discrete/continuocus choices with switching regression
estimation techniques were developed by Hanemann (1978 and 1984} and Dubin and
McFadden (1984) for consumer choices and by Duncan (1980) and Hanemann and
Tsur (1882 and 1984) for producer choices. The present model is firmly in

this latter tradition.



The paper is organized as follows: Section II outlines the theoretical
model of discrete/continuous cheices by growers. Section III describes some
alternative estimation techniques. The model is applied to data on cotten
growers in the San Joaquin Valley in section IV. Section V contains the
conclusions, including a discussion of the empirical results and suggestions
for how this type of model can be applied to other data sets in order to

evaluate the consequences of alternative environmental control policies.

1I. Model Specification

In this section, we develop a model of a grower's decisions on whether to
use IPM or CPM and how much pesticides to apply which is suitable for
empirical estimation. The model is téilored to the specific limitations of
data that are available to us--constraints which might arise in other data
sets on pesticide usage. However, in order to place the model in a broader
context and indicate how one could proceed if a more complete data set were
available, we present, first, a somewhat more general decision model and then
specialize it to the data at hand. |

The grower's decision variables are pest control strategy, represented by
a binary variable T, where T = 1 indicates use of IPM and T = 2 indicates use
of CPM; the quantity of pesticides applied per acre, x; and the quantity of
all other nonpesticides per acre, represented by the vector z. There is a
production function which depends, in principle, on the type of pest control
strategy: vy = f(x, z; T), where y is the output of cotton per acre. Let the
price of cotton be p, the cost of pesﬁicides w, and the cost of nonpesticide
inputs g. For the sake of generality, we allow for the possibility of other

fixed costs associated with the use of the two technologies represented by
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k(T)}. Given that the growers acreage is A, which is taken as exogenous to the

nodel, his profit is

7 =n(x, z, Ty p, w, q, A} = [pf(x, z; T) - wx - qz] A - k(TJ.

The grower selects (x, y, T) so as to maximize profits {1).

set of per-acre input demand functions,

>
#

hx(p, w, q, A)

W (p, w, q, A);

o~y
il

a pest control strategy decision function,

T = hT(p, W, G, A);

a per-acre dutput supply function,

Yy = hy\(.p, w, 4, A} = f[hx(’?a W, 4, A)’ hz(p, W, q, A); hT(ps W, (4, A)}; (5)

and a (maximized) total profit function,

"= ﬁ(pi w, q} A)

i

By Hotelling's lemma,

This generates a

SIWp, w, q, A), K2(p, w, q, A), h'(p, w, q, A); p, W, q, Al

W(p, w, q, A) » A= 21{Ra¥> Qo A)

anlp, w, q, A)
oq

hz(ps W, q, A) » A=

and

q, A),

hy(p! W, q, A} » A= QIT_(?: j‘f:',

8p

(1)

(2)

(3)

(4)

(6)

(7a)

(7b3

(7¢)
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Observe that this optimization simultaneously embodies a continuous and a
discrete choice; the continuous choice is the level of pesticide and other
inputs while the discrete choice is the selection of a pest control strategy.
Moreover, the continuous and discrete choices are interdependent and both flow
from a single, underlying profit maximization. For example, the amount of
pesticides to be applied depends on which pest control strategy is adopted and
vice versa. |

In order to illuminate this interdependence, it is convenient to think
of the maximization of (1) as occurring in two stages. Suppose that the
grower has decided to adopt IPM (T = 1)}. Conditional on this decision, his
per-acre production function may be written as: vy = £1(x, 2) = £f(x, 23 1),
where the subscript "1" indicates output conditional on T = 1, and his profit

is
LI nl(x, 23 P, Wy q, A) = [pfl(x, z) -~ wx - qz] A - k(1). (8)

The levels of pesticide and other input usage conditional on the decision to
adopt IPM are determined by maximizing (8). This yields the conditional input

demand functions,

[

x; = h(p, w, q) (9)

I

zy hi((p, w, q); (10)

the conditional output supply function,

yy = hilp, w, @) = £,(h3(p, », @), hil(p, w, Q); (11)
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and the conditional (maximized) profit function,
LS. ﬂl(p, W, q, A} = ﬂl[h};(p: W, q), hi(?’ W, qJ; P, W, g, Al. (12)

Note that these fumctions possess the standard properties; in particular, they
satisfy Hotelling's 1emma—~h§(p, W, q) A= Bﬂlfp, W, q, A}/3w etc.

Suppose, alternatively, that the grower has decided to adopt CPM (T = 2). In
a similar manner, we can define a conditional production function, Yy =

fz(x, z} = f(x, z3 2); a conditional profit function analogous to (8);
conditional profit-maximizing input demand functions, Xx, = hg(p, w, q) and

h;(p, w, qJ); a conditional profit-maximizing output supply function,

=
[y
&

Y, = h{(p, w, q); and a conditional maximized profit function, Ty = ﬂz(p,
w, q, A).

All of these conditional functions represent the grower's continuous
choices conditional on his discrete choice. They can be related to his

discrete choice and to the unconditional decision functions (2)-{6) as follows:

1 if mlp, w, 9, A) > m,(p, w, q, A)
T = hT(p, W, q, A) = {13)
Z, otherwise

w o= .”(p: W, 4, A) = Mmax ['ﬁl(p, W, G, A), “z(p: W, {, A)] (14)

hi(p, w, @) if m(p, w, a, A) 2 m,(p, w, q, A)

x = HW(p, w, q, A) = (15)
h;(p, w, q), otherwise
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ghi(p: W, Q) if ﬁi(p; w, 4, Al iﬂz(ps Wy 4, A}

W (p, w, g, A) (16)

#

1
i

!

{}%(p,w,q),oﬂmnnse

W (p, w, @) if 1;(p, w, q, A) 2 1,(p, w, q, A)

[

hy(ps W, 4, A) (17)

~
i

h;(p, w, a), otherwise.

If stochastic terms are added to the various conditional functions, (13)-{17)
will be recognized as a set of switching regression equations, and they can be
estimated by the statistical techniques recently developed for use with such
regression_models.

In our case, however, the available data on input prices, particularly
for nonpesticide inputs, are somewhat limited; this forces us to take a
slightly different tack. In effect, the system (13}-(17) represents a
solution to the underlying profit maximization of the form,

max {max n(x, z, T; p, w, q, A)}. (18)
T x,z

As an alternative, we can seek a solution to the underlying profit

maximization of the form,

max [max {max w(x, z, T; p, w, q, AJ}]. (19}
z T X

The maximizations within the square brackets in (19) are conditional on the

level of nonpesticide inputs, z. Since we have better data on the quantities
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of these nonpesticide inputs than on their prices, it is convenient to derive
the discrete choice decision function for T and the continuous choice decision
function for x by focusing on the inner maximizations in (19).

Accordingly, maximization of (8) with respect to x for fixed z yields a
conditional profit-maximizing demand function for pesticide inputs,
conditional on both the quantity of nonpesticide inputs and the adoption of
1PM, of the form x, =‘%§(p, w, z), a conditional output supply function, Y =
lg(p, w, z), and a conditional maximized profit function, Ty = 'r‘rvl(p, W,

z, A), analogous to {9), (11), and (12) above. Similarly, conditional on the
quantity of nonpesticide inputs and the adoption of CPM, we obtain a profit-
maximizing input demand function x, = ﬁ?(p, w, z) output supply function,

¥, = ﬁé(p, w, z), and profit function Ty = m,(ps w, 2z, A). The solution to

the inner maximizations in (19) can then be written in the form
1 if gl(p, W, 2, A) 3_ﬂz(p, w, z, A)

T = ET(p, W, Z, A) = (20)
' Z, otherwise

T o= ;(p, w, z, A) = max [;1(9’ w, z, A), m,(p, w, z, A)] (21)

gi(p, w, z) if ;l(p, w, 7, A) > ;z(p, w, z, A)

W(p, w, z, A) = _ (22)
h;(p, w, z}, otherwise

»
i

§_ {(p, w, z) if gl(p, w, 2, A) > %2(p, w, z, A)
_ (23)

S
i
s
e
=
g
=
¥
pog
e
H

[ %(p, w, z), otherwise.
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The system {20)-(23), rather than {13)-(17), genefates the switching
regression model that we propose to estimate here.
In particular, we assume that the conditional production functions

underlying (8) have the form

o -
yi=£fdx, 2} =6.()x?  j=1,2 (24)
J ] ]

for some functions Gj(z), j =1, 2. In our empirical work, we will employ

the follewing specification

L
L s 8.

_ I Ay A M Y.
G.(z) =0, \ &1 M oz M j=1,2 (25)
] J m=1
where z = (21, -++s 7y} are the nonpesticide inputs and s = (51, «.vs sg) is
a vector of observable grower characteristics, such as education and farming
experience, which, in effect, shift the intercept of the conditional

production functions. Using (24}, the maximization of (8) with respect to x

yields
1
~y I,

X3 = hj(p, W, Z) = o Gj(z}-g J j=1, 2 (26)

a,

oy, p| "

y; = hj(p, W, 2} = Gj(z) oy Gj(z] =
(27)
oy 1

1
T —
=
t
L

Jramr
1
{2
fd s
o
.
s
M
o
td
fd
Hi
f—
-
[}
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]

T, = nj(p, w, z, A)

3 {pyj "Xy - gzl A - k(j)

(28)

i

v. - wx.] A - F. i o= 2
oy, -wel A= By =1,

where Fj = k(3) +qz A, j=1, 2. Inorder to simplify (28), we substitute
(26) and (27) and make use of the fact that, for the Cobb-Douglas formulation

in (24}, the share of pesticide input costs in total revenues is o

~

X(e} = WY (-
W hj( ) =a.p hj( )

]
or
1 Qj 1 1 o
["Of, & g J
p Jj ) p i 1- i 1-0:J a3~1
W a3 GJ £ = aj D aj - Gj = [aj Gj pl w
to obtain
.= {1 - a. . - F.
" ( aJ) PY; A j
(29)
1 ¢y
0., 0. y1-0.

In order to generate a statistical model, we need to add some stochastic
elements to (26), (27), and (29). We introduce six stochastic terms,kul,
Uys Ugs Uygs Ny and N, into the conditional input demand, output supply, and

profit functions as follows

e J j=1, 2 (26')
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o .
’ 1_Ctj l%a U
- p Jo2+1 5.
Y5 {%j WJ Gj(z) e i=1, 2 (271)
.
. e
1~aj Ei. 1—&5 )
, = - a.) (G, A - F, . j = . 29!
T (1 aJ){Jp} - 50y i=1,2 (

These random terms may be thought of as representing errors of measurement,

unobservable or omitted variables, and random errors in the grower's
optimization process. Actually, the two terms, 1y and Ny, are not needed
separately; we only need their difference, Ug 1y - Ny, since we do not

observe T and L) directly but only the sign of their difference.

% &2
T o\ T 1 Ta,
) -al al 1 . 1 a, o, 2
A = LR P (1 - &1) {Gl pl (;F- - {1 - az) [GZ pl ;r) A
(30)

- (Fl - Pz) + US.

To simplify the notation, it will be convenient to rewrite (26'), (27'), and

(30) as

xj = e 373 i=1, 2 (31a)
Y
AT
y;=e? 23 =1, 2 (31b)
An = uﬁ + {31ic)
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where 1" contains all the nonstochastic terms on the right-hand side of (30) and

similariy for ;1? and iijg- Thus, making use of (25),

L
X _ 1 _ 1
UJ = W (1& C‘f.j + 1n Gj) + W § Sj ‘SJQ}E
J 3| &=1 |
(32)
M
1 1
+ g Loy, Inz |+ 4= 1n (é\ j=1, 2
1 aj {nwl im mJ I aj W) *
y o 1 L
UJ = 7 ) In aj + T —a. In 83 + . RE 5j 632
J ) 1
(33)
1 M } aj N )
+ e Loy, Inz_ | 4+ In j=1, 2
1 -a; ﬁnzl j n3 I aj) (w} »
and
1
L '}I"al !
Esody oMy, oy T4
o= A {1 -a)| po &t 5oz (mlﬁ
0L1 1 “m W
m=1 J /
(34)
L . )
2550 My 2 ey 1%
-1 - a)|va,e T fm 2 - (F, - F,)
A A n=l M W 1 27"

Accordingly, taking logarithms, the statistical switching regression may be

written as

Lif -v. < o

T = (35a)
2, otherwise
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u; * Uy ifT=1
In x = « {35h)
;X cr o
u{ + Us if T =1
Iny = {35¢)
y : -
Hy *+ U, iFT =2,

The model is closed by specifying a joint distribution for v = (UI, Uy,
Vg, Uy, V). In our application, we will assume that v is independently
and identically distributed (i.i.d.) across observations as multivariate
normal with mean zero and some variance-covariance matrix I = {Gij}'
Accordingly, the parameters to be estimated are 8 = (al, sy §99s cees
811 §510 +-e» LT Y11r cees Y Yzir cees Yo 090 62) and the
elements of L. |

Two features of this model are worth commenting on. First, we have
allowed attributes of the grower to influence the production functions, and we
have left open the possibility that their influence differs according to the
type of pest control strategy. One hypothesis we propose to test is that

§,, = 622 for all ¢--i.e., the effect of grower characteristics, such as age

1%
or farming experience, on the output levels attained by the grower is the same
regardless of which pest control strategy he adopts. Similarly, one can

test the hypothesis that the other components of the production function--6,
o, or the YM'Swware the same across pest control strategies. In this way, we
can pinpoint how the difference in pest control strategy affects agricultural

productivity. Second, it will be shown in the next section that four

off-diagonal elements of I (namely, Ti2s Tqq0 Op30 and 524) are not
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identifiable and cannot be estimated; all of the other elements of Z are, in
principle, estimable. The presence of covariance terms such as 913> U150

and g4c allows for the possibility that unobservable factors {such as
unmeasured grower characteristics) that influence a grower's output levels
alse affect his input choices and his decision to adopt IPM versus CPM; we can
also test the hypothesis that these cross-effects are zero. Thus, the model

{35) allows for considerable flexibility in modeling observed grower behavior.
III. Estimation

Given cobservations on a sample of N growers of whom Nl adopt IPM and

N, = N - N, adopt CPM, the log-likelihood function for the model (35} is
N
1 1 N 2
g, 5)= 5 1log 2.8, £) + X log 2:(8, ) (36)
i=1 i=Ny+1
wherefor 1 = 1, ..., Ny
X y
In x. -y Iny. - ug.
1 - i 1i 1 11, ®

%11 923
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W NP = y - M
172 P13 Pyg = P35 Pz 172
55 11
5 &
V172 5 7 7 177
(1 913) “{}-" P13 ~ Py5 = P35 * 2013 Pyg 035;}
(37a)
in y ¥
+ (pgg - Py3 Py5) ‘““““7?“*“‘
* o T2 i 7 2 177
(1 - plB) ji} ~ Pyz " Pig " P35 * 2093 Pyg 9357}
and for i = Ny +1, ..., N
In . - py. In Yi - ne
2 n i 21 21,
22 Ta4
ki
U : In x. - S,
i _ 2 ¥yl - i 21
172 (1 924)' 'i}pzs Pas 924)“““;Tf2“‘“
55 22
)
V'S WA A AN 77
¢ 924) .{?- P24 = P25 " Pas * P24 Pas Py
(37b)
ln,y %1

+ (py5 Pyq P35) ““““““7%?'*“
7 177
(1 - p24) if 924 P25 - 945 * 20y, Pyg p&%}»

- 1/2 . . .
where pij z Uij/(ﬁii ij) / , b(zl, Zy% p) is the density function of

a standard bivariate normal with correlation coefficient p, and ¢{+) is

the standard normal cumulative distribution function. OCbserve that the

LEIms Gyqs Og4s Tpss and T4 (or P170 Pya pzs,.and 934) do not appear in the
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likelihood function (37a, bl; therefore, they are not identifiable from the ob-
served data. One approach to estimation is to maximize (36) directly with
respect to B and the remaining elements of Z. Following the argument of
Amemiya { )}, it can be shown that the maximum likelihood estimator (MLE) is
consistent and asymptotically normal and efficient. In practice, however, the
normal equations may have multiple roots and, unless one starts from an
initial consistent estimator, there is no guarantee of convergence to the
global maximum. Moreover, because (37a, b) is extremely nonlinear in the
parameters, it is often computationally burdensome to obtain the MLE
directly. Also, in small samples there is no guarantee that one will obtain
an estimate of I which is finite or positive definite [for a technical
explanation, see Tsur (1983b)].

As an alternative, one can employ the two-stage estimation procedure
originated by Heckman (1976) and Lee and Trost {1978). The first stage is
maximum likelihood estimation of the probit model for the discrete choice of

pest control technology. From (35a}, the likelihood function for this prebit

model is
(g, ) NI UZ\ g "ug (38)
21(8, =1 ¢ ) )
i=1 \ o2] v \ o172
55 1 55

Untike conventional probit models, this model is nonlinear in the parameters--
see (34)--and, in principle, it permits one to obtain a separate estimate of
Ocee Direct maximization of {38) will yield estimates of Org and all

the elements in B, which we denote o and 8. However, these estimates jgnore

the information about £ which is contained in the data on the contimmous
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choices--the levels of pesticide input and output supply. This information is

incorporated in the second stage which is based on the observation that

i;{ln xIT = 1} = u§ + éi{vllwvs g_ug} {39a)
g{ln x|T =2} = ug +w§{uzl»05 > 1"} (39h)
g{ln yiT = 1} = u{ +£§{u31—u5 §,nﬂ} (39¢)
g{}fale'm 2} = ug + g{vaf—us > "} (394)
where
6.. 0] u"
35 177
- T, 955 | + .
b{ujl“"si“ j o= - =045 A j=1, 3 {(39¢)
i ;%7?
55
and
i)
,st ¢ ol )
5{"3'*'”5 > M = . 22 /- o 3=2,4 (39f)
iz
955

where ¢{+) is the standard normal density. Accordingly, we can set up the

following regression models:
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Inx; = WY * 035 ) Yegg (40a)
in xi==u§i-025lg + g (40b)
Iny, = “{i + o k; g (40¢)
In y; = ugi - Oy A; Wy (404d)

where g {wy;IT = 1} = Eluy, T, = 2} =E{wgIT = 17 = {w,,IT = 2} = 0.

N
In order to fit these regressions, we make use of the estimates B and’SSS

obtained from the first s:age. Let’ig be the estimate of u? constructed using %:
and 1et/i; andJ;; be the estimates of A; and A; constructed usingfiz

andiéss. Before proceeding to fit the regression model, we need to take

account of the cross-equation coefficient restrictions implicit in (32) and

(33). Observe that (32} and (33} contain the same explanatory variables

and differ only in their constant term and in the coefficient of 1n{w/p). We
can deal with the latter problem (but not the former) by replacing the depend-
ent variable in (40c, d) with In ?; = Iny; + In (pi/wi). Then, for

i=1, ..., N, we run the following regression

1’
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I
;; Cl \\\ﬁ
;j € |
[
f1n x. | 1, 0, s.. Se ., Z.. z.ln(m—%-) Yoo
4 | ¢ ¥ > > ] 3 » 3 \ b | b | > i
| i .% ( 1i Li* “1i Mi {\ 05 | i |, <
1 L [ L f
{ } | p N i
Iny. | |\ 0,1, s S ., 2 2oy In [ =21, 0, 2%
\ Yl /". \ by s 11 * o Li? 1i* 3 CMi? “’1 » 3 1/}
CL+M+}_
LM+ 2
CLMs3 /
CL+}«1+4//
(41)
“1i
+
©2i
The mapping from the coefficients Cor s ey tO the underlying
coefficients in (32) and (33) is as follows
Cp = 1 [Ina, + 1n 8.] c, = i 1n o +—--}“—m~—1n6 {(42a)
0 1-a 1 1 1 I - o 1 1- o 1
1)
8 8
. °n Y1
2T o G T ey (42b)
RSS! __Tim (42¢)
Cle2 ™ =P o CLawel =g
. _ 1
CLaez = T ) {420)
o (422]

ez T P15 CLenes T T35 -
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For i = N1 +1, ..., Nwe run a regression similar to (41) except that we
- A
substitute Ay for A; as the last regressor variable. The coefficients for
this regression will be denoted dO, dl’ enesy dL+M+4; they are related to the
underlying coefficients in (32) and (33) in a manner analogous to (4Za-e)--
for example, A amer = 1/{1 - uz), dp sz = Opc, and df oeq T g5 Since
both of these regressions are linear in the coefficients, we can employ
ordinary least squares (OLS). Denote the resulting coefficient estimates by

]

' ' ' . i
Cor v SLamed and dU’ vevs dL+M+4' The relations in (42a-e) can be

used to obtain estimates of the underlying coefficients in the model. For

example,
' 1
¥ - .
P . e (432)
“LaMs2
L *
t CZ ' CL+Z
611 = Yy = , etc., (43h)
CL+M+2 CLMs+2

¥ ¥
and, similarly, for sy 6;1, Y,q» €tc. However, the coefficients 91 and §, are

overidentified since, from (42a), we obtain two separate estimates of them;

for 6 we have

l’
t ¥ l
Ine, = —2—-1n |22 (43c)
Crme2 Crams2
and
¥ 1 1 [t 1
c Croinrin = Cr e -
PR S Rl g Bl (430)
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1 t H EH 1
and, similarly, for @2. From Cf M43 and Cl oveqs WO obtain 015 and Oz and,

1
similarly, for Tag and G;S‘ Estimates of the other identifiable elements of I--

¥ $ ) 1 !
C11» 9130 9330 Y20 240

of (41) along the lines indicated by Lee and Trost (1978, p. 361 and 362).

H
and a£4w4can be obtained from the regression residuals

Lee and Trost prove that these estimates are consistent but not
gfficient. Moreover, the variance-covariance matrix for the estimates
cé, cesy C£+M+é and dé, N d£+M+4 generated by the OLS regressions
is incorrect because the regressors included estimated variables (i;, i;).
Following the suggestions of Greene (1983), we can employ White's (1980)
heteroscedasticity-consistent estimator of this variance-covariance matrix
which is readily computed from the regression residuals. However, this does
not give us standard errors for the estimates of Uq1> G139 T33> Uaps Opgs and
Ga4 which may be needed testing hypotheses on I. Accordingly, following the
suggestion of Lee and Trost, we can take the estimates ' and Z' and use them
as starting values for a direct maximization of the likelihood function (36).
Since they are consistent, a single Newton-Raphson iteration will provide
estimates of § and I which have the same asymptotic distribution as the
global MLE. Thus, these so-called two-step maximum likelihood estimates are

consistent and asymptotically normal and efficient, and their variance-

covariance matrix is consistently estimated by the information matrix.

A third approach to estimating the switching regression model (35)

involves the application of the BM algorithm of Dempster, Laird, and

Rubin {1977). The extension of the EM estimator to switching regressions is
describad in detail in Tsur (1983a); here we provide only a brief summary.
For this purpose, it is comvenient to introduce some new notation and rewrite

(35) as, for i =1, ..., N,
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* X
Y5 = Hp5 * Vg (44a)
Yo, =X+ v (44%)
21 T H24 2i
Y
Y33 = Ky * Vg (44c)
* Y
Yai = M3 * Vg (444)
Y* =y 4y {44e)
5i i 51
K. ®
Yli if YSi >0
Y1 ® (44£)
not observed otherwise
N *
not observed if Y. > 0
Yo = * (44g)
Yz., otherwise
i
® % '
YBi if YSi >0
Y:‘Si: (44}})
niot observed otherwise
i %
not observed if Y5i~i ]
Yyi7) (44i)
Y,., otherwise
41

i *
1 if YSi > 0 |
Yo, = (4475)
0, otherwise.
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. *
In effect, Yl = 1n xl, 2 = In x, Ys z In Yl’ 4  1In Yy and YS Ar. In
*
the terminology of Dempster, Laird, and Rubin, the variables Yi z {Y;i’ Ygi, YSi’

# #
Ydi’ Y%i) are the '"'complete' data; they are not observed directly, but only

indirectly through the observed or "incomplete' data Yi = (Yli’ YZi’ YSi’ Ydi’ YSi)’

The logarithm of the joint density of the complete data is

ﬁ*(a, )=

4
I Bl

log 4%(Y. 8, 1) (45)

X ( }
N -1 1 -1 % * !
5 1ngz i - 5 151 tr {E (Yi - }jg ( Yi - “i) }

where . = (y?i, pgi, y{i, ygi, ug). The EM algorithm involves a sequence of

]

iterations, each iteration consisting of two steps. At the K + 1lst iteration,
A A ,
given parameter estimates BK and ZK, in the E-step one computes the
expectation of the log-likelihood function for the complete data conditional on the

observed data

{1

ay , ' ny g ?
Qs z1s%, géi*(s, DY,y oo Yy B 21 [ (46)

-

~K+1

K+l
y &

and in the M-step one finds 8 which solve

max (8, 218K, .
8,5

The algorithm is started with some initial set of parameter estimates, and the

iteration of B~ and M-steps is continued until a convergence criterion is

satisfied. Dempster, laird, and Rubin prove that these iterations converge to

a root of the normal equations for maximizing the log-likelihood function
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(36). Thus, the EM algorithm provides an alternative procedure for obtaining
the MLE which avoids some of the computational difficulties associated with
direct maximization of (36).

In performing the E-step, we observe that

;5 8¢ }(Yi /(Y{i ) -1 (47)

Y i if Y =1
Yf. -
' K 7K .
ph &{11 .:e,s,zf if Y, =0
Yy, if Yo, =1
) “xK f, ' nk, oK . N
Mpg ¥ Ez"lil‘%i <My E} if Yo, =0
o
S Y if Y, =1 (48a)
_;nK
“xK K K y1/2 - i e v o :
M1i T P15 (“11) A VS if Yg; =0 (48b)
955
_;?rl(
) .
“):f:li + o35 ( 22)1/ TN ¥ =1 (%)
41 7
Yo =9 Vs
LY, ifY.. =0 (49b)
1 51
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~xK . , . - - . K
where My is (32) evaluated using the coefficient estimates g, and
AW A -
similarly for @§§ and sz, where A'(a) = #(a)/e(-a), and A (a) =

¢{a)/éla). The formulas for ?21 and ?ii are similar to (48) and (49). The

formula for Yg. is
1

} x < ! K K
= " . ; .
_ ) by ot ”'}USIYSi 1; B, E.} if YSl 1
Yr =) ¢ S
> S Y, = 03 gk K¢ ifY.. =0
(‘ it GyuslYsi = 0B T 51
- K
~ - 1/2 inf
i K + 1 -
it (“ss) A ~ | 172 if Y, =1
k“ss
_ . (50)
[
i _ “K } /2 - ] i ] _
My (_ 55 A ( e ) 172/} Y, =0
Ossi /
Similarly,
0 ifY.. =1
TK _ (/ 51 _
11i - — a
C\ Z _ K K;: _
;z“ @ijl Yo, =058, L if Yo, =0
J/o if Yoi =1 (51a)
b 1 [ Y\ |
AK AK 2 - { i H = _
(_011 [ 1+ \ 915} vyl 1 Yg; = 0 (51b)
L \ | ok > /|
\9ss) (]
[~ e v L
T - = w -
133 / TS S SR N 1 ) j
"X 15 35 - i ; iy -
\ Ty 1+ W A / W i if YSi = { {51d)
' 755 713 L Tec S



; i 0 if Y, =1 (51e)
T . -
151 | . K
K 10T L .
: a i
\ U85 /
and
“ (2 “K “Kﬂ
) : UZ‘YSJ. - 1; K, z_j Pf Y =1
T

/ _;TTK
K K )2 .+ i . _
Oy {1 +( 925) A - )1 7 if Yo, =1 (52a)
Isg .
] if YSi = 0 {(52h)
;‘HK
“K 25 45 i .
0'24 1 ‘*‘ W if YSi = ] (SZC)
55 24 o )
K \ 55
1‘ =
24 0 if Yo, =0 ' (52d)

~ [ fK

oyc [1 + A*I{ *xl} I if Yo, =1 (52e)
Tlggm ( I55]

0 if Y., =0 (52£)
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- ax (a) - k—(a)z. The formulas

i

where A7(a) 2 a A (a) - A+(a)2, and A (a)

for r§31 and 1251 are similar to (5la, b, e, f) and those for ngi and TiSi are

similar to {52 a, b, e, f). By virtue of the non-identifiability of these terms,

K _ K K K

We sel Ty, = Ty, = Ty33 = Taya; = 0. Finally,

X :) -
551 z K oK
S_us 30;8,2}“1st1:0
"/
) (53)
- ~nKk N
“K | " / "3»[7;.
Org 1+ A f - } T if Y51 =1
~ | ss 3
-~ , ";ﬁx ‘..\ )
) i ! -
055 L}. + A 7“*}2—1-7—-14 If YSl = 0.
%)

The interpretation of (48) and (51) is as follows. For an ob-
%
servation i for which YS' = 1, we actually observe Yl" since, in this case,
Y i Yfi. Therefore, our expectation of Y glven the observed Yl is

. K K
simply Yli and all the terms T11i> Y135 etce, become zero. However,

. * ) . %
if Y. = 0, we do not observe Y In this case our expectation of Yii

51 ? 11’
conditional on the fact that it is not observed is given by (48b), and our

expectation of ui » V3g Vg €C., is given by (51b, d, etc.). This
*x
is how we "fill in" the missing values of Yli’ and similarly with YZi’

X . . .
Yﬁi’ etc. We end up with a full set of N observations or filled-in values for

*

Y

all five variables Y1 ees Yoio
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Next, we plug {47) into (46) to obtain

- - N
K 5K _N -1 1 -1 1
Q e,z 818 =N 7ol Toou Yoo
(54)
+ T
In the M-step, we maximize (54) with respect to 8 and £ to obtain
BK+1, £K+1. Setting the derivative of (54) with respect to I equal
to zero yields
w1_1 N | /K kel Kel) ' K
e Loy Y- K oK P (55)
=1 i i i i i

However, the maximization of (54) with respeét to 8 is more complex because,
while Hygs Hpis Hzgo and Hqp @Te linear in (transforms of) the elements of
By Mgy is a nonlinear function of 8. Hence, at each stage K, an iterative
solution procedure would be required to perform the M-step with respect to B
since all the elements of 8 already appear in.gli, e My We avoid this
problem by omitting the terms (§§i - pSi) from (55) and maximizing

Hygr soe» Hyg with respect to 8. In effect, we are estimating filled-in
versions of equations (44f, g, h, i) and omitting the filled-in version of
(443). In order to allow for the cross-equation restrictions on coefficients,
we proceed in a manner similar to that used in the regression model (41). We
replace ?gi with-¥§i z ?gi + 1n (piﬁsi} gnd'ﬂéi with pZ? 2 hgy

e

In (py/s,), which is legitimate since (Ygi "V“Zi) = (Ygi - Hpy), and

similarly for §§i and Hps- Then, for i =1, ..., N, we have



-25-

~
]

/ G

@
P f fpii? ) ;
H1i L 0s sy e Spgs Zygs - Ty, I f

= ] ; ; Ci1 =(Séa)
- , | - :
e A N U PR ¥ L+2
N L—* £ H
CLaM+1 _
C f
L+M+Zji
= X. ¢
i

where the elements of c are related to the underlying coefficients in B by

(42a) through (42d). Similarly, for i = 1, ..., N, we have

u.
LAY X, do | (56b)
Hai
Thus,
[ Myl
~ / PN I
~ { u / 0) {(: ~ f(:\
~ 2i S | " |
u_:i = | ;‘,,Xk_; - (57)
1 R M3j i"xi{\éf idf
],j.
| 431

Finally, define
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N\ [ VRN oy
K oo Tie] K :§Ygif ko Yer
ci oL, ot F oY E f
s YR b
L Taq Y di |
\ / { . i
£ oy . -
K K K * * PN
. ) Y1 fa K RSy
K_ . ! K_ . . i K _ [ I /
Y& o= : ;E’YC: . 1,Yd: i,xgj- : ,ar;d)(xs
i : i : ]
T N A Y
\ N ] \ Yoy \ Yax / Xy/ Xy

and partition I (and £K) into

~ . 015
o

Z = + v £ &+ = 045

Ogy =+ I54 955

L .

Then, maximization of (54) with respect to (c, d)' when (44j) is omitted

yields

/ - - Y
[ TK+1 -/ -1 .11 ., FES R
le gl =X /EK"}“) xj X EK""l// <. (58)
L& \ _ \
\' v
Moreover, beciuse of the block-diagonal structure of X and ¥ (recall that

012 = 014 = 023 = 034 = 0}, (58) reduces to

KLty Y§ (59a)

&1 0 x k. (59b)
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Thus, the M-step (59) reduces to a pair of ordinary least squares regressions

K K+l K+1

' Fa% ¢
of Yii and Yy, on X;. Given A and E* the elements of g can be

obtained by making use of (43a, b}, etc. Note that we obtain two separate

~
estimates of 6§+1 and similarly for 6§+1—~see (43¢, d).

To summarize, at the K + 1st iteration of the BM algorithm given
N, - -
estimates BK and EK we first fill in the missing values of Yli’ e
and,T§ using the formulas in (48) through (53). Then we compute

L from {55}, and we run the ordinary least squares regressions of YEi and

% -~
Y.. on Xi to obtain the coefficient estimates CK+1 and dK+l

di
obtain BK+1 via (43a-d). Upon convergence, we obtain estimates of Z and B

, from which we

which correspond to the MLE. However, this procedure does not yield a
variance-covariance matrix for the coefficent estimates. This can be obtained
by direct evaluation of the information matrix based on the Hessian of the

log-likelihood function (36) evaluated at the final EM coefficients.
iV. Application

The switching regression model (35) was applied to data on 45 cotton
growers in the San Joaquin Valley of California in 1974; for a detailed
description of the data set, see Hall ( } and Farnsworth (1980). Of the
growers, 28 employed IPM and 17 employed CPM. The variables and their units
of measurement are as follows:

output of cotton lint {pounds per acre)

y =
x = pesticide input (dollars per acre)
p = output price (dollars per pound)
w £ 1 = pesticide price

i

labor input (deollars per acre)



w3

zy = machinery input (dollars per acre)
Ig = irrigation input (acre feet per acre)
z, = fertilizer ipput {dollars per acre)
S1 = education
s, = years of farming experience by growers
A = acres managed by growers

Fy - F, = fixed cost of IPM consultant (dollars)

The coefficients of the model were estimated using the EM procedure
described above; the resulting estimates are shown on the following two
tables. Standard errors of the coefficients (from which t statistics were
calculated) were obtained by evaluating the Hessian of the log-likelihood

function.




TABLE

Coefficients Estimated by BY Algorithm

Coeftficient Coefficient
__{explanatory variable) _estimate t statistic
¢y E Hnog + In oyl (1~ - 4.7489 (~1.42)
o, 1ln oo Inw

P S S -11.4121 (~1.88)

i 1‘0 1""\1

1 1
6., (1 - al)"l (education) - 0.4372 (1.44)
S5 (1 - al)ml {experience) 0.8744 (2.17)
vy (1= 07" (tabor) 1.2198 (1.90)
v, (1= a7 (machinery) 0.2521 (10.39)
vys (1 - al)ml (irrigation) 4,0702 {(10.18)
vy, (1 - a7t (fertilizer) 0.6862 (1.37)
(1 -3 (pesticides) 4.1784 (5.51)
dg = [nay + 1n 6,1 (1 -a)" - 9.4942 (-0.87)

4, in o In &
a a.ﬂ%_:_gag @-iw:mwg -14.8284 (~2.03)

- 2 2
55, (1= w3t (education) - 0.4372 (~1.44)
by, (1 - az)‘ (experience) 0.8744 (2.17)

(Continued on next page.)



TARLE 1--continued.

Coefficient Coefficient
{explanatory variable) . estimate  t statistic
vyq (1= )" (labor) 2.6795 (1.00)
Yy, (1 - 0;2)“1 (machinery) 2.8122 (0.14)
vy (1 - az}-i (irrigation) - 0.2045 (-0.35)
Yy (1= )" (fertilizer) - 0.7962 (-0.87)

(1 -0 (pesticides) 3.4667 (3.70)




TABLE

Transformed Coefficients

Coefficient (explanatory variabis) o Coefficient estimate o
70,4210
: Y o 0502
41 (education) -0,1046
Sy {experience) 0.2093
Y,; (labor) 0.2919
12 {machinery) 0.0603
Y3 (irrigation) 0.5741
Y4 (fertilizer) 0.1642
ay (pesticides) 0.7607
0.090%
-JZ
3.0177
Sy (education) -0.1261
P {experience) 0.2522
1 {iabor) 0.7729
T3y {machinerv)} 0.8112
Y,5 (irrigation) ~0.059
Va4 {fertilizer) -0, 2297

(Continued on next page.)




{Table  --continued.)

Coefficient (explanatory variabls) Coefficient estimate
o (}’E’ffSiiCia’EiSSE 0,718
I 30,8878
11 #8878
“3 - 24.6836

v 284,314,

933 135,25
25,771.9
Yz 16,4918

Yaa 3.5416

24
Uye -308,100.
Y44 i87.81¢
045 - 1.818 X 10V

U55 1.3254 X icll






