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10 Abstract
11 Purpose of Review Recent developments in immunotherapy have transformed the landscape of melanoma therapy. Here, we
12 review markers for response to immunotherapy.
13 Recent Findings Current immunotherapies disable immune checkpoints on T cells and other immune cells and allow immune
14 rejection of tumor. This process depends crucially on a preexisting response to the development of the melanoma. Here we
15 describe the complexity of the anti-tumor immune response and the links to the development of markers that are currently used or
16 under investigation in the clinic.
17 Summary We describe immune response biomarkers along with new developments that could translate into advances.

18 Keywords Immunecheckpoint inhibitors .Programmeddeath-1 (PD-1) .Programmeddeath ligand-1 (PD-L1) .ExhaustedTcells
19 (Tex) . Tumormicroenvironment (TME) .Memory Tcells (Tmem) . Tumormutation burden . Circulating tumor DNA

20

21 Introduction

22 Melanoma treatment has been transformed recently by the
23 development of rapidly accelerated fibrosarcoma (RAF) and
24 mitogen-activated protein (MAP) kinase inhibitors [1–4] and
25 by immune checkpoint Inhibitors (CPI) such as anti-PD-1 and
26 anti-CTLA-4 [5], with many patients deriving long-term clin-
27 ical benefit [1, 3, 6]. However, these durable responses still
28 occur only in a fraction of patients and can be associated with
29 significant toxicity, particularly when used in combination. In
30 this review, we focus on our current understanding of the
31 mechanism of action of immunotherapy and on biomarkers

32to select patients for treatment on clinical trials and for partic-
33ular therapies in the clinic.
34The stages of neoplastic transformation and associated mo-
35lecular alterations have been well described for melanoma
36[7–9], yet complex tumoral/stromal/immune interactions re-
37sult in tumor heterogeneity that is evident in patients with the
38same histological signatures as well as between tumors within
39the same patient and even within different areas of a single
40tumor [10–12]. The mechanisms fundamental to CPI and spe-
41cifically to anti-PD-1/PD-L1 activity in a varied and often
42complex tumor microenvironment (TME) have led to the
43identification of a multifactorial process dependent on the in-
44teractions of specific cell types with diverse functions.

45Current Understanding of the Mechanism(s) of Action
46of PD-1 Check Point Inhibitors

47Tumor immunogenicity or the ability of the tumor to trigger a
48productive immune response is arguably fundamental to all
49effective anti-cancer therapies, including some chemo/radio
50therapies and targeted therapies but especially immunother-
51apies. While melanoma is widely recognized as an immuno-
52genic tumor overall, great variability in immunogenicity is
53evident during disease progression and between patients or
54even lesions, which may shed light on the effectiveness of
55anti-PD-1 therapies [13]. Ultraviolet radiation coupled with
56key molecular changes which are the primary drivers in the
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57 malignant transformation of melanocytes often produces an
58 exceptionally high rate of somatic mutations [7, 14]. These
59 mutations which promote tumorigenesis by coordinated dys-
60 regulation of cellular processes are also central to its immuno-
61 genicity with the emergence of neoantigens, as well as in-
62 creased cancer/testis or differentiation antigens [15].
63 Importantly, immunogenicity is not static; indeed, co-
64 evolution of the immune system with the tumor initiates be-
65 fore neoplastic transformation. Immune pressure either elimi-
66 nates developing tumors or steers them towards an equilibri-
67 um and ultimately to tumor escape by immune evasion as well
68 as by direct and indirect subversion of the immune response
69 itself [16, 17]. The process of immunoediting highlights not
70 only the dynamic nature of immunogenicity but also provides
71 insight into the complexity and evolving spatial/temporal in-
72 terplay between the tumor and immune response, which lies at
73 the heart of the effectiveness of CPI immunotherapy.
74 Activated lymphocytes including NK and T cells transient-
75 ly express PD-1 on their cell surface, which in the melanoma
76 setting may represent recently engaged tumor-specific T cells.
77 Significantly, translational analysis of adoptive cellular thera-
78 py patients has identified that PD-1+ rather than PD-1− CD8+
79 tumor infiltrating lymphocytes (TIL) conferred superior
80 oligoclonal expansion of tumor-reactive TCRβ clonotypes,
81 suggesting that PD-1 expression may mark a population of
82 anti-tumor CTL [18]. However, chronic TCR signaling can
83 lead to sustained PD-1 expression and the triggering of im-
84 mune adaptation, a physiological reaction to curb an inappro-
85 priate or autoimmune response that can be usurped by tumor
86 cells to promote peripheral tolerance. Sustained PD-1 expres-
87 sion along with increasing co-expression of additional
88 markers such as CTLA-4, TIM-3, LAG-3, TIGIT, and
89 VISTA denotes the transition from an activated effector
90 (Teff) to an exhausted T cell (Tex). In a typical melanoma
91 setting replete with chronic antigen stimulation, T cells tend
92 to exist on a continuum that ranges from a state of stemness
93 towards dysfunction with effector or memory-like states being
94 key intermediates. Identification and interrogation of these
95 progressively differentiating T cell subsets are paramount to
96 appreciating an effective anti-PD-1 therapy [19, 20].
97 The use of a single or limited set of markers is likely to be
98 inaccurate in discriminating between transitioning immune
99 populations as somemarkers such as PD-1 are shared between
100 immune subsets. Instead, linked functional characteristics can
101 more readily delineate these discrete intratumoral states with a
102 transition from high levels of cytotoxic molecules
103 (granzymes/perforin) and effector cytokines (Interferons, IL-
104 2, IL-12, and TNF), a high proliferative capacity and anabolic
105 metabolism associated with an effector subset to limited or
106 absent cytotoxic/effector molecules, low proliferative capaci-
107 ty, and catabolic metabolism associated with dysfunctional or
108 highly exhausted T cells [21]. Additionally, specific transcrip-
109 tion factors, gene expression profiles, and epigenetic

110signatures yield an even finer picture of these subsets while
111providing insight into their respective functions [19]. T-bet, a
112transcription factor associated with Th1-biased response, clas-
113sically associated with Teff cells also plays a role in Tex cells
114[22]. The transcription factors NR4A, EOMES, and TOX all
115have been associated with a Tex lineage while TCF1 addition-
116ally drives a stem-like progenitor lineage capable of self-re-
117newal, while seeding Teff cells and memory T cells (Tmem)
118cells [19, 23, 24]. Recent advances in transcriptomic (scRNA-
119seq) and epigenetic (ATAC-seq) analyses effects of anti-PD-1
120blockade have identified gene and epigenetic signatures asso-
121ciated with these subsets along with their key regulators [25•,
12226].
123Understanding the functional role that these discrete T cell
124populations play during PD-1 blockade continues to be a high
125priority with the initial focus being on exhausted T cells.
126Interestingly, a high frequency of tumor infiltrating CD8+ T
127cells expressing PD-1+/CTLA-4+, a subset of exhausted T
128cells is highly predictive of anti-PD-1 CPI response in meta-
129static melanoma patients [27•, 28]. Conversely, a low
130intratumoral frequency of these Tex cells exhibited a negative
131predictive value with single-agent anti-PD1 therapy yet this
132low frequency was not associated with poor outcomes in pa-
133tients treated with combination anti-CTLA-4 and anti-PD-1,
134suggesting a non-redundant mechanism with the combination
135CPI [28]. Similarly, circulating peripheral Tex cells (PD-1+/
136CTLA-4+ CD8+ T cells) were found to be “reinvigorated”
137during anti-PD-1 therapy of melanoma, which was associated
138with a positive clinical outcome particularly in patients with a
139larger ratio of proliferating Tex cells to tumor burden, defined
140as the sum of the long axis of all measurable lesions reported
141on the pre-therapy imaging reports [29•]. While these studies
142suggest that tumor-reactive Tex are a major target of PD-1 CPI
143with functional roles both in the TME and systemically, a
144chronic LCMV model demonstrated that the anti-PD-1 rein-
145vigoration is transient, and exhaustion persists shortly after
146PD-1 CPI treatment due to a stable epigenetic signature
147[25•,30]. This functional maintenance of exhaustion may ac-
148count for the narrow proliferative burst of Tex when on treat-
149ment and clarify its relationship with tumor burden; beyond
150the clear prognostic consideration, a larger tumor burden can
151more easily withstand the effector response associated with a
152transient proliferative burst while readily providing chronic
153antigenic stimulation in addition to PD-L1 or other inhibitory
154immune signals in the TME required to maintain T cell ex-
155haustion. The dysfunctional state associated with Tex epige-
156netic program, particularly in the EomeshiPD-1hi subset, is
157unable to sustain a memory-like response with PD-1 block-
158ade, which is critical for effective tumor immunity and re-
159mains distinct from naïve T cells (Tnaive), Teff, and Tmem
160cells [25•, 26]. The fate of Tex cells underscores that while
161exhausted T cells can be useful to predict response and can
162certainly contribute to the efficacy of PD-1 blockade when
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163 tumor burden is low or if PD-1 blockade occurs before
164 reaching a late dysfunctional state, immune subsets capable
165 of self-renewal and persistence in the presence of chronic
166 antigen are likely required for sustained responses.
167 The necessary role of Teff cells in a productive anti-tumor
168 immune response has been well documented but the cell types
169 that maintain this pool of effectors while enabling memory-
170 like subsets continue to be defined. Expression of the tran-
171 scription factor TCF-1 in T cells has identified a self-
172 renewing precursor population critical for response to immu-
173 notherapy both in preclinical models and in patients with mel-
174 anoma [31, 32]. In a chronic LCMV model, IL-12 or other
175 inflammatory mediators could blunt TCF-1 expression via
176 STAT-4, allowing for the differentiation of KLRG1+ Teff
177 [33]. However, TCF-1 in a PD-1-dependent fashion could
178 suppress TCF-1− T-bet+/KLRG1+ Teff differentiation while
179 establishing a CD8+ Eomes+ Tex precursor population [24].
180 The factors underlying the generation, maintenance, or fate
181 choices of these stem-like TCF-1+ T cells are actively being
182 investigated. A recent study has revealed that the metabolic
183 state of the TME, specifically elevated extracellular potassium
184 which induces a starvation response/autophagy and catabolic
185 metabolism, promotes stem cell–like TCF-1 expressing Tcells
186 via an epigenetic-dependent stemness-associated program
187 [21].
188 Other studies have demonstrated innate immune mecha-
189 nisms that can also be instrumental in effective CPI therapies.
190 PD-1 is expressed on natural killer (NK) cells and when en-
191 gaged with PD-L1 can limit NK cytotoxicity. In tumors with
192 loss of MHC class I, rejection was dependent on these innate
193 effectors which was significantly enhanced with PD-1 block-
194 ade [34]. Even in models where CD8+ T cells routinely me-
195 diate tumor regression, PD-1+ NK cells demonstrated a mean-
196 ingful contribution to anti-PD-1 therapy with notable selection
197 of PD-L1+ tumor cells [34]. Further, NK cells were shown to
198 play a significant role in the efficacy of PD-1 blockade in
199 melanoma by producing the cytokine FLT3L and forming
200 stable conjugates with CD141+ cDC1, resulting in increased
201 frequencies of the DCs [35]. Similarly, cDC1 subsets were
202 shown to play an additional key role in the efficacy of PD-1
203 blockade by producing IL-12, triggering IFN-γ secretion from
204 PD-1+ T cells, which further engaged IL-12 secretion from
205 DCs. The resulting IL-12/IFN-γ feed-forward loop which ini-
206 tiated with anti-PD-1 treatment helped further license theses
207 PD-1+ T cells and enhance PD-1 blockade [36]. A separate
208 study demonstrated the role of benefit in PD-1 blockade of
209 PD-1+ on CD103+ DCs that engage and activate intratumoral
210 T cells via production of CXCL9/CXCL10 [37]. Conversely,
211 increased oncogenic, β-catenin signaling in TME leads to
212 downregulation of CCL4, which blunts the frequency of a
213 similar subset of DCs, ultimately limiting T cell recruitment
214 [38, 39]. Beyond NK and DC subsets, PD-1+ tumor-
215 associated macrophages (TAM) with an M2-like phenotype,

216which generally are associated with poor patient outcomes,
217can contribute to anti-tumor immunity via tumor phagocytosis
218when in the presence of anti-PD-1 in combination with other
219therapeutics like anti-CSFR1 or anti-SIRPα blocking antibod-
220ies [40, 41].
221The mechanisms fundamental to CPI and specifically anti-
222PD-1/PD-L1 activity in a varied and often complex tumor
223microenvironment (TME) have led to the identification of a
224multifactorial process dependent on the interactions of specif-
225ic cell types with diverse functions. While this complexity can
226pose a challenge to identify the relevant parameter(s) specific
227for a given patient or even a specific lesion, many of these
228seemingly distinct mechanisms converge on the TME with
229specific immune subsets driving a collective immunogenicity
230in turn creating a foundation for effective anti-PD-1 therapy.

231Biomarkers of Response to CPI

232PD-L1 Expression

233Following the discovery of PD-1 expression on lymphocytes
234[42], the B7 family member, B7-H1, was identified as the
235ligand for PD-1 [43]. This protein, called B7-H1, was identi-
236fied by Dong et al. based on its similarity to the co-stimulatory
237ligands B7-1 and B7-2 on immune cells [44]. Ligation of this
238protein in the context of antigen binding on T cells caused IL-
23910 secretion. The pattern of expression of B7-H1 in malignant
240neoplasms such as melanoma was very interesting. Notably,
241B7-H1 was strongly co-localized with tumor infiltrating lym-
242phocytes [45•]. In addition, interferon-γ was found at the in-
243terface of B7-H1 expressing tumor cells and TILs. In this
244same study, B7-H1 (now more commonly referred to as PD-
245L1) was also found to be a prognostic marker, predicting ex-
246tended survival. When tumor tissue was analyzed in patients
247treated with the PD-1 blocking antibody, nivolumab, PD-L1
248expression was found to correlate with response [46]. A sim-
249ilar observation was made with the PD-L1 antibody,
250atezolizumab, in a phase I multiple solid tumor trial [47].
251These observations were confirmed with pembrolizumab
252[48].
253Given the clinical and translational data supporting the use
254of PD-L1 as a biomarker for response to PD-1 blockade, many
255recent trials have explored this prospectively and retrospec-
256tively. In a retrospective analysis of patients treated on the
257Keynote 001 trial, tumors from 451 patients (out of 655 pa-
258tients treated) were stained with the 22C3 monoclonal anti-
259body [48]. Samples were assessed by a quantitative membra-
260nous staining called the MEL score which incorporated inten-
261sity and frequency of staining on tumor and tumor adjacent
262stromal and immune cells. A positive score was anyone with
263MEL ≥ 2 (staining in ≥ 1% of cells). Of the 451 patients eval-
264uated, 344 (76%) had PD-L1-positive tumors. A higher MEL
265score was associated with a higher response rate and longer
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266 PFS (hazard ratio, 0.76; 95% CI, 0.71 to 0.82) and OS (hazard
267 ratio, 0.76; 95% CI, 0.69 to 0.83) (P < .001 for each). The
268 objective response rate was 8% for MEL 0 and ranged up to
269 57% for MEL 4 showing the dynamic range of this marker. In
270 a prospective nivolumab vs dacarbazine clinical trial [49],
271 using the rabbit monoclonal 28-8 antibody, 5% or greater tu-
272 mor cell staining was considered “positive” [50] with 2 pa-
273 thologists independently scoring using an automated Dako
274 stainer. In the PD-L1-positive group, 52.7% had an objective
275 response to nivolumab versus 33.1% in the PD-L1-negative
276 group. Other trials in melanoma have consistently shown a
277 higher response rate and higher PFS (and in some cases a
278 higher OS) in PD-L1 high patients [6, 51–53]. Some of the
279 questions that remain with PD-L1 IHC have to do with the
280 difference between tumor and/or stroma and different mono-
281 clonal antibodies although recent data has shown that most
282 widely used PD-L1 monoclonal antibodies are quite consis-
283 tent, reproducible, and inter-comparable regardless of the spe-
284 cific methodology used in the hands of trained experienced
285 pathologists using recent rapidly processed specimens [54].
286 Also, PD-L1 expression has differing predictive value in ma-
287 lignancies arising from differing sites. In non-small cell lung
288 cancer, in the Keynote 001 clinical trial, the response rate of
289 pembrolizumab varied from 8.1% in the < 1%PD-L1 group to
290 29.6% in the PD-L1 50–74% group [55]. In Keynote 010,
291 where chemo-naïve patients were randomized to
292 pembrolizumab at 2 mg/kg or 10 mg/kg (or docetaxel), PD-
293 L1 staining of 1–49% was associated with a response rate of
294 10% while ≥ 50% PD-L1 had a response rate of 30% (all for
295 the pembrolizumab cohort). Contrast these findings to
296 nivolumab in renal cell cancer in the Checkmate 025 study
297 where PD-L1 expression was not found to significantly pre-
298 dict benefit from PD-1 blockade (< 1%, OS was 27.4 months
299 while PD-L1 ≥ 1%, OS was 21.8 months). Similar results
300 were seen in Keynote 427, which examined first line
301 pembrolizumab in renal cell cancer; no difference in response
302 rate with PD-L1 expression [56].

303 Immune Cell Infiltration and “Exhausted” T (Tex) Cells
304 in the Tumor Microenvironment

305 Tumor infiltrating lymphocytes (TIL) have been shown to
306 correlate with prognosis in melanoma (as well as in many
307 other tumor types) [57–59]. An important study, by Tumeh
308 et al., showed that CD8+ TIL density in tumor samples was
309 higher in responding patients than in patients with disease
310 progression [60•]. Subsequently, it was demonstrated that
311 CD8+ cells with dual PD-1/CTLA4 expression, or
312 “exhausted” CD8+ cells, were predictive of PD-1 monother-
313 apy response in melanoma [27•]. Furthermore, lower levels of
314 “exhausted”CD8+ cells were associated with response to dual
315 PD-1/CTLA4 inhibitor therapy but were insufficient for
316 monotherapy PD-1 blockade [28]. Another important study

317by Broz et al. showed that the presence of cDC1 dendritic
318cells in melanoma was predictive of response [61•]. These
319findings have been extended by Spranger et al. who showed
320that BATF + dendritic cells are characteristic of immune infil-
321trated melanoma [62]. More recently, the Krummel group
322demonstrated that there are 2 axes in “immunogenic” tumors,
323one a NK-cDC1 axis [35] that operates in checkpoint respon-
324sive tumors and a CD4-cDC2 axis [63]. Other axes may op-
325erate in other tumor types as well.
326Recent translational studies have shed light on the biology,
327location, and surroundings of Tex cells. Tex have a distinctive
328transcriptional profile that is maintained stably via large-scale
329epigenetic programming and transcription factors [25•, 30].
330The presence of Tex cells in tumors can predict responses once
331tumor burden is factored in [29•]. Thommen et al. reported
332that these cells produce chemokines that attract B cells and
333TFH cells that produce tertiary lymphoid structures [64].
334More recently, the transcription factor Tox, highly expressed
335in exhausted T cells, appears to be critical to maintain their
336tissue presence but not the dysfunction associated with them
337[65–67]. There remain unanswered questions about precursor
338and terminal exhausted T cells and the transitions possible
339between these states [68].

340Tumor Mutation Burden and MSI

341Tumors with high mutation burdens appear to have an in-
342creased response rate and better survival in response to PD-1
343immunotherapy [69]. In non-small cell lung cancer, a higher
344non-synonymous mutation burden was associated with better
345PFS, OS, and objective response when treated with anti-PD-1
346[70]. While some neoantigens are clonal (shared by multiple
347sites), others are present in a more localized fashion (branch).
348It has been hypothesized that because of the selection pressure
349that neoantigen-directed T cells put on tumor cells, that non-
350clonal neoantigen bearing tumor cells could be edited out
351while clonal neoantigens persist and can predict for greater
352response to PD-1 inhibitors [71]. The use of tumor mutation
353burden to select patients for PD-1 therapy has not yielded
354consistent results and at present is experimental [72]. These
355studies need additional replication to be widely accepted. At
356present, it is unclear how tumor mutation burden impacts mel-
357anoma although it has been noted that uveal melanoma, which
358has a low tumor mutation burden has a low response rate to
359PD-1 blockade [73, 74].
360Extremely high rates of tumor mutation burden are seen in
361patients with mismatch repair deficiency [75]. These tumors
362also have a very high response rate to PD-1 immunotherapy
363[76, 77] and anti-PD-1 therapy is approved for use in these
364patients regardless of primary site. Widespread and continual
365mutation resulting from a deficiency in DNA repair is thought
366to generate neoantigens which in turn prime T cells [78].
367While melanoma is not part of Lynch syndrome and mismatch
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368 repair deficiency is uncommon in melanoma, desmoplastic
369 melanoma, which can have a high UV mutagenesis signature,
370 is also associated with a high response rate to anti-PD-1 ther-
371 apy [79, 80]. Basal cell cancer of the skin is the most mutated
372 non-mismatch repair deficient cancer [81]. Squamous cell
373 cancer of the skin also has a very high mutation burden [82].
374 Squamous cell cancers respond well to PD-1 blockade, while
375 response rates for basal call cancers are lower [83, 84]. Merkel
376 Cell Cancer, an uncommon skin neoplasm, also responds to
377 PD-1 blockade regardless of polyoma viral status [85] al-
378 though only the merkel cell polyoma virus negative tumors
379 have a high mutation burden, presumably due to UV damage
380 [86]. These data illustrate the complexity of this field and the
381 continuing research into the impact mutation burden has on
382 PD-1 response.

383 Peripheral Blood Biomarkers

384 There is great interest in identifying peripheral blood bio-
385 markers associated with favorable response to immunothera-
386 py in melanoma, as these could be serially collected and offer
387 significant safety, cost, and convenience advantages.
388 Peripheral biomarkers could also allow for profiling of the
389 systemic immune response in a way that tumor biopsies
390 cannot.
391 Since basic peripheral blood laboratory variables are col-
392 lected routinely in standard clinical care, it is possible to study
393 these variables in large retrospective clinical studies. For ex-
394 ample, Martens et al. analyzed peripheral blood biomarkers of
395 209 patients with advanced melanoma on ipilimumab. They
396 found that a baseline signature of low lactate dehydrogenase
397 (LDH), absolute monocyte count (AMC), and myeloid-
398 derived suppressor cells (MDSC), as well as high absolute
399 eosinophil count (AEC), regulatory T cells, and relative lym-
400 phocyte count (RLC) were associated with improved out-
401 comes with ipilimumab therapy [87]. Similarly, Weide et al.
402 analyzed peripheral blood biomarkers of patients with ad-
403 vanced melanoma treated with pembrolizumab and found that
404 high relative eosinophil count (REC), high relative lympho-
405 cyte count (RLC), low LDH, and absence of metastasis other
406 than soft-tissue/lung metastases are independent baseline
407 characteristics associated with favorable overall survival
408 [88]. Most recently, Rosner et al. evaluated peripheral blood
409 clinical laboratory variables associated with outcomes follow-
410 ing combination nivolumab and ipilimumab immunotherapy
411 in melanoma. They found that significant independent vari-
412 ables for favorable OS included the following: high relative
413 eosinophils, high relative basophils, low absolute monocytes,
414 low LDH, and a low neutrophil-to-lymphocyte ratio [89].
415 Further work is needed to validate these peripheral blood bio-
416 markers in randomized controlled clinical trials. Ultimately,
417 such biomarkers could be a simple and cost-effective way to

418define which patients with metastatic melanoma may derive
419the most benefit from immunotherapy.

420Immunotherapy and the Microbiome

421Complex microbial communities, known as the microbiota,
422colonize the mammalian host and contribute to the health of
423the host [90]. Over the last few decades, there has been in-
424creasing evidence to suggest that the bacterial microbiome
425plays an important role in carcinogenesis as well as the body’s
426response to cancer treatment [91] [92]. While CPI therapy has
427revolutionized the treatment of metastatic melanoma, re-
428sponse to CPI therapy is variable, with some patients achieve
429a robust response while other patients have minimal or no
430response. One hypothesis that has emerged recently is that
431the gut microbiome may affect response to CPI therapy, and
432thus the study of the gut microbiome can yield important clues
433about which patients will derive the most benefit from
434immunotherapy.
435There is evidence in mouse models that modulation of the
436gut microbiome may enhance responses to immune check-
437point blockade, so several groups have studied whether the
438human microbiome affects response to CPI therapy. In a study
439by Gopalakrishnan et al., the authors examined the oral and
440gut microbiome of 112 melanoma patients undergoing anti-
441PD-1 immunotherapy [93]. The authors observed significant
442differences in the diversity and composition of the gut, but not
443oral, microbiome of patients who responded to PD-1 therapy
444versus those patients who did not respond, namely responders
445had higher alpha diversity (P < 0.01), relative abundance of
446bacteria of the Ruminococcaceae family (P < 0.01), and
447showed significantly higher alpha diversity (P < 0.01) and rel-
448ative abundance of bacteria of the Ruminococcaceae family
449(P < 0.01) in responding patients. In a similar study analyzing
450the stool microbiota before and after anti-PD-1 therapy,
451Matson et al. showed that patients who responded to anti-
452PD-1 therapy had an abundance of certain bacteria, including
453Bifidobacterium longum, Collinsella aerofaciens, and
454Enterococcus faecium compared with non-responders [94].
455One hypothesis is that the increased bacterial diversity in some
456patients leads to increased immune cell infiltration. Wargo
457et al. performed immune profiling of stool samples from mel-
458anoma patients and demonstrated increased tumor immune
459infiltrates in responding patients, with a higher density of
460CD8+ T cells which correlated with abundance of specific
461bacteria enriched in the gut microbiome [95]. Together, these
462studies suggest that the commensal microbiome of patients
463may have a mechanistic impact on anti-tumor immunity.
464Further studies are needed to better understand the precise
465mechanisms mediating this effect, and specifically to deter-
466mine whether there are ways to modulate the microbiome to
467affect response to treatment.
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468 Aside from the ways in which the gut microbiome affects
469 response to therapy, another interesting observation is that the
470 gut microbiome may influence which patients are most at risk
471 for checkpoint blockade-induced colitis. In a prospective
472 study of patients with metastatic melanoma undergoing
473 ipilimumab treatment, authors correlated the pre-
474 inflammation fecal microbiota and microbiome composition
475 with subsequent development of colitis [96]. They observed
476 that patients with a paucity of bacteria involved in polyamine
477 transport and B vitamin biosynthesis was associated with an
478 increased risk of colitis, whereas patients with increased rep-
479 resentation of bacteria in the Bacteroidetes phylum were more
480 resistant to the development of colitis.

481 Conclusions

482 Recently, we have seen a rapid increase in our understanding
483 of the mechanism of action of CPI. Melanoma has served as a
484 model system for many functional and analytical studies.
485 While some of these laboratory advances have translated into
486 clinical and translational studies, in many instances, the com-
487 plexity of the immune response to tumor has stymied attempts
488 to develop markers that accurately and comprehensively pro-
489 file the immune response to tumor. While it is unlikely that a
490 single biomarker or a simple combination of biomarkers can
491 provide the profile we need as clinicians and translational
492 researchers, rapid advances are underway and we expect some
493 of these advances to translate into trial and clinical use.
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