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PHASE CONTOURS OF SCATTERING,AMPLITUDES _

Chung-I Tan
Lawrence Radiation Laboratory
"~ University of California
Berkeley, California

May 10, 1968
ABSTRACT

Phase ¢ontours are used to stuhy consistency condi- .

- tions for a symmetric scattering amplitude having a given

high energy behavior., The latter is taken to correspond

. to dominance by Regge poles that have continuously rising -

trajectories, o -

ﬁy means of croséing symmetry we introduce a
sequence of real zeros of the amplitude; that lie along  J;;: -
lines of symmetry in our model, s = u; int < 0, for |
example, The leading zero in this seduence is related to

the scattering‘leﬁgth. Under quite general conditions

. these zeros may be related, via complex surfaces of zeros,

to the zeros of Regge residues below threshold, By con- -

sidering complex sections of phase contour surfaces, we

" show that these zeros may also be related to a sequence of

zeros at complex points, that are due to interference

betvieen resonance poles on unphyéical sheets above threshold,



I, INTRODUGTION

~Our aim in this study is to explore the properties -

| of scattering amplitudes by means of a general.study of

~thelr :phases, Our ebjective is to investigate consistency"

conditions imposed by analyticity when a given asymptotic

behavior is assumed for a scattering amplitude. These con-”_3“

.sistency conditions are obtained by the use of phase con-

»-tours, which were introduced and studied in a previeus

paper (hereafter denoted by I). -
- A phase contour is defined as the curve, or more

generally the complex surface, on which the phase of an -

.invariant amplitude takes a given constant (real) value. e
" Our main motivations for employing them are that phase con-ln f*‘f
* tours are simply related to high energy behavior, and that

Vthey have striking features related to resonance poles

and zeros of scattering amplitudes, - N
We are mainly interested in models of scattering
amplitudes that have asymptotic power behavior in the Mandel-l»l
stam variables. In particular, we consider tne case of the
Regge model with continuously rising (and falling) Regge |
trajectories, The characperisbic_feature of these models is

the simplicityvof the agymptotic phase of scattering ampli-

tudes when anf one of the Mandelstam variables is held

fixed, The method of phase contours becomes particularly use=-

ful in this case, We illustrate the method utilizing a



-2 =

symmetrié scattering amplitude correSpohding_to equal mass |

spinless bosons.

A consistent Reggé model reqﬁires that the trajeétoriéé,[.

should be complex above threshold and go through_integral
values on the unphysical sheets at resonance poles., In addi;’
tion zeros are réquired.in residues to avoid the existence

of nonphysidal poles in the full scattering amplitude, or

in partial wave amplitudes;, These zeros and resonance poles -

play an essential role in establishihg a consistent topology
for phasé contours, This 1s because phase contours that
correspond to different (real constant) values of the phase_'“

‘cannot intersect each other except at zeros, p.les, and

“possibly other divergent singularities of the invariant ampli- -

tUdeo

In this ﬁaper‘we are working towards a conéistenb,  co

solution for the phase contours for a scattefing amplitude,
having crossing:symmetry and Regge behavior. A consistent
.solutioh should describe Both the gharacteristic features cof -
Regge behavior in the asymptotic regions, and aléo the inter--

ference pattern due to zeros and resonance poles of our

Regge model at finite energies, Therefore, this solution allows -

us to ébtain information about the properties of scattering
amplitudes at low enérgies by starting from our knowledge in
all three asymptotic regions, ,

) We would like to emphasize that the nature of this

4
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' ihrestigation is expioratory and héuristic; rather than -
rigorous and deductive, In order to build an intuition
based on phase contours, it is necessary at first to make

simplifying assumptions, For example, we demand our final . fff

solution of the phase contours to be as simple as possible.t]-'”"

Zeros of scattering amplitudes are introduced on the physicalif.

,’17_sheet whenever they lead to simplification of the phase confié}Q;

‘tours. These zeros will be required in regions of érossed

~ branch cuts, and they can be described in terms of a general- fg¢ 

ized scattering length, We show that these zeros can be
identified as different parts of the same surface of zZeros E f:
“ that can be deduced frém our Regge model.
3 The main reason we put forward for<theAgeneré1 stﬁdywj’f
r"of phases is that it provides a new way of.looking at the - -

*analytic properties of scattering amplitudes.-lPhase contours .
provide a description thét is remarkably simple in many cir-

‘cumstances, This description may be compared with the

method of finite energy sum rules, Both methnds allow one to -

deduce properties of amplitudes at low energies from their

asymptotic behavior; however, they differ in their emphésis}
The use of finite energy sum rules requires the identifica-
tion of a "Regge" channel, but Reggé expansions in othér

_ chénnels are not used explicitly. The method of phase con-
tours, on the other hand, makes use of Regge expansions in -

all channels simultaneously., However, through the use of
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resénance,appréximation, finite'energy'sum rules éppear more
complete and correspondingly more usefulnin'obﬁaining quane
titative'information. The methdd»of phase contours would
be usefui primarily in dbtaining quélitative inférmaﬁion’
which could be used as a general guide ih a more sophisti-

cated bootsﬁrap program,

In Section 2 we summarize the‘properties‘of phase

| contours that are required for our subsequent discussion.','iv':

Most of theée properties_were‘discussed in mofezdetail.in._.t H
'Ref. 1. In Séctién 3 we first introduce a phase model that }1
has no zeros or poles on the physiCal sheet, and from it we :
obtain a so1ution for the phase contours., We point out

ﬁhat the.assumption'of no zeros on:the physical sheet_leads

to a complicaﬁedlstfucture of phase contours in.certain

regions of crossed branch cuts, Thesg complications can be

° removed by the introduction of zeros. In Section L, we dis->_‘ 

cuss zeros below threshold that depend on the scattering
'length,"and_extend this to include a sequence 6f real zerOS":'v
on the crossed branch cuts, Associated with these real zeros,
there are éurves of'complex zeros on the physical sheet -
‘that lead to a_simplication of the phase contours of our first
model, This modification can be interpreted as arising
wheﬁ zeros move on to the physical sheet through the crossed
brénch cuts at infinity.

In section 5, we study the comblex zeros-on the physi-
cal sheet_ﬁhat come from zeros of the residues of the lead= |

ing Regge terms, and we show how they modify the phase contours,

ey —
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' These zeros may be identified as parts of the4cémplex sur-
faces of zeros that disappear through the crossed branch
cuts.and are related to the generélized scattering length, -
In Section 6 we introduce the effects of the Regge model :
A  above the thresholds whéré the trajectdries become complex..  

Resonance poles on the unphysical sheet produce striking

changes in the asymptofic phase contours that are analogoué'f”“’“'w

to those produced by the zeros of residues below threshold, -
There is, however, an essential difference in the way the
zeros move on the physical sheet, Below the t threshold;

they move out td infinity'in complex 8 'plane'when t

approaches finite values at which the residue of the leading - '

t  channel Regge pole is zero. Aboﬁe threshold they move
" to infinity only when t becomes infinite. This becomes
evident iﬁ Section 7, where we give the crossing symmetric
phase contours for the Regge Model. We aiéo indicate in -
Section 7 the way‘reéonanbés and zeros are related, by
considering a complex section of the phase contours on the
~ physical sheet and on neighboring unphysical sheets.u In
Section 8 we give a‘summary of our results, A diséussion

of the general use of phase contours is given in Section 9,



2. ASSUMPTIONS AND PROPERTIES OF PHASE CONTOURS

, - The phase @(s,t) of a scattering amplitude F(s,t)
tis defined by | . - o

¢(é.t5}=ul$. (log:[,F(s,t)] ].; o f R Gl" ,(Z.i)}_.

"It is also necessary to Specify the phase at an initial
point (sg,tq). ‘When F(s t) has zeros or poles on the .

- physical sheet, the phase may be changed by multiples of : 21r
by choosing dlfferent routes from the initial point to the o
- point (s,t).“we must therefore specify the route that We_"
‘use when relating the phases at twdvdifférent‘polnts._

A phase contour is defined by

¢(s,t):: c, _. ; Lo | 75lv(2;2) o

vwherev-c is a réal éonstant. We will}study phése éontours_‘
both for real s and t, and for complex s when t is
held at real values, _ ‘

For fixed t and complex s (s = s, + isz),'the'
 phase is a harmonic function of s; and sy, when F is
regular. In the s blane the phase contours are orthogonal
to the modulus contours, but this does not apply in other
planes, like 8 and t réal, fof example, |

Phase contours, for different constaﬁt values of the

phase, cannot meet except at singularities or zeros of the

-
-
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__ampiitﬁde  F(s,t). There is a phase change of 2T for an

" anticlockwise loop round a zero, and (-2%) round a pole

in a complex plane, The phase change is * 2% round a
zero in the real s,t plane.

If F(s,t) is finite, or only logarithmicaily diver-

- gent, at a singular point, there will be no meeting of

phase contours at this poiht. We will assume that this' _ |
situation holds for all,singulafities of F .onvthe bouhdaryl}f"'
of the physical sheet., We will limit our discuééion to the .
scattering of-equal.méss particles; and we will assume that

F(s,t) is regular on the physical sheet defined by the cut - -

 s, t and u planes, We will therefore have the analyticity

 of the Mandelstam representation, but we will make assump-

tions that prevent its full validity, due to an infinite_

: )
number of subtractions,

Our symptotic assumptions,‘which:also serve to define

 the phase at the initial point, will be based on a Regge

" model, for which, as s =00,

S(,t)s““) exp [111[1 - go((t)]]

F(S’t) ~ *« (203)

sin [g:m(u)] r (o (s))
However, we willninitially (in Section 3) use a simpler model
for the phase as 8 — @ , in which the complications of the
Regge form (2.3) are avoided. These complications, which

are incorporated in later sections, arise from the zeros of

'f, the term (2.,3) at negative odd integers below threshold,
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"andlfrom'the-féct that of becomes complex above the threshold- iv

in t, and there are resonance poles on the unphysical sheet, o

-~ We assume that the total cross section is asymptotiQ«
cally constant, From the optical theorem this gives '
X(0) = 1; and aiong '8 + 10 (above the branch cut with s |
7 real); using. (2.3) |

ff_ This'equation'defines.ogr initiallphase. It is more'con- | ,
_},veniént than.defining the initiallphase at threshold, since _‘
'“there it will depend on the sign of the scattering length;‘_

We will assume that the Reggevtfajectory A (t) is .
- continuously rising, so thatl_Re *(t) increases without -

- 1limit as t 1increases, and Re &(t) decreases when At_

. decreases, also without limit. Below threshold we assume -

& (t) to be real, and above threshold we take it to be

- complex, but with an imaginary part that 1s'smali'c6mpared"

to its real part. In our initial simplified model in

Section 3, we will approximate ol (t) as real for all

real ¢, , : -

We will study a scattering amplitude F(s,t) that

~ is symmetric under crossing in the three variables s,'t

and u . This requires that Regge éxchange corresponds to

even signature, which gives the asymptotic phése, near |

t =0,

g(s,t) ~ ‘R[l - i;a((t)] , 88 S—-m. | 1-(2.5)

v -
- K
B s e 2!
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This formula for the phase follows from Eq, (2,3) when t is
in the fange‘ | - _ v., . : .
o 2 - A L
. O : . - : .l ‘ ’ ‘.
where t, denotes the first zero of the residue, that
occurs for negative t, when -
_ M(tl ) = -1, . R S (2.7) o

provided _b(t)‘ does nbtfhave:any zeros in the range (2.6). .

. We will discuss the effects of zeros at X(t) = «(2N + 1)

. in Section 5., Above the threshold | tJ: Lmz, ok (t) becomes - o
,chmplex, and the phase of ;he Regge term (2;3)A is no
_ longer giveh by Eq., (2.5). We wiil consider thé resulting
phase in Section 6, | o
Our initial'simplifyingAassumptions ébout’tﬁe phase,-"
" are based on Eq. (2.5), We assume that‘the_ppase of the |
amplitude has the form (2.5) as s = o along real s + 10,
for any fixed real t. We also assume that o(t) is real
for all real t, even above threshold. This is no longer a
Regge model but it is useful for illustrating the first
requirements of the consistency problem. Crossing symmetry is
achieved by making analagous asymptotic assumptions for
fixed u and fixed s, _
In the forward direction, ¢ = 0, the optiéal theorem

requires that, along s + 10,

Im F(s,0) >' 0, for s > z.‘mz, N (2.8)
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in ordér that the total cross section shall.be positive,
~ Since 6ur amplitude is to be symmetric, theré;is a similar
 condition in t_hé backward direction, u= 0,

The relation (2.8) can be extended to ahy value of °
t in the range

0< t< bne L (2.9) .

: Henée, using Eq. (‘2.5)_,' which holds also for the Réggeﬂ
‘amplitude (2.3) in this region, we '.mizst have

0 < @ls,t) <o, : R ‘210)

for s > l.mz, in the range (2.9). There is a similar condi- B

tion in _ S
o€ u<g b, (2.11)

2

‘From this result we see that the phase at threshold s = 4m°,

~ reached along t = O from s =+ , must be Zero or w .
If there are no poles or zeros below threshold, the phase

‘must be either 0 or o throughout the region
‘s < km, t < 4m, u< fm, ‘ - (2.12)

- Which of the values, f§ = 0 or 7, is relevant will depend
on the scattering length, which will be discussed in Section
ho The value of the phase @, 4in the triangle (2.12)

. also depends on the route by which it is reached from our

starting point given in Eq. (2.4).
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3. A MODEL WITH NO ZEROS ON THE PHYSICAL SHEET

Our first objective is to obtain a solution for phase '
contours on the physical sheet, when there are no zeros or
poles of the amplitude on the physical sheet, It is not;

~evident, a priori, that such a solution will exist., Our . ;5451 '

’-f?_reason for requiring no zeros (or poles), is that the phase

" of F will be unambiguously deflned, so that it is 1nde-_wf§f"f"'

| pendent of the path on the physical sheet by which it is “&?  »'J

o ;ffobtalned from the initial value in Eq. (2.4).

: We assume an asymptotlc behavior that is con31stent  ' 
- with a symmetric amplitude and has the phase (2.5), '
8> +oo , | |

At) NY

We assume that b(t) has n§ poles or zerds”oﬁ the pﬁYsicalv.
sheet, and that o (t) is feal, and cdrreSponds to a contian
-ously risihg trajéctory, for all ‘t, We make s.milar asymptotic
assumptions for fixed real u, and s. o o
It is important to specify thé limit in which the
boundary of thenﬁhysical Sheet ié approached, since this will
| affect the phase. Thus Eq. (3.1) holds in the limit v(s'+ iO)‘
_ with s reai. In the limit (s ¢+ 10) as s— 0o alohg the

real axis the phase will be
Bls » -, t) ~ w1+ 3 x(t)] . (3.2)

We shall first study phase contours in one physical
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 region and then in the other physical regions and the regions
of crossed branch cuts, For each case, we first obtain a ,
solution for the phasé contours by assuming that the émpli-, o
~tude has a speéific form, We then argue that the contours

- thus obtained are the simplest ones compatible with the're-v‘

‘quirement that our solution is to have no zeros on the physi- e

cal sheet,

(a) Phase Contours in the s - Channel Physical Region (s + 10

Limit)

We begih'by.obtaining,phase contours in the physical - |

s channel (in the limit s + 10), assuming that the ampli-

tude has thé‘fom

F(s,t) = b(t) s %) exp.[iw[l-?- ) om)]]

N

+ blu) 's!"(“) eip [fm [1 - go;(uj}'

+ background | (3.3).
‘We take ok(0) = l,'so’ as to give a constant total
.eross section, and we take the background to have only a
: slvo'wly varying phase. At high energies the background is ‘ |
n_eglected at all angles in the physical regions,
| _The phase contours for real s and t in the s-
channel are éhown in Fig. 3.1. We have heglected small oscil-
lations of the type discussed in I, It is not evident at
this stage, whether the phase contours @ = 3% bend away
from the physical region as shown, or whether they join through

the physical region like the other contours shown.
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-~ The topology of the phase contours, shown in Fig. 3.1,

48 more generally typical than one might.ekpect from our

special model. Givén the éssumptions of dominance by a con=

~ tinuously falling trajectory o\(f) for decreasing ¢t,

" &(0) = 1, and no zeros on the physical sheet, we note the

following consequences:

(1) Phase contours are asymptotic constant, parallel

to t = const, or to u = const.

(i1) The phase contours @(s,#) = O (%) cannot cross '

2
the line t = 4m~ (0) or the line u = 4m~ (0) above the

~ elastic threshold s = 4m°, This follows from the optical

theorem and the positivity of the total cross section associa- . .

ted with a symmetric amplitude.

(i11) We expect phase contours to be continuous, This.
is because there are no divergent singularities of the scat=-
tering amplitude in the physical region. ‘

_(iv) Phase contourscan cross each other only at zeros  ";
of the scattering amplitude. Since there are none by assumpe-
tion, it follows that the phase contour @ = -n™/2 that is

asymptotically parallel to t = const., must connect to the

 contour @ = -nm/2 that is asymptotically parallel to

u = constant,.
It 1s easy to see that the topology of the phase con-
tours shown is the simplest one that is compatible with these

requirements for the case of no zeros on the physical sheet.
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- From Fig. 3.1  we can obtain phése c’:ontourvs’in other ‘

: real. régions Iin-two élssehtially different ways. Thes,.e'delllaend',?
for instance, on whethef we de’sire.the_ pﬁase in the limit 7

(s + 10, ¢t + 10), or in the limit (s + 10, t - 10) when we N

| increase t past lpm . Other l:.mi'c's. give contours topoiogi- B
cally similar to one of,thesé, for the modél considefed here;_ '

We shall first co}’nsideir the + 30 limit, and then the 10 |
limits, ‘We shall assume the amplitude to have a si)ecific form,’}"_i:f""v

‘similar to Eq. (3.3), describing the assumed asymptotic

' behavior. -Arguments similar to the -above can be made to shéw

_' that the result.lng phase contours are the ones that satisfy
- the general requ:.rements of this sectlon.

- We shall denote by (s + 10) the triangular region
s > 4m? + 10, t < hm,u < bm, and by (s + 10, t +i0)
'the region s > l..m + 10, t > h.m + 10, u < L;m (the s-t
crossed-branch-cut region). Similarly, we can deﬁne other

regions on the Mandelstam plot.

" (b) Phase Contours in the s .+ i0, t + 10, u + 10.Limits

The phasesl in the 4 i0 limits for each relevant |
 variable, or a pair of variables will be symmetric with res- . )

pect to, s, ¢ an;l u, In part.:.culav they have the same form' - ~
in each physical region as Fig. 3.1, i.e., in the (s + 10), |
(t + 10), and (u + 10) regions. |

| In the unphysical regions, for example, s > 4mZ,

5 > hmz, i.e.y{s + 10, t + 10), we write the amplitude in

!

~ the form

e
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F(s t)‘* b(t)s ‘t) exp [.ivr[ 1-13 ct(t)]]
* b(s) G [:nr (1 - éo(‘(s)]] BT

+ ,background;

.With assumptions about the smoothness of the background similar
to those made in the physical region, the asymptotic contours '
~above the s threshold join smoothly to those above the ¢t

threshold. The resulting phase contours in the real (s,t u)

‘plane in the limits from the upper half planes are shown in

Fig. 3.2,

- lc) _Phase Contours in the s+ 10, t - 10, u - 10 Li{nits

The analogous diagram showing phase contours in the -

limits (sv+ i0, t - 10, u - i0) is more interesting, The

phases in the t-channel and the u-channel are obtained by -
analytic continuation in the region In(s) >0 along, for

fixed t or fixed u,
8= K exp(i0), 0g 06 g ™, " . (3.5)

where K is a 1afge positive constant.'dIn this simple case

with no.zeros, one obtains phase contours in the u-channel

{u - iO)'and the t-channel (t - i0), which are complex con-

jugate to those in the s-channel (s + 10).

In the region of crossed branch cuts, we replace Eq.

(3.4) by
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| _' o ¢y
- F(s,t) = b(t) s (t) exp [Ai-.;—" [1 + 3 o(_(t)JJ
o + b(s) uok(s) exp [i'," _[l } éo((s)l] ,
; beckgrQund,A. . (3.6’3m1-

This form is appropriate to the limit (s + 10, ¢ - 10).
Along 8 =t, t.he background must be real' so the phase will _
be Y since it. has this value asymptotically‘ _and there are |
‘no zeros by assumption, | |

The resulting phase contours are shown in Fig. 3.3, 7
We see that along t = 0, the phase is l'n— as s ->+oo but is
% ™ as s = =00 (keeping on s + i0). In the region of

crossed cuts, say (t - i0, s + io), t.he é'tr phase contour :,IiV';(?-' o

o is required to separate the 1‘r contour from the O contour.‘

‘Similarly the %‘n- contour must lie between the v and 27r | |
contours in this region., This determines that these contouxjs S
must bend away from the physical regions in this diagra.x‘n‘,' ahd
also in Fig. 3.2 since below t = Lm?, the 3ar c‘ontour
.‘follows the same path as in Fig. 3.3, We see 'else ‘th'at the

o phase in the triangle below thresheld must be equal ﬁo L

'this is a consequence of our assumption that there are no

zeros on the physical sheet. ‘ _

‘The phase contours in the region (u - 10, s+ 10) s
are obtained from (t - i0, s + 10) by u-t symmetry., The '
complicated'structure of phase ‘cor.xtours‘ in the- (t - 10, s +‘ iO)_
and (u - 10, s + 10) regiens will be removed in the next



- zeros on the physical sheet.
o ’-.contour surfaces for three real values of t in the complex

LT t = 0, the second just above t = 0, and the third well aboVe

- "'Seci:i‘on""‘whé'ri we 'i'rfelax the. assumption that there are o

In Fig., 3 ol we sh.ow complex sections of the phase )

s plane. The values of ¢t are chosen with one well below

t = hmz. The phase contours in Fig. 3 14. 1ndicate the

“ aSYmPtotic phase as s = 0 ,
. ¢(’s,t)‘ ~ _’n [1 -3 Dﬂ(t)] + o), -
* . where - "S.v= } S" rexp 16, The Pth‘ase lines ¢= me’et«af
%"j._',_._»_pstagnation points, so that. g =n-ce - and ¢ Tf + e

‘,’A,‘{'diverge away from these points as 1nd1cated in - Fig. 3 l+(b).
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' 4. ZEROS AT FINITE REAL POINTS

_ "In this section we will extend the model described -
1n-Seéﬁion 3;_so that there are zeros at finite real points;]f-

Attached to these zeros are curves of complex'zercs that'f

'f ,l1e on the physical'sheet.

v We begin by stating the results that have been _
established by Jin and Mar‘cin2 for a symmetric scattering
amplitude below threshold. These give an indication of where
 we may expect-to find a set of real or complex zeros of the
scattering,amplipude on the physical éheep. Wé_will extra-
polate heﬁristically from the rigorous results of Jin and
.Martin to deduce the effects on phaase contoﬁrs of the first.j_g;H
real zero., These lead us to obtain a consistent solution for
| phase contours with an infinite sequence of real zeros on the
crossed branch cuts in the limits from opposite half planés,
for example (s + 10, u - i0). This solution cén be éon—
tinuously varied so that it . goes over to the éolution_obtainedif
invthe previous section when the z95033move through infinity

to unphysical.sheets.

(a) The Amplitude Below Thresho 1d
. Define the vafiable z by

P (s-w?= (s- 2%+ 3t) (1)
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S 7] |
When ¢ is in the range = (=4m y + l+m ), the amplitude can

 be exprassed by a dispersion relation in z, with one sub-

traction. 2,3 Let G(z,t) denote the amplitude F(s t) expressed

in terms of the variable z. Then

| 0 o
| - - Xg ) Im G(x,t)
G(z,t) -_c(t) +  5 (x - xo)(x - z)

o .(#02)1‘v

In the region 0< t < hm , ImG 1is positive for x > xo,

hence

(&"z') _G(.z,t? > 0, for z real < xo, | f (l+3)
where |

%o = (24 ét)2 SR R UV

~When z is real and less than xo, the function G(z,t) will -
be real for 0 € t < hm . Hence for t. _in this range

(1) if AC(t) < 0, G(x,t) will have no zeros
when x < 3:0; | | 'ﬂ |
(11) 4if C(t) > 0, G(x;t) will have at most one zero

when x < xo.

'Using crossing symmetry, this result can be extended to give
" information about the amplitude F(s,t), within the triangle

~ where it is real, namely,

As‘ < l+m2, t < hmz, u < kn°. -  (k.5)
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It has been shown by Jin and Martin that F(s t) has an absolute

minimum at the symmetry point
s:i%‘—’, v = Ao, | (ué)
The amplitude F increases (inside the triangle) along any
straight line originating at this symmetry point. |
If we assume asymptotic power behavior as indicated in,1ﬁ5'
N Section 2, there will be one real zero of G(x, O) for x < xo,_;l

" when the scattering length C(O) is pOSitive. More generally-ll
“for t in the range, - |

-m? <t < ba? N L 2

_there will be one real zero of G(x,t), when theisubtraction
term in (4.2) is positive, C(t) > 0. Let this zero be at
2g(t,£), |

¢ (xyle,0), €] = o, - 8)

where f denotes a parameter that permits us to vary the
scattering length C(0) and other values of the subtraction
- term C(t)., For example,'let £ denote the value of F at

the symmetry point :
. , , | s
£ = F(4m*/3, 4n"/3). | o (k9

If £ 4s positive, there will be no zeros of F inside the
triangle (4.5), but there will be a real zero of G(x, 4m2/3)

in x < 0. This real zero Zq corresponds to two complex
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conjugate zeros of F,

S - 0

If £ is deCreased and becomes negative, the two zeros:
_'(4 lO) ‘become real and separate inside the triangle (L4.5). . |
t'If f is sufficlently negative, the zeros reach the thresholdf;ﬁ':

branch,points and move through them.on to unphysical sheets., _Q}ﬁf

The various situations of real zeros, that we wish

‘to consider are shown in Fig,. 4.1, The first diagram (a)

corresponds to the situation when f£ > O and there are no

~ real zeros, but there will be complex zeros, It is due to
- these complex zeros that we can choose different phases indi-

cated in the diagram by @ =0, or 2W. In Fig. 4.1 (b) we =

have decreased f so that.it is negative ‘and there is a
loop of real zeros in the triangle, Reducing £ further:
gives (c), in which the broken lines indicate zeros that have - -
moved on to the secend sheet, in Fig. 4.1 (d) some of the
second sheet zeros have become eomplex, as 'zé(t,f)edecreasese

past zero on the second sheet, In Fig. 4.1 (e), all second

- sheet zeros are complex except for the black circles where

the complex zeros move through its real boundary (s + 10,

u - i0) ete. on to the physical sheet. The complex zZeros on
the physical sheet are indicated by dotted lines in diagram
(e). There are also complex zeros on the physical sheet for

all the other diagrams shown, They rise out from the curves of
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real zeroé; except in Fig. 4.1 (é) when‘they are-at complex . |
~ parts of the physical sheet and have no intersection with the .- f-‘t

real triangle.

(b) ' Complex Sections of Phase Contours

The location of zeros and their felatibn to the‘phase,f?ivv
'__,contours_becomes‘clearer by considering complex sections, For .f1'
.illﬁstration, we.coﬁsider'two'complex sections when the real

zeros have the form of Fig. 4.1(b), Iheselshow'the phase
contours and zeros in thg compléx's plané when t < 0, in.

Fig. 4.2 (a), and when t = 0, so that there are no real
vzeros, in Fig. 4.2 (b) and (c).

Since there are zeros of the amplitude F(é ,t), the

value of the phase ¢(s t) will depend on the rowte taken
.'from our initial point, s - along s +- 10, and ¢t = 0

‘when the phase is % . In Fig. l.2(a) we define the phase
by keeping in thg upper half s plane,.so we always go above

the reél zeros at SO and sl; In Fig. A.Z(b), the zeros have
become complex, and only sy 4is in Im(s) > 0. The path by

which the phases have the values shown are indicated by arrows.
The Fig. 4.2 (¢) is an identical section to Fig. 4.2 (b) but * :
we obtain different phases by passing below the complex zero '
8)» as indicated by the arrows. The phases in diagram (b)
are relévaht if we use a route through asymptotic values in
Im(s) > O, but those in (c¢) are relevant if we proceed along

s + iO,
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"{e¢) Crossing Symmetric Phase Contours
We now extrapolate from the location of the zeros shown
- in Fig. L, (e), and assume an 1nfin1te sequence of real zeros

“‘on the crossed cuts in the limits ‘
(s + i0, u - 10) along s='u, = o (4.11) .
(s +10, t - 10) along 5 = t. N (4.12)
) Only the leading zero may go below threshold when it
V‘may have the form shown in Fig. 4.1 (b), (c), (d) However,

- we have chosen to take it on the crossed cuts as in Fig. L.l (e),-ﬁ

since the resulting phase contours are sligntly ’ 31mpler

. than the other cases,

The phase contours with pairs of variables_in the limits_ _'

| '(s + io, t + io0, 'u + 10) can be taken to be the same as those'l

in Fig. 3, 2, since they are consistent without the introduction L
| of any real zeros on the physical sheet in these limits.

| The phase contours in the limits (s + i0, u - iO
t - 10) are shown in Fig. 4.3. The labeling of phases is obtained
by going from the physical reglon for the s-channel near t=0,
or u = 0, through asymptotic values in Ims> 0 to the physical
regions for other channels. Then we use continuity out of
these physical regions to their neighboring unphysical regions
on the indicated sides of the branch cuts.

In Fig. 4.3 zeros are shown as small black circles, and

the attached complex zeros as dotted lines. The direction in
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the. complex space taken by these zeros depends on whether wve
vary t and consider complex s, or vary u and consider |
complex s, etc. The heavy line through the zeros has a dif- N
ferent phase on either side. It is part of the complex sur- _’V,Iad
face of branch cuts of log F(s,t). Similar cuts should be .
, drawn through the complex zenos along the dotted lines., HowQ"
ever, we will find it convenient to discuss various routes '
for defining the phase so we will not normally consider such f}'
“branch cuts, which specify the phase in a less flexible |
'manner.:'“ | | ' “
| fhe intermediate phase lines, on the (u,s) and (t s)
crossed cuts in Fig. 4.3, do not cross the heavy phase con=-
tour @ = na that goes through the :zeros, “The detailed form
of these contours is shown in Fig. ko, which is an enlarge-
ment of the region labeled (w - 10, s + 10) in Fig. L.3.
This figure indicates more intermediate contours, but omiﬁs
the symmetric @ = nm contour,

Complex sections, for real ¢ and.complex s;' of
- Figs. 4.3 and 4.4 are similar to the‘sections given in Fig.-
l.2 for small values of (-t). For large values of e,
chey are more complicated but welwill-proceed to a more reale
istic version of the Regge model before considering further

complex sections,
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. 5. ZEROS.OF REGGE RESIDUES

The asymptotic Regge amplitude (2.3) is zero for ¢

below-thréshold; whenever the residue vanis}'uas,l+ nameiy at

1¢w)é-mn+n;q=mhag,'v_" (5.1)

In order to obtain the effects of this zerolcn phase contours,

we must consider more than one term in the Regge asymptotic

"expansioh. We will study the first two terms and will assume

that the zeros of their residues do not coincide. We write

them in the form

d(ﬂ o

| o ,(t) ’ |

' @z“.’ S L TN

(5.2)

where
3 b, (t) '

Bilt) = —— i"; ‘ "y i=1,2.
i“[”di,“‘?] Plag@] 6

We assume that oy and o(z are reai for t.. < hmz,

and that
For simplicity we will assume also that their difference is

constant,and
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o(l(t) dg(t) + 1. | o _' (55)

| There.would‘be no significant charige_in our .results if we 'cook
any constant difference between 0 and 2, : For a larger dif- v
ference the results would be more complicated. :

- The optical theorem requires

(o) =1, by >o0. . (56 .

. The vi‘esidue P could have additional zeros in ¢t < 0,' due:
' to zeros in b’l(t) However, we will limit the possibilities‘

" that we need to consider by taking

by(t) > 0, for t real. 5.

" 'An important aspécﬁ of the phase contours depends on whether

by(t) has the same sign or a different sign from by(t), when
the residue B l(t) vanishes at values of ¢t  satisfying -
Eq. (5.1). Althoﬁgh bz(t) should be positive at resonance

; poles above threshold in our model, it could change sign in
< me , before we reach the first zero of the leading Regge
residue 3 j(t). We will therefore consider the two situations
(a) by(t) > 0, by(t) > 0, and (b) by(t) > 0, by(t)< oO.
In the general case we could have situation (a) holding at .
some zeros of B,(t), and situation (b) holding at other
zeros, However, we'will limit owur discussion by assuming that |
either (a) or (b) ﬁolds for all t < O. The former leads

to an oscillating phase in the physical regions, the latter

' leads to an increasing phase.
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(a) An Oscillating Phase; b (t) > 0, b,(t) > 0, int < O

- We consider‘firstly the phase ehange of F(s ),

given by Eq. (5 2), as t decreases from zero at a fixed

;”vpositive real value of ' s  along ABC 1in Fig. 5 1 (a) (on
s 4 10). Since (Si(t) is zero, when o(i(t) = e(2n 4—,1), th'e-j"_‘

. Cdglt) oy

© will describe a spiral in the half plane ReF; < 0. This
spiral will touch the imaginary F, axis whenever t takes |

i

o a value so that cXi is a negative odd integer. On account

of our assumption (5. 5) about the trajectory difference, the

spirals for Fl and F will be out of phase in general,

© but they will be in the same half-plane. The spirals for F, :

and Fp are shown in Fig. 5.1 (b).and (¢}, together with the
path of their sum in Fig, 5.1 (d), as t decreases for fixed
real s. Note that the relative size of the spiral (¢) will
decrease if s 1is increased. | | |
j For any finite real. 8y it is evident that the - |
phase of the amplitude F, glven by Eq. (5.2), will oscillate

' ‘between (%'rr-t- & ) and (}- T - € ), where € = 0 as 8 —» ,

#(s,8) ~ vl(t), PR 7 (6) < 2. (‘5.9)

The phase, for finite large s, is shown in Fig, 5.2 (a) as a
funection of tAq(t).
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- Before dis'cussi'ng the locatio‘n of the zeros on the
physical sheet that come from the zeros of residues, we con- |

 sider the phase in case (b)

(b) An Increasing Phase; b_i(t) > o, bz(t) <0,int <0

' In this 'caée, as we follow the path ABG in Fig. -

5.1 (a) for fixéd s and decreasing t, the term ‘ Fl give.n. |

~vby Eq. (5 8) with i =1, follows the spiral shown as (b) in
_.:Fig. 5.1. However, F2 will follow the spiral shown as (e)
i_n Fig. (.5.1) in Re(F]_,) > 0. The resulting sum, that gives,_ '.

the -asymétotic phasé of F(s_,t)‘ will follow the path indi-
~cated by diagram (f) in Fig. ,‘(‘5.1)._ For a larg‘ez_" fixed )
value of s, there will ‘:;é a smaller pérb of the curve in
) Re(F) > O, but it will always 100p round the origin for any',.'.
finite s (no matter how large). 4 |
The asymptotic phase as 8 - +00 , _1nlﬁhis case, is

given by
¢(_s,t) ~ W[l - otl("c)]'+ S(t); - | (5.10.)

where | | - - |

- in sg(t) € 3w . | R ‘(5.11)

This phase, for finite large s, is shown in Fig. 5.2 (b)
as a function of o (t), (not.e that. -y increases as

t decreases),
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. {e) _Zeros on the Physical Sheet

We consider now, how the zeros from the residues’ in .
case (a) move in the finite regions of the physical sheet

as t is decreased through negative values. Wé begin from

the fixed value of t that gave point B in Fig, 5.1 (b),,

(¢) and (d), for'some-fixed real s, which we denote by 80

We then follow the path in Im(s)> o,

0

8 = 8 éxp(iQ), 0 £ 0 £ ‘rr. o o  (5-012)_

" Along this path,

e snenen(ge). e
 Where

P (CX Y . | 1

-?iéz —W So 1" 0(2 exp [i$0\2-°(1) (511'-0)]

This ratio is real and negative when © =}, that is, when

8 1is pure imaginary. We can now hold t fixed and choose

sp so that at O = é“{,

B (e)
ﬁg(t)

’ (A - o) | -
Fl dl '--" lo A (5-15)

' If we have chosen the point B in Fig, 5.1 (a) - (d),

so that £;(t) 4is very small, then the solution .80 of
Eq. (5.15) will be large. As t moves further above the

valué tln at which
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“The ratio H-Bl/ _ﬁz increases and s = _so(t)_‘deéreases,"

0
n

until s, = O, vwhen ¢ 4'_,t2 , where

B R ( S8

Before we’ reach the value tzn, wé_must of course
replace F2 in Eq. (5.;3) by another correction term or N
‘a sum of such terms. We should also use the variable '(s'ﬁ u),__;w
instead of s, in order tO'preserve crossing symmetry. The .
zero associated with (5.16) then moves in from infinity along
a curve in thé plané, t real (s - u) pure imaginary, as ¢
increases from 'tln given by (5.16),A’Wé will see that after
these modifications, it is still consistent to assume the:
| zeros become real, although this will no 1onger occur at

t = ty ., We denote the real zeros by
t‘-':al,.'t:az,ooo : ‘ (5.18)

'~ and since they move in along (s - u)'pﬁre imaginary, we will
assums&that‘they are real along the éymmetry line Re(s) =
Re(u). | |

"~ .We have already; in Section 4, established a need for
zeros of the ampliﬁude F(s,t) that are reél along s = u, and
~are at complex values on the bhysical sheet along curves that
* go through the real zeros. It seems natural to identify those

curves of zeros with the curves of zeros that are asymptotic
\ :
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- to t ==tln"satisfying_ Eq. (5.16), alohg (s = u) pure

imaginary. . The resulting'comﬁlex section eoﬁtainihg these

zeros is shown in Fig. 5.3 (a), where the axes are t(real) and
.(s - u) (pure imaginary) In order to establish the con-

' 81stency of this figure we should also consider the complex

s plane (or (s - u) plane) for ¢t < tl . The ratio in

vK. (5.14) becomes modified because _ﬂl}t) is now negative. -
e . . L

o< (-o(2 - a4y <z,

the ratio Fl/Fz does not become real and negative for any .

) value of 0. Hence there are no zeros of F in the asymptotic ;}

region for case (a) with ¢t <'t10, when lt -t ‘ is small. .

In case (b), considered in subsection (b) above, the

- gituation is reversed, For t > tlo there are no zeros in

the asymptotic region, but for ¢t < tlo there will be one

-zero, The resulting curves of zeros in the complex section,'

t real and (s - u) pure imaginary, are shown in Fig. 5.3 (b)..
| The shape of the phase contours in the real.region

s > hmz, u > hmz , in the limit (s + 10, u = i0) in both -

cases (a) and (b), obliges us to draw the attached"complex :

curves of zeros as shown in Fig. 5.3 (a) and (b). The zeros

are on the intersection of phase contour surfaces.v In

case (b) they will'normallf remain in the finite part of the

complex section shown in Fig. 5.3 (b) even when t = -o.
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B )

" In this case (b) we are unable to identify,directly, the‘iefosi"

éoming from the real symmetry points s = u, with the

. zeros coming from the vanishiﬁg of the Regge residues, 'Howb'_'w -

ever, by a variation of the parameters ¢t 0

1 and ai, for

example, we can cross over from situation (a) to situation -

(b) for the first zero. It is then evident that the zero

at ay connects to the zero coming in from tIO' on the
physical sheet in case (a), but. on an unphysical sheet in

case (b).

v ‘_Athe ‘condition 0 < | X, - 0(1)< 2. This would permit more

- . than one zero to come from each vanishing residue. Apart’
from these possibilities, there will in general be local_dis-ﬁg‘a"
tortions of phase contours, and hence of the curves of zerds;--'

. due to resonances.‘vTheée would have their greatest effect . -

on the physical sheet near the real axes.,

(d) Phase Contours in t <0

With so many zeros on the physical éheet it is neces-
- sary to Speéify'the‘routes by whiéh*the phase is defined.
Unfoftqnately the route that gives the most natural phase
labeling for one section of the surfaces of constant phase
becomes rathér unnatural for other sections. We will there-
fore sometimes change the routes used for defining the phase,

when we change to a different section of the phase surfaces.

| HMore'complicated situations can occur if we relax . =
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We assume that the zeros at real points ih t <0,

apevlocaﬂed in position similar to those shown in Fig. 4.3,

~on the overlapping branch cuts u > 4im, t.>;hm2.rTaking account

of the zeros of residues, we find that Fig. 4.3 for t < O,
in case_(a) is replaced by Fig. 5;4. ﬁere we. have uséd a

phase labeling beginning from t = 0, s=o along s+10,

«

. where the phase is 3m. The phases in the s-channel are
found by continuity along t “real. The phase in the u-
 channel is found by crossing along s'=|sl exp iQ, for large“’er

.8 with t = 0, giving a phase %}N . Then we proceed by’con-¥'J

tinuity along t real, In the physical_regidns of the s-

and u-channels the phase is never equal to a half integer

multiple of ™ . For a more realistic’model that had resonancé_5'f

distortions of phase contours at finite energies, one would

" expect this result to continue to hold for large s and for

large . u.
In Fig. 5.5 we show for case (a) some complex sec-

tions of the phase contour, for seVerai fixed real values

of t, in Im(s)>0 4in the complex s plane. The labeling.

in Fig. 5.5 (a) corresponds to that in Fig 5.4 for small
negétive t. In Fig. 5.5(b) t has become more negative.

The labeling in brackets éorresponds to a route above the

'zero (in agreement with Fig. 5.4), the other corresponds to a

route'belOthherero. The latter is the most natural labeling
to use in Fig. 5.5 (c), when t has decreased just below

a;. At the value tlo of t (see Fig. 5.3 (a)), the zero
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shown in Fig. 5 5 (b) has moved upwards to infinity. As t

'decreases below the value tlo, the contours ($v) and (Z'N)

in Fig, 5.5 (b) have stretched to i@ and separated as_shown'
in Fig; 5.5 (c}. In the latter figure, t has decreased |
below az- (see Fig.15.5 (a)), . so there is a new zero on

’

the imaginafy (s = u) axis;‘which connects the (-37) and

(%ﬂ)’ contours. In fig. 5.5 (d), we have taken a value of t

‘,,

: in the range

o .2
IR

and haye used the phaée‘labels iin the complex (s - u) .
plane that are,aﬁpropriate‘for this value of t,mgivenﬂthat
the phase of the right most contour is 7, as in the

s-channel of Fig. 5.4,
We see that in case (a), defined in Section 5 (a)

above, the phase remains near to the value 7 in the s-channel,

as shown in Fig. 5.4. The phase contours that are relevant

- to the high energy behavior are those in the_region of over-

lapping branch cuts. This is illustrated by Fig. 5.5 (d),

" where the power behavior s* has o = -h. Thus the oscil-
lations.of ImF are ineffective in the physical region. | :
An approximatidn'to a superconvergence relation that includea
only the physical regionslwould give a cémpletély wrong result
in this case (a), where the region of crossed cuts plays a

_vital role, ;

(5.19)

et o b s speees
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)

The situation is different in case (b) described in

subsection 5 (b), and giving zeros as, shown in Fig. 5.3 (b)
" The phase has the asymptotic value given by Eq. (5 10) as- m

s-+'+oo . If we defined the phase in the u-channel by cross~

- ing asymptotlcally in Im(s)>r0 near t = O, the phase there

- as a s — =0 , would satisfy

Jlop) ~ w[ifoe) - @ ()

- Thus the net.phase change is '2<x1n7, ﬁhich ié'twice.as much';Qv*'
- '_ as that obtained at each fixed negative t from the asymptoticilfff
| ;; ‘behavior SCL(t). The discrepancy is taken up by the zeros o
"“‘that move in from infinity when c&(t) -(2n 4 1). In this
) case, however, ‘the zeros that come in from infinxty do not
'5  leave the physical sheet. They are in addition to the zeros
:Athat enter the physical sheet through the real points

e = 289 oo along 8 = u, The two types of zeros are

38 3

: separated on the physical sheet by the phase contour @(s,t)=7r, .

in this case,

The phase contourslfor case (b) are shown for real s
and t in Fig. 5.6, which is analagous to Fig. 5.4 (which
applies to case (a)). In Fig. 5.7, we show a cdmplex section

that cofreSponds#td fixed real t in Fig. 5.6 just below

| the first real zero,

1
az < ty € ¢t <& < tlo. (5.21)

The phase labeling in Fig. 5.7 is obtained by continuity in
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~the 8 plane for this particular value of t, so 1t does

not correspond to that on the left of Fig. 5;6. The upper |

~zero in Fig. 5.7 comes from the zero at the residue, Whereas o |

' _'the lower zero comes from the imphysi‘cal'shéet through"phe,' }
o j» &= u, in Fig. 5.6. fgf we begin- from

" case (b) and increase a, until a =t » via.e’obtgin'
case (a). The flip of the contours when ay = tl .

 will occur at infinity where the two zeros become coincident.

E For a; > _tlo, they are separated again but one of them is

“on the unphysical sheet, The other is the zero discussed in

case (a). More complicated situations can be obtained by va_z?y-

ing pérémeters so that the two zeros in Fig. ‘5.7, meet along
Re(s) = Re(u)‘,v at finite Im(s). Th‘ey could then separate
| agéih on oﬁpésite sides of the line Re(s) = " Re(u), and -

could move down towards:the physical regiéns,
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6. RESONANCE POLES AND ASYMPTOTIC PHASES |

H'.  ? In this section we investigate the asymptotic phase
.above‘thfeshbld in the Regge model related to Eq. (2.3);
‘and find the associated phase contours.  Above threéhol& the

vReggéitréjectory becomes complex, and it is important to dis-f] 4

tinguish whether we have t above or below the branch cut

along the real axis. We find that the presence of nearby

resocnance poles on the second sheet produces an“importaﬁt'

S change in phaée from the simple model that we used in Sec- .-

tions 3 and 4. It is necessary to consider the phase for_75‘ o

different limits before we can study the Associated phase - o

. contours.

- {a) 8 +310, £ + 10, With s => +e and ¢t )I,L

The phase can be obtained from thefasymptotic expres- -
sion (2.3) for F in the Regge model, namely

, b(t) sdv(,ﬂ exp .[i'rr [l - éOk(t)]] | .. R
F(s,t) ~ e , — — ' (6.1)
S sin [5 ‘no((t)] r [_d..(t)] |
We write for t > 'hmz, |
oft) = A, + io(z,-with 0(2) 0. "(6'.2)

The residue b(t) is assumed to be nearly real and to have

a slowly changing phase in t > hmz , and the gamma function
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~ is almost,real, since oly > 1 and we assume &, - is much
lesé than o4 » The‘power of s _1eads to a factor
exp [io(»zlo'g s] . - : " : '(6'3}
The phase of this_.t.erm.ié a slowly varying function of s,

'so we will igr;ore, iﬁ. in our present discussion of phases and

phase contours. It may beconie important when cons_ideri-ng'

more detailed queétions_of consistency, _bizt it does not ap‘pea'r:l B S

to be relevant for our work in this section,

- However, the phase of the sin (é‘nok ) term in the

denominator of the expression (6.1) is important. This term

can be written,‘

sin(i 1ro( ) cosh (éno( ) + 1 cos(knd )sinh(ﬁ'no(. ).

Its phase lies in the same quadrant as the phase of
exp [4m(d - ddy)] o o t6us)
Hence neglecting the factor (6.3), the asympto‘ ic phase

¢(s t) of the scattermg amplit,ude F, given by (6.1) will
satisfy " ‘ “ -

‘@(s 4+ 10, t + 10)~ &m + Xa(t), as s->+p, (6.6)
where X (t) depends on oly and 0(2

xz(t) = 0, when «l = ﬁ, h‘l,2,3,o'o (6.73)

<64);."
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0« Xa < 37, . when 2n < %0&1<on +1, (6.70)
| -3m < Xa<0, when 2n+1 < éo(i < 2n + 2, (6.7¢)

T,(5) 20, s dy(t) @, (67a)

-In this limit, the phése.oscillates about the value 4m so

that ImF > O. The corresponding compléx section of the

phase contours in the 't plane is shown in Fig. 6.1 (a),

This diagram shows part of the physical sheet in Im(t):> 0,
and also part of the unphysical sheet reached through the ¢

... branch cut along the real axis. There are many such un-

physical sheets that depend on how many threshold branch,x a

J_ cuts are cfossed. On all these unphysical sheets there will»lﬂ

be poles or shadow poles corresponding to resonances, In

Fig. 6.1 (a) we have considered only one such sheet. We

| have indicaﬁed zeros on this sheet in addition to the resonance

poles, since they are required for a consistent pattern of
phésé contours. There are no such zeros:from the term (6.1)
élone, but there will be zeros when a correction term is
iadded, tﬁét has a slowly varying phase,

The resonance poles occur at the usual values for an
amplitude of even signature, namely at the zeros of

sin [%wmgt)] ,

o(t) =2n, n=1,23,... (6:8a)

b=ty ty, tgyees (6.8b)
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The S-state pole will.lie below threshold on the real axis
.‘6f‘thé~unphysicai sheet, since we have assumed ﬁhat there

- are no bound state poles on the physical sheet,

(b)) o430, %t -10, withs > +® and & > >

The phase contours near and on the boundary of the
physical sheet in this limit are quite different from those
" considered above in case (a)., Now we have <X2'< 0, and the Lf K

'phase of (6.4) will be in the same quadrant as that of
éxP (173 + éo(l)] N XD

instead of (6. 5). From (6.1) the asymptotic phase of{-F7~ |
Cwill satisfy - ' " o | : :»_ ' o | », 1 ¢ .

#(s + 10, ¢ - 10) %w- o( - xb(c), . (6.10)‘! 
as 8-m , where o

-3 < 1{.&)( i{w, : . B : '(6.1155

xt-',(t)-».o; when of) = n,  (6.a1)

There is s'ome ambiguity in choosing the phase of (-37) in
(6.9).. We determine it by continuity of @ from the region
0 < t < l\»m y Where the asymptotic phase must satisfy .

0 <@ < in.

d(s,t) = (- 2n + 3)m, . (6.12)
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when O(l(t) = (2n + 1). This value of o(l"dogs not corres-

_pond to a resonance polé‘giﬁdé the amplitude has even signa-

ture. The phase contours‘(6.12)‘go through the zeros of F;
while the phase.cdntours (6.13) related to CXl(t) = 2n,'goi

through the resonance pole,

¢(S,t) = - (2n - %)'n“ ... | . R | (6.13) '

'Before obtaining the phase contours in the full 8,6,u
‘plane, we require information abbut the asymptotic phase
in three more tjfpes of limits on to the boundary of the physi-

.- cal sheet.

'(c) g 4 10, & 4— 10, With t—» +© , s > h,mz"'

By symmetry, this limit gives phases that are exactly N

anaIOgous to those in (a) above

#s + 10, t + 10)~ 3w + X (t), ast—tw, (6.14)

_ where X, satisfies the conditions (6.7).

(d) s - iOJ.t + 10, With s—» 40, t > I+"m2

The Regge term in the amplitude on this boundary,,

that is analogous to (6,1), is

b(t) so(' exp [ i [1+ éok(t)]J

sin (3 wo(e)] [7 [ot(e))]
Hence the asymptotic phase will be

(6,15)



; ¢(s -vviO J;—t“-l—‘ 10) ~ é ‘n- + 0( ‘lr + X (t), as s->+oo ,
e ", o ‘,”_ o SRR _;’__1 ;" (6. 16);f5
A.where Xd(t)--,- 0 when o&l n, and satisfies conditions

" f*,.if"_i"':',.analogous to (6 7)

Lé')" s - vio‘.-t, - iO,'Wit'h | 'é-§+.d¢ t >*'Mﬁ2

_ The phase in this case follows from (6 15) and (6 ,+ 'y
giving ;j__;::< o T e T e

| ¢(s - 10 R 10) ~. 211 + x (t), "

where X (t) 0 when o( 4’-'“‘}.a.hd.::‘,”-‘ati,sfi‘e’s:v_'cc'md‘i't_:.ionéi
,anaIOgous to (6 7) U AT e S Tk Ry
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7. CROSSING smmnxc PHASE CONTOURS |
Using the results of Section 6 we can obtain the
siMplest family of phase contours for the Regge model in the.
region t real above threshold Combining these with the‘ o

‘contours obtained in Section 5 for ¢ real ‘below threshold, o

we obtain the phase contour diagram shown in Fig. 7.1. In

this figure we have assumed that, in the physical s-chanhel,;ﬁhh‘xﬁ

“the conditions of Section 5 subsection (b) hold. Thus thei,hh

phase contours in this region are the same as those shown

for the s-channel in Fig. 5.6. The phase in the u-channel: . - .

can be obtained by crossing symmetry near t =.O and then |
by continuity along (u - i0) for deoreasing real t. This ;'

o gives the phase labels shown in Fig. 5.6, The labeling in ;v7

- Fig., 7.1 in the u-channel correSponds to that obtained through |
asymptotic values of s in Im(s) > O from the s-channel for
each fixed t < O, The dottedllines from the zeros on the

u and s overlapping branch cuts are complex in Im(s)>0 along -
Re(s) = Re(u) for decreasing real t, For case (b) of |
Section 5, these zeros remain on the physioai sheet as t
decreases indefinitely. 1In addition'there are complex zeros
along R'e(s)'«: Re(u) in Im(s) > O, that come from the
zeros of résidues.'”In thisncése the two kinds of zeros do
not identify with each other on the ph&sical sheet, This

contrasts with case (a) considered in Section 5.
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o Aﬁove t hmz, as t increases, complex Zeros come
oﬁt‘of the s and t overlapping branch cuts from real |
points along Re(s) Re(t). These zeros remain on the v
physical sheet as t 1ncreases ‘and go to infinity as t-—>+a>;”
For finite t we have the s plane analogue of Fig, 6.1(b),}
which shows the t plane for real s. Note that the complex
path bf these zeros for increasing real t 4is different from -
the complex path for decreasing real u. The latter is |
the analogue, on the s,t crossed cuts, of our discussion in

Sectioh 5 on ﬁhe s, u crossed cﬁts;- In'the present case
| we do not expect the zeros to go to inflnity for flnite
real t above threshold. | |

A complexisection, based on Fig. 7.1 iS“shown in 1:

Fig. 7.2. This‘secﬁion shows the coﬁplex 8 plane for real
ét at a value above hmé, when two of the zeros are complex'
and the third is nearly real but still on the unphysical
sheet, The rlght hand and left hand branch cuts (s‘> Lm f".
and ¢t > im ) have been pulled down to show part of the e
| unphysical sheets, The lack of symmetry is due to the fact
‘that we are above the threshold 15 t, at a real point
t - 10 approached from the ¢ -physicai,éheet im(t)'< 0. 

| ' If, instead of case (b) of Section 5, we had taken
case (a); the lower half of Fig. 7. 1 would change tb the
pattern indicated in Fig.VS h, with complex sections in t < 0
as shown in Fig. 5.5. However, the contours for ¢t > 0 will

remain the same as those shown in Fig., 7.1. In case (a)
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the v, Tr; Tr , pattern applies in all physical channels,
The same phases are obtained in case (a) above threshold
in t, either by crossing near t = 0 (or u =0) through

asymptotic values of s, or by crossiné at each fixed value |

of t (or u), through asymptotic values of s, This shows -

that the number of zeros encircled is the same either way,

and confirms our remark above that the zeros, emerging from

 the symmetry points s = t, do not leave the (Im(s)> 0)

physical sheet as t increases through positive real values
(along t = 10)‘. Thus, as t 1increases, the zeros-on the

right of Fig. 7.2 will move upwards in Tnm(s) > 0, and more

Zeros wili emerge from the unphysical shéei..
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8, SUMMARY
The method of phaée éontours has'beeniused to study'

analyticity in a crossing symmetric Regge model based on

'vrising tréjeétories. Families of sdlutions have'been obtained

'that show how zeros and poles of scattering amplitudes can be
related by means of phase contours.
Zeros of the. amplitude were shown to arise from

three initially independent sources, The first source, dis-'

cussed in Section L, may be called symmetry zeros, since they  _7;

'occur along Re(s) = Re(u) and are introduced from crossing
syﬁmetry arguments. The symmetry zeros may move on to the

~_ unphysical sheet if«"scatterihg length" parameters cbuld be
varied suffidiently; The resultlng phase contours. would be

those considered in Section 3.

The second source of zeros comes from the Zeros. of - .

' Regge residues £(t) int < 0. Two main po‘ssibil_ities
- were considered in subsection (a) and (b) of Section 5,
In the first one (a),.as t 1is increased through negative
real values, the residue zeros move in from infinity along
Re(s) = Re(u)‘ in Im(s) > O, and leave the physical |
sheet at the real symﬁétr& zeros. In this case the phase in
the physical regions for fixed ¢ < 0 does not cycle as s

moves along the real axis, but only'qscillates about'the value
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; Jn-;:fThe high.enefgy behavior isldirectly:related tovthe
zéros énd.the oscillations of ﬁhe.phése in the regioh where
ihe 8 and ‘ul branch cuts overlap; This is iﬁdicated

by the phase ¢onﬁours in Fig. 5.5 (d); fgr example,

In case {b) of suﬁsection 5,Pthe residue zerds and the

symmetry Zeros cannot be 1dent1f1ed by connectlng curves of 7 .

zeros on the physical sheet. Both types remain on the phy51ca1 h*J
sheet after they have enteréd it, but their paths do not
’vmeet.' Presumably they will meet on .an unphysical sheet since |
a continuous variation is possible from case (a) to case (b)i'
in which the complex Qurvés of zeros flip at certain criticéi
values of the parameters. | |

The third type of zero is deduced as a conseéuenée of
interference between resonance poles. For . t — +m , these
_ zéros will move along Im(s)—> ¥co . Aé t is deéreased thé |
interference zeros successively leave‘the physical sheet through
‘ﬁhe'symmetry zeros. A typical section of the complex»~s plahé
is shown in Fig. 7.2, for a real value of t(t - i0) such

that only three of the interference zeros remain complex.



*"'suppressed, if the function vanishes'asymptotically. If

m"f@fﬁhiS‘is not the case, subtractions are reduired, and the
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9 CONCLU‘,SION" |

= We have started a new program of exploiting the -;i‘ |
‘:'analytic properties of scattering amplitudes by a general 'tﬁ_f ;%,-gl
"study of their phases.. As a. first illustration, the method R

-of phase contours has been used to obtain consistency condi-, iiﬁijn";

tions imposed by analyticity when crossing symmetric Reggevnf
.behavior 1s assumed for a scattering amplitude. |
Traditionally, analyticity is used through dispersion
) relations. A dispersion relation allows one to represent a i5q'5’3f'j
scattering amplitude at any point in‘the_conplex plane, in . - {iﬂ

terms of properties of its nearby"singulerities. The effectsif;

:a'coming from far-away singularities (including‘infinity) are -

" number of subtractions will depend on the knowledge of the |

-asymptotic bound of the amplitude. The use of subtraction
- . allows one to approximate the effects of far-away 31ngularities‘};?i
.by that of a polynomial, - | |
| For the case of the Regge model, detailed behavior of.
'i the scattering amplitude at infinity is known. One can effece_ S
ltirely'replace those snbtraction4constants in dispersion R

| relations. by Regge parameters of leading Regge poles. If - - *f
the scattering amplitude is now evaluated in the physical '

. region, a sum rule relating low energies and high energy

| Regge parameters can be derived.
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It has since been recognized that the Regge expansion:
will in princlple represent the effects of 31ngu1arities of
a scattering amplitudezat low energies as well as effects .

due to singularities at high energies., The Regge representa- ,

tion, when considered as an asymptotic expansion, gives

a unique description of a scattering amplitude in terms of .

Regge parameters, In'practice,’only the parameters of the

first few leading Regge neles are known; the constriants im-
posed at low energies by the knowledge of high energy be-
havior are expressed in the form of finite energy sum rules{ef"“'n

A finite energy sum rule correlates parameters of

leading crossed channel Regge poles with'the average of a

scattering amplitude at low energies. This correlation is f7

good if the average is made up to that energy where the Regge i

expansion in terms of these parameters is good. 'In this

sense, finite energy sum rules are Just a different feature ‘

-of Regge pole phenomenology. However, when a resonance approxi-

mation is made for amplitudes at low energiee, the use of

finite energy sum rules becomes a quantitative bootstrap model.

The method of phase contours, on the other hand,

- allows a qualitative description of the properties of scatter-

ing amniitudes at low energies imposed by the assumption of
simultaneous Regge behavior in all channels. Instead of a
quantitative correlation, the knowledge of the“asymptotic

behavior in all channels determines the behavior of a,scatteringvv

amplitude at both low and high energies, expressed byvphe
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generalltooology of ohase'contours. . 1.-’ .

The major ingredient, aside from asymptotic assump-
7tions, which we employ in obtaining our con31stent solutlon,
is the fact that there are no divergent singularities in |
scattering amplitudes on the physical sheet except for stable
particle poles. This guarantees that no two phase contours |

corresponding to different values will intersect except at

poles and zeros, and each phase contour is a continuous curve ' . .’

on the physical sheet., This greatly simplifies the general .

topology of our solution for the phase contours.

Throughout this paper, we have neglected the 1oca1

distortion of phase contours at low energies due to dominanttf

direct channel resonances. We do take account for resonances
in their crossed channel high energy effects, and in the
resulting interference that determines the continuation

- - between phase contours in the regions of crossed branch cuts.

However, the mechanism of dominant resonances is not essential

to the derivation of a consistent topology ot phase contours :

under the conditions assumed in this paper, although it
would be important if we impose a strongér form of bootstrap
consistency. |

The consistency conditions we have studied are not
a bootstrap method in any complete. sense, since we have not

included unitarity except weakly. ' We expect that full
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unitarity wiil pfovideAstrong additional conditions that fur-L“

ther limit the type of'phase-contours that may occur. In

4particular, it may shed light on how to incorporate the

effect of dominant direct channel resonances in a more sys-

- tematic manner,

The method of phase contours used in this paper has ‘.

a number of other applications. The applications that we

regard as most promising include: (1) The use of phase con-.

~ tours for the interpretation of experiments. ‘Ihis has been

discussed in I. (2) A new formulation of the problem of
relating asymptotic behavior at fixed momentum transfer and
asymptotic behavior at fixed angle by the study of phase |

contours and zeros of scattering amplitudes.
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FIGURE CAPTIONS

4

~ g=-channel, based on the simplified form of a
. Regge model given by Eq. (3.4). The continu~ -

" ous curves correspond to ImF = O, and the

broken curves to ReF = 0,

Crossing symmetric phase contours in the limits

(s + 10, t + 10, u + 10) taken in pairs, with -

'_‘é,t,u real on the physical sheet, when there

Fig. 3.3.

Fig. 3.4

Figo ll-olo

“are no zeros on'the physical sheet.

Phase contours for a symmetric amplitude in

the limit (s + 10, t - 10, u = i0) on the

boundary of the physical sheet, for a simplified i.‘
Regge'model,‘with no.zeros on the physical sheet,'

Complex sections of phase contours of Fig. 3.3
in the complex s plane for real ¢, A(a)-t
negative, (b) t small and positive, (c) t well

above t = hmz.

Curves of zeros.of a symmetric amplitude in the
triangle below threshold, shown in the real (s,t)
plane: (a) there are no real zeros but since

=0 or 2w, there will be complex zeros,
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,’(b)vféal zeros along the closed curve, (c) the

,;feél zeros indicated by a broken line lie on the

e unphysical sheet, (d) somé of the unphysicél

Fig, 4.2,

sheet zeros have become complex, (8) all zeros

are complex on the physical and unphysical

sheets except for isolated points shown as:
small black circles, the attached dotted lines

denote complex zeros on the physical sheet,

2

COﬁplex sections based on Fig. 4.1 (b)., 1In

diagram (a) we show phase contours for complex ;

s when there are two real zeros when t = O, o

"Diagram (b) shows the phaée contours when tllaigf “

. has become negative so that the zeros are com= . -

vplex. Diagram (c¢) shows alternate routes that

Fig. 4.3.

lead to differentlphase values from (b).

Phase contours for a crossing éymmetric amblitude
in the limit (s + 10, t - 10, u - 10). The

small black circles denote real zeros, andrthe
attached dotted lines denote complex zeros on the

physical sheet,

Fié, L.,4., The (s + 10, u - 10) phase contours. This is

" an enlarged version of the neighborhood of some

zeros in Fig, 4.3. It shows phase contours for -

intermediate values of the phase, to indicate how
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they crbss the symmetric line s = u, only at

Azeros of the amplitude,

(a). The real (s,t) ﬁlane.'

1

(b) to (f) The complex plane for various Regge

> émbliQudeé showing how they vary along ABC in

 Fig. (a), when the residues have zeros.

The variation 6f the phase as a funétion‘pf the
leading Regge trajectory, (a) when the first and

second Regge terms have negative real parts,l(b)vl

~ when they have real parts of'opposité sign.

Figo 5030

 Fig. 5.k

Fig, 5.5.

The dotted lines show curves of zeros in the .

section Re(s) = Re(u), with Im(s) and real

(t) as coordinates. The residues have zeros ab‘
ﬁln. Fig. (a) correSpohds to Section 5 (a) gnd
Fig. (5) to Section 5 (b). The points ay, &g, |

«+. denote real zeros.

Phase contours in the limit (s + iO, u -110) for . 
case (a), corresponding to‘Fig. 5.3 (a). The
dotted lines denote cOmplek’zeros that go to

infinity for finite ¢, at tl y b, yee., and |

1

are real at t = a

1? aza 33)-0-

Phase contours in the complex (s - u) plane

for successively decreasing values of ¢+ real,
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| t,‘correspdnding'to.case (a) and the real sectionj
| shown in Fig. 5.4.~'Thg ﬁs and ‘u branch

cuts overlap in each of these figures.

Fig.VS.S.f_Phasé contours for real values of.the variables,
- " in case (b),vcorreSponding to Fig. 5.3 (b). The
‘ comp1ex zeros from the residue zeros aréjﬁot
shown here, The dotted lines are complex zefos

" coming from the real symmetry zeros.

Fig. 5;7,?JThe complex (s - u) plane shdwing phase coqtours_
- for fixed negative% t in case (b), correspond-

ing to Fig. 5.3 (b) and to Fig. 5;65.

: Fig.;6.l. Phase contours in the complex ¢t plane for real |

s, showing part of the unphysical sheet, Crosses

denote resonance poles and small black circles

denote zeros of the amplitude. Fig. (a) shows
~ the sheet relevant to.(s + 10, v+ iO),uand.(b}
“ shows the sheet relevant to (s + 10, t - 10).

Fig, 7.1. Crossing symnmetric phase contours in the real v
o ., limit (s + 10, t - 10, u - 10), for case (b) of

Section 5. Large black dots indicate reai zZeros

and dotted curves indicate complex zeros.
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Fig. 7.2. The complex s plane for fixed reélf.t above
\ o ﬁhfeshold,'showing parts of the unphysicélh
. sheets above the - s and’ u thresholds,
- These phase contours sorrespond éo the real »
section given in Fig, 7.1. Poles are denotéd' 

by crosses and zeros by large black dots. .
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A.

Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above} "person acting on behalf of the

Commission"” includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent ‘that
such employee or contractor of the Commission, or employee

of such contractor prepares, disseminates, or provides access
‘to, any information pursuant to his employment or contract
with .the Commission, or his employment with such contractor.








