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ABSTRACT

A Sodium-ion battery (SIB) solution is attractive for grid-scale electrical energy

storage. Low-cost hexacyanometallate is a promising electrode material for SIBs

because of its easy synthesis and open framework. Most hexacyanometallate-

based SIBs work with aqueous electrolyte and interstitial water in the material

has  been  found  to  strongly  affect  the  electrochemical  profile,  but  the

mechanism  remains  elusive.  Here  we  provide  a  comparative  study  of  the

transition-metal  redox  in  hexacyanometallate  electrodes  with  and  without

interstitial  water based on soft X-ray absorption spectroscopy and theoretical

calculations.  We found distinct  transition-metal  redox sequences in  hydrated

and  anhydrated  NaxMnFe(CN)6·zH2O.  The  Fe  and  Mn  redox  in  hydrated

electrodes  are  separated  and at  different  potentials,  leading  to  two voltage

plateaus. On the contrary, mixed Fe and Mn redox at the same potential range

is  found in  the anhydrated system. This  work reveals  for  the first  time that

transition-metal  redox  in  batteries  could  be  strongly  affected  by  interstitial

molecules  that are seemingly spectators.  The results  suggest a fundamental
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mechanism based on three competing factors  that  determine the transition-

metal redox potentials.  Because most hexacyanometallate electrodes contain

water, this work directly reveals the mechanism of how interstitial  molecules

could  define  the  electrochemical  profile,  especially  for  electrodes  based  on

transition-metal redox with well-defined spin states.

INTRODUCTION

The rapid development of the generation of electrical energy from renewable

but variable solar and wind power has led to an urgent demand for an economic

mean of storing large-scale electric energy to enable its smooth integration into

the grid.1 Rechargeable  batteries  are  promising  solutions  for  such grid-scale

electrical-energy storage, if a stable and low-cost battery technology could be

developed.  Although  lithium-ion  batteries  (LIBs)  have  been  ubiquitous  in

portable  electronics  and  electric  vehicles,  the  use  of  lithium  for  grid-scale

storage is  limited by cost and supply  restriction.2 In  the meantime, a room-

temperature  sodium-ion  battery  (SIB)  solution  for  large-scale  storage  of

electrical energy has attracted more and more research interests, however still

requires tremendous efforts in both fundamental understanding and practical

developments  to  meet  the  formidable  challenges  on  the  low-cost,  stability,

safety and rate performance for grid-scale storage.3-5

Hexacyanometallates,  with  a  universal  nominal  formula  AxMa[Mb(CN)6]y·zH2O

(A=alkali and alkaline metal ions; Ma and Mb=transition-metal (TM) ions; 0 ≤ x ≤

2; y ≤ 1), have long been investigated as promising hosts for alkali and alkaline

ions.6-7 Recently, the materials are revisited as SIB cathodes in both aqueous8-11

and non-aqueous12-15 electrolytes, owing to their easy synthesis, low cost and

open framework with large interstitial space for sodium-ions. Extensive efforts

have  been  made  to  improve  the  performance,  especially  the  capacity  and

cyclability of hexacyanometallate-based electrodes for SIBs. One of the typical
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practices is to substitute the Fe in the so-called Prussian Blue (PB) AFeIIIFeII(CN)6

to obtain Prussian Blue Analogue (PBA) materials, i.e., AMFe(CN)6 with M being

different kinds of TMs including Mn, Co, Ni, Cu and Zn.11-12 The two Fe atoms in

the PB molecule could also be replaced by Mn.16 All these efforts are based on

the  mechanism  that  electrochemical  performance  of  hexacyanometallate

electrodes  is  based  on  well-defined  TM  redox  couples.11,  17 Therefore,

performance of the SIBs could be optimized through the modification of the TM

redox in hexacyanometalate electrodes.

Additionally, various insertions into the interstitial space of hexacyanometallate

electrodes  through  synthesis  lead  to  strong  effect  on  the  electrochemical

characteristics of the SIBs, such as Columbic efficiency and charge/discharge

profiles.  For  example,  Wessells  et  al.  investigated  Li+,  Na+,  K+ and  NH4
+

insertions into KMFe(CN)6 with M = Cu and Ni using aqueous electrolyte.8,  18-19

You et al. found that the variation of Na content in NaxFe[Fe(CN)6] results in a

rhombohedral  to  cubic  phase  transition  of  the  material.20 In  general,  lattice

water has been found to be important on the electrochemical performance in

various battery electrodes.21-25 In particular for PBA materials,  other than the

structural  changes,  Song  et  al.  reported  a  rather  intriguing  effect  of  the

interstitial  H2O on the charge/discharge characteristics  of  NaxMnFe(CN)6·zH2O

(Na2MnHFC).26 When the interstitial  water  is  removed from the material,  the

electrochemical behavior is greatly improved, changing from a two-plateau to a

single-plateau profile with much reduced polarization.26 It is thus evident that

controlling the interstitial molecule could play a critical role in modifying and/or

optimizing the electrochemical performance of hexacyanometallate electrodes

for SIBs. However, this intriguing phenomenon is yet to be understood, and the

change of TM redox in electrodes with and without interstitial molecules is yet to

be  detected  and  clarified.  In  particular,  the  understanding  of  how the  well-

separated  Mn2+/3+ and  Fe2+/3+ redox  potentials  could  be  completely  merged

together by removing just interstitial water remains elusive.26 A direct probe to
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clarify the modification of the TM redox by interstitial water molecule, i.e., TM

redox in the hydrated and anhydrated Na2MnHFC, holds the key to answer the

important  question  of  the  interstitial  molecule  effect  on  electrochemical

performance.

In this work, we provide a direct probe with quantitative analysis of the Mn and

Fe  redox  sequence  in  the  hydrated  and  anhydrated  Na2MnHFC  electrodes

through  synchrotron-based  soft  X-ray  absorption  spectroscopy  (sXAS)  and

theoretical calculations. We quantitatively analyze the TM redox couples in the

materials  with  and  without  interstitial  water,  thus  directly  reveal  how  the

interstitial  water modifies the TM redox and then the electrochemical profile.

Our results clarify unambiguously the effect of an interstitial molecule on the

modification of the spin-state related TM redox in a SIB cathode material. We

suggest that the electrochemical profile of such SIB electrode depends on three

correlated  parameters:  the  conventionally  considered  ionization  energies  of

TMs, the fundamental spin states of the TMs, and the crystal field that depends

on the structure and interstitial molecules.

EXPERIMENTAL AND THEORETICAL SECTION

Two  sets  of  NaxMnFe(CN)6·zH2O  materials  are  prepared,  hydrated  and

anhydrated. The as-prepared NaxMnFe(CN)6 precipitate was separated into two

parts;  both  parts  were  dried  at  100 ℃,  one  under  air  and the  other  under

vacuum. By thermogravimetric analysis (TGA) on the two sets of samples, the

nominal parameter of the H2O content  z in the hydrated phase is 1.87, while

that in the anhydrated phase is 0.3. As determined through inductively coupled

plasma  (ICP)  analysis,  both  white  powder  samples  have  the  same  molar

Na/Fe/Mn ratio of 1.89:0.97:1.00. The hydrated and anhydrated samples show

monoclinic and rhombohedral phases, respectively.26 

Figure 1(a) shows the typical electrochemical profile of the first cycle of the two
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systems. The hydrated sample exhibited two plateaus locating at 3.45V/3.79V

on  the  charge  curve  and  3.17V/3.49V  on  the  discharge  curve,  whereas  the

anhydrated exhibited a single one locating at 3.53V on the charge curve and

3.44V on the discharge curve. The structural and electrochemical profile studies

are consistent with previous reports,19, 26 and are not the topics of this work; but

for the convenience of the readers, we have included all the information in the

supplementary  materials  (Fig.  S1  and  S2).  In  this  study,  we  select  five

representative states of charge (SOC) for both the hydrated and the anhydrated

samples: 0% (H1 and AH1), 25% (H2 and AH2), 50% (H3 and AH3), 75% (H4 and

AH4) and 100% (H5 and AH5), as marked in Figure 1(a).

sXAS is  performed in  the  newly  commissioned iRIXS  endstation  at  beamline

8.0.1 of the Advanced Light Source.27 Samples are loaded in our Ar glove box

through a home-made sample transfer kit without any air exposure throughout

the process.28 In order to avoid the irradiation damage effect, the X-ray beam is

defocused for experiments here, and the samples are cooled down with liquid N2

while collecting the spectra. 

sXAS  has  been  demonstrated  as  a  powerful  technique  to  probe  the  critical

states in various battery compounds.29 For TMs, because sXAS is a direct probe

of  the  TM  3d states  through  the  strong  dipole-allowed  2p-3d (L-edge)

excitations, TM L-edge sXAS is extremely sensitive to the evolution of the TM

states involved in a typical battery electrode, e.g., Ni,30 Co,31 Fe,32-33 and Mn.30, 34

By virtue of the high sensitivity and the well-defined multiplet features of TM L-

edge sXAS to the TM states, sXAS often allows quantitative or quasi-quantitative

analysis  of  the  TM  redox  in  electrodes  upon  electrochemical  cycling.35

Particularly  for  hexacyanometallate  based  electrodes,  we  have  shown

previously that TM-L spectral lineshape depends strongly on the spin states of

the TMs,11,  34 Compared with other oxide based battery electrodes, TM redox

analysis in hexacyanometallate involves distinct sXAS lineshape for the same
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TM redox with different spin states at different sites; however, these previous

works set a solid foundation for our quantitative and comparative analysis of the

Fe and Mn redox in hydrate and anhydrate NaxMnFe(CN)6·zH2O systems.

The  quantitative  analysis  of  the  Fe  and  Mn  oxidation  state  based  on  sXAS

results is performed with the following two steps. First we analyze the contents

of  TM oxidation  states  of  the  two end-members,  i.e.,  the  fully  charged  and

discharged electrodes,  by comparing the intensity  of  the characteristic  sXAS

features  with  theoretical  calculations.  Details  on  the selection  of  the energy

range and the interpretation of  the results are elaborated in the sessions of

Results and Discussions below. Second, we used the linear combination of the

experimental spectra of the two end-members to fit all the intermediated states

with a single  fitting  parameter,  i.e.,  the ratio  of  the two end-members.  This

fitting is performed in all the four sets of experimental data, i.e., Fe and Mn

spectra of the anhydrated and hydrated systems, with a high R-factor values

(Supplementary Table S1) indicating the high accuracy of the fittings.

Theoretically,  Fe-L and  Mn-L sXAS of  hexacyanometallate  can be accurately

modeled by atomic multiplet calculations augmented to include both forward

and  back  bonding.36-37 Such  an  approach  allows  a  direct  assignment  of  the

spectroscopic  features  to  the  specific  site  and the  spin  state  of  Fe  and Mn

atoms.  The  calculations  in  this  paper  follow  the  approaches  developed  by

Hocking  et al,36 which was successfully applied in the previous works.11,  34 By

comparing with  our  experimental  results,  we are able  to adjust the hopping

parameters and back-bonding configuration energies to reproduce the energy

splittings observed in the sXAS experiments. The combination of experiments

and theory then provide a reliable analysis of the TM redox in the electrodes

with well-defined spin states.

RESULTS AND DISCUSSIONS
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Benchmark of Fe2+/3+ and Mn2+/3+ with distinct spin states. Aiming at a

quantitative analysis on the TM redox in  Na2−xMn[Fe(CN)6], characteristic sXAS

features corresponding to different TM valence states with specific spin states

need  to  be  determined.  In  general,  hexacyanometallates  are  known  as  SIB

cathodes  with  redox  couples  of  TM  bivalent  and  trivalent  states  at  fully

discharged  (Alkali  ion  intercalated)  and  charged  (Alkali  ion  deintercalated)

states, respectively. i.e., Fe2+ and Mn2+ in a fully discharged  Na2−xMn[Fe(CN)6]

(H1  and  AH1),  and  Fe3+ and  Mn3+ in  a  fully  charged  state  (H5  and  AH5).

Additionally, the spin states of the TMs in hexacyanometallates are also known

to  be  determined  by  the  different  crystal  field  strength  at  the  C-  and  N-

coordinated sites. The structure of hexacyanometallates consists of a double-

perovskite framework with (C≡N)- anions bridging TM-N6 and TM-C6 octahedra.

The strong crystal field at the C-coordinated site leads to a large splitting of the

3dt2g and 3de*g states of the TM and a well-defined low-spin (LS) state. On the

contrary,  the  TM  is  in  the  high-spin  (HS)  state  at  the  N-coordinated  TM-N6

octahedron due to the relatively weak crystal field.38-40

Figure 1(b) and (c) show the sXAS of Fe and Mn L3-edges of the fully charged

and discharged Na2−xMn[Fe(CN)6] samples with (H5, H1) and without (AH5, AH1)

interstitial water. The L3-edge sXAS spectra consist of distinct features resulting

from the multiplet-effect coupling between the  2p core-hole and  3d states.41

These well-defined features allow an unambiguous definition of the oxidation

states by comparing the theoretical calculations of Fe and Mn L3-edge sXAS with

our experimental data. For the two sets of fully charged/discharged electrodes,

all  the  sXAS  experimental  features  could  be  reproduced  by  theoretical

calculations of LS Fe and HS Mn with the expected valences, as shown in Figure

1(b) and (c). We note that features of Fe and Mn at the other spin states have

been reported before,11, 34 (Supplementary Fig. S3), but are not observed here.

Therefore,  the sXAS of  these end-members  provides the direct  experimental

evidence  that  the  Fe  and  Mn  in  Na2−xMn[Fe(CN)6]  are  at  the  C-  and  N-
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coordinated sites, and take LS and HS states, respectively.

An  important  aspect  of  the  spin-state  effect  on  electrochemical  property  is

revealed by our sXAS results here (red arrow in Fig. 1b). Naively, because sXAS

corresponds to the unoccupied states, which indicates the empty states that

could be filled up during the intercalation (discharge of cathode) process.42 In

Figure 1(b), a striking feature at 707.1 eV can be seen for LS Fe3+. This feature

sits at a significantly low energy, and is associated with back-bonding to the π-

bonding hole in the t5 configuration of the FeIIIC6 octahedra: t5e0. The low energy

707.1 eV state thus originates from the t2g hole when going from the fully-filled

t2g LS Fe2+ to LS Fe3+ during the charge process. Because of the low energy of

this unoccupied state, it is favored in energy to prioritize the filling of this state

during the discharge (reduction) process, i.e., the potential of LS Fe2+/3+ will be

shifted higher because of the low-spin nature of C-coordinated Fe. We note that

such  a  simple  atomic  analysis  has  successfully  explained  the  two  voltage

plateaus of the same Fe2+/3+ redox at different sites in rhombohedral Prussian

White electrodes.34 We also note that such a distinct low-energy state in sXAS is

not  observed  for  the  Mn  as  displayed  in  Fig.  1c.  Therefore,  the  low-spin

configuration  of  the  Fe  fundamentally  increases  its  relative  electrochemical

potential, as will be elaborated later in this work.

The well-defined features of the LS Fe and HS Mn in the sXAS data allow us to

establish the benchmarks for  further  quantitative analysis  of  the Fe and Mn

oxidation states. For Fe states, the specific origin of the 707.1 eV peak in the LS

Fe3+ system also leads to the quantitative discrepancy on the peak intensity

between the experiment and theory (Figure 1b). It is obvious that the sharpness

and height of this peak is exaggerated in experiments, likely due to a different

life-time  of  such  specific  low-energy  feature  in  spectroscopy,  which  is  not

considered in theory. Therefore, later in this work, we have chosen the energy

range from 709 to 715 eV for the quantitative analysis of the intermediated
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states, which contains defined features of both Fe2+ and Fe3+. Nonetheless, we

note that the intensity evolution of the 707.1 eV peak follows the same trend

qualitatively. As shown in Figure 1b,  the spectra of H1/AH1 samples represent

the standards for  LS Fe2+,  and spectra of  H5/AH5 represent LS Fe3+.  For  Mn

states,  H1/AH1  samples  display  the  standard  HS  Mn2+ lineshape.  However,

significant contributions from Mn2+ (640 eV) could be observed in the H5/AH5

samples (Fig. 1c). So we reproduce the ratio of Mn2+ (640 eV) and Mn3+ (642.2

eV) features by linear combination of the calculated spectra. A content of 0.48

and 0.55 Mn3+ in hydrated and anhydrated samples are found (Supplementary

Fig.  S4). Because  sXAS  is  a  surface  sensitive  probe,  this  result  indicates  a

reduced  electrode  surface  that  has  been  reported  in  many  other  Mn-based

battery electrodes30,  however has never been reported for PBAs. We suspect

this surface reduction contributes to the capacity loss of these electrodes when

compared with the theoretical capacity. Below we analyze the Fe and Mn redox

reactions at different electrochemical stages by using the experimental spectra

of the four end members analyzed here.  

9



Figure 1. (a) Two sets of samples with five different SOCs are defined here for

hydrated  (H1  to  H5)  and  anhydrated  (AH1  to  AH5)  systems.  (b)  and  (c)

Experimental  Fe and Mn  L3-edge sXAS spectra are compared with calculated

spectra of LS Fe2+/Fe3+ and HS Mn2+/Mn3+, respectively. All spectral features are

clearly  interperated  by  LS  Fe  and  HS  Mn  calculations.  Features  from  other

valence and spin state configurations (Fig. S3) are not observed here. Red arrow

indicates the specific low energy features of LS Fe3+, which is favored in energy

during the oxidation process, i.e., high potential (see text).

Fe Redox Activity. Figure 2 shows the Fe L3-edge sXAS spectra collected on a

series  of  electrode  samples  with  different  SOCs.  The  spectra  evolve  with

electrochemical cycling, corresponding to the change of Fe oxidation states. As

elaborated  above,  the  fully  discharged/charged  electrodes  display  the

characteristic  lineshape  of  LS  Fe2+/3+ and  HS  Mn2+/3+,  and  they  are  almost

identical for hydrated (H1, H5) and anhydrated (AH1, AH5) samples. Here we

focus  on  the  evolution  of  the  sXAS  lineshape  of  the  intermediate  states  to

distinguish  the  distinct  Fe  redox  behavior  in  the  hydrated  and  anhydrated

systems.

Overall, the evolution of Fe L3 spectra is indicated by two parts: i) the changing

lineshape at 710-714 eV, and ii) the increasing intenisty of the 707.1 eV peak

(vertical lines in Fig. 2). For both parts, the general lineshape of the 50% SOC

hydrated sample (H3) is almost identical to the fully charged one (H5) (Figure

2a), suggesting that the Fe2+/3+ redox reaction has been completed at the low

voltage  plateau  from H1  to  H3  (Figure  1a).  In  contrast,  for  the  anhydrated

system,  the  spectral  linsehape  changes  continuously  from  AH1  to  AH5,

indicating a gradual change of the Fe state throughout the charging process.
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Figure 2. Fe  L3-edge sXAS spectra collected on a series of electrode samples

cycled to different SOCs: (a) hydrated samples; (b) anhydrated samples. Dashed

lines are calculations of intermediated state by a simple linear combination of

the spectra of fully charged/discharged samples.

In order to quantify the Fe redox process, we fit the intermediated spectra by

linearly combining the two standard spectra from the fully charged/discharged

samples. As described above, the experimantal spectra of H1/AH1 and H5/AH5

represent the standard spectra of Fe2+ and Fe3+,  respectively,  and we fit the

spectra  at  the  709  –  715  eV  energy  range.  This  simple  linear  cimbination

provides a fairly good fitting to our experimental results (dashed lines in Fig. 2),

and the derived Fe valence concentration is noted in Figure. 2 under each set of

spectra.  The  quantitative  analysis  shows  again  that  the  0-50%  SOC  (low

plateau) corresponds to an almost complete (98%) Fe oxidation to Fe3+ in the
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hydrated system, but about exactly 50% Fe oxidation in the anhydrated system.

Mn Redox Activity. Figure 3 shows the Mn L3-edge sXAS spectra collected on a

series of electrode samples with different SOCs. Here we could focus on the

evolution of the only characteristic feature of Mn3+ at 642.3 eV (dashed vertical

lines). For the hydrated system, the spectra show no signal of Mn3+ at 642.3 eV

from 0-50% SOC (H1 to H3), but then rapidly evolved into fully oxidized Mn3+

from 50% to 100% SOC (Figure 3a). Again, a simple linear combination of the

two end members (Fig. 3a) confirms quantitatively that Mn redox takes place at

the high SOC range (high voltage plateau).  Although the Mn state does not

follow  exactly  the  norminal  SOC  due  to  the  existence  of  surface  Mn2+,  as

discussed above for the fully charged samples, it is clear that most Mn oxidation

takes place at relatively  high SOC regime. Therefore,  two separated voltage

plateaus of the hydrated electrodes are from the Fe2+/3+ redox at low voltage,

and Mn2+/3+ redox at high voltage.

For  unhydrated  system,  a  gradual  increase  of  the  Mn3+ 642.3  eV  signal  is

observed,  similar  to  the  evolution  of  the  Fe  sXAS  lineshape  in  unhydrated

system.  Again,  as  discussed  for  the  fully  charged  endmember  above,  the

existence of the surface Mn2+ leads to the diviation of the quantative Mn state

contents from the SOC. Nontheless, the gradual increase of the Mn3+ signal is

clear,  confirming that the Mn oxidation state gradually  increases its  valence

during the charging process in anhydrated system.
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Figure 3. Mn  L3-edge sXAS spectra collected on a series of electrode samples

cycled to different SOCs: (a) hydrated samples; (b) anhydrated samples. The

calculated spectra are shown in dashed lines.

Effect of Interstitial H2O on Fe and Mn Redox. Based on the analysis above,

the  different  Fe  and  Mn  redox  sequence  in  the  hydrated  and  anhydrated

cathode  materials  are  clarified.  Figure  4  is  a  summary  of  the  valence

concentration of the oxidized Fe3+ and Mn3+ upon electroehcmical cycling in the

two comparative systems. For the hydrated system, Fe2+/3+ and Mn2+/3+ redox

reations  take place separatedly  at the first  (low potential)  and second (high

potential)  half  of  the  charging  process,  leading  to  two  separated  voltage

plateaus  (Figure  4a).  However,  for  the  anhydrated system,  both  Fe  and Mn

display a gradual increase on their oxidation state roughly following the SOC
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changes,  i.e.,  a  mixed  Fe/Mn redox  reaction  throughout  the  electrochemical

process. Such a mixed redox reaction leads to the dissapearance of the two

distinct plateau as for hydrated system.

The  modification  of  the  TM  redox,  and  thus  the  electrochemical  profile,  by

interstitial  water  is  a  nontrivial  phenomenon,  which  indeed leads  to  distinct

battery performance26. The clarification of the underlying redox mechanism here

reveals an intriguing effect of interstitial water molecule in NaxMnFe(CN)6·zH2O

for SIBs. The distinct TM redox sequence in the contrasting systems indicates

effects  from  several  competing  factors  for  determining  the  electrochemical

properties: the spin states, the crystal field (structure), and the oxidation energy

of TMs. Additionally, the structural change by introducing interstitial water also

plays important roles in defining the electrochemical profile.

First,  in  the  conventional  wisedom,  the  redox  potential  depends  on  the

ionization  energy  of  the  TM  with  particular  oxidation  states.  The  standard

ionization energy of Fe2+ is lower than that of Mn2+, which means Fe2+ is easier

to be oxidized than Mn2+.43 Therefore the standard electrode potential of Fe2+ is

usually lower than that of Mn2+, as observed before in SIB cathodes.44-46 Second,

in NaxMnFe(CN)6 materials, Fe and Mn are coordinated with (C≡N)-  and (N≡C)-,

respectively. As expected and directly probed in this work, the C-coordinated Fe

is  at  LS  state,  and  the  N-coordinated  Mn  is  at  HS  state.  The  ligand  field

stablization energy (LFSE) of LS Fe2+ is higher than that of HS Mn2+,47 leading to

the increase of  Fe2+/3+ redox potential.  Note this  is  consistent with the sXAS

finding of the low-energy state of LS Fe3+, as elaborated above (red arrow in Fig.

1b).  If  the  competing  effects  of  the  ionization  energy  (low  Fe2+/3+ redox

potential) and LFSE (high Fe2+/3+ redox potential) balance each other, the (LS)

Fe2+ and (HS) Mn2+ redox potentials would overlap, leading to a single plateau

structure  of  the  electrochemical  profile  in  a  “pristine”  (anhydrated)

NaxMnFe(CN)6 system.
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Third,  the  balance of  the  competing  effect  from the LFSE with  specific  spin

states  and  the  ionization  energy  could  be  easily  broken  by  the  change  of

structure  and/or  crystal  field  strength  of  the  materials,  in  which,  inerstitial

molecules  could  play  a  critical  role.  The  interstitial  water  molecules  in  the

hydrated system dilutes the ligand field in the FeC6 and MnN6 octahedra43, and

disturb the original structure that defines the spin states.26 Additionally, a lattice

extension  with  intersticial  water  has  been  found  before,26 and  structural

changes  are  also  known  to  affect  the  electrochemical  potential  in  battery

electrodes. When the weakened LFSE effect cannot compete with the ionization

energy,  the  potential  gap  of  the  conventional  Fe2+/3+ and  Mn2+/3+ redox  re-

emerges, leading to a two-plateau structure in the electrochemical profile of the

hydrated  electrodes.  We  note  that  quantitative  analysis  of  these  three

important  factors  deserves  further  comprehensive  theoretical  calculations.

Nontheless,  this  scenario  is  directly  supported  by  the  different  TM  redox

sequence revealed in this work.

Figure 4. The  concentration  of  the  oxidation  states  of  Fe3+ and Mn3+ upon

electrochemical  potentials.  Percentage  of  the  oxidized  TM3+ states  in  the

hydrated  samples  (a)  and  anhydrated  samples  (b)  directly  represents  the

distinct TM redox sequence in the two systems.
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CONCLUSIONS

We have performed a comprehensive analysis of the Fe2+/3+ and Mn2+/3+ redox

sequence  in  NaxMnFe(CN)6 with  and  without  interstitial  water  through  sXAS

experiments  and  theoretical  calculations.  Our  results  clearly  show  that  the

contrast  on  the  electrochemical  profile  of  the  two  systems  is  due  to  the

separation of the Fe2+/3+ and Mn2+/3+ redox potentials when interstitial water is

introduced into the system. The two-plateau profile of the hydrated system is

attributed to the Fe2+/3+ redox at the low potential and the Mn2+/3+ redox at high

potential. In contrast, mixed Fe2+/3+ and Mn2+/3+ redox reactions take place in the

anhydrated system, leading to a single plateau structure of the electrochemical

profile.  Our  findings  natually  explain  the  intriguning  difference  of  the

charge/dischage  profiles  between  the  hydrated  and  anhydrated

NaxMnFe(CN)6·zH2O electrodes,  and provide a reliable scenario to understand

the  effect  of  interstitial  water  on  electrochemical  behavior  of  such  SIB

electrodes.  Fundamentally,  the  well-defined  spin  states  in  such  electrode

systems, i.e., LS Fe and HS Mn, lead to an LFSE effect that competes with the

conventional consideration of the Fe2+/3+ and Mn2+/3+ redox potentials, resulting

in the merge of the two potentials in NaxMnFe(CN)6. Adding the interstitial water

weakens the LFSE effect by diluting the ligand field  and increasing the lattice

constant, resulting in the re-emergence of the gap between the Fe2+/3+ and Mn2+/

3+ redox potentials. Therefore, our work clarifies the effect of interstitial water

on  modifying  the  TM  redox  in  the  hexacyanometalate  electrode  system.

Technically,  our  results  reveal  the  underlying  mechanism  of  optimizing  SIB

performance through interstitial molecules and suggest that the specific spin

states of TMs in battery electrodes like hexacyanometallates provides unique

opportunities for performance optimization through interstitial molecules.
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Supporting Information

Table S1: R-factors of the linear combination fitting of the four systems on Fe

and Mn edges. Figure S1: Galvanostatic initial charge and discharge profiles of

(a)  hydrated  and  (b)  anhydrated  NaxMnFe(CN)6 at  a  current  of  0.1  C  (15

mA·g−1)  in  the  voltage  range  of  2.0−4.0  V.  The  derivative  curves  (dQ/dV)

plotted as a function of V are shown as inserts [21]. Figure S2: Local structures

of (a) hydrated and (b) anhydrated samples, showing the Na+ displacements

and distorted framework, where high-spin MnII is blue, low-spin FeII is green, N is

silver, C is dark brown, Na is yellow, and H2O is red [21]. Figure S3: Calculated

(a) HS Fe2+/3+ and (b) LS Mn2+/3+ L3-edge sXAS spectra [11, 17], with the absolute

energy values calibrated.  Figure S4: Estimation of the contents of Mn2+ and

Mn3+ in fully charged (100% SOC) hydrated and anhydrated samples.
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