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ARTICLE

Non-coding variability at the APOE locus
contributes to the Alzheimer’s risk
Xiaopu Zhou1, Yu Chen1,2,3, Kin Y. Mok1,4, Timothy C.Y. Kwok5, Vincent C.T. Mok6, Qihao Guo7, Fanny C. Ip1,2,

Yuewen Chen1,2,3, Nandita Mullapudi 1, Alzheimer’s Disease Neuroimaging Initiative,

Paola Giusti-Rodríguez 8, Patrick F. Sullivan8,9,10, John Hardy4, Amy K.Y. Fu1,2, Yun Li8,11 & Nancy Y. Ip1,2

Alzheimer’s disease (AD) is a leading cause of mortality in the elderly. While the coding

change of APOE-ε4 is a key risk factor for late-onset AD and has been believed to be the only

risk factor in the APOE locus, it does not fully explain the risk effect conferred by the locus.

Here, we report the identification of AD causal variants in PVRL2 and APOC1 regions in

proximity to APOE and define common risk haplotypes independent of APOE-ε4 coding

change. These risk haplotypes are associated with changes of AD-related endophenotypes

including cognitive performance, and altered expression of APOE and its nearby genes in the

human brain and blood. High-throughput genome-wide chromosome conformation capture

analysis further supports the roles of these risk haplotypes in modulating chromatin states

and gene expression in the brain. Our findings provide compelling evidence for additional risk

factors in the APOE locus that contribute to AD pathogenesis.
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A lzheimer’s disease (AD), a progressive age-related neu-
rodegenerative disorder, is the most common type of
dementia and a leading cause of mortality in the elderly.

Its prevalence is increasing rapidly with the aging population
worldwide1. However, its underlying pathological mechanism
remains unclear. Over the last few decades, various genetic risk
factors for late-onset AD (LOAD) have been identified,
including common non-coding variants with low penetrance
(odds ratios= 1.05–1.30)2. In particular, the APOE locus tagged
by coding variant APOE-ε4, is unequivocally the most sig-
nificant genetic risk factor for AD3,4. While other AD risk
variants have also been identified in this region, including
TOMM40 poly-T variation5–8, APOE-ε4 is believed to be the
only genetic factor that accounts for the risk effect exerted by
the APOE locus9.

Apolipoprotein E (ApoE), the lipoprotein encoded by
APOE, serves as a major lipid carrier in the brain10. APOE has
three isoforms—APOE-ε2, APOE-ε3, and APOE-ε4—defined
by combinations of two coding risk mutations (rs429358 and
rs7412). APOE-ε3 is predominant in the general population,
while APOE-ε2 is less common and exerts a protective effect
against LOAD. On the other hand, APOE-ε4 has been iden-
tified as a strong AD genetic risk factor, with odds ratios of
1.78–9.93 across different studies or ethnic groups11–13, and
has been reported to modulate brain amyloid-beta (Aβ) bur-
den, tau protein level14,15, neuronal activity16,17, immune
status18,19, blood–brain barrier integrity20 and longevity21,22.
Thus, APOE plays critical roles in both aging and human
diseases.

Emerging studies suggest that APOE-ε4 does not fully explain the
AD risk conferred by APOE and the surrounding regions23–26.
Indeed, recent genome-wide association studies (GWAS) for AD
conducted in Chinese27 and European populations28 have identified
leading risk variants in this region, specifically located in the APOC1
or PVRL2 loci. Moreover, while individual risk variants residing in
non-coding regions exhibit small effect sizes for disease risk, a
combination of risk alleles from multiple variants results in aggre-
gate effects, thus contributing to a higher disease risk. Hints of the
presence of AD risk haplotype structures in the APOE locus have
been identified29,30, although our understanding of these haplotypes
has been restricted by traditional genotyping methods (i.e., geno-
typing array or Sanger sequencing). Thus, there might be additional
AD risk variants or haplotype structures in the APOE locus that can
modulate the risk effects and function of APOE-ε4 or exert their
effects independently. Hence, it is vital to comprehensively analyze
AD-associated genetic structures, as well as risk variants in this
region in order to better understand the pathological basis of AD
and aid the translation of such findings into clinical practice,
namely patient stratification and therapeutic development in a
genotype-specific manner.

Here, to dissect the complex AD-associated genomic sig-
nature within the extended APOE region and its contribution to
the disease, we perform fine-mapping analysis based on whole-
genome sequencing (WGS) and imputed array data from Chi-
nese and non-Asian AD cohorts. We demonstrate the existence
of AD risk haplotypes in the PVRL2 and APOC1 regions that
exert risk effects on AD in an APOE-ε4 and APOE-ε2 genotype-
independent manner. These risk haplotypes are associated with
changes in gene expression, particularly PVRL2 and APOE
transcript levels in the brain or blood, and the resultant
endophenotypes. Hence, our results collectively suggest that in
parallel with the APOE-ε4 coding risk factor, there are addi-
tional genetic risk factors in the APOE surrounding regions that
can modulate both gene expression and AD-associated phe-
notypic outcomes, pointing towards new directions for studying
the disease mechanisms of AD.

Results
AD causal variants in the PVRL2 and APOC1 regions. We
recently reported a WGS study of AD in the mainland Chinese
population (n= 1172; Supplementary Table 1), in which multiple
variants located in APOE and the surrounding regions exhibited
the strongest association with AD27. To further investigate the
existence of additional risk signals in this region, we conducted
fine-mapping analysis in the extended APOE region
(chr19:45,300,000–45,500,000) using the GATK HaplotypeCaller,
which enables the simultaneous detection of SNPs and INDELs in
the WGS data of this cohort and an AD cohort from Hong Kong.
We applied post-filtering, including controlling for imputation
quality (allele dosage DR2), allele frequency, and Hardy–Weinberg
equilibrium, yielding 682 variants (554 SNPs and 128 INDELs) for
subsequent investigation (see Methods section).

To examine whether there are APOE-ε4–independent AD risk
effects in the APOE surrounding regions, we first conducted
association analysis among APOE-ε3 homozygous individuals
from the mainland Chinese WGS cohort (n= 237 and 288 for the
AD and NC groups, respectively) among the 682 obtained
variants. A cluster of risk variants near the APOC1 region was
identified. The top signal was observed from rs157592 (effect size
= 1.672, p= 3.20 × 10−3; Fig. 1a), which indicates that there
might be other risk signals in the APOE surrounding region in
addition to the well-studied APOE-ε4 risk factor. We subse-
quently performed an association study for all participants from
the mainland AD cohort. Again, the results highlighted the
contribution of non-coding variants near APOC1 to AD
pathogenesis (represented by the top candidate rs56131196, effect
size= 0.869, p= 1.10 × 10−10; Fig. 1b, Table 1). Therefore, we
further investigated potential causal variants in this region by
performing credible variant analysis through CAVIAR31. We
identified nine variants with a posterior probability > 10% from
three loci—PVRL2, APOE, and APOC1 (Table 1)—marked by the
following three causal variants with the highest probability:
rs11668861 in the PVRL2 region, rs429358 in the APOE region,
and rs56131196 in the APOC1 region (posterior probabilities=
42.5%, 13.9%, and 21.5%, respectively; Fig. 1c, Table 1). These
findings suggest the existence of multi-variant effects in APOE
and the surrounding region, and that the PVLR2 and APOC1 loci
might contribute to AD pathogenesis in an APOE-
ε4–independent manner.

Furthermore, we queried the summary statistics from trans-
ethnic GWAS summary data reported by Jun et al.32 from the
National Institute on Aging Genetics of Alzheimer’s Disease Data
Storage Site (NIAGADS). Accordingly, multiple AD-associated
variants from the PVRL2 and APOC1 loci with p-values < 5 ×
10−8 were identified in APOE-ε4 carriers (n= 12,738 and 13,850
for AD and NC carrying APOE-ε4, respectively; Supplementary
Table 2) and in all individuals after adjusting for APOE-ε4
genotype (n= 21,392 and 38,164 for AD and NC, respectively;
Supplementary Table 3). Notably, three of the potential causal
variants identified in the mainland Chinese WGS dataset (i.e.,
rs12721051, rs56131196, and rs4420638) remained significant in
conditional analyses after adjusting for APOE-ε4 in the trans-
ethnic GWAS results (Supplementary Table 3). Thus, our results
indicate the existence of APOE-ε4–independent genetic AD risk
factors in the APOE surrounding region.

AD risk haplotypes in the PVRL2 and APOC1 loci. To further
dissect the AD-associated genetic structure in APOE and the
surrounding region, we included additional variants (i.e., SNPs
and INDELs) that were in LD (r2≥ 0.50) with the nine causal
variants in mainland Chinese WGS dataset, which yielded 33
variants that might reflect the AD-associated genetic signatures in
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this region (Supplementary Table 4). Haplotype analysis revealed
two major haplotype blocks defined by variants extending from
the PVRL2 and APOC1 causal variants (Fig. 2a). The stratified LD
plots showed that AD patients manifested a distinct genomic
structure relative to NC groups, as represented by stronger LD
(i.e., larger pairwise r2 values between variants) among risk

variants in the PVRL2, APOE, and APOC1 loci, suggesting that
these AD risk variants are more likely to coexist in AD (Fig. 2a).
We replicated this analysis in the ADNI WGS dataset (n= 808)
and observed similar LD patterns in AD (Supplementary Fig. 1).
Moreover, we identified multiple haplotypes (frequency > 5% in
the NC groups) in the PVRL2 and APOC1 haplotype blocks in the
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Fig. 1Multivariant effects of the APOE locus in the Chinese AD cohort. a Regional association plot of the AD risk variants in APOE-ε3 homozygous subjects.
The horizontal red line denotes the p-value threshold of 0.01. b Regional association plot of the AD risk variants (SNPs and INDELs with frequency ≥ 5%)
located in the APOE locus. The purple diamond specifies the sentinel variant (with the SNP ID marked in the plot). Dot colors illustrate the LD (measured as
R2) between the sentinel variant and its neighboring variants. c CAVIAR analysis results for mapping of possible causal variants in the APOE locus. Dots
represent the variants tested in the APOE locus; the y-axis and dot color denote the effect size. Dot size corresponds to the posterior probabilities of the
variants being the causal variants obtained from CAVIAR analysis, with the sentinel variants located in three loci marked with SNP IDs. AD Alzheimer’s
disease, CAVIAR causal variants identification in associated regions, cM/Mb centimorgans per megabase, INDELs insertions and deletions, LD linkage
disequilibrium, SNP single nucleotide polymorphism, Post Prob posterior probabilities of being the causal variants

Table 1 Potential causal variants in APOE and the surrounding region identified by CAVIAR analysis

SNP BP Gene EA Beta SE Z-value p-value TF binding EAF in NC (Mainland/HK/ADNI/
ADC/LOAD)

rs11668861 19:45380970 PVRL2 T −0.39 0.12 −3.28 1.0E−03 Yes 0.78/0.79/0.55/0.53/0.54
rs6859 19:45382034 PVRL2 G −0.40 0.11 −3.54 3.9E−04 Yes 0.69/0.71/0.43/0.42/0.42
rs3852860 19:45382966 PVRL2 T −0.36 0.12 −3.03 2.4E−03 Yes 0.76/0.77/0.59/0.58/0.59
rs3852861 19:45383061 PVRL2 T −0.34 0.12 −2.87 4.1E−03 Yes 0.76/0.77/0.59/0.58/0.59
rs429358 19:45411941 APOE C 0.91 0.14 6.44 1.2E−10 No 0.11/0.11/0.14/0.14/0.21
rs12721046 19:45421254 APOC1 A 0.87 0.14 6.44 1.2E−10 No 0.13/0.09/0.13/0.13/0.17
rs12721051 19:45422160 APOC1 G 0.87 0.14 6.43 1.3E−10 Yes 0.13/0.09/0.17/0.17/0.22
rs56131196 19:45422846 APOC1 A 0.87 0.14 6.45 1.1E−10 No 0.13/0.09/0.19/0.17/0.22
rs4420638 19:45422946 APOC1 G 0.85 0.13 6.34 2.4E−10 No 0.13/0.09/0.19/0.17/0.22

Note: CAVIAR analysis results for the major causal variants, defined as a posterior probability≥ 10%, with a summary for variants frequency in normal control participants from each studied cohort.
Regions with transcription factor-binding events annotated by the ENCODE database are marked as “yes” in the “TF binding” column. The last column displayed the effective allele frequencies of
corresponding variants in the normal control populations of given cohorts accordingly
BP base position in GRCh37 annotation, Gene nearest genes, EA effect allele, Beta effect size, SE standard error, TF transcription factor, EAF effect allele frequency, NC normal controls
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mainland Chinese WGS data (Fig. 2b), particularly the minor
haplotypes defined by the minor alleles of all variants within
blocks that cover PVRL2 or APOC1 gene bodies (i.e., PVRL2
haplotype alpha and APOC1 haplotype gamma, respectively;
Fig. 2b, c). In addition, these minor haplotypes were enriched and
more frequently associated with each other in the MCI and AD
groups than the NC group (Fig. 2b); thus, these minor haplotypes
might contribute to AD, and there might be extended haplotypes
spanning the PVRL2–APOE–APOC1 region formed by the
combination of the abovementioned minor haplotypes from these
three genomic regions.

We subsequently performed haplotype inference in a variant pool
containing the PVLR2 and APOC1 haplotype blocks (comprising 14
variants for each haplotype block), as well as two coding variants
representing APOE haplotypes (rs429358 and rs7412) by resolving
their phased states (as recorded in phased VCF files) at the individual
level. Using a partial correlation test controlling for confounding
factors, we confirmed that there were more frequent associations
between PVRL2 haplotype alpha and APOC1 haplotype gamma or
APOE-ε4 in the AD and MCI groups when compared to the control
groups (Fig. 2c–e; Supplementary Table 5); we validated these
findings in the ADNI WGS and Hong Kong Chinese WGS cohorts
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(Supplementary Tables 1, 6, 7). In addition, we confirmed the
existence of the minor haplotypes in PVRL2 and APOC1 loci (PVRL2
haplotype alpha, PVRL2 haplotype beta, and APOC1 haplotype
gamma), as well as APOE-ε4–harboring extended haplotypes
(haplotypes delta and epsilon; Fig. 2c) defined by the combination
of PVRL2, APOE, and APOC1 minor haplotypes in non-Asian
populations (predominantly Caucasian populations using three
array-based AD genetic datasets, ADC, LOAD, and ADNI;
Supplementary Tables 1, 8). In summary, we identified PVRL2 and
APOC1 and APOE extended haplotypes, which are potentially
associated with AD, located in APOE and the surrounding region in
the general population.

APOE-ε4–independent effects of the AD risk haplotypes. We
subsequently used a multivariate model to evaluate the risk
effects of the aforementioned minor haplotypes and determine
their associations with AD (Supplementary Table 9−11). Meta-
analysis highlighted the haplotypes’ risk effects for AD, with all
meta–p-values passing the genome-wide significance threshold
(p < 5 × 10−8; Supplementary Table 12). Notably, after con-
trolling for APOE genotypes (both APOE-ε4 and APOE-ε2),
PVRL2 haplotype alpha, APOC1 haplotype gamma, and the two
APOE-ε4–harboring extended haplotypes (delta and epsilon)
still manifested as conferring a significantly elevated risk for AD
(Supplementary Tables 11, 12). Meta-analysis summarizing the
statistics from all datasets (n= 7092 and 4856 for the AD and
NC groups, respectively) corroborated the haplotypes’ risk
effects (meta-p < 0.01; Fig. 3a–d, Table 2, Supplementary

Tables 13, 14). Thus, we identified AD-associated haplotypes
that encompass APOC1 and PVRL2, and contribute to AD in an
APOE-ε4 genotype-independent manner.

Furthermore, we replicated the above analysis in individuals
harboring homozygous APOE-ε3 alleles. While APOC1 haplotype
gamma was significantly associated with AD (effect size= 2.203,
p= 6.84 × 10−3), PVRL2 haplotype alpha was significantly
associated with AD in females in the mainland cohort (effect
size= 0.980, p= 0.038 in females). The concordant risk effects for
PVRL2 haplotype alpha were observed in females in the ADC
(effect size= 0.165, p= 0.250) and LOAD (effect size= 0.072,
p= 0.720) cohorts. Thus, these results further support the risk
effect of PVRL2 haplotypes in AD, especially in females.

Cross-platform validation of the AD risk haplotypes. To
examine the accuracy of our haplotype-phasing method, we
adopted two independent datasets: the mainland Chinese WGS
dataset and the ADNI WGS datasets, both of which have the
WGS and array data available. Both datasets indicated that our
analysis method can achieve more than 95% accuracy (Supple-
mentary Fig. 2, Supplementary Tables 15, 16) for haplotypes with
a frequency > 5%. Furthermore, we obtained sequencing data
from the Ashkenazim son–father–mother trio from the Personal
Genome Project33, which comprises high-coverage (~300×) Illu-
mina short-read data and long-read PacBio data (~50× coverage),
and confirmed the existence of PVRL2 haplotype alpha and
APOC1 haplotype gamma in the general population (HG003, the
father, carries both haplotypes; Supplementary Table 17). We
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Fig. 3 Forest plot of haplotypes contributing to AD after controlling for APOE genotypes. Forest plot with values of effect size obtained from independent
datasets or meta-results denoted by rectangles and diamonds, respectively. For each row representing the independent dataset, lines indicate 95%
confidence intervals, and sizes of rectangles are proportional to the weights in the meta-analysis. a, b PVRL2 alpha and APOC1 gamma haplotypes were
associated with AD in an APOE genotype-independent manner (p-values shown are for Han and Eskin’s random effects model). c, d Association results of
extended minor haplotypes delta and epsilon after controlling for APOE-ε4 genotypes (p-values are for Han and Eskin’s random effects model). AD
Alzheimer’s disease, RE random effects, RE2 Han and Eskin’s random effects model

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10945-z ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3310 | https://doi.org/10.1038/s41467-019-10945-z | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


further performed target-region PacBio sequencing for nine
lymphoblastoid cell lines harboring target haplotypes (zero, one,
or two copies of extended haplotype delta). All nine cell lines
exhibited concordant phasing results, despite a minor incon-
sistency in the detection of small INDELs (Supplementary
Tables 18, 19). Thus, we demonstrated the existence of AD risk
haplotype structures in the general population, as well as the
accuracy of our detection method for both the WGS and imputed
array data.

Effects of AD risk haplotypes on endophenotypes. We subse-
quently examined the effects of the identified risk haplotypes on
cognitive performance, brain volumetric imaging, and levels of
cerebrospinal fluid (CSF) and plasma biomarkers from ADNI
dataset by using a multivariate model integrating information for
the PVRL2, APOE, and APOC1 risk haplotypes. PVRL2 haplotype
alpha was associated with worsening cognitive performance as
assessed by the Everyday Cognitive Scale (p= 2.27 × 10−4; total
score reported by study partners; Fig. 4a, Supplementary
Table 20), individual memory performance (p= 2.54 × 10−2 and
2.27 × 10−4 for observations assessed by participants and study
partners, respectively; Fig. 4b, Supplementary Tables 21, 22),
individual linguistic performance (p= 4.91 × 10−2; Supplemen-
tary Table 23), and planning (p= 6.23 × 10−2; Supplementary
Table 24). Accordingly, PVRL2 haplotype alpha was associated
with decreased brain volume including whole brain volume (p=
3.33 × 10−2; Supplementary Table 25), middle temporal lobe
volume (p= 3.29 × 10−2; Supplementary Table 26), and particu-
larly the volume of the hippocampus, which plays key roles in
memory-associated behaviors (p= 2.14 × 10−2; Fig. 4c, Supple-
mentary Table 27). The haplotype was also associated with
changes in total Aβ1–42 plasma level (FDR= 0.009; Fig. 4d, Sup-
plementary Table 28) and a reduction in intercellular adhesion
molecule 1 (ICAM-1) level in CSF (FDR= 0.054; Fig. 4e, Sup-
plementary Table 29). In contrast, APOC1 haplotype gamma was
associated with the plasma levels of free Aβ1–40 (FDR < 0.001;
Fig. 4f, Supplementary Table 28) and monocyte-chemotactic
protein 3 (MCP3, also called chemokine ligand 7 [CCL7]; FDR=
0.040; Fig. 4g, Supplementary Table 30) in a dose-dependent
manner. These results indicate that the identified PVRL2 and
APOC1 risk haplotypes affect a variety of clinical and biochemical
indexes including cognitive performance (especially memory
function), brain volume, and plasma and CSF biomarkers—all in
an APOE-ε4–independent manner (Supplementary Fig. 3). This

corroborates our previous findings and indicates that these risk
haplotypes may play critical roles in the AD pathogenesis.

Association of risk haplotypes with gene expression changes.
Given that non-coding variants are potentially associated with the
regulation of gene expression, we examined whether the variants
in the identified risk haplotypes are located within regulatory
regions in the human genome. The UCSC Genome Browser34

suggested that some of these variants are located in transcription
factor-binding regions (Supplementary Fig. 4). Thus, the identified
PVRL2 and APOC1 risk haplotypes tagged by those variants might
exert biological effects by modulating the expression of nearby
genes. Corroborating the potential association between genetic
variants and gene regulatory functions, genotype–expression
association analysis using GTEx data for individual variants in
APOE and the surrounding regions (n= 96; Supplementary
Figs. 5–8, Supplementary Tables 31–34) showed that PVRL2
variants exerted a significant local regulatory effect on blood
PVRL2 transcript level (rs60389450, p= 8.82 × 10−34; Supple-
mentary Fig. 5, Supplementary Table 31), whereas PVRL2 and
APOC1 variants exhibited a distal modulatory effect on
APOE transcript levels in brain tissue (meta-p= 1.30 × 10−5 and
1.08 × 10−5 for PVRL2 variant rs519113 and APOC1 variant
rs60049679, respectively; Supplementary Fig. 7, Supplementary
Table 33). Given that PVRL2 variant rs519113 resides in the
variant pool defining the PVRL2 haplotypes (Supplementary
Table 4), the identified PVRL2 AD-risk haplotypes might influ-
ence APOE expression level in the brain.

We subsequently performed genotype–expression association
analysis with the GTEx dataset, which revealed that PVLR2 minor
haplotypes were associated with reduced blood PVRL2 transcript
level (p= 1.77 × 10−2 and 6.95 × 10−6 for PVRL2 haplotypes alpha
and beta, respectively; Fig. 5a, Supplementary Table 35). We observed
the same associations in APOE-ε3 homozygous carriers (p= 2.41 ×
10−2 and 1.05 × 10−4 for PVRL2 haplotypes alpha and beta,
respectively; Supplementary Table 36). In the brain, PVRL2 haplotype
alpha and APOC1 haplotype gamma exhibited concordant associa-
tions with increased APOE and APOC1 transcript levels (alpha: effect
size= 0.347 and 0.273, meta-p < 0.05; gamma: effect size= 0.559 and
0.518, meta-p < 0.001; for APOE and APOC1 brain transcript levels,
respectively; Fig. 5b, Supplementary Table 41), suggesting that the
identified risk haplotypes have a distal regulatory effect on APOE
expression in the brain.

Table 2 Meta-analysis of AD-associated haplotypes after controlling for APOE genotypes

Haplotypes Study # Beta (RE) SD (RE) p-value (RE2) I2 Q p-value (Q) Tau2

Haplotypes in the PVRL2 region
aagtaagacgcacga 6 0.161 0.059 8.97E−03 0.00 3.68 5.96E−01 0.00
GGCCGCgacgTAAT 6 0.059 0.070 6.97E−02 40.12 8.35 1.38E−01 0.01
GGCCGCTGcgTAAT 5 −0.098 0.096 3.66E−01 0.00 3.68 4.51E−01 0.00

Haplotypes in the APOC1 region
tatttcttcgcagagcaa 6 0.635 0.193 1.72E−08 42.43 8.69 1.22E−01 0.08
tGGttcttcgcGCGAATG 6 −0.345 0.316 3.40E−01 0.00 2.60 7.62E−01 0.00

Extended haplotypes
aagtaagacgcacga
cC
tatttcttcgcagagcaa (ε4)

6 0.356 0.218 6.28E−04 45.62 9.20 1.02E−01 0.11

GGCCGCTGTTTAAT
cC
tatttcttcgcagagcaa (ε4)

6 0.312 0.259 4.10E−04 51.06 10.22 6.93E−02 0.17

GGCCGCgacgTAAT
cC
tatttcttcgcagagcaa (ε4)

4 0.570 0.120 3.14E−06 0.00 2.73 4.35E−01 0.00

Note: Summary metrics from association results, controlling for APOE-ε4 and APOE-ε2 genotypes obtained from different AD cohort data, were subjected to METASOFT for meta-analysis. A random
effects (RE) model based on inverse-variance-weighted effect size was applied to estimate summary-level effect size (Beta) and standard deviation. Han and Eskin’s random effects (RE2) model was
applied to estimate the significance level, accounting for possible heterogeneity across populations
AD Alzheimer’s disease, Beta effect size, SE standard deviation, RE random effects model, RE2 Han and Eskin’s random effects model, I2 I-squared heterogeneity statistic, Q Cochrane’s Q-statistic, Tau2

Tau-squared heterogeneity estimator of Der Simonian–Laird
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Interestingly, APOE-ε4 was associated with a consistent
decrease of TOMM40, APOE, and APOC1 transcript levels in
the brain (effect size=−0.370, −0.392, and −0.444, respectively,
meta-p < 0.01; Fig. 5b, Supplementary Table 41), implying that
APOE-ε4 has a suppressive effect on the nearby genes. Moreover,
we observed a concordant increase in blood and brain transcript
levels of APOE with increasing age (effect size= 0.014 and 0.011,
p < 0.001; Fig. 5a, b, Supplementary Tables 35, 41). These results
further suggest that aging affects gene expression, particularly
APOE transcript levels in the brain and blood.

To further understand the regulatory mechanisms underlying
the effects of different risk alleles or haplotypes, we examined
changes in the levels of genes transcript(s) that carry specific
alleles (allelic imbalance) or specific isoforms. PVRL2 is mainly
expressed as three isoforms in blood: ENST00000252485.4,
ENST00000591585.1, and ENST00000252483.5. The first two
harbor a UTR that covers variant rs6859, which is a causal variant
from the PVRL2 risk haplotypes. Association analysis between
PVRL2 haplotypes and blood PVRL2 isoform levels revealed that
haplotype beta exerted its suppressive effect on the blood PVRL2
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Fig. 4 Functional implications of PVRL2 and APOC1 haplotypes in an APOE-ε4–independent manner. a–e. Associations between PVRL2 minor haplotype
alpha, and cognitive performance and biomarker expression in an APOE-ε4-independent manner. a, b Associations between PVRL2 alpha haplotype dosage
with (a) cognitive performance indicated by total ECog score (scored between 0−4; higher scores represent more severe disability in functioning) reported
by study partners (n= 527, T= 3.71, ***p < 0.001, Beta= 0.25) and (b) memory performance indicated by ECog memory score reported by study partners
(n= 527, T= 3.60, ***p < 0.001, Beta= 0.29). c Association between PVRL2 alpha haplotype with hippocampal volume (n= 1,121, T=−2.31, *p < 0.05,
Beta=−165.60 [mm2]). d, e Associations between PVRL2 alpha haplotype with (d) total Aβ1–42 in plasma (n= 226, T=−3.098, **p < 0.01, Beta=−4.113
[pg/mL]) and (e) ICAM-1 in cerebrospinal fluid; n= 298, T=−3.361, ***p < 0.001, Beta=−0.199 [log ng/mL]). Individuals harboring two copies of
haplotypes were not included due to the small samples size. f, g Association between APOC1 gamma haplotype with levels of (f) plasma free Aβ1–40 (n=
226, T=−4.823, ***p < 0.001, Beta=−40.231 [pg/mL]) and (g) plasma MCP3 (CCL7) (n= 537, T=−3.665, ***p < 0.001, Beta=−0.229 [log ng/mL]).
Aβ amyloid-beta, ECog everyday cognition. Data are presented in box plots, with boxes extending from the 25th to 75th percentiles and whiskers
specifying the 10th and 90th percentiles; the line in the middle of the box denotes the median
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isoforms with a UTR that covers variant rs6859 (effect size=
−0.449 and −0.426, p < 1 × 10−4 for ENST00000252485.4 and
ENST00000591585.1 vs. ENST00000252483.5: effect size=
−0.184, p= 3.03 × 10−2; Fig. 5c, Supplementary Fig. 9, Supple-
mentary Table 37). Moreover, analysis of the GTEx dataset
revealed an allelic imbalance (i.e., a decrease of risk allele-
harboring transcript) of rs6859 in multiple tissues (Fig. 5d), with
the strongest effect in blood (n= 124, average fraction of minor
alleles= 0.332; p < 0.0001; Fig. 5d, Supplementary Table 38).
Droplet digital PCR (ddPCR) verified the allelic imbalance of
rs6859 in blood PVRL2 transcript (average fraction of minor
alleles in blood RNA= 0.302; Supplementary Fig. 10). By
querying the cis-eQTL data obtained from the eQTLGen
Consortium35, rs6859 was again significantly associated with
blood PVRL2 transcript level (n= 29,726, p= 5.38 × 10−300, Z-
score=−37.02). Furthermore, PVRL2 haplotype beta was
associated with a reduced fraction of rs6859 minor allele-
harboring transcript in blood (n= 124, effect size=−0.209,
p= 0.002; Fig. 5e, Supplementary Table 39), indicating that
haplotype beta may have modulatory effects on the transcrip-
tional activity of PVRL2 in blood in an allele-specific manner.

Other than causing an amino acid mutation in ApoE protein,
APOE variant rs429358 exhibited allelic imbalance in multiple tissues,
demonstrating a suppressive effect of variant rs429358 on the
expression of the risk allele-harboring transcript (Fig. 5f). Unlike
PVRL2 rs6859, we also observed an allelic imbalance of APOE
rs429358 in brain tissues (average fraction of minor alleles= 0.442,
p < 0.0001 in CommonMind; Fig. 5d, f, Supplementary Table 38),
which corroborates the aforementioned suppressive effect of APOE-
ε4 on brain APOE transcript level (Fig. 5b, f). In contrast, PVRL2
haplotype alpha and APOC1 haplotype gamma were associated with
an elevated APOE transcript level in the brain (meta-p < 0.01;
Supplementary Table 40), especially in individuals without APOE-ε4
(PVRL2 haplotype alpha: effect size= 0.271, meta-p= 2.68 × 10−2;
APOC1 haplotype gamma: effect size= 1.284, meta-p= 1.43 × 10−8;
Fig. 5g, Supplementary Table 41) and in individuals with
homozygous APOE-ε3 alleles (PVRL2 haplotype alpha: effect
size= 0.247, meta-p= 3.02 × 10−2; Supplementary Table 42). These
results suggest that dysregulated APOE expression is involved in AD
pathogenesis in parallel with the dysfunctions conferred by APOE-ε4
allele.

Physical interactions of haplotype regions in the brain. To
examine the possible mechanisms that contribute to the regulatory
effects of the PVRL2, APOE, and APOC1 risk haplotypes on the
expression of nearby genes in brain tissues, we adopted Hi-C data
from two datasets: one comprising pooled samples from both adult
and fetal human brains36, and the other comprising Hi-C data from
the germinal zone (GZ) and cortical plate (CP) of the fetal brain37.
We identified multiple interaction hotspots in APOE and the sur-
rounding regions including regions that cover the risk haplotypes, i.e.,
the APOE risk haplotype region (45,410–45,420 kb), PVRL2 risk
haplotype region (45,370–45,380 kb), and APOC1 risk haplotype
region (45,430–45,440 kb). We also identified multiple interaction
hotspots in other non-haplotype regions including the PVRL2 pro-
moter region (45,330–45,340 kb), PVRL2 region (45,360–45,370 kb;
~2.8 kb upstream of the PVRL2 risk haplotype), PVRL2–TOMM40
region (45,390–45,400 kb; ~6.8 kb downstream of the PVRL2 risk
haplotype), and APOC1P1 region (45,440–45,450 kb).

Regarding the interaction hotspots that cover the risk
haplotypes, the APOE risk haplotype region exhibited physical
interactions with the PVRL2–TOMM40 and APOC1P1 regions
(FDR < 0.05; Fig. 6, Supplementary Tables 43, 44). Meanwhile,
regarding the PVRL2 and APOC1 risk haplotypes associated with
gene expression changes in the brain (Fig. 5b), the APOC1 risk

haplotype region interacted with the PVRL2–TOMM40 region
(FDR < 1 × 10−9 for the adult and fetal brains; Fig. 6, Supple-
mentary Table 43), and the PVRL2 risk haplotype region
interacted with the PVRL2 promoter region in the adult brain
(FDR < 0.001; Fig. 6, Supplementary Tables 43, 44). Interestingly,
distal interactions with the risk haplotype region (p < 0.05)
covering a broad genomic region were observed in both fetal and
adult brain tissues (Supplementary Figs. 11, 12), implying that
non-coding haplotypes might have broad modulatory effects on
nearby genes. These observations suggest the complexity of
chromatin states that might contribute to the regulation of
transcriptional activity, prompted the urgency for the further
investigation of associated chromatin structure changes in the
brain during the aging or dementing stage.

Functional implications of the AD risk haplotype variants. In
line with the genotype–expression association analysis and
observed chromatin interaction events, the identified non-coding
risk variants likely function through modulating local transcript
factor or microRNA binding. We first queried the non-coding
risk variants to determine their potential functions. Several non-
coding risk variants, including rs6859 and rs483082, as well as
one INDEL, rs11568822, were co-localized with histone mod-
ifications and/or transcription factor-binding regions (Supple-
mentary Fig. 13). Subsequent electrophoretic mobility shift assay
for genomic regions harboring those variants confirmed their
binding capability with nuclear protein (Supplementary Fig. 14),
implying that these non-coding variants play roles in the mod-
ulation of transcription factor binding.

Furthermore, MicroSNiPer38 database query of rs6859, which
is located in the UTR of PVRL2 transcript, returned microRNA
candidates including miR-595, miR-636, and miR-1825—all of
which might bind to the rs6859 region (Supplementary Table 45).
These binding events were further assessed by independent in
silico alignment using miRanda (Supplementary Table 46).
Specifically, miR-595 was predicted to only interact with the
major G allele of rs6859 and not the minor A allele
(Supplementary Tables 46, 47). This suggests that rs6859 might
also affect the PVRL2 transcript level through the modulation of
microRNA binding events at its UTR in parallel with transcrip-
tion factor binding at the DNA level.

Haplotype prevalence is heterogeneous among ethnic groups.
To corroborate the observed differences in haplotype frequency
across the Chinese and non-Asian datasets (Supplementary
Table 8), we assessed individual haplotype frequency using the 1000
Genomes Project phase 3 data (n= 2,504) and stratified the indi-
viduals into five “super-populations.” The results show hetero-
geneity among ethnic groups (Fig. 7, Supplementary Table 48).
Regarding APOE, APOE-ε4 was most frequent in the African
population (frequency= 0.267) and was less frequent in the East
Asian population than the European population (frequency= 0.086
vs. 0.155, respectively), whereas APOE-ε2 was more frequent in the
East Asian population than the European population (0.100 vs.
0.063, respectively). The prevalence of PVRL2 haplotype alpha was
similar between the East Asian and European populations (0.102
and 0.103, respectively). However, PVRL2 haplotype beta and
APOC1 haplotype gamma were much less frequent in the East
Asian population than the European population (haplotype beta=
0.081 vs. 0.318, haplotype gamma= 0.066 vs. 0.111, respectively).
As for long-range AD risk haplotypes, haplotype delta was most
frequent in the East Asian population (0.043 vs. 0.016, 0.027, 0.021,
and 0.002 in the South Asian, American, European, and African
populations, respectively), whereas haplotype epsilon was most
frequent in the European population (0.059 vs. < 0.001, 0.008, 0.006,
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and 0.002 in the East Asian, South Asian, American, and African
populations, respectively). These findings suggest the existence of
possible divergent mechanisms of AD pathogenesis among ethnic
groups and demonstrate how ethnic diversity might influence the
relative risk of a disease at the population level.

Discussion
Here, we report a comprehensive analysis of APOE and the
surrounding region using WGS data, which revealed specific AD-
associated genetic structures. Our haplotype analysis identified
PVRL2 and APOC1 minor haplotypes that exhibit independent
risk effects for AD in parallel with APOE-ε4, as well as long-range
AD risk haplotypes defined by the combination of PVLR2, APOE,
and APOC1 risk haplotypes that exhibit stronger risk effects than
APOE-ε4 alone. We also demonstrated that the AD risk haplo-
types are associated with endophenotypes. The regulatory effects
of the risk haplotypes on the brain transcript levels of APOE and
its nearby genes, together with the identification of chromatin
interaction hotspots in and near the APOE risk loci, all support
involvement of the identified genetic risk factors in the APOE
locus play pathological roles in AD in parallel with APOE-ε4.

Most previous genetic studies identified genetic risk factors at
the single-variant level2,27,28. However, individual genetic variants
can only explain a small proportion of the variations of complex
traits (e.g., phenotypic consequences of diseases or gene expres-
sion), which are largely due to polygenetic effects (i.e., combined
effects of multiple common variants)39,40. Corroborating this
notion, we have identified AD risk haplotypes in APOE and the
surrounding region that harbor functional variants (Table 1). In

particular, the identified minor haplotypes in the PVRL2 and
APOC1 regions exhibit APOE-ε4–independent AD risk effects.
Thus, our fine-mapping work extends the current understanding
of the APOE locus as a risk factor for AD beyond the well-studied
APOE-ε4 to a more complex genomic structure and its associated
regulatory mechanisms. In particular, we showed that the risk
haplotypes potentially exert biological impacts through mod-
ulating endophenotypes including memory performance, hippo-
campal volume, proteomic biomarkers in CSF and plasma, and
transcriptome signatures in the brain and blood. Thus, these
results demonstrate the functional implications of the risk effects
of the non-coding variants/haplotypes from the macroscale to the
microscale. Their roles in gene expression are further supported
by the chromatin interaction events of the APOE locus in human
brain tissues, as well as the risk variant-dependent regulation of
microRNA and nuclear protein binding (Supplementary Fig. 14,
Supplementary Tables 46, 47). These results are vital for more
comprehensive analyses of phenotype-associated genomic struc-
tures in AD risk loci or the contribution of polygenic effects to
AD-associated phenotypes. These findings might also facilitate
AD mechanistic studies or the development of risk prediction or
intervention strategies in a genotype-aware manner.

Regarding the identified risk loci, PVRL2 and APOC1, in the
APOE surrounding region, PVRL2 encodes poliovirus receptor-
related 2, which is a glycoprotein and a component of the plasma
membrane that serves as an entry point for herpesvirus and
pseudorabies virus41. While it was recently reported that levels of
herpesvirus, HHV-6A, and HHV-7 are elevated in postmortem
AD brains compared to normal brains42, whether the regulation
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of PVRL2 expression, specifically in blood, affects viral entry in
AD patients requires further study. Meanwhile, APOC1 encodes
apolipoprotein C1, which is mainly involved in lipoprotein
metabolism and might inhibit the ApoE-mediated uptake of very-
low-density lipoprotein particles43. Thus, it is important to
examine whether altered APOC1 expression regulates ApoE
functions such as ApoE-associated Aβ clearance in AD states.

APOE or APOE-ε4 transcript levels in the brain might also be
crucial for the pathogenesis of AD. Alterations of APOE signatures
have been observed in AD brain tissues26,44,45. Meanwhile, non-
coding AD genetic risk factors might mediate their effects by
modulating gene expression in specific cellular contexts46,47. The
present study showed that the identified PVRL2 and APOC1 risk
haplotypes are potentially associated with elevated brain APOE
transcript level, which is consistent with the changes in brain
APOE level during aging; this suggests that a higher brain APOE
(or APOE-ε4) level is associated with the risk of disease patho-
genesis. Notably, AD transgenic mouse model(s) exhibit higher
hippocampal APOE transcript levels than corresponding wild-type
mice (Supplementary Fig. 15a). Moreover, APOE transcript levels
are strongly correlated with hippocampal plaque pathology in AD
transgenic mice (R2 > 0.70; Supplementary Fig. 15b). In addition,
recent studies show that APOE expression is elevated in disease-
associated microglia in an AD transgenic mouse model48 and
microglia with a neurodegenerative phenotype49; these results
collectively implicate elevated APOE level in inflammatory
response, AD disease onset, and AD progression. Thus, in

addition to APOE-ε4 genetic risk factors, elevated brain APOE
level might be critical for the pathogenesis of AD. Furthermore,
our analysis provides additional clues regarding the suppressive
effects of APOE-ε4 on APOE expression in the brain after con-
trolling for the genetic content in the PVRL2 and APOC1 regions.
Thus, further investigation is required to determine how APOE-ε4
mediates the regulatory roles of APOE expression.

In conclusion, we identified AD risk haplotypes with putative
biological effects that confer AD risk. Our findings suggest the
existence of alternative disease mechanisms involving non-coding
variants in the APOE surrounding regions, which act in parallel
with the well-studied APOE-ε4 risk factor. Our results further
demonstrate the complexity of the genetic basis associated with
AD pathogenesis, which might result in aggregate risk effects
from both intrinsic factors such as mutant proteins defined by
coding mutations, the local and distal regulation of gene
expression by genomic contents, as well as extrinsic factors
including aging, viral infection, and ethnic variation. Further
investigations aiming to further dissect the underlying mechan-
ism of AD will be of great importance for the development of
effective diagnostics and therapeutics.

Methods
Mainland Chinese AD WGS cohort. The AD cohort comprised 1172 participants
recruited from Huashan Hospital, Fudan University, Shanghai, including 477
AD patients (AD group), 253 with mild cognitive impairment (MCI group), and
442 corresponding age-matched and gender-matched cognitive normal controls
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(NC group)27. AD patients were diagnosed according to the recommendations of
the National Institute on Aging and the Alzheimer’s Association workgroup50,51

and had an onset age ≥ 50 years. Patients with MCI were diagnosed according to
the Peterson criteria52. We excluded individuals with any significant neurologic
disease or psychiatric disorder. This study was approved by the Ethics Committee
of Huashan Hospital, the Hong Kong University of Science and Technology
(HKUST) and the HKUST Shenzhen Research Institute. All subjects provided
written informed consent for both study enrollment and sample collection.

Hong Kong Chinese AD WGS cohort. A total of 208 participants, including 109
with AD and 99 age-matched NCs, were recruited from the Specialist Outpatient
Department of the Prince of Wales Hospital, the Chinese University of Hong Kong.
AD patients (age: 65–93 years) were diagnosed based on the American Psychiatric
Association’s Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition
(DSM-5)53. All AD patients underwent subsequent neuroimaging assessment (i.e.,
magnetic resonance imaging, MRI), as well as cognitive and functional tests. All
participants including AD patients and NCs were examined for cognitive normality
using the Mini-Mental State Examination or Montreal Cognitive Assessment
test54,55. The phenotypes of the participants were determined on the basis of the
latest diagnostic records (until April, 2018). This study was approved by the Prince
of Wales Hospital, the Chinese University of Hong Kong, and HKUST. All par-
ticipants provided written informed consent for both study enrollment and sample
collection. Blood genomic DNA was extracted and subjected to WGS using Truseq
Nano DNA HT Sample Preparation Kit (Illumina). Prior to association testing, two
samples (one AD and one NC) were filtered out owing to relatedness (PLINK56

IBD estimation), leaving 206 samples (n= 108 and 98 for AD and NC groups,
respectively) for downstream analysis. Please refer to Supplementary Methods in
the Supplementary Information for more detailed descriptions.

Other study cohort and datasets. Additional AD cohorts were included in the
present analysis, including (i) genotype, transcriptome, brain volumetric and bio-
marker data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base (adni.loni.usc.edu/); (ii) genotype and phenotype data from the National
Institute on Aging Alzheimer’s Disease Centers Cohort (ADC) (phs000372.v2.p1);
and (iii) genotype and phenotype data from the Late Onset Alzheimer’s Disease
(LOAD) Family Study (phs000168.v2.p2). In addition, for transcriptome and allele-
specific analysis, genotype and transcriptome data from (iv) Genotype-Tissue
Expression (GTEx) project (phs000424.v6.p1) and (v) CommonMind Consortium
Data were included and analyzed. Please refer to Supplementary Methods in the
Supplementary Information for detailed descriptions.

Variant detection in APOE and the surrounding region. To simultaneously
obtain single nucleotide polymorphisms (SNPs), as well as insertions and deletions
(INDELs) in APOE and the surrounding region (chr19:45,300,000–45,550,000)
from the WGS data generated separately in two Chinese cohorts (mainland Chi-
nese and Hong Kong Chinese WGS cohorts), the Genome Analysis Tool Kit57–59

(GATK, v3.4–46-gbc02625) HaplotypeCaller was adopted for variant calling.
Variant recalibration was subsequently applied for SNPs and INDELs using Var-
iantRecalibrator (truth sensitivity thresholds of 90% and 99.9% for INDELs and
SNPs, respectively). Top variants ranked by VQSLOD score that passed the sen-
sitivity thresholds were retained for genotype refinement and phasing using
Beagle60,61 (r1399). Post-filtering was applied for allele-dosage R2 (DR2 > 0.30),
minor allele frequency (MAF > 5%), and Hardy–Weinberg Equilibrium (p > 1 ×
10−5) for all SNPs and INDELs, yielding 682 variants (554 SNPs and 128 INDELs).
Please refer to Supplementary Methods in Supplementary Information for detailed
information.

Covariates adjustments in association analysis. In general, for all statistical
analyses, age, gender, and the top five principal components (PCs) were included as
covariates separately within individual cohort. Principal components analysis was
conducted using the PLINK56 (version 1.9)–pca function with the pruned (–indep-
pairwise 50 5 0.2) variants with an MAF > 5%. For Chinese AD cohorts, the
genome-wide variant calling was obtained using Gotcloud pipeline with genotyping
refinement performed by Beagle60,61 (r1399) (nthreads= 24, phase-its= 30,
impute-its= 15; Please refer to Supplementary Methods for more detailed infor-
mation). For ADNI biomarker data, phenotypic labels were included as covariates.
For ADNI brain volumetric data, the analysis was further adjusted for the type of
MRI platform, analytical software, and individual intracranial volume.

Association test at the single variant level. We used PLINK56,62 (version 1.9)
for logistic regression analysis of SNPs and INDELs with an MAF > 5% in APOE
and the surrounding region (chr19:45,300,000–45,500,000), controlling for age,
gender, and the top five ancestry PCs; 682 variants passed these filters and were
included in the analysis (–hwe 1E-05,–maf 0.05). We subjected the PLINK asso-
ciation results (i.e., Z-score) with pairwise linkage disequilibrium (LD) information
(i.e., the r2 matrix obtained from PLINK–matrix with–r function) to CAVIAR31

(Causal Variants Identification in Associated Regions) analysis (version 2.0.0) to
estimate the potential causal variants within the APOE locus indicated by the
posterior probability of being the causal variants.

Multivariate regression analysis for haplotype function. Multivariate regression
analysis was performed to estimate the effects of specific haplotypes on phenotype or
gene expression because of the existence of multiple haplotypes in the study cohort.
An N × (M+ 1) matrix was generated for a cohort comprisingN individuals (in rows)
and M detected haplotypes with frequencies > 1% or > 5% (in columns), with cells
storing a value of 0, 1, or 2, representing the harboring of 0, 1, or 2 copies of specific
haplotypes, respectively. In the last column (M+ 1th column), the haplotype counts
for haplotypes with a frequency < 1% were summed and annotated as “others” to
ensure the sum of each row equaled 2. Major haplotypes (usually Hap1 denoted by all
major alleles, which is the most frequent in the population) were excluded in the
regression model during the association test. Thus, the effect sizes (beta) from the
model above were estimated with respect to the major haplotype.

To further control the effects from other haplotype regions, the genetic dosages
of minor haplotypes from all haplotype blocks were included in the present models
with minor revision of above model. See Supplementary materials and methods for
a detailed description about the analytical model.

Association test and meta-analysis of candidate haplotypes. Minor haplotypes
with frequencies > 1% were included in the multivariate logistic regression model
using the R glm function from the stats package. Analyses were performed sepa-
rately for the PVRL2, APOC1, and long-range haplotypes defined by the combi-
nation of PVRL2, APOE, and APOC1 haplotypes. The analyses were controlled for
APOE genotype by incorporating the genotype dosages of APOE-ε4 and APOE-ε2
into the model. The effect size and standard errors (SE) obtained from the logistic
regression were subjected to METASOFT63 to generate the meta-analysis results
using a random effects (RE) model, with statistical significance estimated by Han
and Eskin’s random effects model (RE2).

Association test for haplotypes on endophenotypes. A multivariate model
jointly taking haplotype information from the PVRL2, APOE, and APOC1 loci was
adopted to assay the haplotype effects on cognitive score, brain volumetric data,
and ADNI biomarker levels using robust regression (R lmrob from the robustbase
package) with appropriate covariate adjustments. For ADNI biomarker data,
Bonferroni adjustment was applied for the association test of individual biomarkers
to correct for the multiple tests on haplotypes, whereas the false discovery rate
(FDR) was calculated for individual haplotypes across all biomarkers. Adjustments
were performed using the p.adjust function from the R stats package.

Association test for variants/haplotypes on gene expression. GTEx data
comprising the transcript levels of PVRL2, TOMM40, APOE, and APOC1 (rank-
based inverse normal transformed by the R rntransform function from the Gen-
ABEL64 package) together with imputed genotype data for variants with an MAF >
5% located in non-repetitive regions (UCSC RepeatMasker in hg19 coordinate)
were included in the genotype–phenotype association test using PLINK, with age,
gender, and the top five PCs as covariates. To estimate the variant effects for all
tissues or 13 brain tissues, meta-analysis was conducted using the rma in the R
package metafor65 (method= “HE,” test= “knha”), taking effect sizes and standard
errors from the PLINK results. For haplotype data, association tests were con-
ducted using the multivariate model, jointly including PVRL2, APOE, and APOC1
haplotype information using the robust regression model. Among the brain tissues,
the cerebellum, cerebellar hemisphere, and spinal cord were excluded from the
meta-analysis conducted by METASOFT using the RE model, with statistical
significance estimated by the RE2 model for haplotype effects in brain tissues. For
ASE data in GTEx data, robust regression was applied to test associations. For ASE
in the GTEx and CommonMind datasets, one-sample t-tests were applied to
examine allele imbalance under the null hypothesis of balanced expression (i.e., the
fraction of reads carrying minor alleles= 0.5 as the theoretical values) using
GraphPad Prism 6 (GraphPad Software Inc.) at an α level of 0.05.

Chromatin interaction analysis in brain tissues. Two high-throughput chro-
mosome conformation capture (Hi-C) datasets were adopted to investigate the
chromatin organization in APOE and surrounding regions. The first dataset
comprised anterior temporal cortex samples from three adults of European
ancestry with no psychiatric disorders, as well as cerebral cortex samples from three
fetal brains at a gestational age of 17–19 weeks36. All samples were free from large
structure variations (>100 kb), and easy Hi-C (eHi-C) methods were adopted for
library construction, sequencing, and data analysis66. The second dataset com-
prised data generated from three paired germinal zone and cortical plate fetal brain
samples37. Briefly, for both datasets, pooled or individual data were mapped to
human reference genome (hg19) using BWA mem or Bowtie67. The uniquely
mapped paired-end reads passing quality controls were further binned into 10-kb
bin resolution contact matrices, and the data were then subjected to Fit-Hi-C68 and
FastHiC69,70 to assess chromatin interaction events in this region. The FDR was
further calculated to identify interaction hotspots.

Data visualization. The GWAS results were visualized using Locuszoom71 plots,
with LD and p-values obtained from the WGS data. The CAVIAR results and
heatmap for haplotype effects were visualized using the ggplot function in the
ggplot2 R package. LD and haplotype structures were plotted using Haploview. Bar

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10945-z

12 NATURE COMMUNICATIONS |         (2019) 10:3310 | https://doi.org/10.1038/s41467-019-10945-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


charts, dot plots, box plots, and line charts were generated using GraphPad Prism 6
(GraphPad Software Inc). Forest plots for meta-analysis were generated using
ForestPMPlot72. Pie charts were generated using Excel 2017 (Microsoft).

Web Resources. For R, see [https://www.r-project.org/]; for ADNI, see [http://
adni.loni.usc.edu]; for 1000 Genomes project phase 3 data, see [http://www.
internationalgenome.org/data]; for GTEx Portal, see [https://gtexportal.org/home/]
(raw data under dbGaP phs000424.v6.p1); for CommonMind, see [https://www.
synapse.org/#!Synapse:syn2759792/wiki/69613]; for UCSC genome browser, see
[https://genome.ucsc.edu/cgi-bin/hgTracks]; for Mouseac dataset, see [http://www.
mouseac.org]; for MicroSNiPer, see [vm24141.virt.gwdg.de/services/microsniper/];
for eQTLGen, see [http://www.eqtlgen.org/cis-eqtls.html].

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The summary-level statistics for the association results in APOE and the nearby regions, raw
PacBio sequencing data generated in lymphoblastoid cell lines, and variant calling results for
PacBio sequencing data are available at [http://iplabdatabase.ust.hk/zhou_et_al_2019/
APOE_data.html]. The Hi-C data can be found on the PGC website, the HUGIn online
database, and Gene Expression Omnibus (GEO) with accession number GSE116825. The
National Institute on Aging—Late Onset Alzheimer’s Disease Family Study (LOAD) raw data
were accessed in dbGaP phs000168.v2.p2; the Alzheimer’s Disease Genetics Consortium
(ADGC) Genome Wide Association Study—NIA Alzheimer’s Disease Centers Cohort (ADC)
raw data were accessed in dbGaP at phs000372.v2.p1; the Alzheimer's Disease Neuroimaging
Initiative (ADNI) dataset were accessed at ADNI database [http://adni.loni.usc.edu/]. For
mainland WGS data, the genetic information at individual level can be shared upon approval
after reviewed by Human Genetics Resources Administration of China (HGRAC). For Hong
Kong WGS data, raw sequencing data can be found on [http://iplabdatabase.ust.hk/CND/
AD_registry_study.html]. The consent that was given from individual participants stated that
the research content will be kept private under supervision of the hospital and research team.
Thus, the data will be available and shared in the form of a formal collaboration basis;
application of data sharing and project collaboration will be processed and reviewed by a
Reviewing Panel hosted at HKUST. Researchers may further contact [sklneurosci@ust.hk] for
the details for data sharing and project collaboration in this study. The source data underlying
Supplementary Figs. 14a and 14b are provided as a Source Data file.
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