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SUMMARY. We illustrate data analytic concerns that arise in the context of relating “genotype”,

as represented by amino acid sequence, to phenotypes (outcomes). The present application examines

whether peptides that bind to a particular major histocompatibility complex (MHC) class I molecule

have characteristic amino acid sequences. However, the concerns identified and addressed are con-

siderably more general. It is recognized that simple rules for predicting binding based solely on

preferences for specific amino acids in certain (anchor) positions of the peptide’s amino acid se-

quence are generally inadequate and that binding is potentially influenced by all sequence positions

as well as between-position interactions. The desire to elucidate these more complex prediction rules

has spawned various modeling attempts, the shortcomings of which provide motivation for the meth-

ods adopted here. Because of (i) this need to model between-position interactions, (ii) amino acids

constituting a highly (20) multilevel unordered categorical covariate, and (iii) there frequently being

numerous such covariates (i.e. positions) comprising the sequence standard regression/classification

techniques are problematic due to the proliferation of indicator variables required for encoding the

sequence position covariates and attendant interactions. These difficulties have led to analyses based

on (continuous) properties (e.g. molecular weights) of the amino acids. However, there is potential

information loss in such an approach if the properties used are incomplete and/or do not capture the

mechanism underlying association with the phenotype. Here we demonstrate that handling unordered

categorical covariates with numerous levels and accompanying interactions can be done effectively

using classification trees and recently devised bump-hunting methods. We further tackle the question

of whether observed associations are attributable to amino acid properties as well as addressing the

assessment and implications of between-position covariation.

KEY WORDS: Bump hunting; Classification trees; Prediction rules; Unordered categorical covari-

ates.



1 Introduction

A wide variety of biomedical problems can be viewed as attempts at relating genotype to phenotype.

This is apparent from the loose definitions:genotype– the class to which an organism or entity be-

longs based on its genes;phenotype– the class to which an organism or entity belongs based on its

physical characteristics (Lewontin, 1992). A common illustration is provided by studies seeking to

relate viral or bacterial mutations (genotypes) to resistance. The ultimate specification of an organ-

ism’s genotype is given by its complete DNA sequence or genome. Necessarily, we deal with partial

genotypes corresponding, for example, to select genes or markers. The sequence itself can be based

on either nucleotides or amino acids; here we focus on the latter. Also of interest are bio-physico-

chemical properties of individual amino acids, examples of which include molecular weight, volume,

hydrophobicity, and polarity. The physical characteristics denoting phenotype have the familiar ty-

pology being nominal, ordinal, or continuous variables.

So, given the objective of relating genetic level information to physical properties, why can’t stan-

dard regression methodologies be employed? What is it, if anything, that distinguishes this setting?

We contend that the nature of genotype data, in particular when represented by amino acid sequence,

precludes use of many familiar regression techniques. It is the occurrence of several unordered cate-

gorical covariates, each having (potentially) numerous levels, that mandates alternative approaches.

To make these concerns concrete we immediately turn to a simple motivating example that is the

subject of our subsequent analyses. We emphasize the simplicity of this illustration – only 8 covari-

ates (sequence positions) are featured – the difficulties cited would amplify appreciably with longer

sequences which are commonplace.

Milik et al., (1998) are concerned with predicting the amino acid sequences of peptides that bind

to the particular class I MHC molecule, Kb. Here, the peptides of interest are 8-mers – molecules

composed of an ordered sequence of 8 amino acids – which may result from proteolysis of invading

viral particles. Some of these peptides bind to class I MHC molecules which, in turn, present them on

the surface of the infected cell. There these complexes are recognized by cytotoxic T lymphocytes

that destroy the infected cell. Hence, MHC binding is essential for any peptide to induce an im-

mune response and the problem of identifying peptides that bind to particular MHC molecules is of
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utmost immunologic importance (Gulukota, 1998). Here the peptide’s amino acid sequence consti-

tutes genotype and its binding is the phenotype. Select data giving peptide amino acid sequence and

corresponding binding to Kb as a binary (yes/no) outcome are given in Table 1. The single letter des-

ignations are the standard abbreviations for the various amino acids. The complete dataset has 310

such observations and is available fromhttp://newfish.mbl.edu/Lab/Resources/ . Barplots

giving specific amino acid frequencies for binding and non-binding peptides are given in Figure 1.

It is important to note that the data is obtained by random sampling from a large (> 107) library

of synthetic peptides, so that there is no evolutionary history linking the peptides. Scott and Smith

(1990) provide details about the construction of such libraries.

Studies (Rammensee et al., 1995) revealed that peptides binding class I MHC molecules typically

have specific amino acids at specific positions, calledanchorpositions, in the sequence. However,

the use of simple rules for predicting binding based solely on such anchor position preferences (so-

called motifs) are inadequate; binding is known to be influenced by both the presence of secondary

anchor positions and interactions between amino acids within the peptide. It is this search for more

complex structure that spawns the association problem that we will examine further, both with regard

to analyzing this particular dataset as well as discussing related statistical issues. Analogous to Milik

et al., (1999) this is undertaken without using any structural information about the MHC-peptide

complex; see Zhang et al., (1998) for such an approach that uses known crystal structures of class I

MHC moleclues to construct pocket models.

In the next section we outline shortcomings with standard regression tools applied to such data. In

section 3 we introduce tree-structured and bump-hunting methods that hold promise for overcoming

these difficulties. Section 4 describes two statistical concerns surrounding amino acid sequence data:

sequence position covariation and the role of amino acid properties. Section 5 returns to the peptide

data for detailed analysis while section 6 presents some concluding discussion.

2



2 Standard Method Difficulties

By “standard methods” we intend the suite of estimation, inference and diagnostic machinery sub-

sumed by the generalized linear model (GLM) framework (McCullagh and Nelder, 1989), as well

as various extensions thereof such as generalized additive models (Hastie and Tibshirani, 1990). In

analyzing the peptide binding data, Milik et al., (1998) employ artificial neural networks (ANNs)

using amino acid property variables. Our immediate concern is not the choice of regression method

(ANNs) but rather the use of the property variables in lieu of genotype. This was done since the use

of the amino acids themselves would require (approximately) 19 indicator variables for each of the 8

positions and it was contended that the resultant large numbers of covariates would (i) be unmanage-

able; and (ii) lead to overfitting. We now demonstrate that similar concerns – the inability to readily

handle unordered categorical covariates with numerous levels – applies to standard methods.

For a continuous outcome a classical approach for dealing with unordered categorical covariates

would be multi-way ANOVA. For example, if peptide binding had not been dichotomized, we could

entertain an 8 way ANOVA, with dimensions corresponding to the 8 sequence positions. However,

since this represents� 208 cells, all but very low-order models will be inestimable due to sparseness.

And, as will be seen below, there is interest in at least second-order interaction terms – even this low

an order proves problematic. Furthermore, many studies will feature much longer sequences. Thus,

there is a clear need for model/variable selection methods, which we discuss later.

Binding, as provided, is binary. So, one natural modeling framework is logistic regression. There

are 20 naturally occurring amino acids. Here, the number of distinct amino acids at each of the eight

positions is 18, 20, 20, 20, 20, 20, 19, and 20 respectively. Arguably, the default starting model

would include each position. This entails estimating 149 coefficients corresponding to the respective

indicators. Immediately we see that just assimilating the resultant output will be difficult. Simple

tasks such as appraising individual position and/or amino acid importance, grouping amino acids

with similar effects within position, and comparing across positions become daunting when just the

output coefficients span several pages. Remember, too, that this is a simple model for a very small (8

positions) problem.
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The most consequential shortcoming arises in accommodating between position interactions. For

the MHC - peptide binding example, it is necessary to consider such interactions because the na-

ture of binding and the structure of particular amino acids can effect adjacent and/or second nearest

neighboring amino acids’ ability to bind to MHC (Gulukota et al., 1997). This suggests that models

including at least select third order interactions be entertained. Such considerations are common-

place when analyzing sequence - phenotype associations, where the situation is compounded by the

need to include interactions between non-adjacent positions. This arises, for example, in determining

quantitative trait loci (Fridyland and Speed, personal communication). When dealing with nucleotide

or amino acid sequence data fitting difficulties ensue due to the combinatorial explosion in the num-

ber of indicators needed to encode these interactions. For a set of sequences of lengthk of ann level

residue (n = 4 nucleotides orn = 20 amino acids) with each level represented at all positions we

have (a)(k
2)(n�1)2 terms for all second order interactions; (b)(k�1)(n�1)2 for adjacent second

order interactions; (c)(k
3)(n�1)3 for all third order interactions; and (d)(k�2)(n�1)3 for adjacent

third order interactions. Here, for the very small (k = 8) peptide example further limited to adja-

cent second order interactions we require according to (b) above 2,527 terms (the exact number is

2,451 since some positions do not exhibit alln= 20 possible amino acids) and, by (a), 10,108 (exact

9,711) terms to encode all second order interactions. In either case, fitting proves prohibitive for all

standard software packages due to insufficient dynamic memory (on a Sun Ultra 5 Model 360 with

128 MB RAM). This breakdown is not remedied by either employing forward stepwise selection or

attempts at memory expansion. Clearly, all (� 384,104 terms) or adjacent (� 41,154 terms) third

order interactions cannot be handled.

As suggested by Milik et al., (1998), it is to avoid such difficulties that properties of the amino acids

are used in place of genotype. These property variables are ordered and so can be handled much

more readily. Even entertaining nonlinearities and interactions, we would be unlikely to spend more

than a few degrees of freedom per variable. Further, the resulting models will be more succinct and

so more readily interpretable. However, there are potential losses associated with making recourse to

a property variable representation. Principally, if the collection of property variables does not capture

how the amino acids affect phenotype, then there is obvious and crucial information loss. That this

can occur is exemplified by (i) Milik et al., (1998) opting to augment their property variable set with

indicators for particular amino acids, (ii) Kidera et al., (1985) itemizing some 188 properties with the

4



implication that using an exhaustive list is problematic, and (iii) in light of the above arguments re the

need for interaction between amino acids at neighboring positions, there would be an attendant need

to consider properties of interacting amino acids which may not correspond to the usual multiplicative

terms(s) of individual properties.

Indeed, it may well be that the simple amino acid information itself, as given by the linear sequence

(position) representation, is deficient since it omits essential spatial information deriving from the

three dimensional structure of the peptide-MHC complex; see Zhang et al., (1998). While such mat-

ters are beyond the scope of the present paper we do, however, return to contrasting property and

amino acid based analyses. Any property necessarily derives from a many-to-one mapping from the

amino acids. This is manifest for discrete properties such as charge, but also occurs for continuous

properties. For example, in Table 1 we observe that the position 8 amino acid for the 3rd peptide (row

3) is Leucine (L) with a molecular weight of 131.17 (last column, row 3). This coincides with the

molecular weight for Isoleucine (I), the amino acid at position 8 for the 4th peptide (row 4). We ad-

dress questions as to whether the effect of amino acids on phenotype is via property variables in light

of these relationships. But first we describe the utility of tree-structured and bump-hunting meth-

ods for handling unordered categorical covariates, with obvious applicability to genotype-phenotype

analyses.

3 Handling Unordered Categorical Covariates

3.1 Tree-Structured Methods

The definitive reference describing tree-structured methods is “Classification and Regression Trees”

by Breiman et al., (1984), hereafter denoted by CART. A more recent overview of numerous exten-

sions and refinements to the basic paradigm is provided by Segal (1995). While the methodology

handles many differing problem types and is supported by interactive companion software (e.g. Th-

erneau and Atkinson, 1997), our emphasis here will be on how tree-structured techniques handle

unordered categorical covariates.
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CART tree construction involves four components. These are: (1) A set of binary (yes/no) questions,

or splits, phrased in terms of the covariates that serve to partition the covariate space. A tree structure

derives from splitting recursively. The subsamples created by assigning cases according to these

splits are termednodes; (2) A split functionφ(s; t) that can be evaluated for any splits of any node

t which is used to compare competing splits; (3) A means for determining appropriate tree size; and

(4) Statistical summaries for the nodes of the tree.

Item (1) deals with handling covariates. Allowable splits are defined as follows: (a) each split de-

pends upon the value of only asinglecovariate; (b) for ordered (continuous or categorical) covariates,

xj , only order preserving splits of the form “Isxj � c ?” for c2 domain(xj ) are considered; (c) for

unordered categorical covariates all possible splits into disjoint category subsets are allowed.

So, for the covariate type of interest, unordered categorical, no constraints on possible subdivisions

are imposed. If such a covariate hasM categories then there are 2M�1�1 splits to examine leading

to combinatorial explosion for largeM. However, by generalizing a result from Fisher (1958), CART

(§8.8, 9.4) establishes a theorem that reduces this to an eminently feasibleM�1 splits: if we rank

the levels of the unordered categorical covariate by mean response value, then we only need exam-

ine splits that preserve this ranking. When dealing with the amino acid alphabet, in polymorphic

(variable) settings such as the peptide binding example, we haveM = 20 so that without recourse to

Fisher’s result we would need to evaluate a prohibitive 524,287 splits per position as opposed to 19.

It is by appropriately defining the split functionφ (Item 2) that classification is effected. Choice of

suitable split functions is discussed extensively in CART (Chapter 4). Here we are interested in the

two class (binder, non-binder) problem. Letg be some impurity function and define the impurity

of a nodet by i(t) = ∑2
j=1g(pjt ) where pjt is the proportion of cases int that belong to classj.

Requirements forg are (i)g(0) = g(1) = 0; (ii) g(p) = g(1� p), and (iii) g00(p) < 0 (i.e.g is con-

cave). Two natural candidates forg are the Gini diversity indexg(p) = p(1� p), and the information

index (which is equivalent to the binomial deviance)g(p) =�plog(p) which are almost equivalent

(Therneau and Atkinson, 1997) as is evidenced in section 5.4. For a splits partitioningt into tL and

tR the split function is then defined as

φ(s; t) = i(t)� pLi(tL)� pRi(tR) (1)
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wherepL is the proportion of nodet cases assigned totL and pR = 1� pL. The best splits� maxi-

mizes (1), giving the greatest reduction in impurity. Recursive application to the resultant daughter

nodes (t�L; t
�

R) and so on gives rise to progressively smaller nodes of decreasing impurity or increasing

homogeneity. Thus, here we will (hopefully) be creating nodes that contain predominantly binding

(or non-binding) peptides – the classification objective.

For future reference, in connection with appraising anchor positions in the face of between position

correlation, we introducesurrogateand competitorsplits. A surrogate split best reproduces the

optimal splits� but on a different covariate and has utility for handling missing observations and

determining covariate importance; see CART §5.3. The first competitor split is just the split that has

the second best (tos�) reduction in impurity (1), again based on a different covariate.

3.2 Bump-Hunting Methods

By casting classification as function optimization, Friedman and Fisher (1999) (FF) develop flexi-

ble procedures that appropriately handle unordered categorical covariates and perform well in high

dimensions. We give a brief outline of their development and estimation strategy before applying

this methodology to the peptide binding problem. Bump-hunting resembles tree-structured methods

in seeking covariate-defined subregions over which the outcome is extreme. The methods differ in

that tree methods are recursive – the subregions are related via a tree structure – whereas no such

constraint is imposed by bump-hunting, increasing flexibility.

Given a target functionf (x), wherex represents a vector of covariates, the goal of finding maxima

of f can be generalized to seeking subregions of the covariate space within which the average value

of f is much larger than the overall average. The search corresponds to the “hunt” and the elevatedf

average values the “bumps”. LetSj be the set of all possible values for thej th covariate, which may

be ordered real values (continuous or discrete) or unordered categories. The entire covariate space

can be then be represented by thep dimensional outer productS= S1� : : :�Sp. We seek a subregion

R of the covariate spaceS, R� S, for which

f̄R = avex2R f (x) =
Z

x2R
f (x)p(x)dx =

Z
x2R

p(x)dx � f̄
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where f̄ is the overall average andp(x) is the (unknown) joint covariate density. Designate the

support of the subregionR by βR: βR =
R

x2R p(x)dx. There is typically a trade-off between̄fR and

βR – larger subregion averages will be associated with smaller support and vice versa.

For our two class problem define the indicator outcomey = Ifclass= binderg and take f (x) =

E[yjx] = Pr(y= 1jx). Thus, the regions sought correspond to those with a relatively large proportion

of binders. We now define what constitutes the allowable regions and indicate how they are obtained.

FF favor rules that can be readily described and interpreted even if this sacrifices power. Accord-

ingly, they require that the solution regionR be specified by simple statements involving individual

covariates. These rules have the formR=
SK

k=1Bk so that the solution region is the union of a set

of simply defined subregionsBk. Let vjk represent a subset of the possible values of thejth covari-

ate,xj . Then eachBk is taken to be a “box”:Bk = v1k� v2k� �� �� vpk within the entire covariate

space. Thus, each box can be described via the intersection of subsets of values of each covariate:

x 2 Bk =
Tp

j=1(xj 2 vjk).

For ordered covariates the allowable subsets are contiguous intervalsvjk = [ajk;bjk] so that the projec-

tion of a box onto just the continuous covariates yields a hyper-rectangle. For unordered categorical

covariates, any subset of levels is allowable. Hence, we have flexibility akin to CART’s in handling

unordered categorical covariates.

In order to obtain good boxes a two-phase strategy is employed. Initially, a box is produced by iter-

atively removing unimportant (e.g., low proportions of binders) regions of the covariate space. This

stage is termed “top-down peeling”. Constraining that each successive region removed only elim-

inate a small (� 10%) of the total sample mitigates against “greediness” deriving from optimizing

without look ahead; see also Hastie et al., (2000). However, additional improvements are pursued

by readjusting (enlarging) the boundaries of the resultant box. This constitutes the second stage,

termed “bottom-up pasting”. Complete algorithmic details are deferred to FF. Our peptide binding

application focuses on single box solutions, given in Tables 2 and 3, which illustrates the flavor of

bump-hunt output and are further discussed in section 5.3.
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4 Issues for Amino Acid Sequence Data

In this section we briefly discuss two concerns pertaining to amino acid sequence data. These are (i)

assessing covariation between sequence position, and (ii) assessing the importance of properties of

the amino acids. These issues, along with the techniques described in section 3, are then featured in

re-analyzing the peptide binding in the following section.

4.1 Position Covariation

As collinearity is to linear models,maskingis to trees. Loosely, masking refers to the phenomenon

whereby a selected split precludes an alternative, almost-as-good split from emerging. The variable

associated with this unseen split is said to be masked. Both CART and Therneau and Atkinson (1997)

provide detailed information on masked variables by outputting lists of surrogate splits; see CART

§5.3. We will appeal to surrogates when interpreting the results of tree-structured analysis of the

peptide binding data below. But, additionally and relatedly, we investigate measures of correlation

between the amino acid position variables, using methods of Bickel et al., (1996), which we briefly

describe next. In general, such correlation is anticipated with sequence data due to linkage disequilib-

rium – the non-random association of alleles at different loci due to processes including co-ancestry,

gene flow, genetic drift and selection.

Categorical covariates require customized measures of correlation, several of which have been pro-

posed. We focus on the “P-statistic” of Bickel et al., (1996) defined and interpreted as follows.

Consider a set ofn sequences that are aligned and of the same length,l . For the peptide binding data

we haven= 310 andl = 8. Define

p̂i(a) = n�1#fsequences with amino acida at positionig

p̂i j (a;b) = n�1#fsequences with amino acida at positioni, amino acidb at positionjg

Mi j = ∑
a;b

p̂i j (a;b) log

�
p̂i j (a;b)

p̂i(a)p̂i(b)

�
(2)

where the (double) sum in ( 2) is over all amino acidsa;b at positionsi; j respectively. The P-statistic
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is then given by

Pi j = max
a;b

Pi j (a;b)

wherePi j (a;b) is theMi j statistic obtained by replacing the 20 letter amino acid alphabet at positions

i and j with binariesfa;notag andfb;notbg respectively. As described by Bickel et al., (1996)Mi; j

is the likelihood ratio statistic for testing the hypothesis of independence of positionsi and j against

arbitrary covariation and, in large samples, is roughly equivalent to the usual Pearson chi-squared

statistic for testing independence.Pi; j(a;b) is the likelihood ratio test specialized to the alternative

that it is the amino acid pair(a;b) that drives the dependence.Pi; j , the maximum of thePi; j(a;b),

is intended to detect situations where only one pair of amino acids exhibits covariation but without

prespecifying which pair.

Evaluation of the significance of theM or P statistics makes recourse to permutation. A large number

of permuted data sets of the same structure and with the same marginal probabilities for each amino

acid at each position are created by independently permuting the amino acids at each position. By

computingM or P on each dataset we can obtain a permutation test significance level in the standard

fashion. As per Bickel et al., (1996) we adopt this permutation approach since (i) the asymptotic chi-

squared approximations are known to be poor with the sparse tables that almost necessarily arise with

sequence data, and (ii) we are interested in simultaneous inference for all possible pairs of positions

so the large number of permuted data sets provides protection.

The importance of assessing position covariation in this manner is at least two-fold: (i) we can elicit

relationships amongst the positions themselves that can then inform model specification – necessary

in light of the software breakdowns described in section 2 when no constraints were imposed on

first-order interactions, and (ii) we can gauge how much additional predictive ability will derive from

considering an expanded set of positions beyond putatively established markers. We highlight this

second feature in the next section with reference to the anchor positions.
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4.2 Association via Property Variables

Model selection/comparison concerns arise in the context of relating genotype to phenotype in at

least two obvious ways. Firstly, within a particular modeling methodology is the phenotype-genotype

association via property variables. That is, does a set of amino acid derived property variables explain

as much of the relationship as the amino acids themselves? Is it, for instance, the hydrophobicity of

the amino acids that influences binding? Since the relationship between an amino acid position

variable and a property position variable is many-to-one we can’t obtain a meaningful answer to the

above question by allowing the variables to compete head-to-head in conjunction with some variable

selection scheme. However, we could (i) fit a model using property variables, then (ii) fit a subsequent

model to residuals from (i) using amino acid variables. If this second fit revealed structure we could

infer that the property variables did not fully capture association with the outcome. But, should no

structure emerge (i.e. a null model result from step (ii)), then any claim that the property variables do

explain association would need to be tempered by power (to detect a non-null model) considerations.

Tree-based models allow further comparison. The set of possible splits utilizing a property variable is

a small subset of the set of possible splits utilizing an amino acid variable. By quantifying how “far”

the optimal split based on a property variable is from the optimal split based on an amino acid variable

we can, under a null assumption that all splits are equally likely, assess whether association is via the

property variable. We operationalize the distance between splits on unordered categorical covariates

(amino acids) and continuous covariates (properties) by how many “moves” (transpositions) from one

resultant node to the complementary node of an unordered categorical covariate split are necessary

to yield a split achievable on a continuous covariate. This is best illustrated by example.

Consider a 9 level unordered categorical covariate and let a derived property variable take ordered

values 1 through 9. Consider, too, a split of the unordered categorical covariate that partitions the 9

levels (3,6). Using the labels corresponding to the property variable the following possibilities arise:

11



Illustrative Partition Moves Required to Achieve Order Number of Such Partitions

f1;2;3gkf4;5;6;7;8;9g 0 2

f1;3;4gkf2;5;6;7;8;9g 1 36

f1;4;5gkf2;3;6;7;8;9g 2 45

f4;5;6gkf1;2;3;7;8;9g 3 1

The sum of entries in the rightmost column is 84= (
9
3); the number of (3,6) partitions.

For an unordered categorical covariate withn levels the maximum number of moves required is

b(n=3)c. The number of splits or partitions requiring 0, 1 and 2 moves to achieve order isn� 1,

(n3�7n�24)=6, and(n5�5n4+5n3�55n2�1026n+480)=120 respectively. We apply this result

to the peptide binding data in the following section.

5 Peptide Binding Revisited

5.1 Classification Trees

Tree-structured classification, as described in section 3.1, was applied to the peptide binding data.

Training and test sets having the same dimensions as those used by Milik et al., (1998) were ob-

tained via random selection. We present results using data priors, unit misclassification costs and the

information index (deviance) as split function. Results were not sensitive to the (random) selection

of training and test datasets or the choice of split function. Alternative priors and/or costs were not

explored since we had no basis for specifying these differently.

The initial large tree grown on the training data and using solely the 8 amino acid position variables

is depicted in Figure 2. The predicted class (based on simple majority rule) at each node (ellipses for

internal nodes, rectangles for terminal nodes) is given by the 0 (non-binding) or 1 (binding) indicated

within each node, while the ratio below gives number misclassified / node size. Numerals above

each node are used for identification purposes. Thus, the topmost node (Node 1) contains 223 cases

12



of which the majority (131 = 223 - 92) are binders, there being 92 misclassifications (non-binders).

The splits are indicated on the branches of the tree. So, for example, Node 1 is partitioned on the

basis of position 8 with those cases having amino acids F, I, L, M, or Y in the 8th position being

assigned to the right daughter node. The large initial tree is grown so as to capture all potentially

important splits. This is then collapsed back up using cost-complexity pruning, with selection from

the resultant nested sequence of trees being based on either cross-validation or an independent test

sample; see CART for motivation and details of this approach.

Basing tree size selection on CART’s “1 SE rule” the best pruned subtree is one with 4 terminal

nodes – it is the smallest tree within one standard error of the minimally attained deviance, this

holding irrespective of whether test data or 5- or 10- fold cross-validation with the training sample

data is used. Figure 3 presents the best 4 terminal node tree with predictions from running the test

set shown. For the test set data so classified we achieve a sensitivity of 86% and a specificity of

94%. The over-optimistic values corresponding to re-using the training data for prediction purposes

for this four terminal node tree are 85% and 99% respectively.

The explanation for the apparent data loss corresponding to the Node 3 split (Node 3 sample size =

50; Nodes 6 and 7 sample size = 45 = 44 + 1) is that the splits are determined on the training data.

Ambiguity in classifying test data can arise when a split does not utilize levels represented in the

test data; note that only 12 of the 20 possible position 5 levels are present in Node 3 training data.

This ambiguity can be resolved using surrogate splits. So doing improves sensitivity (94%) while

not appreciably impacting specificity (92%).

Thus, we obtain good performance using a very simple classification scheme. This contrasts with

ANN and standard method results. Further, the tree method illuminates the predictive structure of

the data as is further discussed in connection with position covariation (section 5.4).

5.2 Property Variables

The predictive ability of some 12 (amino acid) property variables was also investigated. These in-

cluded volume, bulkiness, flexibility, polarity, aromaticity and charge as considered by Milik et al.,
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(1998), as well as additional measures of hydrophobicity and mass. Using the same training and test

datasets and the same tree growing, pruning and selection strategy as above, again a tree with four

terminal nodes (Figure 4) was selected.

One interesting point illustrated by comparing the property and amino acid trees concerns greedy

splitting. As noted, by virtue of the many-to-one mapping of amino acids to properties and the

unconstrained nature of splits on unordered categorical covariates, any property-based split can be

reproduced by an amino acid split. However, the converse is not true. We might anticipate that the

amino acid tree would be superior as appreciably more splits are being evaluated. Indeed, for the

training data, this is the case for the first split: there are 25 (= 17 + 8) misclassifications for the amino

acid tree and 27 (= 17 + 10) for the property tree. However, when we make overall comparisons

between the selected, four terminal node trees there are more misclassifications with the amino acid

tree (21 = 0 + 17 + 3 + 1) than for the property-based tree (20 = 5 + 1 + 5 + 9). While it is the case that

the split criteria deliberately (see CART §4.2) do not minimize misclassification totals, these results

highlight the fact that one-step look-ahead does not necessarily produce overall optimal results.

Node 1 is split based on polarity at position 8. This split closely approximates the Node 1 split

based on amino acids which also used position 8 (Figure 3): only one test sample and two training

sample cases are assigned differently and the deviances are correspondingly comparable. Given the

multitude of possible amino acid based splits (219�1) it may appear that this agreement suggests

that the binding - genotype association is captured via a property variable, polarity, which we next

explore.

In terms of amino acids, the position 8 polarity split corresponds to assigning C, F, I, L, M and W to

one daughter node in contrast with the amino acid split of F, I, L, M and Y. So, in terms of moves as

defined in section 4.2, two moves are required to map the unordered (amino acid) split to the ordered

(property) split. Using the formulae presented there withn= 20, corresponding to the 20 letter amino

acid alphabet, there are 19,983 splits two moves removed from an ordered split, 1,306 splits one move

removed, and 19 splits zero moves (i.e. already ordered) removed. Thus, the probability due to chance

of observing this degree of agreement is(19;983+1;306+19)=(219�1) = 0:04. Of course, the

notion of chance here presupposes that all splits are equally likely. This is not the case asymptotically
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with, in null situations, extreme “end-cut” splits being favored; see CART §11.8. While tempting

to conclude that the above “p-value” nonetheless suggests a possible role for amino acid polarity

in peptide binding, further consideration (section 5.4) in terms of surrogate and competitor splits

diminishes this possibility. We do note, however, that the importance of polarity in the context of

DNA and protein evolution was demonstrated by Xia and Li (1998).

5.3 Bump-hunting

Results from using the bump-hunting approach of section 3.2 are presented in Tables 2 and 3 for

amino acid and property variables respectively. The software does not allow a prescribed training set

to be specified. Rather, the relative sizes of training and tests sets are provided. This explains the

slight discrepancy between the proportion binding in the training set here (54.4%) and at Node 1 of

the classification tree (58.7%). Like the classification tree analyses, the bump-hunting results were

not sensitive to random selection of alternative training sets.

As indicated in section 3.2, we focus on a single box solution. Table 2(a) gives box summaries for

both the training and test datasets, while 2(b) gives the box definition. From (a) we note that the

solution box has support of 0.74 for the training data and 0.84 for the test data. In other words, 74%

of the training and 84% of the test data are contained within the selected box. Further, the percentage

of binders in this (large) box is 70.4% (training) and 74.7% (test), appreciably greater than the overall

percentages of 54.4% and 66.3% respectively.

From Table 2(b) we see that the solution box is very simply defined involving just two positions, 8

and 5. These positions also figured prominently in the classification tree and are, in fact, two of the

three anchor positions. However, the levels (i.e. specific amino acids) involved in the box definition

display minimal overlap with the tree. Note that the over-bar notation represents set complement.

Thus, the box is defined by

x 2 B=

8<
:

position 8 2 fA, D, E, F, G, H, I, K, L, M, N, Q, R, T, V, W, Yg &

position 5 2 fA, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, Yg:

This contrasts with the definition of the classification tree’s sole terminal node that is classified as
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binders:

x 2 Node 7=

8<
:

position 8 2 fF, I, L, M, Yg &

position 5 2 fA, F, I, L, M, N, Yg

for which the training and test sample percentage binders are 99% and 95.5% respectively. We

discuss these differences after presenting the bump-hunting results for property variables.

The remainder of Table 2(b) is interpreted as follows: if the solution box was to be enlarged by

sequentially removing the defining variables, the change in box support and percent binders would be

as given. That is, if position 5 is eliminated, the box support increases to 0.86 but the percent binders

decreases (very slightly) to 74.2%. Thus, position 5 does not meaningfully add to the solution.

Further removal of position 8 reverts to the entire sample so we have support of 1.00 and percent

binders equal to the overall test set percentage (66.3%).

An interesting contrast is obtained using property variables, the results for which are presented in

Table 3. In comparison with the amino acid variable box, we obtain a smaller box (training sup-

port 0.59; test support 0.67) having appreciably higher percent binders (training set 85.0%; test set

94.3%). Given (i) the flexibility with which unordered categorical covariates are purportedly han-

dled, and (ii) the fact that the property variables derive from the amino acid variables, that such

an improved binding percentages are obtained using property variables is attributable to algorithm

limitations in handling unordered categorical covariates.

Further comparing the property box with the classification tree based on properties, we again see

an overlap of variables. The box is defined using volume at position 5, flexibility at position 1 and

polarity at position 8. The classification tree has two terminal nodes classified as binders, the larger

of which (support 0.49 (training set), 0.56 (test set)) is defined using volume at position 5 and polarity

at position 8 and has binding percents of 99% (training set) and 88% (test set). Thus, there is much

greater concordance between tree and bump-hunting results for property variables than there is for

amino acid variables.
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5.4 Anchor Positions and Position Covariation

We return to consideration of one of the motivating concerns: the elicitation of more complex rules

for binding than afforded by solely using the anchor positions. Here, the anchor positions are 3, 5

and 8. The latter two figure prominently in both the classification tree and bump-hunt rules. There

is a suggestion of a role for position 1 in that (i) the classification tree using amino acid variables

features a position 1 split, and (ii) the property variable box obtained using bump-hunting features a

position 1 property (flexibility). However, before inferring a role for this non-anchor position, it is

important to appraise position covariation and, in the tree context, surrogate splits.

The results of applying the Bickel et al., (1996) permutation-based assessment of pairwise position

covariation can be summarized as follows. For non-binders, there are no significantly covarying sites,

in accord with the random sampling of synthetic peptides. Conversely, for binders, almost all (24)

of the(
8
2) = 28 pairs of sites significantly (and comparably) covary using asimultaneousp-value of

p= 0:05. Implications of this are (i) there are likely alternative split and box descriptions based on

other positions that provide competitive classifications, and (ii) the ability to elicit rules based on

positions beyond the anchors is diminished. These conclusions are reinforced by a consideration of

surrogate and competitor splits.

The amino acid based classification tree (Figure 3) features only one split (Node 2) using a non-

anchor position (position 1). But, the best surrogate and competitor splits for this node are both

based on positions 5 and 3 respectively, both anchor positions. Further, (i) the competitor splits are

comparable in terms of impurity improvement to the optimal (selected position 1) split, and (ii) if

we adopt the Gini split criterion, instead of using the information index, position 5 is used for the

optimal split. Conversely, for the two splits that use anchor positions (Node 1, position 8; Node 3,

position 5) the primary competitor and surrogate splits are again based on anchors: position 5 for

Node 1, and position 3 for Node 3.

We now turn to examination of surrogates and competitors for the classification tree based on prop-

erty variables (Figure 4) and revisit the Node 1 split on position 8 polarity, the subject of section 5.2.

The definition of surrogate and competitor splits stipulate that they be based on a different covariate
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to the optimal split. There are numerous (12) property variables per position. Without exception (for

each node), the top (first four) competitor and surrogate splits use the same position as the optimal

split. Further, these splits are either highly competitive or strong surrogates with concordances (over-

lap) exceeding 96%. So, a tree with very similar performance could be obtained by splitting Node

1 on either volume or hydrophillicity at position 8. As indicated, this mitigates against claims that

polarity is the important property re binding association.

Analogous diagnostics for appraising alternative variable selections / model formulations are avail-

able for the bump-hunting methodology. These are based on relative frequency distributions: ratios

of the within box to overall density for each covariate are plotted (FF, section 16.2). As anticipated

from the strong position covariation, these plots (not shown) demonstrate that alternative box defini-

tions, using other positions and levels (specific amino acids) would yield similar support and percent

binders.

6 Discussion

The thrusts of this paper have been to (i) demonstrate that specialized techniques are needed to

handle multi-level unordered categorical covariates, as constituted by amino acid sequence data, and

that standard methods are deficient for this purpose, and (ii) illustrate this and other analysis issues

in the context of peptide binding. Despite the focus on peptide binding, we believe that the tree and

bump-hunt methods featured here have great generality in terms of analyzing phenotype-genotype

association. For example, we have used these approaches in determining which combinations of

point mutations in the tuberculosisrpoBgene are associated with resistance (quantified by minimum

inhibitory concentration) to the anti-tuberculin rifampin. Another setting where tree methods, albeit

extended via bagging (Breiman, 1996) are useful, and standard approaches are inadequate, is in

detection of quantitative trait loci. Using both simulation and real world examples, Fridyland and

Speed (personal communication) present successful tree bagging applications, in contrast to failures

of standard regression techniques. An important note here is that the genotype information, while

still unordered categories, is not highly multi-level. Rather, there are only a few alleles at each
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locus. What makes such problems challenging for standard regression/classification methods is the

combinatorial explosion deriving from the need to identify interactions (between loci) of order� 3

with� 20 (frequently hundreds) of loci, little if any prior knowledge re important loci and weak main

effects.

Arguably (Ripley, 1996; Hastie, 1997) artificial neural networks (ANNs) are overused in some do-

mains. We believe this to be the case for many peptide binding applications where the combination of

relatively small sample sizes, 20 level unordered categorical covariates, and the desirability of inter-

pretable illumination of predictive structure makes ANNs seemingly inappropriate. For instance, it

is difficult to assess the respective contributions of anchor and non-anchor positions. Unlike Milik et

al’s (1998) resorting to a property representation, citing overfitting and management concerns when

using ANNs with amino acids themselves, others (Gulukota et al., 1997; Honeyman et al., 1998)

have used ANNs with amino acid inputs. While direct comparisons are clearly necessary, the fact

that the latter authors obtain sensitivities and specificities� 80% on an independent test sample as

well as not gaining any insight into position importance and/or interactions, supports use of tree or

bump-hunt approaches.

The salient feature of tree methods re unordered categorical covariates is the flexible, indeed ex-

haustive, and automated handling ofgroupsof levels. This is appealing in that it bypasses the need

for computing, examining and grouping individual regression coefficients corresponding to the myr-

iad indicators needed. Further, variable integrity is preserved, interactions accommodated, and easy

interpretation/prediction facilitated via the associated tree scheme.

An often noted deficiency of tree-structured methods is that, by virtue of fitting piecewise constant

response surfaces, they perform poorly with respect to prediction when faced with smooth response

surfaces. This, in part, motivated Friedman’s (1991) multivariate adaptive regression spline (MARS)

extension of regression trees. However, here such concerns are moot. The very notion of a smooth

response surface presupposes the existence oforderedcovariates – otherwise there is nothing to be

smooth with respect to. So, when dealing solely with genotype information represented by unordered

categorical covariates the above criticism does not apply.

Finally, both more experience with, and software refinement of, the recently devised and highly
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promising Friedman and Fisher (1999) bump-hunt methodology is indicated. For example, the per-

formance differences exhibited when using amino acid versus property variable sets (Tables 2 and 3)

reflect implementation limitations. The many-to-one mapping from amino acids to their properties

means that we ought not do worse using amino acids as is seemingly the case.
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Table 1. Selected Data

obs bind pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 molwt1 molwt2 molwt8

1 1 S S P S H P G M 105.09 105.09 149.21

2 1 S M I T F T P L 105.09 149.21 131.17

3 1 S M V A P P H L 105.09 149.21 131.17

4 1 Y S P P Y S S I 181.19 105.09 131.17

307 0 S P S N P S V F 105.09 115.13 165.19

308 0 T P Y S R P P T 119.02 115.13 119.02

309 0 P Y S R P P T P 115.13 181.19 115.13

310 0 Y S R P P T P R 181.19 105.09 175.20



Table 2. Bump-Hunting: Amino Acids

Overall Box Box
Dataset Binding Binding Support

Training 54.4% 70.4% 0.74

Test 66.3% 74.7% 0.84

(a) Box Summaries

Remove Variable

Box De�nition Binding Support

pos8 fC;P; Sg 66.3% 1.00

pos5 fP;Wg 74.2% 0.86

(b) De�ning Variable



Table 3. Bump-Hunting: Property Variables

Overall Box Box
Dataset Binding Binding Support

Training 54.4% 85.9% 0.59

Test 66.3% 94.3% 0.67

(a) Box Summaries

Remove Variable

Box De�nition Binding Support

vol5 > 0.527 66.3% 1.00


ex1 < 0.855 83.7% 0.77

pol8 < 0.685 89.3% 0.72

(b) De�ning Variables



Figure Captions

Figure 1: Frequencies for amino acids at each of the positions stratified by binding status.

Figure 2: Initial large classification tree for predicting peptide binding grown using the training data.

The predicted class (based on simple majority rule) at each node (ellipses – internal; rectangles

– terminal) is given by the 0 (non-binding) or 1 (binding) given within each node, while the

ratio below gives number misclassified / node size. Numerals above each node are used for

identification purposes.

Figure 3: Results from classifying the independent test data using the selected tree.

Figure 4: Results from classifying the independent test data using the tree based on property vari-

ables.
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Full Tree // Training data
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Predictions: test data
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Predictions: test data
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