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SUMMARY

A number of sequencing-based transcriptase drop-off assays have recently been developed to 

probe post-transcriptional dynamics of RNA-protein interaction, RNA structure, and RNA 

modification. Although these assays survey a diverse set of ‘epitranscriptomic’ marks, we term 

them as toeprinting assays since they share methodological similarities. As such, their 

interpretation is predicated on addressing similar computational challenge: how to learn isoform-

specific chemical modification profiles in the face of complex read multi-mapping. We introduce 

PROBer, a statistical model and associated software, that addresses this challenge for the analysis 

of toeprinting assays. PROBer takes sequencing data as input and outputs estimated transcript 

abundances and isoform-specific modification profiles. Results on both simulated and biological 

data demonstrate that PROBer significantly outperforms individual methods tailored for specific 

toeprinting assays. Since the space of toeprinting assays is ever expanding and these assays are 

likely to be performed and analyzed together, we believe PROBer’s unified data analysis solution 

will be valuable to the RNA community.
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PROBer is a statistical method that could learn isoform-specific chemical modification profiles 

from sequencing-based transcriptase drop-off assays. It could be used to detect RNA structure, 

RNA modification & RNA-protein interaction, and thus is valuable to RNA research.

INTRODUCTION

While much of the control of gene expression occurs via transcriptional regulation, it is 

becoming increasingly clear that post-transcriptional regulation also plays a key role in 

modulating expression products (Schwanhäusser et al., 2011). Several mechanisms 

contribute to this phenomenon, including covalent posttranscriptional chemical modification 

of RNA molecules (Roundtree and He, 2016), protein binding and the assembly of higher-

order ribonucleoprotein complexes (Glisovic et al., 2008), and the ability of RNA molecules 

to fold into and switch between intricate 2- and 3- dimensional folds (Mortimer et al., 2014; 

Schwanhäusser et al., 2011; Wan et al., 2011). Understanding both the expression level and 

the ‘meta-information’ (post-transcriptional marks) associated with a given transcript can 

shed light not only on the functions that an individual sequence performs, but also on the 

cellular pathways that it participates in and controls.

Recent advances in massively parallel DNA sequencing have enabled the transcriptome-

wide investigation of several ‘epitranscriptomic’ layers. Although the specifics of the assays 

differ widely depending on what is being measured (and how), there are several experiments 

that share a common theme. We term these experiments ‘toeprinting’ (Hartz et al., 1988) by 

high-throughput sequencing as they share a similar workflow (Figure 1A): chemically 

modifying RNAs to encode a signal of interest, decoding these chemical signals by reverse 

transcriptase drop-off, and sequencing and mapping the resulting cDNA toeprints to recover 

the chemical modification signatures.

Within this framework, iCLIP and eCLIP protocols (König et al., 2010; Van Nostrand et al., 

2016) explore RNA-protein interactions through crosslinking, SHAPE and DMS probing 

(Ding et al., 2014; Rouskin et al., 2014; Spitale et al., 2015; Talkish et al., 2014) explore 
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RNA secondary structure by using selective chemical probes to modify and mark unpaired 

flexible nucleotides, and Pseudo-seq (Carlile et al., 2014) detects RNA pseudouridylation by 

utilizing a reagent which specifically forms adducts at pseudouridine sites (Ψs). 

Furthermore, similar assays have also been developed to detect G-quadruplex structures 

(Kwok et al., 2016) and RNA 2′-O-methylation (Incarnato et al., 2017), indicating that the 

space of toeprinting assays is continuing to expand.

In each of these experiments, the upstream chemical modification is widely variable, but the 

library preparation and sequencing techniques are essentially the same: reverse transcription 

in a manner where cDNAs preferentially terminate at the sites of chemical modification, 

adaptor ligation to the site of reverse transcriptase drop-off, and PCR amplification followed 

by sequencing of the resulting cDNA library. Additionally, the number of characterizable 

epitranscriptomic marks is ever expanding, as are the associated chemical toolkits 

(Dominissini et al., 2012; Dominissini et al., 2016; Sakurai et al., 2014). As a result, 

toeprinting by high-throughput sequencing is becoming an essential tool for studying post-

transcriptional regulation.

A key step in analyzing toeprinting experiments is to accurately learn reverse transcriptase 

drop-off profiles from the sequence data. These profiles are subsequently used to infer, for 

example, sequence motifs, secondary structure predictions, or sites of post-transcriptional 

chemical modification. Each sequenced read produced by the experiments potentially 

contains multiple layers of valuable information about both chemical modification 

frequencies as well as about the identity and abundance of RNA transcripts. The ability to 

make full use of this information becomes the key for accurate estimation of drop-off 

profiles and requires conjointly addressing associated bioinformatics problems including the 

conflation of read counts by reverse transcriptase noise, variable transcript abundances, and 

read mapping ambiguity. However, to date, the proposed approaches address these problems 

separately and therefore only yield suboptimal solutions (Choudhary et al., 2017).

RESULTS

Bioinformatics challenges

Accurately determining the transcript abundances and drop-off profiles in transcriptome-

wide toeprinting experiments is complicated by several factors (Figure 1B) (Aviran and 

Pachter, 2014). Such experiments face a problem that is fundamental in RNA-Seq: reads 

align ambiguously to multiple transcripts, and appropriately handling ambiguously mapped 

reads (which can represent a significant proportion of alignable reads in such experiments, 

see Table S1) is imperative to correctly learning transcript abundances (Bray et al., 2016; Li 

and Dewey, 2011; Li et al., 2010; Roberts and Pachter, 2013; Trapnell et al., 2010). 

Incorrectly allocating multi-mapping reads adversely affects the estimated abundances of not 

only the transcripts that the reads were misallocated to, but also abundance estimates of 

related transcripts.

In toeprinting experiments, the multi-mapping problem is further exacerbated by the fact 

that accurate estimation of the RNA chemical modification probabilities depends on both 

correctly allocating multi-mapped reads, and deconvolving chemical modification profiles 
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from adduct-independent noisy reverse transcriptase (RT) drop-off. All of these factors are 

inter-related and poor estimation of any one of them may significantly skew estimates of the 

others. Yet all of these factors must be accounted for to quantitatively estimate modification 

rates.

The PROBer software

To address the computational challenges associated with the interpretation and analysis of 

toeprinting assays, we have developed a statistically rigorous approach that serves the dual 

purpose of unifying these assays via a shared computational framework, while providing an 

inference approach that is robust to small variances in experimental protocol. Our methods 

are implemented in software, termed PROBer, that is based on a statistical model to jointly 

infer transcript abundance and modification probabilities, as well as several other parameters 

(see STAR★METHODS and Figure S1A) and was developed by building on previous work 

on RNA-Seq (Bray et al., 2016; Li et al., 2010; Li and Dewey, 2011; Roberts and Pachter, 

2013; Trapnell et al., 2010), as well as models for simpler structure-probing SHAPE-Seq 

experiments (Aviran et al., 2011a; 2011b) where transcript abundance is not a confounding 

factor. The PROBer model assumes that the input data consists of raw reads (either single- 

or paired- end) obtained separately from a chemically treated sample, containing 

information about modification probabilities, and from a mock-treated control, informing 

about noise parameters. It assumes that cDNA fragments were generated by first selecting a 

transcript from the transcriptome (according to its abundance and length), randomly priming 

(or fragmenting) that transcript, and primer extending one nucleotide at a time. At each 

nucleotide encountered by the reverse transcriptase in this process, there is some probability 

of terminating the reverse transcription, due to modification, RT noise, primer collision, or 

encountering the end of the template fragment. A cDNA fragment generated by this process 

is observed as sequenced read if it passes a size-selection filter, which is dependent on the 

fragment length. From this the extent to which all the parameters in the experiment are inter-

related becomes clear.

We implemented an Expectation-Maximization algorithm (Dempster et al., 1977) in 

PROBer to infer the parameters of the model (see STAR★METHODS). In many cases it is 

of interest to have transcript-specific modification profiles rather than genes; indeed in 

structure probing experiments it is meaningless to consider the secondary structure of a gene 

rather than that of a specific transcript isoform. For these reasons we focused on modeling 

chemical modification at the isoform–rather than the gene–level.

The PROBer workflow, shown schematically in Figure 1C, begins with a set of read 

alignments (separately for the chemically-treated experiment and the untreated control). 

Starting with initial parameter estimates, reads are allocated to transcripts based on both 

abundance and modification parameters. The allocated read ‘pseudocounts’ are then used to 

estimate maximum a posterior (MAP) modification probabilities as well as RT noise and 

maximum likelihood (ML) estimates of transcript abundances. These steps are repeated until 

convergence. Although PROBer implements inference with respect to a complex model, it is 

practical for the analysis of standard toeprinting datasets (Table S2).
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PROBer outperforms alternative approaches in profiling RNA structures

To test the accuracy of PROBer on structure-probing experiments, we investigated its 

performance on both simulated and experimental data. In simulations, we generated a 

dataset in a manner consistent with the chemical mapping protocol (see STAR★METHODS) 

and attempted to recover parameter estimates from these simulated reads alone. At a global 

scale, PROBer yielded significantly improved parameter estimates when compared with 

alternative approaches, including StructureFold (Tang et al., 2015), Mod-seeker (Talkish et 

al., 2014), and icSHAPE (Spitale et al., 2015), using Pearson’s correlations (Figure 2A). 

These results also hold for Spearman’s rank correlations (Figure S2) and were representative 

of multiple simulations (Figure S3). In addition, because PROBer takes structure 

information into consideration, it is able to provide better transcript abundance estimates 

from structure probing datasets when compared with conventional RNA-Seq analysis 

software (Figure S4).

PROBer’s performance at recovering secondary structure constraints for transcripts with 

moderate expression levels (between 100 and 1000 TPM) vastly improves on alternative 

approaches at the highest expression levels (greater than 10,000 TPM). This result indicates 

that PROBer requires approximately 90% less data (when compared to alternative 

approaches) to produce structural estimates of equal or better accuracy. As transcript 

abundances follow an exponential distribution, a moderate improvement in the range of 

expression levels that yields useful structural constraints translates to a large increase in the 

number of transcripts that can be probed. Thus, PROBer allows the experimenter to access a 

larger fraction of the transcriptome at the same sequencing depth and experimental cost.

Since the chemical modification parameters (i.e. ground truth) used in simulations were 

learned from real data using PROBer, we were concerned that our simulations would 

artificially inflate the apparent performance of PROBer. We therefore included in our 

simulated transcriptome a set of control transcripts whose chemical modification profiles 

were measured by the related but orthogonal method SHAPE-MaP (Siegfried et al., 2014). 

Like SHAPE-Seq or DMS-Seq, the SHAPE-MaP assay measures RNA secondary structure 

using chemical probes to label unpaired or flexible positions; however this assay encodes 

these chemical marks as mismatches/sequencing errors (rather than RT drop-off/toeprinting), 

insulating our simulations from any (unknown) systematic biases from the protocol itself. 

These transcripts (see STAR ★ METHODS) served as a digital “spike-in”, allowing us to 

verify that our simulated experiments were not biased with respect to the simulation 

parameters. The accuracy of PROBer was confirmed by these digital spike-in experiments 

(Figure S5).

We further tested whether this improvement was also evident in real datasets by examining 

modification probability estimates for ribosomal RNAs, which have well-characterized 

structures (Cannone et al., 2002). We calculated precision-recall (PR) and receiver operating 

characteristic (ROC) curves on two yeast structure-probing data sets (Hector et al., 2014; 

Talkish et al., 2014) that adopted different library preparation methods (random priming or 

fragmentation and ligation; paired-end or single-end). We performed these analyses using 

crystallographically informed solvent-accessible secondary structure as a ground truth and 

demonstrated that PROBer was better able to estimate DMS chemical modification profiles 
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when compared with alternative approaches (Figures 2B and S6). We also compared 

PROBer with alternative approaches using ROC curves on available Arabidopsis and mouse 

structure-probing data and the area under curve (AUC) values were documented in Table S3.

Lastly, we compared PROBer with alternative approaches on predicting yeast ribosomal 

RNA structures. For each method, we first rescaled the reactivity profiles used to generate 

the PR curve into SHAPE constraints, that could be fed into the secondary structure 

prediction software RNAstructure (Deigan et al., 2009). Then we predicted secondary 

structures of yeast 18S and 25S rRNAs for each method and evaluated the predicted 

structures using commonly accepted measures such as sensitivity and positive predictive 

value (PPV) (Sloma and Mathews, 2015). In this evaluation (Figure 2C), as well as in a 

comparison (Table S4) with BUM-HMM (Selega et al., 2017), PROBer’s performance was 

superior to the alternative approaches. In addition, we have demonstrated that PROBer is 

robust to priming biases with respect to modification probability estimation (Figure S10 and 

S11).

PROBer identifies more true Ψs than alternative approaches

To demonstrate PROBer’s ability of identifying epitranscriptomic marks, we analyzed the 

Pseudo-seq data (Carlile et al., 2014) for pseudouridine detection. We used all known Ψ 
sites in ribosomal and small nucleolar RNAs as a ground truth, with which we compared 

PROBer estimated modification profiles. Precision-recall curve analysis of the Pseudo-seq 

data (Figure 3A) revealed that PROBer outperformed alternative approaches, including the 

Pseudo-seq method used in (Carlile et al., 2014) and structure-probing methods 

StructureFold, Mod-seeker, and icSHAPE that we previously compared with, for predicting 

Ψ. Importantly, PROBer was able to detect an experimentally validated pseudo-U site 

(m1acp3Ψ1191 in 18S rRNA) that was not detected by alternative approaches (Figure S7). 

This indicates that PROBer is capable of capturing biologically relevant information that 

would be otherwise lost.

PROBer extracts more information from eCLIP and iCLIP data than current common 
practice

Next, we tested PROBer on eCLIP and iCLIP data. The eCLIP protocol (Van Nostrand et al., 

2016) is an improvement over the iCLIP protocol (König et al., 2010). Both protocols 

encode protein binding information in a toeprinting-type manner by crosslinking RNA to 

proteins and degrading the cross-linked protein by proteolysis. This leaves a short peptide 

fragment attached to the site on the RNA where it was cross-linked, and that can therefore 

cause RT drop-off. One major improvement of the eCLIP protocol is the inclusion of a 

sequenced input control, which is lacking in iCLIP experiment.

The eCLIP and iCLIP protocols differ from other toeprinting protocols in that the RNase 

degradation process produces fragments that are only around the crosslink sites. This results 

in sparse eCLIP or iCLIP read alignment to the genome and makes it hard for us to estimate 

transcript abundance and reduce background noise. Therefore, for eCLIP and iCLIP data, 

PROBer focuses only on appropriate allocation of multi-mapping read with a simpler model 

(Figure S1B).
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We reanalyzed eCLIP data sets (Van Nostrand et al., 2016) for four RNA-binding proteins: 

RBFOX2, TARDBP, TRA2A, and PUM2. We in addition reanalyzed iCLIP data sets for two 

RNA-binding proteins: RBFOX2 (Van Nostrand et al., 2016) and hnRNP C (Zarnack et al., 

2013). These five proteins have known canonical binding motifs that have been validated 

both in vitro and in vivo (Van Nostrand et al., 2016; Zarnack et al., 2013), providing an 

independent ground truth for our evaluation.

As expected, our analysis (Figure 3B and Table S6) of these datasets demonstrated that 

PROBer could be used to detect significantly more peaks than the common practice that 

only uses uniquely-mapping reads, while kept the percentage of peaks overlapping with a 

canonical motif roughly the same. To demonstrate our results are robust to the peak-calling 

threshold, we in addition plotted the performance of each method by varying the peak-

calling threshold (Figure S9). Our results clearly demonstrate that multi-mapping reads 

contain valuable information and that the common practice of restricting analysis to unique 

mappings is suboptimal. Since PROBer was only used to allocate multi-mapping reads and 

thus was not involved in the peak calling process, our results should hold regardless of the 

chosen peak-calling algorithm. We also compared PROBer with a baseline method that 

distributes multi-mapping reads evenly to all aligned locations, and demonstrated that 

PROBer worked better on allocating multi-mapping reads than the baseline (Table S5 and 

S7).

DISCUSSION

We present PROBer, a statistically rigorous approach to quantify chemical modification 

profiles from transcriptome-wide sequencing data. PROBer contains a huge amount of 

model parameters. To robustly estimate these parameters, we assume the transcript 

abundances in the treatment and control experiments are the same, and impose beta 

distribution priors to the chemical modification and RT noise profiles.

We have evaluated PROBer’s performance with three diverse chemical modification 

protocols, as well as a variety of library preparation protocols. In each of these cases, 

PROBer outperformed alternative approaches in analysis of the data. As it is becoming clear 

that a systems-wide view of such post-transcriptional regulation processes is highly 

informative, we believe that multiple of these chemical modification toeprinting protocols 

will be performed within the same study. As such a unified pipeline such as PROBer is even 

more valuable.

PROBer is freely available with open-source at http://pachterlab.github.io/PROBer. All 

experiments can be replicated using the Snakemake workflow at https://github.com/

pachterlab/PROBer_paper_analysis.
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STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resource sharing may be directed to, and will be 

fulfilled by the corresponding author, Dr. Lior Pachter at California Institute of Technology 

(lpachter@caltech.edu).

METHOD DETAILS

PROBer’s generative probabilistic model—We model sequencing-based toeprinting 

experiments using a generative probabilistic model (Figure S1A). Our model combines the 

strengths of previous works on modeling RT drop-off (Aviran et al., 2011b; Aviran and 

Pachter, 2014) and quantifying transcript abundance (Bray et al., 2016; Li et al., 2010; Li 

and Dewey, 2011; Roberts and Pachter, 2013; Trapnell et al., 2010). The key parameters in 

our model include the relative abundances for the set of transcripts in the sample, as well as 

modification probabilities, and RT noise probabilities for each site on a transcript. In order to 

reduce the number of parameters we have to estimate, we assume the abundances in the 

modification-treated experiment are the same as abundances in the mock-treated experiment. 

We in addition assume that the reference contains M known transcripts and we number these 

transcripts from 1 to M.

To generate a read from the modification-treated experiment, we first pick a transcript at a 

rate proportional to the product of transcript abundance and length. We denote this rate by 

αi, where i is the transcript number. Then we choose a priming site uniformly across all 

valid priming sites in the transcript. We denote the total number of available priming sites by 

. Once we have a priming site, reverse transcription starts in 3′ to 5′ direction. At each site 

j, there is a probability that RT stops due to either chemical modification (denoted by βij) or 

background noises such as RT natural drop-off, primer collision or reaching the end of a 

fragment (denoted by γij). Once the RT stops, a cDNA fragment is generated. Thus, the 

probability of generating a cDNA fragment of length l, priming at j, and from transcript i is

The term lp in the above equation is the random primer length. In the Ding et al. protocol, 

this term is equal to 6; however if RNA fragmentation-based protocols were used, this 

number would be 0.

The next step is to decide if the obtained fragment passes the size selection. If not, this 

fragment will not be sequenced and therefore considered hidden. Otherwise, a sequence read 

will be produced according to our sequencing error model ℇ. Our sequencing error model ℇ 
can generate either single-end or paired-end reads and allows both substitution and indel 

errors to occur during the sequencing step. Since the error model ℇ is more complicated, we 

omit formulae for generating read sequences from ℇ. For details, please refer to Method S1, 

section 1.3 and section 2.
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To generate a read from the mock-treated experiment is similar, excepting that the chemical 

modification probabilities are not involved. Thus the probability of generating a similar 

cDNA fragment becomes

Our generative model is applicable to fragment-based probing protocols (Carlile et al., 2014; 

Rouskin et al., 2014; Spitale et al., 2015; Talkish et al., 2014) as well. We just need to 

replace the assumption of uniform priming with the assumption of uniform fragmentation. 

For more details about our generative model, please refer to Method S1, section 2.

PROBer parameter estimation and overfitting avoidance—Our goal is to estimate 

toeprinting parameters and relative abundances in the sample. Toeprinting parameters 

include both modification probabilities (βs) and RT noise probabilities (γs) per transcript 

site. Because our model contains a lot of parameters, we use two approaches to avoid 

overfitting. First, we reduce the total number of parameters by assuming that the transcript 

abundances in treatment and control are the same. Secondly, we introduce a beta distribution 

prior for each toeprinting parameter (β and γ) and calculate maximum a posteriori (MAP) 

estimate instead of maximum likelihood (ML) estimate for the toeprinting parameter. In our 

model, all βs share a same set of tunable hyper-parameters for their beta distribution priors 

and all γs share another set of hyper-parameters. By default, we set these two sets of hyper-

parameters the same such that the mode of the beta prior is 0.0001. We calculate ML 

estimates for transcript abundances.

We have three types of hidden data. First, due to alignment ambiguity we cannot be sure 

about which transcript a read originates from; we can only infer a set of highly possible 

origins for the read using its alignments. Second, for data sets with single-end reads, we 

cannot observe the full cDNA fragment from a read; therefore we have to guess the priming 

or fragmentation site for each single-end read. Lastly, if a cDNA fragment does not pass the 

size selection, we cannot observe a read from it. For reasons explained in Method S1, 

section 2.2, we only consider the first two types of hidden data.

We use the Expectation-Maximization (EM) algorithm (Dempster et al., 1977) to learn 

above model parameters. The workflow of our EM algorithm is shown in Figure 1C. In the E 

step, we interpolate the hidden data – the locations of multi-mapping reads and the priming 

or fragmentation sites of single-end reads – given the estimated abundances and toeprinting 

parameters. In the M step, we calculate the ML and MAP estimates based on both the 

observed data and interpolated hidden data. The E and M steps are repeated until 

convergence. Method S1, section 3 provides a detailed discussion about our EM algorithm.

Assessing estimation variation for PROBer-estimated modification 
probabilities—PROBer can provide intervals representing estimation variations of 

modification probabilities (βs) for any transcript of interest. These intervals account for 

variations in multi-mapping read allocation and toeprinting parameter estimation. PROBer 
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produces these intervals using a three-step procedure. First, we quantify variation in multi-

mapping read allocation. We fix the toeprinting parameters (β and γ) as the MAP estimates 

produced by PROBer and sample “true” alignments for reads in treatment and control using 

a collapsed Gibbs sampler. The Gibbs sampler is similar to the one used in RSEM (Li and 

Dewey, 2011). We run the sampler for 200 rounds in the burn-in period and then keep 20 

sampled “true” alignment settings by selecting one sampled setting every 10 rounds. A 

“true” alignment setting is defined as the set of sampled “true” alignments for every read in 

treatment and control. Secondly, for the transcript of interest, we produce 50 bootstrapped 

samples (Efron and Tibshirani, 1993) from the “true” alignments belong to this transcript for 

each of the 20 “true” alignment settings. This step accounts for the variation in estimating 

modification parameters. Lastly, we run PROBer on each of the 1,000 bootstrapped samples 

and pool the PROBer estimates together to produce 95% intervals for every position in the 

transcript of interest.

PROBer’s iCLIP and eCLIP model—Because protein-binding signals are sparse in the 

genome and because these signals could occur in both exons and introns, it is challenging to 

either model modification reactivity per nucleotide or estimate transcript abundance from 

iCLIP or eCLIP data sets. Therefore, PROBer focuses on allocating multi-mapping reads for 

iCLIP and eCLIP data with a simpler generative model (Figure S1B). To generate an iCLIP 

or eCLIP read, PROBer first picks a crosslink site and then generates the read sequence 

according to a sequencing error model. PROBer uses an Expectation-Maximization-

Smoothing (EMS) algorithm (Silverman et al., 1990), which is similar to Chung et al.’s 

work on ChIP-Seq data (Chung et al., 2011), to allocate multi-mapping reads. Please refer to 

Method S1, section 5 for more details.

QUANTIFICATION AND STATISTICAL ANALYSIS

Transcriptome and genome references

Arabidopsis thaliana: We downloaded the latest genome and gene annotation (TAIR10) 

from The Arabidopsis Information Resource. Following Ding et al. (Ding et al., 2014), we 

extracted every mRNA, rRNA, tRNA, ncRNA, snRNA, miRNA, and snoRNA annotated in 

the GFF3 file. We also discovered and thus removed 568 duplicate sequences. In addition, 

we found two copies of 18S rRNA with minor differences and no 25S rRNA (but a 

subsequence of it, AT2G01021.1) in the extracted sequences. Thus, we added 25S rRNA 

sequence from the RNA structure database (Cannone et al., 2002) and removed one copy of 

18S rRNA, AT3G41768.1, and the 25S subsequence, AT2G01021.1. The final reference 

consists of 36,264 transcripts in total.

Saccharomyces cerevisiae: We downloaded the genome (R64-1-1) and gene annotation 

(build R64-1-1.84) from Ensembl. After removing duplicate sequences, the final reference 

consists of 6,841 transcripts.

Mus musculus: We downloaded the genome (GRCm38) and gene annotation (build 

GRCm38.74) from Ensembl. The annotation contains no 18S or 25S rRNAs, and 353 

variants of 5S rRNA. We added 18S sequence from the RNA structure database and 

removed all but one variant of 5S rRNA. We could not add 25S sequence because it is not 
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included in the RNA structure database (Cannone et al., 2002). After removing duplicate 

sequences, the final reference consists of 93,362 transcripts.

Homo sapiens: We downloaded the human genome (GRCh38) from Ensembl.

Escherichia coli: We downloaded the E. coli 16S rRNA sequence used in (Poulsen et al., 

2015) at http://people.binf.ku.dk/~jvinther/data/HRF-Seq/ecoli_rRNA.fa.

RNA structure probing data—Structure probing data from (Ding et al., 2014) were 

downloaded through Sequence Read Archive (SRP027216). This data set contains two 

biological replicates and we pooled them together. Data were pre-processed following (Ding 

et al., 2014), which includes removing ssDNA linker and trimming adapter sequence. We 

used cutadapt v1.10 (Martin, 2011) to trim adapters for all data sets mentioned in this paper. 

The pre-processed data contain 117,242,295 and 81,596,350 single-end reads in 

modification-treated and mock-treated experiments respectively.

Structure probing data from (Hector et al., 2014) were downloaded through Gene Expression 

Omnibus (GSE52878). We selected and pooled together only the three in vitro DMS 

biological replicates (GSM1277430-GSM1277435). Data were pre-processed following 

(Hector et al., 2014), which includes trimming adapter sequence and removing PCR 

duplicate using both unique molecule identifier (UMI) and read sequence information. The 

pre-processed data contain 29,660,269 and 18,403,322 paired-end reads in modification-

treated and mock-treated experiments respectively.

Structure probing data from (Talkish et al., 2014) were downloaded through Sequence Read 

Archive (SRP029192). Only wild-type data were used and the two biological replicates were 

pooled together. Data were pre-processed following (Talkish et al., 2014), which includes 

trimming adapter sequence and 5′-end untemplated nucleotides. The pre-processed data 

contain 7,729,251 and 9,199,721 single-end reads in modification-treated and mock-treated 

experiments respectively.

Structure probing data from (Spitale et al., 2015) were downloaded through Gene 

Expression Omnibus (GSE64169). We used data from biological replicate 2 of v6.5 mouse 

ES cells, which consist of three conditions: mock-treated, in vitro modification-treated, and 

in vivo modification-treated. Data were pre-processed following (Spitale et al., 2015), which 

includes trimming adapter sequence and removing PCR duplicate. After pre-processing, the 

three conditions contain 668,854,264, 241,988,034, and 379,309,553 single-end reads 

respectively.

Structure probing data from (Poulsen et al., 2015) were downloaded through http://

people.binf.ku.dk/~jvinther/data/SHAPES-Seq/. We only used the E. coli data, which 

consists of three conditions: mock-treated, modification-treated, and modification-treated 

followed by biotinylation selection (SHAPES). Data were pre-processed following (Poulsen 

et al., 2015), which includes trimming adapter sequence and 5′-end untemplated 

nucleotides. Afther pre-processing, the three conditions contain 1,939,723, 2,930,176, and 

7,831,047 paired-end reads respectively.
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Pseudouridine detection data—Pseudo-seq data from (Carlile et al., 2014) were 

downloaded through Gene Expression Omnibus (GSE58200). Following advice of the 

authors, samples GSM1403085 and GSM1403086 were picked as mock-treated experiments 

and samples GSM1403087 and GSM1403088 were picked as modification-treated 

experiments. Adapter sequences were trimmed as documented in (Carlile et al., 2014). The 

resulting pre-processed data contain 31,103,632 and 39,167,224 single-end reads in 

modification-treated and mock-treated experiments respectively.

RNA-protein interaction data—Biological replicate 1 of RBFOX2 eCLIP data from 

(Van Nostrand et al., 2016) were downloaded through Gene Expression Omnibus 

(GSE77634: GSM2055432 and GSM2055433). In addition, biological replicate 1 of 

TARDBP, TRA2A, and PUM2 eCLIP data from (Van Nostrand et al., 2016) were 

downloaded through ENCODE (ENCLB754PZD, ENCLB615MWL; ENCLB985UUR, 

ENCLB547DSI; ENCLB175BHT, ENCLB809FVC). Data were pre-processed following 

(Van Nostrand et al., 2016), which includes trimming adapter sequence, removing PCR 

duplicate, and filtering out reads that align to a customized set of human repetitive elements 

used in (Van Nostrand et al., 2016). The pre-processed data for these four proteins contain 

35,708,030 & 9,765,434, 3,982,157 & 4,035,137, 5,938,623 & 4,224,764, and 3,788,923 & 

19,153,400 paired-end reads in CLIP-treated and mock-treated experiments respectively.

We also analyzed two iCLIP data sets: run 2 of RBFOX2 iCLIP data from (Van Nostrand et 

al., 2016) were downloaded through Sequence Read Archive (SRR3147675) and biological 

replicate 1 of hnRNP C iCLIP data from (Zarnack et al., 2013) were downloaded through 

ArrayExpress (E-MTAB-1371). These two iCLIP data sets were pre-processed the same way 

as we did for the eCLIP data. The pre-processed iCLIP data for RBFOX2 and hnRNP C 

contain 17,424,135 and 8,608,578 single-end reads respectively.

Alternative methods that PROBer compared with—For probing RNA structure, we 

compared PROBer with three alternative methods: StructureFold (Tang et al., 2015), Mod-

seeker (Talkish et al., 2014), and icSHAPE (Spitale et al., 2015). Because StructureFold can 

only be run via Galaxy, which makes it unsuitable for benchmarking on large data sets, we 

re-implemented it according to (Tang et al., 2015). In addition, since Mod-seeker only 

calculates modification intensities at gene level, and we focus on isoform-level modification 

signals, we re-implemented its formula so that we can use it to estimate isoform-level 

intensities. We have compared our re-implementations with the original StructureFold and 

Mod-seeker software on Talkish et al. and Carlile et al. yeast data and confirmed that our re-

implementations faithfully reflect how the original software works. We have successfully 

run the icSHAPE software on all data sets used in this paper.

For detecting pseudouridine sites, we in addition compared PROBer with Pseudo-seq, the 

method used in (Carlile et al., 2014). Because there is no publicly available software 

implementing the Pseudo-seq method, we re-implemented it according to (Carlile et al., 

2014).

We compared PROBer with BUM-HMM (Selega et al., 2016) on the Hector et al. paired-end 

yeast data, which contain 3 biological replicates. Majority of the reads in this data set are 
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from 18S and 25S rRNAs. To calculate the BUM-HMM-estimated modification intensities 

for 18S, we used all three replicates. For 25S, we only fed BUM-HMM with reads from 

biological replicate 2 and 3 since biological replicate 1 contains no 25S reads and BUM-

HMM would crash if we use all three replicates.

Alignment criteria—To make sure that the differences in performance between methods 

are not due to different alignment criteria (e.g. number of mismatches), we fed each method 

with alignments produced beforehand using the same alignment criteria. We used Bowtie 

v1.1.2 (Ben Langmead et al., 2009) to align single-end reads and Bowtie 2 v2.2.9 (Ben 

Langmead and Salzberg, 2012) to align paired-end reads. Because structure-probing 

protocols are strand-specific, we only aligned reads to the forward strand. Regarding to 

alignment criteria, we required at most 3 mismatches in each qualified alignment for the 

(Ding et al., 2014) Arabidopsis data. For all other data sets, we used Bowtie or Bowtie 2’s 

default setting. Regarding to the number of alignments reported per read, PROBer asked 

aligners to report all qualified alignments of a read. In addition, reads with more than 200 

qualified alignments were filtered out. StructureFold and icSHAPE used all qualified 

alignments in the best stratum (least number of mismatches in either entire read or the 

“seed” region). Mod-seeker and BUM-HMM used only the best single qualified alignment. 

These alignment settings were chosen according to the papers describing each method.

Setting PROBer parameters—PROBer’s protocol-specific options, such as –primer-

length, –size-selection-min, –size-selection-max, and –read-length, were set differently 

according to the characteristics of each protocol. (Spitale et al., 2015) used biotin to 

selectively enrich structural signals in modification-treated experiments. This step 

significantly reduces the background noise contained in the modification-treated channel and 

also makes it hard to interpret the relationship between mock-treated and modification-

treated channels. Thus, for Spitale et al. data, we only used modification-treated data as 

PROBer’s input. For further details, please refer to our Snakemake (Köster and Rahmann, 

2012) workflow.

Simulation of structure-probing experiments and digital spike-in experiments
—To assess the variability of the simulation, we simulated two sets of 30 million 37 nt 

single-end reads in both the modification-treated and mock-treated experiments, using the 

generative model described before. The model parameters used in the simulation, including 

ground truth modification (β) and RT drop-off (γ) probabilities, were learned from the Ding 

et al. structure-probing data by running PROBer. To access if structure information can 

affect RNA-Seq quantification process (Figure S4), we in addition simulated 30 million 37 

nt single-end reads using the RSEM simulator (Li and Dewey, 2011) (which ignores 

structure information) with the same simulation parameters. For digital spike-in 

experiments, our transcriptome was augmented with sequences of nine RNAs that have 

SHAPE-MaP reactivities available (Siegfried et al., 2014): tRNAPhe (E. coli, 76 nt), TPP 

riboswitch (E. coli, 79 nt), 5S rRNA (E. coli, 120 nt), 16S rRNA(E. coli, 1542 nt), 23S 

rRNA (E. coli, 2904 nt), IRES domain (HCV, 336 nt), Group II intron (O. iheyensis, 412 nt), 

Group I intron (T. thermophila, 425 nt), and HIV-1 genome (9173 nt).
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The modification probabilities (βs) for these nine RNAs were converted from their SHAPE-

MaP reactivities as follows: 1) negative reactivities were set to 0; 2) all other reactivities 

were scaled so that the highest scaled reactivity is equal to the largest ground truth β of 

Arabidopsis 18S rRNA. The RT drop-off probabilities (γs) were randomly sampled from the 

ground truth γs of Arabidopsis 18S rRNA. In order to explore the effect of expression level 

on estimation accuracy, we generated 4 sets of simulated data by varying the ground truth 

expression levels of the nine RNAs between 100, 1000, 10,000, and 100,000 Transcripts Per 
Million (TPM). Each set of simulated data consists of 30 million 37 nt single-end reads for 

both the modification-treated and mock-treated experiments.

Comparison with alternative methods on simulated and digital spike-in data—
Our main simulation results are box plots comparing PROBer with alternative methods. In 

these box plots, we only focused on 1,802 transcripts that we may obtain reasonable RNA 

structure estimates. These transcripts were selected according to the following criteria: 1) its 

ground truth expression level ≥ 50 TPM; 2) its length ≥ 100 nt, and 3) its mappability score 

> 0. The mappability score is defined as the ratio between the number of 21 mers that can be 

mapped back uniquely and the total number of 21 mers in the same transcript. We further 

partitioned the 1,802 transcripts into 4 expression ranges in TPM: 887 transcripts in [50, 

100], 849 transcripts in (102, 103], 60 transcripts in (103, 104], and 6 transcripts in (104, 

106]. For each transcript and method, we calculated Pearson’s correlation coefficient and 

Spearman’s rank correlation coefficient between the ground truth modification probabilities 

and the estimates. In the calculation, we only used sites containing adenosines or cytosines 

because DMS mainly modifies adenosines and cytosines. In addition, we excluded the last 

36 nt (read length is 37 nt) of each transcript from the analysis because there were little 

reads aligned to the 3′ end. We observed that icSHAPE had a median correlation of zero 

(Figures 2A, S2A, S3E, and S3F) in expression range [50, 100]. This is because icSHAPE 

did not provide structural estimates for these lowly expressed transcripts – icSHAPE 

outputted NULLs for most transcript positions in expression range [50, 100].

In addition to the results shown in Figure 2A, we also investigated the effects of 

interpolating hidden fragments that failed to pass size selection. We named PROBer with 

this interpolation enabled as the full model (see Method S1, section 2.2). With respect to 

Pearson’s correlation (Figures S2B and S3A), the full model significantly increased the 

variance for structural estimates in low and medium expression ranges, which contain over 

96% of investigated transcripts. For Spearman’s rank correlation (Figures S2C and S3B), 

PROBer performed better than the full model with respect to the median correlations. These 

results validate our decision of taking off the size selection correction step from PROBer. To 

demonstrate the improvement in joint estimation of structural parameter and transcript 

abundance, we also compared PROBer with the RSEM + PROBer* pipeline. RSEM (Li et 

al., 2010; Li and Dewey, 2011) is a popular RNA-Seq transcript quantification tool that is 

not aware of RNA structure information. PROBer* is a modified version of PROBer that 

only works on a single transcript and thus is not aware of multi-mapping reads. Figures S2D, 

S2E, S3C, and S3D confirm our hypothesis – PROBer performs better at all expression 

ranges than the RSEM+PROBer* pipeline.
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For digital spike-in experiments, we compared PROBer with alternative methods using 

boxplots of Pearson’s correlations and Spearman’s rank correlations on the nine spike-in 

RNAs (Figure S5). Since SHAPE reagent modifies all four RNA nucleotides, we included 

all but last 36 nt of each spike-in RNA in the calculation of correlations between the ground 

truth modification probabilities and the estimates. Similarly, icSHAPE had a median 

correlation of 0 when spike-in RNAs were lowly expressed (100 TPM). In addition, we 

observed that StructureFold had a median correlation of zero when spike-in RNAs were 

expressed at 100,000 TPM. This is because StructureFold failed to complete on the data 

where we set spike-in expression at 100,000 TPM.

Comparison with alternative methods using precision-recall and ROC curves
—We compared PROBer’s MAP estimates of chemical modification probabilities with 

alternative methods’ scores using previously reported ribosomal RNA secondary structures 

(Cannone et al., 2002). Secondary structures for Arabidopsis 18S and 25S rRNAs, yeast 18S 

and 25S rRNAs, and mouse 18S and 12S mitochondrial rRNAs were obtained as BPSeq 

files. Sites on these rRNAs that participate in a base-pairing interaction were assigned an 

idealized modification rate of 0, and unpaired sites were assigned an idealized modification 

rate of 1. ROC curves comparing PROBer estimated MAP chemical modification rate and 

alternative method scores with this binary ground truth vector were produced and the areas 

under the ROC curves were calculated using PRROC v1.1 (Keilwagen et al., 2014). We 

excluded the last “read length – 1” nucleotides for each RNA from our analysis since there 

were little reads aligned to the 3′ end of RNAs. The number of nucleotides excluded in 

Ding et al. Arabidopsis data, Hector et al. yeast data, Talkish et al. yeast data, and Spitale et 

al. mouse data are 36, 48, 49, and 86 respectively. In addition, we only analyzed positions 

that are adenosines and cytosines for assays using DMS reagent. Because chemical reagents, 

such as DMS and SHAPE, might not be able to modify unbase-paired nucleotides that are 

blocked by other proteins and RNAs, it is hard to interpret these ROC curve results that were 

produced without solvent accessibility information.

Fortunately, for the two yeast data sets (Hector et al., 2014; Talkish et al., 2014), we have 

known crystal structure of the yeast ribosome complex (Ben-Shem et al., 2011). Thus, we in 

addition calculated precision-recall (PR) and ROC curves using the crystallographically 

informed solvent-accessible secondary structures as ground truth. To generate these PR and 

ROC curves, we further constrained our analysis to positions that are either base-paired or 

unbase-paired with solvent accessible surface areas of greater than 2Å2. Solvent accessible 

surface area for adenosine and cytosine was calculated using PyMOL by following Rouskin 

et al. (Rouskin et al., 2014): 1) the crystal structure of yeast ribosome A (3U5B, 3U5C, 

3U5D, and 3U5E) were downloaded from Protein Data Bank (http://www.rcsb.org/pdb/

explore/obsolete.do?obsoleteId=3U5B) and formed into a complex in PyMOL; 2) DMS was 

modeled as a sphere with radius 3Å and solvent accessible surface area of N1-adenosine and 

N3-cytosine was calculated using the get_area function. We observed that the ground truth 

for yeast rRNA is highly skewed: 18S rRNA has 52 positives (A or C, unbase-paired, solvent 

accessible area > 2Å2) and 435 negatives (A or C, base-paired); 25S rRNA has 93 positives 

and 865 negatives. It is known that when the ground truth is highly skewed, ROC curves 

tend to be overly optimistic and the PR curves are recommended to be used instead (Davis 
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and Goadrich, 2006). Therefore we only showed PR curves (Figure 2B) in the main text and 

put ROC curves (Figure S6) in the supplement.

Comparison with alternative methods on predicting yeast rRNA structure—
RNAstructure (Deigan et al. 2009) can use SHAPE constraints to help it better predicting 

RNA secondary structure. Using RNAstructure (v5.8.1), we compared PROBer with 

alternative methods on how well their estimates could be used as constraints for improving 

yeast 18S and 25S rRNA structure predictions. First, for each method, we selected only the 

modification estimates from positions that were used in the previous precision-recall curve 

analysis. Secondly, we converted these estimates into SHAPE constraints for RNAstructure 

using the normalization procedure recommended in (Sloma and Mathews, 2015). Lastly, we 

ran RNAstructure with default parameters and the converted SHAPE constraints, and 

evaluated the resulting minimum free energy structures using sensitivity and positive 

predictive value (PPV). Sensitivity is defined as the fraction of pairs in the ground truth that 

are correctly predicted and PPV is defined as the fraction of predicted pairs that also exist in 

the ground truth. We in addition compared PROBer with a baseline method that runs 

RNAstructure with no constraints.

Experiments on Poulsen et al. SHAPES data—Poulsen et al. data were aligned to E. 

coli 16S rRNA by Bowtie 2 with parameters used in (Poulsen et al., 2015). Since their data 

have strong priming biases, Poulsen et al. implemented a method to correct these biases in 

RNAprobR (Kielpinski et al., 2015). Using ROC and PR curves, we compared PROBer with 

raw read counts and RNAprobR-corrected counts on the E. coli SHAPES data (Figures 

S10A and S10B) and SHAPE-Seq data (Figures S10C and S10D). In the ROC and PR 

curves, we used the crystallographically informed solvent-accessible secondary structure of 

16S rRNA as the ground truth. The crystallographically informed solvent-accessible 

secondary structure was obtained as follows: First, the 16S secondary structure was 

downloaded from the Comparative RNA Web database (Cannone et al., 2002) and the yeast 

ribosome crystal structure (3OFA, 3OFC) was downloaded from Protein Data Bank (http://

www.rcsb.org/pdb/explore/obsolete.do?obsoleteId=3OFA). Secondly, the solvent accessible 

surface area at the 2′-hydroxyl group of RNA backbone of each nucleotide was calculated 

using PyMOL. Lastly, nucleotides that are unbase-paired according to the secondary 

structure and have solvent accessible areas no greater than 3Å2 were excluded from the 

analysis. Following Poulsen et al. (Poulsen et al., 2015), we additionally restricted our 

analysis to the first 1,350 nucleotides.

Experiments on Carlile et al. Pseudo-seq data—We produced both PR and ROC 

curves using PRROC for Carlile et al.’s Pseudo-seq data. When we calculated the curves, we 

only considered 1,905 thymines in the yeast rRNAs and snoRNA. Since for yeast, we only 

have 49 known Ψ sites, which are part of the 1,905 thymines, the ground truth used here is 

also highly skewed. For this reason, we only presented PR curves in the main text (Figure 

3A) and put the ROC curves (Figure S8) in the supplement. In addition, we observed a 

strange read count pattern at the 5′ end of 25S rRNA. Normally, the 5′ end base of a 

transcript should have a very high read count because of RT run-off. However, for 25S, the 

high read count appeared at the 3rd base. We hypothesized that this might be due to a small 

Li et al. Page 16

Cell Syst. Author manuscript; available in PMC 2018 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.rcsb.org/pdb/explore/obsolete.do?obsoleteId=3OFA
http://www.rcsb.org/pdb/explore/obsolete.do?obsoleteId=3OFA


amount of degradation in the input RNA and therefore excluded the first 2 bases of 25S from 

our analysis.

Comparison with alternative methods on eCLIP and iCLIP data—We compared 

PROBer with a baseline method on the accuracy of allocating multi-mapping reads as 

follows: First, we aligned iCLIP and eCLIP reads to the human genome by Bowtie and 

Bowtie 2 using the default alignment criteria. We asked aligners to report all alignments and 

filtered out reads that aligned to more than 100 locations. Secondly, we allocated multi-

mapping reads using both PROBer and the baseline method that allocates each multi-

mapping read uniformly to all of its alignments. After this step, each alignment should be 

assigned a fractional weight. Lastly, we calculated the weighted motif hit rate for multi-

mapping reads allocated by PROBer and the baseline method. Note that each alignment 

implies a putative crosslink site. Given a radius, we could test if there is a canonical motif 

around the crosslink site within the radius. We assigned 1 if the answer was yes and assigned 

0 otherwise. Then the weighted motif hit rate was calculated as the alignment-weighted 

average of assigned values. We calculated the weighted motif hit rate for four eCLIP data 

sets (Table S5) and two iCLIP data sets (Table S7). For each data set, we varied the radius 

between 10 nt, 20 nt, 30 nt, 40 nt, 50 nt, and 100 nt.

We compared PROBer with the current common practice, which only uses unique-mapping 

reads, on the number of peaks called from data. For eCLIP data, we followed the 

computational protocol documented in (Van Nostrand et al., 2016), which included calling 

peaks from aligned reads using CLIPper (Lovci et al., 2013) and normalizing the CLIPper 

peaks by input data. Since CLIPper could not process fractional read count, we sampled one 

“true” alignment for each multi-mapping read based on its alignment weights for both CLIP-

treated and mock-treated (input) data. In Figure 3B, we showed the number of input-

normalized peaks after controlling false discovery rate at 0.05 and the percentage of reported 

peaks that overlapped with a canonical motif for both PROBer and the common practice 

(unique method) on four distinct proteins. Following Van Nostrand et al., we considered that 

a peak overlapped with a canonical motif if and only if the motif was within the 100 nt 

radius of the peak center. We followed a similar procedure for comparing PROBer with the 

common practice on iCLIP data, except that we did not call input-normalized peaks since 

there was no input control in iCLIP data.

DATA AND SOFTWARE AVAILABILITY

Our main contribution, PROBer, is freely available with open source at http://

pachterlab.github.io/PROBer.

PROBer contains five commands: prepare, estimate, simulate, iCLIP and version.

The first step in running PROBer is to build reference transcriptome indices using PROBer 

prepare. This command accepts either a genome or a set of transcript sequences as input. If a 

gnome is provided, users need to in addition provide a GTF/GFF3 file containing gene 

annotation information. PROBer will automatically extract transcript sequences from the 

genome using the specified annotation file. For iCLIP and eCLIP data, –genome option 

should be specified so that PROBer knows that genome indices are required instead. 
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PROBer prepare can optionally build Bowtie (Ben Langmead et al., 2009) and Bowtie 2 

(Ben Langmead and Salzberg, 2012) indices by enabling –bowtie and –bowtie2 options. 

This command only needs to be run once per organism.

Once we have transcriptome indices built, we can obtain modification reactivity and 

transcript abundance estimates by running PROBer estimate on toeprinting data. PROBer 

estimate accepts either raw reads in FASTA/FASTQ format or alignments in SAM/BAM/

CRAM format as input. It can handle single-end reads, paired-end reads and indel 

alignments. By default, Bowtie is used to align raw reads against the reference 

transcriptome. Bowtie 2 could be used instead by specifying the –bowtie2 option. PROBer 

estimate outputs ML estimates of transcript abundances and MAP estimates of modification 

and RT noise probabilities. If –output-bam is enabled, PROBer estimate in addition outputs 

BAM files consisting of posterior-probability-annotated read alignments. PROBer estimate 
can run with only modification-treated data if mock-treated control is not available. In that 

case, the estimated modification probabilities might not be as accurate. PROBer estimate 
provides the following options to describe key factors in toeprinting protocols: –primer-

length, –size-selection-min, –size-selection-max, and –read-length. –primer-length specifies 

random primer length. This option should be set to 6 if random hexamer priming is used and 

to 0 if the protocol is fragmentation-based. –size-selection-min and –size-selection-max set 

the minimum and maximum fragment lengths in cDNA libraries after size selection. –read-

length is only used for single-end reads and specifies the untrimmed read length. It helps 

PROBer to determine which single-end reads are adapter trimmed and thus can be regarded 

as full fragments.

For iCLIP and eCLIP data, we run PROBer iCLIP instead. Similar to PROBer estimate, 

PROBer iCLIP accepts iCLIP and eCLIP data either as raw reads in FASTA/FASTQ format 

or as alignments in SAM/BAM/CRAM format. If inputs are raw reads, either Bowtie or 

Bowtie 2 could be used to align these reads. If inputs are eCLIP data, we should turn on the 

–eCLIP option. For each crosslink site implied by the data, PROBer iCLIP outputs its 

genomic coordinate, unique read count, and expected multi-mapping read count.

PROBer simulate simulates toeprinting reads based on parameters learned from real data 

using PROBer estimate. PROBer simulate currently cannot simulate iCLIP or eCLIP reads.

PROBer version prints out the current version information.

If users want to assess the variation in PROBer-estimated modification probabilities, they 

should turn on –run-gibbs option in PROBer estimate and then run PROBer-bootstrap and 

PROBer-generateVariationPlot to generate variation plots for their transcripts of interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Sequencing-based transcriptase drop-off assays probe post-transcriptional 

dynamics

PROBer learns isoform-specific modification profiles accurately from these assays

Simulated and real data results suggest PROBer significantly outperforms 

alternatives

PROBer is valuable to RNA research as a general analysis tool for drop-off assays
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Figure 1. Cartoon depictions of sequencing-based toeprinting experiments, the associated 
Bioinformatics challenges, and our solution
(A) Cartoon depiction of an idealized toeprinting experiment. The genome is transcribed and 

RNAs are spliced and folded to form the structured transcriptome. This pool of RNAs is 

split into two, and either treated with a chemical probe, or mock-treated without the 

chemical probe. These chemical adducts are detected by reverse transcriptase (RT) drop-off, 

but the signal is convoluted by reverse transcriptase noise. Reverse transcription products are 

collected and sequenced. (B) Potential bioinformatics challenges. The structured 

transcriptome that gave rise to a given toeprinting dataset consists of known transcripts of 

unknown relative abundance. Reads from this dataset might align ambiguously to one or 

more transcripts, and might have been generated by either RT drop-off at a chemical 

modification, or by RT noise. (C) Conceptual workflow of PROBer. Sequencing data (both 

treatment and control datasets) from a toeprinting experiment are used as the input. In the E- 

step, reads are assigned to transcripts depending on an initial alignment, and the relative 

abundances & toeprinting parameters of the transcripts estimated in the M-step. In the M- 

step, transcript abundances and toeprinting parameters are learned, using the read 

assignments calculated in the E-step.
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Figure 2. Performance of PROBer on RNA structure probing assays
(A) A simulated RNA structure-probing dataset was generated in a manner consistent with 

Ding et al. protocol (Ding et al., 2014), and used as the input for a number of structure-

probing quantification methods, which include PROBer, StructureFold (Tang et al., 2015), 

Mod-seeker (Talkish et al., 2014), and icSHAPE (Spitale et al., 2015). Accuracy was 

evaluated by comparing the results from these methods with the ground truth modification 

reactivity profiles (β values) using Pearson’s correlation coefficients. PROBer consistently 

outperforms alternative approaches across a wide range of expression levels. See also 

Figures S2 and S3. (B) PROBer was compared with alternative methods for in vitro probing 

yeast 18S rRNA on a paired-end data set (Hector et al., 2014). Methods were evaluated by 

Precision-Recall (PR) curves and area under curve (AUC) values using crystallographically 

informed solvent-accessible secondary structures as ground truth. PROBer outperforms 

alternative methods significantly. See also Figure S6 and Table S3. (C) PROBer was 

compared with alternative methods on two yeast structure-probing data sets (Hector et al., 

2014; Talkish et al., 2014) for predicting 18S and 25S rRNA secondary structures. For each 

method, the estimated modification reactivity profiles were converted into SHAPE 

constraints (see STAR★METHODS) and then the SHAPE constraints were fed to 

RNAstructure (Deigan et al., 2009) to produce secondary structure predictions. We 

additionally compared with a baseline method, which ran RNAstructure with no SHAPE 
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constraints. The resulting minimum free energy structures were evaluated on two commonly 

used metrics: sensitivity and positive predictive value (PPV). We highlight the best 

performer of each column in bold. PROBer outperforms alternative approaches in all 4 cases 

and outperforms the baseline in 3 out of 4 cases.
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Figure 3. Performance of PROBer on detecting pseudouridine modifications and identifying 
protein-RNA binding sites
(A) PROBer was compared with alternative methods on data for predicting known 

pseudouridine (Ψ) sites in yeast rRNAs and snoRNA (Carlile et al., 2014). Methods were 

evaluated by precision-recall (PR) curves and area under curve (AUC) values. PROBer 

outperforms alternative approaches significantly. See also Figures S7 and S8. (B) PROBer 

was compared with the common practice (unique method) that uses only uniquely-mapping 

reads on eCLIP (Van Nostrand et al., 2016) data sets for 4 distinct RNA-binding proteins. 

The first two columns in the table give the protein name and canonical binding motif. The 

binding motifs have been validated both in vitro and in vivo (Van Nostrand et al., 2016). The 

next four columns give the number of input-normalized peaks called at false discovery rate 

of 0.05 (see STAR★METHODS) and the percentage of input-normalized peaks overlapping 

with canonical motifs for the unique method and PROBer respectively. Peaks were called 

using CLIPper (Lovci et al., 2013). The last column gives the percentage of more peaks 
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PROBer detected comparing with the unique method. PROBer enables us to extract 

significantly more information from the eCLIP data sets. See also Table S5, S6 and S7.
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