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ABSTRACT OF THE DISSERTATION

Machine Learning for the Sciences

By

Kevin M. Bache

Doctor of Philosophy in Computer Science

University of California, Irvine, 2017

Professor Pierre Baldi, Chair

Progress in the sciences depends critically on the analysis of ever-growing bodies of data.

Many of these analysis patterns are inferential in nature; their goal is to infer the value

of one or more parameters which bear some real-world meaning. Others are in essence

discriminative; their goal is to build a black-box model with the strongest possible predictive

power. For both of these analysis styles, machine learning offers a host of powerful tools to

tackle historically unapproachable problems.

In this dissertation, I present three examples of machine learning tools applied to the sciences.

The first offers a novel model of textual diversity applied to the science of science itself. The

second, explores a series of discriminative models which probe the evolution of the cosmos.

The third offers a novel convolutional neural architecture for discriminating effective from

ineffective drug candidates.

Taken together, these studies offer a glimpse of the breadth and potency of the contributions

that machine learning can offer to the sciences.
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Chapter 1

Introduction

The process of scientific induction depends critically on the analysis of rapidly growing bodies

of data. While this process has historically been governed by traditional statistics, scientists

increasingly turn to machine learning to solve their most data-intensive tasks in fields across

the breadth of the sciences: from physics [2] to biology [15], medicine [74] through the social

sciences [42].

Many of these learned models lean probabilistic, in which the researcher is often interested

in the values of specific parameters for their real-world technical meanings [39]. One of the

most successful classes of probabilistic models is topic models [6]. A topic model decomposes

a corpus of documents into a series of topics, each defined as a probability distribution

over all known words in the corpus, and a series of topic mixture probabilities, one per

document. These topics can then be used to summarize information about the corpus or

specific documents within it.

At the other end of the machine learning spectrum lie discriminative models, in which inter-

pretability is subsumed beneath the goal of pure black-box predictive quality. In many ways,

the most successful modern predictive paradigm is deep learning, which finding applications
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in industry and across the sciences [44]. In deep learning, a sequential series of nonlinear

transformations of input data are learned all at once, preempting the need for developing

separate, intensive preprocessing and learning steps.

In this dissertation, I present three studies which span much of the stylistic and topical

breadth of machine learning. The first is a new model of textual diversity applied to the

science of science. The second two are applications of deep learning to problems in the

sciences.

1.1 Dissertation Outline and Contributions

1.1.1 Text-Based Measures of Document Diversity

In this section, we build a new model of textual diversity as a proxy for interdisciplinarity

in the sciences. We first define what we mean by diversity; a set of objects is considered

diverse if it contains large portions of members from highly-disparate sub-groups. Next we

develop a means of quantifying this notion of diversity across a corpus of documents. Our

approach is to first use a topic model to decompose a corpus of documents into series of

topics and topic mixture portions. Next, we define a distance measure between each pair of

topics based on their co-occurrence rates within documents in the corpus. To complete the

diversity model, we use the topic distribution and topic distance measures to calculate the

diversity of each document, confirming that the documents which our system identifies as

diverse and non-diverse match human intuition. Finally, we define diverse and non-diverse

pseudo-documents and find that our notion of diversity is better capable of differentiating

the two than simpler, competing notions.
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1.1.2 The Cosmic Prevalence of Quenching in Low Mass Satellites

In this section, we develop a series of random forest and neural network models to predict

whether a galaxy is quenched (i.e.: no longer producing new stars) from its spectroscopic

readings. These models allow us to study galaxy quenching in distant objects at lower masses

than have traditionally been possible. We conclude that observations of distant objects match

those of our local group of galaxies: galaxy quenching increases as mass goes down.

1.1.3 Deep Learning for Drug Discovery and Cancer Research:

Automated Analysis of Vascularization Images

In this section, we develop a deep convolutional neural architecture to aid in drug discovery.

The network is designed to distinguish between images of microvasculature networks grown

in microphysiological systems which have and have not been disrupted by the application of

an effective drug candidate. This system achieves super-human classification performance,

and fills a gap in a new, high-quality, high-throughput drug screening pipeline.
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Chapter 2

Text-Based Measures of Document

Diversity

2.1 Introduction

The quantification of diversity has been widely studied in areas such as ecology [48], genetics

[56], linguistics [45], and sociology [32]. The typical context is where one wishes to measure

the diversity of a population, where a population consists of a set of individual elements that

have been categorized into T types (such as species), with proportions π = {p1, . . . , pT } and∑T
i=1 pi = 1.

A relatively simple measure of diversity is variety, how many different species are present in a

population, or the number of non-zero proportions in π. One can alternatively measure diver-

sity as a function of the relative balance among the proportions (also referred to as ‘evenness’

in ecology [62] or ‘concentration’ in economics [30]), using measures such as Shannon entropy

H(π) = −∑T
i=1 pi log pi or variance-based quantities such as

∑T
i=1 pi(1− pi) = 1−∑T

i=1 p2
i (e.g.,

[75]). The intuition is that higher entropy or variance implies greater population diversity

4



(e.g., see [69]).

From a more general perspective, Stirling [80] proposed that there are three distinct aspects

to diversity: variety, balance, and disparity. Disparity is the extent to which the categories

that are present are different from each other, based for example on distance within a known

taxonomy [78]. For example, a population with 5 beetles and 5 elephants would be consid-

ered more diverse than a population with 5 beetles and 5 spiders, given that beetles and

elephants are more taxonomically distant than beetles and spiders. Stirling argued that each

of these three properties is a necessary (but non-sufficient) component in any quantitative

characterization of diversity, arriving at a relatively simple mathematical formulation for

diversity, a formulation originally proposed in earlier work by Rao [67]:

div =
T∑

i=1

T∑
j=1

pi p j δ(i, j) = πt
∆π (2.1)

where pi, p j are the proportions of category i and j in the population, δ(i, j) is the distance

between categories i and j, ∆ is a T × T matrix of such distances, and πt is the transpose of

the T × 1 vector of proportions π.

This diversity measure div has a simple and intuitive interpretation as the expected distance

between two randomly selected elements of the population. The probability of selecting a pair

of elements with replacement from categories i and j is pi p j . Thus, div can be interpreted

as the expected value of the categorical distance, E[δ(i, j)], where the expectation is with

respect to the distribution of pairs of elements.

The contribution of this present paper is to investigate diversity in the context of text doc-

uments, using Rao’s measure a starting point. In particular, we will use words as elements,

topics as word categories, and documents as collections (or “populations”) of words. Specif-

ically, we address the following task: given a corpus of documents, assign a diversity score

to each document, where this diversity score can be used to rank documents from most to

5



least diverse.

There are a number of different practical problems where quantifying the topical diversity

of documents in this manner is potentially useful. One specific area of application is in

science policy. There is broad interest among science policy experts in diversity and inter-

disciplinarity in scientific research. In particular, there is interest in the hypothesis that

interdisciplinary research can lead to new discoveries at a rate faster than that of traditional

research projects conducted within single disciplines. Indeed, the United States National

Science Foundation (NSF) encourages interdisciplinary proposals, and has put out solici-

tations for proposals that include specific combinations of disciplines. One such example

was the recent NSF program “Collaboration in Mathematical Geosciences” (CMG), which

was focused on research at the intersection of mathematics and geoscience. In this context

an automated diversity measure would be potentially helpful in evaluating the diversity of

submitted proposals during the review process. Furthermore, being able to quantify the

diversity of papers that resulted from funding under such a program, compared to papers

funded by traditional single-discipline programs, would be useful as a component in overall

evaluation of the effectiveness of interdisciplinary research programs.

Similarly in scientometrics and bibliometrics, there is significant interest in developing quan-

titative measures of interdisciplinarity for both individual scientific articles as well as col-

lections of articles such as journals (e.g., [88]). Further afield, one can envision tools that

allow researchers to explore and rank the diversity of individual papers and journals, and for

administrators (such as department chairs, deans, and heads of research labs) to quantify

the diversity of the research in their departments and labs relative to other institutions.

We begin in Section 2.2 by discussing related work. Section 2.3 outlines a number of possible

diversity measures based on topic models. Section 2.4 describes the text corpora and the

topic modeling approach we use in the paper. In Section 2.5 we describe a set of experiments

based on pseudo-documents which serve as a proxy for ground truth and allow us to evaluate

6



the performance of different text-based diversity measures. Section 2.6 discusses several

examples of both high and low diversity scientific articles and grant abstracts detected by

our approach, and Section 2.7 concludes the paper.

2.2 Related Work

2.2.1 Interdisciplinarity in Scientometrics

There has been a significant amount of work in the field of scientometrics on quantifying no-

tions of interdisciplinarity as reflected in the output of scientific research (e.g., via published

scientific articles). The 2005 National Academies Committee on Facilitating Interdisciplinary

Research defined interdisciplinarity from an operational viewpoint as a“mode of research that

integrates .... concepts ... tools ... data ... from two or more bodies of knowledge or research

practice” [64]. Diversity in this context (e.g., diversity of citations or diversity of text con-

tent) can be thought of as a broader construct than interdisciplinarity, but one which serves

as a useful proxy for it. Indeed, diversity as defined via co-citation counts is the most widely-

used approach to quantify interdisciplinarity in practice, based on the notion that disciplines

that are co-cited more often by the same article are “closer” than disciplines that are less

frequently co-cited. Journal subject categories are typically used to capture the notion of

a discipline, typically using the manually-defined 244 ISI subject categories from Thomson

Reuters, with articles being assigned to a subject category associated with the journal the

article is published in (e.g., [64, 63, 66, 88]).

Rafols and Porter [63] used journal subject categorizations of citations to analyze how inter-

disciplinarity has changed between 1975 and 2005 for six specific subject-categories. They

concluded that although the number of citations and co-authors per paper was increasing

significantly over time, the degree of interdisciplinarity was increasing at a much slower rate,

7



as reflected by citation patterns between subject categories. As a component in their analy-

sis, Rafols and Porter used Rao’s diversity index based on a count matrix of D documents by

T categories derived from citations: pi was the proportion of citations made by an article to

other articles that were published in journals belonging to subject category i, and δ(i, j) was

defined as 1 minus the cosine distance between citation count vectors (across documents) of

subject categories i and j.

Our work differs from this earlier work and related threads in scientometrics in two specific

ways. First, in our approach the categories and distances, δ(i, j), are learned directly from

the text content, rather than being based on manually predefined schema such as the ISI

subject categories. There are obvious limitations to relying on pre-defined taxonomies, as

pointed out by Rafols and Porter [64]. Subject categories can change over time and no

longer necessarily reflect current disciplinary boundaries. In addition, in some contexts such

as analysis of proposals and grants, there may be very limited or no categorizations available.

For analysis of narrow domains (say the field of data mining and machine learning) existing

categorization schemes may be too coarse-grained to be useful. In this context, a corpus-

driven approach to learning the categories, such as the topic-based method we describe here,

is a useful alternative, and in some cases may be the only option.

The second major difference in our approach is our use of word counts rather than citation

counts (which are the basis of most prior work in scientometrics on quantifying interdisci-

plinarity). We expect that using text content will complement citation-based approaches,

as both words and citations carry useful signal. There has long been debate over whether

citations accurately reflect the content of a scientific article [18, 11]—arguably the words in

an article may provide a more accurate reflection of the author’s intentions than the citations

the author uses. A systematic approach to the use of both word-based and citation-based

measures of diversity would also be worth exploring in future work—in this paper, however,

we limit our attention to the exploration of word-based measures.
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2.2.2 Diversity as Outlier Detection

Another field which is related to our current work is that of outlier detection. If we consider

documents as being represented by T-dimensional vectors of counts, then one approach to

quantifying diversity is to look for documents that are outliers in this T-dimensional space,

using a multivariate outlier detection algorithm. Typically these algorithms rely on a notion

of global or local density, e.g., by finding data points that have low-probability under a global

distribution or that are relatively distant from their nearest neighbors.

In addition to the usual issues associated with estimating distances and densities in high

dimensions, a further complication in diversity characterization is that we are seeking low-

probability data points with the constraint that we are not interested in solutions where all of

the probability mass is on a single component, i.e., where pi ≈ 1, p j ≈ 0, j , i. Equivalently,

since the pi are the components of a probability vector in a T − 1 dimensional simplex, we

can think of high diversity documents as points that lie in the interior of the simplex (in at

least 2 of the dimensions) rather than at the edge.

Although it might be possible to develop a principled approach to characterizing diversity in

this way, e.g., by a constraint-based approach to outlier detection, the use of Rao’s measure

bypasses both the problem of estimating a high-dimensional distribution and the problem of

constraining points of interest to lie in the interior of the simplex. In particular, we can view

Rao’s measure as a form of outlier detection based on second-order information, focusing on

pairwise dependencies among the columns of the count matrix, via the δ(i, j) term, combined

with a term pi p j that penalizes count vectors consisting of a single dominant component.
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2.2.3 Diversity in Information Retrieval

A third potentially relevant source of prior work is in information retrieval and search where

one wishes to generate a diverse list of search results in response to a user query (e.g., to

avoid showing similar items in a list of search results). This work has a somewhat different

motivation than the one we pursue in this paper. In the typical search context, diversity is

closely aligned with making inferences about users’ goals, i.e., trying to find a diverse group

of documents such that the probability is maximized that at least one of the documents

matches a user’s implicit goals (e.g., [95]) or maximizing some notion of coverage (e.g., [33]).

In contrast, the focus in this paper is on characterizing the inherent topical diversity of single

documents, rather than finding a group of documents that best fulfill a user’s information

need.

2.3 Defining Topic-Based Diversity

In the general case we consider a count-matrix representation for a corpus of D documents,

where each row indexed by d, 1 ≤ d ≤ D, represents a document, each column j, 1 ≤ j ≤ T,

represents a category, and each entry indexed by (d, j) in the matrix represents how many

elements in document d belong to category j. In particular, in this paper we focus on word

tokens as the elements of a document, and a learned set of topics as the categories to which

elements have been assigned.

We use the Latent Dirichlet Allocation (LDA) topic model with collapsed Gibbs sampling to

learn T topics for the D documents in the corpus [34]. A single iteration of the collapsed Gibbs

sampler consists of iterating through the word tokens in the corpus, sequentially sampling

topic assignments for each word token in each document while keeping all other topic-word

assignments fixed. Using the topic-word assignments from the final iteration of the Gibbs
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sampler1 , we create a D ×T document-topic count matrix with entries ndj corresponding to

the number of word tokens in document d that are assigned to topic j.

In this context we can define Rao’s diversity measure for each document d as

div(d) =
T∑

i=1

T∑
j=1

P(i |d)P( j |d)δ(i, j) (2.2)

where P( j |d) is the proportion of word tokens in document d that are assigned to topic j

(estimated as
ndj
nd

where nd is the number of word tokens in d) and δ(i, j) is a measure of the

distance between topic i and topic j. Note that δ(i, j) is constant across all documents, and

P(i |d) and P( j |d) vary from document to document.

The interpretation of Equation 2.2 is intuitive: if we randomly select a pair of words from

document d (with replacement), then div(d) is the expected topical distance between a pair

of words in document d. Thus, a document that has two topics that are far away from one

another, each with a large proportion of the word tokens assigned to them, will have a high

diversity score. Conversely, documents whose word tokens are assigned to topics that are all

relatively close to one another, or whose word tokens predominantly fall into a single topic,

will earn a lower diversity score.

There are a number of possible approaches to defining distances between topics δ(i, j). We

explore below a number of different pairwise measures of similarity between topics, s(i, j),

as well as different methods of transforming these similarities into distances. We begin with

topic similarity functions based on topic co-occurrence in documents, as defined by the D×T

matrix of document-topic counts. An alternative approach that we also explore is topic

similarity based on the similarity of topic-word distributions using the W × T word-topic

count matrix.

1An alternative approach would be to average over multiple samples and use expected counts in the
document-topic count matrix rather than actual counts from the final sample.
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2.3.1 Topic Co-occurrence Similarity

A straightforward measure of topic similarity based on co-occurrence within documents is

the cosine distance of columns in the D×T matrix of document-topic counts. This is defined

as

s(i, j) ≡
∑

d ndindj√∑
d n2

di

√∑
d n2

dj

(2.3)

where i and j represent two column indices (two topics) and
∑

d is a sum over all documents

indexed by d.

Other similarity measures can also be used. For example, consider randomly selecting two

word tokens with replacement from within a randomly selected document d in the corpus.

Let s(i, j) = P(w1 = i,w2 = j) be the probability that the first word token w1 is assigned to

topic i and the second word token w2 is assigned to topic j:

P(w1 = i,w2 = j) =
∑

d

P(w1 = i,w2 = j |d)P(d)

=
∑

d

P( j |d)P(i |d)P(d) (2.4)

where P(d) is the probability of a random word belonging to document d and is estimated

using nd
N where N is the number of word tokens in the corpus. In estimating P( j |d) and

P(i |d) above we use smoothed maximum a posteriori estimates, with hyperparameter values

from the Dirichlet prior on the document-topic multinomials in the topic model. The use

of smoothed estimates produces non-zero similarities P(w1 = i,w2 = j) for all pairs of topics

i and j, avoiding singularities in the corresponding distances δ(i, j) and diversity measures.

The conditional version of the expression above, PC(w2 = j |w1 = i) can be viewed as a topic-

based version of the contextual word distribution defined by Dillon et al. [20], defined as the

probability that one word is present in a document given that another word is also in the
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same document.

2.3.2 Topic-Word Similarity

An alternative strategy to using topic co-occurrence is to consider topic similarity based on

topic-word distributions. Similarity can be defined in exactly the same manner as above,

but now using the W × T word-topic count matrix instead of the D × T document-topic

count matrix, where W is the number of words in the model’s vocabulary. In the context

of measuring diversity, it is interesting to consider whether the document-topic or topic-

word similarity is likely to be more useful. One can imagine situations where two topics

have relatively different distributions over words (low similarity in topic-word distributions),

yet the same two topics co-occur relatively frequently across documents (high similarity in

document-topic). From a diversity perspective, documents that contain these two topics

should in principle not be diverse, yet the word-topic similarity measure would indicate that

they are since their word distributions are different. In our experimental results we explore

this further and report results using diversities computed from both the document-topic (DT)

and word-topic (WT) matrices.

2.3.3 From Similarity to Distance

We empirically investigated two different transformations to convert each similarity measure

into a distance measure: δ(i, j) = 1 − s(i, j) and δ(i, j) = 1/s(i, j). We also investigated the

effectiveness of δ(i, j) = − log s(i, j) but found that it did not provide a performance gain over

the other transformations.
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2.4 Data Sets and Topic Models

2.4.1 Data Sets

The PubMed Central Open Access dataset (PubMed) is comprised of articles published

in biomedical journals which are freely available under a creative commons license [55]. We

collected approximately 228k articles which were published between the dataset’s inception in

1996 and our collection date in mid-2010. We focused our efforts on a subset of approximately

165k articles for which full text was available. Each document contained a title, the name

of the journal in which it was published, its year of publication, and names of its authors.

We eliminated approximately 20k documents which had either fewer than 600 words or more

than 10,000 words, yielding a collection of approximately 145k documents.

Our second data set is a collection of 74k NSF Awards from 2007 to 2012 gathered from

www.nsf.gov/awardsearch. Each record includes the title and abstract of the award, as well

as various metadata such as the NSF Directorate, Division and Program that funded the

award. We eliminated approximately 12k documents which had duplicate titles, followed by

an additional 10k which had fewer than 70 words or more than 1,000, resulting in a final set

of 52k documents.

As a third data set we used the Association of Computational Linguistics Anthology Network

(ACL) [65], consisting of papers published in selected computational linguistics conferences.

This corpus contains the full-text of approximately 19k papers appearing at these conferences

over a time span of more than four decades, in addition to each document’s title, year, and

conference of publication. We eliminated approximately 7k documents which were published

as workshop papers, and an additional 1k which had fewer than 600 words or more than

10,000 words, yielding a collection of approximately 11k documents.
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2.4.2 Topic Modeling

We performed simple tokenization and topic modeling on each of the three text corpora using

MALLET [51]. This involved splitting on whitespace, removing punctuation and lowercasing,

and converting into a bag-of-words representation using MALLET’s default stopword list.

We then learned an LDA topic model with a fixed symmetric prior β over the word-topic

distributions, and optimized the prior α over the document-topic distributions. The β prior

was set to 0.01 and we initialized the α prior over the document-topic distributions at 0.05 N
DT ,

where N is the number of tokens in the dataset, D is the number of documents in the dataset,

and T is the number of topics defined in the model. We enabled hyperparameter optimization

every 10 iterations, and ran each Gibbs sampler for a total of 5,000 iterations, keeping only

the final sample in the chain. For each dataset, we learned models with T = 10, 30, 100 and

300 topics.

2.5 Pseudo-Document Experiments

2.5.1 Pseudo-Documents

A significant challenge in evaluation is that there is no ground-truth measure for a document’s

diversity. To address this problem, we created artificial ‘pseudo-documents,’ half of which

were designed to have high diversity and half of which were designed to have low diversity.

We create each pseudo-document by combining two actual documents into one pseudo-

document in the following fashion. We begin by manually selecting two journals A and

B with relatively unrelated (e.g., The Journal of Cell Biology and The Journal of Foot and

Ankle Research). A pseudo-document is created by randomly selecting one article from jour-
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nal A and one article from journal B, which we denote as parent documents. A child pseudo

document is then created by computing the average of each parent document’s bag of topic

counts, rounded to the nearest count. If the parent journals, A and B, are relatively dissim-

ilar in content, we expect the resulting pseudo-documents to be relatively diverse. We can

also create low-diversity pseudo-documents by repeating the above process but now selecting

both parent articles from the same journal. By labeling pseudo-documents as having high or

low diversity in this manner, we can create a proxy for ground truth diversity for evaluation

purposes. This approach will not necessarily be perfect: for example, it is possible that if

one of the journals contains documents that span diverse topics (relative to the corpus as

a whole) some of the pseudo-documents labeled as low-diversity by this method could have

relatively high actual diversity. However, even though such mislabeling could occur in theory,

our assumption is that this pseudo-document approach will allow us to accurately measure

relative performance across different diversity measures.

We manually selected ten pairs of journals from PubMed, where each pair appeared to have

unrelated content (see Table 2.2 for a list of journal pairs). Using the process outlined above,

for each pair of journals, we generated 50 high-diversity pseudo-documents and for each

individual journal in the pair generated an additional 25 low-diversity pseudo-documents.

Each parent document was drawn without replacement, meaning that no real document

served as a parent of more than one pseudo-document across the entire set. This process

yielded a total of 1,000 pseudo-documents, half of which were designed to have high diversity,

and half of which were designed to have low diversity.

2.5.2 Experiments

We first tested whether our diversity scores could be used to differentiate the two classes of

pseudo-documents.
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Figure 2.1: Histograms of topic-topic distances for δ(i, j) = 1 − sc(i, j) and δ(i, j) = 1/sc(i, j).

Abbreviation Data Matrix s(i, j) δ(i, j) 10 Topics 30 Topics 100 Topics 300 Topics
DT-PI Document-Topic Probabilistic 1/s(i, j) 0.923 0.911 0.955 0.950
DT-CI Document-Topic Cosine 1/s(i, j) 0.926 0.929 0.964 0.964
DT-P Document-Topic Probabilistic 1 − s(i, j) 0.799 0.710 0.685 0.608
DT-C Document-Topic Cosine 1 − s(i, j) 0.842 0.770 0.772 0.716

WT-PI Word-Topic Probabilistic 1/s(i, j) 0.828 0.722 0.801 0.771
WT-CI Word-Topic Cosine 1/s(i, j) 0.856 0.805 0.814 0.689
WT-P Word-Topic Probabilistic 1 − s(i, j) 0.798 0.709 0.685 0.608
WT-C Word-Topic Cosine 1 − s(i, j) 0.838 0.779 0.762 0.659

Abbreviation Diversity Formula for Document d 10 Topics 30 Topics 100 Topics 300 Topics

Variety
∑T
i=1 1[p(i |d)>0] 0.681 0.667 0.648 0.643

Balance
∑T
i, j=1 p(i |d)p(j |d) 0.797 0.709 0.685 0.608

Entropy −∑T
i=1 p(i |d) log p(i |d) 0.812 0.738 0.707 0.646

Disparity
∑T
i, j=1 1[p(i |d),p( j |d)>0]δ(i, j); δ(i, j) as in DT-CI 0.706 0.706 0.720 0.724

Table 2.1: AUC scores for different diversity measures based on 1000 pseudo-documents from
PubMed.
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Figure 2.2: Pseudo-document ROC curves for PubMed data with 100 topics comparing Rao
diversity to alternate methods. See also Table 2.1.

Journal Name Abbreviations DT-PI DT-CI WT-PI WT-CI Variety Bal Ent Disp
All Journal Pairs 0.955 0.964 0.801 0.814 0.648 0.685 0.707 0.720

Neuroimage || BMC Public Health 0.961 0.967 0.894 0.770 0.669 0.654 0.703 0.658
Eplasty || Plant Mthds 0.963 0.962 0.817 0.810 0.616 0.657 0.660 0.712

Clinical Orthp || J Nucleic Acids 0.972 0.972 0.892 0.854 0.621 0.616 0.642 0.735
J Cell Biol || J Foot, Ankle Rsrch 0.996 0.993 0.908 0.962 0.631 0.684 0.718 0.805

BMC Med Ethics || BMC Immnlgy 0.989 0.997 0.822 0.974 0.654 0.758 0.750 0.756
Intl J Emrgy Med || Intl J Nanomed 0.955 0.978 0.796 0.809 0.690 0.723 0.758 0.743
J Ethnbio, Ethnmed || J Expl Botny 0.962 0.969 0.781 0.825 0.744 0.666 0.712 0.786

Tbcco Indced Dis || Neurl Devt 0.960 0.966 0.840 0.888 0.713 0.723 0.735 0.812
Frntrs in Neuro || Prtcle, Fibr Txclgy 0.888 0.887 0.764 0.610 0.631 0.754 0.778 0.611

Thromb J || Evlnry Bioinf Online 0.984 0.988 0.849 0.828 0.643 0.758 0.785 0.706

Table 2.2: AUC scores for pseudo-documents from specific journal pairs from PubMed.
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We started by learning a set of topic distances on the document-topic count matrix for the

145k PubMed documents. We then used this distance matrix to assign a diversity score to

each pseudo-document using the method described in section 2.3. We computed an area

under the curve (AUC) value for the ROC curve generated from the set of diversity scores

produced by our method based on the designed ground truth ‘high’ and ‘low’ diversity values

for each pseudo-document.

Table 2.1 lists AUC values for multiple diversity formulas across topic models with 10, 30, 100,

and 300 topics. Chance performance will yield AUC values of 0.50, and perfect classification

accuracy will yield an AUC of 1.

First, it is clear from these results that different distance measures yield significantly different

results. For example, distance measures with δ(i, j) = 1/s(i, j) perform significantly better

than distance measures with δ(i, j) = 1 − s(i, j) (see Table 2.1).

This is because s(i, j) is close to 0 for most pairs of topics, with large values being on the

order of 0.2. As a result, most distances are ≈ 1 when δ(i, j) = 1 − s(i, j) (see figure 2.1),

making this method more akin to a “balance method” than Rao’s diversity (as discussed in

Section 1). On the other hand, when δ(i, j) = 1/s(i, j), small similarity values create very

large distances, making the distance term appropriately dominant.

A second general observation from Table 2.1 is that distance formulas based on the document-

topic matrix outperform distance formulas based on the word-topic matrix (see Table 2.1).

This may indicate that topic co-occurrences in documents are generally more useful in char-

acterizing diversity than are similarities in topic-word distributions. As mentioned in section

2.3.2, two topics with very different word distributions may still frequently co-occur within

documents in the corpus, which is one possible explanation for why similarity based on

topic-word distributions performs relatively poorly on this task.

A third observation is that Rao diversity significantly outperforms alternative approaches
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Figure 2.3: Two of the most diverse NSF grant proposals.

(see Figure 2.2 and Table 2.1). This supports Stirling’s arguments [80] that taking each of

balance, variety, and distance is important for measuring diversity, compared to methods

such as entropy which don’t take all three aspects into account.

Overall, Rao diversity with the distance measures we have termed ‘DT-PI’ or ‘DT-CI’

perform the best, where DT refers to a document-topic based similarity measure, P to

probability-based similarity, C to cosine-based similarity, and I to the inverse transformation

of similarity. In addition to yielding high pseudo-document classification accuracies, these

methods also appear to be largely invariant to the number of topics in the model (see Table

2.1), and show consistent performance across pseudo-documents drawn from different pairs

of journals (Table 2.2). Since the ‘DT-PI’ and ‘DT-CI’ methods are very close in performance

overall, we use ‘DT-CI’ as our default measure of diversity from this point forward.
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Figure 2.4: Two of the least diverse NSF grant proposals.

2.6 Detecting Diverse Documents

In this section we show examples of the most diverse and least diverse documents detected by

our algorithm for each of our three corpora: PubMed Open Access, NSF Grant Awards, and

the ACL Anthology. For each corpus we built a topic model with 100 topics, and computed

diversity scores using Rao diversity with the DT-CI distance measure as defined in Table

2.1. We scaled the distances δ(i, j) to have a mean value of 1 within each corpus, putting the

distances and diversity scores on roughly the same scale across corpora. We also manually

assigned names to topics to aid in interpreting the results.

Figure 2.3 shows two of the most diverse NSF awards (from a corpus of approximately 52k

abstracts of awards) detected by the algorithm. The first award is a collaborative research

project between mathematicians and geoscientists. As shown in Figure 2.3, the releatively

large distances (6 times larger than the mean pairwise topic distance) between ALGEBRA

and each of the GEOSCIENCE and EARTHQUAKE topics drive a significant portion of the

total score. The distances between these topics is reflected in the description of the project

in the abstract:
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This vast mathematical theory has been applied to geology in only a few in-

stances. This project represents collaboration between two structural geologists

and a mathematician.... [It] opens the door to further cross-fertilization among

geology, mathematics, and other fields.

The second of the two awards in Figure 2.3 is considered diverse because of the combination

of the topic ARCHAEOLOGY and the two biology-related topics PROTEINS and CELLS.

Again, the relatively large distances (2.4 and 2.6) between these topics and their relative

strength within the document yield a particularly high diversity score for this document.

The two examples of low-diversity documents in Figure 2.4 tell a different story. The first

grant is somewhat narrowly focused, dominated by topics that are relatively close such as

CHEMISTRY, MASS SPECTROMETRY, and FLUID DYNAMICS. The second grant is an

example of a document that gets a topical diversity score of 0 because all of its words are

assigned to the single topic of ALGEBRA.

Figure 2.5 shows two the most diverse articles from the PubMed corpus. The diversity score

for the first article is dominated by the combination of the PSYCHIATRY and FUNGI topics,

which have a distance of 16.91 times the mean topic distance. The diversity score of the

second document is largely driven by the fact that the BONES/JOINTS topic is relatively

distant from each of the HIV/AIDS and VIRUSES topics. Low diversity PubMed documents

showed similar patterns to low diversity NSF grants.

Finally, Figure 2.6 shows examples of one high diversity document and one low diversity

document from the ACL corpus. The high diversity document achieves its score because

the SUMMARIZATION topic is usually associated with text, but here it co-occurs with a

set of topics related to SPEECH RECOGNITION. Thus, this paper is unusual in that it

applies summarization techniques to non-text data (as indicated in the title). The other

paper in Figure 2.6 is a typical example of a low-diversity document which is composed of a
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Figure 2.5: Two of the most diverse PubMed OA articles.

Figure 2.6: High diversity (top) and low diversity (bottom) ACL articles.
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combination of topics that are very close together.

2.7 Conclusions

We presented an approach for quantifying the diversity of individual documents in a corpus

based on their text content. Empirical results illustrated the effectiveness of the method on

multiple large corpora. This text-based approach for assigning diversity scores has several

potential advantages over previous alternatives, such as methods that define diversity based

on citations categorized into predefined journal subject categories. The text-based approach

is more data-driven, performing the equivalent of learning journal categories by learning

topics from text, and can be run on any collection of text documents, even without a prior

categorization scheme. In addition, it produces human-readable explanations and can be

easily generalized to score the diversity of other entities such as authors, departments, or

journals (e.g., by aggregating counts across such entities).

A possible direction for future work is that of temporal document diversity, for example,

using topics and topic-based distance measures that only depend on documents in the corpus

with earlier time stamps. This would allow for distances and diversities that change over

time and the detection of documents that are highly diverse relative to the time-period they

were published in. An example would be early papers in bioinformatics, combining machine

learning and biological concepts, which co-occur relatively frequently in the current literature

but far less so 20 years ago.
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Chapter 3

The Cosmic Prevalence of Quenching

in Low Mass Satellites

3.1 Introduction

Local Group (LG) observations serve as a Cosmic Rosetta Stone, which can greatly aid our

understanding of the distant universe. Observations of resolved stars in local group dwarf

galaxies grant insight into their histories [36, 49, 87, 52, 38, 93, 94], providing a lens to the

early Universe which witnessed their formation. [14, 31, 70, 7, 13].

Studies of the satellite systems of Milky Way analogs have revealed much about how the

evolutions of its dwarf galaxies are affected by their environments [92, 19, 40, 96, 97, 60].

These studies demonstrate that massive (i.e. ∼ 109 M�) satellites become environmentally

quenched inefficiently over long (several Gyr) timescales, although the mechanism by which

the cessation of star formation occurs remains an area of active study. The high-mass dwarfs

that make up the more distant universe stand in stark contrast to the LG’s population of

satellites, where dwarfs below ≈ 108 M� in solar mass are nearly all passive, suggesting rapid
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quenching timescales [29].

Further studies are needed to bridge the gap between Local Group and studies of the z=0

populations of dwarfs at large. Comparing these two populations necessitates probing lower-

mass objects than is currently possible with large scale spectroscopic surveys, which can

not probe satellites below 108.5 M� in stellar mass [61]. Photometric studies, on the other

hand, can provide leverage to connect low-mass LG systems to the field, particularly in their

mass and phase-space distributions [58, 81]. These surveys are less useful in replicating the

detailed star formation information obtained in spectroscopic studies. This is significant, as

populations of galaxies at 107 M? ∼ 108 M? are predicted to have quenched fractions that

are highly dependent on their local environment [28, e.g.]. However, this differing behavior

of high-mass and low-mass dwarfs is grounded only on local observations.

Confirming that this feature of LG satellites is a general property of satellite galaxy evolution

is a crucial step in understanding how the LG fits into the larger picture of galaxy evolution,

and determining if the formation and evolution of the LG is “typical” of similar systems. The

significance of the representativeness, or conversely the uniqueness, of the Local Group is

magnified by the observation that at high redshift (z=7), the Local Group progenitor spanned

a linear distance of 7 comoving Mpc, corresponding to a volume of 350 Mpc3 [8]. This makes

it a valuable cosmological tool, as Local Group archeology probes a region of similar size to

the Hubble Ultra Deep Field, while also comprising objects significantly fainter than would

be feasible to detect at high redshift. However, the utility of the LG as a cosmological tool

depends on how representative the LG’s evolutionary history is to similar systems.

In this work, we present a novel methodology for extending spectroscopic studies through

machine learning to lower masses than they are capable of probing directly. Our technique

enables us to reach masses on the order of those of LG satellites in service of studying the

dependence between the evolution of low-mass dwarfs and their environment, and deter-

mining how representative the LG is of similar systems across cosmic time. The paper is
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organized as follows: in Section 3.2, we describe the observational data we use, in Section

3.3, we describe our procedure for identifying and classifying satellites, in Section 3.5, we

give our results and discuss the implications of our findings.

3.2 Observations

The observational data used in this study is compiled from several different surveys:

The training set was drawn from the Sloan Digital Sky Survey (SDSS), using data from

value-added galactic catalogs of [5] and [10]. These data were used to assign each point of

four dimensional color-color space a value that maps to the probability that a galaxy residing

at that point in color space is quenched.

From the SDSS, we select for the training sample galaxies of stellar mass 7 < log M?. Galaxies

are labeled star-forming or quenched based on where they lie in SFR-stellar mass space. If

they lie above the line

SFR = −0.7 × log M? − 7.7 (3.1)

they are considered star forming, otherwise they are taken to be quenched. Star formation

rates are taken from the catalog, and are derived from emission lines and the D4000 spectral

index. For the purposes of this study, it is critical that the star formation rates used in

this sample are derived from galactic spectra, as we will be seeking to link spectroscopic

properties to ones derived from photometric observations of faint objects.

Additional training set data was drawn from the Galaxy and Mass Assembly (GAMA) survey,

a spectroscopic survey of ∼ 300, 000 galaxies covering ∼ 286deg2 of equatorial sky. Spectra

were taken using an AAOmega multi-object spectrograph on the Anglo-Australian telescope.
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The survey is complete down to r < 19.8, making it 2 magnitudes deeper than SDSS in

spectroscopy. Since we are primarily interested in faint objects, and our algorithm weighs

low-mass objects more heavily than high-mass objects, this added depth is beneficial.

The test set is drawn from the Canada France Hawaii Telescope Legacy Survey (CFHTLS),

a photometric survey comprised of a “wide” component and a “deep” component. For the

purposes of this study, we consider only three of our of the four “wide” fields, corresponding

to those with spectroscopic overlap, fields W1 (72 square degrees), W3 (49 square degrees),

and W4 (25 square degrees). The chosen fields overlap with the NASA-Sloan Atlas, which

combines Galaxy Evolution Explorer (GALEX) photometry with SLOAN data; this overlap

allows us to select photometric satellites of spectroscopically confirmed hosts.

In selecting our test set, we apply a number of quality cuts to CFHTLS objects, most

importantly requiring they be flagged as galaxies by SEXTRACTOR. At this point, we

apply no cut on distance to nearby object; below we will discuss how our test set is divided

into photometric satellites and background objects. The photometric satellites form our

primary scientific sample; for this reason it is important to understand our completeness,

both in an absolute sense and the extent to which completeness depends on galaxy properties,

particularly color.

To evaluate how complete our test set is, we first examine how complete our training set

is. Figure 3.2 illustrates this; the red and blue points represent the passive and star-forming

galaxies in our training sample, respectively. The black dashed line represents the region of

parameter space where the training set is complete. As a fiducial measure, we transpose the

completeness curve to fainter magnitudes to bring it into agreement with the Next Genera-

tion Virgo Cluster Survey (NGVS, see [27]), a study that used the MegaCam instrument to

observe Virgo cluster objects (i.e. objects with known redshift). We then adjusted our com-

pleteness limit to account for the difference in depth between the NGVS and the CFHTLS,

and adjusted again to account for the differential completeness between MegaCam bands.
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This ensures that a galaxy observed in, e.g., the r band would not be unobserved in the i

band.

These scalings give us a final completeness magnitude of r ∼ 19.7, two magnitudes fainter

than SDSS. Using our assumed relationship between magnitude and mass, we can compute

the redshifts our study is complete to as a function of mass; we are able to observe galaxies

of mass 109 M? out to z = 0.05, of which there are 75 hosts meeting our criteria in our survey

area; galaxies of mass 108 M? out to z = 0.027, giving us 26 hosts; and galaxies of mass

107 M? out to z = 0.013, giving us just 4 hosts. We would be able to track galaxies down to

satellites of mass 106 M? to z = 0.006, however there are no such hosts in our sample. These

critical redshifts are noted in Figure 3.2.

3.3 Satellite Characterization

The procedure of assigning dwarf galaxies to satellite systems can be broken down into two

parts: identifying the families of satellite galaxies, and characterizing their star formation.

In this section, we discuss each of these in turn.

3.3.1 Satellite Finding

The first step in obtaining satellite galaxy samples is host selection. As our goal is to select

hosts similar to the Milky Way, we select hosts from the NASA-Sloan Atlas between 1010.4 M?

and 1011 M? in stellar mass. Hosts are retained only if they fall on our three CFHTLS fields.

A redshift cut is then applied to the hosts so that only hosts closer than z=.04 end up in the

final sample (see previous section). We then select all objects within 150 projected kpc to be

photometric satellites. To account for edge effects, we draw a circle of radius 150 kpc around

each galaxy and calculate the ratio of the area of a circle that lies within the field to the
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Figure 3.1: Modified specific star formation rate (log SFR - .7 log Stellar Mass) plotted
against stellar mass for objects in the SDSS training sample. The horizontal line is the
dividing line between star forming and quenched galaxies.
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Figure 3.2: Absolute r band magnitude plotted against redshift for galaxies in the training
set. The red points in the left panel represent passive galaxies, the blue points in the right
panel represent star-forming galaxies. Completeness curves are shown for both the training
set (black curve) and the test set (magenta curve). The magenta square shows the test set
completeness derived from [27] (see text for discussion). Vertical black lines indicate the
redshifts at which the test set is complete to the labeled mass.
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Figure 3.3: Counts of galaxies 16.5 < r < 18.5 in a circular aperture of radius 9 arcmin
around hosts (as shown on left), plotted versus distance from the host (solid line). Also
shown are counts around random points on the sky (dashed line). This figure serves to
demonstrate the validity of the technique of measuring satellite statistics by statistically
subtracting the background. Note that at large distances from the hosts, the counts come
into agreement with the random background.
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full area of the circle, calling this ratio Farea. Hosts with Farea lower than 0.75 are discarded;

for the remainder, 1/Farea serves a correction factor for the missing area lying outside of the

field.

Once satellites are identified, we assign a mass to them by assuming that the mass of each

satellite is a power law function of its apparent r band magnitude, where the log-space

intercept of the function is set by redshift. Our investigation confirms that, in the training

set, mass is indeed well-described by a power law in r band magnitude. By interpolating the

redshift-intercept relationship, we can define a power law relation between stellar mass and

r magnitude for satellites of any redshift, where we assume the redshift of each satellite is

approximately equal to that of its host.

The fundamental challenge of assigning satellite group membership to photometric objects

is that it is not known where they lie in velocity space, and thus whether they may be

associated with a given host. There are two ways of addressing this issue: making use

of photometric redshifts derived from SED fitting, or by systematically subtracting out an

assumed background population based on observations of “blank” fields. It is this second

method that we make use of. For each of the three CFHTLS fields we use in this study,

we take use 500 random “pencil beam” pointings within the field to compute the on-sky

background density. We use the 40th percentile two-dimensional density to account for the

skewedness in the distribution of densities due to random pointings in the direction of low-z,

i.e. foreground, overdensities, as the background density for each. Figure 3.3 serves as a

proof of concept for counting satellites in this way, the right panel shows an excess in counts

of objects as a function of on-sky distance around our hosts as compared to around random

locations. This excess is limited to ∼ 9 arcmin, corresponding to a phyiscal distance of

100 − 300 kpc at the redshifts we are concerned with.
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3.3.2 Star Formation Modeling

Our modeling of star formation is motivated by a desire to classify photometric satellites

into star formation categories in a data-driven way based on their position in color-color

parameter space. We take a machine-learning approach to the problem using two classes

of models, one built around random forests and one which uses a neural network. Both of

these are calibrated on the training set, then applied to the test set. We first discuss the

shared data preparation procedure for these two model classes followed by more detailed

descriptions of the each model type.

We combined photometric data from 54,288 galaxies gathered in the SDSS with data from

70,850 galaxies gathered in the GAMA for a total of 125,138 data points. Of these, we

removed 5,191 datapoints which contained unphysical color values, leaving a total of 119,947

datapoints for the main analysis. 30.4% of these datapoints represent quenched galaxies, the

remaining 69.6% represent star forming galaxies. These datapoints were randomly shuffled

and split into three sub-datasets: a training set containing 95,959 datapoints (80% of the

total), a first validation set to use for tuning hyperparameters containing 11,994 datapoints

(10%), and a second validation dataset for estimating out-of-sample errors containing the

remaining 11,994 datapoints (10%). The random shuffling and splitting was done in such a

way that the portion of quenched galaxies in each dataset remained approximately constant.

Hyperparameter Optimization

The success of machine learning algorithms often depends critically on the values of a number

of model- and dataset-specific hyperparameters [76]. While the express purpose of training

a machine learning model is to learn the parameter values which minimize the model’s error

on a given training dataset, the values of its hyperparameters are taken to be defined a-priori

and are not modified by the model’s training process. Therefore, in order to train the best
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final model possible, it’s critical to optimize these hyperparameters for each problem and

dataset under consideration. For both our random forest and neural network models, we

train a number of distinct versions of the model, each using different hyperparameter values.

The general algorithm that we use to optimize the hyperparameters of both of these models

is Outer-Loop Hyperparamter Optimization (algorithm 1).

Algorithm 1 Outer-Loop Hyperparameter Optimization

1: HPOpt ← Chosen Hyperparameter Optimizer
2: for Iteration i ← 1...K do
3: Hyperparams αi ← HPOpt.NextHyperParamSet
4: Train model on training data with hyperparams αi
5: Make predictions for validation data with model
6: HPOpt.RecordValidationError
7: end for
8: Best model is model with lowest validation error

It is worth highlighting that this method requires a full training and testing cycle within each

iteration of the hyperparameter selection loop, making it considerably more computation-

ally expensive than training a single model in isolation. The benefit is that the predictive

performance of the best models trained using this method will often be considerably better

than models trained using default hyperparameters only.

Random Forest Models

We first trained a series of random forest models to try to predict whether a galaxy was

quenched or not from its four-band color information. A random forest is comprised of a set

of small decision trees [9], each trained on a subset of the training datapoints and features. At

prediction time, each tree in the forest makes an independent prediction, and the predictions

for each datapoint are averaged across trees to obtain the prediction for the forest as a whole.

We used the RandomForestClassifier implemented in Python’s scikit-learn package to

train our random forest models. We also used scikit-learn’s RandomizedSearchCV class to
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perform our hyperparameter search by selecting hyperparameter sets uniformly at random

from the range of legal values that we defined. These included: max_depth, the maximum

legal depth for each tree in the random forest (range: 1 to 7 or None for no max depth),

max_features, the maximum number of features which may be used to train each tree

(range: 1 to 4), min_samples_split, minimum number of datapoints which a node in the

tree must contain in order to be considered for splitting (range: 1 to 31), min_samples_leaf,

minimum number of datapoints required before a node in a tree can be considered a leaf

node (range: 1 to 31), and finally criterion, whether to split nodes using information gain

or the gini coefficient.

Since each tree in a random forest is only trained on a subset of the training data, the

remaining data in the training set can be used to get an accurate out-of-sample error estimate,

rendering our first validation dataset unnecessary. As such, we folded the first validation set

into the training set, to yield an augmented training set size of 107,953 datapoints.

We trained a total of 500 random forest model, the best of which, as judged by area under

a receiver operating characteristic curve (AUC) on out-of-sample data1, achieved a final

out-of-sample AUC on the second validation dataset of 0.898 and an accuracy of 84.0%.

Neural Network Models

We next trained a series of feed forward neural network models to predict whether a galaxy

was quenched or not from its four-band color data. Each neural network had its hyper-

paramters chosen by Spearmint, a Bayesian optimization framework [76] for hyperparam-

eter selection. Unlike the RandomizedSearchCV procedure that we used to optimize the

hyperparameters for the Random Forest models, Spearmint records the final validation set

1AUC is a measure of classification accuracy which is robust to unbalanced class proportions. A model
which makes random choices will achieve an AUC value of 0.5, while a model which achieves perfect classi-
fication accuracy will receive an AUC value of 1.0.
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performance of each hyperparameter set and uses them to bias future hyperparameter draws

toward areas of hyperparameter space for which it expects that model to perform will.

The hyperparameter ranges that we considered were: the number of hidden layers in the

feed-forward neural network (range: 2 to 10), number of hidden units per layer (range: 4

to 400), the dropout probability for each layer [79] (range: 0.0 to 0.8), the batch size for

each stochastic update (range: 16 to 512), the base-10 log of the stochastic gradient learning

rate (range: -5.0 to 0.0), the per-epoch learning rate decay factor (range: 0.90 to 1.0), the

momentum coefficient for the stochastic gradient update rule [83] (range: 0.0 - 1.0), whether

to use Nesterov [57] or classical momentum updates, and whether to replace the stochastic

momentum update rule the with AdaDelta update rule [98].

Once the hyperparameter values for a given neural network model had been chosen, we

trained the model for 20 epochs on the training data set2. After each epoch, we recorded

the partially trained model’s AUC score on the first validation dataset. We took the best

validation set AUC after any training epoch as the metric of interest for hyperparamter

optimization, reporting this value back to Spearmint at the end of the training phase for

each neural network. All the neural network models were built in Keras [16] with a Theano

[86] backend and trained on NVIDIA GPUs.

In total, we trained 500 distinct neural network models. The best of the 500 models—

as judged by AUC on the first validation dataset—was a model with 5 hidden layers, 388

neurons in each layer, dropout probability of 0.1232 at each hidden layer, batch size of 86,

and AdaDelta updates with a learning rate multiplier of 1.0. The model was trained on

the training data until reaching a maximum AUC on the first validation dataset after 6

epochs. This trained model achieved an AUC value of 0.900 and an accuracy of 84.0% on

the hitherto-unseen data from the second validation set.

2Here, an ”epoch” means a full pass through the training dataset
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Table 3.1: Number of datapoints in resampled versions of the second validation set.

Log Mass Range Original γ = 0.5 γ = 1.0 γ = 1.5
[6, 8) 287 1,677 4,022 5,715
[8, 10) 6,444 3,522 4,058 3,721
[10, 12) 5,263 6,795 3,914 2,558

Table 3.2: AUC and accuracy measures for neural net and random forest models on several
versions of the second validation set.

Dataset NN AUC RF AUC NN Acc RF Acc
Original 0.900 0.898 0.840 0.840
γ = 0.5 0.872 0.871 0.804 0.806
γ = 1.0 0.885 0.885 0.830 0.836
γ = 1.5 0.887 0.884 0.840 0.844

3.3.3 Mass Distribution Sensitivity Analysis

Since the mass distribution for the objects in the training set may differ significantly from

the mass distribution of the true objects of interest, we next conducted a sensitivity analysis

to see how well these models would perform on data drawn from a different underlying mass

distribution. For this purpose, we partitioned the second validation set into objects with

log stellar masses in the ranges [6, 8), [8, 10), and [10, 12). We then sampled a series of

datapoints (with replacement) from each of these bins in the second validation set to create

new versions of the second validation set with different mass distributions. If the number

of datapoints sampled from the bins [6, 8), [8, 10), and [10, 12) are labeled n6, n8, and n10

respectively, we sampled datapoints such that n6/n8 = n8/n10 ≡ γ for γ values of 0.5, 1.0, 1.5

(see Table 3.1).

Finally, we used the models which had been trained on the un-resampled training data to

make predictions for each of the resampled test sets (see Table 3.2). The test set AUC is

slightly lower for the resampled datasets, but remains above 0.87 even for datasets with

grossly different mass distribution than the training data.

38



3.3.4 Algorithm Efficacy

In evaluating the algorithm, the two values we are concern with are the “precision” (often

called purity) and “recall” (often called completeness). In the case of our algorithm, precision

is the probability of a galaxy identified as quenched by the algorithm is truly quenched. Recall

is the probability that a truly quenched galaxy is identified as quenched. Since the SDSS

gives us spectroscopic information on the galaxies in our training set, we may compute both

precision and recall directly. Furthermore, in the case where objects have binary labels (i.e.

“quenched” and “star-forming”), it can be shown that

Fq = fq × (P/R) (3.2)

where Fq is the true quenched fraction, fq is the quenched fraction determined by the algo-

rithm, P is the precision, and R is the recall. There are two things to note from this equation:

Regardless of the values of P and R, if P = R then the measured quenched fraction is the

same as the true quenched fraction. More importantly, regardless of the values of P and R, if

those values are known, Fq may be determined from fq using the value of P/R, which we will

refer to as the “correction factor,” or C. Note that this can be easily generalized to a scenario

where Fq, fq, P, and R and all functions of mass, enabling us to define a mass-dependent

correction factor C(M?).

In Figure 3.4 we show the correction factor derived from our two algorithms plotted against

stellar mass. The red squares represent points derived from the DT algorithm, while the

blue circles represent the same for the NN algorithm. For each algorithm, we assign a fit to

serve as our modeled C(M?). While both the NN and DT models are well-described by a

linear fit, we emphasize that, in principal, C(M?) could take any form and the true quenched

fraction would be recoverable from the data. We tuned our algorithm such that C(M?) was

near unity over the dynamic range we consider. Choosing C(M?) in this way minimizes both
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the correction itself and the extent to which systematic errors will be amplified in correcting

the data.

3.4 Precision and Recall

In §3.3, we claim that the true fraction of quenched galaxies is given by the measured fraction

of quenched galaxies multiplied by a correction factor which is the ratio of the algorithm’s

precision to its recall. This claim is proven here. Let N be the number of galaxies in a set.

Let q be the number of galaxies in that set that are truly quenched, while Q is the number

of galaxies that are measured to be quenched. Let Qq be the number of galaxies that are

both truly quenched and measured to be quenched. We then have the precision, given by

P =
Qq
Q

(3.3)

and the recall, given by

R =
Qq
q

(3.4)

Thus

P
R
=

q
Q

(3.5)
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Figure 3.4: The correction factor, defined as the ratio of precision to recall, plotted against
stellar mass for each of our two algorithms. The red squares and blue circles represent the
correction factor derived from narrowly binning the data in the DT and NN algorithms,
respectively. From these data, we fit a linear correction function for each algorithm (dashed
lines). Note that the algorithms were tuned such that correction factors near unity were
produced.
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Figure 3.5: The quenched fraction of satellite galaxies as a function of satellite mass, derived
from our two algorithms. Red squares denote quenched fractions measured using the decision
tree algorithm, while blue circles denote those using the neural network algorithm (see §3.3).
Our results indicate an elevated quenched fraction at low masses, in broad agreement between
the two algorithms.
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The true fraction of galaxies that are quenched is

fquen =
q
N
=

Q
N
× q

Q
= fquen,measured ×

P
R

(3.6)

3.5 Results and Discussion

In Figure 3.5 we show the fraction of satellite galaxies that are quenched, as determined by

both of our algorithms as a function of satellite mass. The NN algorithm is shown as red

squares, while the DT algorithm is shown as blue circles. Both algorithms show a trend of

decreasing quenched fraction with increasing stellar mass. The errors reported in Figure 3.5

are binomial errors on the satellite quenched fraction; we can estimate the errors associated

with the algorithm itself to be σ =∼ 0.1, which would bring the data from both algorithms

into relative agreement. With these errors in place, the trend is still seen.

In comparing Figures 3.4 and 3.5, there is a possible point of concern: the trend noted

above seems to be driven by the functional form of Cm. If our methodology failed entirely,

the algorithms would, in essence, randomly assign “quenched” or “star-forming” labels to

galaxies, and the dependence of quenched fraction on stellar mass would be entirely driven

by Cm. While at first this may appear to be the case, our high-mass data, is in reasonable

agreement with previous results; this serves as confirmation that our methodology “matches

up” with known results at high mass. Furthermore, the functional form of the algorithm

applied to the evaluation portion of the training set irrespective of environment shows a

strong dependence on stellar mass, with low mass galaxies being quenched at a rate of

about 20%, highly different than our test set result, suggesting we are indeed capturing an

environmental effect.
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Figure 3.6: The quenched fraction of satellite galaxies as a function of satellite mass, plotted
alongside previous results, as well as LG objects. As before, red squares denote quenched
fractions measured using the decision tree algorithm, while blue circles denote those using
the neural network algorithm (see §3.3). Taken together, these results show that low-mass
satellites are significantly more susceptible to being environmentally quenched than high-
mass satellites.
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Our work extends previous results examining the quenched fraction of satellites in the z ∼ 0

Universe. In Figure 3.6 we compare our results to this work, also including HI observations

of Local Group satellites. Taking all the data together, the data paints a coherent picture

of satellite quenching over a substantial dynamical mass range: high mass galaxies ( M? >∼

109 M�) are quenched fairly inefficiently ( fquench ∼ .4). This has been seen in previous

studies, but is confirmed by our work. At intermediate masses ( M? ∼ 108 M�), galaxies

undergo a transition, where they begin to become quenched with high efficiency. At low

masses ( M? <∼ 108 M�), galaxies are nearly uniformly quenched. These trends are shown

by the gray band in Figure 3.6. Our study provides evidence that the increase in quenching

efficiency at low satellite mass seen in the LG is a general feature of satellite galaxy evolution.

Our results suggest the idea that below 109 M?, the depth of a galaxy’s potential well is

insufficient to retain its gas upon falling onto a central galaxy; the pressure exerted by

the circumgalactic medium of the central is greater than the internal gravitational pressure

exerted by the gravitating mass of the satellite. Since dwarf galaxies are dominated by their

dark matter, this result has implications for how galaxies populate dark matter halos. Since

the quenching of low-mass satellites appears common, such galaxies are unlikely to be found

in deep potential wells, which provides a constraint on the scatter or the stellar mass-halo

mass relation.

On the other hand, our result serves as an indication of the validity of the assumption that the

satellite systems in the Local Group are not strongly biased in their star formation histories.

Note that the galaxies in our sample are of similar surface brightness to the classical MW

dwarfs, meaning that bias attributable to surface brightness is not a concern over the mass

ranges we are probing. This is an important point, as local observations can provide strong

leverage on addressing questions of high-Z galaxy formation and evolution, provided that

they are free of bias. Our study provides a novel means of addressing this issue, which

already provides tantalizing hints at the universality of quenching in low-mass satellites,
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and which paves the way for future studies using deeper observations, such as the Large

Synoptic Survey Telescope (LSST) survey. We estimate that an identical study carried out

using LSST would provide data from more than 500 hosts reaching satellites of mass 106 and

below, and tens of thousands of systems at which the critical mass window (108 M?) may be

investigated.
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Chapter 4

Deep Learning for Drug Discovery

and Cancer Research: Automated

Analysis of Vascularization Images

4.1 Introduction

The total cost of bringing a new drug from discovery to approval has exhibited a steady,

exponential rise over the past five decades [72]. One contributing factor to this phenomenon,

dubbed Eroom’s law (Moore’s law backwards), appears to be the failure of traditional, pre-

clinical models to accurately simulate many of the more complex features of their clinical

successors. These pre-clinical, in vitro studies serve to quickly and cheaply identify com-

pounds that exhibit promising effects for further study in vivo. However, traditional 2D

monolayer culture systems (i.e.: petri dishes) lack many features that are present in vivo,

such as 3D cellular structure, heterogeneous cellularity, cell-cell interactions, the presence of

a complex extracellular matrix (ECM), biomechanical forces (e.g. shear forces generated by
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fluid flow), and the presence of perfused vasculature [26]. Animal studies, on the other hand,

are too complex to analyze and expensive to substitute for in vitro pre-screening, and often

fail to identify potential human toxicity due to physiological differences between humans and

the animal model [47]. In short, a compound that appears effective in traditional, pre-clinical

studies may fail spectacularly in the human body, further contributing to the costly societal

burden of failed clinical trials [1].

Microphysiological systems (MPSs), or ”organ-on-a-chip” platforms, promise to help close

the gap between in vitro and in vivo drug screens [22, 21, 82], and have seen rapid, recent

development [37, 73, 50, 12, 23], supported in part through private-public partnerships fos-

tered under the auspices of the National Center for Advancing Translation Science [46]. These

MPSs make significant strides toward more accurately modeling the pertinent properties of in

vivo biological environments for drug discovery, however many remain in a proof-of-concept

stage and require complex peripheral equipment and accessories to operate and maintain.

We have demonstrated an MPS for growing vascularized, perfused microtissues [53, 91].

This platform produces highly robust and uniform vascular networks which are suitable for

screening anti-tumor compounds [77] and in large-scale drug discovery studies [59], all while

requiring little additional training for the user and no added equipment beyond a standard

incubator. We have shown that the survival of these miniature tissues is dependent on nutri-

ents delivered through living vasculature. Importantly, by accurately identifying drugs that

target tumor cells, the vascular networks that supply them, or both, the system has proven

much better at mimicking human drug responses than previous models. In our studies using

FDA-approved or clinical trial compounds to target the vasculature, we have found that anti-

angiogenic compounds such as sorafenib and axitinib induce regression on sprouting vessels,

but do not have profound effect on mature, interconnected vascular networks. Therefore,

they often show a milder effect on the vasculature. On the other hand, non-specific, anti-

vascular compounds such as bortezomib and vincristine aggressively fragment the vascular
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network. In brief, this system exhibits exceptional potential for developing more targeted, ef-

fective anti-vascular and anti-angiogenic compounds to target the tumor vasculature without

adverse effects on normal tissue.

A remaining obstacle to deploying this system for truly large-scale anti-angiogenic and anti-

vascular drug screening is the need to have human experts determine whether each compound

is effective in targeting the vasculature network. Effects are categorized as no-hits (i.e. the

compound had no effect on the vasculature network), soft-hits (i.e. the compound moderately

disrupted the vasculature network or induced vascular regression), or hard-hits (i.e. the

compound had a devastating effect on the vasculature network) from a primary screening

(see figure 4.1). Once identified from the initial screen, soft-hit and hard-hit compounds

can be further analyzed in a dose-response screen to identify the half maximal inhibitory

concentration (IC50), optimized for molecular structure, and subsequently characterized for

their pharmacokinetics in vivo. Soft-hit compounds are treated as anti-angiogenic while

hard-hit compounds are treated as anti-vascular.

In the past, human raters have made this determination by manually analyzing each pair of

before- and after-drug-application images and quantifying their total vessel length difference

using AngioTool [101]. However, this workflow is imprecise—e.g. in its insensitivity to anti-

angiogenic compounds that do not significantly affect total vessel length of a fully mature

vascular network and its reliance on subjective human judgment—and low throughput—for

its need to carefully tune several dataset-specific parameters in the software and the time it

takes a human to look at each image.

Automatic classification of these images via machine learning could provide an attractive

replacement to the slow and error-prone process of requiring human ratings. In this paradigm,

a set of carefully hand-labeled images would be fed to a classifier which could ”learn” to

distinguish between classes.
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Figure 4.1: Example vessel images

A convolutional neural network is a type of machine learning model that is particularly suited

to applications in computer vision. Not only do they offer state-of-the-art performance in
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general image classification tasks (e.g. [84]), they have also proven effective for biologi-

cal applications, with past work demonstrating convolutional networks capable of detecting

cardiovascular disease [89], spinal metastasis [90], and skin cancer [24] from medical images.

In this paper, we develop a convolutional neural network to automatically classify images of

vasculature networks formed in our MPS into no-hit, soft-hit, and hard-hit categories. The

accuracy of our best model is significantly better than our minimally-trained human raters

and requires no human intervention to operate. This model is a first step toward automation

of data analysis for high-throughput drug screening.

4.2 Methods

4.2.1 Data Collection

Drug studies were performed in the MPS as previously described [59, 77]. Briefly, the cell-

ECM suspension was loaded into the platform and cultured for 7 days to allow the vascular

network to develop inside the tissue chambers. Each tissue unit was exposed to various com-

pounds obtained from the National Cancer Institute (NCI) Approved Oncology Compound

Plate or purchased from Selleck Chemicals. Time course images of vascular network before

and after drug treatment were taken using a Nikon Ti-E Eclipse epifluorescent microscope

with a 4x Plan Apochromat Lambda objective. For close-up imaging of the tissue chambers,

a 1.5x intermediate magnification setting was used.

4.2.2 Preprocessing

Each image in our dataset was between 1000 and 1300 pixels wide. Images of this size contain

far more information than is needed for deep image classification (e.g.: [41] classifies natural
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images taken from 1000 classes with 256×256 pixels images), so we downsampled images

to create 4 separate constant-size datasets: one each of 128×128px, 192×192px, 256×256px,

and 320×320px. Next, we z-normalized each image, subtracting the mean pixel intensity

and dividing by the standard deviation of the pixel intensities within that image to obtain

images with 0-centered pixel values and unitary standard deviation. This normalization helps

our models to converge more quickly and uniformly across random initializations. After all

this, we concatenated the pre-drug-application and post-drug-application images to obtain

a single, 2-channel image.

Image Alignment

We would like the pre-drug-application and post-drug-application images to spatially align

as closely as possible. If they do not, then our model would be required to learn an extra

invariance: that the channel images need not be aligned. Because the pre- and post-drug-

application images were captured three days apart, it is not in general possible to ensure that

the two images will be perfectly aligned (e.g. the later image might be shifted or rotated

slightly compared to the original). To combat this effect, we implemented a rigid alignment

preprocessing step to align the post-drug image to the pre-drug image using the warpAffine

method in OpenCV3[25]. For each image, we tried three sets of transformations:

1. A single Euclidean (translation + rotation) transformation on the full-resolution image.

2. A Euclidean transformation on a smaller (32x32px) copy of the image followed by a

Euclidean transformation on the full-resolution image.

3. A translation-only transformation on a smaller (32x32px) copy of the image followed

by a Euclidean transformation on the full-resolution image.

From these three, we selected the transformed version which yielded the highest possible
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correlation coefficient between the pre- and transformed post-drug image. See figure 4.2 for

two examples of this alignment process in action.

Figure 4.2: A set of blood vessel images before (left) and after (right) alignment. The
pre-drug-application images are placed in the image’s green channel and the post-drug-
application images are placed in the red channel. The separate green and red vessels in the
left image shows that the pre- and post-drug-application images are misaligned, the more
pervasive yellow in the right image comes from the green and red channels being aligned on
top of each other.

4.2.3 Human Ratings

Two human experts rated each of the 277 images, comparing disparate ratings where nec-

essary to come to a consistent set of gold-standard ratings. 164 images were labeled as 0

or no-hit (59.2%), 52 were labeled as 1 or soft-hit (18.8%), while 61 were labeled as 2 or

hard-hit (22.0%). These ratings are used throughout the remainder of this paper.

We also obtained ratings from 4 additional humans: undergraduate research assistants who

were trained to recognize each image class and who had been assigned this task in the past.

Raters were presented with the full set of 277 images in randomized order and were asked

to provide an integer class assignment for each using the following instructions: ”How much

of an effect did the drug have? (0 for no effect, 1 for solid effect, 2 for devastating effect)”.
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4.2.4 Loss Weighting

For the purposes of drug discovery, false negatives are potentially much costlier than false

positives. A false positive (i.e.: predicting that an image from an ineffective drug was actually

effective) will result in secondary screening in which the ineffectiveness of the drug may be

confirmed. A false negative (i.e.: predicting that an image taken from an effective drug did

not actually have any effect) may result in a potentially useful compound being overlooked in

this and any future drug trials. To help control our model’s false-negative rate, we employed

a weighted cross-entropy loss function of the form:

loss(yi, ŷi |W) = −
c=2∑
c=0

Wcitrue,c yic log(ŷic)

where i indexes over datapoints, c over classes, yic is an indicator variable that takes the

value of 1 if the true class of datapoint i is c and 0 otherwise, citrue represents the true

label of datapoint i (i.e.: 0, 1, or 2), and the weights Wcitrue,c are drawn from the hand-tuned

confusion weighting matrix shown in table 4.1. Note that if all elements of this weight matrix

were set to 1.0, then our weighted cross-entropy loss would reduce to standard cross-entropy.

Table 4.1: Loss function weight values

Yipred = 0 Yipred = 1 Yipred = 2
Yitrue = 0 0.8 0.8 0.8

Yitrue = 1 2.0 1.0 0.8

Yitrue = 2 2.0 0.8 1.0

This loss function penalizes false negatives at twice the default value. In addition, it penalizes

the treatment of all true no-hit images at 0.8 times the default value and reduces the penalties

for confusing soft- and hard-hits to the same amount. We arrived at these weights through

trial and error and use them for all experiments presented in this paper.
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4.2.5 Training Procedure

We partitioned the full dataset of 277 images into a test set consisting of 25% of the images

(69 images) and a training+validation set consisting of 75% of the images (208 images).

We employed 4-fold cross validation on the training+validation set, training on 75% of its

datapoints (156 images) and tracking validation loss on the remaining 25% (52 images).

Unless otherwise noted, we trained on each fold for a total of 200 epochs. All linear and

neural models presented in this paper were built in Keras [16] with a Theano [86] backend

and trained on NVIDIA GPUs. We selected the model from each fold which attained the

lowest validation-set loss value across all training epochs.

We combined the best models from each fold into a 4-model ensemble of models. We averaged

the predictions across all 4 models in the ensemble to attain final predictions for each set of

hyperparameters on the test dataset.

Data Augmentation

Since our training set is rather small, we employed random data augmentation during train-

ing. In each pass over the data, each training image was randomly rotated between -5 and 5

degrees clockwise, translated between -5% and 5% vertically and horizontally, zoomed in be-

tween 0 and 10%, and possibly flipped horizontally and vertically, with each transformation

value selected uniformly at random from the legal range. Empty pixels that resulted from

the random rotation and translation were filled with the values from their nearest existing

neighbor pixel. Figure 4.3 shows three randomly transformed versions of one training image.

This random data augmentation scheme with continuous parameters yields an infinitude of

variations for each 156-image training set and helps prevent our models from overfitting to

the specific details of our training data.
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Randomly Transformed Copies

Original Image

Figure 4.3: Three examples of the data augmentation process used for training and inference.
The top image is an actual training image, and the bottom three are randomly transformed
copies of that image. Each time an image is visited during the training process, it is first
randomly transformed in a way that simulates creating new images with respect to the true
invariances of the training images (e.g.: an image should have the same class as a copy of
that image which is slightly shifted, rotated, or flipped). The left-most randomly generated
image has been flipped horizontally, zoomed, and rotated slightly. The middle random image
has been flipped both horizontally, vertically, and zoomed slightly. The right-most image has
been flipped vertically, zoomed in, and translated down slightly. This random augmentation
helps simulating a larger training set and prevent our model from overfitting.

At inference time, we randomly generated five versions of each validation or test image and

averaged the model’s predictions for each image over all five of its randomly-generated copies.
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4.2.6 Linear Models

We first tried to classify the data with a simple, linear model. For this purpose, we treated

the raw pixel intensity values of the concatenated before and after images as the features for

this model and trained a series of separate logistic regression models on input images of sizes

128×128, 192×192, 256×256, and 320×320. For each of these image sizes, we fit models with

L1 and L2 (i.e. ElasticNet) regularization strengths of 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, and 1e-6

on the weights matrix.

Optimization was completed using a batch size of 32 and and an AdaDelta optimizer [98]

with a hand-tuned learning rate of 0.1 and per-epoch learning rate decay factor of 0.98.

4.2.7 Convolutional Neural Network Models

Where the logistic models from section 4.2.6 are limited to a linear class separation boundary

in feature space, feed-forward neural networks with even a single hidden layer are theoretically

capable of fitting any possible decision boundary[17]. This additional representational power

is often useful for complex classification tasks, making deep neural networks some of the

most useful models for modern machine learning applications.

Convolutional neural networks offer a slight refinement over feed-forward neural nets by

introducing a weight-sharing scheme into certain ‘convolutional’ layers[43]. These layers

learn translation-invariant filters which, when applied as part of an image classification neural

network model, achieve state-of-the-art classification performance on a variety of tasks [84,

68, 100].

Standard convolutional architectures for image classification include a series of convolutional

layers followed by one or more fully connected layers [43, 41, 84]. Each convolutional and

fully connected layer is followed by a rectified linear unit (ReLU) nonlinearity [54] and max
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pooling layers are interspersed through some subset of the convolutional layers to repress

non-maximal responses and reduce the number of parameters in subsequent layers. Dropout

may also be used on some of the convolutional and fully connected layers to help prevent

overfitting [79].

Overall, convolutional neural networks offer a well-established process for performing high-

quality image classification.

4.2.8 Hyperparameter Search for Convolutional Architectures

Building a convolutional neural network requires specifying a large number of hyperparame-

ters, such as the number of convolutional and fully-connected layers in the network, the size

of each layer, dropout probabilities etc. The number of possible hyperparameter combina-

tions grows exponentially with the number of hyperparameters, so a thorough grid search of

hyperparameter combinations quickly becomes unwieldy [4].

Instead, we employ a Gaussian-process-based meta-model which maps from a set of chosen

hyperparameters to an estimate of the out-of-sample accuracy attained by a model trained

with the given hyperparameters[76]. This meta-model of hyperparameter fitness is used

in an outer-loop hyperparameter optimization process (see algorithm 1). First, the meta-

model proposes a hyperparameter set to try. For each hyperparameter set, we follow the

same training procedure as that detailed in section 4.2.6, using 4-fold cross-validation on

the training+validation set, building a 4-model ensemble from the best version of the model

for each fold (across epochs and as judged by validation-set accuracy), and averaging each

model’s validation- and test-set predictions over 5 randomly generated versions of each input

image. At the end of training, we report the validation-set accuracy (averaged across all 4

folds) as the objective value attained for the given hyperparameter set. This objective value

is used to update the meta-model of hyperparameter quality and the process repeats.

58



4.2.9 Pre-Trained Convolutional Architecture

Given the small size of our training dataset, we next tried a large convolutional architecture

that had been pre-trained on a large, general purpose image recognition problem. For this

purpose we picked the InceptionV3 architecture [85] as implemented in Keras [16] with

weights that had been pre-trained on the ImageNet classification challenge [71]. The full

convolutional portion of the InceptionV3 model contains 21,611,968 parameters and some

216 layers. We instantiated the model without including the final fully-connected layers,

opting not to fine-tune its convolutional weights, but to train two fully connected and one 3-

class softmax layer anew for our classification problem while using the convolutional portion

of the InceptionV3 model as an elaborate, fixed computer vision preprocessing routine.

While fixing our convolutional architecture fixed many of the hyperparameters of our model,

several still remained. These were: the input image size (192×192px, 256×256px, or 320×320px;

we skip the 128×128px version because InceptionV3 requires input images to be at least

139px×139px), the number of neurons in the first fully connected layer (16, 32, 64, 128, 256),

dropout probability for the dropout layer immediately after the first fully connected layer

(0.0 to 0.99), the number of neurons in the second fully connected layer (16, 32, 64, 128,

256, 512, 1024), dropout probability for the dropout layer immediately after the second fully

connected layer (0.0 to 0.99), the optimization batch size (16 to 64), log10 of the learning

rate (-3.0 to 0.0), log10 of the L1 penalty applied to the weights of the network (-9.0 to -1.0),

log10 of the L2 penalty applied to the weights of the network (-9.0 to -1.0).

4.2.10 Custom Convolutional Architecture

Though the Inception architecture employed in section 4.2.9 has proven very useful for

general-purpose image classification, the images of microscopic blood vessel networks used in

this task have their own structure that does not necessarily match the constraints of general

59



object recognition1.

For this purpose, we also trained a series of custom convolutional architectures specifically

for this blood-vessel classification task. We constrained our architecture to contain several

convolutional layers followed by two fully connected layers.

The hyperparameter ranges that we considered were: the input image size (128×128px,

192×192px, 256×256px, or 320×320px), the number of convolutional layers in the model (2

to 7), the number of convolutional filters at the start of the convolutional cascade (16, 32,

64, 128 or 256), the number of convolutional filters at the end of the cascade (16, 32, 64,

128 or 256; filter counts were linearly interpolated across the 2 to 7 convolutional layers

between the number of filters at the start and the number of filters at the end), the number

of convolutional layers between max pooling layers (1 to 4; the first pooling layer was fixed

after the second convolutional layer), the size of the max pooling receptive fields (2 to 7;

stride was fixed to match pooling size), dropout probability for a dropout layer immediately

after the convolutional layers (0.00 to 0.99), the number of neurons in the first fully connected

layer (16, 32, 64, 128, 256), dropout probability for the dropout layer immediately after the

first fully connected layer (0.0 to 0.99), the number of neurons in the second fully connected

layer (16, 32, 64, 128, 256, 512, 1024), dropout probability for the dropout layer immediately

after the second fully connected layer (0.0 to 0.99), the optimization batch size (1 to 8),

log10 of the learning rate (-3.0 to 0.0), log10 of the L1 penalty applied to the weights of the

network (-9.0 to -1.0), log10 of the L2 penalty applied to the weights of the network (-9.0 to

-1.0).

1For example, detecting eyes is very important for detecting the myriad animal types in ImageNet, but
irrelevant for our task.
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4.3 Results

4.3.1 Human Rating Results

The four human raters found the vessel rating task difficult compared to the expert raters,

matching the gold-standard ratings 72.9%, 76.5%, 69.3% and 83.0% of the time. The rounded

average of all four raters’ ratings (i.e.: 0, 1, or 2) matched the gold standard ratings 85.9%

of the time. (See table 4.2 and section 4.4 for further details).

Table 4.2: Test Set Confusion Matrix for Average of Four Human Raters

Yipred = 0 Yipred = 1 Yipred = 2
Yitrue = 0 86% 14% 0

Yitrue = 1 27% 65% 9%

Yitrue = 2 0 0 100%

4.3.2 Linear Model Results

The best linear ensemble that we found for this task, as judged by validation set accuracy

(67.3%) used an input image size of 256px×256px and log10 of L1 and L2 regularization

strength equal to -2.0. This ensemble did not perform better than chance on the test set,

achieving a three-class test set accuracy of 56.2% (the largest class made up 62.3% of the

test set; see the confusion matrix in table 4.3 for details).

Table 4.3: Test Set Confusion Matrix for Linear Ensemble

Yipred = 0 Yipred = 1 Yipred = 2
Yitrue = 0 84% 2% 14%

Yitrue = 1 91% 0 9%

Yitrue = 2 60% 7% 33%
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4.3.3 Pre-Trained Convolutional Neural Network Results

We explored a total of 100 hyperparameter sets for the pretrained convolutional architecture

using the procedure explained in section 4.2.8. The best model, as judged by three-way

validation-set accuracy (87.0%), used 320px×320px input images, its first fully connected

layer after the InceptionV3 convolutional stack contained 256 neurons, its second fully con-

nected layer contained 1024 neurons, and the final dropout probability before the 3-way

softmax layer was 0.272.

The optimization was completed with a batch size of 16, log10 of the learning rate of -1.24,

a per-epoch learning rate decay factor of 0.98, log10 of L1 shrinkage of -9.0, and log10 of L2

shrinkage of -1.0.

A 4-model ensemble based on this architecture achieved a three-class accuracy value of 87.0%

on the hitherto-unseen test (see the confusion matrix in table 4.4 for details).

Table 4.4: Test Set Confusion Matrix for Pre-Trained Convolutional Ensemble

Yipred = 0 Yipred = 1 Yipred = 2
Yitrue = 0 98% 2% 0

Yitrue = 1 45% 36% 18%

Yitrue = 2 0 7% 93%

4.3.4 Custom Convolutional Neural Network Results

We explored a total of 1000 hyperparameter sets for our custom convolutional architecture,

the best of which, as judged by three-class validation-set accuracy (96.6%), is a 21-layer

convolutional neural network, the architecture for which is illustrated in figure 4.4.

The optimization was completed with a batch size of 1, log10 of the learning rate of -1.91,

2This model contained 21,611,968 fixed parameters that had been pre-trained on ImageNet data and
33,820,931 fully connected parameters that were trained on the vessel data.
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Input
2	x	256	x	256

Convolutional	Layer	1
Filters:	3	x	3	x	2	x	256

Output:	256	x	254	x	254

Convolutional	Layer	2
Filters	:	3	x	3	x	256	x	224
Output:	224	x	252	x	252

Convolutional	Layer	3
Filters	:	3	x	3	x	224	x	192
Output:	192	x	48	x	48

Convolutional	Layer	4
Filters	:	3	x	3	x	192	x	160
Output:	160	x	46	x	46

Convolutional	Layer	5
Filters	:	3	x	3	x	160	x	128
Output:	128	x	44	x	44

Fully	Connected	1
Neurons	:	128

Fully	Connected	2
Neurons	:	512

Softmax
Neurons	:	3

Max	Pooling	1
Size:	5
Stride:	5

Max	Pooling	2
Size:	5
Stride:	5

Dropout	1
P(drop)	=	0.12

Dropout	2
P(drop)	=	0.90

Figure 4.4: The architecture for the best convolutional neural network we trained on these
data. The blue prisms represent the 3-dimensional input images (two channels, width, and
height) and the three dimensional output of each convolutional layer (filters, width, and
height). The green prisms represent a sample receptive field for the subsequent convolutional
layer.

a per-epoch learning rate decay factor of 0.98, log10 of L1 shrinkage of -9.0, and log10 of L2

shrinkage of -9.0.

A 4-model ensemble based on this architecture achieved a three-class accuracy value of 95.7%

on the hitherto-unseen test set with no false negatives (see the confusion matrix in table 4.5

for details).

Table 4.5: Test Set Confusion Matrix for Custom Convolutional Ensemble

Yipred = 0 Yipred = 1 Yipred = 2
Yitrue = 0 100% 0 0

Yitrue = 1 0 82% 18%

Yitrue = 2 0 7% 93%

4.4 Discussion

In this paper, we present a new classification problem—to distinguish effective from inef-

fective drug compounds through automatic analysis of vascularization images. A cursory

glance at figure 4.1 might tempt the casual reader to conclude that this problem is fairly
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Figure 4.5: Receiver operating characteristic curves for a binarized version of this classifica-
tion problem (no-hit vs. soft-hit or hard-hit). ROC-AUC scores range between 0.5 and 1.0,
with 0.5 indicating performance at chance and 1.0 indicating perfect classification (a stan-
dard which the best custom convolutional neural network we tried achieves on this binarized
problem).

straightforward and that it could be solved by simply counting the number of pixels which

are present in the pre-drug-application image but missing in the post-drug-application im-

age. The results listed in section 4.3 suggest that this is not the case. While a linear model

64



would prove effective in such a problem regime, the logistic models which we trained ut-

terly failed to distinguish between effective and ineffective compounds (three-way accuracy:

56.2%; majority class size: 62.3%). The difficulty appears to be driven by the nuances of

the classification problem, which cannot be captured in a simple linear decision boundary in

pixel space. For example, the death of a bridge-to-nowhere vessel should be treated as less

important than the death of a vessel on a major thoroughfare in the vasculature network.

To further highlight its difficulty, even an ensemble of four trained human raters had some

difficulty with this task (three-way accuracy: 85.9%).

Convolutional neural networks, however, appear equal to the challenge. Convolutional neu-

ral networks have already demonstrated super-human classification performance on general

computer vision tasks [35], and the pattern holds for this new classification problem. Where

a cadre of four undergraduate raters achieved a three-way accuracy of 85.9% on this dataset,

a convolutional ensemble based on the InceptionV3 architecture [85] and pre-trained on Im-

ageNet data [71] achieved three-way accuracy of 87.0% (though it committed more false

negatives than the human raters). A custom convolutional architecture, however, achieves a

robust 95.7% three-way accuracy for drug-hit classification, while committing no false neg-

atives. This pattern repeats itself if we reduce our 3-way classification problem to a binary

problem by aliasing together the soft-hit and hard-hit categories (see figure 4.5).

The success of this convolutional model is driven in part by carefully tuning our loss function

to discourage false negatives (see section 4.2.4), but also by the great steps we took to

control overfitting in our model. One such regularization strategy was to augment our

limited training dataset to virtually infinite size via randomly transforming images during

each training pass (see section 4.2.5). Judicious use of dropout also contributed to the result.

In fact, the hyperparameter optimization scheme that we used automatically picked a model

with a large final layer (512 neurons) and a high dropout probability (0.90). Dropout can

be interpreted as implicitly performing a geometric average over an ensemble of regularized
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subnetworks [3], so this model can be interpreted as implicitly averaging over an enormous

ensemble of diverse sub-networks.

These regularization strategies were important, as our final network contained 2,485,827

learned parameters and 15 optimized hyperparameters, more than enough capacity to mem-

orize the identity of 208 training+validation datapoints. However, our network still exhibits

excellent generalization power, with test accuracy of 95.7% only barely lagging behind the

hyperparameter optimized 96.6% validation accuracy which in turn closely follows the train-

ing accuracy of 98.1%. This tendency toward strong generalization performance is often seen

in deep networks, and cannot yet be fully explained by any known regularization mechanism

or learning theory[99].

4.5 Conclusion

In this paper, we have developed a convolutional neural network to improve the data analysis

processes for high-throughput drug screening using our MPS. This network can classify new

images near instantaneously and surpasses human accuracy on this task. A larger scale drug

screening can be achieved by coupling this classifier and an automated microscope camera

system to capture images before and after drug treatment.
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