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ARTICLE

NCP activates chloroplast transcription by
controlling phytochrome-dependent dual nuclear
and plastidial switches
Emily J. Yang 1,2,6,8, Chan Yul Yoo 1,8, Jiangxin Liu3,4,8, He Wang1, Jun Cao5, Fay-Wei Li 2,7,

Kathleen M. Pryer 2, Tai-ping Sun2, Detlef Weigel5, Pei Zhou 3 & Meng Chen 1

Phytochromes initiate chloroplast biogenesis by activating genes encoding the photo-

synthetic apparatus, including photosynthesis-associated plastid-encoded genes (PhAPGs).

PhAPGs are transcribed by a bacterial-type RNA polymerase (PEP), but how phytochromes in

the nucleus activate chloroplast gene expression remains enigmatic. We report here a

forward genetic screen in Arabidopsis that identified NUCLEAR CONTROL OF PEP ACTIVITY

(NCP) as a necessary component of phytochrome signaling for PhAPG activation. NCP is

dual-targeted to plastids and the nucleus. While nuclear NCP mediates the degradation of

two repressors of chloroplast biogenesis, PIF1 and PIF3, NCP in plastids promotes the

assembly of the PEP complex for PhAPG transcription. NCP and its paralog RCB are

non-catalytic thioredoxin-like proteins that diverged in seed plants to adopt nonredundant

functions in phytochrome signaling. These results support a model in which phytochromes

control PhAPG expression through light-dependent double nuclear and plastidial switches

that are linked by evolutionarily conserved and dual-localized regulatory proteins.
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The control of organellar gene expression in the mito-
chondria and plastids is critical for cellular reprogramming
in the eukaryotic cell. The regulation of gene activity in

plastids is particularly important for plants because, although the
vast majority of the genetic material of the ancestral cyano-
bacterial endosymbiont has been transferred to the nucleus1, the
plastid genome retains 100–120 genes encoding essential com-
ponents of not only the plastidial transcriptional and translational
machineries but also the photosynthetic apparatus2. The regula-
tion of plastid-encoded photosynthesis-associated genes is pivotal
for plants to establish photosynthetically active chloroplasts and
thus is essential for plant survival.

Light is one of the most important environmental cues required
for initiating chloroplast biogenesis in seed plants, including
angiosperms (flowering plants) and some gymnosperms3,4. In
dicotyledonous flowering plants, such as Arabidopsis thaliana,
seedlings that germinate under the ground adopt a dark-grown
developmental program called skotomorphogenesis, which pro-
motes the elongation of the embryonic stem (hypocotyl) and
inhibits leaf development and chloroplast biogenesis, a strategy
that allows seedlings to emerge rapidly and easily from the soil. In
darkness, the plastids in the leaf tissues differentiate into non-
green, photosynthetically inactive etioplasts. Emerging into the
sunlight triggers seedlings to transition to photomorphogenesis,
which attenuates hypocotyl elongation and stimulates leaf devel-
opment. The photomorphogenetic developmental program also
enables chloroplast biogenesis and photosynthesis5.

The transition to photomorphogenesis entails the massive
transcriptional reprogramming of the nuclear genome initiated by
photoreceptors, such as the red (R) and far-red (FR) photo-
receptors, the phytochromes (PHYs), which play an essential role
in chloroplast biogenesis6–8. The biological activity of PHYs can
be turned on and off through light-dependent conformational
switches between a R light-absorbing inactive Pr form and a FR
light-absorbing active Pfr form9. In Arabidopsis, PHYs are
encoded by five genes, PHYA-E, of which PHYA and PHYB are
the predominant sensors of continuous FR and R light,
respectively5,10. The earliest light response at the cellular level is
the translocation of photoactivated PHYs from the cytoplasm to
discrete subnuclear domains named photobodies11. PHYs bind
directly to Phytochrome-Interacting Factors (PIFs) and colocalize
with them on photobodies12,13. The PIFs are basic/helix-loop-
helix transcription factors antagonistic to photomorphogenesis14.
Most PIFs accumulate to high levels in dark-grown seedlings to
promote hypocotyl elongation and inhibit chloroplast biogenesis
by activating growth-relevant genes and repressing nuclear-
encoded photosynthesis-associated genes, respectively15,16. PHYs
repress the functions of PIFs by inhibiting their transcriptional
activity and promoting their ubiquitin-and-proteasome-mediated
degradation13,14,17,18. PHY-mediated PIF degradation is a central
mechanism for inducing chloroplast biogenesis through the
activation of photosynthesis-associated nuclear-encoded genes
(PhANGs)14. The localization of PHYs to photobodies is closely
associated with PIF3 degradation12,13,17,19,20.

Light also induces the transcription of photosynthesis-
associated plastid-encoded genes (PhAPGs)21,22, which encode
essential components of the photosynthetic apparatus, including
the large subunit of the carbon fixation enzyme ribulose-1,5-
bisphosphate carboxylase/oxygenase (rbcL) and the photosystem
II reaction center D1 protein (psbA)2. Plastidial genes are tran-
scribed by two types of RNA polymerases: a phage-type nuclear-
encoded RNA polymerase (NEP) and a bacterial-type plastid-
encoded RNA polymerase (PEP)23. While the NEP preferentially
transcribes housekeeping genes, including plastid ribosomal RNAs
and the core subunits of the PEP, the PEP mainly transcribes
PhAPGs24,25. How PHYs in the nucleus control PEP-mediated

PhAPG expression in plastids is largely unknown. A well-
recognized challenge has been the lack of an efficient forward-
genetic screening strategy that can distinguish chloroplast-
deficient regulator mutants from other albino mutants with
defects in genes encoding essential components of the chlor-
oplast26. Our recent genetic studies of early PHY signaling have
serendipitously uncovered a new class of photomorphogenetic
mutants in Arabidopsis with a combination of albino and long-
hypocotyl seedling phenotypes19,27. The founding member of this
new mutant class, hemera (hmr), is defective in PHYB signaling
and chloroplast biogenesis19,28. Albino mutants had been ignored
previously in the context of light signaling because historically,
chlorophyll-deficient mutants had been shown to retain normal
PHY-mediated hypocotyl responses29,30. As a result, the entire
class of tall-and-albino mutants like hmr had been overlooked27.
We hypothesized that some of the tall-and-albino mutants might
define missing components of PHY signaling for activating
PhAPG expression. To test this hypothesis, we performed a for-
ward genetic screen for tall-and-albino mutants. This screen
identified Nuclear Control of PEP Activity (NCP), a dual-targeted
nuclear/plastidial protein required for both the nuclear and plas-
tidial signaling steps of PhAPG activation. We present evidence
that NCP and its Arabidopsis paralog diverged in seed plants to
adopt distinct roles in PHY signaling for PhAPG activation. We
propose that PHYs control plastidial PhAPG expression via
nucleus-to-plastid signaling, which comprises light-dependent
double nuclear and plastidial switches that are governed by evo-
lutionarily conserved and dual-localized regulatory proteins.

Results
Identification of NCP. We performed a forward genetic screen in
continuous monochromatic R light for mutants with a combi-
nation of tall and albino seedling phenotypes. The screen was
conducted in the PBG (PHYB-GFP) background, a transgenic line
in the null phyB-5 background complemented with functional
PHYB-GFP31. This screening strategy allowed us to assess whe-
ther the early signaling event of photobody formation is impaired
in the mutants19. From 2,000 N-ethyl-N-nitrosourea or ethyl
methanesulfonate mutagenized F2 PBG families, we identified 23
tall-and-albino mutants. In this study, we focused on one of
the mutants, which we named ncp-1 (nuclear control of PEP
activity-1) (Fig. 1a, b).

We used SHOREmap and mapped the mutation co-segregating
with the tall-and-albino phenotype in ncp-1/PBG to a single G-to-
A mutation in chromosome 2 at nucleotide 13,538,458, which
results in a premature stop codon in gene At2g31840 (Fig. 1c).
Expressing the predicted cDNA of At2g31840 under the
constitutive ubiquitin-10 promoter complemented the tall-and-
albino phenotype of ncp-1/PBG (Supplementary Fig. 1a, b). We
identified a second ncp allele in the Col-0 background, ncp-10,
which carries a T-DNA insertion after nucleotide 13,538,811 in
the second exon of At2g31840 (Fig. 1c). The mRNA levels of NCP
in ncp-1/PBG and ncp-10 were more than 11-fold lower than
those in their respective parental lines (Supplementary Fig. 1c).
Both mutants are likely null alleles. Similar to ncp-1/PBG, ncp-10
was tall and albino (Fig. 1d, e). Together, these results
demonstrate that At2g31840 is NCP.

NCP encodes a 350-amino-acid protein with a few recognizable
motifs (Fig. 1c). Analysis by Phyre2 software (www.sbg.bio.ic.ac.
uk/phyre2/) revealed a thioredoxin (Trx)-like domain (amino
acid 212–319) at its C-terminus32. Interestingly, two subcellular
targeting signals were found in NCP: an N-terminal transit
peptide (amino acids 1–48) predicted by ChloroP33 for
chloroplast import and a nuclear localization signal (NLS)
detected by NLS mapper34 between amino acids 118 and 145
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(Fig. 1c). NCP has been identified previously as MRL7-L
(Mesophyll-cell RNAi Library line 7-like)35 and SVR4-like
(Suppressor of Variegation4-like)36 because of its essential role
in chloroplast biogenesis, particularly for PhAPG activation35,36.
However, the precise function of NCP in PhAPG regulation is still
unknown. In agreement with published results, the expression of
two PEP-dependent PhAPGs, psbA and rbcL, was downregulated
by more than 24-fold and 73-fold in ncp-1/PBG and ncp-10,
respectively, whereas the expression of NEP-dependent genes,
such as rpoB and rpoC1, was upregulated by 5.7-fold to 10.8-fold
(Fig. 1f). The divergent effects on PEP- and NEP-regulated genes
are characteristics of mutants impaired specifically in the PEP
function24,28.

NCP mediates phytochrome signaling. To investigate the role of
NCP in PHY signaling, we analyzed the hypocotyl elongation
responses of the ncp mutants in continuous FR and R light to

assess their effectiveness in PHYA and PHYB signaling, respec-
tively37. These experiments showed that ncp-10 and ncp-1/PBG
were hyposensitive to R and FR light (Fig. 2a–d). The long
hypocotyl phenotype of ncp relies on PHY signaling, as ncp-10/
phyB-9 and ncp-10/phyA-211 double mutants were not taller than
phyB-9 and phyA-211, respectively (Fig. 2e–h). To further
demonstrate NCP’s role in PHY signaling, we crossed ncp-1 to a
constitutively active phyB allele YHB, which carries a Y276H
mutation in PHYB’s photosensory chromophore attachment
domain that locks PHYB in an active form38. In the ncp-1/YHB
double mutant, the constitutive photomorphogenetic phenotypes
of YHB in the dark were partially suppressed (Fig. 2i, j), con-
firming that NCP is required for PHYB signaling. In contrast to
the defects in response to FR and R light, ncp-10 and ncp-1/PBG
had normal hypocotyl responses in white and blue light (Sup-
plementary Fig. 2), suggesting that NCP is not required for blue
light signaling by cryptochromes. Together, these genetic data
indicate that NCP participates specifically in PHY signaling.
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Fig. 1 Identification of NCP by a screen for tall-and-albino mutants. a Representative images of 4-day-old PBG and ncp-1/PBG seedlings grown in
10 μmol m−2 s−1 continuous R light. b Box-and-whisker plots showing hypocotyl measurements of the seedlings in a. c Schematic illustration of the
predicted domain structure of NCP. The mutation in ncp-1/PBG and the T-DNA insertion site in ncp-10 are indicated. NLS, nuclear localization signal.
d Representative images of 4-day-old Col-0 and ncp-10 seedlings grown in 10 μmol m−2 s−1 continuous R light. e Box-and-whisker plots showing hypocotyl
measurements of the seedlings in d. f qRT-PCR results showing the steady-state mRNA levels of the PEP-dependent psbA and rbcL and the NEP-dependent
rpoB and rpoC1 in 4-day-old PBG, ncp-1/PBG, Col-0, and ncp-10 seedlings grown in 10 μmol m−2 s−1 continuous R light. Error bars represent SD of three
biological replicates. The transcript levels were calculated relative to those of PP2A. The numbers above the right columns are the fold changes in gene
expression between the columns. For the box-and-whisker plots in b and e, the boxes represent from the 25th to the 75th percentiles, and the bars equal the
median values. For b, e, and f, asterisks (***) indicate a statistically significant difference between the values of the mutants and those of the wild-type or the
parental line (Student’s t-test, p≤ 0.001). The source data of the hypocotyl measurements in b, e and the qRT-PCR data in f are provided in the Source
Data file
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Fig. 2 NCP mediates phytochrome signaling. a Representative images of 4-day-old Col-0, phyB-9, ncp-10, PBG, and ncp-1/PBG seedlings grown in
10 μmol m−2 s−1 R light. b R light fluence response curves showing the hypocotyl elongation responses of 4-day-old Col-0 (solid black line), phyB-9 (solid
gray line), ncp-10 (solid red line), PBG (dotted black line), and ncp-1/PBG (dotted red line) seedlings grown in the dark and a series of R light intensities.
c Representative images of 4-day-old Col-0, phyA-211, ncp-10, PBG, and ncp-1/PBG seedlings grown in 10 μmol m−2 s−1 FR light. d Fluence response curves
for FR light showing the relative hypocotyl lengths of 4-day-old Col-0 (solid black line), phyA-211 (solid gray line), ncp-10 (solid red line), PBG (dotted black
line) and ncp-1/PBG (dotted red line) seedlings grown in the dark and a series of FR light intensities. For b and d, error bars represent SE, and hypocotyl
length in the light was calculated relative to that in the dark. e, Representative images of 4-day-old Col-0, ncp-10, phyB-9, and ncp-10/phyB-9 seedlings
grown in 10 μmol m−2 s−1 R light. f Box-and-whisker plots showing hypocotyl length measurements of the seedlings in e. g Representative images of 4-
day-old Col-0, ncp-10, phyA-211, and ncp-10/phyA-211 seedlings grown in 10 μmol m−2 s−1 FR light. h Box-and-whisker plots showing hypocotyl length
measurements of the seedlings in g. i Representative images of 4-day-old dark-grown YHB, PBG, and ncp-1/YHB seedlings. j Box-and-whisker plots showing
hypocotyl length measurements of the seedlings in i. For the box-and-whisker plots in f, h, and j, the boxes represent from the 25th to the 75th percentiles,
and the bars equal the median values; samples with different letters show statistically significant differences in hypocotyl length (ANOVA, Tukey's HSD,
p≤ 0.001, n > 28). The source data of the hypocotyl measurements in b, d, f, h, and j are provided in the Source Data file
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NCP is a dual-targeted phytochrome signaling component. The
result that NCP participates in PHYA signaling and PHYB sig-
naling, which occur mainly in the nucleus39,40, contradicts the
published data suggesting that NCP localizes only to plastids35.
We therefore asked whether NCP, with a predicted NLS (Fig. 1c),
is also targeted to the nucleus. We found that transiently
expressed NCP tagged with CFP and FLAG (RCB-CFP-FLAG) in
tobacco cells was dispersed in both chloroplasts and the nucleus
(Fig. 3a). In agreement with this result, a functional HA-tagged
and His-tagged NCP expressed in ncp-10 (NCP-HA-His/ncp-10)
was detected in the nuclear and plastidial protein fractions
(Fig. 3b and Supplementary Fig. 3). Surprisingly, although plas-
tidial NCP is expected to be smaller than nuclear NCP due to the
removal of its transit peptide during plastid import, the total,
nuclear, and plastidial fractions of NCP-HA-His had similar
molecular masses (Fig. 3b). To further examine the size of NCP-
HA-His, we ran side-by-side in vitro translated full-length NCP-
HA-His and the predicted plastidial NCP without the N-terminal
48 amino acids (NCPΔ48-HA-His). NCP-HA-His in vivo was
significantly smaller than the in vitro translated full-length NCP-
HA-His and similar to NCPΔ48-HA-His (Fig. 3b). These results
indicate that NCP is dual-targeted to plastids and the nucleus and

imply that NCP might localize to the plastids first and then
translocate to the nucleus similar to HMR41.

To understand how NCP participates in PHY signaling, we
asked whether NCP is required for the earliest light response,
PHYB localization to photobodies11. In PBG seedlings grown
under 10 μmol m−2 s−1 R light, PHYB-GFP localized to a
few large photobodies (Fig. 3c, d)19,42. In striking contrast,
PHYB-GFP localized mostly to small photobodies in ncp-1/PBG
(Fig. 3c, d). We then tested if NCP is required for the PHY-
mediated degradation of the antagonistic transcription factors of
PHY signaling, the PIFs, because PIF degradation is closely
associated with PHYB localization to large photosbodies19,42.
Intriguingly, the two well-characterized light-labile PIFs, PIF1,
and PIF314, accumulated or failed to be completely degraded in
light-grown ncp-1/PBG and ncp-10 (Fig. 3e). Together, these
results demonstrate that NCP participates in the early light
signaling events of photobody biogenesis and the degradation of
PIF1 and PIF3.

NCP activates PhAPGs in the nucleus and plastids. The PEP
forms multisubunit protein complexes consisting of the bacterial-
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Fig. 3 NCP participates in photobody biogenesis and PIF degradation in the nucleus. a Confocal images showing the subcellular localization pattern of
transiently expressed NCP-CFP-FLAG in tobacco leaf cells. NCP-CFP-FLAG signals (green) were detected in chloroplasts (marked by yellow arrowheads)
and the nucleus (indicated by a white arrow). The nucleus was labeled with DAPI. Chloroplasts were labeled with DAPI in the blue channel, as well as by
chlorophyll autofluorescence in the red channel. Scale bars represent 10 μm. b Immunoblots showing NCP-HA-His from total, (T), nuclear (N), and
plastidial (P) protein fractions of 2-day-old NCP-HA-His/ncp-10 seedlings grown in 10 μmol m−2 s−1 R light. In vitro translated (IVT) NCP-HA-His and
NCPΔ48-HA-His (indicated by red arrowheads) were used as molecular size controls. The HA-tagged NCP proteins were detected via anti-HA antibodies.
Ferredoxin:sulfite reductase (SiR) and RNA Pol II were used as controls for the plastidial and nuclear fractions, respectively. c Confocal images of PHYB-
GFP photobodies in epidermal cells from the top one third of the hypocotyls of 4-day-old PBG and ncp-1/PBG seedlings grown in 10 μmol m−2 s−1 R light.
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indicate a statistically significant difference between the value in ncp-1/PBG and that in PBG (Student’s t-test, p≤ 0.001). e Immunoblots showing the PIF1
and PIF3 levels in 4-day-old Col-0, ncp-10, hmr-22, PBG, and ncp-1/PBG seedlings grown in 10 μmol m−2 s−1 R light. RPN6 was used as a loading control.
The source data for immunoblots in b, e and photobody analysis in d are provided in Source Data file
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type core subunits and plant-specific PEP-associated
proteins28,43. We have shown recently that PhAPGs are activated
by a linked nuclear and plastidial dual-switching mechanism in
which PHY-mediated PIF degradation in the nucleus triggers the
assembly of the PEP into a 1000-kDa complex in plastids for
PhAPG transcription44. With four PIF genes knocked out, PIF1,
PIF3, PIF4, and PIF5, the pifq mutant could trigger PEP assembly
and PhAPG activation in the dark44. The dual nuclear-and-
plastidial localization of NCP raised the question of whether NCP
only functions in promoting PIF degradation in the nucleus or
also regulates PEP assembly and activation directly in plastids. To
distinguish between these two possibilities, we generated a ncp-
10/pif1/pif3/pif4/pif5 (ncp-10/pifq) quintuple mutant. We rea-
soned that if NCP activates PhAPG expression mainly by pro-
moting PIF degradation in the nucleus, removing the four PIFs in
ncp-10 should rescue its albino phenotype. The ncp-10/pifq
mutant largely rescued the long-hypocotyl phenotype of ncp-10
(Fig. 4a). However, the ncp-10/pifq mutant was slightly but sig-
nificantly taller than pifq (Fig. 4a, b), which could be due to NCP-
dependent regulation of other PIFs or a PIF-independent retro-
grade signaling from the defective chloroplasts, as ncp-10/pifq
remained albino45. The expression of PEP-dependent PhAPGs
was still impaired in ncp-10/pifq, while the expression of NEP-
dependent plastidial genes was elevated (Fig. 4c). We resolved the
PEP complex from Arabidopsis using blue-native gel electro-
phoresis and monitored its size by immunoblotting using anti-
bodies against either the core β subunit, rpoB, or one of the PEP-
associated proteins, HMR/pTAC1219,28,43. We found that the
PEP failed to form a 1000-kDa complex in ncp-10 (Fig. 4d),
indicating that NCP is required for PEP assembly. The defect in
PEP assembly was not rescued in ncp-10/pifq (Fig. 4d). Together,
these results indicate that in addition to its nuclear function in
PIF degradation, NCP also facilitates PEP assembly directly in
plastids.

NCP and its paralog RCB diverged in seed plants. NCP has a
paralog in Arabidopsis, At4g28590, which we named Regulator of
Chloroplast Biogenesis (RCB)44. Previous studies have shown that
NCP and RCB are present in angiosperms35. However, only one
copy of NCP-like gene was found in the genomes of non-
flowering plants, such as the moss Physcomitrella patens and
lycophyte Selaginella moellendorffi35,46. Because these analyses
did not include other seed plants, like gymnosperms, or the
lineages between seed plants and lycophytes, like ferns, it remains
unclear when NCP and RCB diverged during the evolution of
land plants. We therefore searched for NCP-like sequences in all
major land plant lineages, including bryophytes, lycophytes, ferns,
and seed plants, and utilized Randomized Axelerated Maximum
Likelihood (RAxML) to construct a phylogenetic tree with
bootstrapping47. The resulting phylogeny revealed a single copy
of NCP-like genes in ferns, lycophytes, and bryophytes, whereas
the seed plants, including both angiosperms and gymnosperms,
contain NCP and RCB (Fig. 5a). NCP-like sequences have not
been identified in prokaryotic photosynthetic organisms, such as
Rhodobacter sphaeroides and Synechocystis sp. PCC 6803, or in
the single-cell green alga Chlamydomonas reinhardtii35,46. Con-
sistent with these results, we did not find NCP homologs in the
algal genomes of Klebsormidium flaccidum48 and Micromonas
pusilla CCMP154549. These results indicate that an NCP-like gene
emerged in early land plants and duplicated and diverged into
NCP and RCB in seed plants.

Intriguingly, we also identified RCB from the screen for tall-
and-albino mutants44. We showed that RCB is dual-localized to
the plastids and the nucleus44. However, different from NCP,
plastidal RCB does not play an essential role in chloroplast

biogenesis44. Instead, RCB initiates chloroplast biogenesis
primarily in the nucleus to promote PIF1 and PIF3 degradation
(Fig. 5d)44. These results indicate that NCP and RCB have
adopted non-redundant roles in regulating chloroplast biogenesis.
The ncp-10/rcb-10 double mutant had long hypocotyl and albino
phenotypes that were similar to those of the single mutants
(Fig. 5b, c), suggesting that NCP and RCB function in the same
PHY-dependent pathway for initiating chloroplast biogenesis. We
propose that NCP and RCB diverged to evolve distinct regulatory
roles in PHY signaling likely to accommodate the regulation of
chloroplast biogenesis by light in seed plants.

NCP and RCB contain a non-catalytic thioredoxin-like
domain. NCP and RCB possess a C-terminal Trx-like domain.
Trx is a small redox-active protein with a universally conserved
dithiol (-Cys-X-X-Cys-) active site in which the Cys residues
provide the sulfhydryl groups required for reducing disulfide
bonds in target proteins50. Interestingly, neither NCP nor RCB
contains the -Cys-X-X-Cys- catalytic motif (Fig. 6a). Surprisingly,
a previous study suggested that RCB had Trx activity in vitro51.
To seek a structural explanation for the Trx reductase activity, we
solved the NMR structure of NCP’s Trx-like domain. The Trx-
like domain of NCP displays a typical Trx-like fold—a five-
stranded β-sheet with a β1-β5 arrangement surrounded by four α-
helixes (Fig. 6b and Supplementary Figs. 4–6). A stereo view of
the NMR structural ensemble of the NCP Trx-like domain is
shown in Supplementary Fig. 7, and the detailed statistics on the
structural ensemble are given in Table 1. Based on the structure of
NCP, we modeled the structure of the Trx-like fold of RCB
(Fig. 6c). The structure of NCP’s Trx-like domain overlays nicely
with that of E. coli Trx (Fig. 6d)52. The Trx-like domains of NCP
and RCB exhibit the same βαβαβαββα secondary structural
arrangement as those of E. coli Trx (Fig. 6a–d) but without a
-Cys-X-X-Cys- catalytic motif. Therefore, the structural data do
not support a Trx reductase activity. We then performed the
insulin reduction assay using E. coli expressed recombinant NCP
and RCB fragments (Fig. 6e)53. These experiments did not detect
any Trx reductase activity in NCP or RCB (Fig. 6f, g). Based on
the structural and biochemical analyses, we conclude that RCB
and NCP contain a non-catalytic Trx-like domain.

Discussion
PHY signaling initiates chloroplast biogenesis by activating
photosynthesis-associated genes encoded by the nuclear and
plastidial genomes. PHYs regulate nuclear gene expression by
directly modulating the activity and stability of transcription
factors in the nucleus14,27. However, how PHYs in the nucleus
control gene expression in plastids, particularly the activation of
PhAPGs by the PEP, remains poorly understood. Here we report
the identification of a dual-targeted nuclear/plastidial signaling
component, NCP, which participates in both nuclear and plasti-
dial PHY signaling events for PhAPG activation (Fig. 5d). Our
results provide evidence supporting the model that PHYs control
plastidial gene expression through dual nuclear and plastidial
switches, which are governed by evolutionarily conserved dual-
targeted regulatory proteins (Fig. 5d).

It has been proposed for decades that plastid-encoded genes
are controlled by the cell nucleus through anterograde nucleus-
to-plastid signaling26. A well-recognized challenge, which hin-
dered the identification of such an anterograde signaling pathway,
had been the lack of an effective forward-genetic screening
strategy for distinguishing chloroplast-deficient regulator mutants
from other albino mutants with defects in genes encoding
essential components of the chloroplast26. Different from all
previous genetic screens, we searched for mutants with a
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combination of long hypocotyl and albino phenotypes, which is
indicative of defects in nuclear PHY signaling and chloroplast
biogenesis17,19. This forward genetic screen identified NCP and
its paralog, RCB44. Our investigation of RCB revealed that PHYs
induce PhAPG transcription through a nucleus-to-plastid ante-
rograde signaling pathway linking two required switching

mechanisms: PHY-mediated PIF degradation in the nucleus and
the assembly of the PEP into a 1000-kDa complex in plastids
(Fig. 5d)44. Interestingly, although RCB is dual-targeted to plas-
tids and the nucleus, it activates PhAPG expression primarily in
the nucleus by promoting PIF1 and PIF3 degradation44. An rcb-
10/pifq mutant, in which four nuclear PIF transcription factors
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Fig. 4 NCP promotes the assembly and activation of the PEP in plastids. a A ncp-10/pifq mutant rescues the long hypocotyl phenotype, but not the albino
phenotype, of ncp-10. Left panel: representative images of 4-day-old Col-0, pifq, ncp-10, and ncp-10/pifq seedlings grown in 10 μmol m−2 s−1 R light. Inlets
show magnified images of embryonic leaves of one of the corresponding seedlings below. b Box-and-whisker plots showing hypocotyl length measurements
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have statistically significant differences in hypocotyl length (ANOVA, Tukey's HSD, p≤ 0.001, n > 30). c qRT-PCR analyses of the transcript levels of
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are removed, rescues rcb-10’s defects in PEP assembly, PhAPG
activation, and chloroplast biogenesis44. In contrast to RCB, NCP
is required for controlling both the nuclear and plastidial switches
for PhAPG activation. Although NCP had been reported pre-
viously for its essential role in chloroplast biogenesis35,36, the
function of NCP in chloroplast biogenesis was still unknown.
Different from the current view that NCP localizes only to
plastids35, we show that NCP is dual-targeted to the plastids and
the nucleus. The dual localization of NCP is supported by tran-
siently expressed NCP-CFP-FLAG (Fig. 3a) and subcellular
fractionation results using a NCP-HA-His/ncp-10 transgenic line
(Fig. 3b). Although it is possible that the nuclear localization of
NCP in these experiments could be due to overexpression of
NCP, this is highly unlikely because a direct role of NCP in
nuclear PHY signaling is also supported by the overwhelming
genetic evidence. NCP is required for both PHYA and PHYB

signaling (Fig. 2). RCB participates in the early light signaling
events of photobody biogenesis (Fig. 3c, d). Moreover, both PIF1
and PIF3 accumulate in ncp-10 in the light (Fig. 3e), and the long
hypocotyl phenotype of ncp-10 was rescued in ncp-10/pifq mutant
(Fig. 4a), further supporting the notion that NCP is directly
involved in PIF degradation in the nucleus. Intriguingly, the ncp-
10/pifq mutant does not rescue the ncp-10’s defects in PEP
assembly, PhAPG activation, and chloroplast biogenesis (Fig. 4).
Together, these results indicate that NCP facilitates both PHY-
mediated PIF degradation in the nucleus, possibly by promoting
photobody biogenesis, as well as the assembly of the PEP in
plastids (Fig. 5d).

We show that seed plants, including angiosperms and gym-
nosperms, contain both NCP and RCB (Fig. 5a). In non-seed land
plants, including ferns and mosses, there is only one copy of
NCP-like gene. It is intriguing that seed plants have evolved both
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NCP and RCB, which play non-redundant roles in PHY signaling
(Fig. 5b, c). One possibility is that having both NCP and RCB can
provide an additional regulatory mechanism for the light-
dependent chloroplast biogenesis or greening in seed plants3,4.
NCP and RCB might work in concert in the nucleus to promote
PHYs to localize to photobodies for PIF degradation; for example,
they could form a heteromeric protein complex. We will test this
hypothesis in future investigations. The functions of NCP and
RCB in plastids are likely distinct. Only NCP plays an essential
role in PEP assembly and PhAPG activation in plastids (Fig. 4)44.
NCP and RCB show different localization patterns in plastids:
while RCB is localized to the nucleoid, NCP is localized to the
stroma (Fig. 3a)35. It is unclear how the localization patterns of
these proteins relate to their platidial functions. Our previous
work has identified another dual-targeted nuclear and plastidial
protein, HMR, which also participates in the PHY-mediated

control of PhAPG activation19,28,41. While nuclear HMR acts as a
transcriptional activator interacting directly with PIFs to mediate
PIF1 and PIF3 degradation, plastidial HMR, also called pTAC12,
is an essential component of the PEP complex28,54,55. Our genetic
studies have so far identified three dual-targeted nuclear/plastidial
molecules in PHY signaling—HMR19,41, RCB44, and NCP (this
study). One pressing upcoming task is to determine the regula-
tion and mechanism of their dual localization, as well as to
understand the significance of their dual-localization in PHY
signaling and in nucleus-plastid communication.

NCP and RCB each contain a Trx-like domain. Although a
previous study suggested that RCB’s Trx domain possesses Trx
reductase activity51, our results demonstrate convincingly that the
Trx-like domains of NCP and RCB are structurally similar to that
of E. coli Trx but lack reductase activity (Fig. 6a–c). Neither NCP
nor RCB contains the universally conserved -Cys-X-X-Cys-
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catalytic motif required for reductase activity (Fig. 6d)50. Trx
could participate in a regulatory mechanism independent of
redox activity, depending on the ability to interact with other
proteins to form functional protein complexes. For example, E.
coli Trx that lacks the catalytic cysteine residues in its active site
can enhance the processivity of the bacteriophage T7 DNA
polymerase56,57; the active site in this case mediates the interac-
tion with the T7 DNA polymerase58. Similarly, RCB and NCP
could use their non-catalytic Trx-like domains for protein-protein
interactions. Future investigations will test this hypothesis to
determine the biochemical functions of NCP and RCB in nuclear
PHY signaling as well as PEP assembly and activation.

Methods
Plant materials and growth conditions. The PBG line in the Landsberg erecta
(Ler) background has been previously reported31. The ncp-1/PBG mutant line was
isolated from the tall-and-albino mutant screen and backcrossed to PBG three
times. The ncp-10 mutant (Col-0 background) was identified from GABI-Kat T-
DNA insertion line GK-518H0259 and obtained from the Arabidopsis Biological
Resource Center (CS449718). ncp-1 was genotyped using a dCAPS (derived
Cleaved Amplified Polymorphic Sequences) marker using the following PCR pri-
mers: forward: agagaaggcgattcaagtcatat, reverse: ctggaagtaataatgacccag. NdeI
digestion of the PCR product yields 129-bp and 20-bp fragments for Ler and one
149-bp fragment for ncp-1. The Arabidopsis mutants phyB-9, phyA-211, and pifq,
all in the Col-0 background, were used for the physiological studies. YHB, a
constitutively active phyB mutant in the Ler background has been previously
reported38. Seeds were surface-sterilized and plated on half-strength Murashige and
Skoog (MS) growth medium with Gamborg’s vitamins (MSP0506, Caisson
Laboratories, North Logan, UT) containing 0.5 mM MES pH 5.7 and 0.8% agar
(w/v) (A038, Caisson Laboratories, North Logan, UT)19. Seeds were stratified in the
dark at 4 °C for 5 days. Seedlings were grown at 21 °C in an LED chamber (Percival
Scientific, Perry, IA) under the indicated light conditions. Fluence rates of light
were measured using an Apogee PS200 spectroradiometer (Apogee instruments
Inc., Logan, UT) and SpectraWiz software (StellarNet, Tampa, FL).

Hypocotyl length measurement. For the measurement of hypocotyl length, 4-d-
old seedlings grown under different light conditions were scanned using an Epson
Perfection V700 photo scanner, and hypocotyl lengths were measured using NIH
ImageJ software (https://imagej.nih.gov/ij/). Box-and-whisker plots of hypocotyl
measurements were generated using Prism 7 software (GraphPad, San Diego, CA).
Images of representative seedlings were captured using a Leica MZ FLIII stereo
microscope (Leica microsystems Inc., Buffalo Grove, IL) and processed using
Adobe Photoshop CC (Adobe Systems, Mountain View, CA).

Mutant generation. PBG seeds were hydrated in 45 ml of ddH2O with 0.005%
Tween-20 for 4 h and washed with ddH2O twice. The washed seeds were soaked in
1 mM N-ethyl-N-nitrosourea or ethyl methanesulfonate solution for 15 h with
rotation. Then, the seeds were thoroughly washed in ddH2O, plated on MS growth
media, and stratified at 4 °C for 4 days. The M1 seedlings were transferred to soil,
and the M2 seeds were collected from individual M1 plants. The M2 generation
was screened under monochromatic R light.

Genetic Mapping via SHOREmap. ncp-1/PBG (Ler) was crossed to Col-0 to
generate an F2 mapping population. Genomic DNA from pools of more than 800
F2 seedlings with a tall-and-albino phenotype was extracted as follows60. Seedlings
were ground in liquid nitrogen and resuspended in nuclear extraction buffer
containing 10 mM Tris-HCl pH 9.5, 10 mM EDTA pH 8.0, 100 mM KCl, 500 mM
sucrose, 4 mM spermidine, 1 mM spermine, and 0.1% β-mercaptoethanol. Two
mililiter of lysis buffer containing 10% Triton X-100 in nuclei extraction buffer was
added into the homogenized tissues. After incubation on ice for 2 min, the
homogenate was centrifuged at 2000 × g at 4 °C for 10 min. The nuclei pellet was
resuspended in 500 μl of CTAB buffer containing 100 mM Tris-HCl pH 7.5, 0.7 M
NaCl, 10 mM EDTA pH 8.0, 1% CTAB, and 1% β-mercaptoethanol. After incu-
bation at 60 °C for 30 min, genomic DNA was extracted with chloroform/isoamyl
alcohol (24:1) and precipitated with isopropanol by centrifugation at 20,000 × g at
4 °C for 10 min. Illumina paired-end libraries with 300-bp insert sizes were con-
structed per the manufacturer’s instructions. Eighty-base paired-end reads were
generated on an Illumina Genome Analyzer II, targeting approximately 25× gen-
ome coverage. The polymorphisms, including SNPs, indels up to 3 bp, and large
deletions, were identified using SHOREmap61. Genomic regions enriched for
mutant parental markers were identified with SHOREmap62,63. Variants in the
final mapping interval that were absent from the Ler background and that were
predicted to have a large impact on ORF integrity were prioritized as candidate
mutations.

Plasmid construction and generation of transgenic plants. All the primers used
for plasmid construction are listed in Supplementary Table 1. The pCHF1-
UBQ10p::NCP-HA-His construct was generated by cloning the UBQ10 promoter
and the full-length coding sequence of NCP into the EcoRI and PstI sites of pCHF1-
HA-His vector using Gibson assembly (New England Biolabs, Ipswich, MA); the
construct was prepared by inserting a DNA fragment encoding (PT)4P-3HA-6His
into the PstI and SalI sites of the pCHF1 vector64. Transgenic lines were generated
by transforming ncp-10 heterozygous plants with Agrobacterium tumefaciens strain
GV3101 containing the pCHF1-UBQ10::NCP-HA-His construct. The T1 transgenic
plants were selected on half-strength MS medium containing 100 µg/ml genta-
mycin and screened for transgenic plants with a homozygous ncp-10 mutation. The
T2 lines with a single-locus insertion status of the transgene were selected based on
a 3:1 segregation ratio for gentamycin resistance. The T3 generation plants
homozygous for the transgene were used for the experiments.

The NCP-CFP construct used for the tobacco transient expression assay was
generated by amplifying the coding sequences of NCP and CFP-FLAG and
inserting them into the XmaI and XbaI sites of the pCHF3 vector. The NCP-CFP
construct was transformed into Agrobacterium tumefaciens strain GV3101 for the
transient expression assay. The constructs used for in vitro transcribed and
translated HA-and His-tagged NCP or NCPΔ48 (deletion of N-terminal 48 amino-
acid transit peptide) was generated by amplifying the NCP-HA-His fragments and
inserting them into EcoRI and BamHI sites of the pCMX-PL2 vector.

The constructs used for expressing N-terminally His-tagged NCP and RCB
proteins in E. coli were made in the pET15b and pET28a vectors, respectively. NCP
or NCPΔ206 (Trx-like domain only, aa 207–350) were amplified by PCR and
ligated into the NdeI and XhoI sites of the pET15b vector using T4 DNA ligase.
RCBΔ98 (aa 99–331) and RCBΔ197 (Trx-like domain only, aa 198–331) were
amplified and inserted into the BamHI and HindIII sites of the pET28a vector
using Gibson assembly.

RNA extraction and quantitative PCR. Total RNA from seedlings of the indicated
genotypes and growth conditions was isolated using a Quick-RNA MiniPrep Kit
with on-column DNase I treatment (Zymo Research, Irvine, CA). cDNA was
synthesized using Superscript II First-strand cDNA Synthesis Kit (ThermoFisher
Scientific, Waltham, MA). Oligo(dT) primers were used for the analysis of nuclear
gene expression, and a mixture of oligo(dT) and plastidial-gene-specific primers
was used for the analysis of plastidial genes. qRT-PCR was performed with Fas-
tStart Universal SYBR Green Master Mix on a LightCycler 96 System (Roche, Basel,
Switzerland). The transcript level of each gene was normalized to that of PP2A. All
primers used for qRT-PCR and cDNA synthesis are listed in Supplementary
Tables 2 and 3.

Phylogenetic analysis. We acquired the NCP-like sequences of seed plants
(Arabidopsis thaliana, Oryza sativa, Amborella trichopoda, Ginkgo biloba, Picea
abies, Gnetum montanum) from implemented BLASTp from Phytozome or indi-
vidual genome portals65,66. We obtained the NCP-like sequences in ferns
(Angiopteris evecta, Psilotum nudum, Equisetum diffusum), lycophytes (Pseudoly-
copodiella caroliniana, S. moellendorffii), and bryophytes [Nothoceros vincentianus
(a hornwort), Sphaerocarpos Texanus (a liverwort), and Physcomitrella patens]
from transcriptome data generated as part of the One Thousand Plants Project
(www.onekp.com)67 using transcriptome mining based on the BlueDevil Python
pipeline68. The homologs of NCP and RCB from 6 representative seed plants were
BLASTed and obtained from Phytozome65, Congenie (congenie.org)66, and the
Amborella Genome Database (www.amborella.org)69 (Supplementary Table 4).
The homologous sequences from ferns, bryophytes, and lycophytes were mined
using the Python pipeline BlueDevil68 from transcriptomes generated from One

Table 1 Structural statistics for the Trx-like domain of NCP

NCP Trx-like domain (D208-N350)a

NOE distance restraints 6313
Short-range (|i − j| ≤ 1) 2118
Medium-range (1 < |i − j| ≤4) 1457
Long-range (|i − j| ≥ 5) 2738

Dihedral angle constraintsc 245
Target function value 2.34 ± 0.05
Ramachandran plotd

Favored region (98%) 88%
Allowed region (>99.8%) 12%

Mean pairwise RMSD (RCBL Y210-V347)
Backbone 0.29 ± 0.03 Å
Heavy atoms 0.65 ± 0.03 Å

aNone of these structures exhibit distance violations greater than 0.4 Å or dihedral angle
violations greater than 4°
bTwo constraints (dHN–O≤ 2.5Å and dN–O≤ 3.5Å) are used for each identified hydrogen bond
cDihedral angle constraints were generated by TALOS+ based on backbone atom chemical
shifts76, and by analysis of NOE patterns
dMOLPROBITY was used to assess the quality of the structures78

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10517-1

10 NATURE COMMUNICATIONS |         (2019) 10:2630 | https://doi.org/10.1038/s41467-019-10517-1 | www.nature.com/naturecommunications

https://imagej.nih.gov/ij/
www.nature.com/naturecommunications


Thousand Plants Project67. The nucleotide sequences obtained from the tran-
scriptomes were translated into amino acid sequences, including 20 sequences from
14 species. The sequences were aligned using MUSCLE70. To decrease ambiguities
in sequence alignment, we only included the conserved Trx-like domain, and
ambiguously aligned regions were manually removed before the phylogenetic
analysis. The final alignment included 597 nucleotide sites. All alignments are
available at Fig. Share (https://figshare.com/s/18f43720186936a3effd). The pro-
cessed polypeptide sequences of NCP and RCB paralogues were used for phylo-
genetic tree construction. The best substitution model and partition scheme were
inferred using PartitionFinder v1.1.071. The best maximum-likelihood tree was
generated using RAxML version 7.2.847 with substitution model GTRGAMMAI,
and multiparametric bootstrapping was conducted using RAxML with 1000
replicates. The phylogenetic tree generated was visualized in FigTree v.1.4.2, and
Adobe Photoshop CC software (Adobe Systems, Inc., San Jose, CA) was used to
label the name of each species.

Transient expression in N. benthamiana. Fluorescent-protein-tagged NCP was
transiently expressed in N. benthamiana leaves. The pCHF3-NCP-CFP-FLAG
plasmid was transformed by electroporation into Agrobacterium tumefaciens strain
GV3101. Agrobacterium cells were grown overnight, pelleted, and resuspended in a
volume of infiltration buffer equal to half the volume of the original culture. The
infiltration buffer contained 10 mM MgCl2, 10 mM MES pH 5.7, and 200 μM
acetosyringone (4′-hydroxy-3′,5′-dimethosyacetophenone). Cells were diluted to
the O.D.600 of 1.0. Cells were infiltrated into the abaxial side of Nicotiana ben-
thamiana leaves. Samples were collected at 72 h after infiltration and stained with
DAPI for microscopic analyses.

Confocal imaging and quantification of photobody morphology. For the
quantification of photobody morphology, seedlings were mounted on Superfrost
slides (VWR, Radnor, PA) using ddH2O and 22 × 40 mm coverslips (no. 1.5, VWR,
Radnor, PA). The nuclei from the epidermal cells of the top third of the hypocotyl
were imaged using a Zeiss LSM 510 inverted confocal microscope (Carl Zeiss,
Thornwood, NY). GFP signal was detected using a 100× Plan-Apochromat oil
immersion objective, 488 nm excitation from an argon laser, and a 505–550 nm
bandpass filter. Images were collected using LSM 510 software version 4.2. Images
were processed using Adobe Photoshop CC software (Adobe Systems, Inc., San
Jose, CA). To determine the size and number of photobodies, the volume of
photobodies was calculated using the object analyzer tool in Huygens Essentials
(Scientific Volume Imaging, The Netherlands). For each nucleus, the information
on the photobodies and box-and-whisker plots was sorted and calculated using
Graphpad Prism 7. NCP-CFP-FLAG was detected using 458 nm excitation from an
argon laserand a 470–500 nm bandpass filter.

Nuclear and chloroplast fractionation. For chloroplast fractionation, 2-d-old
NCP-HA-His seedlings grown in Rc were frozen and homogenized in liquid
nitrogen. One gram of seedlings was extracted in 2 ml of cold grinding buffer (GB,
50 mM HEPES-KOH pH 7.3, 0.33M sorbitol, 0.1% BSA, 1 mM MnCl2, 2 mM
EDTA, and 1× protease inhibitor cocktail (Millipore Sigma, St. Louis, MO)19. The
plant extract was filtered through two layers of Miracloth (Millipore Sigma, St.
Louis, MO) and centrifuged for 2 min at 2600 × g to spin down the chloroplasts.
The crude chloroplasts were resuspended in 0.2 mL of GB buffer and fractionated
on a Percoll (Millipore Sigma, St. Louis, MO) step gradient (80 and 40%) by
centrifugation for 10 min at 2600 × g. Intact chloroplasts were obtained from the
interface between the 80 and 40% Percoll.

For nuclear fractionation, seedlings were frozen in liquid nitrogen and
homogenized with nuclei extraction buffer containing 20 mM PIPES-KOH pH 7.0,
10 mM MgCl2, 12% hexylene glycol, 0.25% Triton X-100, 5 mM β-
mercaptoethanol, and 1× protease inhibitor cocktail. The lysate was filtered
through two layers of Miracloth. The filtered lysate was loaded on top of 2 ml of
30% Percoll in 5 mM PIPES-KOH pH 7.0, 10 mM MgCl2, 3% hexylene glycol,
0.25% Triton X-100, and 5 mM β-mercaptoethanol, and centrifuged at 700 × g for
5 min at 4 °C. The fractionated nuclear pellet was dissolved in nuclei extraction
buffer. Protein extracts from the chloroplast and nuclear fractions were resolved via
SDS-PAGE and analyzed by immunoblot.

Protein extraction and immunoblot analysis. For PIF1 and PIF3 protein
extraction, seedlings were ground directly in extraction buffer in a 1:3 (mg/μl) ratio,
boiled for 10 min and then centrifuged at 15,000 × g for 10 min at room tem-
perature55. The extraction buffer consisted of 100 mM Tris-HCl, pH 7.5, 100 mM
NaCl, 5 mM EDTA, pH 8.0, 5% SDS, 20% glycerol, 20 mM dithiothreitol (DTT), 40
mM β-mercaptoethanol, 2 mM PMSF, 1× protease inhibitor cocktail, 80 μM
MG132 (Millipore Sigma, St. Louis, MO), 80 μM MG115 (Millipore Sigma, St.
Louis, MO), 1% phosphatase inhibitor cocktail 3 (Millipore Sigma, St. Louis, MO),
and 10 mM N-ethylmaleimide. Protein extracts were separated on an SDS-PAGE
mini-gel and transferred onto a polyvinylidene difluoride (PVDF) membrane. The
membrane was blocked in 2% non-fat milk in 1× TBS, probed with the indicated
primary antibodies, and then incubated with anti-rabbit or anti-mouse secondary
antibodies conjugated with horseradish peroxidase. For the fractionation experi-
ments, in vitro translated NCP-HA-His proteins were produced using the TNT T7-

Coupled Reticulocyte Lysate System (Promega) according to the manufacturer’s
protocol and detected using mouse anti-HA antibodies (11583816001, Millipore
Sigma, St. Louis, MO). The purity of the chloroplast and nuclear fractions was
monitored using antibodies against chloroplast ferredoxin:sulfite reductase (SiR)72

and mouse monoclonal anti-RNA polymerase II (Pol II) antibodies (8WG16,
Biolegend, San Diego, CA), respectively. Both anti-SiR and anti-Pol II antibodies
were used at a 1:1000 dilution. Rabbit anti-PIF119 and anti-PIF319 polyclonal
antibodies were used at a 1:500 dilution19. Anti-RPN6 antibodies (BML-
PW8370–0100, Enzo Life Sciences, Farmingdale, NY) were used at a 1:1000 dilu-
tion. For blue native gels, mouse monoclonal anti-rpoB (PHY1700, PhytoAB Inc.,
Redwood City, CA) and rabbit polyclonal anti-HMR19 antibodies were used at a
1:1000 dilution to detect the PEP complex. Secondary antibodies including anti-
mouse (1706516, Bio-Rad, Hercules, CA) and anti-rabbit (1706515, Bio-Rad,
Hercules, CA) were used at a 1:5000 dilution. The signals were detected with a
chemiluminescence reaction using SuperSignal West Dura Extended Duration
Chemiluminescent Substrate (ThermoFisher Scientific, Waltham, MA).

Protein purification and NMR spectroscopy. The DNA fragment encoding the
Trx-like domain of NCP (residues 208–350) was PCR-amplified and cloned into a
modified pET15b vector to yield an N-terminally His10-tagged protein with a TEV
site between the His10-tag and the thioredoxin-like domain of NCP. The His10-
tagged NCP was overexpressed in the BL21 (DE3) STAR E. coli strain (Thermo-
Fisher Scientific, Waltham, MA). The cultures were grown at 37℃ until the O.D.600
reached 0.6–0.8. The cells were induced with 0.6 mM IPTG at 20℃ for 20 h. The
harvested cells were purified via Ni2+-NTA affinity chromatography. After TEV
digestion to remove the His10-tag, NCP was further purified by size-exclusion
chromatography (Superdex 75, GE Healthcare Life Sciences, Marlborough, MA).
Isotopically enriched proteins were overexpressed in M9 media using 15N-NH4Cl
and 13C-glucose as the sole nitrogen and carbon sources (Cambridge Isotope
Laboratories, Tewksbury, MA). The final NMR samples contained ~1.2 mM pro-
tein in a buffer containing 25 mM HEPES, 50 mM KCl pH 7.0, and 10 mM DTT in
either 90% H2O/10% D2O or in 100% D2O.

NMR experiments were conducted using Agilent INOVA 600 or 800MHz
spectrometers at 35 °C73. Backbone and side-chain resonances were assigned based on
standard three-dimensional triple-resonance experiments and sparsely sampled high-
resolution 4D HCCH-TOCSY and HCCONH TOCSY experiments. Distance
constraints were derived from 3D 15N-NOESY, sparsely sampled 4D 13C-HMQC-
NOESY-15N-HSQC and 4D 13C-HMQC-NOESY-13C-HSQC experiments. The
NMR data were processed with NMRPipe and analyzed with SPARKY74,75. TALOS+
analysis was used to derive the dihedral angle restraints, and CYANA was used to
calculate the structures76,77. The final NCP ensemble of 20 structures displayed no
NOE violations >0.3 Å and no dihedral angle violations >3°. The quality of the NMR
ensemble was evaluated by MolProbity78.

Thioredoxin activity assay. Trx activity assays were carried out in reaction buffer
containing 0.1 M potassium phosphate pH 7.0, 2 mM EDTA, 0.5 mM DTT, 0.167
mM insulin as the substrate, and 1 μM His-tagged NCP or His-tagged RCB protein
fragments53. E. coli Trx (Millipore Sigma, St. Louis, MO) and BSA (Millipore
Sigma, St. Louis, MO) were used as positive and negative controls, respectively. The
reaction mixtures were incubated with DTT for 5 min, and the reaction was started
by adding insulin. The reduction of insulin generated turbidity, which was detected
by measuring the absorbance at 650 nm every min for 1 h using a DU730 Life
Science UV/Vis Spectrophotometer (Beckman Coulter, Inc., Brea, CA).

Blue native gel electrophoresis. Seedlings grown under the indicated conditions
were ground in liquid nitrogen and resuspended in 3 volumes of BN-Lysis buffer
(100 mM Tris-Cl, pH7.2; 10 mM MgCl2; 25% glycerol; 1% Triton X-100; 10M
NaF; 5 mM β-mercaptoethanol; 1× protease inhibitor cocktail)79. The protein
extracts were divided to two tubes: one for blue-native PAGE and the other for
SDS-PAGE. For blue-native PAGE, the protein extracts were mixed with BN-
Sample buffer (1× NativePAGE Sample Buffer, 50 mM 6-aminocaproic acid, 1% n-
dodecyl β-D-maltoside, and benzonase) and incubated for 60 min at room tem-
perature to degrade DNA/RNA and further solubilize the PEP complex. Samples
were mixed with 0.25% NativePAGE Coomassie blue G-250 Sample Additive and
centrifuged at 17,500 × g for 10 min at 4 °C. Proteins from the supernatant were
separated on a 4–16% NativePAGE Bis-Tris Protein Gel (ThermoFisher Scientific,
Waltham, MA) according to the manufacturer’s protocol (ThermoFisher Scientific,
Waltham, MA) and with the following modifications. NativeMark Unstained
Protein Standard (ThermoFisher Scientific, Waltham, MA) was used to determine
protein size in blue-native PAGE. Briefly, electrophoresis was performed at a
constant 30–40 V for 3 h at 4 °C until the blue dye migrated through one third of
the gel. The Dark Blue Cathode Buffer was replaced with Light Blue Cathode
Buffer, and electrophoresis continued at a constant 20–25 V overnight (16–18 h) at
4 °C. After electrophoresis was complete, the separated proteins were transferred
onto a PVDF membrane using 1× NuPAGE Transfer Buffer (ThermoFisher Sci-
entific, Waltham, MA) at a constant 70 V for 7 h at 4 °C. After transfer, the
membrane was fixed with fixation buffer (25% methanol, 10% acetic acid) for
15 min and washed with water. The membrane was incubated with methanol for
3 min to destain the dye, and then immunoblotting proceeded. To determine total
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amount of rpoB and HMR proteins, samples were mixed with 1× SDS Laemmli
buffer containing 10% SDS and 50 mM 6-aminocaproic acid, 100 mM DTT, and
20 mM beta-mercaptoethanol, immediately boiled for 10 min, and then centrifuged
at 17,500 × g for 10 min at room temperature. Proteins from the supernatant were
separated via SDS–PAGE and analyzed by immunoblot.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Arabidopsis mutants and transgenic lines, as well as plasmids generated during the
current study, are available from the corresponding author upon reasonable request. The
NMR assignments and the coordinate of the Trx-like domain of NCP has been deposited
to Biological Magnetic Resonance Bank (30551) and RCSB Protein Data Bank (PDB ID:
6NE8), respectively. The source data underlying Figs. 1b, 1e, 1f, 2b, 2d, 2f, 2h, 2j, 3b, 3d,
3e, 4b–d, 5c, and 6g and Supplementary Figs. 1b, 1c, 2b, 2d, 3b, and 3c are provided as a
Source Data file.
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