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ABSTRACT  

We use simple acid-base chemistry to control the valency in self-assembled monolayers 

of two different carboranedithiol isomers on Au{111}. Monolayer formation proceeds via Au-S 

bonding, where manipulation of pH prior to or during deposition enables the assembly of 

dithiolate species, monothiol/monothiolate species, or combination. Scanning tunneling 

microscopy (STM) images identify two distinct binding modes in each unmodified monolayer, 

where simultaneous spectroscopic imaging confirms different dipole offsets for each binding 

mode. Density functional theory calculations and STM image simulations yield detailed 

understanding of molecular chemisorption modes and their relation with the STM images, 

including inverted contrast with respect to the geometric differences found for one isomer. 

Deposition conditions are modified with controlled equivalents of either acid or base, where the 

coordination of the molecules in the monolayers is controlled by protonating or deprotonating 

the second thiol/thiolate on each molecule. This control can be exercised during deposition to 

change the valency of the molecules in the monolayers, a process that we affectionately refer to 

as the “can-can.” This control enables us to vary the density of molecule-substrate bonds by a 

factor of two without changing the molecular density of the monolayer. 
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Self-assembled monolayer (SAM) formation is driven by a combination of substrate-

molecule interactions, molecule-molecule interactions, and molecule-environment interactions.1-3 

The most commonly studied SAMs, n-alkanethiolates on Au{111} contain a single thiol group 

available for substrate binding, have linear backbones, resulting in numerous defects that 

originate from gauche defects in the alkyl chains, different alkyl tilt orientations, translational 

and rotational lattice registry offsets, and reconstruction of the underlying substrate.1,4-9 

Monolayers formed from dialkyl disulfides on Au{111} result in identical assemblies as the Au 

surface cleaves the S-S bond.10-12 In contrast, in unfunctionalized carboranethiol SAMs, the 

molecules do not tilt nor can they change their conformation; thus, there are fewer and simpler 

defects in comparison to SAMs composed of n-alkanethiols.2-17 Interactions between 

carboranethiol molecules at both exposed and buried interfaces have been observed. 

Carboranethiol isomers with nonzero components of their dipoles parallel to the surface exhibit 

long-range attractive interactions due to dipole alignment.18 This phenomenon was previously 

inferred from the results of competitive adsorption experiments, where carboranethiol isomers 

with larger in-plane dipole components outcompeted those with greater out-of-plane 

components.19 Mixed assemblies of carboranethiol isomers can be used to tailor the effective 

metal work function of noble metal surfaces while not changing the wetting properties of the 

overlying polymers and thus not changing their morphologies.15,20 These interactions have been 

observed with submolecular resolution, where correlations between simultaneously acquired 

scanning tunneling microscopy (STM) topographic and local barrier height (LBH) images 
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enabled the observation of single-molecule orientations within SAM matrices and demonstrated 

defect-tolerant dipole alignment.16 The surfactants 9,12-carboranedithiol (9O12) and 1,2-

carboranedithiol (1O2) have been shown to be stable isomers, to functionalize noble metal 

surfaces, and to modify effective metal work functions due to oppositely oriented dipoles 

originating from the carborane backbone.21-26 Carboranethiol SAMs can also be used to align 

overlying liquid crystal orientations.27 Here, both isomers of carboranedithiol studied (1O2 and 

9O12) promote formations with higher sulfur-surface coverage and fewer defects due to rigid, 

nearly spherical backbones.  

Typical SAM formation from thiols is governed by simple acid-base reactions, where an 

acidic thiol group (SH) is deprotonated to a thiolate (S-) on reactive surfaces.4,28 As noted above, 

disulfides can form SAMs by cleaving the disulfide bonds, again leading to adsorbed 

thiolates.10-12 Adsorbed thiolates form stable bonds to Au surfaces (~45 kcal/mol), stronger than 

typical Au-Au bonds.3,29-31 The S-Au bond is partially ionic and partially covalent; the effective 

charge transfer depends on the backbone attached to the S.32 Adsorbed, but relatively labile, 

thiols (i.e., with protons still in place) have also been observed within SAMs, such as 

p-carboranethiol, on Au{111} at low conentrations.17 The ease of formation coupled with 

tunable defect formations contribute towards thin films with controllable intermolecular 

interactions and modifiable surface-mediated effects that can be used to advantage to place and 

to direct single molecules and supramolecular assemblies into controlled environments.2,3,12,13,33 

Acid-base chemistry, at the exposed interface, has shown broad importance in surface 

wettability, colloid and emulsion stability, biological signal transduction and membrane 

assembly, and catalysis.34-37 We sought to manipulate and to control the valency, the molecule-
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substrate bond density, and subsequent monolayer formation using different isomers of 

carboranedithiol on Au surfaces, both of which have the potential for one or two bonds to the 

substrate per molecule. Both 1O2 and 9O12 are stable in their respective dithiol and dianion 

states, where 1O2 is a stronger acid compared to 9O12.26 The acid-base properties intrinsic to 

homogenous monolayers composed of either 1O2 or 9O12 can be used as a means of control.  

Kitagawa and coworkers assembled adamantanetrithiol on Au{111} and found trivalent 

interactions that resulted in small chiral cluster structures on the surface.38 In earlier unpublished 

work, we found that it is important to take into account both bond angles and substrate access in 

forming multivalent molecule-substrate interactions.39,40 The lessons learned from those studies 

resulted in the inclusion of flexible linkers in attaching caltrops and other molecules to 

surfaces.41-44  

  Control of thin-film properties of both exposed and buried interfaces has broad 

implications, e.g., for molecular devices and lithographic patterning.3,29,33,35,45,46 These isomers of 

o-carboranedithiols serve as ideal test candidates for binding, valency, and surface bond density, 

where singly bound (monovalent) modes produce monolayers with lower thiolate-Au bond 

densities in comparison to doubly bound (divalent) modes. We demonstrate, with a variety of 

surface-sensitive techniques and with density functional theory (DFT) calculations, that 

homogenous monolayers composed of either 1O2 or 9O12 show two distinct binding states, 

which are susceptible to manipulation by controlling pH, in solution, prior to deposition, as well 

as during deposition via exposure to acidic or basic solution; identical nearest-neighbor spacings 

and lattices are maintained throughout processing, independent of valency. We also show that 
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the difference between the monovalent and divalent modes of these carboranes is not a simple 

geometric effect, but also critically depends on electronic effects. 

Scanning tunneling microscopy is able to probe the topographic landscape of surfaces with sub-

Ångström precision.7,47-50 We have previously used spectroscopic imaging modalities of STM to 

probe buried interfaces and layers in molecular monolayers of other systems.7,16,32,51-55  

Results and Discussion 

We assembled and measured monolayers composed of either 1O2 or 9O12 carboranedithiols on 

Au{111}/mica, where, upon imaging, two distinct binding states that differ in apparent height in 

each homogenous SAM are recorded (Figure 1). Both isomers form hexagonally close-packed 

monolayers with nearest-neighbor spacings of 7.6 ± 0.5 Å. This formation is best explained by a 

(√7×√7)R19.12˚ superstructure that is found for several carboranethiols on Au{111}.19,56 We 

measured a bimodal distribution, with tunable coverages, which we attribute to both singly 

bound (monovalent) and doubly bound (divalent) states. Self-assembled monolayers formed of 

1O2 from a neutral solution show 21 ± 8% coverage of the singly bound (greater apparent height 

in STM images) binding structure and, correspondingly, 79 ± 8% coverage of the doubly bound 

(lower apparent height) structure. These modes are differentiated as described below. 

Measurements over monolayers composed of 9O12 show a strong preference (98 ± 1%) for 

monovalent binding (less protruding, counter-intuitively, as explained below) in comparison to 

divalent (2 ± 1%, more protruding). Images can be segmented by apparent height in topographic 

images by applying a gray scale threshold value that is used to compute binding concentrations 

in image binaries (Figure S1). Monovalent structures in 1O2 monolayers have greater apparent 
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heights (1.5 ± 0.3 Å with the tunneling conditions and tip used to record the data in Figure 1) 

than the divalent structures under the conditions measured; the monovalent structures in 9O12 

SAMs have lower apparent heights (0.4 ± 0.2 Å with the tunneling conditions and probe tip used 

to record the data in Figure 1) than the divalent structures. The DFT calculations help explain 

this apparent inverted contrast for monovalent/divalent modes for 9O12. 

We performed DFT calculations to gain detailed understanding of molecular 

chemisorption modes and their related appearances in STM images, and to help identify the 

adsorbed species. With this aim, we explored all the possible binding sites of singly and doubly 

dehydrogenated (i.e., monovalent and divalent, respectively) carboranedithiols on the Au{111}: 

face-centered cubic (fcc), hexagonally close-packed (hcp), over a bridge, and over a single atom 

(atop). The most stable species that are most closely correlated with the experimental results are 

shown in Figure 2. The geometric features of 1O2 and 9O12 are almost identical. The preferred 

binding site for the monovalent molecules is a fcc hollow site, which allows them to maximize 

the number of Au-S bonds. Divalent species adsorb preferentially on one fcc and one hcp hollow 

site, although somewhat off center towards the bridge site. Overall, S-Au bond-lengths are 

calculated to be between 2.37 and 3.06 Å. The natural bond order analysis shows that these are 

predominantly covalent bonds. For the most stable monovalent chemisorption mode, the S-C or 

S-B bond is simply normal to the surface. If one defines the molecular axis as connecting the 

center of the cage and the point halfway from one S atom to another, this line then is 28-30° from 

the surface normal in the monovalent binding mode. The z (surface normal) coordinates of the 

uppermost atoms (excluding H), also shown in Figure 2, reveal that the monovalent structures in 
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both 1O2 and 9O12 extend further from the surface than their corresponding divalent species, 

each with a physical height difference of ca. 0.4 Å.  

The simulated STM images for these four structures are shown in Figure 3. In agreement 

with experiments and in line with the geometry, monovalent 1O2 appears more protruding in 

STM images than divalent 1O2. The calculated apparent height difference in the simulated STM 

images is 0.6 Å. For STM images of 9O12, however, the situation is different; the monovalent 

mode appears less protruding, while the divalent structure appears more protruding. The height 

difference in the simulated images is 0.3 Å. As mentioned above, the z coordinates of the 

topmost atoms are higher in the monovalent than in the divalent 9O12. These results indicate that 

electronic effects play important roles in these systems and are critical to explain the differences 

between images of monovalent and divalent 1O2 and 9O12 on Au{111}.  

In order to understand this “inverted contrast” in the STM images for 9O12, we 

additionally plot the charge densities within the same energy window captured by the STM (from 

the Fermi energy (Ef) to (Ef - 0.1 eV). From the images in Figure 4, we observe that the 

contributions of C and B in these states are quite similar for monovalent and divalent 1O2 

structures. Indeed, the relative apparent heights and the relative geometrical heights correlate 

well. For 9O12, the charge density plots for monovalent and divalent modes are significantly 

different. In the case of the monovalent structure, the contributions of the carborane cage atoms 

in the proximity of the Fermi level are significantly smaller, which gives rise to the calculated 

“inverted contrast”. The density plots in Figure 4 reflect the collective contributions of all 

electronic states that fall within the experimentally measured energy window (EF - 0.1 eV). 
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Examination of the electronic states and their energies across the entire Brillouin zone reveal that 

there are only a few (1-3) of these states for each species. Furthermore, for the monovalent 

9O12, there is essentially only a single experimentally accessible state, the least among all 

considered adsorbed molecules. The projected density of states (PDOS) plots (reported in the 

Supplemental Information) are consistent with this finding. Since carboranes, in general, have 

similar delocalized chemical bonding, described by Lipscomb via three-center, two-electron 

bonds, and obey Wade’s electron-counting rules,57 it is expected that the molecular orbitals on all 

the studied species are similar in structure, and only shift in energy from one species to another. 

Thus, we suggest that the small number of electronic states detected by STM for the monovalent 

9O12 simply has to do with the energies of those states relative to the experimentally probed 

energy window of (EF - 0.1 eV).  

The aggregation of domains in SAMs composed of 1O2 suggests intermolecular 

interactions between monovalent molecules, which possess larger in-plane dipole components 

due to binding geometry. The reported dipoles for 1O2 and 9O12 are 3.7 D and 5.5 D, 

respectively,24 where this component is close the surface normal (8°) if both S are bound (as 

thiolates), however, the singly bound state is tilted ~30˚ (vide supra), yielding a parallel 

component (~1.8 D for 1O2 and ~2.8 D for 9O12). This dipole component results in increased 

intermolecular interactions between neighboring singly bound adsorbates16 and apparently leads 

to phase separation. This result is confirmed in samples of each monolayer and further enables 

binding assignments; SAMs composed of 1O2 demonstrate aggregation between higher 

protrusions, and, in SAMs composed of 9O12, higher intensity protrusions are localized and not 

phase aggregated. Both isomers form hexagonally close-packed monolayers with nearest-
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neighbor spacings of 7.6 ± 0.5 Å. This formation is best explained by a (√7×√7)R19.12˚ 

superstructure that is found for several carboranethiols on Au{111}.56 One of the advantages of 

working with carboranethiol SAMs is the conservation of surface structure among isomers so 

that the effects of different interactions can be tested independently of structural variations.13,19 

Both isomers form monolayers with the same spacings and surface structures; however, each 

contains different concentrations of monovalent and divalent modes. Next, we tested each 

binding state by coupling STM with scanning tunneling spectroscopy (STS) to monitor both the 

exposed and buried interfaces.7,16,54  

 Multimodal STM, which can simultaneously record the topographic landscape and the 

dipolar interface, can be used to extract molecular orientations within monolayers.7,16,32,54,58-60 

Topographic and local barrier height extrema are computed within a defined radial vector (the 

size of one molecule) and correlations are computed via block-matching,61,62 to associate 

symmetric molecular apexes with dipolar extrema.7,16 Here, local maxima (inverted minima) 

within SAMs composed of 9O12 can be locally attributed to carbons at the 1- and 2- positions 

within the cage. Conversely, local maxima within SAMs composed of 1O2 can be attributed to 

the local dipolar offsets within the boron cage. Correlated topographic maxima to LBH extrema 

values, shown in Rose plots (Figure 5), indicate that greater apparent protrusions in SAMs 

composed of 1O2 have larger offsets (3.8 ± 1.0 Å) than lesser protrusions (2.2 ± 0.6 Å). In 

SAMs composed of 9O12, greater protrusions show slightly smaller offsets (1.9 ± 0.3 Å) in 

comparison to lesser protrusions (2.6 ± 0.6 Å). For the small areas in the data shown, orientations 

in each homogenous monolayer (283 ± 39˚ in 1O2 SAMs, 150 ± 33˚ in 9O12 SAMs with respect 

to the fast-scan direction, shown as horizontal, left to right, in these displayed images) suggest 
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charge-separation stabilization and relative dipolar alignment across each two-dimensional 

landscape. Other orientations are found in other areas of the surfaces. These observations are 

consistent with our binding model (monovalent and divalent modes) in each homogenous 

monolayer. Since each binding state maintains the same nearest-neighbor spacing, the fraction of 

sulfur bound to the Au substrate can be tailored by up to a factor of two if binding can be 

manipulated. Motivated by the fact that each isomer is stable in both their dithiol and dithiolate 

states,24 we modify the pH to deposit either the dithiol or the dithiolate selectively. In chemical 

lift-off lithography,29-31 the amount of sulfur bound to Au may affect the amount and structure of 

lifted-off Au from the surface. Controlling the sulfur-surface density would enable tunable 

amounts of surface-bound Au available for patterning.63 

We tested the resulting assemblies of each carboranedithiol in both basic 

(2:1 NaOH:carboranedithiol) and acidic conditions (1:1 HCl:carboranedithiol) with STM. Upon 

deposition under basic conditions, majority divalent binding is achieved that is attributed to 

deposition of the molecular dianion (dithiolate) state. Scanning tunneling microscope images 

depict a concentration change of each phase, and show predominance of the divalent mode in 

monolayers fabricated under basic conditions (Figure 6). Images are segmented by apparent 

height to compute percent coverage (Figure S2). The divalent mode is dominant in each single-

component monolayer (98 ± 2% for 1O2, 99 ± 1% for 9O12) under basic conditions. The small 

fractions of the monovalent mode should appear more protruding for 1O2 but less protruding for 

9O12. The possible small fractions of monovalent species after deposition from basic solution 

may be difficult to distinguish from defects and the monolayers, in any case, are within 

experimental error of being completely divalent.  
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We also performed deposition experiments in acidic conditions and measured the 

resulting monolayers. Saturating carboranedithiol solutions with excess protons, prior to 

deposition, enables somewhat higher concentrations of monovalent (thiol/thiolate) molecules, in 

comparison to their counterparts deposited from neutral solutions. Figure 7 depicts the 

topographic environment after acidic deposition, where an increase in (greater apparent 

protrusions) in SAMs composed of 1O2 indicate higher concentrations (31 ± 3%) of monovalent 

(thiol/thiolate) species; SAMs composed of 9O12 already show an almost total monovalent 

mode (lesser protrusions) at neutral pH and hence do not show any change for a proton-rich 

deposition environment (98 ± 1%). In summary, SAMs composed of divalent 1O2 or 9O12 

(basic conditions) enable high dithiolate surface attachment, where SAMs composed of 

monovalent 9O12 (neutral or acidic conditions) permit low sulfur-surface attachment simply due 

to the controllable binding within structurally equivalent isomeric monolayers.  

In order to monitor the results of SAM formation in each environment at the ensemble 

scale and to complement the STM measurements, we used both X-ray photoelectron 

spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. All measured XPS and 

FTIR results, and modeled values are detailed in Table 1 and Table S3, using the sulfur and 

similar B-H vibrational spectra under all conditions also measured with STM. Characteristic 

orbital energy peaks of each atomic species within the monolayer can be measured with XPS. 

Our results are consistent with prior XPS measurements in both monolayers deposited at neutral 

pH, where S 2p orbital peaks show shifts similar to previously reported values.21 To test 

monolayer integrity, we also measured each monolayer after pH manipulation (Figures S4 and 

S5). Values reported for XPS not only show the retention of S 2p shifts, but also confirm the lack 
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of any measured Cl- or Na+ within each monolayer after acid or base treatment. Using FTIR, we 

specifically tracked the B-H vibrational stretch, at ~2600 cm-1, which is characteristic for 

carboranes.19,64 Measured SAMs composed of 1O2 show similar vibrational features under all 

conditions; however, SAMs composed of 9O12 reveal significant intensity decreases of the peak 

centered at 2593 cm-1 and loss of the peak at 2559 cm-1 (Figures S6 and S7), which are attributed 

to a change from majority monovalent to majority divalent binding in SAMs composed of 9O12 

after deposition in base. Each experiment is repeated (n > 3) to track functional control at both 

the local and ensemble scales. Vibrational peaks were also modeled in the gas phase using 

density functional theory. We attribute measured peaks in SAMs composed of 1O2 to 

complicated collective modes of B-H stretching vibrations that involve significant contributions 

from all the boron vertices. In the observed doublet, the peak at higher frequency is composed of 

modes dominated by stretches of B-H vertices 3, 6, and 4, 5, 7, and 11, while the modes of the 

lower frequency peak include predominantly the stretches of BH 8, 9, 10, and 12. In SAMs 

composed of 9O12, a triplet is measured with FTIR that is also modeled (Table S3), with the 

calculated collective B-H stretching modes differentiated by much stronger dominance of 

individual vertices or their small groups. The peaks centered at ~2559 cm-1 belong to the 

stretching modes with major contribution from vertices 8 and 10, peaks at 2595 cm-1 are 

dominated by stretches at vertices 4, 5, 7, and 11, and peaks at 2633 cm-1 are formed by the 

modes involving predominantly vertices 3 and 6. Frequency calculations for the gold salts of 

both 1O2 and 9O12 show relative attenuation of the infrared absorption features connected with 

the B-H stretching modes with the major contribution from the vertices close to the S atoms upon 

binding the sulfur atom to gold. Especially in the 9O12 layer, the intensity decrease at 
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~2595 cm-1 and peak loss at 2595 cm-1 under basic conditions are consistent with our 

assignments and computational results. The loss of infrared absorption intensity of the stretching 

modes dominated by the groups of 4, 5, 7, 11 and 8, 10 B-H vertices is attributed to the effect of 

lateral intermolecular interactions.  

Binding configurations are further modeled on Au surfaces with all possible high-

symmetry binding sites on the Au{111} surface: face-centered cubic three-fold hollow sites, 

hexagonally close-packed three-fold hollow sites, bridge sites, and atop sites. The most favorable 

binding modalities are presented in Table 2, where the most stable 1O2 and 9O12 species are 

presented schematically in Figures S8 and S9. Both monovalent and divalent binding modes, for 

1O2 and 9O12, are energetically favorable.  

We use both STM and STS to test the local valency within monolayers of 

carboranedithiols on Au{111} after control via pH. This control is monitored by apparent height 

in STM, dipole offsets in simultaneous STM topography and LBH measurements, infrared 

spectroscopy, and X-ray photoelectron spectroscopy, and is supported and understood with 

complementary density functional calculations.  

Conclusions and Prospects 

We have controlled the valency of binding within SAMs composed of different 

carboranedithiol isomers. These monolayers retain their two-dimensional lattice structures, 

independent of their binding configuration. With this level of control, we are able to dictate 

surface-atom-molecule stoichiometry with simple acid-base chemistry. We anticipate using these 
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and related systems to explore the effects of valency on surface patterning29-31,35,36,63 and 

dynamics.65,66 A further step would be driving dynamics by chemistry, electric field, 

electrochemical potential, light, or other stimuli.33,42–46,67–71 Systems such as these with 

significant chemical changes could play key roles in developing the ability to control motion at 

the nanoscale both for individual molecules and with coordination across assemblies.33,44,68,70   

Creating monolayers with switchable substrate-molecule valency and bond strengths 

while preserving lattice constants enables exploration of this important interface and adds to the 

repertoire of controllable interactions at surface-molecule, molecule-molecule, and molecule-

environment interfaces. By simply varying the head group, molecular backbone, and/or the tail 

group, extraordinary control is attainable.1-3,6,8,13 Rigid cage molecules, especially 

carboranethiols, exhibit advantageous properties and provide test beds for independently 

exploring aspects of self-assembly, such as dipole interactions, molecular orientation, electron 

transfer, surface polarity, and now valency.3,13,15-17,31,72 Here, bifunctional carboranedithiols 

assemble into well-ordered monolayers on Au surfaces with two distinct binding modes that are 

confirmed by STM, STS, FTIR, XPS, and DFT. This control is also expected to be of specific 

use in chemical patterning, where the binding of molecules to substrates and stoichiometry of 

molecule-to-surface bonds are both critical.31  
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Materials and Methods 

Monolayer Preparation 

The chemicals 1O2 and 9O12 were synthesized and characterized in accordance with 

previously published methods.21,24 Ethanol was used as received (Sigma-Aldrich, St. Louis, MO). 

The Au{111}/mica substrates (Agilent Technology, Tempe, AZ) were hydrogen-flame annealed 

prior to SAM formation with 10 passes at a rate of 0.4 Hz. Both unmodified SAMs were 

prepared by immersion into 1 mM ethanolic solutions and held at room temperature for 

approximately 24 h. Short deposition times (10 min), in acidic or basic solutions, were employed 

to decrease the possibility of molecular degradation. After deposition, each sample was rinsed 

thoroughly with neat ethanol and dried under a stream of ultrahigh purity argon for at least three 

cycles.  

Since carboranes are known to degrade upon exposure to concentrated base,73 we use 

dilute concentrations of acid and base to prevent side reactions. Hydochloric acid (12 M) and 

NaOH pellets were used as received (Sigma-Aldrich, St. Louis, MO). Acidic solutions were 

prepared by mixing 0.5 mL of 2 mM HCl in EtOH and 0.5 mL of 2 mM 1O2 or 9O12 in EtOH 

in a gasketed v-vial. Basic solutions were prepared by mixing 0.5 mL of 4 mM NaOH in EtOH 

and 0.5 mL of 2 mM 1O2 or 9O12 in EtOH. Monolayers were prepared by immersing flame-

annealed Au{111}/mica substrates into modified solutions for 1 h. Larger ratios of both acid 

(2:1) and base (4:1) were tested, however, no differences were found.  

Scanning Tunneling Microscopy 
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All STM measurements were performed with either a custom-built Besocke-style 

scanning tunneling microscope under ambient conditions or a custom-built Besocke-style 

scanning tunneling microscope held at cryogenic (4 K) and extreme high vacuum (<10-12 torr) 

conditions.74,75 Samples were held at a fixed bias (Vsample = -0.5 V) and both topographic and 

LBH modalities were measured in a constant current fashion (It = 15 pA). The tunneling gap 

distance was modulated above the microscope feedback loop (~3 kHz) with a sinusoidal 

amplitude (dz ~ 0.1 Å) and dI/dz was measured with a lock-in technique (Stanford Research 

Systems SR850 DSP, Sunnyvale, CA).7,57 The well-known lattice of atomic Au{111}, held at 

4 K, was measured and used to calibrate all low temperature images, and the known lattice 

within SAMs of 1-dodecanethiolate were used to calibrate all images obtained at room 

temperature.  

Image Analyses 

All STM images were processed with automated routines developed in MATLAB 

(Mathworks, Natick, MA) to remove high-frequency noise and intensity spikes that may impair 

reliable interpretation.7 Local maxima (minima) for both topography and local barrier height 

images were chosen as the highest (lowest) intensity pixel within a defined radial vector (the size 

of one molecule). Dipole offsets were computed using a block-matching approach,16,61,62 where 

topographic image patches (size of one molecule) were correlated against larger local barrier 

height image patches (size of the nearest-neighbor spacing) to obtain a set of points (p and q) that 

were referenced and plotted. Correlated values (shown in Figure 5) were compared against 

connecting all points within a defined pixel radius, as a function of size, where correlation 
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yielded the least artifacts (Figures S8 and S9). Gray scale threshold values were chosen based on 

apparent height differences to produce binary image highlights, which were further used to 

obtain percent coverages.  

Infrared Spectroscopy 

 All infrared spectra were collected with a Nicolet 6700 FTIR spectrometer (Thermo 

Electron Corp., Waltam, MA) that was equipped with a mercury-cadmium-telluride detector, 

held at liquid nitrogen temperatures, and a Seagull variable-angle reflection accessory (Harrick 

Scientific, Inc., Ossining, NY). Water and carbon dioxide were removed from the spectrometer 

by an FTIR purge gas generator (Parker-Balston, Cleveland, OH). A grazing incidence reflection 

angle (82˚ with respect to the surface normal) with p-polarized light, a mirror speed of 1.27 cm/s, 

and a resolution of 2 cm-1. Spectra were averaged over 5120 scans and normalized against 

spectra of perdeuterated n-dodecanethiolate monolayers on Au{111}.  

X-Ray Photoelectron Spectroscopy 

 All XPS spectra were collected with an AXIS Ultra DLD instrument (Kratos Analytical 

Inc., Chestnut Ridge, NY). A monochromatic Al Kα X-ray source (20 mA, 15 kV) with a 200 µm 

circular spot size that was held at ultrahigh vacuum (10-9 torr) were used for all measurements. 

Spectra were acquired at a pass energy of 160 eV for survey spectra and 20 eV for high 

resolution spectra of S 2p, C 1s, B 1s, and Au 4f regions that used a 200 ms dwell time. Different 

numbers of scans were carried out depending on the amount required for high-resolution spectra, 

which ranged from 20 scans for C 1s to 75 scans for S 2p. Binding energies were calibrated to 
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the Au 4f peak at 83.98 eV.76 Spectra were fit using CasaXPS software with Gaussian-

Lorentzian lineshapes after Shirley background subtraction. Sulfur regions were fitted by a 

doublet structure with a 1.18 eV spin-orbit splitting and a defined intensity ratio (2p3/2:2p1/2, 2:1).  

Computational Modeling      

Density functional theory calculations were performed to understand the molecular 

chemisorption modes and their relation with the STM imaging. Geometry optimizations were 

performed with the plane-wave periodic DFT VASP program.77–80 Exchange and correlation 

effects were described within the generalized gradient approximation (GGA), using the Perdew–

Burke–Ernzerhof (PBE) functional81 and electron-ion interactions are treated with the projector 

augmented wave approach.82 In order to describe the dispersion interactions, the empirically 

constructed DFT-D3 method was used.83 The calculations were done in a spin-unrestricted 

fashion when applicable. The gold slab was modeled as a (√7×√7)R19.12˚ supercell, with four 

layers along z. The bottom two layers were fixed during the optimization. The calculated lattice 

constant for Au was 2.95 Å, in good agreement with the experiment.  

To avoid spurious interactions between images in the z-direction, a vacuum gap of 10 Å 

was inserted between the highest atom of the carboranedithiolate molecules, and the repeated 

image of the slab’s bottom layer. The cutoff energy for the plane-wave basis set was chosen to be 

400 eV. A 5×5×1 Monkhorst-Pack k-point grid allowed for the numerical solution of 

Hamiltonian and overlap matrix elements. For the STM images and the charge density plots a 

denser k point grid (11×11×1) was used.  
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The STM images were simulated using the Tersoff-Hamann method47 using VASP. 

 

Natural bond order (NBO1.1)84 analyses of the molecules on the support were performed. 

The periodic version of NBO also requires the wave function to be represented in an atom-

centered basis, therefore we projected the plane-wave solution onto the Def2-TZVP85,86 

Gaussian-type orbital basis set.  
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FIGURES  

 

Figure 1. Scanning tunneling microscope images of (A,B) 1,2-(HS)2-1,2-C2B10H10 (1O2) on 

Au{111}/mica at two different resolutions (Vsample = -0.1 V, Itunneling = 100 pA, T = 298 K). Insets 

depict fast Fourier transforms (FFTs) that indicate hexagonally close-packed arrangements with 

nearest-neighbor spacings of 7.6 ± 0.5 Å. Two distinct binding states are highlighted in red and 

black. (C) Binding modes are shown schematically, where 1O2 assembles into both monovalent 

(black box) and divalent (red box) modes. (D,E) Scanning tunneling microscope images (Vsample 

= -0.1 V, Itunneling = 100 pA, T = 298 K) of 9,12-(HS)2-1,2-C2B10H10 (9O12) on Au{111}/mica at 

different resolutions. The inset depicts a FFT showing a hexagonally close-packed arrangement 

with the same spacing as 1O2. The two binding states are highlighted schematically in red and 

black boxes. (F) Binding modes for 9O12 are depicted schematically, where both monovalent 

(black box) and divalent (red box) modes are present.  
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Figure 2. Preferred structures/binding sites for 1O2 and 9O12 in their respective monovalent 

and divalent binding modes. The z coordinate of the uppermost atom (without considering H 

atoms) and the tilt angles of the molecules with respect to the surface normal (𝛼) are shown for 

each case. 
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Figure 3. Simulated scanning tunneling microscope images for 1O2 and 9O12 in their respective 

monovalent and divalent binding modes, with the maximum height shown in the insets (in Å). 

The 10-4 isovalue for the charge density was used. 
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Figure 4. Charge density plots from the Fermi energy to Ef - 0.1 eV for (top) 1O2 and (bottom) 

9O12 in their respective (left) monovalent and (right) divalent binding modes. The images are 

plotted with an isodensity value of 0.00002, because most of the charge density is located on the 

gold surface. “Min” and “Max” stand for the minimum and maximum topographic ranges (in Å), 

taken from the simulated STM images. 
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Figure 5. (A) Scanning tunneling microscope images, recorded at low temperature 

(Vsample = -0.5 V, Itunneling = 15 pA, T = 4 K) of 1,2-(HS)2-1,2-C2B10H10 (1O2) on Au{111} with 

local maxima (blue) highlighted. (B) Simultaneously acquired local barrier height (LBH) image, 

with LBH maxima (red) highlighted. (C) Rose plot (depicting correlated dipole offsets) that is 

binned by both magnitude (0.5 Å bins) and orientation (4˚ bins), and a ball-and-stick model of 

1O2 showing thiol positions. (D) Scanning tunneling microscope image, recorded at low 

temperature (Vsample = -0.5 V, Itunneling = 15 pA, T = 4 K) of 9,12-(HS)2-1,2-C2B10H10 (9O12) on 

Au{111} with local maxima (blue) highlighted. (E) Simultaneously acquired LBH map, with 

inverted LBH maxima (red) highlighted. (F) Rose plot (depicting correlated dipole offsets) that is 

binned by both magnitude (0.5 Å bins) and orientation (4˚ bins), and a ball-and-stick model of 

9O12. 
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Figure 6. (A,B) Scanning tunneling microscope images (Vsample = -0.1 V, Itunneling = 100 pA, T = 

298 K) of 1,2-(HS)2-1,2-C2B10H10 (1O2) on Au{111}/mica at two different resolutions after 

basic deposition conditions (2:1, NaOH:1O2). Insets depict fast Fourier transforms (FFTs) that 

show hexagonally close-packed arrangements with the same nearest-neighbor spacings as in 

Figure 1. (C) A majority of the 1O2 molecules have divalent surface attachment, depicted 

schematically. (D,E) Scanning tunneling topographs (Vsample = -0.1 V, Itunneling = 100 pA, T = 

298 K) of 9,12-(HS)2-1,2-C2B10H10 (9O12) on Au{111}/mica at different resolutions after basic 

deposition (2:1, NaOH:9O12). Inset depicts a FFT showing the same arrangement and spacing as 

1O2. (F) A divalently bound 9O12 molecule is shown schematically. 
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Figure 7. Binding assignments measured by scanning tunneling microscopy and scanning 

tunneling spectroscopy (STS). (Top) Self-assembled monolayers composed of 1,2-(HS)2-1,2-

C2B10H10 (1O2) form into (left) a thiol/thiolate state (monovalent form) and (right) a dithiolate 

state (divalent form) that differ in apparent height in scanning tunneling microscope images. 

(Bottom) Monolayers composed of 9,12-(HS)2-1,2-C2B10H10 (9O12) form into (left) an adsorbed 

monothiol/monothiolate (monovalent) state, under acidic and neutral conditions and (right) a 

dithiolate (divalent) state that differ in measured apparent height, as shown for the conditions 

Neutral 
Conditions:  
Basic Conditions:  
Acidic Conditions: 

Neutral/Acidic 
Conditions:  
Basic Conditions:  

SH,S (monovalent state) 
98% 
1% 

S,S (divalent state) 
2% 

99% 

SH,S (monovalent state) 
21% 
2% 

31% 

S,S (divalent state) 
79% 
98% 
69% 

~1.5 Å Apparent 
Height Difference 

~0.4 Å Physical 
Height Difference 

~0.4 Å Physical 
Height Difference 

~0.4 Å Apparent 
Height Difference 
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shown in figure 1. Upon deposition under basic conditions, majority dithiolate binding is 

observed for both isomers, as determined by STM imaging.  
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Figure 8. (A,B) Scanning tunneling microscope images (Vsample = -0.1 V, Itunneling = 100 pA, T = 

298 K) of 1,2-(HS)2-1,2-C2B10H10 (1O2) on Au{111}/mica at two different resolutions under 

acidic deposition conditions (1:1, HCl:1O2). Inset depicts a fast Fourier transform (FFT) that 

shows a hexagonally close-packed arrangement with the same nearest-neighbor spacings 

measured in both basic and neutral conditions. (C) A minority push to the monovalent binding is 

achieved and depicted schematically. (D,E) Scanning tunneling topographs (Vsample = -0.1 V, 

Itunneling = 100 pA, T = 298 K) of 9,12-(HS)2-1,2-C2B10H10 (9O12) on Au{111}/mica at different 

resolutions after acidic deposition (1:1, HCl:9O12). Inset depicts a FFT showing the same 

arrangement and spacing as in neutral conditions. (F) As monolayers composed of 9O12 are 

already predominately monovalent, no change is measured, in comparison to neutral deposition 

conditions, for this system that is depicted schematically.  
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Table 1. X-ray photoelectron spectroscopy energy shifts and Fourier transform spectroscopy 

frequency values in the B-H region (row). Columns are titled with 1,2-(HS)2-1,2-C2B10H10 (1O2) 

or 9,12-(HS)2-1,2-C2B10H10 (9O12) and labeled with neutral (n), basic (b), or acidic (a) 

deposition conditions.  
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Supporting Information. Figures that depict image binaries used for coverage calculations, 

X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, image correlation, 

tabulated frequency calculation results, and calculated atomic coordinates. This material is 

available free of charge via the Internet at http://pubs.acs.org. 
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