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ABSTRACT OF THE DISSERTATION
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by

Thierry Michel Laurens

Doctor of Philosophy in Mathematics
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Professor Rowan Brett Killip, Co-Chair

Professor Monica Vişan, Co-Chair

This work explores the existence and behavior of solutions to the Korteweg–de Vries equation

on the line for large perturbations of certain classical solutions. First, we show that given

a suitable solution V (t, x), KdV is globally well-posed for initial data u(0, x) ∈ V (0, x) +

H−1(R). Our conditions on V do include regularity but do not impose any assumptions

on spatial asymptotics. In particular, we show that smooth periodic and step-like profiles

V (0, x) satisfy our hypotheses.

Our second main objective is to prove a variational characterization of KdV multisoli-

tons. Maddocks and Sachs [110] used that n-solitons are local constrained minimizers of

the polynomial conserved quantities in order to prove that n-solitons are orbitally stable in

Hn(R). We show that multisolitons are the unique global constrained minimizers for this

problem. We then use this characterization to provide a new proof of the orbital stability

result from [110] via concentration compactness.
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CHAPTER 1

Introduction

1.1 Multisolitons

The Korteweg–de Vries (KdV) equation

d

dt
u = −u′′′ + 6uu′ (1.1.1)

(where u : Rt × Rx → R and u′ = ∂xu) was derived over a century ago as a model for

surface waves in a shallow channel of water. Although the equation was first proposed by

Boussinesq [27], it did not gain traction until Korteweg and de Vries [100] used the explicit

solutions

Qβ,c(t, x) = −2β2 sech2[β(x− 4β2t− c)] (1.1.2)

to explain the empirical observation of solitary traveling waves. Here, β > 0 controls the

amplitude and speed of the wave and c ∈ R dictates the initial position of the peak.

Prior to [100], Boussinesq [28] had already discovered the solitary traveling waves (1.1.2)

and began to study their variational properties. After first noting that the momentum and

energy functionals

E1(u) =

∫
1
2
u2 dx and E2(u) =

∫ [
1
2
(u′)2 + u3

]
dx (1.1.3)

are conserved for all solutions to (1.1.1), he then observed that the profiles (1.1.2) are critical

points of E2 with E1 constrained. As we will discuss further below, this opens an avenue

towards demonstrating that solitary traveling waves are stable, thus providing an explanation

as to why they are readily observed in nature.
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The solutions (1.1.2) are now commonly referred to as solitons, due to their particle-like

behavior during interactions. This name was coined by Kruskal and Zabusky [140] when

they numerically observed that two colliding solitons emerge with unchanged profiles and

speeds. The interaction is nevertheless nonlinear, and this is manifested in a spatial shift of

both waves in comparison to their initial trajectories.

We now know that this interaction can be modeled by a single explicit solution Qβ1,β2,c1,c2

which resembles two solitons as t → ±∞ with parameters β1 6= β2. In fact, together with

the single soliton solutions (1.1.2), these are the beginning of an infinite family of solutions

called n-solitons which describe the interaction of an arbitrary number n of distinct soliton

profiles (see (2.1.1) for details).

In [107], Lax studied the two-soliton solutions Qβ1,β2,c1,c2 in an effort to explain the

particle-like behavior of solitons. Just as the solitons (1.1.2) are constrained minimizers of

E2, he found that the existence of two-solitons is the symptom of another conserved quantity.

Indeed, although he does not explicitly state it (until his later work [108]), his ODE for the

two-soliton is the Euler–Lagrange equation for a critical point of

E3(u) =

∫ [
1
2
(u′′)2 + 5u(u′)2 + 5

2
u4
]
dx (1.1.4)

with E1 and E2 constrained. This marked the first step towards proving the stability of

two-solitons, which would explain Kruskal and Zabusky’s observation in [140].

While the stability of single traveling waves is rather common for physical models, their

stability under collisions is quite remarkable. This is closely related to the conservation

of (1.1.4), which does not follow immediately from elementary physical considerations, un-

like the momentum and energy (1.1.3). In fact, the authors of [115] discovered that the

functionals (1.1.3) and (1.1.4) are the beginning of an infinite sequence of conserved quanti-

ties En(u) defined on the L2-based Sobolev spaces Hn−1(R) (see (2.1.2) and (2.2.1)–(2.2.3)

for details). Nowadays, we recognize this as a consequence of the complete integrability of

KdV.
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The family of multisoliton solutions go hand in hand with these conserved quantities. In

general, the n-soliton is known to be a critical point for the following variational problem:

Problem 1.1.1. Minimize En+1 over Hn(R) with E1, . . . , En constrained.

This variational problem has been heavily studied within the context of multisoliton

stability. The first result was obtained by Benjamin [14], who proved that solitons are

orbitally stable in H1(R): solutions that start close to a soliton profile in H1(R) remain close

to a soliton profile for all time. This was the introduction of a widely applicable variational

argument (cf. [138]) based on the fact that solitons are local constrained minimizers of E2.

Benjamin’s seminal work contained some mathematical gaps, but these were later resolved

by Bona [22].

Solitons are not merely local minimizers for this problem, but are global minimizers [1].

In order to employ this to deduce orbital stability though, we need to know that profiles

that almost minimize E2 are close to a minimizing soliton. In general, we cannot expect

minimizing sequences to admit convergent subsequences, because the set of minimizing soli-

tons is translation-invariant and hence non-compact. This issue was solved by Cazenave and

Lions [35] for a variety of NLS-like equations by a concentration compactness principle: min-

imizing sequences are precompact modulo translations. This powerful method is now the

dominant way of proving orbital stability, but it has not yet been successfully applied to this

variational problem because it requires a global understanding.

Nevertheless, Maddocks and Sachs [110] discovered that n-solitons are orbitally stable

in Hn(R). First, they showed that n-solitons are indeed local minimizers of En+1 with

E1, . . . , En constrained. Then their argument relied on a careful study of the Hessian of

En+1 on the manifold of minimizing n-solitons in directions tangent and perpendicular to the

constraints. This local analysis then implied the global result by employing the commuting

flows of E1, . . . , En.

However, the variational problem remains unsolved: are multisolitons global constrained
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minimizers of En+1? If so, are they unique? In particular, affirmative answers to this problem

would be a significant step towards applying concentration compactness to prove the orbital

stability of multisolitons. More generally, we would like to understand all solutions to this

natural problem because they are fundamental objects for KdV.

In Chapter 2, we will answer these questions in the affirmative (cf. Theorem 2.1.3):

Theorem 1.1.2 ([105]). If the constraints for E1, . . . , En are attainable by a multisoliton of

degree at most n, then the set of such multisolitons are the only global minimizers of En+1

over Hn(R) with E1, . . . , En constrained.

Together with an appropriate concentration compactness principle to analyze minimizing

sequences (cf. Theorem 2.5.2), we will also recover the result of [110] (cf. Theorem 2.1.4):

Theorem 1.1.3 ([105]). Each n-soliton is orbitally stable in Hn(R).

In addition to providing a complete answer when the constraints are attainable by a

multisoliton of degree at most n, our methods also enable us to study the variational prob-

lem and minimizing sequences for other possible constraints. In this case, there are no

global constrained minimizers and minimizing sequences exhibit different (and previously

undiscovered) behavior; see Theorems 2.1.5 and 2.1.6 for details.

Evidently, the statement of Theorem 1.1.3 is predicated on the fact that for arbitrary

initial data u0 ∈ Hn(R) with n ≥ 1 there is a corresponding global solution u(t) that

remains in Hn(R) for all t ∈ R. Well-posedness for initial data in Hs(R) (and Hs(R/Z))

has been a fundamental line of investigation for KdV. The derivative in the nonlinearity of

KdV prevents straightforward contraction mapping arguments from closing, so preliminary

results produced continuous dependence in a weaker norm than the space of initial data.

One of the first results to overcome this loss of derivatives phenomenon was obtained by

Bona and Smith [24] who proved global well-posedness for s ≥ 3. In the following decades,

an extensive list of methods has been developed in the effort to lower the regularity s; see, for
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example, [23,26,38,42,70,87,89,90,99,129,134,136]. Recently, a new low-regularity method

was introduced in [97] that yields global well-posedness for s ≥ −1 on both the line and

the circle, a result that is sharp in both topologies. In the R/Z case this result was already

known [86].

Nevertheless, the n = 1 case [14] of Theorem 1.1.3 came nearly two decades before the

corresponding well-posedness result [89]. This is because well-posedness plays only a small

role in the proof of Theorem 1.1.3. Indeed, the crux of the problem is to prove Theorem 1.1.3

for Schwartz solutions, and the result for Hn(R) solutions then follows immediately once

well-posedness in Hn(R) is known.

1.2 Periodic spatial asymptotics

Alongside the solitons (1.1.2), Korteweg and de Vries [100] also exhibited periodic traveling

wave solutions of KdV. These are the spatially periodic analogues of solitons, and they can

be expressed in terms of the Jacobian elliptic cosine function cn(z; k) as

V (t, x) = η − h cn2
[√

h
2k2

(x− ct); k
]
. (1.2.1)

Here, k ∈ [0, 1) is the elliptic modulus, h > 0 is the wave height, and the trough level η and

wave speed c are determined by

η = h
k2

[E(k)
K(k)
− 1 + k2

]
and c = 2h

k2

[
2− k2 − 3E(k)

K(k)

]
,

where K(k) and E(k) are the complete elliptic integrals of the first and second kind. In view

of the representation (1.2.1), Korteweg and de Vries [100] dubbed these solutions cnoidal

waves.

The result analogous to Theorem 1.1.3 for cnoidal waves would be orbital stability with

respect to co-periodic perturbations. This topic has been heavily studied. In the pioneering

paper [113], McKean proved orbital stability of cnoidal waves for Ck(R/LZ) perturbations

using energy arguments, where L denotes the period of the underlying cnoidal wave. Orbital
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stability in H1(R/LZ) was later proven using variational methods [8], and (in)stability results

in H1(R/LZ) have since been obtained for generalized KdV (gKdV), fractional KdV, and

various other families of nonlinear dispersive equations; see, for example, [6, 9, 12, 17, 37,

44, 77, 84, 117, 118]. Orbital stability has also been demonstrated at the lower regularity

L2(R/LZ) [32, 56, 81] and even L2(R/nLZ) with n > 1 [119]. All of these orbital stability

results pertain to spatially periodic perturbations.

What about stability with respect to localized perturbations? This physically important

problem has also received much attention, but only within the context of spectral (linear)

stability, where the linearized equation is considered as an operator on L2(R) or L2(R/Z)

perturbations. Spectral stability for L2(R) perturbations of cnoidal waves was established

in [25], and spectral and modulational (in)stability for KdV-like equations have been explored

in [10,17,31,78,80,82,83,119].

As in the case of solitons, a nonlinear (in)stability theory necessarily relies upon our

ability to solve the equation for such initial data. However, as solutions in Hs(R/Z) spaces

are spatially periodic and solutions in Hs(R) spaces decay at infinity, localized perturbations

of a periodic background have been excluded by traditional well-posedness considerations.

More broadly, we would like to understand other classes of waveforms that are of physical

interest. For example, this includes other asymptotically periodic functions, such as wave

dislocation where the periods as x→ ±∞ may not align, and waves with altogether different

periodic asymptotics as x→ ±∞. Quasi- and almost periodic spatial asymptotics have also

received much attention in the literature (see, for example, [21, 36, 43, 45, 46, 54, 55, 135]).

Evidently, all of these important classes of initial data are excluded by classical analysis.

Our objective in Chapter 4 will be to extend low-regularity methods for well-posedness

to the regime of exotic spatial asymptotics. Specifically, we will show that that given a suf-

ficiently regular solution V (t, x), KdV is well-posed for H−1(R) perturbations of V (cf. The-

orems 4.1.2 and 4.1.3):

6



Theorem 1.2.1 ([106]). Given a solution V : Rt × Rx → R that is sufficiently regular, the

KdV equation (1.1.1) with initial data u(0) ∈ V (0) + H−1(R) is globally well-posed in the

following sense: u(t) = V (t) + q(t) where V (t) solves KdV, and the equation

d

dt
q = −q′′′ + 6qq′ + 6(V q)′ (1.2.2)

for q(t) with initial data in H−1(R) is globally well-posed.

The specific hypotheses satisfied by the background wave V are listed in Definition 4.1.1.

These conditions do include regularity, but do not impose any assumptions on spatial asymp-

totics.

There are rich classes of initial data that satisfy these hypotheses. In Chapter 4 we will

show that this includes the important case of smooth periodic initial data V (0, x) (including

the cnoidal waves (1.2.1)):

Corollary 1.2.2 ([106]). Given V (0) ∈ H5(R/Z), the KdV equation (1.1.1) is globally well-

posed for initial data u(0) ∈ V (0) +H−1(R) in the sense of Theorem 1.2.1.

Just as H−1(R) is the lowest regularity for which we can hope to have well-posedness in

the case V ≡ 0 [116], we expect that Theorem 1.2.1 is sharp in the class of Hs(R) spaces.

There is a known technique [97, Cor. 5.3] for extending H−1(R) well-posedness to Hs(R) with

s > −1 using equicontinuity, and so H−1(R) is the key space for establishing well-posedness.

We believe that Theorem 1.2.1 can also be applied to classes of quasi-periodic initial

data, or any other class amenable to complete integrability methods. The known results on

exotic backgrounds use integrable methods like the inverse scattering transform, which are

well suited to verify the hypotheses in Definition 4.1.1.

In all cases, the presence of the background wave V breaks the macroscopic conservation

laws of KdV. If q is a regular solution to (1.2.2) then the momentum functional E1 evolves

according to
d

dt

∫
q(t, x)2 dx = 6

∫
V ′(t, x)q(t, x)2 dx. (1.2.3)

7



In fact, in the next section we will discuss a class of solutions for which the term V ′ has

a sign and there is no cancellation in the integral; the resulting growth in the momentum

is manifested in a dispersive shock that develops in the long-time asymptotics [51, Fig. 1].

Despite this lack of conservation, we are able to adapt low-regularity methods for well-

posedness to the equation (1.2.2) for q because these conserved quantities do not blow up in

finite time.

1.3 Step-like initial data

Another physically important class of initial data consists of waveforms that are step-like,

in the sense that u(0, x) approaches different constant values as x → ±∞. These arise

in the study of bore propagation (cf. [16, 34, 60, 71, 124, 139]) and rarefaction waves (cf.

[7, 60,109,120,142]).

In Chapter 3, we will analyze step-like initial data in order to apply our general well-

posedness result Theorem 1.2.1. Consider the smooth step function

W (x) = c1 tanh(x) + c2 with c1, c2 ∈ R fixed, (1.3.1)

which exponentially decays to its asymptotic values. As −u is proportional to the water

wave height, W models an incoming tide if c1 > 0 and an outgoing tide if c1 < 0.

A classical result in the study of step-like asymptotics is (cf. Theorem 3.1.1):

Theorem 1.3.1 ([104]). Fix an integer s ≥ 3. The KdV equation (1.1.1) with initial data

u(0) ∈ W + Hs(R) is globally well-posed in the following sense: u(t) = W + q(t) and the

equation
d

dt
q = −(q +W )′′′ + 6(q +W )(q +W )′

for q(t) with initial data in Hs(R) is globally well-posed.

Theorem 1.3.1 is not new (as we will discuss in Section 3.1), but we will use its statement

to formulate our main result. Applying Theorem 1.3.1 to the initial data q(0) ≡ 0, we

8



conclude that given W there is a unique global solution V (t) = W + q(t) to KdV (1.1.1)

with initial data W , and t 7→ V (t)−W is a continuous function into Hs(R) for all s ≥ 3. The

main thrust of this work is to show that such V (t) satisfy the hypotheses of Theorem 1.2.1

(cf. Corollary 4.1.4):

Corollary 1.3.2 ([104]). Given initial data V (0) = W of the form (1.3.1), the KdV equa-

tion (1.1.1) is globally well-posed for u(0) ∈ V (0) +H−1(R) in the sense of Theorem 1.2.1.

The formulation of Theorem 1.3.1 is inspired by the result [24] of Bona and Smith in the

case W ≡ 0. They proved well-posedness in Hs(R) for s ≥ 3 by approximating KdV by

a family of BBM equations. Well-posedness for the BBM equation was shown in [15] and

follows directly from standard ODE arguments. In fact, in [15, §3] the authors also discuss

how to extend their well-posedness result for the BBM equation to step-like initial data,

which together with the original argument from [24] can also be used to prove Theorem 1.3.1.

However, it is our proof of Theorem 1.3.1, not the statement, that provides the necessary

ingredients for Corollary 1.3.2.

In addition to providing input for Corollary 1.3.2, our proof of Theorem 1.3.1 has other

benefits to offer. Already in the case W ≡ 0, we obtain a new proof of the Bona–Smith re-

sult [24] using low-regularity methods. Our proof of Theorem 1.3.1 is significantly shortened

in this case, and features a number of advantages. One main advantage is that the a priori

estimates for our approximate equations are the same as those for KdV. In [24], the authors

approximate KdV by the flow

d

dt
u = (1− ε∂2x)−1

{
−u′′′ + 6uu′

}
(1.3.2)

in the limit ε → 0+. The linear term −u′′′ is relatively harmless; the upshot here is that

the nonlinear term 6uu′ receives two degrees of smoothing, thus allowing straightforward

contraction mapping arguments to close. On the other hand, this perturbation breaks the

conservation of the quantities En, and the recovery of a priori estimates for the H3-norm of

u(t) is rather subtle. By comparison, our approximate flows also conserve the quantities En
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(as we will see in the next section), and so our a priori estimates are the same as those for

KdV.

The second main advantage of our methods for proving Theorem 1.3.1 is that the con-

vergence of the approximate solutions is demonstrated in a transparent way. In [24], the

authors project the initial data uε(0) for the approximate equation (1.3.2) onto low frequen-

cies in a carefully chosen ε-dependent way. Convergence then follows from a delicate trade-off

between the initial smoothing and a loss of derivatives in the a priori estimates for their

approximate equation. Conversely, our argument will feature a more modern approach: first

we prove convergence at a lower regularity (in order to absorb any loss of derivatives), and

then we recover convergence at higher regularity via an a priori equicontinuity result. The

statement of equicontinuity pertains to the evolution of the high frequencies of the solution

u(t) for fixed initial data u(0), rather than varying the initial data uε(0) and controlling the

growth of all frequencies.

1.4 The method of commuting flows

To prove the results presented in Sections 1.2 and 1.3, we will employ the method of com-

muting flows introduced in [97] to achieve well-posedness in H−1(R) and H−1(R/Z). This

method has been developed in several subsequent papers, both in applications to other phe-

nomena of KdV at low regularity [94, 121] and in achieving sharp well-posedness results for

other completely integrable systems [30, 72, 73, 95]. Most recently, the author proved sharp

well-posedness for the Benjamin–Ono equation in collaboration with Killip and Vişan [93],

a problem on which no progress had been made for 15 years despite much effort.

In the method of commuting flows, the dynamics of KdV is approximated by the Hamil-

tonian flow associated to a certain family of functionals. Recall that KdV is a Hamiltonian

system, in the sense that the equation (1.1.1) is induced by the functional E2 (defined
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in (1.1.3)) via the Poisson structure

{F,G} =

∫
δF

δq
(x)

(
δG

δq

)′
(x) dx.

Here, we are using the notation

dF |q(f) =
d

ds

∣∣∣∣
s=0

F (q + sf) =

∫
δF

δq
(x)f(x) dx

for the derivative of the functional F (q). Concomitant with this are the convenient notations

q(t) = etJ∇Hq(0) for the solution to
dq

dt
= ∂x

δH

δq
,

and
d

dt
F (q(t)) = {F (q), H(q)} for the quantity F (q) with q(t) = etJ∇Hq(0).

This Poisson structure is the bracket associated to the almost complex structure J := ∂x

and the L2-pairing. Additionally, the momentum functional E1 generates translations (in

accordance with its name), and the conservation of E1 under KdV can be expressed as

{E1, E2} = 0.

In fact, the whole sequence of conserved quantities En Poisson commute with each other,

in the sense that

{Em, En} = 0 for all m,n. (1.4.1)

Indeed, the existence of such a family is a necessary condition for a system to be completely

integrable. The identity (1.4.1) tells us that the flows corresponding to Em and En commute

(see, for example, [11, §39]), a remarkable property that is not possessed by generic nonlinear

equations. However, these are not the commuting flows that we will be using to approximate

KdV, because they are functionally independent and effectively flow in orthogonal directions.

As we will see below, our choice of commuting flows is constructed from the entire sequence

of conserved quantities En.

In the theory of finite-dimensional Hamiltonian systems, an ODE is called completely

integrable if it possesses sufficiently many (depending only on the dimension) conserved

11



quantities satisfying (1.4.1) that are functionally independent. For such systems, it turns

out that we can always formally solve the equations of motion and write down a formula for

the solution. Specifically, we can find a change of variables, called action-angle coordinates,

where the action coordinates are conserved in time and the angles evolve linearly; undoing

this change of variables then provides our formal solution. As a consequence, every conserved

quantity for the system can be written in terms of the action coordinates alone. This process

is known as Liouville integration, and the exact procedure heavily depends on the example

at hand.

For PDEs however, the phase space is an infinite-dimensional function space and thus

the conditions for a system to be completely integrable are unclear; for example, when is an

infinite family of conserved quantities sufficiently many? Nevertheless, KdV is universally

accepted as an example of an integrable system. This is because it possesses not only

infinitely many conserved quantities En, but also enjoys every other consequence that an

integrable system should have.

In particular, the authors of [63] discovered a change of variables that linearizes the KdV

flow. (Strictly speaking these variables are not action-angle coordinates, but the latter are

easily expressed in terms of the former; see [141] for details.) This nonlinear transformation

takes the solution u = u(t) of KdV for fixed t, constructs the corresponding one-dimensional

Schrödinger operator −∂2x+u, and outputs its scattering data. Specifically, given a potential

u(x) in the weighted Lebesgue space

L1
2(R) =

{
f : R→ R such that

∫ ∞

−∞
|f(x)|(1 + |x|2) dx <∞

}
, (1.4.2)

the operator −∂2x+u on L2(R) has purely absolutely continuous spectrum [0,∞) and finitely

many simple negative eigenvalues −β2
1 , . . . ,−β2

N . For such u we can construct the transmis-

sion and reflection coefficients T (k;u) and R(k;u) at frequencies k ∈ R. In general |T | and

|R| are bounded by 1 for k ∈ R, while multisolitons are distinguished by having R ≡ 0 and

|T | ≡ 1 on R. Additionally, the transmission coefficient T (k;u) extends to a meromorphic
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function of k in the upper half-plane C+ that is continuous down to R and whose only

singularities are simple poles at the square roots iβ1, . . . , iβN of the eigenvalues.

In order to have a full set of coordinates we must also consider the norming constants

c1, . . . , cN > 0, defined by eβnx|ψn(x)| → cn as x → +∞ where ψn is an L2-normalized

eigenfunction with eigenvalue −β2
n. It turns out that all of these objects together uniquely

characterize the potential u (see Section 2.2 for details). Moreover, they evolve very simply

in time: if u(t) solves KdV, then T (k;u), |R(k;u)|, and the eigenvalues −β2
n remain constant

while argR(k;u) and log cn evolve linearly.

As in the finite-dimensional case, all conserved quantities for KdV should admit an

expression solely in terms of the action coordinates. In particular, this means that the

functionals En can be written in terms of T (k;u), |R(k;u)|, and the eigenvalues −β2
n. The

exact formulas were discovered by Zakharov and Faddeev in [141], and the sequence begins

with

E1(u) = 4
π

∫ ∞

−∞
k2 log |a(k;u)| dk + 8

3

N∑

m=1

β3
m,

E2(u) = 16
π

∫ ∞

−∞
k4 log |a(k;u)| dk − 32

5

N∑

m=1

β5
m,

E3(u) = 64
π

∫ ∞

−∞
k6 log |a(k;u)| dk + 128

7

N∑

m=1

β7
m.

(1.4.3)

Here, a(k;u) = 1/T (k;u) is simply the reciprocal of the transmission coefficient; this func-

tion is holomorphic in C+ with simple zeros at iβ1, . . . , iβN . These formulas are valid for

u Schwartz, where we have both the energies En(u) and the scattering data a(k;u) and

β1, . . . , βN at our disposal. In fact, these formulas will be a key tool in proving Theorem 1.1.2.

Conversely, a(k;u) is conserved because it can be represented solely in terms of the

conserved quantities En. Indeed, Zakharov and Faddeev [141] also showed that for u Schwartz

we have

log a(iκ;u) = 1
2κ

(∫
u dx

)
− 1

4κ3
E1(u) + 1

16κ5
E2(u) +O(κ−7) (1.4.4)

as κ→ +∞. The coefficients appearing on the right-hand side of this expansion are exactly
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the sequence of polynomial conserved quantities En. The first coefficient is also conserved,

but it is a Casimir and hence is automatically conserved under any Hamiltonian flow.

To make sense of log a(iκ;u), the presence of
∫
u dx in the expansion (1.4.4) would curtail

our attention to functions u that are at least conditionally integrable. In order to work at

lower regularity, we will consider the renormalization

α(κ, u) := − log a(iκ;u) + 1
2κ

∫
u dx. (1.4.5)

As both a(k;u) and
∫
u dx are conserved, we also expect α to be conserved whenever it is

defined. In fact, in [97] the authors show that α is a real-analytic function of q on bounded

subsets of H−1 and is conserved for all κ > 0 sufficiently large.

From the expansion (1.4.4) we obtain

α(κ, u) = 1
4κ3
E1(u)− 1

16κ5
E2(u) +O(κ−7) (1.4.6)

as κ → ∞, at least for u Schwartz. Rearranging this expression, we might expect that the

dynamics of the Hamiltonians

Hκ(u) := −16κ5α(κ, u) + 4κ2E1(u) (1.4.7)

approximate that of KdV as κ → ∞. Indeed, in order to prove well-posedness in H−1, the

authors of [97] demonstrated that the flows induced by the Hamiltonians (1.4.7) are well-

posed in H−1, commute with each other, and converge to that of KdV in H−1 as κ → ∞.

It then follows that the data-to-solution map extends continuously from smooth initial data

to a jointly continuous map Rt ×H−1 → H−1; this is the meaning of well-posedness in [97].

We will employ the commuting flows of the Hamiltonians Hκ in (1.4.7) to prove our

general well-posedness result Theorem 1.2.1. Our approximate equation for the perturbation

q is obtained by evolving V and u = V + q under the Hκ flow:

qκ(t) = etJ∇Hκ(q(0) + V (0))− etJ∇HκV (0).
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In Chapter 4 we will show that for V sufficiently regular, this flow is well-posed in H−1(R)

and converges to the equation (1.2.2) for q in H−1(R) as κ→∞ uniformly on bounded time

intervals.

The major structural difference between our argument and that in [97] is that we cannot

assume the existence of regular solutions to (1.2.2). Although some results in this direc-

tion do exist (e.g. [52, 53]), we would need to significantly increase our assumptions on the

background wave V in order to employ them. Instead of showing that qκ(t) converges to

the solution q(t) of (1.2.2) as κ → ∞, we show that qκ(t) is a Cauchy sequence as κ → ∞
and we define the limit to be an H−1 solution of (1.2.2). This is the right notion of solu-

tion, because we show that the solution map is jointly continuous Rt ×H−1(R) → H−1(R)

(cf. Theorem 4.1.2) and on a dense subset of initial data it coincides with the classical notion

of solution (cf. Theorem 4.1.3). This approach is consonant with the notion of well-posedness

in [97].

In the V ≡ 0 case [97], a key step in proving convergence of the Hκ flows is the conserva-

tion of the functional α(κ, q) under both the Hκ and KdV flows. However, the appearance

of the background wave V breaks this conservation, just as we already saw happen for the

momentum in (1.2.3). Instead, we will show (cf. Proposition 4.3.1) that α(κ, q) grows at

most exponentially in time under the Hκ flow, provided that V is sufficiently regular and we

choose κ to be, say, twice as large as κ. We will then be able to match this new dependence

between the energy parameters κ and κ in the proof of convergence (cf. Proposition 4.5.2).
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CHAPTER 2

Multisolitons are the unique constrained minimizers of

the polynomial conserved quantities

2.1 Introduction

Multisolitons are the most well-understood family of explicit solutions to the KdV equa-

tion (1.1.1). These solutions describe the interaction of an arbitrary number of the soliton

profiles (1.1.2) with distinct amplitudes.

Definition 2.1.1 (Multisoliton solutions). Fix N ≥ 1. Given β1, . . . , βN > 0 distinct and

c1, . . . , cN ∈ R, the multisoliton of degree N (or N-soliton) with these parameters is

Qβ,c(x) = −2 d2

dx2
log det[A(x)], (2.1.1)

where A(x) is the N ×N matrix with entries

Ajk(x) = δjk + 1
βj+βk

e−βj(x−cj)−βk(x−ck).

The unique solution to KdV (1.1.1) with initial data u(0, x) = Qβ,c(x) is

u(t, x) = Qβ,c(t)(x), where cj(t) = cj + 4β2
j t.

We define the multisoliton of degree zero to be the zero function.

Formula (2.1.1) was first discovered in [88] as part of a study of potentials for one-

dimensional Schrödinger operators with vanishing reflection coefficient. Multisolitons have
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since been thoroughly examined by means of inverse scattering theory; see, for example, [63,

64,74,133,137,143].

Multisolitons are closely related to the polynomial conserved quantities En of KdV. These

are an infinite sequence of functionals that are conserved under the KdV flow [115]. Their

densities are defined recursively by [141]:

σ1(x) = u(x), σm+1(x) = −σ′m(x)−
m−1∑

j=1

σj(x)σm−j(x).

For even m the density σm is a complete derivative, but for odd m we obtain a nontrivial

conserved quantity

En(u) = (−1)n 1
2

∫ ∞

−∞
σ2n+1(x) dx (2.1.2)

whose density is a polynomial in u, u′, . . . , u(n−1). The first three functionals in this sequence

are given in (1.1.3) and (1.1.4). When evaluated at an N -soliton, the value of En is given

by [64,141]:

En(Qβ,c) = (−1)n+1 22n+1

2n+1

N∑

m=1

β2n+1
m , (2.1.3)

which is independent of c.

Multisolitons enjoy special variational properties with respect to these conserved quan-

tities. Indeed, Maddocks and Sachs [110] used that the n-soliton is a local minimizer for the

following variational problem in order to prove that n-solitons are orbitally stable in Hn(R).

Problem 2.1.2. Given an integer n ≥ 0 and constraints e1, . . . , en, minimize En+1(u) over

the set

Ce = {u ∈ Hn(R) : E1(u) = e1, . . . , En(u) = en}.

In the case n = 0 there are no constraints, and the minimizer of the L2-norm over the

space L2(R) is simply the zero-soliton q(x) ≡ 0. We include this trivial observation because

it will provide a convenient base case for an induction argument.

Despite the success [110] of Maddocks and Sachs, the variational problem remains un-

solved: are multisolitons global constrained minimizers of En+1? If so, are they unique? In
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particular, affirmative answers to this problem would be a significant step towards applying

concentration compactness to prove the orbital stability of multisolitons.

More generally, we would like to understand all solutions to this natural problem because

they are basic building blocks. Indeed, special solutions to completely integrable models

elucidate an avenue to a low-complexity understanding of the dynamics. A critical point for

this variational problem must satisfy the Euler–Lagrange equation

∇En+1(u) = λ1∇E1(u) + λ2∇E2(u) + · · ·+ λn∇En(u). (2.1.4)

Solutions to these equations are called algebro-geometric solutions, and they are fundamental

objects for integrable systems [66,67]; in fact, solitons were discovered via (2.1.4). Naturally,

we would like to understand all critical points for this variational problem.

In order to state our main results, we introduce the following notation. Given n ≥ 1, we

define the set of feasible constraints

Fn = {(e1, . . . , en) ∈ Rn : Ce 6= ∅}

which are attainable by some function in Hn(R). We also define the set of constraints

attainable by multisolitons of degree at most N ≥ 0:

Mn
N =

{
(e1, . . . , en) ∈ Rn : ∃ M ≤ N and β, c ∈ RM with Qβ,c ∈ Ce

}
.

First we prove that when the constraints are attainable by a multisoliton of degree at

most n, those multisolitons are the unique global minimizers:

Theorem 2.1.3 (Variational characterization). Fix an integer n ≥ 1. Given constraints

(e1, . . . , en) ∈ Mn
n, there exists a unique integer N ≤ n and parameters β1 > · · · > βN > 0

so that the multisoliton Qβ,c lies in Ce for some (and hence all) c ∈ RN . Moreover, we have

En+1(u) ≥ En+1(Qβ,c) for all u ∈ Ce,

with equality if and only if u = Qβ,c for some c ∈ RN .
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Together with an appropriate concentration compactness principle (Theorem 2.5.2) to

analyze minimizing sequences, we also prove the orbital stability result of [110] via concen-

tration compactness:

Theorem 2.1.4 (Orbital stability). Fix an integer n ≥ 1 and distinct positive parameters

β1, . . . , βn. Given ε > 0 there exists δ > 0 so that for every initial data u(0) ∈ Hn(R)

satisfying

inf
c∈Rn
‖u(0)−Qβ,c‖Hn < δ,

the corresponding solution u(t) of KdV (1.1.1) satisfies

sup
t∈R

inf
c∈Rn
‖u(t)−Qβ,c‖Hn < ε.

Many refinements have been made since the discovery of Theorem 2.1.4. While we

choose to work in the space Hn(R) because it is amenable to the functionals E1, . . . , En+1,

the regularity of Theorem 2.1.4 in the scope of Hs(R) spaces has since been significantly

lowered [5, 98, 112, 114]. Moreover, the time-evolution of the parameter c has been shown

to remain close to the usual evolution cj + 4β2
j t uniformly for t > 0 [3]. In addition to

Lyapunov stability statements like Theorem 2.1.4, the asymptotic stability of multisolitons

has also been studied [111,112,114].

Recently, the n = 2 cases of Theorems 2.1.3 and 2.1.4 were resolved by Albert and

Nguyen [4]. They also showed that for n = 1 we have

M1
1 = {e1 : e1 ≥ 0} = F1,

but for n = 2 we have

M2
2 =

{
(e1, e2) : e1 > 0, e2 ∈

[
−32

5
(3
8
)
5
3 e

5
3
1 , −2−

2
3 32

5
(3
8
)
5
3 e

5
3
1

)}
∪ {(0, 0)},

F2 =
{

(e1, e2) : e1 > 0, e2 ≥ −32
5

(3
8
)
5
3 e

5
3
1

}
∪ {(0, 0)}.

(2.1.5)

These sets are depicted in Fig. 2.1. Theorem 2.1.3 says that for each (e1, e2) ∈ M2
2 the

constrained minimizers of E3 are multisolitons of degree at most 2. Moreover, by the n = 1
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M2
2

... ⋃M2
N

F2

e1

e2

Figure 2.1: The sets (2.1.5) and (2.1.6) of constraints. The three shaded regions correspond

to qualitatively different behavior for minimizing sequences.

case of Theorem 2.1.3, we know that for the constraints e1 > 0 and e2 = −32
5

(3
8
)
5
3 e

5
3
1 on the

boundary ofM2
2 the minimizer is a single soliton. Likewise, in the case of n = 3 constraints,

the boundary M3
3 r (intM3

3) in R3 looks like the graph of a continuous function on M2
2,

and so on. In general, we will show that Mn
n is homeomorphic to the half-open simplex of

parameters β ∈ Rn corresponding to multisolitons of degree at most n (cf. Lemma 2.3.4).

Albert and Nguyen’s analysis does not easily extend to the general case however, be-

cause it makes crucial use of the fact that for n = 2 all solutions of the Euler–Lagrange

equation (2.1.4) are one- or two-solitons [2]. Much is known about the ODEs (2.1.4); they

are completely integrable Hamiltonian systems and thus can formally be solved. Neverthe-

less, for n ≥ 3 it is open whether all solutions to the Euler–Lagrange equation (2.1.4) are

multisolitons of degree at most n. (Specifically, it is difficult to show that if the Lagrange

multipliers λ1, . . . , λn do not correspond to an n-soliton then solutions of (2.1.4) must be

singular; see [2, §6] for details.)

Another advantage of our method is that it enables us to study the variational problem
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and minimizing sequences even when the constraints (e1, . . . , en) /∈ Mn
n are not attainable

by a multisoliton of degree at most n. After obtaining the n = 2 case of Theorems 2.1.3

and 2.1.4, Albert and Nguyen [4] made the reasonable conjecture for the remaining case

(e1, e2) ∈ F2 rM2
2 that minimizing sequences resemble a collection of solitons with at least

two β parameters equal. Using our methods, we prove that this is partially true provided

that the constraints are attainable by some multisoliton:

Theorem 2.1.5. Given constraints (e1, . . . , en) ∈ Mn
N rMn

N−1 for some N ≥ n + 1, the

infimum of En+1(u) over u ∈ Ce is finite but not attained.

Moreover, if {qk}k≥1 ⊂ Ce is a minimizing sequence:

E1(qk)→ e1, . . . , En(qk)→ en, En+1(qk)→ inf
u∈Ce

En+1(u) as k →∞,

then there exist parameters β1, . . . ,βJ of total degree
∑J

j=1 #βjn = N taking at most n

distinct values so that along a subsequence we have

inf
c1,...,cJ

∥∥∥∥qk −
J∑

j=1

Qβj ,cj

∥∥∥∥
Hn

→ 0 as k →∞.

We must have multiple multisolitons in the conclusion of Theorem 2.1.5, because two

multisolitons with a common β parameter necessarily become infinitely separated as k →∞.

On the other hand, we cannot guarantee N single-soliton profiles as originally conjectured

in [4], because two distinct values of the minimizing parameters β can correspond to a

multisoliton that does not resemble well-separated solitons.

Theorem 2.1.5 still does not account for all of the remaining feasible constraints Fn!

In general, we can compute the boundary of Mn
N by finding the extrema of En+1 for

β1, . . . , βN > 0 distinct. For n = 2, it is not difficult to show that

M2
N =

{
(e1, e2) : e1 > 0, e2 ∈

[
−32

5
(3
8
)
5
3 e

5
3
1 , −N−

2
3 32

5
(3
8
)
5
3 e

5
3
1

)}
∪ {(0, 0)}

for all N ≥ 2. Indeed, this is closely related to the elementary inequality

N−
2
3

( N∑

m=1

β3
m

) 5
3

≤
N∑

m=1

β5
m ≤

( N∑

m=1

β3
m

) 5
3
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which expresses the equivalence of the `3- and `5-norms on RN . The setsM2
N are depicted in

the phase diagram of Fig. 2.1, and can also be understood in terms of the single dimensionless

variable e2e
−5/3
1 . Note that this implies that the set Mn

N rMn
N−1 in Theorem 2.1.5 is

nonempty for all n ≥ 2 and N ≥ 1, since increasing N always introduces new values of e2.

Moreover, we see that the set

⋃

N≥0

M2
N =

{
(e1, e2) : e1 > 0, e2 ∈

[
−32

5
(3
8
)
5
3 e

5
3
1 , 0

)}
∪ {(0, 0)} (2.1.6)

misses a large portion of the feasible constraints F2 in (2.1.5).

We discover that in the remaining case when the constraints (e1, . . . , en) ∈ Fnr⋃N≥0Mn
N

are not attainable by any multisoliton, Albert–Nguyen’s conjecture cannot be true and en-

tirely different behavior is exhibited. To illustrate this point, we provide the following char-

acterization of Schwartz minimizing sequences in the case n = 2. (Recall from Section 1.4

the definition of the scattering data a(k;u) and β1, . . . , βN for Schwartz potentials u(x).)

Theorem 2.1.6. Given constraints (e1, e2) ∈ F2 with (e1, e2) /∈M2
N for all N , the infimum

of E3(u) over u ∈ Ce ∩ S(R) is finite but not attained.

Moreover, if {qj}j≥1 ⊂ Ce ∩ S(R) is a minimizing sequence:

E1(qj)→ e1, E2(qj)→ e2, E3(qj)→ inf
u∈Ce

E3(u) as j →∞,

then βj,m → 0 as j →∞ for all m, and k 7→ log |a(k; qj)| converges in the sense of distribu-

tions to the even extension of a unique Dirac delta distribution (i.e. c0(dδk0(k) + dδ−k0(k))

for unique constants c0, k0 ≥ 0).

What might such a minimizing sequence look like? We can exhibit a family of these

sequences via an ansatz inspired by the Wigner–von Neumann example of a Schrödinger

potential with a positive eigenvalue. Given parameters c > 0 and k ≥ 0, it is straightforward

to check that the sequence

qn(x) =
√

c
n
e−

x2

2n2 cos(2kx)
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obeys

E1(qn)→
√
π
4
c, E2(qn)→ √πck2, E3(qn)→ 4

√
πck4

as n→∞. In the proof of Theorem 2.1.6 we will explicitly compute the constrained infimum

of E3, and it is given by e22e
−1
1 (cf. Lemma 2.7.2). We see that the limit of E3(qn) above

is exactly equal to this quantity, and so {qn}n≥1 is a Schwartz minimizing sequence. By

Theorem 2.1.6, we deduce that this sequence has vanishing β parameters and log |a(k; qn)|
converging to the even extension of a delta distribution.

This chapter is organized as follows. In Section 2.2 we recall some scattering theory and

facts about the energy functionals En. At the center of this section lies the Zakharov–Faddeev

trace formulas (2.2.7) for the polynomial conserved quantities En(u), which generalize the

formula (2.1.3) for the case where u = Qβ,c is a multisoliton. Explicitly, the first few formulas

in this sequence are given by (1.4.3). For multisolitons q we have |a(k; q)| ≡ 1 on R, and so

the log |a(k; q)| moments vanish and we recover (2.1.3).

In Section 2.3, we further analyze the functionals E1, . . . , En+1 on the manifold of multi-

solitons and use this to describe the set Mn
n of constraints.

The proof of Theorem 2.1.3 is then presented in Section 2.4. A key step is realizing that

in order to minimize En+1, a minimizer q must satisfy log |a(k; q)| ≡ 0 on R (cf. (2.2.4)

and (2.2.7)). We know that log |a(k; q)| can be brought all the way down to zero since the

constraints can be met solely by the moments of β ∈ Rn; this is why we must assume that

(e1, . . . , en) ∈Mn
n in Theorem 2.1.3. Next, we prove that |a(k; q)| ≡ 1 on R if and only if q is

a multisoliton. The “if” statement is already known from scattering theory (cf. (2.2.9)). For

the reverse implication, we use some classical complex analysis to characterize k 7→ a(k; q)

on C+ and conclude that q is a multisoliton (cf. Lemma 2.4.6). It then remains to show that

on the manifold of multisolitons, there is a unique minimizing set of β parameters. First, we

can rule out the case of N ≥ n+ 1 parameters by a variational argument (cf. Lemma 2.3.1).

For the remaining N ≤ n unknown parameters β1, . . . , βN , the formulas (2.1.3) for the n

constraints provide a nonlinear system of equations, which we show has a unique solution in
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Lemma 2.3.2.

In Section 2.5 we apply a concentration compactness principle (Theorem 2.5.2) to mini-

mizing sequences in order to prove Theorem 2.1.4.

In Section 2.6, we prove Theorem 2.1.5 by adapting the methods of Sections 2.3 to 2.5

to allow for repeated values in the β parameters.

Finally, in Section 2.7 we prove Theorem 2.1.6. The proof is again based on the trace

formulas (1.4.3). The condition (e1, e2) /∈ M2
N for all N requires that the log |a(k; qj)| mo-

ments are nonvanishing as j → ∞. Consequently, {qj}j≥1 is a minimizing sequence for a

constrained moment problem for measures, and such minimizers are finite linear combina-

tions of point masses. This particular moment problem for n = 2 is easily solved using

the Cauchy–Schwarz inequality, but for general n it is a Stieltjes moment problem. (We

recommend [130] for an introduction to this classical analysis result.)

2.2 Preliminaries

In this section, we recall some facts about the energy functionals En and results from scatter-

ing theory for future reference. In particular, this will enable us to formulate the Zakharov–

Faddeev trace formulas (2.2.7) that lie at the heart of our analysis.

The functionals (1.1.3) and (1.1.4) are the beginning of an infinite sequence of polyno-

mial conserved quantities (2.1.2). We will only need certain properties of these functionals

however, rather than their exact formula.

Proposition 2.2.1 ([115]). Given an integer n ≥ 0, there exists a functional of the form

En+1(u) =

∫ ∞

−∞

[
1
2

(
u(n)
)2

+ Pn+1(u)
]
dx (2.2.1)

that is conserved for Schwartz solutions u(t) to the KdV equation (1.1.1), where Pn+1 is a

polynomial in u, u′, . . . , u(n−1). Each term of Pn+1 is of the form cα1...αdu
(α1) · · ·u(αd) with
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d ≥ 3 and obeys
d∑

j=1

αj = 2n+ 4− 2d and 0 ≤ αj ≤ n− 1. (2.2.2)

Each term of Pn+1 is of cubic or higher order, and the condition (2.2.2) simply says that

they share the same scaling symmetry as the quadratic term 1
2
(u(n))2. In particular, this

requires that the degree of Pn+1 is at most n+ 2.

When combined with Sobolev embedding, a classical argument (cf. [108, Th. 3.1] in the

periodic case) yields estimates for the functionals (2.2.1):

Lemma 2.2.2. Given n ≥ 0, we have

En+1(u) .‖u‖Hn 1 and ‖u‖Hn .E1(u),...,En+1(u) 1 (2.2.3)

uniformly for u ∈ S(R). Moreover, En+1 : Hn(R)→ R is continuous.

Here, we are using the familiar L2-based Sobolev spaces Hs(R) (and the Lp-based spaces

W j,p(R)) of real-valued functions on R. In addition to these classes, the scattering theory

that we need to state our trace formulas will require that we work in the weighted L1-spaces

L1
j(R) :=

{
f : R→ R such that

∫ ∞

−∞
|f(x)|(1 + |x|j) dx <∞

}

with j ≥ 1. When we need a common ground, we will use the class S(R) of Schwartz

functions.

Given a potential q ∈ L1
1(R) and k ∈ Rr {0}, the Jost functions fj(x; k) are the unique

solutions to the corresponding Schrödinger equation

−f ′′j + qfj = k2fj, j = 1, 2

with the asymptotics

f1(x; k) ∼ eikx as x→ +∞, f2(x; k) ∼ e−ikx as x→ −∞.

25



The transmission and reflection coefficients Tj(k) and Rj(k) are then uniquely determined

by

T1(k)f2(x; k) = R1(k)f1(x; k) + f1(x;−k),

T2(k)f1(x; k) = R2(k)f2(x; k) + f2(x;−k).

Forward scattering theory tells us that the transmission and reflection coefficients satisfy

the following properties. Proofs of these facts can be found in many introductory texts on

the subject; however, we recommend the paper [47, §2 Th. 1] of Deift and Trubowitz for a

complete and self-contained proof.

Proposition 2.2.3 (Forward scattering theory). If q ∈ L1
2(R), then the scattering matrix

S(k) :=


T1(k) R2(k)

R1(k) T2(k)




extends to a continuous function of k ∈ R satisfying the following properties:

(i) (Symmetry) For all k ∈ R,

T1(k) ≡ T2(k) =: T (k).

(ii) (Unitarity) The matrix S(k) is unitary for all k ∈ R:

T (k)R2(k) +R1(k)T (k) ≡ 0, |T (k)|2 + |Rj(k)|2 ≡ 1 for j = 1, 2.

(iii) (Analyticity) T (k) is meromorphic in the open upper half-plane C+ and is continuous

down to R. Moreover, T (k) has a finite number of poles iβ1, . . . , iβN , all of which

are simple and on the imaginary axis, and −β2
1 , . . . ,−β2

N are the bound states of the

operator −∂2x + q.

(iv) (Asymptotics) We have

T (k) = 1 +O( 1
k
) as |k| → ∞ uniformly for Im k ≥ 0,

Rj(k) = O( 1
k
) as |k| → ∞, k ∈ R.
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(v) (Rate at k = 0) T (k) is nonvanishing for k ∈ C+ r {0}, and either

(a) |T (k)| ≥ c > 0 for all k ∈ C+, or

(b) T (k) = T ′(0)k+ o(k) for k ∈ C+ with T ′(0) 6= 0 and Rj(k) = −1 +R′j(0)k+ o(k)

for k ∈ R.

(vi) (Reality) For all k ∈ R,

T (k) = T (−k), Rj(k) = Rj(−k) for j = 1, 2.

Our trace formulas are most conveniently stated in terms of the reciprocal of the trans-

mission coefficient:

a(k; q) := 1
T (k)

.

For q ∈ L1
2(R), Proposition 2.2.3 tells us that k 7→ a(k; q) is a holomorphic function on

the open upper-half plane C+ and is continuous down to R. It has finitely many zeros

iβ1, . . . , iβN in C+, all of which are simple and on the imaginary axis. Moreover, we have

the boundary conditions

|a(k; q)| ≥ 1 for all k ∈ R, (2.2.4)

|a(k; q)− 1| = O( 1
|k|) as |k| → ∞ uniformly for Im k ≥ 0, (2.2.5)

along with the reality condition

a(k; q) = a(−k; q) for all k ∈ C+. (2.2.6)

For u ∈ S(R), the Zakharov–Faddeev trace formulas [141] provide an alternative repre-

sentation of the polynomial conserved quantities:

En(u) = 22n

π

∫ ∞

−∞
k2n log |a(k;u)| dk + (−1)n+1 22n+1

2n+1

N∑

m=1

β2n+1
m . (2.2.7)

The measure log |a(k;u)| dk on R is nonnegative and even, and the first terms on the RHS

are its even moments (starting with the second), which are finite for u ∈ S(R) [141]. The
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second terms are the odd moments of the distinct positive numbers β1, . . . , βN (starting with

the third) and are alternating in sign.

Later, we will deduce that a constrained minimizer q of En+1 must have certain scattering

data due to the trace formulas (2.2.7). Consequently, it will be useful to know when we can

reconstruct the potential q from the scattering data [47, §5 Th. 3]:

Proposition 2.2.4 (Inverse scattering theory). A matrix

S(k) :=


T1(k) R2(k)

R1(k) T2(k)


 , k ∈ R

is the scattering matrix for some q ∈ L1
2(R) without bound states if and only if

(i) (Symmetry) For all k ∈ R,

T1(k) ≡ T2(k) =: T (k).

(ii) (Unitarity) The matrix S(k) is unitary for all k ∈ R:

T (k)R2(k) +R1(k)T (k) ≡ 0, |T (k)|2 + |Rj(k)|2 ≡ 1 for j = 1, 2.

(iii) (Analyticity) T (k) is analytic in the open upper half-plane C+ and is continuous down

to R.

(iv) (Asymptotics) We have

T (k) = 1 +O( 1
k
) as |k| → ∞ uniformly for Im k ≥ 0,

Rj(k) = O( 1
k
) as |k| → ∞, k ∈ R.

(v) (Rate at k = 0) T (k) is nonvanishing for k ∈ C+ r {0}, and either

(a) |T (k)| ≥ c > 0 for all k ∈ C+, or

(b) T (k) = T ′(0)k+ o(k) for k ∈ C+ with T ′(0) 6= 0 and Rj(k) = −1 +R′j(0)k+ o(k)

for k ∈ R.
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(vi) (Reality) For all k ∈ R,

T (k) = T (−k), Rj(k) = Rj(−k) for j = 1, 2.

(vii) (Fourier decay) The Fourier transforms Fj := R̂j, j = 1, 2 are absolutely continuous

and ∫ a

−∞
|F ′1(κ)|(1 + κ2) dκ <∞ and

∫ ∞

a

|F ′2(κ)|(1 + κ2) dκ <∞

for all a ∈ R.

The characterization in Proposition 2.2.4 is most easily stated in terms of potentials q

without bound states. This does not pose a problem though, because there is an explicit

formula for modifying q in order to prescribe any number of bound states [47, §3 Th. 6].

Rather than the explicit formula for q, we will only need to keep track of the changes in the

transmission coefficient:

Proposition 2.2.5 (Adding bound states). Let q(x) ∈ L1
1(R) be a potential without bound

states and β1, . . . , βN > 0 distinct. Then there exists a potential q(x; +N) ∈ L1
1(R) with the

N bound states −β2
1 , . . . ,−β2

N . Moreover, the transmission coefficient is related to that of

q(x) via

T (k; +N) = T (k)
N∏

m=1

k + iβm
k − iβm

. (2.2.8)

Within this narrative, multisolitons are characterized by having vanishing reflection co-

efficients. In view of the preceding, this identifies the formula for a(k; q):

Corollary 2.2.6 (Characterization of multisolitons). Given distinct β1, . . . , βN > 0 and

q ∈ S(R), we have q = Qβ,c for some c ∈ RN if and only if

a(k; q) =
N∏

m=1

k − iβm
k + iβm

. (2.2.9)

Notice that the formula (2.2.9) is a finite Blaschke product from C+ to the unit disk,

with zeros that are distinct and lie only on the imaginary axis. In particular, we see that
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multisolitons Qβ,c satisfy |a(k;Qβ,c)| ≡ 1 on R, and so the log |a|moments in the trace formu-

las (2.2.7) vanish. Consequently, the functionals En for a multisoliton Qβ,c are independent

of c.

2.3 The polynomial conserved quantities

The purpose of this section is to analyze the functionals E1, . . . , En+1 restricted to the man-

ifold of multisolitons, and to then use this to describe the set Mn
n of constraints.

First, we will prove that as long as we have at least n+1 distinct positive β parameters at

our disposal, we can decrease En+1 while preserving E1, . . . , En. This surprisingly powerful

fact will turn out to be an integral part of our analysis.

Lemma 2.3.1. Fix n ≥ 1, and suppose Qβ,c is a multisoliton of degree N ≥ n + 1. Then

there exist β̃1, . . . , β̃N > 0 distinct so that

Em(Qβ̃,c) = Em(Qβ,c) for m = 1, . . . , n, but En+1(Qβ̃,c) < En+1(Qβ,c).

Proof. We will apply the implicit function theorem to the first n + 1 trace formulas (2.2.7)

as functions of β. Reorder β so that β1 > · · · > βN > 0. Define the function f : Rn+1 → Rn

by

f(x1, . . . , xn+1) =




x31 + x32 + · · ·+ x3n+1

x51 + x52 + · · ·+ x5n+1

...

x2n+1
1 + x2n+1

2 + · · ·+ x2n+1
n+1



. (2.3.1)

This function has derivative matrix

Df(β1, . . . , βn+1) =




3β2
1 . . . 3β2

n 3β2
n+1

5β4
1 . . . 5β4

n 5β4
n+1

...
. . .

...
...

(2n+ 1)β2n
1 . . . (2n+ 1)β2n

n (2n+ 1)β2n
n+1



. (2.3.2)
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The left n×n block matrix is a Vandermonde matrix after pulling out common factors from

each row and column, and thus has determinant

3 · 5 · · · (2n+ 1) β2
1 · · · β2

n

∏

j<k

(β2
k − β2

j ). (2.3.3)

This is nonvanishing as β1, . . . , βn are positive and distinct. The implicit function theorem

then implies that there exists ε > 0 and C1 functions x1(xn+1), . . . , xn(xn+1) defined on

(βn+1 − ε, βn+1 + ε) so that

f(x1(xn+1), . . . , xn(xn+1), xn+1) ≡




β3
1 + · · ·+ β3

n+1

β5
1 + · · ·+ β5

n+1

...

β2n+1
1 + · · ·+ β2n+1

n+1




(2.3.4)

for xn+1 ∈ (βn+1 − ε, βn+1 + ε).

It remains to show that we can pick xn+1 in a way that decreases the next odd moment.

To this end, we will compute its derivative at xn+1 = βn+1:

d

dxn+1

∣∣∣∣
xn+1=βn+1

[
x1(xn+1)

2n+3 + · · ·+ xn(xn+1)
2n+3 + x2n+3

n+1

]

= (2n+ 3)



(
β2n+2
1 . . . β2n+2

n

)



x′1(βn+1)
...

x′n(βn+1)


+ β2n+2

n+1


 .

(2.3.5)

The derivative of x1(xn+1), . . . , xn(xn+1) is determined by differentiating (2.3.4) at xn+1 =

βn+1. This yields




x′1(βn+1)
...

x′n(βn+1)


 = −




3β2
1 . . . 3β2

n

...
. . .

...

(2n+ 1)β2n
1 . . . (2n+ 1)β2n

n




−1


3β2
n+1

...

(2n+ 1)β2n
n+1


 . (2.3.6)

Inserting this into (2.3.5), we obtain an expression solely in terms of β1, . . . , βn+1. In order to

compute this, we will leverage that it is a Schur complement for the derivative matrix (2.3.2)
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but with an appended row. Specifically, if we define the (n+ 1)× (n+ 1) block matrix


A b

c d


 =




3β2
1 . . . 3β2

n 3β2
n+1

5β4
1 . . . 5β4

n 5β4
n+1

...
. . .

...
...

(2n+ 3)β2n+2
1 . . . (2n+ 3)β2n+2

n (2n+ 3)β2n+2
n+1



,

then LHS(2.3.5) is now given by

d− cA−1b.

On the other hand, applying one step of Gaussian elimination to our block matrix yields


A b

c d


 =


 I 0

cA−1 1




A b

0 d− cA−1b


 .

Taking the determinant of both sides, we deduce that LHS(2.3.5) is equal to

det


A b

c d


 (detA)−1.

Both terms above can be computed by the Vandermonde determinant formula: the determi-

nant of A is given by (2.3.3) for n and the determinant of the block matrix is given by (2.3.3)

for n+ 1.

Altogether, we conclude

d

dxn+1

∣∣∣∣
xn+1=βn+1

[
x1(xn+1)

2n+3 + · · ·+ xn(xn+1)
2n+3 + x2n+3

n+1

]

= (2n+ 3)β2
n+1

n∏

j=1

(β2
n+1 − β2

j ).

The RHS is nonvanishing since β1, . . . , βn+1 are positive and distinct. As β1, . . . , βN were

distinct to begin with, we conclude that there exists xn+1 ∈ (βn+1 − ε, βn+1 + ε) sufficiently

close to βn+1 so that the values x1(xn+1), . . . , xn(xn+1), xn+1, and βn+2 remain distinct, and

(−1)n
[
x1(xn+1)

2n+3 + · · ·+ xn(xn+1)
2n+3 + x2n+3

n+1

]
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is strictly less than its value at xn+1 = βn+1. This quantity is the value of En+1 for the

multisoliton with β parameters x1(xn+1), . . . , xn(xn+1), xn+1. Replacing β1, . . . , βn+1 by

x1(xn+1), . . . , xn(xn+1), xn+1 in β, we obtain new distinct parameters β̃1 > · · · > β̃N > 0

(with β̃j = βj for j ≥ n + 2) so that the multisoliton Qβ̃,c decreases En+1 while preserving

E1, . . . , En.

Our next step is to find the unique set of distinct β parameters with at most n values

that attain the constraints. As (e1, . . . , en) ∈ Mn
n, it only remains to show that there is at

most one solution:

Lemma 2.3.2. Fix n ≥ 1. Given constraints e1, . . . , en, there is at most one choice of N ≤ n

and β1 > · · · > βN > 0 so that

Em(Qβ,c) = em for m = 1, . . . , n and any c ∈ RN .

We will follow the clever argument from [131], which we learned about from [49, §3].

In fact, the result in [131] is even more general: it is shown that any n power sums of n

distinct positive real numbers has at most one solution (up to permutation), in addition to

some generalizations. However, we will provide a complete and self-contained proof here for

future reference (in Corollary 2.3.3).

Proof. Suppose towards a contradiction that there exist β1 > · · · > βN > 0 and β̃1 > · · · >
β̃Ñ > 0 with Ñ ≤ N ≤ n such that Ek(Qβ,c) = Ek(Qβ̃,c) for k = 1, . . . , n. By the trace

formulas (2.2.1), this requires that

N∑

m=1

β2k+1
m =

Ñ∑

m=1

β̃2k+1
m for k = 1, . . . , n. (2.3.7)

Consider the function f : R → Rn given by f(x) = (x3, x5, . . . , x2n+1). After canceling

common terms and moving everything to the LHS, we obtain

M∑

j=1

εjf(βj) = 0
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for some β1 > · · · > βM > 0, M ≤ 2N , and signs εj ∈ {±1}.

Next, we append 2N −M copies of βj := 0 and εj := −1 for j = M + 1, . . . , 2N so that
∑2N

j=1 εj = 0. Using summation by parts, this allows us to write

0 =
M∑

j=1

εjf(βj) +
2N∑

j=M+1

(−1)f(0) =
2N∑

j=1

εjf(βj) =
2N−1∑

j=1

αj[f(βj)− f(βj+1)],

where αj =
∑j

k=1 εk. By the fundamental theorem of calculus, we obtain

0 =

∫ β1

0

φ(s)f ′(s) ds (2.3.8)

for the step function φ which takes value αj on the interval (βj+1, βj). Let I1, . . . , Im denote

the disjoint intervals in [0, β1] (in consecutive order) on which φ is nonvanishing and has

constant sign. Note that we can have at most n such intervals; indeed, j must increment by

two in order for αj to change sign, which together with the first and last indices j account

for all of the 2N ≤ 2n parameters. The equality (2.3.8) then tells us that the rows of the

m× n matrix A with entries

ajk =

∫

Ij

|φ(s)|(f ′(s))k ds, j ∈ {1, . . . ,m}, k ∈ {1, . . . , n}

are linearly dependent.

We claim that A is a strictly totally positive matrix—i.e. all of the minors of A are strictly

positive—which will contradict the linear dependence among the rows. Given two subsets of

indices J ⊂ {1, . . . ,m} and K ⊂ {1, . . . , n}, we can write the corresponding minor of A as

minorJ,K




∫
I1
|φ(s)|(f ′(s))1 ds . . .

∫
I1
|φ(s)|(f ′(s))n ds

...
. . .

...
∫
Im
|φ(s)|(f ′(s))1 ds . . .

∫
Im
|φ(s)|(f ′(s))n ds




=

∫

Ij1

· · ·
∫

Ij|J|

minorJ,K




|φ(s1)|(f ′(s1))1 . . . |φ(s1)|(f ′(s1))n
...

. . .
...

|φ(sm)|(f ′(sm))1 . . . |φ(sm)|(f ′(sm))n


 dsj|J| . . . dsj1 .
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(Indeed, expanding the determinant on the LHS into a sum over permutations of the matrix

entries, each term is a product of |J | integrals which we combine into one |J |-fold integral.)

The integrand on the RHS above can be factored as

minorJ,K








|φ(s1)|
. . .

|φ(sm)|







(f ′(s1))1 . . . (f ′(s1))n
...

. . .
...

(f ′(sm))1 . . . (f ′(sm))n







.

The first matrix has positive determinant because φ is nonvanishing on each Ij by construc-

tion. Therefore, it suffices to show that f ′(s) is a strictly totally positive kernel, i.e. for all

0 < s1 < · · · < s` and k1 < · · · < k` the matrix

(
(f ′(si))kj

)
1≤i≤`, 1≤j≤` =




(2k1 + 1)s2k11 . . . (2k` + 1)s2k`1

...
. . .

...

(2k1 + 1)s2k1` . . . (2k` + 1)s2k``


 (2.3.9)

has positive determinant. Note that when k1, . . . , k` is an arithmetic progression, this matrix

is essentially a Vandermonde matrix with rows and columns multiplied by constants. We

will follow the classical argument for Vandermonde matrices.

First, we claim that the determinant is nonzero. Suppose towards a contradiction that

the determinant vanishes. Then the columns would be linearly dependent, and so there

would exist λ1, . . . , λ` ∈ R so that

∑̀

j=1

λjs
2kj
i = 0 for i = 1, . . . , `.

(We absorbed the coefficients 2kj + 1 into λj.) This means that the polynomial

P (x) :=
∑̀

j=1

λjx
2kj (2.3.10)

has ` positive roots s1, . . . , s`. To obtain a contradiction, we will prove that nontrivial

polynomials of the form (2.3.10) can have at most ` − 1 positive roots by induction on `.

The base case ` = 1 is immediate. For the inductive step, note that if P (x) has ` positive
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roots, then x−2k1P (x) is a polynomial with the same ` positive roots. By Rolle’s theorem, the

polynomial (x−2k1P (x))′ therefore has `− 1 positive roots. On the other hand, (x−2k1P (x))′

is a polynomial of the form (2.3.10) for `−1, and so this contradicts the inductive hypothesis.

Lastly, we show that the determinant is positive. Now that we know the determinant is

nonzero, its sign must be is independent of the choice of 0 < s1 < · · · < s` and k1 < · · · < k`

(but may depend on `). Therefore, we may pick kj = j for j = 1, . . . , ` so that we essentially

have a Vandermonde matrix with determinant

det




3s21 5s41 . . . (2`+ 1)s2`1

3s22 5s42 . . . (2`+ 1)s2`2
...

...
. . .

...

3s2` 5s4` . . . (2`+ 1)s2``




= 3 · 5 · · · (2`+ 1) s21 · · · s2`
∏

j<k

(s2k − s2j).

This is positive for any ` since 0 < s1 < · · · < s`.

For future reference (cf. Lemma 2.5.7), we note that the proof of Lemma 2.3.2 can allow

for repeated β parameters, as long as the total number of values is still at most n.

Corollary 2.3.3. Fix n ≥ 1. Given constraints e1, . . . , en, there is at most one choice of

N ≥ 1 and β1 ≥ · · · ≥ βN > 0 attaining at most n distinct values that satisfies

(−1)m+1 22m+1

2m+1

N∑

j=1

β2m+1
j = em for m = 1, . . . , n.

Proof. We repeat the proof of Lemma 2.3.2. Construct the step function φ so that (2.3.8)

holds. It only remains to show that there are still at most n intervals Ij on which φ is

nonvanishing and has constant sign. If βm = β̃m̃ for some m and m̃, then these terms can be

canceled from (2.3.7) while retaining equality. Consequently, the only new possibility for φ

is that there may be a run of βm parameters with the same value and the same sign εj. This

increases the size of the jumps of φ but does not affect the number of sign changes, and so

the claim follows.
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By Lemma 2.3.2, the map (β1, . . . , βn) 7→ (E1(Qβ,c), . . . , En(Qβ,c)) from the half-open

simplex

{(β1, . . . , βn) ∈ Rn : ∃N with β1 > · · · > βN > 0, βN+1 = · · · = βn = 0} (2.3.11)

into Mn
n has a well-defined inverse. In fact, the inverse is also continuous:

Lemma 2.3.4. The function (β1, . . . , βn) 7→ (E1(Qβ,c), . . . , En(Qβ,c)) is a homeomorphism

from the simplex (2.3.11) onto Mn
n.

Proof. Let

Φ(β1, . . . , βn) =

(
8
3

n∑

m=1

β3
m, −32

5

n∑

m=1

β5
m, . . . , (−1)n−1 2

2n+1

2n+1

n∑

m=1

β2n+1
m

)

denote this function, which maps into Mn
n by definition of Mn

n. Each component of Φ is a

polynomial, and so Φ is smooth. By Lemma 2.3.2, we also know that Φ is a bijection from

the simplex (2.3.11) onto the set of constraints Mn
n.

It remains to show that Φ−1 is continuous. Fix an open subset V ⊂Mn
n and let

⋃∞
m=1Km

be a compact exhaustion ofMn
n. Recall the elementary topology fact that if f : X → Y is a

continuous bijection between topological spaces with X compact and Y Hausdorff, then f is

a homeomorphism. As the map Φ is also proper, then Φ is a homeomorphism from Φ−1(Km)

to Km for all m. Therefore Φ−1(V ∩Km) is relatively open in Φ−1(Km) for all m, and hence

Φ−1(V ) is open.

Given constraints (e1, . . . , en) ∈ Mn
n, let β1 > · · · > βN > 0 be the unique set of

parameters with N ≤ n and Qβ,c satisfying the constraints. We define

C(e1, . . . , en) := En+1(Qβ,c) (2.3.12)

to be the value of the next functional for these parameters. In proving Theorem 2.1.3, we

will ultimately show that C(e1, . . . , en) is the minimum of En+1 subject to the constraints

e1, . . . , en.

In order to do this, we will first need some properties of C:
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Lemma 2.3.5. The function C :Mn
n → R defined in (2.3.12) is continuous and is decreasing

in each variable. Moreover, on the interior ofMn
n, C(e1, . . . , en) is continuously differentiable

and satisfies ∂C
∂ej

< 0 for j = 1, . . . , n.

Proof. We write

C(e1, . . . , en) = (−1)n 22n+3

2n+3

(
β2n+3
1 + · · ·+ β2n+3

n

)
, (2.3.13)

where (β1, . . . , βn) is the unique solution to

e1 = 8
3

n∑

m=1

β3
m, e2 = −32

5

n∑

m=1

β5
m, . . . , en = (−1)n−1 2

2n+1

2n+1

n∑

m=1

β2n+1
m (2.3.14)

in the simplex (2.3.11), guaranteed by Lemma 2.3.2. Note that C is continuous as the

composition of the inverse of the homeomorphism in Lemma 2.3.4 with a polynomial.

Consequently, it suffices to show that ∂C
∂ej

< 0 for j = 1, . . . , n on the interior of Mn
n.

By Lemma 2.3.4, the interior of Mn
n corresponds to the set of n positive parameters β1 >

· · · > βn > 0. In other words, the interior of Mn
n is the set of constraints (e1, . . . , en) which

correspond to n-solitons.

We will now compute ∂C
∂ej

assuming β1 > · · · > βn > 0. Differentiating the con-

straints (2.3.14) with respect to ej, we see that




8β2
1 8β2

2 . . . 8β2
n

−32β4
1 −32β4

2 . . . −32β4
n

...
...

. . .
...

(−1)n−122n+1β2n
1 (−1)n−122n+1β2n

2 . . . (−1)n−122n+1β2n
n







∂β1
∂ej

∂β2
∂ej

...

∂βn
∂ej




(2.3.15)

is equal to the jth coordinate vector (0, . . . , 0, 1, 0, . . . , 0). This is a Vandermonde matrix

after pulling out common factors from each row and column, and thus it has determinant

8 · (−32) · · · (−1)n−122n+1 β2
1 · · · β2

n

∏

j<k

(β2
k − β2

j ).
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This expression is nonvanishing since β1 > · · · > βn > 0, and so we conclude that the partial

derivatives ∂βk
∂ej

exist and are uniquely determined by the matrix product (2.3.15). On the

other hand, differentiating (2.3.13) with respect to ej yields

∂C

∂ej
= (−1)n22n+3

(
β2n+2
1 . . . β2n+2

n

)



∂β1
∂ej
...

∂βn
∂ej


 .

We can determine the column vector on the RHS via (2.3.15). Collecting these equations

for j = 1, . . . , n, we obtain the matrix equation

(
∂C
∂e1

. . . ∂C
∂en

)



8β2
1 . . . 8β2

n

...
. . .

...

(−1)n−122n+1β2n
1 . . . (−1)n−122n+1β2n

n




= (−1)n22n+3
(
β2n+2
1 . . . β2n+2

n

)
,

(2.3.16)

where we moved the matrix to the LHS to avoid inverting it. We have already seen that

this matrix is invertible, and so we conclude that the partial derivatives ∂C
∂ej

exist and are

uniquely determined by the above equality.

In order to compute the derivatives ∂C
∂ej

, we will harness the classical role of Vander-

monde matrices in polynomial interpolation. Specifically, reading off the n components of

the equality (2.3.16), we see that the derivatives ∂C
∂ej

are the coefficients Cj of the polynomial

P (x) := 8C1x− 32C2x
2 + · · ·+ (−1)n−122n+1Cnx

n − (−1)n22n+3xn+1

which satisfies

P (β2
m) = 0 for m = 1, . . . , n.

As β1 > · · · > βn > 0, there is only one such polynomial, namely,

P (x) = (−1)n+122n+3x
n∏

m=1

(x− β2
m).
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Therefore, the coefficients Cj are given by Vieta’s formulas:

8C1 = (−1)n+122n+3(−1)n
n∏

j=1

β2
j ,

−32C2 = (−1)n+122n+3(−1)n−1
n∑

k=1

∏

j 6=k

β2
j ,

...

(−1)n−122n+1Cn = (−1)n+122n+3(−1)
n∑

j=1

β2
j ,

(2.3.17)

where the RHS for Cj involves the (n − j + 1)st elementary symmetric polynomial in

β2
1 , . . . , β

2
n. In particular, we see that each ∂C

∂ej
= Cj is given by (−1)2n+1 = −1 times a

strictly positive quantity, and hence is strictly negative as desired.

In order to employ that C is decreasing, we will also need to know that the set Mn
n is

downward closed within
⋃
N≥0Mn

N in the following sense:

Lemma 2.3.6. If the constrains ẽ1, . . . , ẽn are in Mn
N for some N and

ẽ1 ≤ e1, . . . , ẽn ≤ en

for some (e1, . . . , en) ∈Mn
n, then (ẽ1, . . . , ẽn) ∈Mn

n.

Proof. Let β̃1, . . . , β̃N > 0 be the β parameters of the multisoliton which witnesses the

constraints ẽ1, . . . , ẽn. The case N ≤ n is immediate, so assume that N ≥ n+ 1. Let

αj =
N∑

m=1

β̃jm, j = 3, 5, . . . , 2n+ 1

denote the odd moments of β̃1, . . . , β̃N . Define

Γ :=

{
(x1, . . . , xN) ∈ RN : x1, . . . , xN ≥ 0,

N∑

m=1

xjm = αj for j = 3, 5, . . . , 2n+ 1

}

to be the set of parameters in RN satisfying the constraints, which is nonempty because it

contains (β̃1, . . . , β̃N).

40



It suffices to show that the intersection of Γ with the n-dimensional boundary face

{(x1, . . . , xN) : xn+1, . . . , xN = 0} is nonempty, since a point (x1, . . . , xn, 0, . . . , 0) provides

the n-soliton parameters that we seek. The case n = 1 is immediate as Γ is just an `3-sphere,

and so we may assume that Γ is the intersection of n ≥ 2 constraints.

To accomplish this, consider the set “between” the constraints

Ω :=

{
(x1, . . . , xN) ∈ RN : x1, . . . , xN ≥ 0,

(−1)k
N∑

m=1

x2k+1
m ≤ (−1)kα2k+1 for k = 1, . . . , n

}
.

Unlike Γ, we already know that the intersection of Ω with the boundary face {(x1, . . . , xN) :

xn+1, . . . , xN = 0} is nonempty by premise. Indeed, as (e1, . . . , en) ∈ Mn
n, then there exist

x1, . . . , xn so that

(−1)k+1 22k+1

2k+1

n∑

m=1

β2k+1
m = ek ≥ ẽk = (−1)k+1 22k+1

2k+1
α2k+1 for k = 1, . . . , n.

(This premise is in fact necessary, as the sets Ω and Γ may not intersect the bound-

ary face {(x1, . . . , xN) : xn+1, . . . , xN = 0} in general; cf. Lemma 2.6.1.) Note that Ω

is also bounded, because each coordinate xj is bounded by α
1/5
5 since n ≥ 2. As Ω ∩

{(x1, . . . , xN) : xn+1, . . . , xN = 0} is nonempty, closed, and bounded, there exists some

point (β1, . . . , βn, 0, . . . , 0) in this intersection that minimizes the (n + 1)st odd moment

(−1)n
∑
x2n+3
m . This point must actually lie in Γ, because Lemma 2.3.5 tells us that the value

(−1)n
∑
x2n+3
m is an individually decreasing function of the moments on Ω ∩ {(x1, . . . , xN) :

xn+1, . . . , xN = 0}.

2.4 Global minimizers

We will prove Theorem 2.1.3 over the course of this section by induction on n. We begin

with the base case n = 0. The conclusion is immediate since

E1(u) =

∫ ∞

−∞

1
2
u2 dx ≥ 0 for all u ∈ L2(R),
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with equality if and only if u is equal to the zero-soliton q(x) ≡ 0.

Next, we turn to the inductive step. Suppose that n ≥ 1 and that Theorem 2.1.3 holds

for 1, 2, . . . , n− 1. This inductive hypothesis yields the following fact for Mn
n:

Lemma 2.4.1. The set Mn
n is a relatively open subset of the feasible constraints Fn (with

respect to the topology on Rn).

Proof. Given (e1, . . . , en) in the interior of Mn
n, we know that the numer of β parameters

is n by Lemma 2.3.4. Therefore, for each k ≤ n − 1 we can increase and decrease Ek+1

while preserving E1, . . . , Ek by Lemma 2.3.1 since n is strictly larger than k. Moreover,

Lemma 2.3.4 implies that the set Mn
n r (intMn

n) corresponds to multisolitons of degree at

most n−1, and thus lie on the boundary of Fn by the inductive hypothesis that Theorem 2.1.3

holds for each k = 1, . . . , n− 1.

Next, we will prove the first half of the inductive step: that multisolitons of degree at

most n are global constrained minimizers.

Theorem 2.4.2. Given constraints (e1, . . . , en) ∈ Mn
n, there exists a unique integer N ≤ n

and parameters β1 > · · · > βN > 0 so that the multisoliton Qβ,c lies in Ce for some (and

hence all) c ∈ RN . Moreover, we have

En+1(u) ≥ En+1(Qβ,c) for all u ∈ Ce.

Proof. We first prove the inequality for u Schwartz. In this case, the trace formula (2.2.7)

allows us to write

En+1(u) = 22n+2

π

∫ ∞

−∞
k2n+2 log |a(k;u)| dk + (−1)n 22n+3

2n+3

N∑

m=1

β2n+3
m .

The integrand is nonnegative by (2.2.4), so we can omit the integral to obtain the inequality

≥ (−1)n 22n+3

2n+3

N∑

m=1

β2n+3
m .
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Note that the β parameters do not satisfy the constraints ej, but rather the smaller con-

straints ej − 22j

π

∫
k2j log |a| dk because the moments of log |a(k;u)| may not vanish. Never-

theless, asMn
n is downward closed by Lemma 2.3.6, we know that these constraints are still

attainable by a multisoliton of degree at most n and so Lemma 2.3.1 implies that

≥ C
(
e1 − 4

π

∫
k2 log |a| dk, . . . , en − 22n

π

∫
k2n log |a| dk

)
.

Finally, C is individually decreasing in each variable by Lemma 2.3.5, and so we conclude

≥ C(e1, . . . , en)

as desired.

For general u ∈ Hn(R), we approximate by a sequence of Schwartz functions. The

constraints e1, . . . , en and minimum value C for the approximate functions will converge by

the continuity of E1, . . . , En : Hn(R)→ R and C :Mn
n → R, the latter of which we proved in

Lemma 2.3.5. Moreover, the constraints e1, . . . , en for the approximate functions eventually

lie in Mn
n by Lemma 2.4.1.

To conclude the inductive step of Theorem 2.1.3, it remains to show that any other

constrained minimizer must also be a multisoliton with the right β parameters:

Theorem 2.4.3. Suppose we have constraints (e1, . . . , en) ∈Mn
n and that q ∈ Ce minimizes

En+1(u) over Ce. Then q = Qβ,c for some c ∈ RN , where β ∈ RN are the unique parameters

satisfying the constraints guaranteed by Theorem 2.4.2.

We break the proof of Theorem 2.4.3 into steps, with the overarching assumption that

q ∈ Hn(R) is a constrained minimizer of En+1.

In order to analyze q using the trace formulas, we first need to know that q is sufficiently

regular so that we may construct a(k; q):

Lemma 2.4.4. If q is a constrained minimizer in the sense of Theorem 2.4.3, then q is

Schwartz.
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We will use that q solves the Euler–Lagrange equation (cf. (2.4.1)) to show that q is both

infinitely smooth and exponentially decaying. As we will see shortly, smoothness follows

from classical ODE theory because q ∈ Hn(R) a priori. On the other hand, exponential

decay is more delicate: even though we know q(x) → 0 as x → ±∞ (since q ∈ H1(R)),

there do exist multipliers λ1, . . . , λn so that (2.4.1) admits algebraically decaying solutions

as x→ ±∞. For example, u(x) = 2x−2 is a (meromorphic) solution to (2.4.1) for all n ≥ 1

with multipliers λ1 = · · · = λn = 0. This is the beginning of an infinite family of solutions

called the algebro-geometric solutions to the stationary KdV hierarchy (see [66, §1.3] for

details). This does not pose an obstruction here because the multipliers must be negative

for a minimizer (cf. (2.4.3)), as is the case for any multisoliton.

Proof. As a critical point of En+1, q satisfies the Euler–Lagrange equation

∇En+1(q) = λ1∇E1(q) + λ2∇E2(q) + · · ·+ λn∇En(q) (2.4.1)

for some Lagrange multipliers λ1, . . . , λn ∈ R. This assumes that the gradients ∇E1(q),

. . . , ∇En(q) are linearly independent; however, the other case is analogous, since a linear

dependence can be written as an equation of the form (2.4.1) for some smaller n.

First we show that q is infinitely smooth. As q ∈ Hn(R), q only solves (2.4.1) in the

sense of distributions a priori. The highest order term in (2.4.1) is q(2n), and it only appears

in ∇En+1(q). Isolating this term, we obtain

q(2n) = P
(
q, q′, . . . , q(2n−2)

)
(2.4.2)

for a polynomial P . Note that product terms q(γ1) · · · q(γd) satisfy
∑
γj ≤ 2n−2 by the scaling

requirement (2.2.2). In particular, if q ∈ Hs with s ≥ n, then RHS(2.4.2) is in H−s+2. (For

example, qq(2n−2) ∈ H−s+2 because q(2n−2) ∈ Hs−(2n−2) ⊂ H−s+2 and q ∈ Hs ⊂ Hs−2.)

Beginning with q ∈ Hn, the equation (2.4.2) tells us that q(2n) is in H−n+2, and so we

conclude that q ∈ Hn+2. Now taking q ∈ Hn+2 as input, the equation (2.4.2) then tells us

that q(2n) is in H−n+4, and so we conclude that q ∈ Hn+4. Iterating, we conclude that q is

in Hs for all s > 0 and hence is smooth.
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Next, we claim that q decays exponentially as x → ±∞. Our salvation here is that

because q is a minimizer (and not merely a critical point), we have restrictions on the

Lagrange multipliers. If the constraints are in Mn
n r (intMn

n), then q is a minimizer of

Em for some m ≤ n and thus q is a multisoliton of degree at most m by the inductive

hypothesis that Theorem 2.1.3 holds for m− 1. So assume that the constraints (e1, . . . , en)

are in the interior of Mn
n. Consequently, we know from Lemma 2.3.5 that the minimum

value C(e1, . . . , en) is a C1 function in a neighborhood of (e1, . . . , en) and

λj =
∂C

∂ej
(e1, . . . , en) < 0 for j = 1, . . . , n. (2.4.3)

The equality above is a general fact about Lagrange multipliers called the envelope theorem,

and has applications to economics. (Cf. [132, Th. 1.F.4] and the corollary in Ex. 2 for a

proof. As we know that all of the derivatives exist, this purely algebraic proof for the finite

dimensional case still applies.)

From the quadratic terms of the energies (2.2.1), we see that the linear part of the

Euler–Lagrange equation (2.4.1) is

Lu := (−1)nu(2n) + (−1)nλnu
(2n−2) + · · ·+ λ2u

′′ − λ1u.

The constant coefficients of this operator are alternating in sign by (2.4.3), and consequently

it has no purely imaginary eigenvalues. Indeed, if ξ is purely imaginary then all the terms

in the polynomial

(−1)nξ2n + (−1)nλnξ
2n−2 + · · ·+ λ2ξ

2 − λ1

are nonnegative, and so the polynomial is bounded below by −λ1 > 0. As the Euler–

Lagrange equation (2.4.1) is an ODE of order 2n, we may view it as a first-order system

of ODEs in the variables (q, q′, . . . , q(2n−1)) ∈ R2n. We just showed that the origin in R2n

is a hyperbolic fixed point for this system, and so the stable manifold theorem [39, Ch. 13

Th. 4.1] tells us that there exists a corresponding stable manifold in a neighborhood of the

origin. We already know that q(j)(x) → 0 as x → ±∞ for all j ≥ 0 (since q ∈ Hj+1), and
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so eventually (q, q′, . . . , q(2n−1)) remains in a small neighborhood of the origin in R2n for all

x sufficiently large. By [39, Ch. 13 Th. 4.1], this can only happen if q(x) is on the stable

manifold and hence decays exponentially as x→ ±∞.

Now that we know q ∈ S(R), we have the trace formulas (2.2.7) at our disposal. Next,

we show that the constrained minimizer q must satisfy |a(k; q)| ≡ 1 on R:

Lemma 2.4.5. Let q ∈ S(R) such that |a(k; q)| 6= 1 for some k ∈ R. Then there exists some

q̃ ∈ S(R) with

Em(q̃) = Em(q) for m = 1, . . . , n, but En+1(q̃) < En+1(q).

In particular, a constrained minimizer q in the sense of Theorem 2.4.3 must satisfy |a(k; q)| =
1 for all k ∈ R.

Proof. We will only modify the transmission coefficient of q and leave the bound states

−β2
1 , . . . , β

2
N unchanged. Specifically, we will wiggle log |a(k; q)| via the implicit function

theorem in a way that decreases its (n + 1)st moment in the trace formulas (2.2.7) while

keeping the first n moments constant. Then we will reconstruct the new potential q̃ using

inverse scattering theory.

Let ψ1, . . . , ψn+1 ∈ C∞c (R) be even functions to be chosen later. Define the function

f : Rn+1 → Rn by

f(x1, . . . , xn+1) =




∫
k2
[

log |a(k; q)|+ x1ψ1(k) + · · ·+ xn+1ψn+1(k)
]
dk

∫
k4
[

log |a(k; q)|+ x1ψ1(k) + · · ·+ xn+1ψn+1(k)
]
dk

...
∫
k2n
[

log |a(k; q)|+ x1ψ1(k) + · · ·+ xn+1ψn+1(k)
]
dk



.
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This function has derivative matrix

Df(0, . . . , 0) =




∫
k2ψ1(k) dk . . .

∫
k2ψn(k) dk

∫
k2ψn+1(k) dk

∫
k4ψ1(k) dk . . .

∫
k4ψn(k) dk

∫
k4ψn+1(k) dk

...
. . .

...
...

∫
k2nψ1(k) dk . . .

∫
k2nψn(k) dk

∫
k2nψn+1(k) dk




at the origin. If we replace each ψj by the even extension 1
2
(dδ−kj + dδkj) of a Dirac delta

mass at kj > 0, then the left n× n block matrix becomes the Vandermonde matrix




k21 k22 . . . k2n

k41 k42 . . . k4n
...

...
. . .

...

k2n1 k2n2 . . . k2nn




with determinant k21 · · · k2n
∏

i<j

(k2j − k2i ).

This determinant is nonvanishing provided that we pick the ki positive and distinct.

As a(k; q) is a continuous and even function of k ∈ R by the reality condition (2.2.6), we

may pick n+ 1 distinct points k1, . . . , kn+1 in {k > 0 : |a(k; q)| 6= 1}. We will take ψ1, . . . , ψn

to be mollifications of 1
2
(dδ−kj + dδkj) for j = 1, . . . , n by a smooth and even function. If

we take the mollifier to have sufficiently small support, then ψ1, . . . , ψn will have disjoint

supports within {k 6= 0 : |a(k; q)| 6= 1}. Taking the support of the mollifier to be even

smaller if necessary, the above computation shows that the left n× n block of Df(0, . . . , 0)

is invertible. Now the implicit function theorem implies that there exists ε > 0 and C1

functions x1(xn+1), . . . , xn(xn+1) defined on (−ε, ε) so that

f(x1(xn+1), . . . , xn(xn+1), xn+1) ≡ f(0, . . . , 0) =




∫
k2 log |a(k; q)| dk

∫
k4 log |a(k; q)| dk

...
∫
k2n log |a(k; q)| dk




(2.4.4)

for xn+1 ∈ (−ε, ε).
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It remains to show that we can pick xn+1 in a way that decreases the next log |a| moment.

To this end, we compute the derivative

d

dxn+1

∣∣∣∣
xn+1=0

∫
k2n+2

[
log |a|+ x1(xn+1)ψ1 + · · ·+ xn(xn+1)ψn + xn+1ψn+1

]
dk

=

∫
k2n+2



(
ψ1 . . . ψn

)



x′1(0)
...

x′n(0)


+ ψn+1


 dk.

The derivative of x1(xn+1), . . . , xn(xn+1) is determined by differentiating (2.4.4) at xn+1 = 0.

This yields 


x′1(0)
...

x′n(0)


 = −




∫
k2ψ1 . . .

∫
k2ψn

...
. . .

...
∫
k2nψ1 . . .

∫
k2nψn




−1


∫
k2ψn+1

...
∫
k2nψn+1


 .

Recall that the matrix above is invertible by our choice of ψ1, . . . , ψn. Inserting this into the

derivative of the (2n+2)nd moment, the resulting matrix product is supported on the union

of the supports of ψ1, . . . , ψn which is disjoint from the support of the other term ψn+1 in

the integrand. Therefore, we may pick another smooth and even function ψn+1 supported

in a sufficiently small neighborhood of ±kn+1 so that the whole integral is nonzero. It then

follows that there exists xn+1 ∈ (−ε, ε) sufficiently small so that

log |a(k; q)|+ x1(xn+1)ψ1 + · · ·+ xn(xn+1)ψn + xn+1ψn+1 (2.4.5)

is nonnegative for k ∈ R, decreases En+1, and preserves E1, . . . , En.

It only remains to show that the density (2.4.5) corresponds to log |a(k; q̃)| for some

q̃ ∈ S(R). To accomplish this, we will reconstruct q̃ from its scattering data by verifying

properties (i)-(vii) of Proposition 2.2.4. First, we require that the transmission coefficient

satisfies

1
|T (k;q̃)| = |a(k; q̃)| = exp

{
log |a(k; q)|+ x1(xn+1)ψ1 + · · ·+ xn(xn+1)ψn + xn+1ψn+1

}
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for k ∈ R. We have |T (k; q̃)| ≤ 1 because (2.4.5) is nonnegative. As a(k, q) extended to

a bounded holomorphic to all of C+, it is in the Hardy space H ∞(C+). By [65, Ch. II

Th. 4.4], given g ∈ L∞(R) nonnegative, there exists a holomorphic function h ∈ H ∞(C+)

with |h(k)| = g(k) for almost every k ∈ R if and only if

∫ ∞

−∞

log |g(k)|
1 + k2

dk > −∞.

In particular, this property was satisfied by g(k) = |a(k; q)|. As we have smoothly modified

log |a(k; q)| on a compact subset, this condition is also satisfied for g(k) = |a(k; q̃)| and so

there must also exist a holomorphic extension a(k; q̃) := h(k) to C+. This ensures that

T (k; q̃) = 1
a(k;q̃)

satisfies the analyticity condition (iii).

Next, we set T1(k; q̃) = T2(k; q̃) = T (k; q̃) in accordance with the symmetry condition (i).

We then require the modulus of the reflection coefficients satisfy |R1(k; q̃)| = |R2(k; q̃)| =
√

1− |T (k; q̃)|2 and the phases satisfy

argR1(k; q̃) + argR2(k; q̃)

2
= π

2
− arg T (k; q̃)

for k > 0 to ensure that the unitary condition (ii) holds. We also need to construct R1, R2 so

that condition (v) on the rate at k = 0 still holds. We are still free to specify the difference

argR1− argR2, which if T (0; q) = 0 we take to satisfy argR1 → π and argR2 → π as k ↓ 0.

As we have only modified T (k; q) on a compact subset of R r {0}, altogether we conclude

that the condition (v) is satisfied. We then extend R1 and R2 to k < 0 according to the

reality condition (vi).

Note that the Fourier decay condition (vii) is automatically satisfied because we have

perturbed R1(k; q) and R2(k; q) smoothly. Likewise, the asymptotics condition (iv) is also

satisfied because the coefficients have only been modified on a compact subset of R r {0}.
The resulting potential q̃ is also automatically Schwartz. Indeed, inverse scattering theory

reconstructs q̃ via an explicit integral [47, §4 Eq. (1)R] in terms of R1 and the Jost function

f1(x; k), which have only been smoothly modified on a compact subset of Rr {0}.
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Lastly, we use Proposition 2.2.5 to add the bound states β1, . . . , βN of q back to q̃. The

formula (2.2.8) for the new transmission coefficient shows that |a(k; q̃)| is unchanged for

k ∈ R. This, together with the construction (2.4.5) of log |a(k; q̃)|, shows that q̃ decreases

En+1 while preserving E1, . . . , En as desired.

Next, we will show that the requirement |a(k; q)| ≡ 1 on R forces a(k; q) to be the finite

Blaschke product (2.2.9) on C+:

Lemma 2.4.6. If q is a constrained minimizer in the sense of Theorem 2.4.3, then q is a

multisoliton.

Proof. Let C+ = {z ∈ C : Im z > 0} denote the upper half-plane and D = {z ∈ C : |z| < 1}
denote the unit disk. By Lemma 2.4.5, we know that |a(k; q)| ≡ 1 on R. We also know by

the asymptotics (2.2.5) that a(k; q) tends to 1 as k →∞ within C+. Applying the maximum

modulus principle to the half-disks C+ ∩{z : |z| ≤ R} and taking R→∞, we conclude that

k 7→ a(k; q) maps C+ into D.

In particular, a( · ; q) is in the Hardy space H ∞(C+). We may therefore apply inner-outer

factorization [65, Ch. II Cor. 5.7] to obtain

a(k; q) = eiθB(k)S(k)F (k),

where θ ∈ R is a constant, B(k) is a Blaschke product, S(k) is a singular function, and F (k)

is an outer factor.

First, we claim that F (k) is constant. Note that on R we have |B(k)| ≡ 1 everywhere

and |S(k)| ≡ 1 almost everywhere. Therefore |F (k)| ≡ 1 almost everywhere on R. As F is

an outer factor, log |F | in C+ is given by the Poisson integral over its boundary values. As

log |F | ≡ 0 almost everywhere on R, we conclude that log |F | ≡ 0 on C+ and hence F is

constant.

Next, we claim that S(k) is also constant. Recall that if S(k) is a singular function and

|S(k)| is continuous from C+ to any k ∈ R∪{∞}, then k is not in the support of the singular
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measure that defines S. In our case we know that a(k; q) extends continuously to R and ∞,

and so we conclude that the measure for S(k) vanishes identically.

Altogether we now have a(k; q) ≡ eiφB(k) for some constant φ ∈ R. Taking k → +i∞
we have a(k; q) → 1 by (2.2.5) and B(k) → 1, and so we conclude that a(k; q) ≡ B(k).

By Proposition 2.2.3 we know that the zeros of a(k; q) are purely imaginary and simple.

Therefore a(k; q) takes the form (2.2.9), and so we conclude that q is a multisoliton.

Finally, to conclude the proof of Theorem 2.4.3, we note that the degree of the multisoliton

q is at most n. Otherwise, Lemma 2.3.1 would imply that we could replace q by another

multisoliton that decreases En+1 while preserving E1, . . . , En, which would contradict that

q is a minimizer.

2.5 Orbital stability

The goal of this section is to prove Theorem 2.1.4. It will follow easily from the following

property of minimizing sequences:

Theorem 2.5.1. Fix an integer n ≥ 1. If (e1, . . . , en) ∈ Mn
n and {qk}k≥1 ⊂ Hn(R) is a

minimizing sequence:

E1(qk)→ e1, . . . , En(qk)→ en, En+1(qk)→ C(e1, . . . , en) (2.5.1)

as k → ∞, then there exists a subsequence which converges in Hn(R) to the manifold of

minimizing solitons {Qβ,c : c ∈ RN}.

We begin the proof of Theorem 2.5.1 by fixing a minimizing sequence {qk}k≥1 ⊂ Hn(R)

satisfying (2.5.1). The estimates (2.2.3) that prove that E1, . . . , En+1 are continuous func-

tionals on Hn(R) show that the sequence {qk}k≥1 is bounded in Hn(R).

Now that we know {qk}k≥1 is bounded in Hn(R), we are able to apply a concentration

compactness principle adapted to our variational problem. Specifically, we will use the
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following statement associated to the embedding Hn(R) ↪→ W n−1,3(R), whose formulation is

inspired by [96]. The choice of concentration compactness principle is not unique (cf. [4, §3]),

but we will see below that this choice turns out to be efficient (see, for example, the proof

of Lemma 2.5.4).

Theorem 2.5.2. Fix an integer n ≥ 1. If {qk}k≥1 is a bounded sequence in Hn(R), then

there exist J∗ ∈ {0, 1, . . . ,∞}, J∗-many profiles {φj}J∗j=1 ⊂ Hn(R), and J∗-many sequences

{xjk}J
∗
j=1 ⊂ R so that along a subsequence we have the decomposition

qk(x) =
J∑

j=1

φj(x− xjk) + rJk (x) for all J ∈ {0, . . . , J∗} finite (2.5.2)

that satisfies:

lim
J→J∗

lim sup
k→∞

∥∥rJk
∥∥
Wn−1,3 = 0, (2.5.3)

lim
k→∞

∣∣∣∣ ‖qk‖
2
Hn −

( J∑

j=1

∥∥φj
∥∥2
Hn +

∥∥rJk
∥∥2
Hn

)∣∣∣∣ = 0 for all J finite, (2.5.4)

lim
J→J∗

∣∣∣∣ lim sup
k→∞

‖qk‖3Wn−1,3 −
J∑

j=1

∥∥φj
∥∥3
Wn−1,3

∣∣∣∣ = 0, (2.5.5)

|xjk − x`k| → ∞ as k →∞ whenever j 6= `. (2.5.6)

The n = 1 case of Theorem 2.5.2 is well-known [75, Prop. 3.1]; for a textbook presentation

of such concentration compactness principles, we recommend [96]. While it does not appear

that Theorem 2.5.2 for n ≥ 2 has been recorded in the literature, it can be proved by exactly

the same method (e.g. [96, Th. 4.7]) and we omit the details.

We apply this concentration compactness principle to the minimizing sequence {qk}k≥1
in Theorem 2.5.1. After passing to a subsequence, Theorem 2.5.2 provides a number J∗ ∈
{0, 1, . . . ,∞}, J∗-many profiles {φj}J∗j=1 ⊂ Hn(R), and J∗-many sequences {xjk}J

∗
j=1 ⊂ R so

that along a subsequence we have the decomposition (2.5.2) satisfying the properties (2.5.3)–

(2.5.6). We will ultimately show that each profile φj is a constrained minimizer of En+1, and

hence is a multisoliton.
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First, we will treat the case J∗ = 0:

Lemma 2.5.3. If J∗ = 0, then e1 = · · · = en = 0 and qk → 0 in Hn(R) as k →∞.

Proof. The decomposition (2.5.2) reads qk = r0k, and so

E2(qk) = E2(r
0
k) =

∫ {
1
2

[
(r0k)

′]2 + (r0k)
3
}
dx.

The second term in the integrand contributes ‖r0k‖3L3 , which we know vanishes in the limit

k →∞ by (2.5.3). The remaining term is nonnegative, and so we obtain

lim
k→∞

E2(qk) ≥ 0.

On the other hand, we know that this limit is attainable by a multisoliton since (e1, . . . , en) ∈
Mn

n, and so there exists N ≤ n and β1 > · · · > βN > 0 so that

lim
k→∞

E2(qk) = −32
5

N∑

m=1

β5
m ≤ 0.

Together, we see that E2(qk) → 0 and N = 0. The only multisoliton that can attain this

value is the zero-soliton q(x) ≡ 0, and so we conclude that e1 = · · · = en = 0.

Now we have

0 = lim
k→∞

E1(qk) = lim
k→∞

1
2
‖qk‖2L2 ,

and so qk → 0 in L2(R). Using the estimates (2.2.3) that prove that E1, . . . , En+1 are

continuous functionals on Hn(R), we obtain qk → 0 in Hn(R) as desired.

Lemma 2.5.3 proves Theorem 2.5.1 in the case J∗ = 0, and so for the remainder of the

section we assume J∗ ≥ 1.

Next, we show that our decomposition accounts for the entirety of the limiting value of

each Em(qk):

Lemma 2.5.4. For each m = 1, . . . , n+ 1 we have

lim
J→J∗

lim sup
k→∞

∣∣∣∣Em(qk)−
[ J∑

j=1

Em(φj) + Em(rJk )

]∣∣∣∣ = 0.
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Proof. Fix m, and insert the decomposition (2.5.2) for qk into the expression (2.2.1) for Em.

By the Hn-norm property (2.5.4), we see the quadratic terms of each Em cancel, leaving

only cubic and higher order terms:

lim sup
k→∞

∣∣∣∣Em(qk)−
[ J∑

j=1

Em(φj) + Em(rJk )

]∣∣∣∣

= lim sup
k→∞

∣∣∣∣
∫ {

Pm

( J∑

j=1

φj(x− xjk) + rJk

)
−
[ J∑

j=1

Pm(φj) + Pm(rJk )

]}
dx

∣∣∣∣.

Consider an arbitrary term cα1,...,αdu
(α1) · · ·u(αd) of Pm(u) for u = qk, φ

j, or rJk . Expanding

all products in the case u = qk =
∑
φj(x− xjk) + rJk , we are left with a term of the form

u
(α1)
1 · · ·u(αd)d

where each u` for ` = 1, . . . , d is one of the profiles φj, its translation φj(x − xjk), or the

remainder rJk .

We claim that all of the terms with u1, . . . , ud 6= rJk cancel; in other words,

lim
k→∞

∣∣∣∣
∫ {

Pm

( J∑

j=1

φj(x− xjk)
)
−

J∑

j=1

Pm(φj)

}
dx

∣∣∣∣ = 0 (2.5.7)

for all J ≤ J∗ finite. When all of the u` are given by the same translated profile φj(x− xjk),
we can change variables y = x−xjk in the integral and recover the corresponding term where

u1, . . . , ud = φj(x). When there are at least two different translated profiles, the integral

vanishes in the limit k →∞ by the well-separation condition (2.5.6) and approximating each

φj by compactly-supported functions.

It remains to show that the remaining terms (which contain at least one factor of rJk )

vanish in L1. Note that by the scaling requirement (2.2.2), each order α` is at most m− 2 ≤
n − 1. We estimate the highest order factor of rJk in L3, which is vanishing in the limit

k → ∞ and J → J∗ by the small-remainder condition (2.5.3). We then estimate the two

other highest order factors φj or rJk in L3, and the remaining terms are bounded in L∞ since

φj and rJk are uniformly bounded in Hn ↪→ W n−1,∞.
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Next, we show that the quadratic term of En+1(r
J
k ) dominates as k →∞:

Lemma 2.5.5. For each m = 1, . . . , n+ 1 we have

lim
J→J∗

lim sup
k→∞

∣∣∣Em(rJk )− 1
2

∥∥(rJk )(m−1)
∥∥2
L2

∣∣∣ = 0.

Proof. Fix m. Using the expression (2.2.1) for Em, we write

Em(rJk )− 1
2

∥∥(rJk )(m−1)
∥∥2
L2 =

∫
Pm
(
rJk
)
dx.

Consider the contribution of an arbitrary term cα1,...,αdu
(α1) · · ·u(αd) of Pm(u), where each

order α` is at most m − 2 ≤ n − 1 by the scaling requirement (2.2.2). We estimate the

three highest order factors of rJk in L3, which vanish in the limit k →∞ and J → J∗ by the

small-remainder condition (2.5.3). We then estimate the remaining terms in L∞, which are

all bounded since the sequence rJk is uniformly bounded in Hn ↪→ W n−1,∞. Altogether, we

conclude that every term vanishes in the limit k →∞ and J → J∗.

Next, we show that each profile φj is a constrained minimizer:

Lemma 2.5.6. For each 1 ≤ j ≤ J∗ finite, the profile φj minimizes En+1(u) over all u ∈ Ce

with the constraints E1(φ
j), . . . , En(φj), and hence is a multisoliton Qβj ,cj of degree at most

n.

Proof. Suppose towards a contradiction that there exists j for which φj does not minimize

En+1. Then we can replace φj by another profile φ̃j ∈ Hn(R) with

Em(φ̃j) = Em(φj) for m = 1, . . . , n, but En+1(φ̃
j) < En+1(φ

j).

Construct a new sequence {q̃k}k≥1 given by the decomposition (2.5.2), but with φ̃j in place

of φj. This new sequence still satisfies the properties (2.5.3)–(2.5.6), and so by Lemma 2.5.4

we have

lim
k→∞

Em(q̃k) = em for m = 1, . . . , n, and lim
k→∞

En+1(q̃k) < lim
k→∞

En+1(qk). (2.5.8)
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However, this contradicts that {qk}k≥1 was a minimizing sequence. Therefore, we conclude

that each φj is a constrained minimizer of En+1.

Applying our variational characterization (Theorem 2.1.3), we conclude that φj is a

multisoliton of degree at most n.

We now know that our profiles {φj}J∗j=1 are a (possibly infinite) collection of multisolitons

{Qβj ,cj}J
∗
j=1. Concatenate all of the vectors βj to form one (possibly infinite) string

∐J∗

j=1 β
j

of positive numbers which may contain repeated values. Next, we show that all of the

parameters together minimize En+1 subject to the constraints e1, . . . , en:

Lemma 2.5.7. The concatenation
∐J∗

j=1 β
j is equal to the unique set of parameters β1 >

· · · > βN > 0 satisfying the constraints e1, . . . , en. In particular, J∗ is finite.

Proof. Consider the relaxed variational problem where we minimize En+1(u) over the larger

set

{u ∈ Hn(R) : E1(u) ≤ e1, . . . , En(u) ≤ en}. (2.5.9)

As the minimum value C(e1, . . . , en) is strictly decreasing in each constraint by Lemma 2.3.5

and the set Mn
n of constraints is downward closed by Lemma 2.3.6, then this relaxed min-

imization problem enjoys the same conclusions of Theorem 2.1.3. We will ultimately show

that the profiles {Qβj ,cj}1≤j<J∗ together form a minimizer for this relaxed problem.

In the proof of Theorem 2.1.3 we only needed to treat the case of finitely many β param-

eters, but this is easily resolved as follows. Suppose towards a contradiction that J∗ = ∞.

We know that the third moment
∑
β3
m of β =

∐J∗

j=1 β
j is finite by the trace formula (2.2.1)

for E1, and so we have βm → 0 as m → ∞. In particular, even though there may be

repeated values in β, there are at least n + 1 distinct values of βm > 0. By Lemma 2.3.1,

we may replace the first n + 1 distinct values of βm to obtain new parameters β̃
j

so that

E1, . . . , En are preserved, En+1 is decreased, and each βj is still a set of multisoliton pa-

rameters. Constructing a new sequence {q̃k}k≥1 given by the decomposition (2.5.2) for the
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profiles φ̃j = Q
β̃
j
cj

, we obtain a strictly better choice of minimizing sequence in the sense

of (2.5.8). This contradicts that {qk}k≥1 was a minimizing sequence.

Now that we know J∗ <∞, Lemma 2.5.4 implies that

J∗∑

j=1

Em(Qβj ,cj) ≤ lim sup
k→∞

[
Em(qk)− Em(rJ

∗

k )
]

(2.5.10)

for each m = 1, . . . , n+ 1. For m ≤ n, we have Em(qk)→ em by construction and

lim inf
k→∞

Em(rJ
∗

k ) ≥ 0

by Lemma 2.5.5, and so RHS(2.5.10) is at most em. In other words, the parameters β satisfy

the relaxed constraints

J∗∑

j=1

Em(Qβj ,cj) ≤ em for m = 1, . . . , n. (2.5.11)

For m = n+ 1, we know that Em(qk) converges to the minimum value C(e1, . . . , en), and so

RHS(2.5.10) is at most C(e1, . . . , en). This yields

J∗∑

j=1

En+1(Qβj ,cj) ≤ C(e1, . . . , en). (2.5.12)

Strict inequality here should not be possible since C is the minimum value of En+1 over the

set (2.5.9). Indeed, by (2.5.4) and (2.5.7) we have

J∗∑

j=1

En+1(Qβj ,cj) = lim inf
k→∞

En+1

( J∗∑

j=1

Qβj ,cj(x− xjk)
)
≥ C(e1, . . . , en).

Therefore, we conclude that equality holds in (2.5.12).

Altogether, we see that the finite collection β of parameters is a minimizer for the relaxed

variational problem (2.5.9). As the minimum value C(e1, . . . , en) is strictly decreasing in

each constraint by Lemma 2.3.5, we must have equality in (2.5.11). There cannot be n + 1

distinct values in β, since otherwise we could use Lemma 2.3.1 to replace the first n + 1

distinct values in a way that preserves E1, . . . , En and decreases En+1 in order to obtain a
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strictly better minimizing sequence. Now that we know there are at most n distinct values of

βm, Corollary 2.3.3 implies that β is equal to the unique set of parameters β1 > · · · > βN > 0

with N ≤ n that satisfies the constraints (e1, . . . , en) ∈Mn
n.

It remains to show that the whole sequence qk converges strongly to the manifold of

minimizing multisolitons. To this end, we will need:

Lemma 2.5.8. The remainders rJ
∗

k → 0 in Hn(R) as k →∞.

Proof. By Lemma 2.5.7, the profiles {Qβj ,cj}1≤j<J∗ satisfy the constraints:

J∗∑

j=1

Em(Qβj ,cj) = em for m = 1, . . . , n.

Combining this with Lemmas 2.5.4 and 2.5.5, we deduce

0 = lim
k→∞

Em
(
rJ
∗

k

)
= lim

k→∞
1
2

∥∥(rJ
∗

k )(m−1)
∥∥2
L2

for m = 1, . . . , n+ 1.

The last ingredient that we will need is the following “molecular decomposition” of mul-

tisolitons, which says that our superposition
∑
Qβj ,cj(x−xjk) of well-separated multisolitons

is close to the manifold of multisolitons:

Proposition 2.5.9. Fix integers n ≥ 0 and J ≥ 1. Suppose βj and cj are multisoliton

parameters for each 1 ≤ j ≤ J , and that all of the components βjm of each βj are distinct

for all j and m. Then for any collection of J-many sequences {xjk}Jj=1 ⊂ R satisfying the

well-separation condition (2.5.6), there exists a sequence ck so that

Qβ,ck(x)−
J∑

j=1

Qβj ,cj(x− xjk)→ 0 in Hn(R) as k →∞,

where β is the concatenation
∐J

j=1 β
j.
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Proof. The n = 0 case is proved in [98, Prop. 3.1]. Given n ≥ 1, we pick ck from the n = 0

case so that the desired convergence occurs in L2(R). Note that

∥∥∥∥Qβ,ck(x)−
J∑

j=1

Qβj ,cj(x− xjk)
∥∥∥∥
Hn+1

. 1

uniformly in k, by the estimates (2.2.3) that prove that E1, . . . , En+2 are continuous, the

trace formulas (2.2.7), and the well-separation condition (2.5.6). Using the inequality

‖f‖Hn ≤ ‖f‖
1

n+1

L2 ‖f‖
n
n+1

Hn+1

(which follows from Hölder’s inequality in Fourier variables), we conclude that the sequence

converges in Hn(R).

We are now prepared to finish the proof of Theorem 2.5.1:

Proof of Theorem 2.5.1. It remains to show that the sequence {qk}k≥1 converges to the man-

ifold {Qβ,c : c ∈ RN}. So far, we have the decomposition

qk(x) =
J∗∑

j=1

Qβj ,cj(x− xjk) + rJ
∗

k (x)

with J∗ finite. Let Qβ,ck be the sequence of multisolitons guaranteed by the Hn(R) molecular

decomposition (Proposition 2.5.9). We estimate

‖qk −Qβ,ck‖Hn ≤
∥∥∥∥Qβ,ck(x)−

J∗∑

j=1

Qβj ,cj(x− xjk)
∥∥∥∥
Hn

+
∥∥rJ∗k

∥∥
Hn .

The first term on the RHS converges to zero as k → ∞ by Proposition 2.5.9. The second

term on the RHS converges to zero by Lemma 2.5.8. Together, we conclude that

inf
c∈Rn
‖qk −Qβ,c‖Hn → 0 as k →∞

as desired.

As a corollary, we obtain orbital stability:
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Proof of Theorem 2.1.4. Suppose towards a contradiction that orbital stability fails. Then

there exists a constant ε0 > 0, a sequence of initial data {qk(0)}k≥1 ⊂ Hn(R), and a sequence

of times {tk}k≥1 ⊂ R such that

inf
c∈Rn
‖qk(0)−Qβ,c‖Hn → 0 as k →∞,

but the corresponding solutions qk(t) to KdV obey

inf
c∈Rn
‖qk(tk)−Qβ,c‖Hn ≥ ε0 for all k. (2.5.13)

As E1, . . . , En+1 are continuous on Hn(R) and are conserved by the KdV flow, we have

lim
k→∞

Em(qk(tk)) = lim
k→∞

Em(qk(0)) = Em(Qβ,c)

for each m = 1, . . . , n + 1. There are n-many β parameters, and so these are exactly the

conditions (2.5.1) that the sequence {qk(tk)}k≥1 is a minimizing sequence for En+1 with

constraints E1(Qβ,c), . . . , En(Qβ,c) that are in Mn
n. By Theorem 2.5.1, there exists a sub-

sequence of {qk(tk)}k≥1 which converges to the manifold {Qβ,c : c ∈ RN} in Hn(R), which

contradicts our assumption (2.5.13).

2.6 Proof of Theorem 2.1.5

In this section, we will adapt the methods of Sections 2.3 to 2.5 in order to prove Theo-

rem 2.1.5. Fix N ≥ n + 1, and consider constraints (e1, . . . , en) ∈ Mn
N that are attainable

by a multisoliton of degree at most N . We aim to show that minimizing sequences resemble

a superposition of multisolitons with at most n distinct amplitudes.

As the constraints are attainable by finitely many parameters, compactness still guaran-

tees that there exists a minimizing set of N -soliton parameters β1 ≥ · · · ≥ βN ≥ 0, provided

that we allow for repeated values:
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Lemma 2.6.1. Given constraints (e1, . . . , en) ∈ Mn
N , there exist β1 ≥ · · · ≥ βN ≥ 0 which

minimize

En+1(Qβ,c) = (−1)n 22n+3

2n+3

N∑

m=1

β2n+3
m

over the set of multisolitons in the constraint set Ce.

Proof. Consider the set Γ of parameters

{
(x1, . . . , xN) ∈ RN : x1, . . . , xN ≥ 0,

N∑

m=1

x2j+1
m = αj for j = 1, . . . , n

}
(2.6.1)

that satisfy the constraints, where

αj = (−1)j+1 2j+1
22j+1 ej

are the prescribed odd moments. Note that the set Γ is compact, and it is nonempty since

(e1, . . . , en) ∈Mn
N . Therefore there exists a minimizer (β1, . . . , βN) of the next odd moment

(−1)n 22n+3

2n+3

N∑

m=1

x2n+3
m

in Γ. As the odd moments are symmetric in β1, . . . , βN , we may reorder them so that

β1 ≥ · · · ≥ βN ≥ 0.

Unlike in the proof of Lemma 2.3.6, the set Γ cannot reach the boundary {(x1, . . . , xN) :

xn+1, . . . , xN = 0} since (e1, . . . , en) /∈ Mn
n, and so we are no longer able to reduce the

number of parameters. Instead, we can employ the implicit function theorem argument from

Lemma 2.3.1 to reduce the number of distinct components in the minimizer (β1, . . . , βN):

Lemma 2.6.2. If β1 ≥ · · · βN ≥ 0 is a minimizer (in the sense of Lemma 2.6.1), then there

are at most n distinct values of βm.

Proof. It suffices to show that if there are at least n + 1 distinct values in β1, . . . , βN , then

there exist new values β̃1, . . . , β̃N which preserve E1, . . . , En but decrease En+1. To prove
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this, we repeat the proof of Lemma 2.3.1. Rather than recapitulating the whole proof, let

us focus on the few minor alterations that need to be made.

For example, consider the case where we have N ≥ n + 2, βj = βj+1 for some j, and all

other βm are distinct. Replace the function (2.3.1) by

f(x1, . . . , xn+1) =




x31 + · · ·+ x3j−1 + 2x3j + x3j+1 + · · ·+ x3n+1

x51 + · · ·+ x5j−1 + 2x5j + x5j+1 + · · ·+ x5n+1

...

x2n+1
1 + · · ·+ x2n+1

j−1 + 2x2n+1
j + x2n+1

j+1 + · · ·+ x2n+1
n+1



.

This simply multiplies the jth column of the derivative matrix (2.3.2) by 2. Consequently,

the left n × n submatrix still has nonzero determinant and thus we may apply the implicit

function theorem. We can then proceed with the remainder of the proof of Lemma 2.3.1.

In the general case, each column of the derivative matrix (2.3.2) is simply multiplied by a

constant. Therefore the left n×n submatrix is still invertible, and the proof of Lemma 2.3.1

proceeds as before.

Now that we know that every minimizer must possess at most n distinct β values, Corol-

lary 2.3.3 immediately implies that the minimizer is unique.

We are now prepared to define our candidate value for the infimum of En+1 subject to

the constraints e1, . . . , en. We extend the definition of C to (e1, . . . , en) ∈Mn
N via

C(e1, . . . , en) = (−1)n 22n+3

2n+3

N∑

j=1

β2n+3
j .

This quantity still satisfies the properties from Lemma 2.3.5:

Lemma 2.6.3. The function C :Mn
N → R is continuous and is decreasing in each variable.

Moreover, C is defined piecewise on finitely many connected subsets of Mn
N , and on the

interior of each such subset C(e1, . . . , en) is continuously differentiable and satisfies ∂C
∂ej

< 0

for j = 1, . . . , n.
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Proof. Given a minimizer β1 ≥ · · · ≥ βN ≥ 0, Lemma 2.6.2 implies that there exist multi-

plicities m1, . . . ,mN and distinct values β1 > · · · > βN ≥ 0 so that N ≤ n,
∑
mj = N , and

the string β1, . . . , βN consists of m1 copies of β1, m2 copies of β2, and so on. This allows us

to write

C(e1, . . . , en) = (−1)n 22n+3

2n+3

(
m1β

2n+3

1 + · · ·+mNβ
2n+3

N

)
.

We will see that for N = n and each fixed choice of multiplicities m1, . . . ,mn, we have

∂C
∂ej

< 0 for j = 1, . . . , n as long as β1 > · · · > βN > 0. In this way C(e1, . . . , en) is a

piecewise-defined function, and there are finitely many pieces because the number of possible

multiplicities m1, . . . ,mN is finite.

Fix multiplicities m1, . . . ,mN , and repeat the computation from Lemma 2.3.5. In fact,

in the case N = n the same computation applies! Indeed, in Lemma 2.3.5 we computed

∂C
∂ej

from the equality (2.3.16). We have now multiplied the columns of the matrix on the

LHS and each entry on the RHS by the multiplicities m1, . . . ,mn, but this does not alter the

system of equations. In the case N < n, the system of equations (2.3.14) is overdetermined.

However, if we only consider the first N constraints, then the computation proceeds with

N in place of n, and we conclude that C as a function of e1, . . . , eN (where m1, . . . ,mN are

fixed) is C1 and satisfies ∂C
∂ej

< 0 for j = 1, . . . , N .

We are also able to compute ∂βk
∂ej

as long as β1 > · · · > βn > 0, which implies that if we

wiggle e1, . . . , en then we can also wiggle β1, . . . , βn in a way that still satisfies the constraints.

By uniqueness (Corollary 2.3.3), the perturbed values of β1, . . . , βn still minimize En+1. This

defines an injective map Φ from the simplex

{(β1, . . . , βn) ∈ Rn : β1 > · · · > βn > 0} (2.6.2)

intoMn
n, and it is smooth up to its boundary. The image of Φ is exactly the interior of one

of the components on which C(e1, . . . , en) is defined by a single formula. The boundary of

this component corresponds to some subset of the boundary of the simplex (2.6.2), which

means that two values of βj are colliding or that βn is vanishing. Repeating the proof of
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Lemma 2.3.4, we conclude that Φ is a homeomorphism onto this component (including any

boundary points it may contain). It then follows that C is continuous by the same argument

as in Lemma 2.3.5.

Next, we show that the set of constraints Mn
N is still downward closed:

Lemma 2.6.4. If the constraints ẽ1, . . . , ẽn are in Mn
Ñ

for some Ñ and

ẽ1 ≤ e1, . . . , ẽn ≤ en

for some (e1, . . . , en) ∈Mn
N , then (ẽ1, . . . , ẽn) ∈Mn

N .

Proof. Let β̃1 . . . , β̃Ñ > 0 denote the β parameters of the multisoliton which witnesses the

constraints ẽ1, . . . , ẽn, and assume that we are in the nontrivial case Ñ ≥ N + 1. Repeating

the proof of Lemma 2.3.6, we conclude that the set Γ of parameters in RÑ that satisfy the

constraints must intersect the boundary {(x1, . . . , xÑ) : xN+1, . . . , xÑ = 0}. Any point in

the intersection provides the desired N -soliton parameters.

We are now prepared to prove that C(e1, . . . , en) is the infimum of En+1:

Proposition 2.6.5. Given (e1, . . . , en) ∈Mn
N for some N ≥ n+ 1, we have

inf{En+1(u) : u ∈ Ce} = C(e1, . . . , en). (2.6.3)

Moreover, if (e1, . . . , en) /∈Mn
n, then this infimum is not attained by any u ∈ Ce.

Proof. First, we claim that

En+1(u) ≥ C(e1, . . . , en) for all u ∈ Ce.

We repeat the proof of Theorem 2.4.2. This proof only required Lemmas 2.3.1, 2.3.5 and 2.3.6

as input, and we have established their analogues Lemmas 2.6.2 to 2.6.4 in this new setting.

To prove (2.6.3), it remains to show that En+1(u) can be arbitrarily close to C(e1, . . . , en)

for some choice of u ∈ Ce. Recall that C(e1, . . . , en) is defined in terms of a minimizer
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β1 ≥ · · · ≥ βN ≥ 0 in the sense of Lemma 2.6.1. The claim follows by taking u to be an N -

soliton with parameters β̃1 > · · · > β̃N > 0 that converge to the minimizer β1 ≥ · · · ≥ βN ≥ 0

within the set (2.6.1).

Lastly, suppose towards a contradiction that En+1(q) = C(e1, . . . , en) for some q ∈ Ce and

(e1, . . . , en) /∈Mn
n. First, we show that q is Schwartz by repeating the proof of Lemma 2.4.4.

In the case where the numberN of multiplicities is equal to n, we have ∂C
∂ej

< 0 for j = 1, . . . , n

and the proof of Lemma 2.4.4 carries out unaltered. In the case where N < n, we recall

from the proof of Lemma 2.6.3 that we may regard C as a function of e1, . . . , eN and we have

∂C
∂ej

< 0 for j = 1, . . . , N . In either case, the minimizer q satisfies an Euler–Lagrange equation

of the form (2.4.1) with λ1 < 0 and all other λj ≤ 0, and this is sufficient to conclude that q is

Schwartz. Then, by directly applying Lemma 2.4.5, 2.4.6, and 2.3.1 (without alteration!), we

see that q is a multisoliton of degree at most n, which contradicts that (e1, . . . , en) /∈Mn
n.

When combined with concentration compactness, we can prove that minimizing sequences

resemble a superposition of multisolitons with at most n distinct values of βm:

Proof of Theorem 2.1.5. It only remains to prove the minimizing sequence statement. Fix

(e1, . . . , en) ∈Mn
N rMn

N−1 for some N ≥ n+1, and suppose that {qk}k≥1 ⊂ Hn(R) satisfies

E1(qk)→ e1, . . . , En(qk)→ en, En+1(qk)→ C(e1, . . . , en)

as k →∞.

First, we apply our concentration compactness principle. After passing to a subsequence,

Theorem 2.5.2 provides us with a number J∗ ∈ {0, 1, . . . ,∞}, J∗-many profiles {φj}J∗j=1 ⊂
Hn(R), and J∗-many sequences {xjk}J

∗
j=1 ⊂ R so that along a subsequence we have the

decomposition (2.5.2) which satisfies the properties (2.5.3)–(2.5.6).

The proof of Theorem 2.5.1 up through Lemma 2.5.6 still applies (without alteration),

and so we conclude that each profile φj is a multisoliton Qβj ,cj . Repeating the proof of

Lemma 2.5.7, we see that the concatenation β =
∐J∗

j=1 β
j minimizes the inequality for En+1
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in Proposition 2.6.5. Therefore β is a minimizer in the sense of Lemma 2.6.1, and so by

Lemmas 2.6.2 and 2.6.4 we see that J∗ is finite, the total degree
∑

#βj is equal to N , and

the components of β attain at most n distinct values.

We now have ∥∥∥∥qk −
J∗∑

j=1

Qβj ,cj

∥∥∥∥
Hn

=
∥∥rJ∗k

∥∥
Hn .

Repeating the proof of Lemma 2.5.8, we see that the RHS converges to zero as k →∞. This

yields

inf
c1,...,cJ∗

∥∥∥∥qk −
J∗∑

j=1

Qβj ,cj

∥∥∥∥
Hn

→ 0 as k →∞

as desired.

2.7 Proof of Theorem 2.1.6

The goal of this section is to prove Theorem 2.1.6. Suppose that (e1, e2) ∈ F2 and (e1, e2) /∈
M2

N for all N . We aim to show that Schwartz minimizing sequences for these constraints

have vanishing β parameters and log |a| converging to the even extension of a Dirac delta

distribution.

By the explicit description (2.1.5) and (2.1.6) of F2 and
⋃
N≥0M2

N , we note that our

conditions on (e1, e2) are equivalent to e1 > 0 and e2 ≥ 0.

First, we find a lower bound for the log |a| contribution to E3:

Lemma 2.7.1. We have

E3(u) ≥ 64
π

γ21
γ0

+ C
(
e1 − 4

π
γ0, e2 − 16

π
γ1
)

for all u ∈ Ce ∩ S(R), (2.7.1)

where

γ0 =

∫ ∞

−∞
k2 log |a(k;u)| dk and γ1 =

∫ ∞

−∞
k4 log |a(k;u)| dk. (2.7.2)

66



Proof. Fix u ∈ S(R). Substituting x = k2 into the trace formulas (2.2.7) and recalling the

reality condition (2.2.6), we obtain

e1 = 4
π

∫ ∞

0

x
1
2 log |a(x

1
2 ;u)| dx+ 8

3

N∑

m=1

β3
m,

e2 = 16
π

∫ ∞

0

x
3
2 log |a(x

1
2 ;u)| dx− 32

5

N∑

m=1

β5
m,

E3(u) = 64
π

∫ ∞

0

x
5
2 log |a(x

1
2 ;u)| dx+ 128

7

N∑

m=1

β7
m.

The first constraint says that the positive measure

dµ := x
1
2 log |a(x

1
2 ;u)| dx

on [0,∞) has total mass

γ0 :=

∫ ∞

0

1 dµ(x) = π
4

(
e1 − 8

3

N∑

m=1

β3
m

)
∈
[
0, π

4
e1
]
. (2.7.3)

The first constraint also restricts how large the first moment of dµ can be. As p 7→ ‖β‖`p
is decreasing, we have ( N∑

m=1

β5
m

)1
5

≤
( N∑

m=1

β3
m

)1
3

≤
(
3
8
e1
) 1

3 .

This requires that the first moment obeys

γ1 :=

∫ ∞

0

x dµ(x) = π
16

(
e2 + 32

5

N∑

m=1

β5
m

)
∈
[
π
16
e2,

π
16

(
e2 + 32

5
(3
8
e1)

5
3

)]
. (2.7.4)

In order to bound E3(u) below, we seek a lower bound for the second moment

γ2 :=

∫ ∞

0

x2 dµ(x).

By Cauchy–Schwarz we have

γ1 =

∫ ∞

0

x dµ(x) ≤
(∫ ∞

0

1 dµ(x)

)1
2
(∫ ∞

0

x2 dµ(x)

)1
2

= γ
1
2
0 γ

1
2
2 ,
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and so

γ2 ≥ γ21
γ0
. (2.7.5)

For future reference (cf. (2.7.8)), we note that equality occurs above if and only if the func-

tions x
1
2 log |a(x

1
2 ;u)| and x

5
2 log |a(x

1
2 ;u)| are proportional. As k 7→ log |a(k;u)| is a contin-

uous nonnegative function on R for u Schwartz, this can only happen when log |a(k;u)| ≡ 0

for k ∈ R.

The estimate (2.7.5) provides a lower bound for the log |a| moment of E3(u). The β

moment is then bounded below by the infimum C of E3(u) subject to the smaller constraints

where the log |a| moments are removed:

128
7

N∑

m=1

β7
m = E3(Qβ,c) ≥ C

(
e1 − 4

π
γ0, e2 − 16

π
γ1
)
.

Together, this yields the inequality (2.7.1).

We will now minimize the lower bound in (2.7.1) over all possible γ0 and γ1. At first

glance, the first term γ21/γ0 is smallest when γ0 is large and γ1 is small, while the second

term C(e1 − 4
π
γ0, e2 − 16

π
γ1) is smallest when both γ0 and γ1 are small. We will see below

that the first term is dominant, which yields the following inequality:

Lemma 2.7.2. Given constraints e1 > 0 and e2 ≥ 0, we have

inf{E3(u) : u ∈ Ce ∩ S(R)} =
e22
e1
. (2.7.6)

Moreover, this infimum is not attained by any u ∈ Ce ∩ S(R).

Proof. The domain of (γ0, γ1) in R2 is contained in the rectangle given by the product of the

intervals in (2.7.3) and (2.7.4). Let (γ0, γ1) be the minimizer of

64
π

γ21
γ0

+ C(e1 − 4
π
γ0, e2 − 16

π
γ1)

over this compact rectangle. Differentiating with respect to γ1, we have

∂
∂γ1

{
64
π

γ21
γ0

+ C(e1 − 4
π
γ0, e2 − 16

π
γ1)
}

= 128
π

γ1
γ0
− 16

π
∂C
∂e2

(e1 − 4
π
γ0, e2 − 16

π
γ1).
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The derivative ∂C
∂e2

is nonpositive by Lemma 2.3.5, and so this quantity is positive for all γ1

in the open interval ( π
16
e2,

π
16

(e2 + 32
5

(3
8
e1)

5
3 )). Therefore the minimizer must have γ1 = π

16
e2.

Similarly, we have

∂
∂γ0

{
64
π

γ21
γ0

+ C(e1 − 4
π
γ0, e2 − 16

π
γ1)
}

= −64
π

γ21
γ20
− 4

π
∂C
∂e1

(e1 − 4
π
γ0, e2 − 16

π
γ1).

The derivative ∂C
∂e1

is O(β2
1β

2
2) by the computation (2.3.17), and hence vanishes as β1, β2 → 0.

Therefore, taking γ1 → π
16
e2 we obtain

∂
∂γ0

{
64
π

γ21
γ0

+ C(e1 − 4
π
γ0, e2 − 16

π
γ1)
}
→ −π

4

e22
γ20

for all γ0 in the open interval (0, π
4
e1). Therefore the minimizer has γ0 = π

4
e1.

Altogether, we conclude that the minimum occurs at γ0 = π
4
e1, γ1 = π

16
e2 with value

{
64
π

γ21
γ0

+ C(e1 − 4
π
γ0, e2 − 16

π
γ1)
}∣∣∣
γ0=

π
4
e1, γ1=

π
16
e2

=
e22
e1
.

To prove (2.7.6), it remains to show that we can make E3(u) arbitrarily close to this value.

Fix (γ̃0, γ̃1) in the interior of the rectangle given by the product of the intervals in (2.7.3)

and (2.7.4) that is arbitrarily close to the minimizer (γ0, γ1). Pick a smooth and even function

k 7→ log |a(k; ũ)| with compact support in Rr{0} which attains the moments (γ̃0, γ̃1) (in the

sense of (2.7.2)). Arguing as in Lemma 2.4.5, we can then use Proposition 2.2.4 to construct

a function ũ ∈ S(R) (with no bound states) so that k 7→ log |a(k; ũ)| attains the prescribed

moments (γ̃0, γ̃1).

Lastly, suppose that

E3(q) =
e22
e1

(2.7.7)

for some q ∈ Ce ∩S(R). Then we would have γ0 = π
4
e1, γ1 = π

16
e2 and hence the β moments

∑
β3
m and

∑
β5
m must vanish. As e1 > 0 then this implies log |a(k;u)| 6≡ 0, and so we must

have strict inequality in (2.7.5):

E3(q) = 64
π
γ2 >

64
π

γ21
γ0

=
e22
e1
. (2.7.8)

This contradicts the assumption (2.7.7), and so such a minimizer q cannot exist.

69



Now that we have found the infimum of E3, we are prepared to analyze Schwartz mini-

mizing sequences:

Proof of Theorem 2.1.6. Fix a minimizing sequence {qj}j≥1 ⊂ S(R), so that

E1(qj)→ e1, E2(qj)→ e2, E3(qj)→ e22
e1

as j →∞. (2.7.9)

In the inequality of Lemma 2.7.2, we see that we have equality in the limit j →∞. Therefore

the moments
∑

m≥1 β
7
j,m vanish as j → ∞; otherwise, we could construct a strictly better

minimizing sequence with no β parameters, because the constraints can be met solely in

terms of the log |a| moments. This implies

βj,m ≤
(∑

`≥1

β7
j,`

)1
7

→ 0 as j →∞

for all m.

We pass to an arbitrary subsequence of {qj}j≥1. We claim that there is a further subse-

quence with log |a| dk converging to the even extension of a unique point mass, from which

it will follow that the whole sequence log |a(k; qj)| dk converges to the same limit. Consider

the measures

dµj := x
1
2 log |a(x

1
2 ; qj)| dx

on [0,∞). Changing variables x = k2, the convergence (2.7.9) together with the trace

formulas (2.2.7) and the reality condition (2.2.6) tell us that moments of dµj obey

γj0 :=

∫ ∞

0

1 dµj(x)→ π
4
e1 =: γ0,

γj1 :=

∫ ∞

0

x dµj(x)→ π
16
e2 =: γ1,

γj2 :=

∫ ∞

0

x2 dµj(x)→ γ21
γ0
.

We claim that the renormalized measures dµj/γ
j
0 on [0,∞) are tight. For R > 0 we

estimate

1

γj0
µj((R,∞)) = 1

γj0

∫ ∞

R

dµj(x) ≤ 1

Rγj0

∫ ∞

R

x dµj(x).
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Note that 1/γj0 is bounded uniformly for j large since γj0 → γ0 > 0. Also, the integral on the

RHS is bounded uniformly in j since γj1 → γ1. Together, we conclude that the RHS tends

to zero as R→∞ uniformly in j.

Therefore, by Prokhorov’s theorem we may pass to a subsequence along which the proba-

bility measures dµj/γ
j
0 converge weakly to some probability measure dµ/γ0. As γj0 → γ0 > 0,

then the measures dµj converge weakly to dµj.

The sequence of second moments γj2 converges, and hence is bounded. It then follows

that the zeroth and first moments converge to those of µ:

∫ ∞

0

dµj(x) = lim
j→∞

∫ ∞

0

dµj(x) = γ0,

∫ ∞

0

x dµj(x) = lim
j→∞

∫ ∞

0

x dµj(x) = γ1.

For the second moments, we use Fatou’s lemma (which holds for weakly converging measures)

to obtain

γ21
γ0
≤
∫ ∞

0

x2 dµ(x) ≤ lim inf
j→∞

∫ ∞

0

x2 dµj(x) =
γ21
γ0
.

Altogether, we conclude that µ minimizes the second moment lower bound (2.7.5) from the

Cauchy–Schwarz inequality. Therefore the distributions dµ and x2 dµ(x) on [0,∞) are pro-

portional, and hence µ is a Dirac delta mass. The support and total mass of this distribution

are uniquely determined by γ0 and γ1. In turn, the limiting distribution

1
2k

(dµ(k2) + dµ(−k2))

of log |a| dk on R is then uniquely determined by the reality condition (2.2.6). Lastly, we note

that weak convergence of measures implies convergence when integrated against bounded

continuous test functions by the Portmanteau theorem, and hence implies convergence in

distribution.
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CHAPTER 3

Well-posedness for step-like initial data at high

regularity

3.1 Introduction

Historically, investigations of the well-posedness problem for KdV have focused on initial data

in the L2-based Sobolev spaces Hs(R/Z) and Hs(R). This framework necessarily produces

solutions that are spatially periodic or decay at infinity. However, as KdV is a model for

surface waves in a shallow channel of water, there are other classes of initial data that are

of physical interest. In particular, waveforms that are step-like—in the sense that u(0, x)

asymptotically approaches distinct constant values as x → ±∞—arise in the study of bore

propagation (cf. [16,34,60,71,124,139]) and rarefaction waves (cf. [7,60,109,120,142]). Such

asymptotic behavior has real physical consequences; we will see below that the polynomial

conservation laws are broken, and in the case of an incoming tide there is an infinite influx

of energy into the system.

Our objective in this chapter is to extend low-regularity methods for well-posedness to

the regime of nonzero spatial asymptotics. We define the smooth step function

W (x) = c1 tanh(x) + c2 with c1, c2 ∈ R fixed, (3.1.1)

which exponentially decays to its asymptotic values. As −u is proportional to the water wave

height, W models an incoming tide if c1 > 0 and an outgoing tide if c1 < 0. In fact, we can

always perform a boost to prescribe c2 courtesy of the Galilean symmetries of KdV (1.1.1),
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but we will not make use of this.

A classical result in the study of step-like asymptotics is:

Theorem 3.1.1. Fix an integer s ≥ 3. The KdV equation (1.1.1) with initial data u(0) ∈
W + Hs(R) is globally well-posed in the following sense: u(t) = W + q(t) where q(t) is the

global solution to
d

dt
q = −(q +W )′′′ + 6(q +W )(q +W )′ (3.1.2)

with initial data q(0) = u(0)−W in Hs(R). Moreover, q(t) is in CtH
s([−T, T ]× R) for all

T > 0, q(t) is unique in this class, and q(t) depends continuously upon the initial data q(0)

in Hs(R).

Theorem 3.1.1 is not new (as we will discuss below), but we will use its statement to

formulate our main result. Applying Theorem 3.1.1 to the initial data q(0) ≡ 0, we conclude

that given W there is a unique global solution V (t) = W + q(t) to KdV (1.1.1) with initial

data W , and t 7→ V (t) −W is a continuous function into Hs(R) for all s ≥ 3. The main

thrust of this work is to show that KdV is globally well-posed for H−1(R) perturbations of

V (t); see Corollary 4.1.4 for details.

Lower regularity than H3(R) has been obtained in the study of well-posedness for per-

turbations of a fixed step-like background wave. The first result was recorded in [79], who

proved local well-posedness for perturbations in Hs(R), s > 3
2
, and global well-posedness

for s ≥ 2. Local well-posedness was then extended to s > 1 in [62] for the same family of

background waves. Independently, local well-posedness for H2(R) perturbations was proved

for gKdV in [144], along with global-in-time existence when the background wave is a kink

solution and the initial data is small in H1(R).

Subsequent to our work, a new result [122] for gKdV demonstrates local well-posedness

for perturbations in Hs(R), s > 1
2

and global well-posedness for s ≥ 1. In addition to a larger

class of equations, this work also applies to a wide variety of background waves, including

both step-like and periodic asymptotics. In particular, the background wave is not assumed
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to be time-independent nor an exact solution, but rather is allowed to solve the equation

modulo a localized error term.

The primary tool used in the literature to study step-like solutions of KdV has been the

inverse scattering transform. In the case of a highly regular step-like background, existence

for the Cauchy problem has been examined in [33, 40, 41, 52, 53, 85]. In order to employ

the inverse scattering transform these results assume that u(0) − W is integrable against

1+ |x|N for some N ≥ 1, and consequently Hs(R) spaces are not amenable to such methods.

Nevertheless, these methods do yield existence for Schwartz class perturbations [52]. Classes

of one-sided step-like initial data were treated in [69,127,128] and one-sided step-like elements

of H−1loc (R) were treated in [68]. Despite the lack of assumptions as x→ −∞ (the direction in

which radiation propagates), these low-regularity arguments require rapid decay as x→ +∞
and global boundedness from below. By comparison, our argument is symmetric in ±x and

in ±u.

The inverse scattering transform is also used to study the long-time behavior of such

solutions; see, for example, [7, 13, 18–20, 51, 76, 91, 92, 101, 102, 120]. The asymptotics are

spatially asymmetric and differ in the cases of tidal bores and rarefaction waves.

To prove Theorem 3.1.1, we will employ the method of commuting flows introduced

in [97]. This method was used to prove both symplectic non-squeezing [121] and invariance

of white noise [94] for KdV on the line. The method of commuting flows has also been

adapted to other completely integrable systems [30, 72, 73, 93, 95]. However, aside from the

white noise result [94], this marks the first application of the method of commuting flows to

nontrivial spatial asymptotics.

Unlike previous applications of the method of commuting flows, the presence of the back-

ground wave W breaks all of the conservation laws. A solution u of KdV (1.1.1) necessarily

obeys the microscopic conservation law

d

dt

(
1
2
u2
)

=
[
−uu′′ + 1

2
(u′)2 + 2u3

]′
.
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For Schwartz solutions u, integrating in space yields macroscopic conservation of the mo-

mentum E1(u) (defined in (1.1.3)). However, if merely u−W is Schwartz, then we obtain

d

dt

∫
1
2

[
u(t, x)2 − u(0, x)2

]
dx = 2W (x)3

∣∣∣∣
x=+∞

x=−∞
. (3.1.3)

In the case c1 > 0, c2 = 0 of an incoming tide, the RHS is equal to 4c31 > 0. The momentum’s

growth is manifested in a dispersive shock that develops in the long-time asymptotics [51,

Fig. 1].

Interpreting W as an incoming or outgoing tide, we will refer to (3.1.2) as tidal KdV.

To prove Theorem 3.1.1 we will show that tidal KdV is well-posed in Hs(R) for s ≥ 3.

Computations similar to (3.1.3) show that the presence of W in tidal KdV breaks all of

the polynomial conservation laws of KdV. Despite this, we are able to adapt the method of

commuting flows to tidal KdV because these conserved quantities do not blow up in finite

time.

In the case W ≡ 0, the authors of [97] introduced the Hamiltonians Hκ defined by (1.4.7),

and showed that their flows converge to that of KdV in H−1(R) as κ→∞. These Hκ flows

are easier to work with; in particular, well-posedness follows from straightforward ODE

arguments. Moreover, two Hκ flows with different energy parameters κ commute with one

another, which greatly benefits the proof of convergence as κ→∞.

As the Hκ flows approximate KdV, we will need to construct analogous approximate

equations for tidal KdV (3.1.2). Just as how we obtained tidal KdV from KdV, we subtract

the background wave W from u to obtain the tidal Hκ flow for q = u−W with Hamiltonian

HW
κ :

etJ∇H
W
κ q = etJ∇Hκ(q +W )−W.

This tidal Hκ flow is indeed Hamiltonian, but we will not need the formula for the Hamil-

tonian; we only formally introduce HW
κ so that we have a succinct notation for its flow. In

proving Corollary 4.1.4 and Theorem 3.1.1, we will show that the tidal Hκ flow is well-posed

in Hs(R) for s ≥ 3, commutes with any other tidal Hκ flow, and converges to tidal KdV in
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Hs(R) as κ→∞ uniformly on bounded time intervals.

This chapter is organized as follows. In Section 3.2 we define the diagonal Green’s function

for perturbations q ∈ H−1(R) of the background W , which we will use to formulate the tidal

Hκ flow. In Section 3.3 we prove a priori estimates and global well-posedness for the tidal

Hκ flow. As a stepping stone to convergence in Hs-norm, we prove in Section 3.4 that the

tidal Hκ flow converges in the weaker H−2-norm. The entirety of Section 3.5 is dedicated to

controlling the Fourier tail growth in time. We then combine the low-regularity convergence

and Fourier tail control in Section 3.6 to obtain convergence in Hs-norm and conclude our

main result.

3.2 Diagonal Green’s function

We begin by reviewing our notation and the necessary tools from [97], which can be consulted

for further details.

For a Sobolev space W k,p(R) we use the spacetime norm

‖q‖CtWk,p(I×R) := sup
t∈I
‖q(t)‖Wk,p(R)

for I ⊂ R an interval. In addition to the usual Sobolev spaces W k,p and Hs, we define the

norm

‖f‖2Hs
κ(R)

:=

∫

R
(ξ2 + 4κ2)s|f̂(ξ)|2 dξ. (3.2.1)

The presence of the factor of four is to make the calculation (3.2.3) an exact identity. Our

convention for the Fourier transform is

f̂(ξ) =
1√
2π

∫

R
e−iξxf(x) dx, ‖f̂‖L2 = ‖f‖L2 .

In analogy with the usual Hs spaces, we have the elementary facts

‖wf‖H±1
κ

. ‖w‖W 1,∞ ‖f‖H±1
κ
, ‖wf‖H±1

κ
. ‖w‖H1 ‖f‖H±1

κ
(3.2.2)
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uniformly for κ ≥ 1. We will exclusively use the L2 pairing 〈·, ·〉; the space H−1κ is dual to

H1
κ with respect to this pairing, and so the inequalities (3.2.2) for H−1κ are implied by those

for H1
κ.

We write Ip for the Schatten classes (also called trace ideals) of compact operators on

the Hilbert space L2(R) whose singular values are `p-summable. Of particular importance

will be the Hilbert–Schmidt class I2: recall that an operator A on L2(R) is Hilbert–Schmidt

if and only if it admits an integral kernel a(x, y) ∈ L2(R× R), and we have

‖A‖op ≤ ‖A‖I2 =

(∫∫
|a(x, y)|2 dx dy

)1/2

.

The product of two Hilbert–Schmidt operators A and B is of trace class I1, the trace is

cyclic:

tr(AB) :=

∫∫
a(x, y)b(y, x) dy dx = tr(BA),

and we have the estimate

| tr(AB)| ≤ ‖A‖I2 ‖B‖I2 .

Additionally, Hilbert–Schmidt operators form a two-sided ideal in the algebra of bounded

operators, due to the inequality

‖BAC‖I2 ≤ ‖B‖op ‖A‖I2 ‖C‖op .

We notate the resolvent of the Schrödinger operator with zero potential by

R0(κ) :=
(
−∂2x + κ2

)−1
with integral kernel 〈δx, R0(κ)δy〉 = 1

2κ
e−κ|x−y|.

The energy parameter κ will always be real and positive. Consequently, R0(κ) will always

be positive definite and so we may consider its positive definite square-root
√
R0(κ).

The following calculation is the basis for all of the analysis that follows.

Lemma 3.2.1 (Key estimate [97, Prop. 2.1]). For q ∈ H−1(R) we have

∥∥∥
√
R0(κ) q

√
R0(κ)

∥∥∥
2

I2
=

1

κ

∫ |q̂(ξ)|2
ξ2 + 4κ2

dξ =
1

κ
‖q‖2H−1

κ
. (3.2.3)
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The identity (3.2.3) guarantees that the Neumann series for the resolvent of −∂2 +

q converges for all κ sufficiently large when q belongs to a bounded subset of H−1κ (R).

Consequently, we will always be working within the closed balls

BA(κ) := {q ∈ H−1(R) : ‖q‖H−1
κ
≤ A}, BA := {q ∈ H−1(R) : ‖q‖H−1 ≤ A} (3.2.4)

of radius A > 0. Note that BA(κ) ⊃ BA for κ ≥ 1, and so any result obtained for BA(κ) with

κ ≥ 1 also holds for the fixed set BA. The resolvent construction also works for q ∈ BA(κ)

perturbations of a background wave V ∈ L∞:

Lemma 3.2.2 (Resolvents). Fix V ∈ L∞(R). Given q ∈ H−1(R), there exists a unique

self-adjoint operator corresponding to −∂2x + V + q with domain H1(R). Moreover, given

A > 0 there exists κ0 > 0 so that the series

R(κ, V ) = (−∂2 + V + κ2)−1 =
∞∑

`=0

(−1)`
√
R0

(√
R0V

√
R0

)`√
R0 (3.2.5)

converges absolutely to a positive definite operator for κ ≥ κ0, and the series

R(κ, V + q) =
∞∑

`=0

(−1)`
√
R(κ, V )

[√
R(κ, V ) q

√
R(κ, V )

]`√
R(κ, V ) (3.2.6)

converges absolutely for q ∈ BA(κ) and κ ≥ κ0.

Proof. Initially we require that κ ≥ 1. As V ∈ L∞, we may define the operator −∂2 + V via

the quadratic form

φ 7→
∫ (
|φ′(x)|2 + V (x)|φ(x)|2

)
dx

equipped with the domain H1(R). Using the elementary estimates ‖R0‖op ≤ κ−2 and

‖V ‖op ≤ ‖V ‖L∞ , it is clear that the Neumann series (3.2.5) for R(κ, V ) is absolutely conver-

gent for all κ2 ≥ 2 ‖V ‖L∞ . Once we know the series absolutely converges, it is straightforward

to verify that multiplying by −∂2 + V + κ2 produces the identity operator.

Expanding the series (3.2.5) and using the identity (3.2.3) we estimate

∥∥∥
√
R(κ, V ) q

√
R(κ, V )

∥∥∥
2

I2
= tr{R(κ, V )qR(κ, V )q}
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≤
∞∑

`,m=0

∥∥∥
√
R0V

√
R0

∥∥∥
`+m

op

∥∥∥
√
R0q

√
R0

∥∥∥
2

I2
≤ 4κ−1 ‖q‖2H−1

κ

for all κ2 ≥ 2 ‖V ‖L∞ , and hence

∥∥∥
√
R(κ, V ) q

√
R(κ, V )

∥∥∥
I2
≤ 2κ−1/2 ‖q‖H−1

κ
. (3.2.7)

Consequently, given q ∈ BA(κ) we have

∫
q(x)|φ(x)|2 dx ≤

∥∥∥
√
R(κ, V ) q

√
R(κ, V )

∥∥∥
op

∫ (
|φ′(x)|2 + |V (x)||φ(x)|2

)
dx

≤ 1
2

∫ (
|φ′(x)|2 + |V (x)||φ(x)|2

)
dx

for all φ ∈ H1(R) provided that κ ≥ 16A2. We conclude that −∂2 + V + q is a form-

bounded perturbation of −∂2 + V with relative norm strictly less than 1; this guarantees

that −∂2+V +q exists, is unique, and has the same form domain H1(R) (cf. [125, Th. X.17]).

The estimate (3.2.7) then demonstrates that the series (3.2.6) for R(κ, V + q) is absolutely

convergent for all κ ≥ 16A2.

In [97] the diagonal Green’s function—the restriction of the kernel G(x, y;κ, q) of the

operatorR(κ, q) to the diagonal—was instrumental in controlling q inH−1. This construction

also works for q ∈ BA(κ) perturbations of V :

Proposition 3.2.3 (Diagonal Green’s function). Fix V ∈ L∞(R). Given A > 0 there exists

κ0 > 0 such that for all κ ≥ κ0 the diagonal Green’s function g(x;κ, V +q) := G(x, x;κ, V +q)

exists for q ∈ BA(κ), the two functionals

q 7→ g(x;κ, V + q)− g(x;κ, V ) and q 7→ 1

g(x;κ, V + q)
− 1

g(x;κ, q)
(3.2.8)

are real analytic from BA(κ) into H1
κ(R), and we have the estimate

‖g(x;κ, V + q)− g(x;κ, V )‖H1
κ
. κ−1 ‖q‖H−1

κ
(3.2.9)

uniformly for q ∈ BA(κ) and κ ≥ κ0.
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Moreover, in the case where V is the smooth step function W (defined in (3.1.1)), for

any integer s ≥ 0 and A > 0 there exists κ0 > 0 so that

‖g(x;κ,W + q)− g(x;κ,W )‖Hs+2
κ

. κ−1 ‖q‖Hs
κ

(3.2.10)

uniformly for ‖q‖Hs ≤ A and κ ≥ κ0.

Proof. In Fourier variables, we have

‖
√
R0δx‖2L2 . κ−1, ‖

√
R0δx+h −

√
R0δx‖2L2 ≤

∫ |eiξh − 1|2
ξ2 + 1

dξ . |h|

for κ ≥ 1. This demonstrates that x 7→ √R0δx is 1
2
-Hölder continuous as a map from R to

L2. We initialize κ0 to be the constant from Lemma 3.2.2. Then from the series (3.2.5) we

see that

|〈δx, [R(κ, V )−R0(κ)] δy〉 − 〈δx′ , [R(κ, V )−R0(κ)] δy′〉|

. κ−1/2
(
|x− x′|1/2 + |y − y′|1/2

) ∞∑

`=1

(
κ−2 ‖V ‖L∞

)`
.

The series converges provided that κ� ‖V ‖1/2L∞ . Consequently, the Green’s function G(x, y)

= 〈δx, R(κ, V )δy〉 is continuous in both x and y, and so we may unambiguously define

g(x;κ, V ) = 1
2κ

+
∞∑

`=1

(−1)`
〈√

R0δx, (
√
R0V

√
R0)

`
√
R0δx

〉
. (3.2.11)

The zeroth-order term 1
2κ

can be seen directly from the integral kernel for the free resolvent

R0(κ).

Similarly, from the series (3.2.6) and the estimate (3.2.7) we have

|〈δx, [R(κ, V + q)−R(κ, V )] δy〉 − 〈δx′ , [R(κ, V + q)−R(κ, V )] δy′〉|

. κ−1/2
(
|x− x′|1/2 + |y − y′|1/2

) ∞∑

`=1

(
2κ−1/2A

)`

for all q ∈ BA(κ). The series converges provided that we also have κ � A2. Therefore

G(x, y;κ, V + q) is also a continuous function of x and y and so we may define

g(x;κ, V + q) = g(x;κ, V ) +
∞∑

`=1

(−1)`
〈√

Rδx, (
√
Rq
√
R)`
√
Rδx

〉
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where R = R(κ, V ). This shows that the first functional of (3.2.8) is real analytic for

q ∈ BA(κ).

Next we check that g(x;κ, V + q) − g(x;κ, V ) is in H1
κ by duality and the operator

estimate (3.2.7):
∣∣∣∣
∫
f(x)[g(κ, V + q)− g(κ, V )](x) dx

∣∣∣∣

≤
∞∑

`=1

∥∥∥
√
R(κ, V )f

√
R(κ, V )

∥∥∥
I2

∥∥∥
√
R(κ, V ) q

√
R(κ, V )

∥∥∥
`

I2
. κ−1 ‖f‖H−1

κ
‖q‖H−1

κ
.

Taking a supremum over all ‖f‖H−1
κ
≤ 1 we obtain the estimate (3.2.9).

Now we will show that g(x;κ, V + q) is nonvanishing so that the second functional

of (3.2.8) is also real analytic. Using the series (3.2.5) we estimate

|g(x;κ, V )− g(x;κ, 0)| ≤ ‖
√
R0δx‖2L2

∞∑

`=1

(
κ−2 ‖V ‖L∞

)`
. κ−3

for κ� ‖V ‖1/2L∞ . As g(x;κ, 0) ≡ 1
2κ

, we can take κ0 larger if necessary to ensure

1
4κ
≤ g(x;κ, V ) ≤ 3

4κ

for all κ ≥ κ0. The estimate (3.2.9) combined with the observation

‖f‖L∞ ≤ ‖f‖
1/2

L2 ‖f ′‖1/2L2 . κ−1/2 ‖f‖H1
κ

(3.2.12)

then guarantees that there exists κ0 � A2 so that

‖g(x;κ, V + q)− g(x;κ, V )‖L∞ ≤ 1
8κ

for all q ∈ BA(κ) and κ ≥ κ0. Consequently, the second functional of (3.2.8) is also real-

analytic.

Finally, given s ≥ 0, we check that g(x;κ,W + q)− g(x;κ,W ) is in Hs+2
κ by estimating

the first s + 1 derivatives in H1
κ by duality. The Green’s function for a translated potential

is the translation of the original Green’s function:

g(x;κ, q(·+ h)) = g(x+ h;κ, q) for all h ∈ R. (3.2.13)
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Differentiating (3.2.13) at h = 0 and using the resolvent identity, we have

g(j)(x;κ,W + q) =
∞∑

`=0

(−1)`
〈
δx, [∂

j, R(κ,W )(qR(κ,W ))`δx]
〉
. (3.2.14)

Here, [A,B] = AB−BA denotes the commutator and ∂j denotes j spatial partial derivatives.

Within the summand there are ` + 1 factors of R(κ,W ), and we expand each into the

series (3.2.5) in powers of W indexed by mi. For j = 0, . . . , s+ 1 and f ∈ H−1κ , this yields
∣∣∣∣
∫
f(x)[g(κ,W + q)− g(κ,W )](j)(x) dx

∣∣∣∣

≤
∞∑

`=1

∞∑

m0,...,m`=0

∣∣ tr
{
f [∂j, R0(WR0)

m0qR0 · · · qR0(WR0)
m` ]
}∣∣.

We distribute the derivatives [∂j, ·] using the product rule. We use the operator esti-

mate (3.2.3) for each factor of
√
R0 q
√
R0 and estimate the remaining factors in operator

norm. Given a multiindex σ ∈ N` with |σ| ≤ j, Hölder’s inequality in Fourier variables yields

∏̀

i=1

‖q(σj)‖H−1
κ
≤ ‖q(|σ|)‖H−1

κ
‖q‖`−1

H−1
κ
≤ ‖q‖Hj−1

κ
‖q‖`−1

H−1
κ
.

As j ≤ s+ 1, we have
∣∣∣∣
∫
f(x)[g(κ,W + q)− g(κ,W )](j)(x) dx

∣∣∣∣

≤
∞∑

`=1

∞∑

m0,...,m`=0

‖f‖H−1
κ
‖q‖Hs

κ

κ

(‖q‖H−1
κ

κ1/2

)`−1(‖W‖W s+1,∞

κ2

)m0+···+m`
.

First we perform the inner sum over m0, . . . ,m`; re-indexing m = m0 + · · ·+m`, we have

∑

m0,...,m`≥0

(‖W‖W s+1,∞

κ2

)m0+···+m`
=

∞∑

m=0

(`+m)!

`!m!

(‖W‖W s+1,∞

κ2

)m

.

(
1− ‖W‖W s+1,∞

κ2

)`+1

≤ 1

(3.2.15)

uniformly in `, provided that κ� ‖W‖1/2W s+1,∞ . The sum over ` ≥ 1 then converges uniformly

for κ� A2, yielding
∣∣∣∣
∫
f [g(κ,W + q)− g(κ,W )](j) dx

∣∣∣∣ . κ−1 ‖f‖H−1
κ
‖q‖Hs

κ
for j = 0, . . . , s+ 1.

Taking a supremum over ‖f‖H−1
κ
≤ 1, we obtain the estimate (3.2.10).
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As an offspring of the resolvent R(κ, q), the diagonal Green’s function comes with some

algebraic identities. In particular, in [97, Lem. 2.5–2.6] it is shown that for Schwartz q we

have the identities ∫
G(x, y;κ, q)G(y, x;κ, q)

2g(y;κ, q)2
dy = g(x;κ, q) (3.2.16)

and ∫
G(x, y;κ, q)

[
−f ′′′ + 2qf ′ + 2(qf)′ + 4κ2f ′

]
(y)G(y, x;κ, q) dy

= 2f ′(x)g(x;κ, q)− 2f(x)g′(x;κ, q)

(3.2.17)

for all Schwartz f . To show that these hold for general q ∈ BA(κ), we argue as follows.

Given A > 0, we pick κ0 from Proposition 3.2.3. Then both sides are analytic in q, and so

equality follows from the proofs [97, Lem. 2.5–2.6] for the Schwartz case.

As is suggested by taking f = g(κ, q) in (3.2.17), multiplying by 1/2g(x;κ, q)2, and

integrating in x, the diagonal Green’s function satisfies the ODE

g′′′(κ, q) = 2qg′(κ, q) + 2 [qg(κ, q)]′ + 4κ2g′(κ, q); (3.2.18)

see [97, Prop. 2.3] for a proof.

Ultimately, the convergence of the approximate flows will be dominated by the linear and

quadratic terms of the series (3.2.5) for the diagonal Green’s function. Consequently, we will

now record some useful operator identities for these two terms:

Lemma 3.2.4. For κ ≥ 1 we have the operator identities

16κ5〈δx, R0fR0δx〉 = 16κ4R0(2κ)f =
[
4κ2 + ∂2 +R0(2κ)∂4

]
f, (3.2.19)

16κ5〈δx, R0fR0hR0δx〉 = 3fh− 3[R0(2κ)f ′′][R0(2κ)h′′]

+ 4κ2[R0(2κ)f ′][R0(2κ)h′](−5 +R0(2κ)∂2)

+ 4κ2[R0(2κ)f ][R0(2κ)h](5∂2 + 2R0(2κ)∂4),

(3.2.20)

where R0 = R0(κ).
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Proof. From the integral kernel formula for R0(κ) we see that 〈δx, R0fR0δx〉 = κ−1R0(2κ)f ,

which demonstrates the first equality of (3.2.19). The second equality follows from the

symbol identity
16κ4

ξ2 + 4κ2
= 4κ2 − ξ2 +

ξ4

ξ2 + 4κ2

in Fourier variables.

Now we turn to the second identity (3.2.20). In [97, Appendix] the Fourier transform of

LHS(3.2.20) is found to be

F
(
LHS(3.2.20)

)
(ξ) =

8κ4√
2π

∫

R

[ξ2 + (ξ − η)2 + η2 + 24κ2]f̂(ξ − η)ĥ(η)

(ξ2 + 4κ2)((ξ − η)2 + 4κ2)(η2 + 4κ2)
dη.

The operator identity (3.2.20) then follows from the equality

8κ4 [ξ2 + (ξ − η)2 + η2 + 24κ2]

(ξ2 + 4κ2)((ξ − η)2 + 4κ2)(η2 + 4κ2)
= 3− 3η2(ξ − η)2

((ξ − η)2 + 4κ2)(η2 + 4κ2)

− 20κ2 [−η(ξ − η) + ξ2]

((ξ − η)2 + 4κ2)(η2 + 4κ2)
+

4κ2ξ2 [η(ξ − η) + 2ξ2]

(ξ2 + 4κ2)((ξ − η)2 + 4κ2)(η2 + 4κ2)
.

We will also need to know that after extracting the linear and quadratic terms from

κ5g(κ, q +W ), the remainder tends to zero as κ→∞:

Lemma 3.2.5. Given an integer s ≥ 1 and A > 0, we have

κ5
∥∥{g(κ, q +W ) + 〈δx, R0(q +W )R0δx〉

− 〈δx, R0(q +W )R0(q +W )R0δx〉
}(s+1)∥∥

L2 → 0 as κ→∞
(3.2.21)

uniformly for ‖q‖Hs ≤ A.

Proof. We estimate the sth derivative in H1 by duality. Differentiating the translation

identity (3.2.14) at h = 0, we have

g(s)(x;κ,W + q) =
∞∑

`=0

(−1)`
〈
δx, [∂

s, R(κ,W )(qR(κ,W ))`δx]
〉
.
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Within the summand there are ` + 1 factors of R(κ,W ), and we expand each into the

series (3.2.5) in powers of W indexed by mi. For f ∈ H−1 this yields

κ5
∣∣∣∣
∫
f(x)

{
g(κ, q +W ) + 〈δx, R0(q +W )R0δx〉 − 〈δx, R0(q +W )R0(q +W )R0δx〉

}(s)
dx

∣∣∣∣

≤ κ5
∑

`≥0, m0,...,m`≥0
`+m0+···+m`≥3

∣∣ tr
{
f [∂s, R0(WR0)

m0qR0 · · · qR0(WR0)
m` ]
}∣∣. (3.2.22)

We distribute the derivatives [∂s, ·] using the product rule. We then use the operator esti-

mate (3.2.3) and the observation ‖f‖H−1
κ

. κ−1 ‖f‖L2 to put the highest order q in L2. In the

instance that there are no factors of q, we put the highest order W term in L2 and use that

W ′ is in Hs−1. We then estimate all other terms in operator norm; the remaining factors

of q have at most s − 1 derivatives, and thus may be estimated in L∞ via the embedding

H1 ↪→ L∞. This yields

RHS(3.2.22) . κ5
∑

`≥0, m0,...,m`≥0
`+m0+···+m`≥3

‖f‖H−1

κ1/2
max{‖q‖Hs , ‖W ′‖Hs−1}

κ3/2

×
(

max{‖q‖Hs , ‖W‖W s,∞}
κ2

)`+m0+···+m`−1

.

We re-index m = m0 + · · ·+m` and sum over `+m ≥ 3 as in (3.2.15). The sum converges

provided κ� ‖q‖1/2Hs and κ� ‖W‖1/2W s,∞ . The condition `+m ≥ 3 guarantees that when we

sum over the parenthetical term we gain a factor . (κ−2)2, and so we obtain

RHS(3.2.22) . κ−1 ‖f‖H−1

uniformly for ‖q‖L2 ≤ A and κ ≥ κ0(A). The claim (3.2.21) follow by taking a supremum

over ‖f‖H−1 ≤ 1.

3.3 Tidal Hκ flow

The argument of [97] relies upon the Hamiltonians Hκ defined in (1.4.7), whose flows ap-

proximate that of KdV as κ → ∞. Specifically, in [97, Prop. 3.2] it is shown that the Hκ
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flow can be expressed in terms of the diagonal Green’s function as

d

dt
u = 16κ5g′(κ, u) + 4κ2u′. (3.3.1)

Moreover, the flows at any two energy parameters κ and κ commute:

{Hκ, Hκ} = 0. (3.3.2)

We need an analogous approximate flow for step-like initial data. Mimicking how we

obtained tidal KdV from KdV, we subtract the background W from the function u to obtain

the tidal Hκ flow
d

dt
q = 16κ5g′(κ, q +W ) + 4κ2(q +W )′ (3.3.3)

for q := u−W . The tidal Hκ flow is also Hamiltonian; however, we will not need the exact

formula for its Hamiltonian.

In this section we will show that the tidal Hκ flow is globally well-posed in Hs for all

integers s ≥ 0. We restrict our attention to integer s since the result for non-integer s ≥ 0

follows from interpolation. Once we obtain well-posedness, the commutativity (3.3.2) of the

Hκ flows implies that any two tidal Hκ flows commute with each other.

We begin with local well-posedness. The Hκ flows are easier to work with because local

well-posedness follows from a contraction mapping argument.

Lemma 3.3.1. Given an integer s ≥ −1 and A > 0, there exists a constant κ0 so that for

κ ≥ κ0 the tidal Hκ flows (3.3.3) with initial data in the closed ball Bs
A ⊂ Hs(R) of radius A

are locally well-posed.

Proof. Fix an integer s ≥ −1. The solution q(t) to the tidal Hκ flow satisfies the integral

equation

q(t) = et4κ
2∂xq(0) +

∫ t

0

e(t−τ)4κ
2∂x
[
16κ5g′(κ, q(τ) +W ) + 4κ2W ′] dτ.

86



A contraction mapping argument proves local well-posedness, provided we have the Lipschitz

estimate

‖g′(κ, q +W )− g′(κ, q̃ +W )‖Hs

. ‖[g(κ, q +W )− g(κ,W )]− [g(κ, q̃ +W )− g(κ,W )]‖Hs+2 . ‖q − q̃‖Hs

uniformly on bounded subsets of Hs.

Fix A > 0. It suffices to show that f 7→ d[g(κ, · + W )]|q(f) is bounded Hs → Hs+2

uniformly for ‖q‖Hs ≤ A. Using the resolvent identity we calculate

d[g(κ, ·+W )]|q(f) = −〈δx, R(κ, q +W )fR(κ, q +W )δx〉.

Just as we did for the single resolvent 〈δx, R(κ, q + W )δx〉 in (3.2.10), we estimate the first

s+ 1 derivatives in H1 by duality and expand each resolvent into a series. We conclude that

there exists a constant κ0 such that

‖d[g(κ, ·+W )]|q(f)‖Hs+2 . ‖f‖Hs

uniformly for q ∈ Bs
A and κ ≥ κ0.

In order to obtain global well-posedness, we will prove a priori estimates in Hs for

all integers s ≥ 0. Our energy arguments are inspired by those of Bona and Smith [24].

The family of BBM equations which Bona–Smith uses to approximate the KdV flow does

not conserve the polynomial conserved quantities of KdV. One benefit of our method is

that in the case W ≡ 0, the Hκ flows do conserve these quantities (as is suggested by the

asymptotic expansion (1.4.6) and Poisson commutativity (1.4.1)), and consequently the a

priori estimates are identical to that of KdV. In particular, in the case W ≡ 0 we obtain a

new proof of the Bona–Smith theorem using the low-regularity methods from [97]. (This is

not subsumed by [97, Cor. 5.3], which only addresses Hs(R) for s ∈ [−1, 0).)

Our energy arguments are much simplified in the case κ = ∞, where the tidal Hκ

flow becomes tidal KdV. Our manipulations are motivated by the corresponding tidal KdV
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terms at κ =∞, where operations involving commutators and cycling the trace correspond

to more elementary operations involving integration by parts. In particular, the reason for

the restriction s ≥ 3 is the same as in [24]: when estimating d
dt
‖q(s)(t)‖2L2 under the KdV

flow, s = 3 is the smallest integer for which the nonlinear contribution can be estimated in

terms of ‖q(s)(t)‖2L2 provided that we already control q(t) in Hs−1.

We begin with s = 0:

Proposition 3.3.2. Given A, T > 0 there exist constants C and κ0 such that solutions qκ(t)

to the tidal Hκ flow (3.3.3) obey

‖q(0)‖L2 ≤ A =⇒ ‖qκ(t)‖L2 ≤ C for all |t| ≤ T and κ ≥ κ0.

Proof. By approximation and local well-posedness we may assume that q(0) ∈ H∞. Let

E1(t) := 1
2

∫
qκ(t, x)2 dx.

This is the first polynomial conserved quantity of the KdV hierarchy, and in the case W ≡ 0

one can directly show that d
dt
E1 = 0 under the Hκ flow using the ODE (3.2.18) satisfied by

the diagonal Green’s function.

To counteract the factor of κ5 in the tidal Hκ flow and obtain a bound for all κ large, we

will extract the linear and quadratic terms. Using the translation identity (3.2.14), we write

d

dt
E1

=

∫
qκ
{
−16κ5〈δx, R0q

′
κR0δx〉+ 4κ2q′κ

}
dx (3.3.4)

+

∫
qκ
{
−16κ5〈δx, R0W

′R0δx〉+ 4κ2W ′} dx (3.3.5)

+ 16κ5
∫
qκ〈δx, [∂,R0qκR0qκR0]δx〉 dx (3.3.6)

+ 16κ5
∫
qκ
{
〈δx, [∂,R0WR0qκR0]δx〉+ 〈δx, [∂,R0qκR0WR0]δx〉

}
dx (3.3.7)

+ 16κ5
∫
qκ〈δx, [∂,R0WR0WR0]δx〉 dx (3.3.8)
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+ 16κ5
∫
qκ
{
g(κ, qκ +W ) + 〈δx, R0(qκ +W )R0δx〉

− 〈δx, R0(qκ +W )R0(qκ +W )R0δx〉
}′
dx.

(3.3.9)

We will estimate the terms (3.3.4)–(3.3.9) separately.

The first linear contribution (3.3.4) vanishes. Indeed, using the first operator identity

of (3.2.19) we write

(3.3.4) =

∫
qκ
{
−16κ4R0(2κ)q′κ + 4κ2q′κ

}
dx.

This vanishes because the integrand is odd in Fourier variables, or equivalently the integrand

is a total derivative.

Now we estimate the linear contribution (3.3.5) from W . Using the operator iden-

tity (3.2.19) we write

|(3.3.5)| =
∣∣∣∣
∫
qκ
{
−W ′′′ −

[
R0(2κ)W (5)

]}
dx

∣∣∣∣

. ‖qκ‖L2

(
‖W ′′′‖L2 + κ−2‖W (5)‖L2

)
. E

1/2
1 . E1 + 1.

Note that W ′ is Schwartz, and we allow our implicit constants to depend on the fixed function

W .

The first quadratic contribution (3.3.6) also vanishes. Distributing the derivative [∂, ·]
and noting that [∂,R0] = 0, we write

(3.3.6) = 16κ5
(

tr{qκR0[∂, qκ]R0qκR0}+ tr{qκR0qκR0[∂, qκ]R0}
)
.

Both of these terms vanish by cycling the trace.

Next we turn to the second quadratic contribution (3.3.7). By linearity and cycling the

trace, we can “integrate by parts” to write

(3.3.7) = 16κ5
(
− tr{[∂, qκ]R0WR0qκR0}+ tr{qκ[∂,R0qκR0WR0]}

)

= 16κ5 tr{qκR0qκR0[∂,W ]R0}.
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Using the estimate (3.2.3) and the observations ‖√R0‖op . κ−1 and ‖f‖H−1
κ

. κ−1 ‖f‖L2 ,

we estimate

|(3.3.7)| . κ5
∥∥∥
√
R0qκ

√
R0

∥∥∥
2

I2

∥∥∥
√
R0W

′
√
R0

∥∥∥
op

. ‖W ′‖L∞ E1.

The quadratic W contribution (3.3.8) is easily estimated. We distribute the derivative

and estimate

|(3.3.8)| . κ5
∥∥∥
√
R0qκ

√
R0

∥∥∥
I2

∥∥∥
√
R0W

′
√
R0

∥∥∥
I2

∥∥∥
√
R0W

√
R0

∥∥∥
op
.

Using the identity (3.2.3) and the observation ‖f‖H−1
κ

. κ−1 ‖f‖L2 , we obtain

|(3.3.8)| . E
1/2
1 . E1 + 1.

For the series tail (3.3.9), we integrate by parts once to put the derivative on qκ and we

write

|(3.3.9)| ≤ 16κ5
∑

`≥0, m0,...,m`≥0
`+m0+···+m`≥3

∣∣ tr
{
q′κR0(WR0)

m0qR0 · · · qR0(WR0)
m` ]
}∣∣.

Observe that the summand vanishes for m0 + · · ·+m` = 0 by writing q′κ = [∂, qκ] and cycling

the trace, and so we may insert the condition m0 + · · ·+m` ≥ 1 in the summation. We use

the operator estimate (3.2.3) and the observation ‖f‖H−1
κ

. κ−1 ‖f‖L2 to put each factor of

q in L2, and we put all other factors in operator norm:

. κ5
∑

`≥0, m0+···+m`≥1
`+m0+···+m`≥3

‖q′κ‖H−1

κ1/2

(‖q‖L2

κ3/2

)`(‖W‖L∞
κ2

)m0+···+m`
.

We split the sum into ` = 0, ` = 1, ` = 2, and ` ≥ 3 terms. We then re-index m =

m0 + · · · + m`, sum over m ≥ 1 as in (3.2.15), and then sum in `. The sum converges

provided κ � E
1/3
1 (t) and κ � ‖W‖1/2L∞ . The conditions m ≥ 1 and ` + m ≥ 3 guarantee

that when we sum over the two parenthetical terms we gain a factor . (κ−3/2)2(κ−2), and

so we obtain

. κ−1/2 ‖qκ‖L2

90



for all κ large. Taking a supremum over ‖f‖H−1 ≤ 1 and restricting to κ sufficiently large,

we conclude there exists κ0(E1(t)) such that

|(3.3.9)| ≤ E
1/2
1 . E1 + 1 uniformly for κ ≥ κ0(E1(t)).

Altogether, we have shown that there exist constants C and κ0(E1(t)) such that
∣∣∣∣
d

dt
E1

∣∣∣∣ ≤ C(E1 + 1) uniformly for |t| ≤ T and κ ≥ κ0(E1(t)).

Grönwall’s inequality then yields the bound

E1(t) ≤ (E1(0) + 1)eCT − 1 uniformly for |t| ≤ T, κ ≥ κ0
(
(E1(0) + 1)eCT − 1

)
,

which concludes the proof.

Next, we control the growth of the H1-norm:

Proposition 3.3.3. Given A, T > 0 there exist constants C and κ0 such that solutions qκ(t)

to the tidal Hκ flow (3.3.3) obey

‖q(0)‖H1 ≤ A =⇒ ‖qκ(t)‖H1 ≤ C for all |t| ≤ T and κ ≥ κ0.

Proof. By approximation and local well-posedness we may assume that q(0) ∈ H∞. Let

E2(t) :=

∫ {
1
2
(q′κ(t, x))2 + qκ(t, x)3

}
dx

denote the next polynomial conserved quantity of KdV.

We multiply the tidal Hκ flow (3.3.3) by −q′′κ + 3q2κ and integrate in space to obtain an

expression for d
dt
E2. We then integrate by parts to remove the derivative from g(κ, qκ+W )−

g(κ,W ), expand both diagonal Green’s functions using the relation (3.2.16), and apply the

identity (3.2.17) to obtain

d

dt
E2

= −
∫
q′′κ
[
16κ5g′(κ,W ) + 4κ2W ′] dx (3.3.10)
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+ 4κ2
∫ {

3W ′q2κ + 16κ5q′κ
[
g(κ, qκ +W )− g(κ,W )

]}
dx (3.3.11)

+ 16κ5
∫ [

2Wq′κ + 2(Wqκ)
′][g(κ, qκ +W )− g(κ,W )

]
dx. (3.3.12)

Note that in the case W ≡ 0, all three integrals vanish and E2 is conserved as expected. We

will estimate the terms (3.3.10)–(3.3.12) separately.

We begin with the term (3.3.10). We integrate by parts once, expand g(κ,W ) in a series,

and extract the linear term:

(3.3.10) =

∫
q′κ
[
−16κ5〈δx, R0W

′′R0δx〉+ 4κ2W ′′] dx

+ 16κ5
∑

m≥2

(−1)m tr
{
q′κ[∂

2, R0(WR0)
m]
}
.

For the first term we use the operator identity (3.2.19) to estimate

∣∣∣∣
∫
q′κ
[
−16κ5〈δx, R0W

′′R0δx〉+ 4κ2W ′′] dx
∣∣∣∣

=

∣∣∣∣
∫
q′κ
[
−W (4) −R0(2κ)W (6)

]
dx

∣∣∣∣ . ‖q′κ‖L2

(
‖W (4)‖L2 + κ−2‖W (6)‖

)
.

For the second term we distribute the two derivatives [∂2, ·], use the estimate (3.2.3) and the

observation ‖f‖H−1
κ

. κ−1 ‖f‖L2 to put q′κ and the highest order W term in L2, and put the

remaining terms in operator norm:

16κ5
∑

m≥2

∣∣ tr
{
q′κ[∂

2, R0(WR0)
m]
}∣∣

. κ5
∑

m≥2

m2‖q′κ‖L2

κ3/2
‖W ′‖H1

κ3/2

(‖W‖W 1,∞

κ2

)m−1
. ‖W ′‖H1 ‖W‖W 1,∞ ‖q′κ‖L2

uniformly for κ� ‖W‖1/2W 1,∞ . Altogether we conclude

|(3.3.10)| . ‖q′κ‖2L2 + 1

uniformly for κ large.
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Next we turn to the term (3.3.11). Expanding g(κ, qκ + W ) and extracting the terms

that are linear and quadratic in qκ and W , we write

(3.3.11)

= −64κ7
∫
q′κ〈δx, R0qκR0δx〉 dx (3.3.13)

+ 64κ7
∫
q′κ〈δx, R0qκR0qκR0δx〉 dx (3.3.14)

+ 4κ2
∫ {

16κ5q′κ
(
〈δx, R0WR0qκR0δx〉+ 〈δx, R0qκR0WR0δx〉

)
+ 3W ′q2κ

}
dx (3.3.15)

+ 64κ7
∑

`≥1, m0,...,m`≥0
`+m0+···+m`≥3

(−1)`+m0+···+m` tr
{
q′κR0(WR0)

m0qκR0qκR0(WR0)
m`
}
. (3.3.16)

The terms (3.3.13) and (3.3.14) vanish by cycling the trace:

(3.3.13) = −64κ7 tr{[∂, qκ]R0qκR0} = 0,

(3.3.14) = 64κ7 tr{[∂, qκ]R0qκR0qκR0} = 0.

For the term (3.3.15), we integrate by parts to replace 3W ′q2κ by −6Wqκq
′
κ. We then

use the operator identity (3.2.20) and the estimates ‖R0(2κ)∂j‖op . κj−2 for j = 0, 1, 2 (the

estimate for j = 0 is also true as an operator on L∞ by the explicit kernel formula for R0

and Young’s inequality) to conclude

|(3.3.15)| . ‖q′κ‖2L2 + 1.

For the tail (3.3.16) we estimate

|(3.3.16)| ≤ 64κ7
∑

`≥1, m0,...,m`≥0
`+m0+···+m`≥3

∣∣ tr
{
q′κR0(WR0)

m0qκR0 · · · qκR0(WR0)
m`
}∣∣.

We put q′κ and one other qκ in L2 via the estimate (3.2.3) and put the remaining terms in

operator norm. We have ‖q‖L2 . 1 uniformly for |t| ≤ T and κ large by Proposition 3.3.2,

and so we obtain

. κ7
∑

`≥1, m0,...,m`≥0
`+m0+···+m`≥3

‖q′κ‖L2

κ3

(‖qκ‖L∞
κ2

)`−1(‖W‖L∞
κ2

)m0+···+m`
.
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The condition ` + m0 + · · · + m` ≥ 3 yields a gain . (κ−2)2 when we sum over the two

parenthetical terms, and so we obtain

. ‖q′κ‖L2 . ‖q′κ‖2L2 + 1

provided that κ� ‖qκ‖1/2L∞ and κ� ‖W‖1/2L∞ . From Proposition 3.3.2 we know that

‖qκ‖L2 . 1, ‖qκ‖L∞ ≤ ‖qκ‖
1/2

L2 ‖q′κ‖1/2L2 . ‖q′κ‖1/2L2 (3.3.17)

for κ ≥ κ0(T, ‖q(0)‖L2) sufficiently large, and so altogether we conclude

|(3.3.11)| . ‖q′κ‖2L2 + 1 uniformly for κ ≥ κ0(‖qκ‖H1).

It remains to estimate the term (3.3.12). Expanding g(κ, qκ + W ) − g(κ, qκ + W ) and

extracting the linear term, we write

|(3.3.12)|

≤
∣∣∣∣32κ5

∫ [
Wq′κ + (Wqκ)

′]〈δx, R0qκR0δx〉 dx
∣∣∣∣ (3.3.18)

+ 32κ5
∑

`≥1, m0,...,m`≥0
`+m0+···+m`≥2

∣∣ tr
{[
Wq′κ + (Wqκ)

′]R0(WR0)
m0qκR0 · · · qκR0(WR0)

m`
}∣∣. (3.3.19)

For the first term (3.3.18) we use the operator identity (3.2.19) to write

(3.3.18) = 8κ2
∫

[Wq′κ + (Wqκ)
′]qκ dx+

∫
[Wq′κ + (Wqκ)

′][q′′κ +R0(2κ)∂2q′′κ] dx.

The first integral vanishes because the integrand is a total derivative. For the second integral,

we integrate by parts to obtain
∫

[Wq′κ + (Wqκ)
′][q′′κ +R0(2κ)∂2q′′κ] dx = −

∫
[2W ′q′κ +W ′′qκ][q

′
κ +R0(2κ)∂2q′κ] dx

+

∫ {
Wq′κ[R0(2κ)∂2q′′κ]−Wq′′κ[R0(2κ)∂2q′′κ]

}
dx.

Those terms without q′′κ can be estimated using Cauchy–Schwarz and the observation that

‖R0(2κ)∂2‖op . 1. For the remaining terms, we “integrate by parts” in Fourier variables:
∣∣∣∣
∫ {

Wq′κ[R0(2κ)∂2q′′κ]−Wq′′κ[R0(2κ)∂2q′′κ]
}
dx

∣∣∣∣
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= (2π)−
1
2

∣∣∣∣
∫∫

Ŵ (ξ − η)q̂′κ(η)q̂′κ(ξ)
i(ξ − η)ξ2

ξ2 + 4κ2
dξ dη

∣∣∣∣

.
∫∫ ∣∣∣Ŵ ′(ξ − η)q̂′κ(η)q̂′κ(ξ)

∣∣∣ dξ dη . ‖Ŵ ′‖L1‖q′κ‖2L2 . ‖W ′‖H1‖q′κ‖2L2 .

In the last inequality, we used Cauchy–Schwarz to estimate

∫ ∣∣Ŵ ′(ξ)
∣∣ dξ ≤

(∫
dξ

ξ2 + 1

)1
2
(∫

(ξ2 + 1)
∣∣Ŵ ′(ξ)

∣∣2 dξ
)1

2

.

Together, we conclude

|(3.3.18)| . ‖q′κ‖2L2 + 1.

For the tail (3.3.19) we put Wq′κ + (Wqκ)
′ and one qκ in L2 using the estimate (3.2.3)

and the observation ‖f‖H−1
κ

. κ−1 ‖f‖L2 , and we put all other terms in operator norm to

obtain

|(3.3.19)| . κ5
∑

`≥1, m0,...,m`≥0
`+m0+···+m`≥2

‖qκ‖H1

κ3

(‖qκ‖L∞
κ2

)`−1(‖W‖L∞
κ2

)m0+···+m`
. ‖qκ‖H1

provided that κ� ‖qκ‖1/2L∞ and κ� ‖W‖1/2L∞ . Note the condition `+m0+· · ·+m` ≥ 2 yielded

a gain . κ−2 when we summed over the parenthetical terms. Recalling our control (3.3.17)

over the L∞-norm of qκ, we conclude

|(3.3.19)| . ‖q′κ‖2L2 + 1 uniformly for κ ≥ κ0(‖q′κ‖L2).

Altogether we have obtained
∣∣∣∣
d

dt
E2

∣∣∣∣ . ‖q′κ‖
2
L2 + 1 uniformly for |t| ≤ T and κ ≥ κ0(‖q′κ‖L2).

We use E2 and the estimates (3.3.17) to bound q′κ in L2:

‖q′κ‖2L2 . E2 +

∣∣∣∣
∫
q3κ dx

∣∣∣∣ . E2 + ‖q′κ‖1/2L2 .

Together, we conclude that there exists a constant C = C(T,A) such that

‖q′κ(t)‖2L2 ≤ C + C ‖q′κ‖1/2L2 + C

∫ t

0

‖q′κ(s)‖2L2
x
ds.
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For ‖q′κ(t)‖2L2 & C4/3 we can apply Grönwall’s inequality to obtain ‖q′κ(t)‖2L2 . 1 for |t| ≤ T ,

and so we conclude

‖q′κ(t)‖2L2 ≤ C(T, ‖q(0)‖H1) uniformly for |t| ≤ T and κ ≥ κ0(T, ‖q(0)‖H1).

The last space for which we need to rely upon the corresponding polynomial conserved

quantity to obtain an a priori estimate is H2. Starting with H3, the energy arguments are

much simplified and the a priori estimates are proven inductively.

Proposition 3.3.4. Given A, T > 0 there exist constants C and κ0 such that solutions qκ(t)

to the tidal Hκ flow (3.3.3) obey

‖q(0)‖H2 ≤ A =⇒ ‖qκ(t)‖H2 ≤ C for all |t| ≤ T and κ ≥ κ0.

Proof. By approximation and local well-posedness we may assume that q(0) ∈ H∞. Let

E3(t) :=

∫ {
1
2
(q′′κ(t, x))2 + 5qκ(t, x)(q′κ(t, x))2 + 5

2
qκ(t, x)4

}
dx

denote the third energy in the KdV hierarchy of conserved quantities.

We multiply the tidal Hκ flow (3.3.3) by q
(4)
κ −5(q′κ)

2−10qκq
′′
κ+10q3κ and integrate in space

to obtain an expression for d
dt
E3. We then integrate by parts to remove the derivative from

g(κ, qκ +W )− g(κ,W ), expand both diagonal Green’s functions using the relation (3.2.16),

and apply the identity (3.2.17) to obtain

d

dt
E3 =

∫ [
q(4)κ − 5(q′κ)

2 − 10qκq
′′
κ + 10q3κ

][
16κ5g′(κ,W ) + 4κ2W ′] dx

+ 32κ5
∫ [
− q′κq′′κ − 2qκq

′′′
κ + 15q2κq

′
κ

]
g(κ,W ) dx

+ 2κ5
∫ [

2κ2(−q′′′κ + 6qκq
′
κ)− 2Wq′′′κ −W ′q′′κ + 12Wqκq

′
κ + 3W ′q2κ

]

×
[
g(κ, qκ +W )− g(κ,W )

]
dx.

Note that in the case W ≡ 0, all three integrals vanish and E3 is conserved as expected.
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In order to exhibit cancellation in the limit κ → ∞, we expand g(κ, qκ + W ) − g(κ,W )

in powers of qκ and W and regroup terms:

d

dt
E3

=

∫ [
q(4)κ − 5(q′κ)

2 − 10qκq
′′
κ

][
16κ5g′(κ,W ) + 4κ2W ′] (3.3.20)

− 32κ5
∫ [

q′κq
′′
κ + 2qκq

′′′
κ

][
g(κ,W ) + 〈δx, R0WR0δx〉

]
(3.3.21)

+ 64κ7
∫

(−q′′′κ + 6qκq
′
κ)
[
g(κ, qκ)− 1

2κ

]
(3.3.22)

+ 32κ5
∫ {
−2κ2q′′′κ

[
〈δx, R0WR0qκR0δx〉+ 〈δx, R0qκR0WR0δx〉

]

+ [2Wq′′′κ +W ′q′′κ]〈δx, R0qκR0δx〉+ [q′κq
′′
κ + 2qκq

′′′
κ ]〈δx, R0WR0δx〉

} (3.3.23)

+ 8κ2
∫ {

5W ′q3κ − 12κ3
[
4Wqκq

′
κ +W ′q2κ

]
〈δx, R0qκR0δx〉

+ 48κ5qκq
′
κ

[
〈δx, R0WR0qκR0δx〉+ 〈δx, R0qκR0WR0δx〉

]} (3.3.24)

+ 64κ7
∑

`≥1,m0+···+m`≥1
`+m0+···+m`≥3

(−1)`+m0+···+m` tr{(−q′′′κ + 6qκq
′
κ)R0(WR0)

m0

×qκR0 · · · qκR0(WR0)
m`}

(3.3.25)

+ 16κ5
∑

`≥1,m0+···+m`≥0
`+m0+···+m`≥2

(−1)`+m0+···+m` tr{[−4Wq′′′κ − 2W ′q′′κ + 24Wqκq
′
κ

+ 6W ′q2κ]R0(WR0)
m0qκR0 · · · qκR0(WR0)

m`}.
(3.3.26)

Note that in (3.3.22) we extracted the terms from (3.3.25) with no factors of W , which is

reflected in the condition m0 + · · · + m` ≥ 1. We will estimate each of the terms (3.3.20)–

(3.3.26) separately.

For the term (3.3.20) we expand g(κ,W ) in powers of W :

|(3.3.20)| ≤
∣∣∣∣
∫ [

q(4)κ − 5(q′κ)
2 − 10qκq

′′
κ

][
− 〈δx, R0W

′R0δx〉+ 4κ2W ′]
∣∣∣∣

+ 16κ5
∑

m≥2

∣∣ tr
{[
q(4)κ − 5(q′κ)

2 − 10qκq
′′
κ

]
[∂,R0(WR0)

m]
}∣∣.

For the integral, we use the operator identity (3.2.19) to write
∫ [

q(4)κ − 5(q′κ)
2 − 10qκq

′′
κ

][
− 〈δx, R0W

′R0δx〉+ 4κ2W ′]
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=

∫ [
q(4)κ − 5(q′κ)

2 − 10qκq
′′
κ

][
−W ′′′ −R0(2κ)W (5)

]
.

For the term q
(4)
κ we integrate by parts twice. As W ′ is Schwartz and ‖qκ‖H1 . 1 by

Proposition 3.3.3, then Cauchy–Schwarz yields

∣∣∣∣
∫ [

q(4)κ − 5(q′κ)
2 − 10qκq

′′
κ

][
−W ′′′ −R0(2κ)W (5)

]∣∣∣∣ . ‖q′′κ‖L2 + 1 . ‖q′′κ‖2L2 + 1.

For the tail, we again integrate by parts twice for q
(4)
κ . We then estimate the qκ terms and

the highest order W term in L2 using the estimate (3.2.3) and ‖f‖H−1
κ

. κ−1 ‖f‖L2 and the

remaining terms in L∞. This yields

16κ5
∑

m≥2

∣∣ tr
{[
q(4)κ − 5(q′κ)

2 − 10qκq
′′
κ

]
[∂,R0(WR0)

m]
}∣∣

. κ5
∑

m≥2

‖q′′κ‖L2 ‖W ′‖H2

κ3

(‖W‖W 1,∞

κ2

)m−1
. ‖q′′κ‖L2 . ‖q′′κ‖2L2 + 1

provided that κ� ‖W‖1/2W 1,∞ .

For the term (3.3.21) we integrate by parts once to write

|(3.3.21)| ≤ 32κ5
∑

m≥2

∣∣ tr
{[

1
2
(q′κ)

2 − 2qκq
′′
κ

]
[∂,R0(WR0)

m]
}∣∣.

We estimate the qκ terms and the one factor of W ′ in L2 using the estimate (3.2.3) and the

observation ‖f‖H−1
κ

. κ−1 ‖f‖L2 , we estimate the remaining terms in operator norm. By

Proposition 3.3.3 we have

‖q′κ‖L∞ ≤ ‖q′κ‖
1/2

L2 ‖q′′κ‖1/2L2 . ‖q′′κ‖1/2L2 . ‖q′′κ‖L2 + 1.

Together, we obtain

|(3.3.21)| . κ5
∑

m≥2

(‖q′′κ‖L2 + 1) ‖W ′‖L2

κ3

(‖W‖L∞
κ2

)m−1
. ‖q′′κ‖L2 . ‖q′′κ‖2L2 + 1

provided that κ� ‖W‖1/2L∞ .
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The term (3.3.22) vanishes. Indeed, after integrating by parts and adding a total deriva-

tive we have

(3.3.22) = −64κ7
∫

(−q′′κ + 3q2κ)g
′(κ, qκ) dx = −4κ2

∫
(−q′′κ + 3q2κ)

[
16κ5g′(κ, qκ) + 4κ2q′κ

]
dx.

The integral on the RHS is d
dt
E2 in the case W ≡ 0 and hence vanishes, as we observed in

Proposition 3.3.3.

For the term (3.3.23), we integrate by parts to write

(3.3.23) = 32κ5
∫ {

2κ2q′′κ
[
〈δx, R0WR0q

′
κR0δx〉+ 〈δx, R0q

′
κR0WR0δx〉

]

− 2Wq′′κ〈δx, R0q
′
κR0δx〉 − q′κq′′κ〈δx, R0WR0δx〉

+ 2κ2q′′κ
[
〈δx, R0W

′R0qκR0δx〉+ 〈δx, R0qκR0W
′R0δx〉

]

−W ′q′′κ〈δx, R0qκR0δx〉 − 2qκq
′′
κ〈δx, R0W

′R0δx〉
}
dx.

We use the operator identities (3.2.19) and (3.2.20). Observe that the leading order contri-

butions as κ → ∞ (i.e. 4κ2f in (3.2.19) and 3fh in (3.2.20)) cancel out. The remainder is

easily estimated, yielding

|(3.3.23)| . ‖q′′κ‖2L2 + 1.

For the term (3.3.24) we write

(3.3.24) = 8κ2
∫ {

48κ5qκq
′
κ

[
〈δx, R0WR0qκR0δx〉+ 〈δx, R0qκR0WR0δx〉

]

− 15Wq2κq
′
κ − 24κ3Wqκq

′
κ〈δx, R0qκR0δx〉+ 12κ3Wq2κ〈δx, R0q

′
κR0δx〉

}
.

We use the operator identities (3.2.19) and (3.2.20). Observe that the leading order contri-

butions as κ→∞ (i.e. 4κ2f in (3.2.19) and 3fh in (3.2.20))) cancel out. The remainder is

easily estimated, yielding

|(3.3.24)| . ‖q′′κ‖2L2 + 1.

For the tail (3.3.25), we integrate by parts once to obtain

|(3.3.25)| . κ7
∑

`≥1, m0+···+m`≥1
`+m0+···+m`≥3

∣∣ tr
{

(−q′′κ + 3q2κ)[∂,R0(WR0)
m0qκR0 · · · qκR0(WR0)

m` ]
}∣∣.
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We put −q′′κ+3q2κ and the highest order qκ in L2 using the identity (3.2.3) and the observation

‖f‖H−1
κ

. κ−1 ‖f‖L2 , and we estimate the remaining terms in operator norm:

. κ7
∑

`≥1, m0+···+m`≥1
`+m0+···+m`≥3

‖q′′κ‖L2 + 1

κ3

(‖qκ‖H1

κ2

)`−1(‖W‖W 1,∞

κ2

)m0+···+m`
.

We re-index m = m0 + · · ·+m` and sum over `+m as in (3.2.15). The condition `+m0 +

· · ·+m` ≥ 3 guarantees a gain . (κ−2)2 when we sum over the two parenthetical terms, and

so we obtain an acceptable bound.

For the tail (3.3.26), we estimate

|(3.3.26)| . κ5
∑

`≥1, m0,...,m`≥0
`+m0+···+m`≥2

∣∣ tr
{[
−4Wq′′′κ − 2W ′q′′κ + 24Wqκq

′
κ + 6W ′q2κ

]

×R0(WR0)
m0qκR0 · · · qκR0(WR0)

m`
}∣∣.

For the term q′′′κ we integrate by parts once. We then put the square-bracketed term and

the highest order factor of qκ in L2 using the identity (3.2.3) and the observation ‖f‖H−1
κ

.

κ−1 ‖f‖L2 , and we estimate the remaining terms in operator norm:

|(3.3.26)| . κ5
∑

`≥1, m0,...,m`≥0
`+m0+···+m`≥2

‖q′′κ‖L2 + 1

κ3/2

(‖qκ‖H1

κ3/2

)`(‖W‖W 1,∞

κ2

)m0+···+m`
.

We re-index m = m0 + · · ·+m` and sum over `+m as in (3.2.15). The condition `+m0 +

· · ·+m` ≥ 2 guarantees a gain . κ−3/2 · κ−2 when we sum over the two parenthetical terms,

and so we conclude

|(3.3.25)| . ‖q′′κ‖L2 + 1 . ‖q′′κ‖2L2 + 1

provided that κ is sufficiently large (independently of ‖q′′κ‖L2).

Altogether, we have obtained
∣∣∣∣
d

dt
E3

∣∣∣∣ . ‖q′′κ‖
2
L2 + 1 uniformly for |t| ≤ T and κ ≥ κ0,

where κ0 depends only on T and ‖q(0)‖H1 . Using Proposition 3.3.3, we can then bound

‖q′′κ‖2L2 . E3 +

∣∣∣∣
∫
qκ(q

′
κ)

2 dx

∣∣∣∣+

∣∣∣∣
∫
q4κ dx

∣∣∣∣ . E3 + 1.
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Together, we conclude that there exists a constant C = C(T,A) such that

‖q′′κ(t)‖2L2 ≤ C + C

∫ t

0

‖q′′κ(s)‖2L2
x
ds

uniformly for |t| ≤ T and κ ≥ κ0. Grönwall’s inequality then yields

‖q′′κ(t)‖2L2 ≤ C(T, ‖q(0)‖H2) uniformly for |t| ≤ T and κ ≥ κ0(T, ‖q(0)‖H1),

as desired.

For Hs, s ≥ 3 we proceed by induction:

Proposition 3.3.5. Given an integer s ≥ 3 and A, T > 0 there exist constants C and κ0

such that solutions qκ(t) to the tidal Hκ flow (3.3.3) obey

‖q(0)‖Hs ≤ A =⇒ ‖qκ(t)‖Hs ≤ C for all |t| ≤ T and κ ≥ κ0.

Proof. We induct on s, with the base case given by Proposition 3.3.4. Assume the result

holds for s− 1.

By approximation and local well-posedness we may assume that q(0) ∈ H∞. We define

Fs(t) := 1
2

∫
(q(s)κ (t, x))2 dx.

Expanding g(κ, qκ +W ) in powers of qκ and W , we write

d

dt
Fs

=

∫
q(s)κ
{
−16κ5〈δx, R0q

(s+1)
κ R0δx〉+ 4κ2q(s+1)

κ

}
dx (3.3.27)

+

∫
q(s)κ
{
−16κ5〈δx, R0W

(s+1)R0δx〉+ 4κ2W (s+1)
}
dx (3.3.28)

+ 16κ5
∫
q(s)κ 〈δx, [∂s+1, R0qκR0qκR0]δx〉 dx (3.3.29)

+ 16κ5
∫
q(s)κ
{
〈δx, [∂s+1, R0WR0qκR0]δx〉+ 〈δx, [∂s+1, R0qκR0WR0]δx〉

}
dx (3.3.30)

+ 16κ5
∫
q(s)κ 〈δx, [∂s+1, R0WR0WR0]δx〉 dx (3.3.31)
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+ 16κ5
∫
q(s)κ
{
g(κ, qκ +W ) + 〈δx, R0(qκ +W )R0δx〉

− 〈δx, R0(qκ +W )R0(qκ +W )R0δx〉
}(s+1)

dx.
(3.3.32)

We will estimate the terms (3.3.27)–(3.3.32) separately.

The first linear contribution (3.3.27) vanishes. To see this, we use the first operator

identity of (3.2.19) to write

(3.3.27) =

∫
q(s)κ
{
−16κ4R0(2κ)q(s+1)

κ + 4κ2q(s+1)
κ

}
dx = 0.

In the last equality we noted that the integrand is odd in Fourier variables, or equivalently

that the integrand of (3.3.27) is a total derivative.

Now we estimate the linear contribution (3.3.28) from W . Using the operator iden-

tity (3.2.19) and recalling that W ′ is Schwartz, we estimate

|(3.3.28)| =
∣∣∣∣
∫
q(s)κ {−W (s+3) − [R0(2κ)W (s+5)]} dx

∣∣∣∣

. ‖q(s)κ ‖L2

(
‖W (s+3)‖L2 + κ−2‖W (s+5)‖L2

)
. F 1/2

s . Fs + 1.

In the first quadratic term (3.3.29) we distribute the derivatives [∂s+1, ·]. For the terms

with q
(s+1)
κ , we “integrate by parts” to write

16κ5
(

tr
{
q(s)κ R0q

(s+1)
κ R0qκR0

}
+ tr

{
q(s)κ R0qκR0q

(s+1)
κ R0

})

= 16κ5 tr
{[
∂, q(s)κ R0q

(s)
κ R0

]
qκR0

}
= −16κ5 tr

{
q(s)κ R0q

(s)
κ R0[∂, qκ]R0

}
.

This leaves

|(3.3.29)| . κ5
s∑

j=1

∣∣ tr
{
q(s)κ R0q

(j)
κ R0q

(s+1−j)
κ R0

}∣∣+
∣∣ tr
{
q(s)κ R0q

(s−1)
κ R0q

(s−1)
κ R0

}∣∣.

The last term only appears in the case s = 3, but we can see that it vanishes by writing

q
(s)
κ = [∂, q

(s−1)
κ ] and cycling the trace. Note that all copies of qκ now have at most s

derivatives. We put the two highest order factors of qκ in L2 using the identity (3.2.3) and

the observation ‖f‖H−1
κ

. κ−1 ‖f‖L2 . As s ≥ 3, the third factor q
(j)
κ has order j ≤ s − 2
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and may be estimated in operator norm because ‖q(j)κ ‖L∞ ≤ ‖qκ‖Hs−1 . 1 by inductive

hypothesis. This yields

|(3.3.29)| . ‖q(s)κ ‖2L2 + ‖q(s)κ ‖L2 . Fs + 1.

The second quadratic contribution (3.3.30) is similar. For the terms with q
(s+1)
κ we

“integrate by parts” to write

16κ5
(

tr
{
q(s)κ R0q

(s+1)
κ R0WR0

}
+ tr

{
q(s)κ R0WR0q

(s+1)
κ R0

})

= 16κ5 tr
{[
∂, q(s)κ R0q

(s)
κ R0

]
WR0

}
= −16κ5 tr

{
q(s)κ R0q

(s)
κ R0[∂,W ]R0

}
.

In all cases we put the two factors of qκ in L2 using the identity (3.2.3) and the observation

‖f‖H−1
κ

. κ−1 ‖f‖L2 , and the remaining factors in operator norm. This yields

|(3.3.30)| . ‖q(s)κ ‖2L2 + ‖q(s)κ ‖L2 . Fs + 1.

The quadratic W contribution (3.3.31) is easily estimated. We put q
(s)
κ and the higher

order W term in L2 using the identity (3.2.3) and the observation ‖f‖H−1
κ

. κ−1 ‖f‖L2 , and

we put the remaining factor of W in L∞. This yields

|(3.3.31)| . ‖q(s)κ ‖L2 . Fs + 1.

Next we turn to the series tail (3.3.32). Applying the tail convergence (3.2.21) to q = qκ,

we know there exists a constant κ0(Fs(t)) so that

16κ5
∥∥{g(κ, qκ +W ) + 〈δx, R0(qκ +W )R0δx〉

− 〈δx, R0(qκ +W )R0(qκ +W )R0δx〉
}(s+1)∥∥

L2 ≤ 1

uniformly for κ ≥ κ0(Fs(t)). Therefore, by Cauchy–Schwarz we have

|(3.3.32)| ≤ (2Fs)
1/2 . Fs + 1 uniformly for κ ≥ κ0(Fs(t)).

Altogether, we have shown that there exists a constant C = C(T,A) such that
∣∣∣∣
d

dt
Fs

∣∣∣∣ ≤ C(Fs + 1) uniformly for |t| ≤ T and κ ≥ κ0(Fs(t)).
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Grönwall’s inequality then yields the bound

Fs(t) ≤ (Fs(0) + 1)eCT − 1 uniformly for |t| ≤ T, κ ≥ κ0
(
(Fs(0) + 1)eCT − 1

)
,

which concludes the inductive step.

As a consequence, we are able to upgrade local well-posedness to global well-posedness:

Corollary 3.3.6. Given an integer s ≥ 0 and A, T > 0, there exists a constant κ0 so that

for κ ≥ κ0 the tidal Hκ flows (3.3.3) with initial data in the closed ball Bs
A ⊂ Hs(R) of radius

A are globally well-posed.

Proof. Fix A, T > 0, let C be the constant guaranteed by Propositions 3.3.2 to 3.3.5, and

consider the closed ball Bs
C ⊂ Hs of radius C. By local well-posedness (cf. Lemma 3.3.1) we

know there exists δ > 0 such that the integral equation is a contraction on CtB
s
C([−δ, δ]×R),

and hence there exists a unique fixed point qκ. However, by Propositions 3.3.2 to 3.3.5 we

know that qκ(t) is in Bs
C as long as |t| ≤ T . Therefore, we may iterate the contraction

argument to construct a unique solution in CtH
s([−T, T ] × R) that depends continuously

upon the initial data.

3.4 Convergence at low regularity

Ultimately, we want to show that for initial data in Hs with s ≥ 3 the solutions qκ(t) to

the tidal Hκ flows converge in Hs. Although the linear and quadratic terms of the tidal Hκ

flow formally converge to tidal KdV as κ → ∞, the remainder contains q
(5)
κ (cf. (3.2.19)).

Consequently, we will first demonstrate convergence in H−2 so that we may absorb these

five extra derivatives:

Proposition 3.4.1. Given T > 0 and a bounded set Q ⊂ H3 of initial data, the correspond-

ing solutions qκ(t) to the tidal Hκ flows (3.3.3) are Cauchy in CtH
−2([−T, T ] ×R) as κ→∞

uniformly for q(0) ∈ Q.
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Proof. In the following all spacetime norms will be taken over the slab [−T, T ]× R. Let κ0

denote the constant from Corollary 3.3.6 for s = 3, so that for κ ≥ κ0 the solutions qκ(t) to

the Hκ flows exist in CtH
3.

Consider the difference qκ − qκ of two of these solutions with κ ≥ κ ≥ κ0. Recall that

the tidal Hκ and tidal Hκ flows commute (cf. (3.3.2)). Letting HW
κ denote the tidal Hκ flow

Hamiltonian, this allows us to write

qκ(t) = etJ∇H
W
κ q(0) = etJ∇(H

W
κ −HW

κ )etJ∇H
W
κ q(0).

Consequently, we estimate

‖qκ − qκ‖CtH−1 ≤ sup
q∈Q∗T (κ)

sup
κ≥κ
‖etJ∇(HW

κ −HW
κ )q − q‖CtH−1 ,

for the set

Q∗T (κ) := {etJ∇HW
κ q(0) : |t| ≤ T, q(0) ∈ Q}

of tidal Hκ flows. By the fundamental theorem of calculus, it suffices to show that under the

difference flow HW
κ −HW

κ we have

sup
q∈Q∗T (κ)

sup
κ≥κ

∥∥∥∥
dq

dt

∥∥∥∥
CtH−2

→ 0 as κ→∞.

Note that Q∗T (κ) is a bounded subset of H3 by the a priori estimate of Proposition 3.3.5.

Given initial data q(0) ∈ Q∗T (κ), let q(t) denote the corresponding solution to the differ-

ence flow HW
κ −HW

κ . Then q solves

d

dt
q = 16κ5g′(κ, q +W ) + 4κ2(q +W )′ − 16κ5g′(κ, q +W )− 4κ2(q +W )′.

To exhibit cancellation in the limit κ, κ→∞, we expand g′(κ, q+W ) into a series in q and

W and extract the linear and quadratic terms:

d

dt
q

=
{
−16κ5〈δx, R0(κ)(q +W )R0(κ)δx〉+ 4κ2(q +W )

+ 16κ5〈δx, R0(κ)(q +W )R0(κ)δx〉 − 4κ2(q +W )
}′ (3.4.1)
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+
{

16κ5〈δx, R0(κ)(q +W )R0(κ)(q +W )R0(κ)δx〉

− 16κ5〈δx, R0(κ)(q +W )R0(κ)(q +W )R0(κ)δx〉
}′ (3.4.2)

+
∑

(terms with 3 or more q or W ). (3.4.3)

We will show that each of the terms (3.4.1)–(3.4.3) converge to zero.

For the linear term (3.4.1), we use the operator identity (3.2.19) to estimate

‖(3.4.1)‖H−2 = ‖[−R0(2κ) +R0(2κ)](q +W )(5)‖H−2

. (κ−2 + κ−2)
(
‖q(5)‖H−2 + ‖W (5)‖H−2

)
. κ−2

(
‖q‖H3 + ‖W ′′′‖L2

)

uniformly for κ ≥ κ. As q ∈ Q∗T (κ) is bounded in H3, we conclude that

sup
q∈Q∗T (κ)

sup
κ≥κ
‖(3.4.1)‖CtH−2 → 0 as κ→∞.

For the quadratic term (3.4.2), we add and subtract the corresponding tidal KdV term

6(q +W )(q +W )′ and estimate

‖(3.4.2)‖H−2 .
∥∥16κ5〈δx, R0(κ)(q +W )R0(κ)(q +W )R0(κ)δx〉 − 3(q +W )2

∥∥
H−1

+
∥∥16κ5〈δx, R0(κ)(q +W )R0(κ)(q +W )R0(κ)δx〉 − 3(q +W )2

∥∥
H−1 .

Using the operator identity (3.2.20) and the estimates ‖R0(2κ)∂j‖op . κj−2 for j = 0, 1, 2

(the estimate for j = 0 is also true as an operator on L∞ by the explicit kernel formula for

R0 and Young’s inequality), one can easily prove by duality that

∥∥16κ5〈δx, R0(κ)fR0(κ)gR0(κ)δx〉 − 3fg
∥∥
L2 . κ−2 ‖f‖W 2,∞ ‖g‖H2 .

Moreover, the roles of f and g can be exchanged since the identity (3.2.20) is symmetric in

f and g. Therefore, expanding the products (q +W )(q +W ) we have

‖(3.4.2)‖H−2 . (κ2 + κ2)
(
‖q‖2H3 + ‖W‖W 3,∞ ‖q‖H3 + ‖W‖W 2,∞ ‖W ′‖H2

)
.

As q ∈ Q∗T (κ) is bounded in H3, we conclude that

sup
q∈Q∗T (κ)

sup
κ≥κ
‖(3.4.2)‖CtH−2 → 0 as κ→∞.
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It only remains to show that the tails (3.4.3) converge to zero in CtH
−2. In fact,

by (3.2.21) we have convergence in the stronger CtL
2-norm:

sup
q∈Q∗T (κ)

sup
κ≥κ
‖(3.4.3)‖CtL2 → 0 as κ→∞.

3.5 Equicontinuity

We want to upgrade the H−2 convergence of the previous section to Hs, s ≥ 3. This will be

accomplished via the estimate

‖qκ − qκ‖2Hs . (N + 1)s+2 ‖qκ − qκ‖2H−2 + ‖qκ − qκ‖2Hs(|ξ|≥N) .

In this section, we will show that we can pick N sufficiently large so that the second term on

the RHS is arbitrarily small uniformly for κ,κ large. It then follows from Proposition 3.4.1

that the first term on the RHS converges to zero as κ,κ →∞.

Uniform control over Fourier tails is closely related to equicontinuity. Given a Banach

space X(R) of functions on R, we call a set Q ⊂ X equicontinuous if

sup
q∈Q
‖q(·+ h)− q(·)‖X → 0 as h→ 0.

Note that for the supremum norm this definition coincides with the equicontinuity criterion

of the Arzelà–Ascoli theorem. It is natural to call this property equicontinuity as previous

authors have [50, 61, 123, 126], because it appears in the Kolmogorov–Riesz compactness

theorem for the case X = Lp [29, Th. 4.26]. In particular, it follows that a precompact

subset of Hs(R) is equicontinuous in Hs(R).

For X = Hs, the Fourier transform provides us with the following characterization of

equicontinuity:

Lemma 3.5.1 (Equicontinuity [97, §4]). A bounded subset Q ⊂ Hs(R) is equicontinuous if

and only if

sup
q∈Q

∫

|ξ|≥N
(ξ2 + 1)s|q̂(ξ)|2 dξ → 0 as N →∞.
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In the case s = −1, this is also equivalent to

sup
q∈Q
‖q‖2H−1

κ
→ 0 as κ→∞.

It would suffice to show that the tidal Hκ flows {qκ(t) : |t| ≤ T, κ ≥ κ0} are equicontin-

uous in Hs(R). With the presence of the background wave W in tidal KdV, we expect that

the Hs-norm of qκ(t) may grow in time and thus we must estimate its growth. Expanding

the diagonal Green’s function in powers of qκ and W , we are able to control the linear and

quadratic terms as we would for tidal KdV; however, it remains to control the higher order

contributions which vanish in the limit κ → ∞. Consequently, instead of honest equiconti-

nuity for the tidal Hκ flows qκ(t), we will require κ ≥ N in Proposition 3.5.4 so that O(κ−1)

contributions as κ→∞ are also O(N−1) as N →∞.

In order to control the Fourier tail growth we will use a smooth Littlewood–Paley decom-

position. We define Littlewood–Paley pieces via the following L2-based partition of unity.

Fix a C∞ function φ : R→ [0, 1] that satisfies

φ(ξ) =





1 |ξ| ≤ 1,

0 |ξ| ≥ 2.

Then the function

ψ(ξ) :=
√
φ(ξ)− φ(2ξ) satisfies

∑

N∈2Z
ψ2( ξ

N
) = 1 for all ξ 6= 0.

Sums over capitalized indices will always be over the set 2Z := {2n : n ∈ Z}. For Schwartz

functions f we define

P̂Nf(ξ) = ψ( ξ
N

)f̂(ξ), P̂ 2
≥Nf(ξ) =

∑

K≥N

ψ2( ξ
K

)f̂(ξ), P 2
<N = 1− P 2

≥N .

Our choice of partition of unity ensures that the square sum
∑
P 2
Nf converges to f in Lp

for p ∈ (1,∞). We choose a square-sum decomposition because we will ultimately measure

‖P≥Nq(s)κ ‖2L2 , which we may write as the L2-pairing of P 2
≥Nq

(s)
κ and q

(s)
κ .
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We remark that directly estimating the growth of ‖P≥Nq(s)‖2L2 would fail due to the

quadratic term of tidal KdV. Indeed, if we compute d
dt
‖P≥Nq(s)‖2L2 under the tidal KdV flow,

we obtain a term of the form
∫ (

P 2
≥Nq

(s)
) (

3q2
)(s+1)

dx.

Decomposing each factor of q = P 2
≥Nq+P 2

<Nq, the terms with at least one copy of P 2
≥Nq can

be estimated by two factors of ‖P≥Nq(s)‖L2 . However, the high-low-low term
∫ (

P 2
≥Nq

(s)
) [

3
(
P 2
<Nq

) (
P 2
<Nq

)](s+1)
dx

only contributes one factor of ‖P≥Nq(s)‖L2 , which does not guarantee that initially small

Fourier tails remain small.

To overcome this, we introduce a more gradual high-frequency cutoff. Given an integer

s ≥ 3 and a Schwartz function f , we define the Fourier multiplier

Π̂≥Nf(ξ) = mhi(
ξ
N

)f̂(ξ), mhi(ξ) =
∑

K<1

Ksψ2( ξ
K

) +
∑

K≥1

ψ2( ξ
K

). (3.5.1)

The power of s in the definition (3.5.1) will provide us with the replacement (3.5.6) for the

Bernstein inequality satisfied by P 2
≥N . We also define

Π̂<Nf(ξ) =
√

1−m2
hi(

ξ
N

)f̂(ξ) so that Π2
<N + Π2

≥N = 1.

For the Littlewood–Paley operators we have the familiar Bernstein inequalities

‖PNf (j)‖Lp ∼ N j‖PNf‖Lp for p ∈ (1,∞), j ∈ Z,

‖PNf (j)‖L∞ . N j‖PNf‖L∞ for j > 0.
(3.5.2)

Summing over N ∈ 2N, we obtain the high and low frequency projection estimates

‖P 2
<Nf

(j)‖Lp . N j‖P 2
<Nf‖Lp for p ∈ [1,∞], j > 0, (3.5.3)

‖P 2
≥Nf‖Lp . N−j‖P 2

≥Nf
(j)‖Lp for p ∈ (1,∞), j > 0. (3.5.4)

We will now obtain analogous Bernstein inequalities for our projection operators Π≥N

and Π<N :
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Lemma 3.5.2. Fix an integer s ≥ 3. Then the operators Π≥N defined in (3.5.1) are bounded

on Lp for p ∈ [1,∞] uniformly in N , and we have the estimates

‖Π2
<Nq

(s+j)‖Lp . N j‖P 2
<2Nq

(s)‖Lp for p ∈ [1,∞], j > 0, (3.5.5)

‖Π2
≥Nq

(s−j)‖Lp . N−j‖Π≥Nq(s)‖Lp for p ∈ (1,∞), 0 < j ≤ s. (3.5.6)

Proof. Boundedness on Lp follows from Young’s inequality. Indeed, if we let

mlo(
ξ
N

) =
√

1−m2
hi(

ξ
N

)

denote the Fourier symbol of Π<N , then we have mlo ∈ C∞c and

‖Π<Nf‖Lp =
∥∥Ndm∨lo(N ·) ∗ f

∥∥
Lp

.
∥∥Ndm∨lo(N ·)

∥∥
L1 ‖f‖Lp = ‖m∨lo‖L1 ‖f‖Lp

for any p ∈ [1,∞].

For the inequality (3.5.5) we may now assume that q is Schwartz by approximation. We

use the Bernstein inequality (3.5.2) to estimate

‖Π2
<Nq

(s+j)‖Lp ≤
∑

K<N

‖P 2
Kq

(s+j)‖Lp .
∑

K<N

Kj‖P 2
Kq

(s)‖Lp

.
∑

K<N

Kj‖P 2
<2Nq

(s)‖Lp . N j‖P 2
<2Nq

(s)‖Lp .

Note that in the second line we inserted the operator P 2
<2N since P 2

KP
2
<2N = P 2

K for K < N ,

and then used the boundedness of the operators P 2
K .

For the inequality (3.5.6), we use the Bernstein inequalities (3.5.2) and (3.5.4) to estimate

‖Π2
≥Nq

(s−j)‖Lp ≤
∑

K<N

Ks

Ns‖P 2
KΠ≥Nq

(s−j)‖Lp + ‖P 2
≥NΠ≥Nq

(s−j)‖Lp

.
∑

K<N

Ks−j

Ns ‖Π≥Nq(s)‖Lp +N−j‖P 2
≥NΠ≥Nq

(s)‖Lp . N−j‖Π≥Nq(s)‖Lp

for Schwartz q. Note that in the second line we spent a factor of Kj to insert j derivatives

on q, and then used the boundedness of the operators PK .
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Next, we will prove an estimate for a commutator involving Π≥N and Π<N :

Lemma 3.5.3. Let P̃ 2
M =

∑4M
K=M/4 P

2
K denote a fattened Littlewood–Paley projection. Then

for all bounded functions w ∈ L∞(R2) and Schwartz functions f, g, h we have
∣∣∣∣
∫∫ [( ̂P 2

MΠ2
≥Nf

)
(ξ)
(
Π̂2
<Nh

)
(ξ − η)

−
( ̂PMΠ≥NΠ<Nf

)
(ξ)
( ̂PMΠ≥NΠ<Nh

)
(ξ − η)

](
P̂ 2
<M

8

g
)
(η)w(ξ, η) dξ dη

∣∣∣∣

. ‖w‖L∞ ‖PMΠ≥Nf‖L2‖P 2
<M

8
g′‖H1

(
M2

N3 ‖P̃ 2
MΠ2

<Nh‖L2 + ‖PMΠ≥NΠ<Nh‖L2

)

uniformly for κ large.

Proof. Within the square brackets, we are interchanging a factor of PMΠ≥N and Π<N be-

tween f and h. We change to Fourier variables and break this maneuver into two steps, first

moving PMΠ≥N and then moving Π<N :
∣∣∣∣
∫∫ [( ̂P 2

MΠ2
≥Nf

)
(ξ)
(
Π̂2
<Nh

)
(ξ − η)

−
( ̂PMΠ≥NΠ<Nf

)
(ξ)
( ̂PMΠ≥NΠ<Nh

)
(ξ − η)

](
P̂ 2
<M

8

g
)
(η)w(ξ, η) dξ dη

∣∣∣∣

=

∫∫ ( ̂PMΠ≥Nf
)
(ξ)
[
ψ( ξ

M
)mhi(

ξ
N

)− ψ( ξ−η
M

)mhi(
ξ−η
N

)
]

×
(
Π̂2
<Nh

)
(ξ − η)

(
P̂ 2
<M

8

g
)
(η)w(ξ, η) dξ dη

(3.5.7)

+

∫∫ ( ̂PMΠ≥Nf
)
(ξ)
[
mlo(

ξ−η
N

)−mlo(
ξ
N

)
]

×
( ̂PMΠ≥NΠ<Nh

)
(ξ − η)

(
P̂ 2
<M

8

g
)
(η)w(ξ, η) dξ dη,

(3.5.8)

where ψ, mhi, and mlo are the Fourier multipliers for the operators PM , Π≥N , and Π<N

respectively. Observe that the RHS of the desired inequality vanishes for M ≥ 8N . Con-

sequently, we will estimate the terms (3.5.7) and (3.5.8) for M ≤ 4N and note that they

vanish for M ≥ 8N .

Observe that the integrand of the first term (3.5.7) is supported in the region M
2
≤ |ξ| ≤

2M , |η| ≤ M
8

. On this region we have

|ξ − η| ≥ |ξ| − |η| ≥ M
2
− M

8
≥ M

4
, |ξ − η| ≤ |ξ|+ |η| ≤ 2M + M

8
≤ 4M.
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Therefore we can insert
∑4M

K=M/4 ψ
2( ξ−η

K
) into the integrand, which is the Fourier multiplier

for the fattened Littlewood–Paley projection P̃ 2
M =

∑4M
K=M/4 P

2
K applied to h. Now P̃ 2

MΠ2
<Nh

vanishes for M ≥ 8N , and so we may assume M ≤ 4N .

Next, we will estimate the first term (3.5.7). By the fundamental theorem of calculus,

∣∣ψ( ξ
M

)mhi(
ξ
N

)− ψ( ξ−η
M

)mhi(
ξ−η
N

)
∣∣ ≤

∫ 1

0

s|η|
∣∣(ψ( ·

M
)mhi(

·
N

)
)′

(ξ − sη)
∣∣ ds

. |η|Ms−1

Ns for M ≤ N.

In the last inequality, we note that ψ( ·
M

)mhi(
·
N

) is a function with amplitude M s/N s sup-

ported in an annulus of width M ; indeed, for M ≤ N we have

∣∣(ψ( ξ
M

)mhi(
ξ
N

)
)′∣∣ ≤

∣∣ψ( ξ
M

)′mhi(
ξ
N

)
∣∣+
∣∣ψ( ξ

M
)mhi(

ξ
N

)′
∣∣ .M−1 · Ms

Ns + 1 · Ms−1

Ns .

This yields

|(3.5.7)| . ‖w‖L∞ Ms−1

Ns ‖ ̂PMΠ≥Nf‖L2‖P̂ 2
<M

8

g′‖L1‖ ̂
P̃ 2
MΠ2

<Nh‖L2

. ‖w‖L∞ Ms−1

Ns ‖PMΠ≥Nf‖L2‖P 2
<M

8
g′‖H1‖P̃ 2

MΠ2
<Nh‖L2 .

In the last inequality, we used Cauchy–Schwarz to estimate

∫ ∣∣(P̂ 2
<M

8

g′
)
(ξ)
∣∣ dξ ≤

(∫
dξ

ξ2 + 1

)1
2
(∫

(ξ2 + 1)
∣∣(P̂ 2

<M
8

g′
)
(ξ)
∣∣2 dξ

)1
2

.

For the second term (3.5.8), we note that the Fourier support of Π≥NΠ<Nh is bounded

by N ; in particular, PMΠ≥NΠ<Nh vanishes for M ≥ 8N . For M ≤ 4N we estimate

∣∣mlo(
ξ−η
N

)−mlo(
ξ
N

)
∣∣ ≤

∫ 1

0

s|η|
∣∣(mlo(

·
N

)
)′

(ξ − sη)
∣∣ ds . |η|N−1.

This yields

|(3.5.8)| . ‖w‖L∞ N−1‖ ̂PMΠ≥Nf‖L2‖P̂ 2
<M

8

g′‖L1‖ ̂PMΠ≥NΠ<Nh‖L2

. ‖w‖L∞ Ms−1

Ns ‖PMΠ≥Nf‖L2‖P 2
<M

8
g′‖H1‖PMΠ≥NΠ<Nh‖L2 .

Combining this with the estimate of (3.5.7), the claim follows.
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We are now equipped to prove our equicontinuity statement. Let Q(N) ⊂ Hs for N ∈ 2N

be bounded sets of initial data that satisfy

Q(M) ⊃ Q(N) for M ≤ N, and lim
N→∞

sup
q(0)∈Q(N)

‖Π≥Nq(0)‖Hs = 0. (3.5.9)

Proposition 3.5.4. Fix an integer s ≥ 3 and define the corresponding projection opera-

tor (3.5.1). Given T > 0 and bounded sets Q(N) ⊂ Hs of initial data satisfying (3.5.9), the

corresponding solutions qκ(t) to the tidal Hκ flow (3.3.3) obey

lim
N→∞

sup
q(0)∈Q(N)

sup
κ≥N
‖Π≥Nqκ(t)‖CtHs([−T,T ]×R) = 0.

Proof. Expanding g(κ, qκ +W ) in powers of qκ and W , we write

d

dt

(
‖Π≥Nq(s)κ ‖2L2

)

=

∫ (
Π2
≥Nq

(s)
κ

){
−16κ5〈δx, R0qκR0δx〉+ 4κ2qκ

}(s+1)
dx (3.5.10)

+

∫ (
Π2
≥Nq

(s)
κ

){
−16κ5〈δx, R0WR0δx〉+ 4κ2W

}(s+1)
dx (3.5.11)

+ 16κ5
∫ (

Π2
≥Nq

(s)
κ

)
〈δx, R0qκR0qκR0δx〉(s+1) dx (3.5.12)

+ 16κ5
∫ (

Π2
≥Nq

(s)
κ

){
〈δx, (R0WR0qκR0 +R0qκR0WR0)δx〉

}(s+1)
dx (3.5.13)

+ 16κ5
∫ (

Π2
≥Nq

(s)
κ

)
〈δx, R0WR0WR0δx〉(s+1) dx (3.5.14)

+ 16κ5
∫ (

Π2
≥Nq

(s)
κ

){
g(κ, qκ +W ) + 〈δx, R0(qκ +W )R0δx〉

− 〈δx, R0(qκ +W )R0(qκ +W )R0δx〉
}(s+1)

dx.
(3.5.15)

We will estimate the terms (3.5.10)–(3.5.15) separately.

The first linear term (3.5.10) vanishes. To see this, we use the first operator identity

of (3.2.19) to write

(3.5.10) =

∫ (
Π2
≥Nq

(s)
κ

){
−16κ4R0(2κ)qκ + 4κ2qκ

}(s+1)
dx = 0.

In the last equality we note that the integrand is odd in Fourier variables, or equivalently

that the integrand is a total derivative because differentiation commutes with the Fourier

multipliers Π≥N and R0.
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Now we estimate the linear contribution (3.5.11) from W . Using the operator iden-

tity (3.2.20), we write

|(3.5.11)| =
∣∣∣∣
∫ (

Π2
≥Nq

(s)
κ

){
−W (s+3) −R0(2κ)W (s+5)

}
dx

∣∣∣∣

. ‖Π≥Nq(s)κ ‖L2

(
‖Π≥NW (s+3)‖L2 + κ−2‖W (s+5)‖L2

)
.

Recalling that W ′ is Schwartz and κ ≥ N , we obtain

. ‖Π≥Nq(s)κ ‖L2 ·N−2 . ‖Π≥Nq(s)κ ‖2L2 +N−4.

Next, we turn to the first quadratic contribution (3.5.12), which is nonvanishing due to

the presence of the frequency cutoff Π2
≥N . We write

|(3.5.12)| = 16κ5
∣∣tr
{(

Π2
≥Nq

(s)
κ

)
R0

[
∂s+1, qκR0qκR0

]}∣∣

.
s+1∑

j=0

κ5
∣∣tr
{(

Π2
≥Nq

(s)
κ

)
R0q

(j)
κ R0q

(s+1−j)
κ R0

}∣∣ .

Decomposing the highest order qκ = Π2
≥Nqκ + Π2

<Nqκ we have

|(3.5.12)|

.

b s+1
2
c∑

j=0

κ5
∣∣ tr
{(

Π2
≥Nq

(s)
κ

)
R0q

(j)
κ R0

(
Π2
≥Nq

(s+1−j)
κ

)
R0

}

+ tr
{(

Π2
≥Nq

(s)
κ

)
R0

(
Π2
≥Nq

(s+1−j)
κ

)
R0q

(j)
κ R0

}∣∣
(3.5.16)

+

b s+1
2
c∑

j=0

κ5
∣∣ tr
{(

Π2
≥Nq

(s)
κ

)
R0q

(j)
κ R0

(
Π2
<Nq

(s+1−j)
κ

)
R0

}

+ tr
{(

Π2
≥Nq

(s)
κ

)
R0

(
Π2
<Nq

(s+1−j)
κ

)
R0q

(j)
κ R0

}∣∣.
(3.5.17)

First we will estimate the high-frequency contribution (3.5.16). We can “integrate by

parts” to eliminate the terms with q
(s+1)
κ . Specifically, by cycling the trace we have

tr
{(

Π2
≥Nq

(s)
κ

)
R0

(
Π2
≥Nq

(s+1)
κ

)
R0qκR0

}
+ tr

{(
Π2
≥Nq

(s)
κ

)
R0qκR0

(
Π2
≥Nq

(s+1)
κ

)
R0

}

= tr
{[
∂,
(
Π2
≥Nq

(s)
κ

)
R0

(
Π2
≥Nq

(s)
κ

)
R0

]
qκR0

}
= − tr

{(
Π2
≥Nq

(s)
κ

)
R0

(
Π2
≥Nq

(s)
κ

)
R0q

′
κR0

}
.
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For the remaining terms we use the Hilbert–Schmidt norm estimate (3.2.3) and the observa-

tion ‖f‖H−1
κ

. κ−1 ‖f‖L2 to put the two highest order terms in L2, and we put the remaining

terms in operator norm:

|(3.5.16)| .
b s+1

2
c∑

j=1

‖Π2
≥Nq

(s)
κ ‖L2‖q(j)κ ‖L∞‖Π2

≥Nq
(s+1−j)
κ ‖L2 .

As s ≥ 3 then the index j is at most s− 1, and so the term ‖q(j)κ ‖L∞ is uniformly bounded

for |t| ≤ T and κ ≥ κ0 by the embedding H1 ↪→ L∞ and the a priori estimate of Proposi-

tion 3.3.5. The remaining term ‖Π2
≥Nq

(s+1−j)
κ ‖L2 either matches the first factor ‖Π2

≥Nq
(s)
κ ‖L2

or is . N−1 by the Bernstein inequality (3.5.6). Altogether we conclude

|(3.5.16)| . ‖Π2
≥Nq

(s)
κ ‖2L2 + ‖Π2

≥Nq
(s)
κ ‖L2 ·N−1 . ‖Π≥Nq(s)κ ‖2L2 +N−2.

The low-frequency contribution (3.5.17) requires more manipulation. We will push one

factor of Π≥N onto the low-frequency term and the resulting frequency cancellation will yield

an acceptable contribution. As Π≥N is not a sharp frequency cutoff, we divide the first factor

Π2
≥Nq

(s)
κ into its frequency scales:

|(3.5.17)| .
∑

M

b s+1
2
c∑

j=0

κ5
∣∣ tr
{(
P 2
MΠ2

≥Nq
(s)
κ

)
R0q

(j)
κ R0

(
Π2
<Nq

(s+1−j)
κ

)
R0

}

+ tr
{(
P 2
MΠ2

≥Nq
(s)
κ

)
R0

(
Π2
<Nq

(s+1−j)
κ

)
R0q

(j)
κ R0

}∣∣.
(3.5.18)

Consider the first summand of RHS(3.5.18). We split q
(j)
κ = P 2

≥M
8

q
(j)
κ +P 2

<M
8

q
(j)
κ into high

and low frequencies; the high-frequency contribution can be estimated directly, and for the

low-frequency term we trade factors of PMΠ≥N and Π<N between q
(s)
κ and q

(s+1−j)
κ to create

a commutator:

κ5 tr
{(
P 2
MΠ2

≥Nq
(s)
κ

)
R0q

(j)
κ R0

(
Π2
<Nq

(s+1−j)
κ

)
R0

}

= κ5 tr
{(
P 2
MΠ2

≥Nq
(s)
κ

)
R0

(
P 2
≥M

8
q(j)κ
)
R0

(
Π2
<Nq

(s+1−j)
κ

)
R0

}
(3.5.19)

+ κ5 tr
{(
PMΠ≥NΠ<Nq

(s)
κ

)
R0

(
P 2
<M

8
q(j)κ
)
R0

(
PMΠ≥NΠ<Nq

(s+1−j)
κ

)
R0

}
(3.5.20)
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+ κ5 tr
{[(

Π2
<Nq

(s+1−j)
κ

)
R0

(
P 2
MΠ2

≥Nq
(s)
κ

)
R0

−
(
PMΠ≥NΠ<Nq

(s+1−j)
κ

)
R0

(
PMΠ≥NΠ<Nq

(s)
κ

)
R0

](
P 2
<M

8
q(j)κ
)
R0

}
.

(3.5.21)

For the term (3.5.19) we put the two highest order terms in L2 and the lowest order term

in L∞. This yields

|(3.5.19)| .





min{Ms

Ns , 1}‖P 2
MΠ≥Nq

(s)
κ ‖L2 ·M−2 ·N if j = 0,

min{Ms

Ns , 1}‖P 2
MΠ≥Nq

(s)
κ ‖L2 ·M−1 · 1 if j ≥ 1.

For the term (3.5.20), we can now integrate by parts for the j = 0 case:

tr
{(
PMΠ≥NΠ<Nq

(s)
κ

)
R0

(
P 2
<M

8
qκ
)
R0

(
PMΠ≥NΠ<Nq

(s+1)
κ

)
R0

}

+ tr
{(
PMΠ≥NΠ<Nq

(s)
κ

)
R0

(
PMΠ≥NΠ<Nq

(s+1)
κ

)
R0

(
P 2
<M

8
qκ
)
R0

}

= tr
{[
∂,
(
PMΠ≥NΠ<Nq

(s)
κ

)
R0

(
PMΠ≥NΠ<Nq

(s)
κ

)
R0

](
P 2
<M

8
qκ
)
R0

}

= − tr
{(
PMΠ≥NΠ<Nq

(s)
κ

)
R0

(
PMΠ≥NΠ<Nq

(s)
κ

)
R0

(
P 2
<M

8
q′κ
)
R0

}
,

which is now the summand for j = 1. For j ≥ 1 we put the two highest order terms in L2

and the lowest order term in L∞ to obtain

|(3.5.20)| .





‖PMΠ≥Nq
(s)
κ ‖2L2 · 1 if j = 1,

‖PMΠ≥Nq
(s)
κ ‖L2 · 1 ·N−1 min{Ms

Ns , 1} if j ≥ 2.

For the commutator term (3.5.21) we will apply the estimate of Lemma 3.5.3 to the

functions f = q
(s)
κ , g = q

(j)
κ , and h = q

(s+1−j)
κ . Writing the trace as an iterated integral and

changing to Fourier variables, we have

(3.5.21) = κ5 tr
{[(

Π2
<Nh

)
R0

(
P 2
MΠ2

≥Nf
)
R0

−
(
PMΠ≥NΠ<Nh

)
R0

(
PMΠ≥NΠ<Nf

)
R0

](
P 2
<M

8
g
)
R0

}
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=
κ5

(2π)
3
2

∫∫∫ [(
Π̂2
<Nh

)
(ξ1 − ξ3)

( ̂P 2
MΠ2

≥Nf
)
(ξ3 − ξ2)

−
( ̂PMΠ≥NΠ<Nh

)
(ξ1 − ξ3)

( ̂PMΠ≥NΠ<Nf
)
(ξ3 − ξ2)

]

×
(
P̂ 2
<M

8

g
)
(ξ2 − ξ1)

(ξ23 + κ2)(ξ22 + κ2)(ξ21 + κ2)
dξ1 dξ2 dξ3.

Changing variables η1 = ξ2 − ξ1, η2 = ξ3 − ξ2, η3 = ξ3, this becomes

(3.5.21) =
κ5

(2π)
3
2

∫∫∫ [(
Π̂2
<Nh

)
(−η1 − η2)

( ̂P 2
MΠ2

≥Nf
)
(η2)

−
( ̂PMΠ≥NΠ<Nh

)
(−η1 − η2)

( ̂PMΠ≥NΠ<Nf
)
(η2)

]

×
(
P̂ 2
<M

8

g
)
(η1) dη1 dη2 dη3

(η23 + κ2)((η3 − η2)2 + κ2)((η3 − η1 − η2)2 + κ2)
.

The functions f , g, and h are now independent of η3, and so we may evaluate the η3 integral

using residue calculus:

(3.5.21) =
κ4

2(2π)
1
2

∫∫∫ [(
Π̂2
<Nh

)
(−η1 − η2)

( ̂P 2
MΠ2

≥Nf
)
(η2)

−
( ̂PMΠ≥NΠ<Nh

)
(−η1 − η2)

( ̂PMΠ≥NΠ<Nf
)
(η2)

]

×
(
P̂ 2
<M

8

g
)
(η1)(24κ2 + η21 + η22 + (η1 + η2)

2)

(η21 + 4κ2)(η22 + 4κ2)((η1 + η2)2 + κ2)
dη1 dη2.

This is now of the form of Lemma 3.5.3 for the multiplier

w(ξ, η) =
κ4(24κ2 + η21 + η22 + (η1 + η2)

2)

2(2π)
1
2 (η21 + 4κ2)(η22 + 4κ2)((η1 + η2)2 + κ2)

.

Moreover, this multiplier is bounded uniformly in κ:

‖w‖L∞ = 3
16

(2π)−
1
2 for all κ > 0.

Therefore, by Lemma 3.5.3 and the Bernstein inequalities (3.5.6) and (3.5.5) we have

|(3.5.21)| .





‖PMΠ≥Nq
(s)
κ ‖L2‖P̃ 2

MΠ≥Nq
(s)
κ ‖L2 + ‖PMΠ≥Nq

(s)
κ ‖2L2 j = 0,

Ms−1

Ns ‖PMΠ≥Nq
(s)
κ ‖L2 +N−1‖PMΠ≥Nq

(s)
κ ‖2L2 j ≥ 1,
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for M ≤ 4N .

We repeat the decomposition (3.5.19)–(3.5.21) for the second term in the summand

of RHS(3.5.18). At each step we obtain the same estimates; indeed, although we cannot

commute the operators within the trace, we still obtain the same integral because w was

symmetric in ξ and η.

Altogether, we obtain the following estimate of the low-frequency quadratic contribu-

tion (3.5.17):

|(3.5.17)| .
∑

M

‖P̃MΠ≥Nq
(s)
κ ‖2L2 +

∑

M≤4N

M
N2 +

∑

M≥N

1
M

. ‖Π≥Nq(s)κ ‖2L2 +N−1.

In the last inequality, we noted that the sum of the multipliers in Fourier variables is bounded.

For the quadratic term (3.5.13) involving qκ and W we can repeat the decomposition

(3.5.16)–(3.5.21). Previously we put q
(0)
κ in L∞ and not L2 since it was the lowest order

term, and consequently the same estimates apply because W ∈ L∞ and W ′ is Schwartz.

The quadratic term (3.5.14) for W can be estimated directly. Extracting the leading

term as κ→∞, we write

(3.5.14)

=

∫ (
Π2
≥Nq

(s)
κ

)
(3W 2)(s+1) dx (3.5.22)

+

∫ (
Π2
≥Nq

(s)
κ

){
16κ5〈δx, R0WR0WR0δx〉 − 3W 2

}(s+1)
dx. (3.5.23)

For (3.5.22) we distribute the s+ 1 derivatives and move one Π≥N off of qκ:

|(3.5.22)| .
s+1∑

j=0

∣∣∣∣
∫ (

Π≥Nq
(s)
κ

)
Π≥N

(
W (j)W (s+1−j)) dx

∣∣∣∣

. ‖Π≥Nq(s)κ ‖L2 ·N−1 . ‖Π≥Nq(s)κ ‖2L2 +N−2.

In the second line we noted that W (j)W (s+1−j) is Schwartz since W ′ is Schwartz and W ∈ L∞

is smooth. For (3.5.23) we use the operator identity (3.2.20) and the estimates ‖R0(2κ)∂j‖op
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. κj−2 for j = 0, 1, 2 (the estimate for j = 0 is also true as an operator on L∞ by the explicit

kernel formula for R0 and Young’s inequality) to prove by duality that

∥∥16κ5〈δx, R0(κ)fR0(κ)hR0(κ)δx〉 − 3fg
∥∥
L2 . κ−2 ‖f‖W 2,∞ ‖h‖H2 .

Moreover, the roles of f and h can be exchanged since the identity (3.2.20) is symmetric in

f and h. Distributing the s+ 1 derivatives and recalling κ ≥ N , we estimate

|(3.5.23)| . N−2‖Π≥Nq(s)κ ‖L2 ‖W‖W s+3,∞ ‖W ′‖Hs+3 . ‖Π≥Nq(s)κ ‖2L2 +N−4.

Finally, we estimate the tail (3.5.15) using Cauchy–Schwarz and (3.2.21):

|(3.5.15)| . ‖Π2
≥Nq

(s)
κ ‖L2 · o(1) . ‖Π2

≥Nq
(s)
κ ‖2L2 + o(1)

uniformly for κ ≥ N as N → ∞. Note that o(1) as κ → ∞ implies o(1) as N → ∞ due to

the restriction κ ≥ N .

Altogether, we have shown there exists a constant C such that
∣∣∣∣
d

dt
‖Π≥Nq(s)κ (t)‖2L2

∣∣∣∣ ≤ C‖Π≥Nq(s)κ (t)‖2L2 + o(1) as N →∞,

uniformly for |t| ≤ T , κ ≥ N , and q(0) ∈ Q(N). By Grönwall’s inequality, we then have

‖Π≥Nq(s)κ (t)‖2L2 ≤ eCT‖Π≥Nq(s)(0)‖2L2 + o(1) as N →∞,

uniformly for |t| ≤ T , κ ≥ N , and q(0) ∈ Q(N). By (3.5.9), the term ‖Π≥Nq(s)(0)‖L2

converges to zero as N →∞ uniformly for q(0) ∈ Q(N). Therefore we conclude

sup
q(0)∈Q(N)

sup
κ≥N
‖Π≥Nqκ(t)‖CtHs([−T,T ]×R) → 0 as N →∞,

as desired.

3.6 Well-posedness

The goal of this section is to prove our main result Theorem 3.1.1. The first step is show that

the tidal Hκ flows converge in Hs as κ→∞ by combining the low-regularity convergence of

Proposition 3.4.1 and the uniform Fourier tail control from Proposition 3.5.4:
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Proposition 3.6.1. Fix an integer s ≥ 3 and T > 0. Given bounded sets Q(κ) ⊂ Hs

of initial data satisfying (3.5.9), the corresponding tidal Hκ solutions qκ(t) are Cauchy in

CtH
s([−T, T ]× R) as κ→∞ uniformly for q(0) ∈ Q(κ).

Proof. In the following all spacetime norms will be over the slab [−T, T ]×R. Splitting at a

large frequency N to be chosen, we estimate

‖qκ − qκ‖2CtHs . (N + 1)s+2 ‖qκ − qκ‖2CtH−2 + ‖qκ − qκ‖2CtHs(|ξ|≥N) . (3.6.1)

For the second term we estimate

‖qκ − qκ‖2CtHs(|ξ|≥N) ≤ 2
(
‖Π≥Nqκ‖2CtHs + ‖Π≥Nqκ‖2CtHs

)
. (3.6.2)

Fix ε > 0. First, by Proposition 3.5.4 we take N = N0 sufficiently large to ensure that

RHS(3.6.2) is bounded by ε/2 for all κ, κ ≥ N0. With N0 fixed, we then use Proposition 3.4.1

to pick κ0 ≥ N0 so that the first term of RHS(3.6.1) is bounded by ε/2 for all κ, κ ≥ κ0.

Together, we conclude that ‖qκ − qκ‖2Hs ≤ ε for all κ, κ ≥ κ0.

Next, we show that the limits guaranteed by Proposition 3.6.1 solve tidal KdV:

Proposition 3.6.2. Fix an integer s ≥ 3 and T > 0. Given initial data q(0) ∈ Hs(R), there

exists a corresponding solution q(t) to tidal KdV (3.1.2) in (CtH
s ∩ C1

tH
s−3)([−T, T ]× R).

Proof. In the following all spacetime norms will be taken over the slab [−T, T ]×R. Applying

Proposition 3.6.1 to the single function Q = {q(0)}, we define q(t) to be limκ→∞ qκ(t) which

we know exists in CtH
s. It remains to show that d

dt
q is in CtH

s−3 and is equal to the RHS

of tidal KdV (3.1.2). We already know that the RHS(3.1.2) is in CtH
s−3, so it suffices to

show that d
dt
qκ converges to RHS(3.1.2) in the lower regularity norm CtH

−1.

We will extract the linear and quadratic terms of the tidal Hκ flow to witness its conver-

gence to tidal KdV. Using the translation identity (3.2.14), we write

d

dt
qκ

= −16κ5〈δx, R0q
′
κR0δx〉+ 4κ2q′κ (3.6.3)
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− 16κ5〈δx, R0W
′R0δx〉+ 4κ2W ′ (3.6.4)

+ 16κ5〈δx, [∂,R0qκR0qκR0]δx〉 (3.6.5)

+ 16κ5
{
〈δx, [∂,R0WR0qκR0]δx〉+ 〈δx, [∂,R0qκR0WR0]δx〉

}
(3.6.6)

+ 16κ5〈δx, [∂,R0WR0WR0]δx〉 (3.6.7)

+ 16κ5
{
g(κ, qκ +W ) + 〈δx, R0(qκ +W )R0δx〉

− 〈δx, R0(qκ +W )R0(qκ +W )R0δx〉
}′
.

(3.6.8)

We will show that the first five terms (3.6.3)–(3.6.7) converge in CtH
−1 to the terms of tidal

KdV (3.1.2), and the tail (3.6.8) converges to zero as κ→∞.

We begin with the linear contribution (3.6.3) from qκ. Using the operator identity (3.2.19)

we write

(3.6.3) = −q′′′κ −R0(2κ)∂2(qκ − q)′′′ −R0(2κ)∂2q′′′.

As qκ → q in CtH
s, the first term on the RHS converges to −q′′′ in CtH

s−3 and the second

term converges to zero in CtH
s−3 since ‖R0(2κ)∂2‖op . 1 uniformly in κ. The last term

converges to zero since the operator R0(2κ)∂2 is readily seen via Fourier variables to converge

strongly to zero as κ→∞. As the regularity s− 3 ≥ 0 is greater than −1, we conclude

(3.6.3)→ −q′′′ in CtH
−1 as κ→∞.

For the linear contribution (3.6.4) from W , we again use the operator identity (3.2.19)

we write

(3.6.4) = −W ′′′ −R0(2κ)∂2W ′′′.

As W ′ is Schwartz and the operator R0(2κ)∂2 converges strongly to zero as κ → ∞, the

second term converges to zero in CtH
s and hence in CtH

−1. Consequently,

(3.6.4)→ −W ′′′ in CtH
−1 as κ→∞.

Next we turn to the first quadratic term (3.6.5). We write

(3.6.5) = 6qκq
′
κ +

{
16κ5〈δx, [∂,R0qκR0qκR0]δx〉 − 6qκq

′
κ

}
.
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As qκ → q in CtH
s, then the first term of the RHS above converges to 6qq′ in CtH

s−1 and

hence in CtH
−1 as well. For the second term we estimate in H−1 by duality. For φ ∈ H1 we

distribute the derivative [∂, ·] using the product rule and use the operator identity (3.2.20)

to obtain
∫ {

16κ5〈δx, [∂,R0qκR0qκR0]δx〉 − 6qκq
′
κ

}
φ dx

=

∫ {
−6[R0(2κ)q′′κ][R0(2κ)q′′′κ ]φ+ 8κ2[R0(2κ)q′κ][R0(2κ)q′′κ](−5φ+R0(2κ)∂2φ)

+ 8κ2[R0(2κ)qκ][R0(2κ)q′κ](5φ
′′ + 2R0(2κ)∂2φ′′)

}
dx.

For each term on the RHS, we put two terms in L2 and the remaining term in L∞. For those

terms with φ′′ we integrate by parts once, we put all factors of φ′ in L2, and we put φ in

L∞ ⊃ H1. We put the highest order qκ term in L2 and the lower order term in L2 or L∞ as

needed. Using ‖R0(2κ)∂j‖op . κj−2 for j = 0, 1, 2 (the estimate for j = 0 is also true as an

operator on L∞ by the explicit kernel formula for R0 and Young’s inequality), we obtain
∣∣∣∣
∫ {

16κ5〈δx, [∂,R0qκR0qκR0δx〉 − 6qκqκ
}
φ dx

∣∣∣∣ . κ−2 ‖φ‖H1 ‖qκ‖2Hs .

Taking a supremum over ‖φ‖H1 ≤ 1, we conclude

(3.6.5)→ 6qq′ in CtH
−1 as κ→∞.

The second quadratic term (3.6.6) is similar, but now we must put W in L∞. First we

write

(3.6.6) = 6(Wqκ)
′ +
{

16κ5〈δx, [∂,R0WR0qκR0]δx〉

+ 16κ5〈δx, [∂,R0qκR0WR0]δx〉 − 6(Wqκ)
′}.

As qκ → q in CtH
s, the first term of the RHS above converges to 6(Wq)′ in CtH

s−1 and

hence in CtH
−1 as well. For the second term we estimate in H−1 by duality. For φ ∈ H1 we

distribute the derivatives [∂, ·] fusing the product rule and use the operator identity (3.2.20).

For the term 〈δx, R0WR0q
′
κR0δx〉 this yields

∫ {
16κ5〈δx, R0WR0q

′
κR0δx〉 − 3Wq′κ

}
φ dx
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=

∫ {
−3[R0(2κ)W ′′][R0(2κ)q′′′κ ]φ+ 4κ2[R0(2κ)W ′][R0(2κ)q′′κ](−5φ+R0(2κ)∂2φ)

+ 4κ2[R0(2κ)W ][R0(2κ)q′κ](5φ
′′ + 2R0(2κ)∂2φ′′)

}
dx.

This equality also holds for the second term 〈δx, R0q
′
κR0WR0δx〉 because the identity (3.2.20)

is symmetric in f and h. For those terms with φ′′ we integrate by parts once to obtain φ′

which we put in L2, we put all factors of W in L∞, and we put the remaining terms in L2.

This yields

∣∣∣∣
∫ {

16κ5〈δx, R0WR0q
′
κR0δx〉 − 3Wq′κ

}
φ dx

∣∣∣∣ . κ−2 ‖φ‖H1 ‖qκ‖Hs ,

and similarly for the term 〈δx, R0q
′
κR0WR0δx〉. The remaining two contributions from

〈δx, R0W
′R0qκR0δx〉 and 〈δx, R0qκR0W

′R0δx〉 are even easier, since W ′ is Schwartz and qκ

has one less derivative. Taking a supremum over ‖φ‖H1 ≤ 1, we conclude

(3.6.6)→ 6(Wq)′ in CtH
−1 as κ→∞.

The third quadratic term (3.6.7) is similar. We write

(3.6.7) = 6WW ′ +
{

16κ5〈δx, [∂,R0WR0WR0]δx〉 − 6WW ′}.

We easily estimate the second term above using the operator identity (3.2.20) and noting

that W ∈ L∞ and W ′ is Schwartz. This yields

(3.6.7)→ 6WW ′ in CtH
−1 as κ→∞.

Lastly, we show that the tail (3.6.8) converges to zero in CtH
−1. We will estimate in H−1

by duality. For φ ∈ H1 we write

∣∣∣∣
∫
φ · (3.6.8) dx

∣∣∣∣ ≤ 16κ5
∑

`≥0, m0,...,m`≥0
`+m0+···+m`≥3

∣∣ tr
{
φ[∂,R0(WR0)

m0qκR0 · · · qκR0(WR0)
m` ]
}∣∣.
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Recall that we first expanded g(κ, qκ + W ) in powers of qκ, the `th term having `-many

factors of qκR(κ,W ), and then expanded each R(κ,W ) into a series in W indexed by mi. The

condition `+m0+· · ·+m` ≥ 3 reflects that we have already accounted for all of the summands

with one and two qκ or W . We distribute the derivative [∂, ·], use the estimate (3.2.3) and

the observation ‖f‖H−1
κ

. κ−1 ‖f‖L2 to put φ and all copies of qκ in L2, and then estimate

W in operator norm to obtain

. κ5
∑

`≥0, m0,...,m`≥0
`+m0+···+m`≥3

‖φ‖L2

κ3/2

(‖qκ‖H1

κ3/2

)`(‖W‖W 1,∞

κ2

)m0+···+m`
.

We first sum over the indices m0, . . . ,m` ≥ 0 as we did in (3.2.15) using that W ∈ W 1,∞,

and then we sum over ` ≥ 1 since qκ is bounded in CtH
s for all κ large. In doing so, the

condition `+m0 + · · ·+m` ≥ 3 guarantees that summing over the two pararenthetical terms

yields a gain . (κ−3/2)3, from which we conclude

. κ−1 ‖φ‖H1 .

Taking a supremum over ‖φ‖H1 ≤ 1 we obtain

(3.6.8)→ 0 in CtH
−1 as κ→∞.

We now use a classical L2 energy argument to show that we have unconditional uniqueness

for initial data in Hs, s ≥ 3:

Lemma 3.6.3. Fix T > 0. Given an initial data q(0) ∈ H3, there is at most one corre-

sponding solution to tidal KdV (3.1.2) in (CtH
3 ∩ C1

t L
2)([−T, T ]× R).

Proof. Suppose q(t) and q̃(t) are both in (CtH
3 ∩C1

t L
2)([−T, T ]×R), solve tidal KdV, and

have the same initial data q(0) = q̃(0). From the differential equation, we see that the

difference obeys

∣∣∣∣
d

dt

∫
1
2
(q − q̃)2 dx

∣∣∣∣ =

∣∣∣∣
∫

(q − q̃){−(q − q̃)′′′ + 3(q2 − q̃2)′ + [6W (q − q̃)]′} dx
∣∣∣∣ .
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The first term (q− q̃)′′′ contributes a total derivative and vanishes, while the remaining terms

can be integrated by parts to obtain

=

∣∣∣∣
∫

(q − q̃)2{3
2
(q + q̃)′ + 3W ′}(t, x) dx

∣∣∣∣

≤
(
3
2
‖q′‖L∞ + 3

2
‖q̃′‖L∞ + 3 ‖W ′‖L∞

)
‖q − q̃‖2L2 .

Estimating ‖q′‖L∞ . ‖q‖H2 , ‖q̃′‖L∞ . ‖q̃‖H2 and noting that W ′ is Schwartz, we conclude

that there exists a constant C depending on W and the norm of q and q̃ in CtH
3([−T, T ]×R)

such that ∣∣∣∣
d

dt
‖q(t)− q̃(t)‖2L2

∣∣∣∣ ≤ C ‖q(t)− q̃(t)‖2L2 .

Grönwall’s inequality then yields

‖q(t)− q̃(t)‖2L2 ≤ ‖q(0)− q̃(0)‖2L2 e
CT

uniformly for |t| ≤ T . As the RHS vanishes by premise, we conclude that q̃(t) = q(t) for all

|t| ≤ T .

We are now ready to prove our main result. It remains to show that the solution depends

continuously upon the initial data in Hs for s ≥ 3.

Proof of Theorem 3.1.1. Fix an integer s ≥ 3. We want to show that tidal KdV (3.1.2) is

globally well-posed for initial data q(0) ∈ Hs(R).

Fix T > 0 and a convergent sequence qn(0) of initial data in Hs(R). It suffices to show

that the corresponding solutions qn(t) of tidal KdV (3.1.2) constructed in Proposition 3.6.2

are Cauchy in CtH
s([−T, T ]× R) as n→∞.

Consider the set Q := {qn(0) : n ∈ N} of initial data, which is bounded and equicontin-

uous in Hs since it is convergent in Hs. Let HW
κ denote the Hamiltonian for the tidal Hκ

flow. We estimate

‖qn(t)− qm(t)‖CtHs ≤ ‖etJ∇HW
κ qn(0)− etJ∇HW

κ qm(0)‖CtHs

+ 2 sup
q∈Q

sup
κ≥κ
‖etJ∇HW

κ q − etJ∇HW
κ q‖CtHs ,

(3.6.9)
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where the spacetime norms are over the slab [−T, T ]× R. By Proposition 3.6.1, the second

term of RHS(3.6.9) can be made arbitrarily small uniformly in n,m by picking κ sufficiently

large. The first term of RHS(3.6.9) then converges to zero as n,m → ∞ due to the well-

posedness of the tidal Hκ flow (cf. Corollary 3.3.6).
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CHAPTER 4

Well-posedness for H−1(R) perturbations of solutions

with exotic spatial asymptotics

4.1 Introduction

In this chapter, we will show that KdV is well-posed for H−1(R) perturbations of the step-like

solutions constructed in the previous chapter. More broadly, we aim to develop a framework

that applies to any class of initial data that is of physical interest. One important example

is initial data that is asymptotically periodic. This includes localized perturbations of a

single periodic profile, wave dislocation where the periods as x → ±∞ may not align, and

waves with altogether different periodic asymptotics as x → ±∞. Quasi-periodic spatial

asymptotics are also heavily studied in the literature (see, for example, [21, 43, 45, 46, 55]).

As we will discuss more thoroughly below, these classes are excluded by traditional analysis

on the circle R/Z.

Specifically, we employ the method of commuting flows that was introduced in [97] to

prove well-posedness in H−1(R) and H−1(R/Z), and developed in several subsequent pa-

pers [30,72,73,93–95,121]. This method relies upon approximating the dynamics of KdV by

the flow of the Hamiltonians Hκ defined by (1.4.7) as κ→∞.

Given a solution V (t, x) to KdV we define

Vκ(t, x) to be the solution to the Hκ flow with initial data V (0, x).

We will assume that the background wave V is sufficiently regular in the following sense.
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Definition 4.1.1. We call the background wave V (t, x) : R×R→ R admissible if for every

T > 0 it satisfies the following:

(i) V solves KdV (1.1.1) and is bounded in W 2,∞(Rx) uniformly for |t| ≤ T ,

(ii) The Hκ flows Vκ are bounded in W 4,∞(Rx) uniformly for |t| ≤ T and κ > 0 sufficiently

large,

(iii) Vκ − V → 0 in W 2,∞(Rx) as κ → ∞ uniformly for |t| ≤ T and initial data in the set

{Vκ(t) : |t| ≤ T, κ ≥ κ}.

In this paper we will show that for admissible waves V the KdV equation (1.1.1) is

well-posed for H−1(R) perturbations of V (cf. Corollary 4.5.4):

Theorem 4.1.2 (Global well-posedness). Given V that is admissible in the sense of Def-

inition 4.1.1, the KdV equation (1.1.1) with initial data u(0) ∈ V (0) + H−1(R) is globally

well-posed in the following sense: u(t) = V (t) + q(t) and q(t) is given by a jointly continuous

data-to-solution map Rt ×H−1(R)→ H−1(R) for the equation

d

dt
q = −q′′′ + 6qq′ + 6(V q)′ (4.1.1)

with initial data q(0) = u(0)− V (0).

Just as H−1(R) is the lowest regularity for which we can hope to have well-posedness in

the case W ≡ 0 [116], we expect that Corollary 4.1.4 is sharp in the class of Hs(R) spaces.

There is a known technique [97, Cor. 5.3] for extending H−1(R) well-posedness to Hs(R),

s > −1; the key ingredient in the argument is H−1-equicontinuity, which will be further

discussed below. In this way, H−1(R) is the key space for establishing well-posedness.

As we cannot make sense of the nonlinearity of KdV for H−1(R) solutions (even in the

distributional sense), the solutions in Theorem 4.1.2 will be constructed as limits of the Hκ

flows as κ → ∞. This is the right notion of solution because it coincides with the classical

notion on a dense subset of initial data and Theorem 4.1.2 guarantees continuous dependence
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of the solution upon the initial data. Specifically, in Section 4.6 we show that for initial data

u(0) ∈ V (0) +H3(R) our solution u(t) solves KdV and is unique:

Theorem 4.1.3. Fix V admissible and T > 0. Given initial data u(0) ∈ V (0) +H3(R), the

solution u(t) constructed in Theorem 4.1.2 lies in V (t) + (CtH
2 ∩C1

tH
−1) ([−T, T ]×R) for

all T > 0, solves KdV (1.1.1), and is unique in this class.

There are rich classes of initial data that are admissible according to our definition.

Our first application will be to the step-like background waves from Chapter 3. Applying

Theorem 3.1.1 to the initial data q(0) ≡ 0, we conclude that given W there is a unique

global solution V (t) = W + q(t) to KdV (1.1.1) with initial data W , and t 7→ V (t) −W is

a continuous function into Hs(R) for all s ≥ 3. From our understanding of V (t) at high-

regularity (namely Corollary 3.3.6 and Propositions 3.6.1 and 3.6.2), we are able to verify

that V (t) is admissible:

Corollary 4.1.4 (Step-like background). Given initial data V (0) = W of the form (3.1.1),

the KdV equation (1.1.1) with initial data u(0) ∈ W + H−1(R) is globally well-posed in the

sense of Theorem 4.1.2.

It is natural to ask whether KdV is also well-posed for H−1(R) perturbations of W .

Corollary 4.1.4 and Theorem 3.1.1 provide an affirmative answer to this question. By

Corollary 4.1.4, there exists a solution u(t) = V (t) + q(t) to KdV (1.1.1) with initial data

u(0) = W + q(0) in W + H−1(R). Together with Theorem 3.1.1, we also obtain that

t 7→ u(t) − W is a continuous function into H−1(R) that depends continuously upon the

initial data. For a precise statement of this well-posedness, see Corollary 4.7.1. We do not

use this formulation in the statement of Corollary 4.1.4 because it does not reflect the reality

of the proof.

Our second application will be to the important case of smooth periodic initial data

V (0, x) (cf. Corollary 4.9.4):
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Corollary 4.1.5 (Periodic background). Given V (0) ∈ H5(R/Z), the KdV equation (1.1.1)

is globally well-posed for u(0) ∈ V (0) +H−1(R) in the sense of Theorem 4.1.2.

In particular, this includes the cnoidal wave solutions (1.2.1) of KdV. Indeed, among

all periodic asymptotics appearing in the literature, these are the most common choice for

the background wave V . We have already seen in Section 1.2 that there is great interest in

perturbations of cnoidal waves from the perspectives of orbital and spectral stability.

More generally, existence for the Cauchy problem with periodic spatial asymptotics was

first addressed in the physics literature for the case of cnoidal waves [103], and again for more

general periodic backgrounds in [57–59] via the inverse scattering transform. A complete

mathematical treatment of the Cauchy problem for highly regular initial data with distinct

periodic asymptotics as x→ ±∞ was later given in [52,53].

We believe that Theorem 4.1.2 can also be applied to classes of quasi-periodic initial

data, or any other class amenable to complete integrability methods. This would require

showing that a given class of background waves V are admissible; while such V may be highly

studied, their Hκ flows Vκ are not. Nevertheless, the known results on exotic backgrounds

use integrable methods like the inverse scattering transform, which are well suited to treat

the Hκ flows and verify the admissibility criteria.

In all cases, the presence of the background wave V breaks the macroscopic conservation

laws of KdV. If q is a regular solution to (4.1.1) then the momentum functional E1 (defined

in (1.1.3)) is not conserved, but rather evolves according to (1.2.3). Interpreting V as a

potential-like function that affects the change in momentum, we will refer to (4.1.1) as

KdV with potential. Despite this lack of conservation, we are able to adapt the method of

commuting flows to KdV with potential (4.1.1) because these conserved quantities do not

blow up in finite time.

Just as the Hamiltonian Hκ in (1.4.7) approximates E2, we define H̃κ to approximate the

dynamics of KdV with potential (4.1.1); subtracting the background V from u we obtain
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the H̃κ flow of q = u− V from time 0 to t:

Φ̃κ(t)q = etJ∇Hκ(q + V (0))− Vκ(t).

We will show that for admissible V , the H̃κ flow is well-posed in H−1(R) and converges to

the KdV equation with potential (4.1.1) in H−1(R) uniformly on bounded time intervals as

κ→∞. As in [97], one asset of this method is that well-posedness of the H̃κ flow in H−1(R)

follows from an ODE argument because α is real-analytic on V +H−1(R) and E1 generates

translations.

The major structural difference of our argument from that in [97] is that we cannot assume

the existence of regular solutions to (4.1.1). Although some results in this direction do exist

(e.g. [52, 53]), we would need to significantly increase our assumptions on the background

wave V in order to employ them. Instead of showing that the H̃κ flows converge to that of

KdV with potential as κ → ∞, we show that the H̃κ flows are Cauchy and we define the

limit to be an H−1 solution of (4.1.1). To verify that this is indeed the solution map, we

show that it is a jointly continuous map from Rt ×H−1(R) to H−1(R) and agrees with the

classical notion of solution on a dense subset of initial data (cf. Theorem 4.1.3). The proof

of Theorem 4.1.3 relies on an energy argument in H3(R) similar to that of Bona–Smith [24],

using the fact that the Hκ flows also conserve the polynomial conservation laws of KdV (as

is suggested by the asymptotic expansion (1.4.6) and Poisson commutativity (1.4.1)).

Following the argument of [97], the convergence of the H̃κ flows in H−1(R) as κ → ∞
is implied by convergence at some lower Hs(R) regularity together with equicontinuity in

H−1(R) for all κ large. In the V ≡ 0 case [97], equicontinuity quickly followed from the

estimates (4.2.19) and the conservation of the functional α(κ, q) under both the Hκ and

KdV flows. However, the appearance of the background wave V in the H̃κ flow breaks the

conservation of α(κ, q). Instead of obtaining full equicontinuity, we introduce a dependence

between the energy parameters κ and κ in the proof of convergence (cf. Proposition 4.5.2)

that we can match when we estimate the growth of α(κ, q) (cf. Proposition 4.3.1).

131



This paper is organized as follows. In Section 4.2 we introduce the diagonal Green’s

function g for perturbations q ∈ H−1(R) of the background wave V , the key conserved

quantity α(κ, q) from the case V ≡ 0 (cf. (1.4.5)), and the H̃κ flow (4.2.22). In Section 4.3

we obtain an a priori estimate for the growth of α(κ, q) under the dynamics of H̃κ flow

(Proposition 4.3.1) with enough independence of the energy parameters κ and κ to facilitate

the proof of convergence. In Proposition 4.3.2 we then prove that the H̃κ flow is well-posed

in H−1(R).

The entirety of Section 4.4 is dedicated to demonstrating that the H̃κ flows converge in

Hs(R) for some s < −1 (Proposition 4.4.1). In Section 4.5 we upgrade this convergence to

H−1(R) (Proposition 4.5.2) and then conclude our main result Theorem 4.1.2. The proof of

Theorem 4.1.3 is then presented in Section 4.6.

In Section 4.7, we recall the necessary ingredients from Chapter 3 in order to apply

Theorem 4.1.2 to step-like initial data.

Lastly, we proceed in Section 4.8 with an application to cnoidal waves (1.2.1), which

we present separately because of the significantly shorter length. This is subsumed by the

analysis in Section 4.9, where we consider more general smooth periodic backgrounds V (0) ∈
H5(R/Z).

4.2 Diagonal Green’s function

In this section, we will continue our study of the diagonal Green’s function that we started

in Section 3.2.

We begin by taking a closer look at the real-analytic mappings in Proposition 3.2.3. Even

for V 6≡ 0, we will need to know that the functionals (3.2.8) are diffeomorphisms in the case

V ≡ 0. This is because to demonstrate the convergence of the H̃κ flows which approximate

KdV, it is convenient to make the change of variables 1/g(k, q) in place of q, as introduced

in [97].
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Proposition 4.2.1 (Diffeomorphism property). Given A > 0 there exists κ0 > 0 so that the

functionals

q 7→ g(x;κ, q)− 1

2κ
and q 7→ 1

g(x;κ, q)
− 2κ

are real-analytic diffeomorphisms from BA (defined in (3.2.4)) into H1
κ(R) for all κ ≥ κ0.

Proof. The proof follows that of [97, Prop. 2.2], but now we allow for arbitrary radii A > 0

and compensate by taking κ0 sufficiently large. Using the resolvent identity we calculate the

first functional derivative

dg|q(f) =
d

ds

∣∣∣∣
s=0

g(x;κ, q + sf) = −〈δx, R(κ, q)fR(κ, q)δx〉. (4.2.1)

For q ≡ 0, we use the integral kernel formula for R0 to write

dg|0(f) = −〈δx, R0fR0δx〉 = −κ−1[R0(2κ)f ](x).

Estimating by duality, expanding R(κ, q) as the series (3.2.6), and using the operator esti-

mate (3.2.3) we have

‖dg|q(f)− dg|0(f)‖H1
κ
. κ−3/2A ‖f‖H−1

κ

uniformly for q ∈ BA. Taking a supremum over ‖f‖H−1
κ
≤ 1, we conclude that there exists

κ0 � A2 such that

‖dg|q − dg|0‖H−1
κ →H1

κ
≤ 1

2
κ−1

uniformly for q ∈ BA and κ ≥ κ0. Using this and

∥∥(dg|0
)−1∥∥

H1
κ→H

−1
κ
≤ κ

as input, the standard contraction-mapping proof of the inverse function theorem guarantees

that q 7→ g − 1
2κ

is a diffeomorphism from BA onto its image for all κ ≥ κ0.

For the second functional q 7→ 1
g
− 2κ we write

1
g
− 2κ = −2κ

2κ(g − 1
2κ

)

1 + 2κ(g − 1
2κ

)
.
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By the embedding H1 ↪→ L∞, we note that f 7→ f
1+f

is a diffeomorphism from the ball

of radius 1
2

in H1 into H1. The estimates (3.2.9) and (3.2.12) guarantee that we can pick

κ0 � A2 so that

2κ
∥∥g(x;κ, q)− 1

2κ

∥∥
L∞
≤ 1

2

for all q ∈ BA and κ ≥ κ0. Altogether, we conclude that q 7→ 1
g
−2κ is also a diffeomorphism

from BA onto its image for all κ ≥ κ0.

From the ODE (3.2.18) satisfied by g(κ, q), we see that qg′(κ, q) is a total derivative. Our

next result provides a quantitative estimate of this quantity, which will be useful in obtaining

our a priori estimate for α(κ, q) under the H̃κ flow (Proposition 4.3.1).

Proposition 4.2.2. Given A > 0 there exists F (x;κ, q) ∈ L1(R) and κ0 > 0 so that

q(x)g′(x;κ, q) = F ′(x;κ, q), ‖F‖L1 . κ−1 ‖q‖2H−1
κ

(4.2.2)

for all q ∈ BA(κ) and κ ≥ κ0.

Proof. From the ODE (3.2.18) we have

qg′(κ, q) =
[
1
2
g′′(κ, q)− qg(κ, q)− 2κ2g(κ, q)

]′
.

In [94, Lem. 2.14] it is shown that the potential q may be recovered from the diagonal Green’s

function via the relation

q =

[
g′(κ, q)

2g(κ, q)

]′
+

[
g′(κ, q)

2g(κ, q)

]2
+

[
1

4g(κ, q)2
− κ2

]
.

Rearranging this identity, we see that the claimed relation (4.2.2) holds for the functional

F (κ, q) := 1
g(κ,q)

{
1
4
g′(κ, q)2 − κ2

[
g(κ, q)− 1

2κ

]2 }
. (4.2.3)

To see the quadratic dependence on q claimed in the estimate (4.2.2) we will Taylor

expand F about q ≡ 0. From the series (3.2.11) we note that g(κ, 0) ≡ 1
2κ

, and so we have

F (x;κ, 0) ≡ 0.
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The Green’s function for a translated potential is the translation of the original Green’s

function, and so

g(x;κ, q(·+ h)) = g(x+ h;κ, q) for all h ∈ R. (4.2.4)

This together with the resolvent identity yields

g′(x;κ, q) = −〈δx, R(κ, q)q′R(κ, q)δx〉. (4.2.5)

Differentiating (4.2.3) with respect to q we obtain

dF |q(f) =− 1
g(κ,q)

F (κ, q) dg|q(f)

+ 1
g(κ,q)

{
1
2
g′(κ, q) d(g′)|q(f)− 2κ2

[
g(κ, q)− 1

2κ

]
dg|q(f)

}
,

(4.2.6)

and since F , g − 1
2κ

, and g′ all vanish for q ≡ 0 we conclude

dF |0(f) ≡ 0.

Next we turn to the Hessian of F (q). A straightforward computation shows that at q ≡ 0

we have

d2F |0(f, f) = −4κ3〈δx, R0fR0δx〉2 + κ〈δx, R0f
′R0δx〉2, (4.2.7)

and we will estimate both terms on the RHS individually. From the integral kernel formula

for R0 we write

〈δx, R0fR0δx〉 = κ−1[R0(2κ)f ](x).

Using Plancherel’s theorem to estimate the first term of RHS(4.2.7) we have

4κ3
∫
|〈δx, R0fR0δx〉|2 dx = 4κ

∫ |f̂(ξ)|2
(ξ2 + 4κ2)2

dξ ≤ 1

κ

∫ |f̂(ξ)|2
ξ2 + 4κ2

dξ.

Similarly, for the second term of RHS(4.2.7) we have

κ

∫
|〈δx, R0f

′R0δx〉|2 dx =
1

κ

∫
ξ2|f̂(ξ)|2

(ξ2 + 4κ2)2
dξ ≤ 1

κ

∫ |f̂(ξ)|2
ξ2 + 4κ2

dξ.

Together we conclude
∥∥d2F |0(f, f)

∥∥
L1 . κ−1 ‖f‖2H−1

κ
. (4.2.8)

135



To finish the proof, it suffices to show that the Hessian’s modulus of continuity satisfies

∥∥d2F |q(f, f)− d2F |0(f, f)
∥∥
L1 . κ−3/2A ‖f‖2H−1

κ
(4.2.9)

uniformly for q ∈ BA(κ) and κ large. Indeed, the estimate (4.2.2) then follows by choosing

κ0 � A2 so that the RHS is smaller than RHS(4.2.8) for κ ≥ κ0. Differentiating the first

derivative (4.2.6) we write

d2F |q(f, f)− d2F |0(f, f)

= 2
g(κ,q)2

F (κ, q)
[
dg|q(f)

]2 − 1
g(κ,q)

F (κ, q) d2g|q(f, f) (4.2.10)

− 2
g(κ,q)2

{
1
2
g′(κ, q) d(g′)|q(f)− 2κ2

[
g(κ, q)− 1

2κ

]
dg|q(f)

}
dg|q(f) (4.2.11)

+ 1
g(κ,q)

{
1
2
g′(κ, q) d2(g′)|q(f, f)− 2κ2

[
g(κ, q)− 1

2κ

]
d2g|q(f, f)

}
(4.2.12)

+ 1
g(κ,q)

{
1
2
[d(g′)|q(f)]2 − 2κ2[dg|q(f)]2

}
− d2F |0(f, f). (4.2.13)

We will prove the estimate (4.2.9) by estimating each of the terms (4.2.10)–(4.2.13) in L1,

but first we record some useful estimates for the functional derivatives of g.

Estimating the first functional derivative (4.2.1) by duality, expanding R(κ, q) as the

series (3.2.6), and using the operator estimate (3.2.3) we have

‖dg|q(f)‖H1
κ
. κ−1 ‖f‖H−1

κ
(4.2.14)

uniformly for q ∈ BA(κ) and κ large. Similarly, if we remove the leading term of dg|q(f) we

obtain

‖dg|q(f)− dg|0(f)‖H1
κ
. κ−3/2A ‖f‖H−1

κ
(4.2.15)

uniformly for q ∈ BA(κ) and κ large. Another application of the resolvent identity shows

that

d2g|q(f, f) = 2〈δx, R(κ, q)fR(κ, q)fR(κ, q)δx〉,

and estimating this by duality we have

∥∥d2g|q(f, f)
∥∥
H1
κ
. κ−3/2 ‖f‖2H−1

κ
(4.2.16)
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uniformly for q ∈ BA(κ) and κ large.

For the first term (4.2.10) we use the estimates (3.2.9), (3.2.12), (4.2.14), and (4.2.16)

along with the observation that ‖h‖L2 . κ−1 ‖h‖H1
κ

to bound

‖(4.2.10)‖L1 .
(
‖g′(κ, q)‖2L2 + κ2

∥∥g(κ, q)− 1
2κ

∥∥2
L2

)(∥∥∥ [dg|q(f)]2
g(κ,q)3

∥∥∥
L∞

+
∥∥∥d

2g|q(f,f)
g(κ,q)2

∥∥∥
L∞

)

. κ−2A2
(
κ3 · κ−3 ‖f‖2H−1

κ
+ κ2 · κ−2 ‖f‖2H−1

κ

)
. κ−2A ‖f‖2H−1

κ

uniformly for q ∈ BA(κ) and κ large.

For the second term (4.2.11) we note that d(g′)|q(f) = [dg|q(f)]′ can be bounded in L2

by (4.2.14), yielding

‖(4.2.11)‖L1 .
∥∥∥dg|q(f)g(κ,q)2

∥∥∥
L∞

(
‖g′(κ, q)‖L2 ‖d(g′)|q(f)‖L2 + κ2

∥∥g(κ, q)− 1
2κ

∥∥
L2 ‖dg|q(f)‖L2

)

. κ1/2 ‖f‖H−1
κ

(
κ−2A ‖f‖H−1

κ

)
. κ−3/2A ‖f‖2H−1

κ

uniformly for q ∈ BA(κ) and κ large.

Similarly for the third term (4.2.12) we have d2(g′)|q(f, f) = [d2g|q(f, f)]′, and hence

‖(4.2.12)‖L1 ≤ 1
2

∥∥∥ 1
g(κ,q)

∥∥∥
L∞
‖g′(κ, q)‖L2

∥∥d2(g′)|q(f, f)
∥∥
L2

+ 2κ2
∥∥∥ 1
g(κ,q)

∥∥∥
L∞

∥∥g(κ, q)− 1
2κ

∥∥
L2

∥∥d2g|q(f, f)
∥∥
L2

. κ−3/2A ‖f‖2H−1
κ

+ κ2 · κ−7/2A ‖f‖2H−1
κ

. κ−3/2A ‖f‖2H−1
κ

uniformly for q ∈ BA(κ) and κ large.

Lastly, to witness the convergence within the fourth term (4.2.13) we estimate [dg|q(f)]2−
[dg|0(f)]2 in L1 as the difference of squares in L2 using (4.2.15):

‖(4.2.13)‖L1 =
∥∥∥
[
[d(g′)|q(f)]2

2g(κ,q)
− κ[d(g′)|0(f)]2

]
− 4κ3

[
[dg|q(f)]2
2κg(κ,q)

− [dg|0(f)]2
]∥∥∥

L1

≤ κ
∥∥[d(g′)|q(f)]2 − [d(g′)|0(f)]2

∥∥
L1 +

∥∥∥ 1
2g(κ,q)

− κ
∥∥∥
L∞
‖d(g′)|q(f)‖2L2

+ 4κ3
∥∥[dg|q(f)]2 − [dg|0(f)]2

∥∥
L1 + 4κ2

∥∥∥ 1
2g(κ,q)

− κ
∥∥∥
L∞
‖dg|q(f)‖2L2

. κ−3/2A ‖f‖2H−1
κ

+ κ−2A ‖f‖2H−1
κ

. κ−3/2A ‖f‖2H−1
κ
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uniformly for q ∈ BA(κ) and κ large. Altogether we have demonstrated the desired inequal-

ity (4.2.9), which concludes the proof.

We now recall the key conserved quantity α(κ, q) constructed in [97, Prop. 2.4] to control

the H−1-norm of q. The same proof shows that given A > 0, if we take the corresponding

constant κ0 from Proposition 3.2.3, then for all κ ≥ κ0 the quantity

α(κ, q) :=

∫

R

{
− 1

2g(x;κ, q)
+ κ+ 2κ[R0(2κ)q](x)

}
dx

exists for all q ∈ BA(κ), is a real analytic functional of q ∈ BA(κ), and is conserved under

the KdV flow (cf. [97, Prop. 3.1]):

{α,E2} = 0. (4.2.17)

The quantity α(κ, q) is a renormalized logarithm of the transmission coefficient for the

Schrödinger operator with potential q (called the perturbation determinant) at energy −κ2.

The formula for α is the trace of the integral kernel −1/2G(x, y;κ, q) with the first

two terms of its functional Taylor series about q ≡ 0 canceled, and consequently α(κ, q) is a

nonnegative, strictly convex, real-analytic functional of q ∈ BA. Specifically, in [97, Prop. 2.4]

it is shown that the first derivative of α is given by

δα

δq
=

1

2κ
− g(x;κ, q). (4.2.18)

This vanishes for q ≡ 0, but the nondegenerate second derivative yields

1
4
κ−1 ‖q‖2H−1

κ
≤ α(κ, q) ≤ κ−1 ‖q‖2H−1

κ
(4.2.19)

uniformly for q ∈ BA(κ) and κ ≥ κ0. This last statement follows from the original proof

of [97, Prop. 2.4] together with the estimate

∣∣d2α|q(f, f)− d2α|0(f, f)
∣∣ . κ−3/2A ‖f‖2H−1

κ

uniformly for q ∈ BA(κ) and κ large (which is true by (4.2.15) and (4.2.18)).
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The quantity α is also used to construct the Hκ flows (cf. [97, Prop. 3.2]) which approx-

imate the KdV flow as κ→∞. For κ ≥ 1 the Hamiltonian evolution induced by

Hκ := −16κ5α(κ, q) + 2κ2
∫
q(x)2 dx (4.2.20)

is given by (3.3.1). The flow conserves α(κ, q(t)) and commutes with those of KdV and Hκ

for all κ ≥ 1:

{α,Hκ} = 0, {Hκ, E2} = 0, {Hκ, Hκ} = 0. (4.2.21)

Given a solution V (t, x) to KdV we define

Vκ(t, x) := etJ∇HκV (0, x)

to be the Hκ evolution of V (0, x). We will always assume that V and Vκ are admissible in

the sense of Definition 4.1.1. Just as how we obtained KdV with potential (4.1.1) from KdV,

we define the H̃κ flow of q from time 0 to t via

Φ̃κ(t)q = etJ∇Hκ(q + V (0))− Vκ(t).

In other words, q(t, x) solves

d

dt
q(t, x) = 16κ5 [g′(x;κ, q(t) + Vκ(t))− g′(x;κ, Vκ(t))] + 4κ2q′(t, x). (4.2.22)

Formally, this flow is induced by the (time-dependent) Hamiltonian

H̃κ := −16κ5
{
α(κ, q + Vκ) +

∫
[g(x;κ, Vκ)− 1

2κ
]q(x) dx

}
+ 2κ2

∫
q(x)2 dx.

We will not need this explicit formula for the Hamiltonian H̃κ, but we include it so that we

are justified in using the Poisson bracket notation for its flow.

Throughout our analysis we will need to know that the first two terms of the series (3.2.11)

for g(κ, Vκ) converge and dominate in the limit κ→∞.

Lemma 4.2.3. Fix V admissible (in the sense of Definition 4.1.1) and T > 0. Then

−4κ3
[
g(κ, Vκ)− 1

2κ

]
→ V in W 2,∞ as κ→∞

uniformly for |t| ≤ T .
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Proof. First we will examine the leading term of the series (3.2.11) for g(κ, Vκ)− 1
2κ

. From

the integral kernel formula for R0 we note that

4κ3〈δx, R0VκR0δx〉 = 4κ2R0(2κ)Vκ,

and we claim this converges to V in W 2,∞ uniformly for |t| ≤ T . The operator 4κ2R0(2κ)

is convolution by the function κe−2κ|x|, whose integral is 1 for all κ > 0. Using this and the

fundamental theorem of calculus we have

∣∣4κ2R0(2κ)Vκ(x)− Vκ(x)
∣∣ =

∣∣∣∣
∫
κe−2κ|y|[Vκ(x− y)− Vκ(x)] dy

∣∣∣∣

≤ κ ‖V ′κ‖L∞
∫
e−2κ|y||y| dy = 2κ−1 ‖V ′κ‖L∞

for all x. As V ′κ ∈ L∞ and Vκ → V in L∞ uniformly for |t| ≤ T (by Definition 4.1.1), we

conclude that 4κ2R0(2κ)Vκ → V in L∞ uniformly for |t| ≤ T . Differentiation commutes

with R0(2κ), and so replacing Vκ with V ′κ, V
′′
κ and recalling that Vκ ∈ W 3,∞ uniformly for

|t| ≤ T , we conclude that 4κ2R0(2κ)Vκ → V in W 2,∞ uniformly for |t| ≤ T .

It remains to show that

−4κ3
[
g(κ, Vκ)− 1

2κ

]
− 4κ2R0(2κ)Vκ → 0 in W 2,∞ as κ→∞

uniformly for |t| ≤ T . Using the series (3.2.11) we estimate

∣∣4κ3
[
g(x;κ, Vκ)− 1

2κ

]
+ 4κ2R0(2κ)Vκ(x)

∣∣ ≤ 4κ3
∞∑

`=2

∥∥∥
√
R0δx

∥∥∥
2

L2

∥∥∥
√
R0Vκ

√
R0

∥∥∥
`

op

. 4κ2
∞∑

`=2

(
κ−2 ‖Vκ‖L∞

)`
.V κ

−2,

where we noted that ‖√R0δx‖2L2 . κ−1 in Fourier variables. This demonstrates the desired

convergence in L∞. Differentiating the translation identity (4.2.4) with respect to h at h = 0

yields

g′(κ, Vκ) =
∞∑

`=1

(−1)`
`−1∑

j=0

〈
δx, R0(VκR0)

jV ′κR0(VκR0)
`−1−jδx

〉
.
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Computing the second derivative similarly and using the same estimates, we also conclude

‖4κ3g′(κ, Vκ) + 4κ2R0(2κ)V ′κ‖L∞ + ‖4κ3g′′(κ, Vκ) + 4κ2R0(2κ)V ′′κ ‖L∞ .V κ
−2

because Vκ ∈ W 2,∞ uniformly for |t| ≤ T . This demonstrates that the first and second

derivatives converge in L∞ uniformly for |t| ≤ T as well.

4.3 The H̃κ flow

To eventually show that the H̃κ flow (4.2.22) converges to KdV with potential (4.1.1) we

will need to control the H−1-norm of q(t) under the H̃κ flow. As the H̃κ flow already has

the associated energy parameter κ, our tool for controlling q in H−1 is α(κ, q(t)) at an

independent energy parameter κ. Both the H̃κ flow and α involve the diagonal Green’s

function, and so we will be led to an integral involving g(x;κ, q) and g(x;κ, q). Expanding

both into series, the resulting summands are no longer simply traces and so we will need to

develop a new technique in order efficiently estimate such an integral.

To introduce the technique that we later use, we will first prove the commutativity

relation ∫
g(x;κ, q)g′(x;κ, q) dx = 0 (4.3.1)

for Schwartz functions q, which expresses that α(κ, q) and α(κ, q) Poisson commute (cf. [97,

Prop. 3.2]). When κ = κ the integrand is a total derivative and the vanishing of the integral

is immediate, so assume κ 6= κ. First, we use the ODE (3.2.18) for g(κ, q) = g(x;κ, q) to

write

4(κ2 − κ2)g′(κ, q) = g′′′(κ, q)− 2qg′(κ, q)− 2 [qg(κ, q)]′ − 4κ2g′(κ, q). (4.3.2)

Substituting this for g′(κ, q) in (4.3.1) and integrating by parts we obtain
∫
g(κ, q)g′(κ, q) dx

= 1
4(κ2−κ2)

∫
g(κ, q)

{
g′′′(κ, q)− 2qg′(κ, q)− 2 [qg(κ, q)]′ − 4κ2g′(κ, q)

}
dx
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= − 1
4(κ2−κ2)

∫ {
g′′′(κ, q)− 2qg′(κ, q)− 2 [qg(κ, q)]′ − 4κ2g′(κ, q)

}
g(κ, q) dx.

Now we see that this last integral vanishes due to the ODE (3.2.18) for g(κ, q), thus prov-

ing (4.3.1). We will refer to this procedure of using the ODE for one term, integrating by

parts, and using the ODE for the other term as the commutativity relation trick.

Now we are prepared to prove our main estimate for controlling the H−1-norm of q(t)

under the H̃κ flow:

Proposition 4.3.1. Fix T > 0 and V admissible. There exists a constant C > 0 so that the

following holds: given A > 0 there exists κ0 > 0 so that solutions q(t) ∈ BA(κ) to the H̃κ

flow (4.2.22) obey ∣∣∣∣
d

dt
α(κ, q(t))

∣∣∣∣ ≤ Cα(κ, q(t))

uniformly for |t| ≤ T , κ ≥ 2κ, and κ ≥ κ0.

Proof. We initialize κ0 so that the results from Section 4.2 hold for the balls BA(κ) for all

κ ≥ κ0. First we compute the time derivative of α(κ, q(t)). We will show that the H̃κ flow is

locally well-posed in H−1(R) in Proposition 4.3.2, and so we may assume that q is Schwartz

by approximation. Using the functional derivative (4.2.18) of α and the H̃κ flow (4.2.22), we

compute

d

dt
α(κ, q(t)) = {α, H̃κ}

= −
∫ (

g(x;κ, q)− 1
2κ

) {
16κ5 [g′(x;κ, q + Vκ)− g′(x;κ, Vκ)] + 4κ2q′(x)

}
dx,

where we have suppressed the time dependence of q and Vκ. The contribution from q′

vanishes because the Hκ flow conserves momentum; this can be seen by integrating by parts

and noting from (4.2.2) that qg′(κ, q) is a total derivative. We are left with the expression

d

dt
α(κ, q(t)) = −16κ5

∫ (
g(x;κ, q)− 1

2κ

)
[g′(x;κ, q + Vκ)− g′(x;κ, Vκ)] dx.

We expect this to remain bounded in the limit κ → ∞ from the convergence of Hκ to E2,

but the factor of κ5 obscures this bound. To circumvent this, we use the commutativity
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relation trick (4.3.2) introduced at the beginning of this section. Using the ODEs (3.2.18)

for g(κ, q + Vκ) and g(κ, Vκ), integrating by parts, and then using the ODE for g(κ, q), we

obtain

d

dt
α(κ, q(t))

= − 8κ5

κ2−κ2

∫ { [
q(g(κ, q)− 1

2κ )
]′

+ qg′(κ, q)
}
g(κ, Vκ) dx (4.3.3)

+ 8κ5

κ2−κ2

∫
1
2κq
′ [g(κ, q + Vκ)− g(κ, Vκ)] dx (4.3.4)

− 8κ5

κ2−κ2

∫ { [
Vκ(g(κ, q)− 1

2κ )
]′

+ Vκg
′(κ, q)

}
[g(κ, q + Vκ)− g(κ, Vκ)] dx. (4.3.5)

We have suppressed the spatial integration variable x for all integrands. We will show

that (4.3.3) and (4.3.4) are acceptable contributions, and then we will manipulate (4.3.5)

further.

For the term (4.3.3) we insert 1
2κ
− 1

4κ3
V in place of g(κ, Vκ):

(4.3.3) = − 8κ5

κ2−κ2

∫ [
q(g(κ, q)− 1

2κ )
]′ (

g(κ, Vκ)− 1
2κ

+ 1
4κ3
V
)
dx

− 8κ5

κ2−κ2

∫
qg′(κ, q)

(
g(κ, Vκ)− 1

2κ
+ 1

4κ3
V
)
dx

− 8κ5

κ2−κ2

∫ {[
q(g(κ, q)− 1

2κ )
]′

+ qg′(κ, q)
} (

1
2κ
− 1

4κ3
V
)
dx.

To estimate the first integral on the RHS we integrate by parts, use H1
κ-H−1κ duality, and

use the estimates (3.2.2), (3.2.9), and (4.2.19):

8κ5

κ2−κ2

∣∣∣∣
∫

(g(κ, q)− 1
2κ )q

(
g(κ, Vκ)− 1

2κ
+ 1

4κ3
V
)′
dx

∣∣∣∣

. κ5

κ2−κ2

∥∥g(κ, Vκ)− 1
2κ

+ 1
4κ3
V
∥∥
W 2,∞

∥∥g(κ, q)− 1
2κ

∥∥
H1

κ
‖q‖H−1

κ

. κ5

κ2−κ2

∥∥g(κ, Vκ)− 1
2κ

+ 1
4κ3
V
∥∥
W 2,∞ α(κ, q).

The prefactor of α(κ, q) here is bounded uniformly for κ ≥ 2κ and κ large by the convergence

of Lemma 4.2.3. For the second integral we use the identity (4.2.2) for qg′(κ, q) and the α

estimate (4.2.19):

8κ5

κ2−κ2

∣∣∣∣
∫

(g(κ, q)− 1
2κ )
[
q
(
g(κ, Vκ)− 1

2κ
+ 1

4κ3
V
)]′

dx

∣∣∣∣
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. κ5

κ2−κ2

∥∥g(κ, Vκ)− 1
2κ

+ 1
4κ3
V
∥∥
W 1,∞ α(κ, q),

and the prefactor is again bounded uniformly for κ ≥ 2κ and κ large. For the third integral

we integrate by parts to obtain

8κ5

κ2−κ2

∫
(g(κ, q)− 1

2κ )
{[

( 1
2κ
− 1

4κ3
V )q

]′ − 1
4κ3
V ′q
}
dx.

Note that the contribution from the term 1
2κ

vanishes since qg′(κ, q) is a total derivative

(cf. (4.2.2)). This leaves

− 2κ2

κ2−κ2

∫
(g(κ, q)− 1

2κ ) [V ′q + (V q)′] dx.

The prefactor 2κ2

κ2−κ2 is now bounded uniformly for κ ≥ 2κ. As before the contribution of

V ′q is estimated by H1
κ-H−1κ duality and the contribution of (V q)′ by (4.2.2), yielding

2κ2

κ2−κ2

∣∣∣∣
∫

(g(κ, q)− 1
2κ ) [V ′q + (V q)′] dx

∣∣∣∣ . ‖V ‖W 2,∞ α(κ, q).

To estimate the second term (4.3.4) we expand

(4.3.4) = 4κ5

(κ2−κ2)κ

∞∑

`=1

(−1)` tr{(R(κ, Vκ)q)
`R(κ, Vκ)q

′}.

Next, we write

R(κ, Vκ)q
′ = [∂,R(κ, Vκ)q]− [∂,R(κ, Vκ)]q.

Note that contribution from [∂,R(κ, Vκ)q] vanishes by cycling the trace, and the contribution

from [∂,R(κ, Vκ)] = −R(κ, Vκ)V
′
κR(κ, Vκ) is acceptable using the estimate (3.2.7):

|(4.3.4)| ≤ 4κ5

(κ2−κ2)κ

∞∑

`=1

∣∣tr{(R(κ, Vκ)q)
`R(κ, Vκ)V

′
κR(κ, Vκ)q}

∣∣

≤ 4κ5

(κ2−κ2)κ

∞∑

`=1

∥∥∥
√
R(κ, Vκ) q

√
R(κ, Vκ)

∥∥∥
`+1

I2

∥∥∥
√
R(κ, Vκ)V

′
κ

√
R(κ, Vκ)

∥∥∥
op

. 4κ5

(κ2−κ2)κ

∞∑

`=1

(
κ−1/2 ‖q‖H−1

κ

)`+1
κ−2 ‖V ′κ‖L∞ . ‖V ′κ‖L∞ α(κ, q).

In the last step we noted that ‖q‖H−1
κ
≤ ‖q‖H−1

κ
for κ ≥ 2κ.
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It remains to estimate the third term (4.3.5), which will require more manipulation

because the leading term in the expansion of g(κ, q + Vκ)− g(κ, Vκ) is only O(κ). First, we

integrate by parts to move the derivative back onto g(κ, q + Vκ)− g(κ, Vκ):

(4.3.5) = 8κ5

κ2−κ2

∫
V ′κ(g(κ, q)− 1

2κ ) [g(κ, q + Vκ)− g(κ, Vκ)] dx (4.3.6)

+ 16κ5

κ2−κ2

∫
Vκ(g(κ, q)− 1

2κ ) [g′(κ, q + Vκ)− g′(κ, Vκ)] dx. (4.3.7)

Using H1
κ-H−1κ duality, the diagonal Green’s function estimate (3.2.9), and the observation

that ‖f‖H−1
κ
≤ κ−2 ‖f‖H1

κ
, we have

|(4.3.6)| ≤ 8κ5

κ2−κ2 ‖V ′κ‖W 1,∞ ‖g(κ, q + Vκ)− g(κ, Vκ)‖H−1
κ

∥∥g(κ, q)− 1
2κ

∥∥
H1
κ

. 8κ5

κ2−κ2 ‖V ′κ‖W 1,∞ κ
−3 ‖q‖H−1

κ
κ−1 ‖q‖H−1

κ
. ‖V ′κ‖W 1,∞ α(κ, q)

since ‖q‖H−1
κ
≤ ‖q‖H−1

κ
for κ ≥ 2κ.

The remaining term (4.3.7) resembles our original expression for d
dt
α(κ, q(t)), except we

have gained κ−2 in decay and have introduced an extra factor of Vκ. Consequently, we repeat

the commutativity relation trick (4.3.2); pushing derivatives past the factor of Vκ introduces

extra terms, but they are relatively harmless. After this manipulation, we regroup terms to

arrive at

(4.3.7)

=

∫
8κ5Vκ

(κ2−κ2)2

{[
q(g(κ, q)− 1

2κ )
]′

+ qg′(κ, q)
}
g(κ, Vκ) (4.3.8)

−
∫

8κ5Vκq′

2κ(κ2−κ2)2
[g(κ, q + Vκ)− g(κ, Vκ)] (4.3.9)

+

∫
8κ5Vκ

(κ2−κ2)2

{[
Vκ(g(κ, q)− 1

2κ )
]′

+ Vκg
′(κ, q)

}
[g(κ, q + Vκ)− g(κ, Vκ)] (4.3.10)

−
∫

4κ5

(κ2−κ2)2
(V ′′′κ − 4κ2V ′κ − 2V ′κ)(g(κ, q)− 1

2κ )[g(κ, q + Vκ)− g(κ, Vκ)] (4.3.11)

−
∫

12κ5

(κ2−κ2)2

[
V ′κg

′(κ, q)
]′

[g(κ, q + Vκ)− g(κ, Vκ)] (4.3.12)

−
∫

8κ5V ′κ
(κ2−κ2)2

(g(κ, q)− 1
2κ )
{
qg(κ, q + Vκ) + Vκ[g(κ, q + Vκ)− g(κ, Vκ)]

}
. (4.3.13)
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The first three terms (4.3.8)–(4.3.10) are analogous to (4.3.3)–(4.3.5) respectively, and the

new terms (4.3.11)–(4.3.13) are the result of derivatives falling on the new factor of Vκ.

Estimating (4.3.8) as we did (4.3.3), we obtain

|(4.3.8)| .
(
‖Vκ‖W 2,∞ + ‖Vκ‖2W 2,∞

)
α(κ, q).

Conversely, the extra factor of Vκ prohibits us from treating the term (4.3.9) as we

did (4.3.4). Instead, we must maneuver the derivative onto Vκ. Expanding

(4.3.9) = − 4κ5

(κ2 − κ2)2

∞∑

`=1

(−1)`

κ
tr{(R(κ, Vκ)q)

`R(κ, Vκ)Vκ[∂, q]},

we write

tr{(R(κ, Vκ)q)
`R(κ, Vκ)Vκ[∂, q]}

= tr{(R(κ, Vκ)q)
`[R(κ, Vκ), Vκ]∂q} − tr{(R(κ, Vκ)q)

`Vκ[∂,R(κ, Vκ)]q}

by linearity and cycling the trace. For the contribution of [∂,R(κ, Vκ)] = −R(κ, Vκ)V
′
κ

R(κ, Vκ), we use the operator estimate (3.2.7) to bound

| tr{(R(κ, Vκ)q)
`Vκ[∂,R(κ, Vκ)]q}|

≤
∥∥∥
√
R(κ, Vκ)V

′
κ

√
R(κ, Vκ)

∥∥∥
op

∥∥∥
√
R(κ, Vκ) q

√
R(κ, Vκ)

∥∥∥
`+1

I2

. κ−2 ‖V ′κ‖L∞
(
κ−1/2 ‖q‖H−1

κ

)`+1

for ` ≥ 1. For the contribution of first commutator

[R(κ, Vκ), Vκ]∂ = R(κ, Vκ)V
′′
κ R(κ, Vκ)∂ +R(κ, Vκ)2V

′
κ∂R(κ, Vκ)∂,

we pair each q with two copies of
√
R(κ, Vκ) in I2 and each ∂ with one copy of

√
R(κ, Vκ)

in operator norm; the first term contributes

| tr{(R(κ, Vκ)q)
`R(κ, Vκ)V

′′
κ R(κ, Vκ)∂q}|

≤
∥∥∥
√
R(κ, Vκ)V

′′
κ ∂
√
R(κ, Vκ)

∥∥∥
op

∥∥∥
√
R(κ, Vκ) q

√
R(κ, Vκ)

∥∥∥
`+1

I2

146



+ | tr{(R(κ, Vκ)q)
`R(κ, Vκ)V

′′
κ [∂,R(κ, Vκ)]q}|

. κ−1
(
‖Vκ‖W 2,∞ + ‖Vκ‖2W 2,∞

)(
κ−1/2 ‖q‖H−1

κ

)`+1
,

and the second term contributes

| tr{(R(κ, Vκ)q)
`R(κ, Vκ)V

′
κ∂R(κ, Vκ)∂q}|

≤
∥∥∥
√
R(κ, Vκ)

(
∂V ′κ − V ′′κ

)
∂
√
R(κ, Vκ)

∥∥∥
op

∥∥∥
√
R(κ, Vκ) q

√
R(κ, Vκ)

∥∥∥
`+1

I2

+ | tr{(R(κ, Vκ)q)
`R(κ, Vκ)V

′
κ∂[∂,R(κ, Vκ)]q}|

. ‖V ′κ‖L∞
(
κ−1/2 ‖q‖H−1

κ

)`+1
.

Summing over ` ≥ 1 we gain a factor of κ−1 to counteract the prefactor κ5(κ2 − κ2)−2, and

the remaining factor of κ−1 is paired with ‖q‖2H−1
κ
≤ ‖q‖2H−1

κ
to conclude

|(4.3.9)| .
(
‖Vκ‖W 2,∞ + ‖Vκ‖2W 2,∞

)
α(κ, q) (4.3.14)

uniformly for κ ≥ 2κ and κ large.

We now have enough decay in κ to treat the term (4.3.10) directly. Using Cauchy–

Schwarz, the diagonal Green’s function estimate (3.2.9), and the observation that ‖f‖L2 .

κ−1 ‖f‖H1
κ

we have

|(4.3.10)| . κ5

(κ2−κ2)2
‖Vκ‖2W 1,∞

∥∥g(κ, q)− 1
2κ

∥∥
H1 ‖g(κ, q + Vκ)− g(κ, Vκ)‖L2

. κ5

(κ2−κ2)2
‖Vκ‖2W 1,∞ κ−1 ‖q‖H−1

κ
κ−2 ‖q‖H−1

κ
. ‖Vκ‖2W 1,∞ α(κ, q)

uniformly for κ ≥ 2κ and κ large. This same technique also works for (4.3.11) and (4.3.12)

after integrating by parts once:

|(4.3.11)| . κ5

(κ2−κ2)2

(
‖V ′′κ ‖L∞ κ−2κ−1 + ‖V ′κ‖L∞ κ−2

)
‖q‖H−1

κ
‖q‖H−1

κ
. ‖V ′κ‖W 1,∞ α(κ, q),

|(4.3.12)| . κ5

(κ2−κ2)2
‖V ′κ‖L∞ κ−1 ‖q‖H−1

κ
κ−1 ‖q‖H−1

κ
. ‖V ′κ‖L∞ α(κ, q)

uniformly for κ ≥ 2κ and κ large. For the last term (4.3.13) we note that the extra factor of

g(κ, q+ Vκ) can be put in H1 by the second inequality of (3.2.2), and so by H1
κ-H−1κ duality
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we have

|(4.3.13)| . κ5

(κ2−κ2)2
‖V ′κ‖L∞

{
‖g(κ, q + Vκ)‖H1 ‖q‖H−1

κ

∥∥g(κ, q)− 1
2κ

∥∥
H1

κ

+ ‖Vκ‖L∞
∥∥g(κ, q)− 1

2κ

∥∥
L2 ‖g(κ, q + Vκ)− g(κ, Vκ)‖L2

}

. ‖V ′κ‖L∞ (1 + ‖Vκ‖L∞)α(κ, q)

uniformly for κ ≥ 2κ and κ large. This concludes the estimate of (4.3.7) and hence the

proof of Proposition 4.3.1.

From Proposition 4.3.1 we are able to conclude that the H−1-norm of q(t) is controlled

by that of q(0). We use this to show that the approximate flows H̃κ are globally well-posed

in H−1(R):

Proposition 4.3.2. Fix V admissible. Given A, T > 0 there exists κ0 > 0 so that for

κ ≥ κ0 the H̃κ flows (4.2.22) with initial data q(0) ∈ BA have solutions qκ(t) which are

unique in CtH
−1([−T, T ]× R), depend continuously on the initial data, and are bounded in

CtH
−1([−T, T ]× R) uniformly for κ ≥ κ0.

Moreover, for all κ sufficiently large the diagonal Green’s function g(κ, q) = g(x;κ, q(t))

evolves according to

d
dt

1
2g(κ,q) =

{
4κ5

κ2−κ2

[
κ
κ
− g(κ,q+Vκ)−g(κ,Vκ)

g(κ,q)

]
+
(

2κ2 + κ4

κ2−κ2

) [
1

g(κ,q) − 2κ
]}′

− 4κ5

κ2−κ2
1

g(κ,q)2

∫
G(x, y)

{[
q(g(κ, Vκ)− 1

2κ
)
]′

+ qg′(κ, Vκ) +
[
Vκ(g(κ, q + Vκ)− g(κ, Vκ))

]′

+ Vκ[g
′(κ, q + Vκ)− g′(κ, Vκ)]

}
(y)G(y, x) dy,

where G(x, y) = G(x, y;κ, q) and the dependence on (t, x) is suppressed.

Proof. The solution q(t) of the H̃κ flow satisfies the integral equation

q(t) = et4κ
2∂xq(0) + 16κ5

∫ t

0

e(t−s)4κ
2∂x [g′(κ, q(s) + Vκ(s))− g′(κ, Vκ(s))] ds.
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Local well-posedness is proved by contraction mapping, provided we have the Lipschitz

estimate

‖g′(κ, q + Vκ)− g′(κ, q̃ + Vκ)‖H−1

. ‖[g(κ, q + Vκ)− g(κ, Vκ)]− [g(κ, q̃ + Vκ)− g(κ, Vκ)]‖H1 . ‖q − q̃‖H−1 .

To prove this Lipschitz estimate, it suffices to show that f 7→ d[g(κ, ·+ Vκ)]|q(f) is bounded

as an operator H−1 → H1 uniformly for q ∈ BA. Using the resolvent identity we calculate

d[g(κ, ·+ Vκ)]|q(f) = −〈δx, R(κ, q + Vκ)fR(κ, q + Vκ)δx〉.

Estimating by duality, expanding the series (3.2.6), and using the estimate (3.2.7) we obtain

‖d[g(κ, ·+ Vκ)]|q(f)‖H1 . ‖f‖H−1

uniformly for q ∈ BA and κ ≥ κ0. Here, κ0 is chosen so that the results of Section 4.2 and

the above estimate apply to the ball of radius A.

For global well-posedness, we will need to choose κ0 even larger. Let C denote the

constant from Proposition 4.3.1, which depends only on the background wave V and T > 0.

Then Grönwall’s inequality and the α estimate (4.2.19) tell us that the H̃κ flows qκ(t) obey

‖qκ(t)‖2H−1
κ
≤ 4κα(κ, qκ(t)) ≤ 4eCTκα(κ, q(0)) ≤ 4eCTA2 (4.3.15)

for |t| ≤ T , κ ≥ 2κ, and κ sufficiently large.

Fix κ = κ0 sufficiently large so that Proposition 4.3.1 and the α estimate (4.2.19) apply

throughout the ball BR(κ) in H−1κ with radius R = 2eCT/2A. The estimate (4.3.15) then

applies, and so the H̃κ flows qκ(t) remain in the ball BR(κ) as long as |t| ≤ T and κ ≥ 2κ.

For each κ ≥ 2κ, the H̃κ flow is locally well-posed on the ball BR in H−1κ by the elementary

estimate ‖f‖H−1
κ
≈κ ‖f‖H−1 . Therefore we may iterate the local well-posedness result to the

whole time interval [−T, T ]. Moreover, using the estimate ‖f‖H−1 . κ ‖f‖H−1
κ

again, we

conclude that the H̃κ flows qκ(t) are bounded in H−1(R) uniformly for |t| ≤ T and κ ≥ 2κ.
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Next we turn to the second statement. From the expression (4.2.1) for the functional

derivative of g we have

d

dt
g(x;κ, q(t)) =

{
g(κ, q), H̃κ

}
= −

∫
G(x, y)

dq

dt
(y)G(y, x) dy

= −
∫
G(x, y)

{
16κ5[g′(κ, q + Vκ)− g′(κ, Vκ)] + 4κ2q′

}
(y)G(y, x) dy

= −4κ2g′(x;κ, q) + 16κ5
∫
G(x, y)[g′(κ, q + Vκ)− g′(κ, Vκ)](y)G(y, x) dy,

where G(x, y) = G(x, y;κ, q). Using the ODEs (3.2.18) for g(κ, q + Vκ) and g(κ, Vκ) and

then the identity (3.2.17), we obtain

16κ5
∫
G(x, y)[g′(κ, q + Vκ)− g′(κ, Vκ)](y)G(y, x) dy =

= 8κ5

κ2−κ2

{
g′(κ, q)[g(κ, q + Vκ)− g(κ, Vκ)]− g(κ, q)

[
g(κ, q + Vκ)− g(κ, Vκ)

]′}

− 4κ5

κ2−κ2

∫
G(x, y)

{(
Vκ[g(κ, q + Vκ)− g(κ, Vκ)]

)′

+ Vκ[g
′(κ, q + Vκ)− g′(κ, Vκ)] +

[
qg(κ, Vκ)

]′
+ qg′(κ, Vκ)

}
(y)G(y, x) dy.

Lastly, replacing g by g − 1
2κ

in the term [qg(κ, Vκ)]
′ and using the formula (4.2.5) for g′ we

write

− 4κ5

κ2−κ2

∫
G(x, y)

[
qg(κ, Vκ)

]′
(y)G(y, x) dy

= − 4κ5

κ2−κ2

∫
G(x, y)

[
q(g(κ, Vκ)− 1

2κ
)
]′

(y)G(y, x) dy + 2κ4

κ2−κ2 g
′(x;κ, q).

Differentiating 1/2g(κ, q) using the chain rule and regrouping terms yields the desired ex-

pression.

4.4 Convergence at low regularity

Ultimately we will show that the H̃κ flows qκ(t) are convergent in H−1(R) as κ → ∞. To

this end, we will show the difference qκ− qκ for κ ≥ κ converges to zero as κ→∞. This is a

difficult task, as it involves estimating two different functions that solve separate nonlinear
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equations. To circumvent this, we will use that the Hκ and Hκ flows commute (cf. (4.2.21)).

This allows us to write the Hκ flow of u by time t as

etJ∇Hκu = etJ∇(Hκ−Hκ)etJ∇Hκu.

We apply this identity to u = q + V and u = V . Then qκ(t), the H̃κ flow of q(0) by time t,

is the solution to

d

dt
q = 16κ5[g′(κ, q +W (t))− g′(κ,W (t))] + 4κ2q′

− 16κ5[g′(κ, q +W (t))− g′(κ,W (t))]− 4κ2q′
(4.4.1)

at time t with initial data qκ(t). Here, the background wave W (t) ≡ Wκ,κ(t) is the solution

to
d

dt
W = 16κ5g′(κ,W ) + 4κ2W ′ − 16κ5g′(κ,W )− 4κ2W ′ (4.4.2)

at time t with initial data Vκ(t). The upshot of this manipulation is that we may now write

the difference qκ(t)−qκ(t) as the solution to the single equation (4.4.1) minus its initial data.

The purpose of this section is to first demonstrate convergence at some lower Hs regu-

larity. As was introduced in [97], the change of variables 1/g(k, q) in place of q is convenient

in witnessing this convergence.

Proposition 4.4.1. Fix V admissible, T > 0, and k > 0 sufficiently large. Given a bounded

and equicontinuous set Q ⊂ H−1(R) of initial data, define the set of Hκ and H̃κ flows

V ∗T (κ) := {etJ∇HκV (0) : |t| ≤ T, κ ≥ κ}, Q∗T (κ) := {Φ̃κ(t)q : q ∈ Q, |t| ≤ T}

for κ > 0 sufficiently large. Then the solutions q(t) to the difference flows (4.4.1) with

background waves W (t) and initial data q(0) obey

lim
κ→∞

sup
q(0)∈Q∗T (κ)
W (0)∈V ∗T (κ)

sup
κ≥κ

∥∥∥∥
1

g(k, q(t))
− 1

g(k, q(0))

∥∥∥∥
CtH−2([−T,T ]×R)

= 0.

Throughout the proof of Proposition 4.4.1 all spacetime norms will be over the slab

[−T, T ]× R. As V is admissible, there exists a constant κ0 so that the Hκ flows Vκ(t) exist
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and are bounded in CtW
4,∞ uniformly for κ ≥ κ0. By Proposition 4.3.2 the difference flows

q(t) for q(0) ∈ Q∗T (κ) are bounded in CtH
−1 uniformly for κ large, and hence are contained

in a ball BA for some A > 0. In particular, the functional g(k, q)− 1
2k

for q(t) exists for all

k sufficiently large.

By the fundamental theorem of calculus we have

∥∥∥∥
1

2g(k, q(t))
− 1

2g(k, q(0))

∥∥∥∥
CtH−2

≤ T

∥∥∥∥
d

dt

(
1

2g(k, q(t))
− k
)∥∥∥∥

CtH−2

,

and so it suffices to show that

lim
κ→∞

sup
q(0)∈Q∗T (κ)
W (0)∈V ∗T (κ)

sup
κ≥κ

∥∥∥∥
d

dt

(
1

2g(k, q(t))
− k
)∥∥∥∥

CtH−2

= 0.

The equation (4.4.1) for the evolution of q is the difference of the equations for the H̃κ

and H̃κ flows with the same background wave W (t). In fact, for a general function F (q)

evaluated at q(t) we have

d

dt
F (q(t)) =

{
F, H̃κ

}
−
{
F, H̃κ

}
.

We will apply this to the quantity 1/2g(k, q(t)), for which the Poisson brackets above were

computed in Proposition 4.3.2. After regrouping terms, we arrive at

d

dt

1

2g(k, q(t))

=
{

1
g(k,q)

(
q + 4κ5

κ2−k2 [g(κ, q +W )− g(κ,W )]− 4k5

κ2−k2
[
g(k, q)− 1

2k

])}′
(4.4.3)

+ 1
g(k,q)2

∫
G(x, y)

{
V ′q + 4κ5

κ2−k2 g
′(κ,W )q

}
(y)G(y, x) dy (4.4.4)

+ 1
g(k,q)2

∫
G(x, y)

{
V ′q + 4κ5

κ2−k2W
′[g(κ, q +W )− g(κ,W )]

}
(y)G(y, x) dy (4.4.5)

+ 1
g(k,q)2

∫
G(x, y)

{
(V q)′ + 4κ5

κ2−k2 ([g(κ,W )− 1
2κ

]q)′
}

(y)G(y, x) dy (4.4.6)

+ 1
g(k,q)2

∫
G(x, y)

{
2V q′ + 8κ5

κ2−k2W [g(κ, q +W )− g(κ,W )]′
}

(y)G(y, x) dy (4.4.7)

− {(4.4.3)–(4.4.7) with κ replaced by κ} ,

152



where G(x, y) = G(x, y; k, q). Note that for each term we have subtracted the limiting

expression as κ→∞ (e.g. inserting (q/g(k, q))′ in (4.4.3) and V ′q in the integrand of (4.4.4))

which is canceled by its counterpart in the corresponding κ terms.

To prove Proposition 4.4.1 we must show that all of the terms above converge to zero

in CtH
−2 as κ → ∞ uniformly for κ ≥ κ, q(0) ∈ Q∗T (κ), and W (0) ∈ V ∗T (κ). To simplify

the notation, we will only show that the terms (4.4.3)–(4.4.7) converge to zero as κ → ∞;

the upper bound we will obtain for each κ term will also hold for the corresponding κ term

uniformly for κ ≥ κ.

First, we claim that the admissibility of V implies that the background waves W (t) =

etJ∇(Hκ−Hκ)W obey

lim
κ→∞

sup
W∈V ∗T (κ)

sup
κ≥κ
‖etJ∇(Hκ−Hκ)W −W‖CtW 2,∞ = 0. (4.4.8)

For κ ≥ κ and W ∈ V ∗T (κ), we use the commutativity of the KdV and Hκ flows (cf. (4.2.21))

to write

‖etJ∇(Hκ−Hκ)W −W‖CtW 2,∞

≤ ‖etJ∇Hκe−tJ∇HκW − etJ∇E2e−tJ∇HκW‖CtW 2,∞ + ‖e−tJ∇HκetJ∇E2W −W‖CtW 2,∞

≤ 2 sup
W∈V ∗2T (κ)

sup
κ≥κ
‖etJ∇HκW − etJ∇E2W‖CtW 2,∞ .

The RHS converges to zero as κ→∞ by condition (iii) of Definition 4.1.1.

Now we turn to the first term (4.4.3), which arises in the case V ≡ 0 and is handled as

in [97]. Using the second estimate of (3.2.2) we can put the factor of 1/g(k, q) in H1 and

bound

‖(4.4.3)‖H−2 .
∥∥∥ 1
g(k,q)

∥∥∥
H1

∥∥∥q + 4κ5

κ2−k2 [g(κ, q +W )− g(κ,W )]− 4k5

κ2−k2
[
g(k, q)− 1

2k

]∥∥∥
H−1

.
∥∥q + 4κ3 [g(κ, q +W )− g(κ,W )]

∥∥
H−1

+ κ ‖g(κ, q +W )− g(κ,W )‖H−1 + κ−2
∥∥g(k, q)− 1

2k

∥∥
H−1 .
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We allow implicit constants to depend on the fixed constant k > 0. The second and third

terms converge to zero as κ → 0 by the estimate (3.2.9). In the following lemma we check

that the first term also converges to zero:

Lemma 4.4.2. We have

4κ3[g(κ, q +W )− g(κ,W )] + q → 0 in H−1 as κ→∞

uniformly for q ∈ Q∗T (κ).

Proof. We claim that the first term 4κ2R0(2κ)q of the series for 4κ3[g(κ, q +W )− g(κ,W )]

converges to q in H−1. We compute

∥∥4κ2R0(2κ)q − q
∥∥2
H−1 =

∫
ξ4|q̂(ξ)|2

(ξ2 + 4κ2)2(ξ2 + 4)
dξ .

∫ |q̂(ξ)|2
ξ2 + 4κ2

dξ = ‖q‖2H−1
κ
.

Note that for q ∈ Q∗T (κ), Proposition 4.3.1 only gives us control over α(κ, q) for κ ≥ 2κ

and not κ = κ. To circumvent this, we simply take κ = κ/2 and note that trivially

‖q‖2H−1
κ
≤ ‖q‖2H−1

κ/2
. If we let C denote the constant from Proposition 4.3.1, then Grönwall’s

inequality and the α estimate (4.2.19) yield

‖q‖2H−1
κ
≤ ‖q‖2H−1

κ/2
. κ

2
α(κ

2
, q) ≤ eCT κ

2
α(κ

2
, q(0)),

where q(0) ∈ Q is the initial data for q ∈ Q∗T (κ). As Q is equicontinuous, we know κ
2
α(κ

2
, q(0))

converges to zero as κ → ∞ uniformly for q(0) ∈ Q by Lemma 3.5.1 and the α esti-

mate (4.2.19). This completes the claim.

It remains to show that

4κ3[g(κ, q +W )− g(κ,W )] + 4κ2R0(2κ)q → 0 in H−1 as κ→∞

uniformly for q ∈ BA. We expand g(κ, q+W )− g(κ,W ) as a series in powers of q, and then

expand each resolvent R(κ,W ) in powers of W . We estimate by duality; for f ∈ H1 and

R0 = R0(κ) we have
∣∣∣∣
∫
f(x)

{
4κ3[g(κ, q +W )− g(κ,W )] + 1

κ
R0(2κ)q

}
(x) dx

∣∣∣∣
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≤ 4κ3
∑

m0,m1≥0
m0+m1≥1

∣∣ tr{fR0(WR0)
m0qR0(WR0)

m1}
∣∣

+ 4κ3
∑

`≥2, m0,...,m`≥0

∣∣ tr{fR0(WR0)
m0qR0(WR0)

m1qR0 · · · qR0(WR0)
m`}
∣∣.

In the first sum, we put
√
R0q
√
R0 and

√
R0f
√
R0 in I2 and measure the rest in operator

norm. For the second sum there are always at least two factors of
√
R0q
√
R0, and so we put

√
R0q
√
R0 in I2 and the rest in operator norm:

. κ3
∑

m0,m1≥0
m0+m1≥1

‖f‖L2

κ3/2
‖q‖H−1

κ

κ1/2

(‖W‖L∞
κ2

)m0+m1

+ κ3
∑

`≥2, m0,...,m`≥0

‖f‖L∞
κ2

(‖q‖H−1
κ

κ1/2

)`(‖W‖L∞
κ2

)m0+···+m`
.

Re-indexing m = m0 + · · ·+m`, we compute

∑

m0,...,m`≥0

(‖W‖L∞
κ2

)m0+···+m`
=

∞∑

m=0

(`+m)!

`!m!

(‖W‖L∞
κ2

)m

=

(
1− ‖W‖L∞

κ2

)`+1

≤ 1

(4.4.9)

uniformly for ` ≥ 1 and κ large. Altogether we obtain
∣∣∣∣
∫
f
{

4κ3[g(κ, q +W )− g(κ,W )] + 1
κ
R0(2κ)q

}
dx

∣∣∣∣ . ‖f‖H1 ‖q‖H−1
κ
.

Taking a supremum over ‖f‖H1 ≤ 1, we conclude

∥∥4κ3[g(κ, q +W )− g(κ,W )] + 1
κ
R0(2κ)q

∥∥
H−1 . ‖q‖H−1

κ
.

We have already shown that the RHS converges to zero as κ→∞ uniformly for q(0) ∈ Q∗T (κ),

and so the claim follows.

For the terms (4.4.4) and (4.4.5) we note that the expressions inside the curly brackets

converge to zero in H−1 by (4.4.8) and Lemmas 4.2.3 and 4.4.2. In fact, this is enough

to show that the contributions of (4.4.4) and (4.4.5) converge to zero in H−2 because the

integral operator is bounded on H−1:
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Lemma 4.4.3. There exists k > 0 sufficiently large so that the operator

h(x) 7→ 1

g(x; k, q)2

∫
G(x, y; k, q)h(y)G(y, x; k, q) dy

is bounded H−1 → H1 uniformly for q ∈ BA.

Proof. First, we use the second estimate of (3.2.2) to put the factors of 1/g(k, q) in H1. The

remaining operator is easily estimated by duality, expanding G(k, q) in a series, and using

the estimate (3.2.3).

The remaining two terms (4.4.6) and (4.4.7) are more delicate, because the derivative

falling on q obstructs convergence of curly-bracketed terms in H−1. First we consider (4.4.6).

Write

‖(4.4.6)‖H−2 .

∥∥∥∥
∫
G(x, y; k, q)(Fκq)

′(y)G(y, x; k, q) dy

∥∥∥∥
H−1

for a function Fκ which we know converges to 0 in W 2,∞ by (4.4.8) and Lemma 4.2.3. To

show that the RHS converges to zero as κ → ∞, we exploit that the integrand and the

Green’s functions all contain q:

Lemma 4.4.4. If Fκ → 0 in W 2,∞ as κ → ∞, then there exists k > 0 sufficiently large so

that ∫
G(x, y; k, q)(Fκq)

′(y)G(y, x; k, q) dy → 0 in H−1 as κ→∞

uniformly for q ∈ BA.

Proof. We estimate the integral by duality and maneuver the derivative onto Fκ and the test

function. For f ∈ H1 we have

∫
f(x)

∫
G(x, y; k, q)(Fκq)

′(y)G(y, x; k, q) dy

=
∞∑

`,m=0

(−1)`+m tr{f(R0q)
`R0[∂, Fκq]R0(qR0)

m}

=
∞∑

`,m=0

(−1)`+m
(

tr{f(R0q)
`R0∂Fκ(qR0)

m+1} − tr{f(R0q)
`+1FκR0∂(qR0)

m}
)
,
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where R0 = R0(k). The first factor of fR0 prevents us from combining the two terms in the

summand to create a commutator. Instead, we pair the first term of the (`,m) summand

with the second term of the (`− 1,m+ 1) summand to create a commutator, and leave the

first term of the (0,m) summand and the second term of the (`, 0) summand:
∣∣∣∣
∫
f(x)

∫
G(x, y; k, q)(Fκq)

′(y)G(y, x; k, q) dy

∣∣∣∣

≤
∣∣∣∣∣
∞∑

n=1

(−1)n
n∑

j=1

tr{f(R0q)
j[R0∂, Fκ](qR0)

n+1−j}
∣∣∣∣∣ (4.4.10)

+

∣∣∣∣∣
∞∑

m=1

tr{fR0∂Fκ(qR0)
m+1}

∣∣∣∣∣+

∣∣∣∣∣
∞∑

`=1

tr{f(R0q)
`+1FκR0∂}

∣∣∣∣∣ (4.4.11)

+ |tr{fR0∂FκqR0} − tr{fR0qFκR0∂}| . (4.4.12)

For the first term (4.4.10), we write

[R0∂, Fκ] = R0[∂, Fκ] + [R0, Fκ]∂ = R0F
′
κ +R0F

′′
κ∂R0 +R02F

′
κ∂

2R0.

Putting each factor of
√
R0q
√
R0 in I2 and pairing each ∂ with one copy of

√
R0 in operator

norm (cf. (4.3.14)) we estimate

(4.4.10) .
∞∑

n=1

nk−2 ‖f‖L∞ ‖Fκ‖W 2,∞

(
k−1/2 ‖q‖H−1

)n+1
. ‖f‖H1 A

2 ‖Fκ‖W 2,∞

uniformly for q ∈ BA and k sufficiently large. The RHS converges to zero because Fκ → 0

in W 2,∞.

Similarly, for the second term (4.4.11) we have

(4.4.11) ≤ 2
∞∑

m=1

∥∥∥f
√
R0

∥∥∥
op

∥∥∥∂
√
R0

∥∥∥
op

∥∥∥
√
R0Fκq

√
R0

∥∥∥
I2

∥∥∥
√
R0 q

√
R0

∥∥∥
m

I2

. ‖f‖H1 A
2 ‖Fκ‖W 2,∞

uniformly for q ∈ BA and k sufficiently large, and again the RHS converges to zero.

For the last term (4.4.12), we recombine the traces as a commutator to obtain

(4.4.11) .
∥∥∥
√
R0f

′
√
R0

∥∥∥
I2

∥∥∥
√
R0Fκq

√
R0

∥∥∥
I2

. ‖f‖H1 A ‖Fκ‖W 2,∞
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uniformly for q ∈ BA and k sufficiently large. Again, the RHS converges to zero since Fκ → 0

in W 2,∞.

To finish the proof of Proposition 4.4.1, we must show that the last term (4.4.7) converges

to zero in H−2 as κ → ∞. As previously mentioned the convergence within the curly

brackets occurs in H−2, and now q is concealed within another Green’s function. To overcome

this, we use the commutativity relation trick (4.3.2) used in Proposition 4.3.1. Using the

ODEs (3.2.18) for g(κ, q + W ) and g(κ,W ), applying the identity (3.2.17), and regrouping

terms, we have

(4.4.7)

= − 4κ5

(κ2−k2)2

{
W [g(κ,q+W )−g(κ,W )]

g(k,q)

}′
(4.4.13)

+ 2κ5

(κ2−k2)2
1

g(k,q)2

∫
G(x, y)

{
(−W ′′′ + 4k2W ′)[g(κ, q +W )−g(κ,W )] (4.4.14)

− 3W ′′[g(κ, q +W )−g(κ,W )
]′ − 3W ′[g(κ, q +W )−g(κ,W )

]′′
(4.4.15)

− (W 2)′[g(κ, q +W )−g(κ,W )]− 4W 2
[
g(κ, q +W )−g(κ,W )

]′}
G(y, x) (4.4.16)

+ 4κ5

(κ2−k2)2
1

g(k,q)2

∫
G(x, y)

{
W ′q[g(κ, q +W )−g(κ,W )]

}
(y)G(y, x) dy (4.4.17)

+ 1
g(k,q)2

∫
G(x, y)

{
2V q′ − 4κ5

(κ2−k2)2W
[
qg(κ,W )

]′}
(y)G(y, x) dy, (4.4.18)

where G(x, y) = G(x, y; k, q). Note that in (4.4.18) we have isolated the term which cancels

2V q′. We will show that each of the terms (4.4.13)–(4.4.18) converge to zero.

The first term (4.4.13) is easily estimated using the estimates (3.2.2):

‖(4.4.13)‖H−2 . ‖W‖W 1,∞

∥∥∥ 1
g(k,q)

∥∥∥
H1

4κ5

(κ2−k2)2 ‖g(κ, q +W )− g(κ,W )‖H−1 .

The RHS converges to zero as κ→∞ by Lemma 4.4.2.

For the contribution from (4.4.14), we first use Lemma 4.4.3 to put the curly bracketed

terms in H−1:

‖(4.4.14)‖H−2 . ‖W ′‖W 3,∞
2κ5

(κ2−k2)2 ‖g(κ, q +W )− g(κ,W )‖H−1 .

158



Again, the RHS converges to zero by Lemma 4.4.2. It was exactly to estimate this term that

we required that Vκ be in W 4,∞ in Definition 4.1.1.

For the contributions (4.4.15) and (4.4.16) we again use Lemma 4.4.3 to obtain

‖(4.4.15)‖H−2 . ‖W ′‖W 2,∞
2κ5

(κ2−k2)2 ‖g(κ, q +W )− g(κ,W )‖H1 ,

‖(4.4.16)‖H−2 . ‖W‖2W 2,∞
2κ5

(κ2−k2)2 ‖g(κ, q +W )− g(κ,W )‖H1 .

These still converge to zero as κ→∞ by the equicontinuity of Q:

Lemma 4.4.5. We have

κ[g(κ, q +W )− g(κ,W )]→ 0 in H1 as κ→∞

uniformly for q ∈ Q∗T (κ).

Proof. By the diagonal Green’s function estimate (3.2.9) we have

κ ‖g(κ, q +W )− g(κ,W )‖H1 . ‖q‖H−1
κ
.

In the proof of Lemma 4.4.2 we used Grönwall’s inequality and equicontinuity to show that

the RHS converges to zero uniformly for q ∈ Q∗T (κ).

For the term (4.4.17) we use Lemma 4.4.3 and the estimates (3.2.2) to put q in H−1:

‖(4.4.17)‖H−2 . ‖W ′‖W 1,∞ A 2κ5

(κ2−k2)2 ‖g(κ, q +W )− g(κ,W )‖H1 ,

and the RHS converges to zero by Lemma 4.4.5.

Finally, for the last term (4.4.18) we write

‖(4.4.18)‖H−2 .

∥∥∥∥
∫
G(x, y)

{
2V q′ − 4κ5

(κ2−k2)2Wg(κ,W )q′
}

(y)G(y, x) dy

∥∥∥∥
H−1

+

∥∥∥∥
∫
G(x, y)

{
4κ5

(κ2−k2)2Wg′(κ,W )q
}

(y)G(y, x) dy

∥∥∥∥
H−1

.

The first term converges to zero by Lemmas 4.2.3 and 4.4.4 due to the leading term 1
2κ

of

g(κ,W ). The second term converges to zero by Lemmas 4.2.3 and 4.4.3. This completes the

estimate of (4.4.7), and hence concludes the proof of Proposition 4.4.1.
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4.5 Well-posedness

We are now equipped to prove that KdV with potential (4.1.1) is globally well-posed in

H−1(R). We begin by constructing solutions as the limit of the H̃κ flows as κ→∞.

Theorem 4.5.1. Fix V admissible and T > 0. Given initial data q(0) ∈ H−1(R), the

corresponding solutions qκ(t) to the H̃κ flows (4.2.22) are Cauchy in CtH
−1([−T, T ]×R) as

κ→∞.

We define the limit q(t) := limκ→∞ qκ(t) in CtH
−1 ([−T, T ]× R) to be the H−1 solution

of (4.1.1) with initial data q(0).

Proof. In the following all spacetime norms will be taken over the slab [−T, T ]×R. Proposi-

tion 4.3.2 guarantees that there exists a constant κ0 so that the H̃κ flows qκ(t) are bounded

in H−1(R) uniformly for |t| ≤ T and κ ≥ κ0.

We want to show that the difference qκ − qκ for κ ≥ κ converges to zero as κ→∞. As

the Hκ and Hκ flows commute (cf. (4.2.21)), we may write the Hκ flow of u by time t as

etJ∇Hκu = etJ∇(Hκ−Hκ)etJ∇Hκu.

We apply this identity to u = q + V and u = V . This allows us to write

qκ(t) = Φ̃κ,κ,W (t)qκ(t),

where Φ̃κ,κ,W (t) denotes the flow of (4.4.1) by time t for the background wave obeying (4.4.2)

with initial data W (0) = Vκ(t). We estimate

‖qκ − qκ‖CtH−1 ≤ sup
q∈Q∗T (κ)

W (0)∈V ∗T (κ)

sup
κ≥κ
‖Φ̃κ,κ,W (t)q − q‖CtH−1 , (4.5.1)

for the sets

Q∗T (κ) := {Φ̃κ(t)q : q ∈ Q, |t| ≤ T}, V ∗T (κ) := {etJ∇HκV (0) : |t| ≤ T, κ ≥ κ} (4.5.2)
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with Q = {q(0)}. As Q ⊂ H−1(R) is trivially bounded and equicontinuous, then the

following more general fact will conclude the proof. We allow Q to be an arbitrary bounded

and equicontinuous set so that we may reuse this fact in Theorem 4.5.3.

Proposition 4.5.2. Fix V admissible, T > 0, and a bounded and equicontinuous set Q ⊂
H−1(R) of initial data. Then the solutions Φ̃κ,κ,W (t)q of the difference flow (4.4.1) with

background wave W (t) and initial data q obey

lim
κ→∞

sup
q∈Q∗T (κ)

W (0)∈V ∗T (κ)

sup
κ≥κ
‖Φ̃κ,κ,W (t)q − q‖CtH−1([−T,T ]×R) = 0, (4.5.3)

where Q∗T (κ) and V ∗T (κ) are defined in (4.5.2).

Proof. For q ∈ Q∗T (κ) and W (0) ∈ V ∗T (κ), let q(t) denote the solution to the difference

flow (4.4.1) with initial data q and background wave W (t). As was introduced in [97], the

change variables 1/2g(k, q) in place of q is convenient in witnessing this convergence. Indeed,

it suffices to show that under difference flow (4.4.1) we have

lim
κ→∞

sup
q∈Q∗T (κ)

W (0)∈V ∗T (κ)

∥∥∥∥
1

2g(k, q(t))
− 1

2g(k, q)

∥∥∥∥
CtH1

= 0

for k > 0 fixed sufficiently large, because then an application of the diffeomorphism property

(Proposition 4.2.1) shows that this implies (4.5.3).

Fix ε > 0. We aim to show that

∥∥∥∥
1

2g(k, q(t))
− 1

2g(k, q)

∥∥∥∥
CtH1

≤ ε (4.5.4)

for all κ sufficiently large, uniformly for κ ≥ κ, q ∈ Q∗T (κ), and W (0) ∈ V ∗T (κ). In Proposi-

tion 4.4.1 we already saw this convergence in H−2, and now we will upgrade this convergence

to H1. We do not rely on equicontinuity as in [97] because the presence of the background

wave V breaks the conservation of α. Instead, we will choose the parameters κ and κ

dependently.
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For h ∈ R, we estimate the translation of q by h in H−1 by truncating in Fourier variables

at a large radius K:

‖q(t, x+ h)− q(t, x)‖2H−1
x

.
∫

R
|eihξ − 1|2 |q̂(t, ξ)|

2

ξ2 + 4
dξ

≤ K2h2
∫

|ξ|≤K

|q̂(t, ξ)|2
ξ2 + 4

dξ +

∫

|ξ|≥K

|q̂(t, ξ)|2
ξ2 + 4

dξ

. K2h2 ‖q(t)‖2H−1 +

∫

R

|q̂(t, ξ)|2
ξ2 + 4K2

dξ . K2h2A2 +Kα(K, q(t)),

(4.5.5)

where in the last inequality we used the α estimate (4.2.19). If we let C denote the constant

from Proposition 4.3.1 then Grönwall’s inequality yields

Kα(K, q(t)) ≤ e2CTKα(K, q) ≤ e3CTKα(K, q(0))

for all |t| ≤ T and κ ≥ 2K, where q(0) ∈ Q is the initial data of the H̃κ flow q ∈ Q∗T (κ). As

the set Q is equicontinuous, then Kα(K, q(0)) → 0 as K → ∞ uniformly for q(0) ∈ Q by

Lemma 3.5.1 and the α estimate (4.2.19). Therefore, given η = η(ε) > 0 small (to be chosen

later) there exists K sufficiently large so that

Kα(K, q(t)) . η uniformly for |t| ≤ T, q ∈ Q∗T (κ), and κ ≥ 2K.

Combining this with the estimate (4.5.5) and optimizing in h, there is a value h0 ∼ η1/2K−1

such that

‖q(t, x+ h)− q(t, x)‖2CtH−1 . η for |h| ≤ h0. (4.5.6)

We now will turn this control over the translates of q into control of the Fourier tails of

1/g(k, q). For r ∈ R we have

∫
|eiξh − 1|2re−2r|h| dh =

2ξ2

ξ2 + 4r2
≥





2
5
|ξ| ≥ r,

0 |ξ| < r.

Writing F for the Fourier transform, this yields

sup
|t|≤T

∫

|ξ|≥r

∣∣∣∣F
[

1

2g(k, q(t))

]
(ξ)

∣∣∣∣
2

(ξ2 + 1) dξ

162



.
∫

R

∥∥∥∥
1

2g(x+ h; k, q(t))
− 1

2g(x; k, q(t))

∥∥∥∥
2

CtH1
x

re−2r|h| dh

=

∫

R

∥∥∥∥
1

2g(x; k, q(t, ·+ h))
− 1

2g(x; k, q(t, ·))

∥∥∥∥
2

CtH1
x

re−2r|h| dh

.
∫

R
‖q(t, x+ h)− q(t, x)‖2CtH−1

x
re−2r|h| dh

by the diffeomorphism property (Proposition 4.2.1). Splitting this integral into |h| ≤ h0 and

|h| ≥ h0 and using (4.5.6), we obtain the upper bound

. ηh0r + e−2rh0 .

Optimizing in r, we pick r = r0 := 1
2h0

log 2
η

to arrive at

. η
(
1 + log 2

η

)
.

Finally, we employ this uniform control over the Fourier tails of 1/q(k, q) to upgrade our

H−2 convergence to H1. Separating |ξ| ≤ r0 and |ξ| ≥ r0, we have
∥∥∥∥

1

2g(k, q(t))
− 1

2g(k, q(0))

∥∥∥∥
2

H1

. (r20 + 1)6
∥∥∥∥

1

2g(k, q(t))
− 1

2g(k, q(0))

∥∥∥∥
2

H−2

+ sup
|t|≤T

∥∥∥∥
1

2g(k, q(t))

∥∥∥∥
2

H1(|ξ|≥r0)
.

(4.5.7)

We just saw that the second term of RHS(4.5.7) is . η(1 + log 2
η
), and picking η = η(ε) > 0

sufficiently small we can make this upper bound≤ 1
2
ε. With all other parameters determined,

we then use Proposition 4.4.1 to make the first term of RHS(4.5.7) less than 1
2
ε for all κ

sufficiently large. This demonstrates (4.5.4), and hence concludes Proposition 4.5.2 and

Theorem 4.5.1.

Applying the previous result to a different set Q, we also obtain uniform control over the

limits q(t) as we vary the initial data:

Theorem 4.5.3. Fix V admissible and T > 0. Given a convergent sequence qn(0) ∈ H−1(R)

of initial data, the corresponding solutions qn(t) of KdV with potential (4.1.1) constructed in

Theorem 4.5.1 are Cauchy in CtH
−1([−T, T ]× R) as n→∞.
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Proof. Consider the set Q := {qn(0) : n ∈ N} of initial data, which is bounded and equicon-

tinuous in H−1 since it is convergent in H−1. We estimate the difference qn(t)− qm(t) using

the triangle inequality, by first mediating via H̃κ flows and then estimating the difference

between H̃κ and H̃κ flows using (4.5.1). This yields

‖qn(t)− qm(t)‖CtH−1 ≤ ‖Φ̃κ(t)qn(0)− Φ̃κ(t)qm(0)‖CtH−1

+ 2 sup
q∈Q∗T (κ)

W (0)∈V ∗T (κ)

sup
κ≥κ
‖Φ̃κ,κ,W (t)q − q‖CtH−1 , (4.5.8)

where Q∗T (κ) and V ∗T (κ) are defined in (4.5.2). Fix ε > 0. By Proposition 4.5.2 there exists

κ0 sufficiently large so that the second term of RHS(4.5.8) is ≤ 1
2
ε for all n,m ∈ N. With

κ = κ0 fixed, we then know that the first term of RHS(4.5.8) is ≤ 1
2
ε for all n,m sufficiently

large due to the well-posedness of the H̃κ flow (cf. Proposition 4.3.2).

Finally, we use Theorem 4.5.3 to conclude our main result Theorem 4.1.2:

Corollary 4.5.4. Given V admissible, the KdV equation with potential (4.1.1) with initial

data q(0) ∈ H−1(R) is globally well-posed, in the sense that the solution map Φ : R ×
H−1(R)→ H−1(R) obtained in Theorem 4.5.1 is jointly continuous.

Proof. Given q ∈ H−1(R), we define Φ(t, q(0)) to be the limit

Φ(t, q(0)) = lim
κ→∞

qκ(t)

guaranteed by Theorem 4.5.1. The limit exists in H−1(R) and the convergence is uniform

on bounded time intervals. Fix T > 0 and a sequence qn(0) → q(0) in H−1(R). From

Theorem 4.5.3 we obtain

sup
|t|≤T

‖Φ(t, qn(0))− Φ(t, q(0))‖H−1 → 0 as n→∞,

and so we conclude that Φ is jointly continuous.
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4.6 Uniqueness for regular initial data

We will now demonstrate that for more regular initial data the solutions constructed in

Theorem 4.5.1 solve KdV and are unique.

First, we use a well-known L2-energy argument to show that we have uniqueness for H2

initial data.

Lemma 4.6.1. Fix V admissible and T > 0. Given initial data q(0) ∈ H2, there is at most

one corresponding solution to KdV with potential (4.1.1) in (CtH
2 ∩ C1

tH
−1)([−T, T ]× R).

Proof. Suppose q(t) and q̃(t) are both in (CtH
2 ∩ C1

tH
−1)([−T, T ] × R), solve KdV with

potential, and have the same initial data q(0) = q̃(0). From the differential equation (4.1.1)

we see that the L2-norm of the difference grows according to

∣∣∣∣
d

dt

∫
1
2
(q − q̃)2 dx

∣∣∣∣ =

∣∣∣∣
∫

(q − q̃){−(q − q̃)′′′ + 3(q2 − q̃2)′ + [6V (q − q̃)]′} dx
∣∣∣∣ .

The first term (q− q̃)′′′ contributes a total derivative and vanishes, while the remaining terms

can be integrated by parts to obtain

=

∣∣∣∣
∫

(q − q̃)2{3
2
(q + q̃)′ + 3V ′}(t, x) dx

∣∣∣∣

≤
(
3
2
‖q′‖L∞ + 3

2
‖q̃′‖L∞ + 3 ‖V ′‖L∞

)
‖q − q̃‖2L2 .

Estimating ‖q′‖L∞ . ‖q‖H2 , ‖q̃′‖L∞ . ‖q̃‖H2 , and recalling that V ∈ W 2,∞ uniformly for

|t| ≤ T by Definition 4.1.1, we conclude that there exists a constant C (depending on V and

the norms of q and q̃ in CtH
2([−T, T ]× R)) such that

∣∣∣∣
d

dt
‖q(t)− q̃(t)‖2L2

∣∣∣∣ ≤ C ‖q(t)− q̃(t)‖2L2 .

Grönwall’s inequality then yields

‖q(t)− q̃(t)‖2L2 ≤ eCT ‖q(0)− q̃(0)‖2L2

for |t| ≤ T . The RHS vanishes by premise, and so we conclude q̃(t) = q(t) for all |t| ≤ T .
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In order to employ the uniqueness of Lemma 4.6.1, we need to first show that the limits of

Theorem 4.5.1 are in CtH
2∩C1

tH
−1 and solve KdV with potential. The following proposition

shows that it suffices to know that the sequence qκ(t) of H̃κ flows converges in CtH
2:

Proposition 4.6.2. Fix V admissible and T > 0. If the sequence qκ(t) of solutions to

the H̃κ flow (4.2.22) converges in CtH
2([−T, T ] × R) as κ → ∞, then the limit q(t) is in

(CtH
2 ∩ C1

tH
−1)([−T, T ]× R) and solves KdV with potential (4.1.1).

Proof. In the following all spacetime norms will be taken over the slab [−T, T ]×R. We will

extract the linear and quadratic terms of the H̃κ flow to witness its convergence to KdV

with potential. Differentiating the translation identity (4.2.4) for g(κ, qκ + Vκ)− g(κ, Vκ) at

h = 0, expanding it as a series in powers of q, and then expanding each resolvent R(κ, Vκ)

in powers of Vκ, we write

d

dt
qκ

= −16κ5〈δx, R0q
′
κR0δx〉+ 4κ2q′κ (4.6.1)

+ 16κ5〈δx, [∂,R0qκR0qκR0]δx〉 (4.6.2)

+ 16κ5
{
〈δx, [∂,R0VκR0qκR0]δx〉+ 〈δx, [∂,R0qκR0VκR0]δx〉

}
(4.6.3)

+ 16κ5
∑

(terms with 3 or more qκ or Vκ). (4.6.4)

We will show that the first three terms (4.6.1)–(4.6.3) converge to the three terms of KdV

with potential (4.1.1) respectively, and the tail (4.6.4) converges to zero as κ→∞.

We begin with the linear term (4.6.1). Using the operator identity (3.2.19) we write

(4.6.1) = −q′′′κ −R0(2κ)∂2(qκ − q)′′′ −R0(2κ)∂2q′′′.

As qκ → q in CtH
2 by premise, then the first term of the RHS above converges to −q′′′

in CtH
−1 and the second term converges to zero in CtH

−1 because the operators R0(2κ)∂2

are bounded uniformly in κ. The last term converges to zero since the operator R0(2κ)∂2
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is readily seen in Fourier variables to converge strongly to zero as κ → ∞. Altogether we

conclude

(4.6.1)→ −q′′′ in CtH
−1 as κ→∞.

Next, we turn to the first quadratic term (4.6.2). First we write

(4.6.2) = 6qκq
′
κ +

{
16κ5〈δx, [∂,R0qκR0qκR0]δx〉 − 6qκq

′
κ

}
.

As qκ → q in CtH
2 by premise, then the first term of the RHS above converges to 6qq′

in CtH
1 and hence in CtH

−1 as well. For the second term we distribute the derivative

[∂, ·], use the operator identity (3.2.20), and estimate in H−1 by duality. For φ ∈ H1, the

identity (3.2.20) yields
∣∣∣∣
∫ {

16κ5〈δx, R0qκR0q
′
κR0δx〉 − 3qκq

′
κ

}
φ dx

∣∣∣∣ =

∣∣∣∣
∫ {
−3[R0(2κ)q′′κ][R0(2κ)q′′′κ ]φ+ 4κ2[R0(2κ)q′κ][R0(2κ)q′′κ](−5φ+R0(2κ)φ′′)

+4κ2[R0(2κ)qκ][R0(2κ)q′κ](5φ
′′ + 2R0(2κ)∂2φ′′)

}
dx

∣∣∣∣.

For those terms with φ′′ we integrate by parts once to obtain φ′, which can be put in

L2. Putting the highest order qκ term in L2, putting one term in L∞ ⊃ H1, and using

‖R0(2κ)∂j‖op . κj−2 for j = 0, 1, 2 (the estimate for j = 0 is also true as an operator on L∞

by the explicit kernel formula for R0 and Young’s inequality), we obtain
∣∣∣∣
∫ {

16κ5〈δx, R0qκR0q
′
κR0δx〉 − 3qκq

′
κ

}
φ dx

∣∣∣∣ . κ−2 ‖φ‖H1 ‖qκ‖2H2 .

Taking a supremum over ‖φ‖H1 ≤ 1, and noting that the other term from the product rule

is handled analogously (indeed, the identity (3.2.20) is symmetric in f and h), we conclude

(4.6.2)→ 6qq′ in CtH
−1 as κ→∞.

The second quadratic term (4.6.3) is similar, but now we must put Vκ in L∞. First we

write

(4.6.3) = 6(Vκqκ)
′ +
{

16κ5〈δx, [∂,R0VκR0qκR0]δx〉
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+ 16κ5〈δx, [∂,R0qκR0VκR0]δx〉 − 6(Vκqκ)
′}.

As Vκ → V in W 2,∞, the first term of the RHS above converges to 6(V q)′ in CtH
1 and hence

in CtH
−1 as well. For the second term we distribute the two derivatives [∂, ·] to get four

terms, use the operator identity (3.2.20), and then estimate in H−1 by duality. For example,

for φ ∈ H1 we have

∣∣∣∣
∫ {

16κ5〈δx, R0VκR0q
′
κR0δx〉 − 3Vκq

′
κ

}
φ dx

∣∣∣∣ =

∣∣∣∣
∫ {
−3[R0(2κ)V ′′κ ][R0(2κ)q′′′κ ]φ+ 4κ2[R0(2κ)V ′κ][R0(2κ)q′′κ](−5φ+R0(2κ)φ′′)

+4κ2[R0(2κ)Vκ][R0(2κ)q′κ](5φ
′′ + 2R0(2κ)∂2φ′′)

}
dx

∣∣∣∣.

For those terms with φ′′ we integrate by parts once to obtain φ′, which can be put in L2.

Putting all Vκ terms in L∞ and the remaining terms in L2, we obtain

∣∣∣∣
∫ {

16κ5〈δx, R0VκR0q
′
κR0δx〉 − 3qκq

′
κ

}
φ dx

∣∣∣∣ . κ−2 ‖φ‖H1 ‖Vκ‖W 2,∞ ‖qκ‖H2 .

The other three terms obtained from the product rule are handled analogously; replacing q′κ

by qκ and Vκ by V ′κ is harmless because we know that Vκ ∈ W 4,∞ uniformly for |t| ≤ T and

κ large. Taking a supremum over ‖φ‖H1 ≤ 1, we conclude

(4.6.3)→ 6(V q)′ in CtH
−1 as κ→∞.

Lastly, we show that the series tail (4.6.4) converges to zero in CtH
−1. We estimate by

duality; for φ ∈ H1 we write

∣∣∣∣
∫
φ · (4.6.4) dx

∣∣∣∣ ≤ 16κ5
∑

`≥1, m0,...,m`≥0
`+m0+···+m`≥3

∣∣ tr
{
φ[∂,R0(VκR0)

m0qκR0 · · · qκR0(VκR0)
m` ]
}∣∣.
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Recall that we first expanded g(κ, qκ + Vκ) in powers of qκ, the `th term having `-many

factors of qκR(κ, Vκ), and then expanded each R(κ, Vκ) into a series in Vκ indexed by mi. The

condition `+m0+· · ·+m` ≥ 3 reflects that we have already accounted for all of the summands

with one and two qκ or Vκ. We distribute the derivative [∂, ·], use the estimate (3.2.3) and

the observation ‖f‖H−1
κ

. κ−1 ‖f‖L2 to put φ and all copies of qκ in L2, and then estimate

Vκ in operator norm to obtain

. κ5
∑

`≥1, m0,...,m`≥0
`+m0+···+m`≥3

‖φ‖L2

κ3/2

(‖qκ‖H1

κ3/2

)`(‖Vκ‖W 1,∞

κ2

)m0+···+m`
.

We first sum over the indices m0, . . . ,m` ≥ 0 as we did in (4.4.9) using that Vκ ∈ CtW 4,∞

uniformly for κ large. Then we sum over ` ≥ 1 and use that qκ is bounded in CtH
2 for κ

sufficiently large. The condition ` + m0 + · · · + m` ≥ 3 guarantees that summing over the

two pararenthetical terms yields a gain . (κ−3/2)3, from which we obtain

. κ−1 ‖φ‖H1 .

Taking a supremum over ‖φ‖H1 ≤ 1, we conclude

(4.6.4)→ 0 in CtH
−1 as κ→∞.

It only remains to show that the sequence qκ(t) converges in H2 as κ→∞. To accomplish

this task, we will use that the sequence qκ(t) is uniformly bounded in H3, which follows from

an elementary a priori estimate; this suffices by interpolating with the convergence in H−1.

Proposition 4.6.3. Given V admissible and A, T > 0, there exist constants C and κ0 such

that solutions qκ(t) to the H̃κ flow (4.2.22) obey

‖q(0)‖H3 ≤ A =⇒ ‖qκ(t)‖H3 ≤ C for all |t| ≤ T and κ ≥ κ0.

The proof is a repetition of the energy arguments that yield the a priori estimates in

Hs necessary for the Bona–Smith theorem [24] applied to the H̃κ flow. It is based on the
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fact that the Hκ flow preserves the polynomial conservation laws of KdV. For s = 0, 1, 2

we control the growth of the first three conserved quantities in time (which are no longer

exactly conserved for the H̃κ flow), and then for s = 3 we directly control the growth of q′′′κ

in L2. See Section 3.3 for details, where for the tidal Hκ flow (3.3.3) we obtained a priori

estimates in Hs spaces for all integers s ≥ 0.

It is natural to ask if for initial data in H3 we have convergence in H3 and not merely

H2. This is also true, but the argument is more subtle. In Chapter 3 we presented a more

thorough argument for the tidal Hκ flow (3.3.3), which can be adapted to this context to

directly show convergence in H3.

Altogether, we can now conclude our main result Theorem 4.1.3:

Corollary 4.6.4. Fix V admissible and T > 0. Given initial data q(0) ∈ H3, the solution

constructed in Theorem 4.5.1 is the unique solution to KdV with potential (4.1.1) in (CtH
2∩

C1
tH
−1)([−T, T ]× R).

Proof. We know from Theorem 4.5.1 that the H̃κ flows qκ(t) converge in H−1 as κ → ∞,

and from Proposition 4.6.3 we know they are bounded in CtH
3([−T, T ] × R) uniformly for

κ large. From the inequality

‖f‖H2 ≤ ‖f‖1/4H−1 ‖f‖3/4H3

(which can be obtained using Hölder’s inequality in Fourier variables), we deduce that qκ

converges in CtH
2([−T, T ] × R) as well. Proposition 4.6.2 then tells us that the limit q(t)

is in (CtH
2 ∩ C1

tH
−1)([−T, T ] × R) and solves KdV with potential. Finally, Lemma 4.6.1

guarantees that this is the unique solution in this class.

4.7 Example: step-like initial data

From our study of tidal KdV at high-regularity in Chapter 3, we are now able to conclude

that KdV is well-posed for H−1(R) perturbations of step-like solutions:
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Proof of Corollary 4.1.4. Let V (t) = W + q(t) be the solution to KdV (1.1.1) corresponding

to the tidal KdV solution with initial data q(0) ≡ 0 (and W defined in (3.1.1)). We want to

show that KdV (1.1.1) is globally well-posed for initial data u(0) ∈ V (0)+H−1(R). By The-

orem 4.1.2, it suffices to show that for every T > 0 the conditions (i)–(iii) of Definition 4.1.1

are satisfied.

Fix T > 0. As q(0) ≡ 0 is in H5, the a priori estimate of Proposition 3.3.5 guarantees

that the tidal Hκ flows qκ(t) are bounded in CtH
5([−T, T ] × R) uniformly for κ large. By

definition of the tidal Hκ flow we have that Vκ(t) = W + qκ(t) solves the Hκ flow. Combined

with the embedding H1 ↪→ L∞, this shows that (ii) is satisfied.

By Proposition 3.5.4, we know that the sets Q(κ) := {qκ(t) : |t| ≤ T, κ ≥ κ} obey (3.5.9).

Therefore, by Proposition 3.6.1 we know that qκ → q in CtH
5([−T, T ] × R) as κ → ∞

uniformly for initial data in Q(κ). Consequently Vκ(t) converges to V (t) = W + q(t) in

CtW
4,∞([−T, T ]× R), which shows that (iii) is satisfied.

Finally, by Proposition 3.6.2 we know q(t) is in CtH
5([−T, T ] × R) and solves tidal

KdV. Therefore V (t) solves KdV and is in CtW
4,∞([−T, T ] × R), which shows that (i) is

satisfied.

Lastly, we record the following reformulation of well-posedness for H−1(R) perturbations

of W (defined in (3.1.1)):

Corollary 4.7.1. Fix a sequence of initial data un(0) ∈ W +H3(R) with un(0)−W conver-

gent in H−1(R) as n→∞, and let un(t) denote the corresponding solutions to KdV (1.1.1)

guaranteed by Theorem 3.1.1. Then there exists a continuous function u : Rt → W +H−1(R)

so that un(t)− u(t)→ 0 in H−1(R) as n→∞ uniformly on bounded time intervals.
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4.8 Example: cnoidal waves

Next, we will see that the periodic traveling wave solutions (cnoidal waves) of KdV are

admissible background waves V in the sense of Definition 4.1.1. In fact, we will see that

cnoidal wave profiles V (0, x) are also traveling waves for the Hκ flow (3.3.1) (with a dif-

ferent propagation speed), which makes the analysis particularly straightforward. The Hκ

flow possessing the same traveling wave profile as KdV is not surprising, since the Hκ flow

preserves the polynomial conserved quantities of KdV and cnoidal waves are minimizers of

the KdV energy with constrained momentum (cf. [108, §3]).

Rather than working with the Jacobian elliptic functions, it is much easier to perform

calculus on the cnoidal waves (1.2.1) when expressed in terms of Weierstrass elliptic functions:

V (t, x) = 2℘ (x+ 6℘(ω1)t+ ω3;ω1, ω3) + ℘(ω1). (4.8.1)

Here, ℘(z;ω1, ω3) =: ℘(z) is the Weierstrass p-function with lattice generators 2ω1, 2ω3 ∈ C

(see [48, §23.2] for its definition). We must choose ω1 purely real and ω3 purely imaginary

for the wave (4.8.1) to solve KdV, and to avoid redundancy we insist that ω1 and ω3/i are

positive. Note that the argument z of ℘(z) in (4.8.1) is not on the real axis but is translated

vertically by the imaginary half-period ω3 and thus runs halfway between two rows of poles

for ℘(z); this guarantees that the profile (4.8.1) is regular and real-valued.

Proposition 4.8.1. The cnoidal wave profile admits the traveling wave solution

Vκ(t, x) = V (0, x+ νt), ν = ν(κ)

to the Hκ flow (3.3.1).

Proof. Let V (x) = V (0, x) denote the initial data. In order to see that V (x+ νt) solves the

Hκ flow (3.3.1) we need g′(x;κ, V ) to be proportional to V (x). To compute the diagonal

Green’s function g(x;κ, V ), we will use the representation

g(x) = ψ+(x)ψ−(x) (4.8.2)
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in terms of normalized Floquet solutions ψ±. Recall from Floquet theory that there exist

solutions ψ±(x) to

− ψ′′ + V ψ = −κ2ψ (4.8.3)

who decay exponentially (along with their derivatives) as x→ ±∞ and grow exponentially

as x→ ∓∞. Constancy of the Wronskian guarantees that these solutions are unique up to

scalar multiples. For the expression (4.8.2) to hold, we partially normalize the solutions ψ±

by enforcing the Wronskian relation

ψ+(x)ψ′−(x)− ψ′+(x)ψ−(x) = 1 (4.8.4)

and requiring that both ψ± are positive.

Consider the ansatz

ψ±(x) = a±
σ(x+ ω3 ± b)
σ(x+ ω3)σ(±b)e

∓ζ(b)x, (4.8.5)

where σ(z) and ζ(z) are the other two Weierstrass elliptic functions with the same lattice

generators ω1, ω3 as V (see [48, §23.2(ii)] for their definition and relations), and a± and

b are parameters to be chosen depending on κ. Substituting the ansatz (4.8.5) into the

eigenvalue equation (4.8.3) and using the additive identities [48, §23.10(i)], we see that (4.8.5)

solves (4.8.3) provided that b = b(κ) satisfies

κ2 = ℘(b)− ℘(ω1). (4.8.6)

As ℘(x) is real, positive, and symmetrically U-shaped for x ∈ (0, 2ω1), we see that in order to

have κ ∈ (0,∞) we can take b ∈ (0, ω1), with b(κ) ↓ 0 as κ→∞. To ensure the ansatz (4.8.5)

satisfies the Wronskian relation (4.8.4) and the condition ψ±(x) > 0, we set

a± = ± [−℘′(b)]−
1
2 .

As ℘(b) is real, positive, and strictly decreasing for b ∈ (0, ω1), then −℘′(b) is positive and

we may take the positive square-root. Although it is incidental to the proof, we note that

the Floquet exponents for ψ± are

ψ±(x+ 2ω1)

ψ±(x)
= e∓2ω1ζ(b),
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and they are multiplicative inverses of each other (as expected from Floquet theory).

Now that we have determined the Floquet solutions (4.8.5), the representation (4.8.2)

determines the diagonal Green’s function:

g(x;κ, V ) =
℘(b(κ))− ℘(x+ ω3)

−℘′(b(κ))
=
℘(b(κ)) + 1

2
℘(ω1)

−℘′(b(κ))
+

1

2℘′(b(κ))
V (x). (4.8.7)

We notice in particular that g′(x;κ, V ) is proportional to V ′(x). Recalling the translation

property (4.2.4), we conclude that the solution Vκ(t, x) to the Hκ flow (3.3.1) with initial

data V (0, x) is the traveling wave V (0, x+ νt). Moreover, the propagation speed is given by

ν(κ) =
8κ5

℘′(b(κ))
+ 4κ2 (4.8.8)

for all κ sufficiently large.

To see the convergence of Vκ to V , we will first need to take a slightly closer look at the

exact form of the coefficients.

Lemma 4.8.2. The diagonal Green’s function for the traveling waves Vκ takes the form

g(x;κ, Vκ(t)) = c1(κ) + c2(κ)Vκ(t, x),

where the coefficients have the asymptotics

c1(κ) = 1
2κ

+O(κ−5), c2(κ) = − 1
4κ3

+O(κ−5) as κ→∞. (4.8.9)

The asymptotics (4.8.9) are consistent with the convergence found in Lemma 4.2.3. In

fact, for cnoidal waves, Lemma 4.2.3 follows immediately from (4.8.9) and the fundamental

theorem of calculus.

Proof. From the expression (4.8.7) for the diagonal Green’s function g(κ, Vκ) we have

c1(κ) =
℘(b(κ)) + 1

2
℘(ω1)

−℘′(b(κ))
, c2(κ) =

1

2℘′(b)
, (4.8.10)
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where b = b(κ) is defined by the relation (4.8.6). As ℘′(b) is nonvanishing for b ∈ (0, ω1) and

the p-function possesses the Laurent expansion [48, Eq. 23.9.2]

℘(z;ω1, ω2) = 1
z2

+O(z2) for 0 < |z| < min{|ω1|, |ω3|}, (4.8.11)

then the inverse function theorem guarantees that b(κ) is an analytic function at κ = +∞.

Combining the Laurent expansion (4.8.11) with the defining relation (4.8.6) for b(κ), we can

solve for the first few coefficients in the expansion for b(κ):

b(κ) = 1
κ

+O(κ−5). (4.8.12)

This combined with the coefficient formulas (4.8.10) yields the asymptotics (4.8.9).

Altogether, we conclude that cnoidal waves are admissible:

Corollary 4.8.3. If V is a periodic traveling wave solution (1.2.1) of KdV, then the KdV

equation (1.1.1) with initial data u(0) ∈ V (0) +H−1(R) is globally well-posed.

Proof. In order to apply Corollary 4.5.4 we must check that V satisfies the criteria of Def-

inition 4.1.1. It only remains to show that Vκ − V → 0 in W 2,∞ as κ → ∞ uniformly for

initial data in {Vκ(t) : |t| ≤ T, κ ≥ κ}. By the fundamental theorem of calculus it suffices

to show that the wave speed ν(κ) converges to that of the KdV traveling waves (4.8.1).

Indeed, the expression (4.8.8) for ν(κ) combined with the asymptotics (4.8.11) and (4.8.12)

yields ν(κ) → 6℘(ω1) as κ → ∞, which is the propagation speed for the KdV traveling

waves (4.8.1).

4.9 Example: smooth periodic waves

The purpose of this section is to show that any V (0, x) ∈ H5(T) (where T = R/Z denotes

the circle) is admissible in the sense of Definition 4.1.1. The proof consists of an energy

argument in the spirit of Bona–Smith [24].

175

http://dlmf.nist.gov/23.9.E2


Our convention for the Fourier transform of functions on the circle T is

f̂(ξ) =

∫ 1

0

e−iξxf(x) dx, so that f(x) =
∑

ξ∈2πZ

f̂(ξ)eiξx.

As with functions on the line, we also define the norm

‖f‖2Hs
κ(T)

=
∑

ξ∈2πZ

(ξ2 + 4κ2)s|f̂(ξ)|2.

The Schrödinger operator −∂2 + q from which we built the diagonal Green’s function

g(x;κ, q) acts on L2(R) and not L2(T). Consequently, for potentials q on the circle this

operator is no longer a relatively Hilbert–Schmidt (or even relatively compact) perturbation

of the case q ≡ 0. In place of the fundamental estimate (3.2.3), we will use the following two

operator estimates from [97, Lem. 6.1]:

∥∥∥
√
R0 q

√
R0

∥∥∥
op

. κ−1/2 ‖q‖H−1
κ (T) , (4.9.1)

∥∥∥
√
R0fψR0q

√
R0

∥∥∥
I1

. κ−1 ‖fκ‖H−1(T) ‖q‖H−1
κ (T) , (4.9.2)

both uniformly for κ ≥ 1. Here ψ ∈ C∞c (R) is a fixed function so that
∑

k∈Z ψ(x − k) ≡ 1.

This guarantees that we have the duality relation

‖h‖H1(T) = sup

{∫

R
h(x)f(x)ψ(x) dx : f ∈ C∞(T), ‖f‖H−1(T) ≤ 1

}
. (4.9.3)

Here and throughout this section, we are viewing functions on the circle T as functions on

the line R by periodic extension.

First, we obtain a priori estimates for the Hκ flow:

Lemma 4.9.1. Given an integer s ≥ 0 and A, T > 0, there exist constants C and κ0 such

that solutions Vκ(t) to the Hκ flow (3.3.1) obey

‖V (0)‖Hs(T) ≤ A =⇒ ‖Vκ(t)‖Hs(T) ≤ C for all |t| ≤ T and κ ≥ κ0.

Proof. The Hamiltonian Hκ is constructed from α(κ, q) and the momentum functional E1.

Momentum is one of the polynomial conserved quantities of KdV and α can be expressed
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as a series (1.4.6) in terms of these quantities, and so both Poisson commute with every

KdV conserved quantity. Consequently, each KdV conserved quantity is also conserved for

smooth solutions Vκ(t) of the Hκ flow (which can be individually verified using the algebraic

identities (3.2.16)–(3.2.18)). Therefore the classical proof of the estimates (2.2.3) for KdV

also apply to the Hκ flow; see [108, Th. 3.1] for details.

Next, we prove existence for the Hκ flows via a contraction mapping argument:

Proposition 4.9.2. Given A, T > 0, there exists a constant κ0 so that for κ ≥ κ0 the

Hκ flows (3.3.1) with initial data in the closed ball BA ⊂ H5(T) of radius A are globally

well-posed and the corresponding solutions Vκ(t) are in CtH
5([−T, T ]× T).

Proof. The solution Vκ(t) to the Hκ flow satisfies the integral equation

Vκ(t) = et4κ
2∂xV (0) + 16κ5

∫ t

0

e(t−s)4κ
2∂xg′(κ, Vκ(s)) ds. (4.9.4)

We will ultimately show that if W, W̃ ∈ H4(T) then

‖g′(κ,W )− g′(κ, W̃ )‖H5(T) . ‖g(κ,W )− g(κ, W̃ )‖H6(T) . ‖W − W̃‖H4(T) (4.9.5)

uniformly for κ ≥ 2 ‖W‖2H−1(T) , 2‖W̃‖2H−1(T). Assuming this claim, for fixed initial data

V (0) ∈ H5(T) we see that W 7→ g′(κ,W ) is Lipschitz on the closed ball BR ⊂ H5(T) of

radius R := 2A for all κ ≥ 2R2. Consequently, there exists ε > 0 sufficiently small such that

the integral operator (4.9.4) is a contraction on CtBR([−ε, ε]×R). Then, given an arbitrary

T > 0, we use the a priori estimates of Lemma 4.9.1 to increase R := R(A) if necessary and

iterate in order to conclude that the solution exists in CtBR([−T, T ]× R) for all κ ≥ 2R2.

It remains to prove the Lipschitz estimate (4.9.5), but first we must show that g(κ,W )− 1
2κ

is in H6(T) for W ∈ H4(T). To accomplish this, we will show that [g(κ,W )− 1
2κ

](s) is in H1

for s = 0, 1, . . . , 5 using the duality relation (4.9.3). For f ∈ C∞(T) we can obtain a series

for g(s)(κ,W ) by differentiating the translation relation (4.2.4) at h = 0:
∣∣∣∣
∫

[g(x;κ,W )− 1
2κ

](s)f(x)ψ(x) dx

∣∣∣∣ ≤
∞∑

`=1

∣∣tr{fψ[∂s, R0(WR0)
`]}
∣∣ .
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Using the operator estimates (4.9.1) and (4.9.2), we put all copies of W in H−1(T):

∣∣∣∣
∫

[g(κ,W )− 1
2κ

](s)fψ dx

∣∣∣∣ . κ−1/2 ‖f‖H−1

∞∑

`=1

∑

σ∈N`
|σ|=s

(
s

σ

)∏̀

j=1

κ−1/2‖W (σj)‖H−1 .

Applying Hölder’s inequality in Fourier variables we see that

∏̀

j=1

‖W (σj)‖H−1(T) ≤ ‖W (s)‖H−1(T)‖W‖`−1H−1(T),

and so
∣∣∣∣
∫

[g(κ,W )− 1
2κ

](s)fψ dx

∣∣∣∣ . κ−1 ‖f‖H−1 ‖W (s)‖H−1

∞∑

`=1

`s
(
κ−1/2‖W‖H−1

)`−1

. κ−1 ‖f‖H−1 ‖W‖Hs−1

provided that we have κ ≥ 2‖W‖2H−1 . Taking a supremum over ‖f‖H−1(T) ≤ 1 yields the

claim.

Lastly, we turn to the Lipschitz inequality (4.9.5). It suffices to show that the linear

functional h 7→ dg|W (h) − dg|0(h) is bounded H4(T) → H6(T) for κ ≥ 2 ‖W‖2H−1(T) by

the fundamental theorem of calculus. To demonstrate this, we estimate its sth derivative

in H1(T) for s = 0, . . . , 5 using the duality relation (4.9.3) and the previous argument.

Expanding the resolvents within the functional derivative expression (4.2.1) into series, we

have
∣∣∣∣
∫

[dg|W (h)− dg|0(h)](s)(x)f(x)ψ(x) dx

∣∣∣∣ . κ−3/2 ‖f‖H−1 ‖W‖Hs−1‖h‖Hs−1

for κ ≥ 2‖W‖2H−1 . Taking a supremum over ‖f‖H−1(T) ≤ 1 yields the claim.

We now know that the Hκ flows Vκ(t) satisfy the second condition in the definition of

admissibility, provided that we take initial data V (0) ∈ H5(T). The first condition—that

the corresponding solution V (t) of KdV is sufficiently regular—then follows from the well-

posedness of KdV in H3(T). Alternatively, we could reprove this classical well-posedness

result by constructing V (t) as the limit of the Hκ flows Vκ, but we will not pursue this here.
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Our next objective is to verify the third condition in the definition of admissibility, which

says that Vκ converges to V in W 2,∞(R) as κ→∞. To begin, we control the growth of the

difference Vκ − V in L2(T):

Proposition 4.9.3. Given A, T > 0, there exists a constant C so that the quantity

P (t) := 1
2

∫

T
[Vκ(t, x)− V (t, x)]2 dx with Vκ(0, x) = V (0, x) ∈ H5(T)

obeys ∣∣∣∣
d

dt
P (t)

∣∣∣∣ ≤ C
(
P + o(1)

√
P
)

as κ→∞

uniformly for |t| ≤ T and ‖V (0)‖H5(T) ≤ A.

Proof. Let u := Vκ − V so that P (t) = 1
2
‖u‖2L2(T). Then u obeys the differential equation

d

dt
u = 16κ5g′(κ, Vκ) + 4κ2V ′κ + V ′′′ − 6V V ′

= 16κ5g′(κ, Vκ) + 4κ2V ′κ + V ′′′ − 6VκV
′
κ + 6(Vκu)′ − 6uu′.

Multiplying by u ∈ C∞(T) and integrating over T, we obtain an equality for the time

derivative of P (t). The contribution from 6uu′ is a total derivative and hence vanishes.

Expanding g′(κ, Vκ) in a series and extracting the linear and quadratic terms, we write

d

dt
P (t)

= 6

∫
u(x)(Vκu)′(x) dx (4.9.6)

+

∫
u(x){−16κ5〈δx, R0V

′
κR0δx〉+ 4κ2V ′κ(x) + V ′′′(x)} dx (4.9.7)

+

∫
u(x){16κ5〈δx, [∂,R0VκR0VκR0]δx〉 − 3(V 2

κ )′(x)} dx (4.9.8)

+

∫
u(x) 16κ5

∞∑

`=3

(−1)`〈δx, [∂,R0(VκR0)
`]δx〉 dx. (4.9.9)

We will estimate the four terms (4.9.6)–(4.9.9) individually.

For the first term (4.9.6), we integrate by parts to move the derivative onto Vκ:

|(4.9.6)| =
∣∣∣∣
∫

3V ′κ(x)u2(x) dx

∣∣∣∣ ≤ 3 ‖V ′κ‖L∞ P.
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We know ‖V ′κ‖L∞ is bounded uniformly for |t| ≤ T and κ large by the embedding H1(T) ↪→
L∞(T) and the a priori estimates of Lemma 4.9.1.

Next we estimate the linear term (4.9.7). Using the first operator identity of (3.2.19), we

have

(4.9.7) =

∫
u
{[
−16κ4R0(2κ) + 4κ2 + ∂2

]
V ′
}
dx+

∫
u
{[
−16κ4R0(2κ) + 4κ2

]
u′
}
dx.

As differentiation commutes with the resolvent R0(2κ), the last integrand is a total derivative

and the integral vanishes. For the remaining term, we use the rest of the identity (3.2.19)

and Cauchy–Schwarz to estimate

|(4.9.7)| ≤ ‖R0(2κ)V (5)‖L2P 1/2 ≤ κ−2‖V (5)‖L2P 1/2.

The factor ‖V (5)‖L2 is bounded uniformly for |t| ≤ T and κ large by the a priori estimates

of Lemma 4.9.1.

Now we examine to the quadratic contribution (4.9.8). Consider the term when the

derivative [∂, ·] hits the second factor of Vκ, and expand in Fourier variables:

∫

T
u(x)〈δx, R0VκR0V

′
κR0δx〉 dx =

∑

ξ1,ξ2,ξ3∈2πZ

û(ξ1 − ξ3)V̂κ(ξ3 − ξ2)V̂ ′κ(ξ2 − ξ1)
(ξ23 + κ2)(ξ22 + κ2)(ξ21 + κ2)

.

Re-indexing η1 = ξ2 − ξ1, η2 = ξ3 − ξ2, η3 = ξ3, the RHS becomes

∑

η1,η2,η3∈2πZ

û(−η1 − η2)V̂κ(η2)V̂ ′κ(η1)
(η23 + κ2)((η3 − η2)2 + κ2)((η3 − η1 − η2)2 + κ2)

.

The numerator is now independent of η3, and so if we approximate the sum over η3 ∈ 2πZ

by an integral over η3 ∈ R then we can evaluate the integral using residue calculus and

eliminate η3:

∑

η1,η2∈2πZ

1

2π

∫

R

û(−η1 − η2)V̂κ(η2)V̂ ′κ(η1)
(η23 + κ2)((η3 − η2)2 + κ2)((η3 − η1 − η2)2 + κ2)

dη3

= κ−1
∑

η1,η2∈2πZ

û(−η1 − η2)V̂κ(η2)V̂ ′κ(η1)(12κ2 + η21 + η1η2 + η22)

(η21 + 4κ2)(η22 + 4κ2)((η1 + η2)2 + 4κ2)
.
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Note that this last summand is symmetric in η1 and η2, and so both terms of [∂,R0VκR0VκR0]

produce the same contribution.

We are now prepared to estimate the term (4.9.8). Changing to Fourier variables and

replacing the sum over η3 ∈ 2πZ with an integral over η3 ∈ R, we write

(4.9.8)

=
∑

η1,η2

û(−η1 − η2)V̂κ(η1)V̂ ′κ(η2)
[

32κ4(12κ2+η21+η1η2+η
2
2)

(η21+4κ2)(η22+4κ2)((η1+η2)2+4κ2)
− 6
]

(4.9.10)

+
∑

η1,η2

[∑

η3

F (η1, η2, η3)−
1

2π

∫

R
F (η1, η2, η3) dη3

]
. (4.9.11)

Here, all summations are over 2πZ and the integrand is given by

F (η1, η2, η3) :=
16κ5û(−η1 − η2)

[
V̂ ′κ(η2)V̂κ(η1) + V̂κ(η2)V̂ ′κ(η1)

]

(η23 + κ2)((η3 − η2)2 + κ2)((η3 − η1 − η2)2 + κ2)
.

The upshot of our manipulation is that in (4.9.10) the O(1) term as κ→∞ cancels out,

and we are left with

∣∣∣∣
32κ4(12κ2 + η21 + η1η2 + η22)

(η21 + 4κ2)(η22 + 4κ2)((η1 + η2)2 + 4κ2)
− 6

∣∣∣∣ .
η21 + η22
κ2

.

Absorbing η21 and η22 as derivatives on Vκ, we put u and the copy of Vκ with the most

derivatives in `2 and estimate

|(4.9.10)| . κ−2 sup
i,j∈{0,2}

∑

η1,η2

∣∣∣∣û(−η1 − η2)V̂ (i)
κ (η1)V̂

(j+1)
κ (η2)

∣∣∣∣

≤ κ−2 sup
i,j∈{0,2}

‖u‖L2(T) ‖V (j+1)
κ ‖L2(T)

∑

η2

|V̂ (i)
κ (η2)| . κ−2 ‖Vκ‖2H3(T) P

1/2.

In the last inequality, we used Cauchy–Schwarz to estimate

∑

η2

|V̂κ(η2)| ≤
(∑

η2

(1 + η22)−1
) 1

2
(∑

η2

(1 + η22)|V̂κ(η2)|2
) 1

2

. ‖Vκ‖H1(T) .

Next, we must check that the remainder (4.9.11) yields an acceptable contribution, which

is due to the smoothness of the integrand F . First, we will bound the trapezoid rule error

181



term

En(h) := 1
2
h[F (η1, η2, an) + F (η1, η2, an + h)]−

∫ an+h

an

F (η1, η2, η3) dη3

for arbitrary an ∈ R, n ∈ Z. It is easily checked that En(0) = E ′n(0) = 0, and so

|En(h)| =
∣∣∣∣
∫ h

0

∫ t

0

E ′′n(s) ds dt

∣∣∣∣ =

∣∣∣∣
∫ h

0

∫ t

0

1
2
s ∂2η3F (η1, η2, an + s) ds dt

∣∣∣∣

≤ 1
12
h3
∥∥∂2η3F

∥∥
L∞η3 ([an,an+h])

.

Therefore, setting an = 2πn and h = 2π we have
∣∣∣∣∣π[F (η1, η2, 2πn) + F (η1, η2, 2π(n+ 1))]−

∫ 2π(n+1)

2πn

F (η1, η2, η3) dη3

∣∣∣∣∣

≤ 1
12

(2π)3
∥∥∂2η3F

∥∥
L∞η3 ([2πn,2π(n+1)])

for all n ∈ Z. Each η3 derivative applied to F introduces one order of decay in |η3|. The

term (η23 + κ2)−1 is bounded by the summable sequence (n2 + 1)−1, and every other order of

decay in |η3| yields a factor of κ−1. Altogether we estimate

∥∥∂2η3F
∥∥
L∞η3 ([2πn,2π(n+1)])

.

∣∣û(−η1 − η2)
[
V̂ ′κ(η2)V̂κ(η1) + V̂κ(η2)V̂ ′κ(η1)

]∣∣
κ(n2 + 1)

.

Summing over n ∈ Z, the trapezoid rule error estimate yields

|(4.9.11)| . κ−1
∑

η1,η2∈2πZ

∣∣∣û(−η1 − η2)
[
V̂ ′κ(η2)V̂κ(η1) + V̂κ(η2)V̂ ′κ(η1)

]∣∣∣ . κ−1 ‖Vκ‖2H1 P
1/2.

This is as acceptable contribution, and thus concludes our estimation of the quadratic

term (4.9.8).

Lastly we estimate the contribution (4.9.9) from the tail of the series. Using the operator

estimates (4.9.1) and (4.9.2), we have

|(4.9.9)| ≤ κ5
∞∑

`=3

∣∣tr{u[∂,R0(VκR0)
`]}
∣∣

. κ4 ‖u‖H−1
κ (T) ‖V ′κ‖H−1

κ (T)

∞∑

`=3

(
κ−1/2 ‖Vκ‖H−1

κ (T)
)`−1

. κ−1 ‖Vκ‖2L2(T) ‖V ′κ‖L2(T) P
1/2.

This concludes the estimate of d
dt
P (t) and hence the proof of Proposition 4.9.3.
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We are now prepared to prove Corollary 4.1.5:

Corollary 4.9.4. Given a background wave V (0) ∈ H5(T), the KdV equation (1.1.1) with

initial data u(0) ∈ V (0) +H−1(R) is globally well-posed.

Proof. In view of Corollary 4.5.4 it suffices to check that V satisfies the three conditions of

Definition 4.1.1. Conditions (i) and (ii) are satisfied by the embedding H1 ↪→ L∞ and the a

priori estimates of Lemma 4.9.1, and so it only remains to verify condition (iii).

Fix T > 0. By the embedding H1 ↪→ L∞, it suffices to show that Vκ−V converges to zero

in CtH
3([−T, T ]×T) uniformly for initial data in the fixed set {Vκ(t) : |t| ≤ T, κ ≥ κ0}. By

Proposition 4.9.2, we may pick the constant κ0 so that the Hκ flows {Vκ(t) : |t| ≤ T, κ ≥ κ0}
are contained in a ball BA ⊂ H5(T) of radius A > 0, and so that the Hκ flows are well-posed

on BA for κ ≥ κ0. From Proposition 4.9.3 and the observation o(1)
√
P ≤ P + o(1), we have

∣∣∣∣
d

dt
P (t)

∣∣∣∣ ≤ C(P + o(1)) as κ→∞

uniformly for |t| ≤ T and initial data in BA. Grönwall’s inequality then yields

1
2
‖Vκ − V ‖2L2(T) = P (t) ≤ eCTP (0) + o(1)(eCT − 1)

uniformly for |t| ≤ T and initial data in BA. As P (0) = 0 by definition, we conclude

‖Vκ − V ‖CtL2([−T,T ]×T) → 0 as κ→∞

uniformly for initial data in BA.

Using Hölder’s inequality in Fourier variables, we have

‖f‖H3(T) ≤ ‖f‖
2/5

L2(T) ‖f‖
3/5

H5(T) .

By the a priori estimates of Lemma 4.9.1, Vκ is bounded in CtH
5([−T, T ] × T) uniformly

for κ large and initial data in BA. Therefore, applying the above inequality to Vκ − V , we

conclude that Vκ− V → 0 in CtH
3([−T, T ]×T) uniformly for initial data in the smaller set

{Vκ(t) : |t| ≤ T, κ ≥ κ0} ⊂ BA.
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