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Retinal dystrophies are a genetically and phenotypically 
heterogeneous collection of eye diseases disturbing the func-
tion of photoreceptor cells and subsequently leading to loss of 
vision. To date, 256 genes listed in RetNet have been associ-
ated with syndromic and non-syndromic retinal dystrophies, 

which can be inherited as an autosomal-recessive, autosomal-
dominant, or X-linked trait (RetNet). Retinitis pigmentosa 
(RP) is the most common form of hereditary retinal degenera-
tion with a worldwide prevalence of about 1 in 3,500–5,000 
and affects more than 1.5 million individuals worldwide [1-5]. 
RP can be divided into two groups: non-syndromic where RP 
manifests only in the eyes and syndromic RP where other 
non-ocular diseases are concomitant. The most common form 
of syndromic RP is Usher syndrome, which involves RP with 
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Purpose: With recent availability of next-generation sequencing (NGS), it is becoming more common to pursue disease-
targeted panel testing rather than traditional sequential gene-by-gene dideoxy sequencing. In this report, we describe 
using NGS to identify multiple disease-causing mutations that contribute concurrently or independently to retinal dys-
trophy in three relatively small families.
Methods: Family members underwent comprehensive visual function evaluations, and genetic counseling including a 
detailed family history. A preliminary genetic inheritance pattern was assigned and updated as additional family mem-
bers were tested. Family 1 (FAM1) and Family 2 (FAM2) were clinically diagnosed with retinitis pigmentosa (RP) and 
had a suspected autosomal dominant pedigree with non-penetrance (n.p.). Family 3 (FAM3) consisted of a large family 
with a diagnosis of RP and an overall dominant pedigree, but the proband had phenotypically cone-rod dystrophy. Initial 
genetic analysis was performed on one family member with traditional Sanger single gene sequencing and/or panel-based 
testing, and ultimately, retinal gene–targeted NGS was required to identify the underlying cause of disease for individuals 
within the three families. Results obtained in these families necessitated further genetic and clinical testing of additional 
family members to determine the complex genetic and phenotypic etiology of each family.
Results: Genetic testing of FAM1 (n = 4 affected; 1 n.p.) identified a dominant mutation in RP1 (p.Arg677Ter) that was 
present for two of the four affected individuals but absent in the proband and the presumed non-penetrant individual. 
Retinal gene–targeted NGS in the fourth affected family member revealed compound heterozygous mutations in USH2A 
(p. Cys419Phe, p.Glu767Serfs*21). Genetic testing of FAM2 (n = 3 affected; 1 n.p.) identified three retinal dystrophy 
genes (PRPH2, PRPF8, and USH2A) with disease-causing mutations in varying combinations among the affected family 
members. Genetic testing of FAM3 (n = 7 affected) identified a mutation in PRPH2 (p.Pro216Leu) tracking with disease 
in six of the seven affected individuals. Additional retinal gene–targeted NGS testing determined that the proband also 
harbored a multiple exon deletion in the CRX gene likely accounting for her cone-rod phenotype; her son harbored only 
the mutation in CRX, not the familial mutation in PRPH2.
Conclusions: Multiple genes contributing to the retinal dystrophy genotypes within a family were discovered using 
retinal gene–targeted NGS. Families with noted examples of phenotypic variation or apparent non-penetrant individu-
als may offer a clue to suspect complex inheritance. Furthermore, this finding underscores that caution should be taken 
when attributing a single gene disease-causing mutation (or inheritance pattern) to a family as a whole. Identification of 
a disease-causing mutation in a proband, even with a clear inheritance pattern in hand, may not be sufficient for targeted, 
known mutation analysis in other family members.

Correspondence to: Kaylie Jones, Retina Foundation of the 
Southwest, Suite 200, 9600 North Central Expressway, Dallas, TX 
75231; Phone: (214) 363-3911; FAX: (214) 363-4538; email: kwebb@
retinafoundation.org
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sensory-neural hearing impairment and frequently, vestibular 
dysfunction [6].

Current evidence suggests that the majority of inherited 
retinal dystrophies are monogenic (single gene) in an indi-
vidual, and a reasonable assumption is that the same gene is 
involved in affected members of a single family, following 
standard Mendelian inheritance, i.e., autosomal dominant, 
autosomal recessive, or X-linked. However, rare digenic, 
triallelic, and mitochondrial forms have been observed 
[7-10], and multiple, independent mutations are possible in 
large families. Correctly identifying the disease-causing 
gene within a family is vital to providing guidance to the 
onset, progression, and severity of disease and for enrolling 
patients in clinical trials. Genotype data are also used to infer 
phenotype and to calculate inheritance risk to offspring [11].

Genetic testing in retinal diseases historically began 
with the proband as proxy for the family and targeted genes 
analyzed in a known disease-causing sequential manner until 
a probable disease-causing variant was identified. With the 
emerging availability of next-generation sequencing (NGS), 
it is becoming routine to parallel gene testing for large panels 
of genes rather than sequential gene-by-gene testing [12-16]. 
Few would disagree that NGS is a powerful, cost-effective, 
and efficient genetic testing tool, but comprehensive testing 
can also yield incidental and unexpected findings. In this 
report, we describe the identification of multiple gene muta-
tions associated with retinal dystrophy occurring indepen-
dently or concurrently in three relatively small families.

METHODS

The study was performed in accordance with the Declara-
tion of Helsinki, and informed consent was obtained from all 
participants. The research was approved by the Committee 
for Protection of Human Subjects, University of Texas South-
western Medical Center and at the University of Texas Health 
Science Center.

Members from three families with an initial diagnosis 
of RP from referring ophthalmologists underwent compre-
hensive visual function evaluations as part of the Retina 
Foundation of the Southwest’s ongoing research into the 
etiology and pathophysiology of inherited retinal disease. 
Clinical examinations included Electronic Early Treatment of 
Diabetic Retinopathy Study (E-ETDRS) visual acuity, dark-
adapted visual thresholds (Goldmann-Weekers adaptometer; 
Haag-Streit, Bern, Switzerland), kinetic and static visual field 
perimetry (Octopus; Haag-Streit, Koeniz, Switzerland), and 
in most cases, spectral domain optical coherence tomography 
(SD-OCT; Heidelberg Spectralis, Heidelberg, Germany) and 

full-field electroretinography (ffERG; Espion E3, Diagnosys, 
Lowell, MA).

Pedigrees were constructed based on patient interviews, 
and a preliminary genetic inheritance pattern was assigned 
and updated as additional family members were willing 
to participate. Comprehensive visual function exams and 
genetic testing were offered to immediate and extended 
family members to ascertain affectation status of all avail-
able individuals. If family members were unable to attend 
an in-person testing appointment, a biologic sample was 
sought for genetic testing along with a brief phone interview 
to collect vision and family history information, as well as 
obtain informed consent.

Blood or saliva samples were obtained from each indi-
vidual. Genomic DNA was extracted from whole blood as 
reported previously [17]. Saliva was collected with Oragene 
collection kits (DNA Genotek, Inc., Kanata, Canada) and 
extracted according to the manufacturer’s recommended 
protocol.

Genetic analysis was initially performed on one family 
member with traditional Sanger sequencing via sequential 
analysis of an autosomal dominant retinitis pigmentosa 
(adRP) gene panel to identify the underlying cause of disease 
in that family. Additional family members were clinically and 
genetically tested to refine the emerging complex genetic and 
phenotypic etiology. Retinal gene–targeted NGS analysis was 
used to resolve disparate genetic testing findings.

Sanger single gene and adRP panel–based sequencing 
was performed in the Clinical Laboratory Improvement 
Amendments (CLIA)–certified DNA diagnostic Laboratory 
for Molecular Diagnosis of Inherited Eye Diseases (LMDIED) 
at the University of Texas-Houston. Retinal gene–targeted 
NGS was performed in the University of Texas-Houston 
Health Science Center laboratory or in the Department of 
Molecular and Human Genetics, Baylor College of Medicine, 
Houston [18,19]. All likely pathogenic mutations identified 
using retinal gene–targeted NGS were confirmed using 
Sanger sequencing.

Pathogenicity analyses included variant assessment 
(PolyPhen-2; SIFT; Mutation Taster), sequencing of multiple 
family members, and segregation analysis. The observed 
genotype was compared to the reported diagnosis and 
ophthalmic characterization for each individual and subse-
quently assessed for consistency with reported literature. 
Additional Sanger single gene sequencing and further rounds 
of retinal gene–targeted NGS were performed as needed until 
the genetic cause of disease was determined for each avail-
able family member.

http://www.molvis.org/molvis/v23/470
http://genetics.bwh.harvard.edu/pph2/
http://sift.jcvi.org/
http://www.mutationtaster.org/
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RESULTS

Pedigrees for the three families are shown in Figure 1. Family 
1 (FAM1) and Family 2 (FAM2) were clinically diagnosed 
initially with RP with suspected dominant inheritance with 
non-penetrance (n.p.). Family 3 (FAM3) comprised a domi-
nant pedigree with multiple generations diagnosed with RP, 
but the proband was phenotypically consistent with a cone-
rod dystrophy phenotype.

FAM1: The proband of FAM1 (#2334) was diagnosed with 
RP at age 33 years. She reported bilateral, sensorineural 
mild-to-moderate hearing loss from age 10 that was thought 
to be due to childhood measles. The family history revealed 
other cases of RP but no hearing loss. At age 46 years, her 

phenotype was consistent with a typical adult onset, rod-
driven case of RP. Her visual acuity was reduced to 20/50 
oculus dexter (OD) and 20/60 oculus sinister (OS), rod ERG 
responses (Figure 2) were non-detectable, while cone ERG 
responses were minimally reduced from normal although her 
central visual field was reduced to less than 10 degrees. Her 
final dark-adapted threshold was elevated by 3.9 log units 
with an 11 degree test centrally fixated. The OCT scans for 
the proband showed limited retention of the photoreceptor 
layer in the fovea OS and only discontinuous remnants in the 
fovea OD (Figure 3). Fundus photography (Figure 3) showed 
notable bone spicule-like pigmentation, vessel attenuation, 
and disc pallor in the proband. Full-field ERG responses 

Figure 1. Pedigrees of families clinically diagnosed with autosomal dominant retinitis pigmentosa (adRP) with suspected non-penetrance 
(FAM1, FAM2) and dominant pedigree (FAM3). Filled symbols indicate diagnosis of RP. Individuals for whom DNA samples were available 
are indicated with identification (ID) numbers; probands are marked with arrows. ‘-’ indicates the presence of a mutation, and ‘+’’ indicates 
the presence of a wild-type allele, detailed in Table 1.

http://www.molvis.org/molvis/v23/470
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for the proband’s unaffected mother (#5908) are shown for 
comparison (Figure 2).

Initial sequential Sanger analysis of the FAM1 proband 
did not identify a disease-causing mutation in an autosomal 
dominant panel of RP genes. However, testing of additional 
known affected family members identified a previously 
reported dominant mutation in RP1 (Gene ID: 19888, 
OMIM: 603937) p.Arg677Ter [20,21] that was confirmed 
in two (#10295 and #10347; vision data not available) of the 
four affected individuals but absent in the proband and the 
unaffected, suspected non-penetrant individual (#5908). The 
fourth affected family member was unavailable for testing. 
Subsequent retinal gene–targeted NGS testing revealed the 
proband was a compound heterozygote for two previously 
reported mutations in USH2A (Gene ID: 7399, OMIM: 

608400), p.Cys419Phe and p.Glu767Serfs*21 [13,14,22,23], 
and her mother, who was believed to be non-penetrant, was a 
heterozygous carrier of the mutation in USH2A p.Cys419Phe. 
Segregation of the identified mutations is detailed in Table 1.

FAM2: Patient #8438 was diagnosed with RP at age 20 years 
and denied any known or suspected hearing loss. Family 
history detailed other cases of RP but no hearing loss. Visual 
function testing of patient #8438 at age 23 years revealed 
visual acuity of 20/25 in each eye with reduced-to-minimal 
rod and cone ERG function (Figure 2). Visual field diameter 
was reduced to less than 15 degrees. Her final dark-adapted 
threshold was elevated by 1.9 log units with an 11 degree 
test centrally fixated. The OCT scans showed retention of the 
photoreceptor layer in the fovea and midperiphery, although 
midperiphery granularity was notable (Figure 3). Fundus 

Figure 2. ffERG panels for FAM1, FAM2, and FAM3. A: FAM1 unaffected full-field electroretinography (ffERG) cone and rod responses 
for patient #5908, heterozygous carrier of a mutation in USH2A. Non-detectable ffERG rod response and minimally reduced from normal 
cone response for patient #2334, compound heterozygous for two mutations in USH2A. B: Three members of FAM2 with reduced-to-minimal 
rod and cone ERG function. Patient #8438 was found to have two compound heterozygous mutations in USH2A, and patient #10228 had 
mutations in two autosomal dominant retinitis pigmentosa (adRP) genes, PRPH2 and PRPF8, as well as a single, heterozygous mutation in 
USH2A. Patient #10534 had a mutation in one adRP gene, PRPF8, as well as a single, heterozygous mutation in USH2A. C: Four members 
of FAM3 with varying degrees of ffERG dysfunction. Proband #5250 shows moderately reduced rod and cone responses and was found to 
harbor mutations in two autosomal dominant genes, PRPH2 and CRX. The proband’s son, #10396, had minor ffERG changes at age 8 years 
and was found to carry the mutation in CRX. Two additional family members, #6275 and #6121, carry only a single mutation in PRPH2 and 
show reduced-to-minimal ffERG responses. 

http://www.molvis.org/molvis/v23/470
https://www.ncbi.nlm.nih.gov/omim/?term=603937
https://www.ncbi.nlm.nih.gov/omim/?term=608400
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photography (Figure 3) showed a relatively preserved fundus 
appearance with sparse bone spicule-like pigment deposits 
limited to the far periphery. Two additional family members 
presented with signs consistent with a diagnosis of RP. 
The proband’s aunt, patient #10524, at age 53 years of age 
showed symptoms consistent with an advanced stage of RP, 
including non-detectable ffERG responses (Figure 2). OCT 
images showed thinning of the retina with only remnants of 
the photoreceptor layer remaining, and fundus photography 
showed dense mid-periphery bone spicule-like pigment 
and thinning of the retina (Figure 3). Her daughter, patient 
#10228, at age 24 years exhibited severe symptoms of RP, 
including markedly reduced ffERG rod and cone responses, 
OCT images indicated the photoreceptor layer limited to 
the fovea and parafovea, and moderate mid-periphery bone 
spicule-like pigment could be seen on fundus photography.

Initial sequential Sanger sequencing analysis for patient 
#8438 did not detect a disease-causing mutation in a panel 
of autosomal dominant RP genes. Subsequent retinal 

gene–targeted NGS was initiated in patient #10228 due to 
sample availability. This testing revealed likely disease-
causing mutations in three retinal dystrophy genes (PRPH2- 
Gene ID: 5961 OMIM: 179605, PRPF8- Gene ID: 10594 
OMIM: 607300, and USH2A) within this family. Affected 
FAM2 individuals each were determined to have a different 
genotype responsible for their retinal disease.

Patient #10228 was determined to harbor a novel muta-
tion in PRPF8 and a novel autosomal dominant mutation 
in PRPH2, and additionally carried a heterozygous known 
mutation in USH2A (p.Glu767Serfs*21). Targeted Sanger 
sequencing analysis for each of the identified gene muta-
tions was undertaken in the available family members to 
determine segregation of the mutations. The novel PRPF8 
missense mutation (c.5792C>T, p.Thr1931Met) results in an 
amino acid substitution that has not been reported in patients 
or normal control databases. Computational analysis predicts 
this variant to be pathogenic (PolyPhen = 1.0, SIFT = 0.0, 
MutationTaster = 0.99, disease causing plus possible splicing 

Figure 3. Fundus and SD-OCT images from individuals in three families diagnosed with inherited retinal disease. Representative central 
views of the left eye and the corresponding spectral domain optical coherence tomography (SD-OCT) image are shown. 

http://www.molvis.org/molvis/v23/470
https://www.ncbi.nlm.nih.gov/omim/?term=179605
https://www.ncbi.nlm.nih.gov/omim/?term=607300
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defect) based on its location in a highly conserved functional 
domain and the prediction that the nucleotide substitution 
may alter the donor splice site. The novel missense muta-
tion in PRPH2 (c.610T>C, p.Tyr204His) results in an amino 
acid change that has not been reported in a patient or normal 
control databases; this mutation was identified once in the 
LMDIED laboratory in a patient with dominant retinal 
disease. The mutation is located at a highly conserved residue 
in an established functional domain. Computation analysis 
predicts this to be a pathogenic mutation (PolyPhen = 0.99, 
SIFT = 0.01, MutationTaster = 0.99, disease-causing). Her 
affected mother, patient #10524, was found to harbor the 
novel, autosomal dominant mutation in PRPF8. The family 
denied that the father of #10228 has any symptoms of retinal 
disease, but to date, he has been unavailable for clinical or 
genetic testing due to an occupation outside the United States.

Patient #8438 was negative for the identified autosomal 
dominant RP mutations in PRPH2 and PRPF8 but was 
found to harbor the identified p.Glu767Serfs*21 mutation in 
USH2A. A subsequent round of retinal gene–targeted NGS 
confirmed that patient #8438 was a compound heterozygote 
for previously reported pathogenic mutations in USH2A, 
p.Glu767Serfs*21 and p.Glu3448Lys [14,22,24,25]. Segrega-
tion analysis of the identified mutations in USH2A among 
the three additional family members tested showed that each 
individual was a heterozygous carrier for one of the mutations 
in USH2A, including patient #8438’s mother (#9959) who was 
formerly believed to be non-penetrant for adRP. Segregation 
of the identified mutations is detailed in Table 1 and Figure 1.

FAM3: The proband (#5250; Figure 1) was diagnosed with 
cone-rod dystrophy at age 18 years with a family history of 
RP spanning multiple generations consistent with dominant 
inheritance. Patient #5250, her son, and two additional family 
members diagnosed with RP exhibited varying levels of rod 
and cone ERG dysfunction (Figure 2). Unlike the proband’s 
RP diagnosed family members who demonstrated primarily 
loss of peripheral rod function followed by cone degenera-
tion as disease progressed, the proband exhibited early onset, 
primary loss of cone photoreceptors followed by loss of rod 
function that was widespread across the entire retina. At age 
33, patient #5250 had visual acuity of 20/500 OU, and her 
final dark-adapted threshold was elevated by 5.4 log units 
with an 11 degree test centrally fixated. OCT scans showed 
sparse remnants of the photoreceptor layer in the fovea and 
midperiphery with infrared imaging highlighting an atrophic 
macular lesion (Figure 3). Fundus photography (Figure 3) 
illustrated a pronounced macular lesion, granular appearance, 
and sparse bone spicule-like pigment deposits. RP-affected 
family members had imaging typically associated with 

peripheral retinopathy due to RP. The proband’s son (#10396) 
presented at age 8 years with suspected reduced acuity and 
visual fields constricted to less than 10 degrees with reduced 
macular sensitivity, and a multifocal ERG from his refer-
ring ophthalmologist noted marked deficits in central retina 
responses that were consistent with a cone-rod dystrophy 
phenotype.

Traditional sequential single gene sequencing identi-
fied a previously reported heterozygous mutation in PRPH2 
(p.Pro216Leu) [26] tracking with disease in six of the seven 
affected individuals who were genetically tested. The 
proband’s son, patient #10396, was notably mutation negative 
for the mutation in PRPH2. Subsequent retinal gene–targeted 
NGS analysis for the FAM3 proband and her son determined 
that she harbored a novel, heterozygous partial deletion in 
the CRX gene (Gene ID: 1406 OMIM: 602225) that includes 
at least exons 3 and 4 along with the dominant PRPH2 muta-
tion, whereas her son harbored only the deletion in the CRX 
gene. The CRX deletion was confirmed independently by 
a commercial laboratory. Although this exact deletion has 
not been previously reported in literature, multiple missense 
and nonsense mutations in the CRX gene have been reported 
in the Human Gene Mutation Database as associated with 
cone-rod dystrophy [27], and a single gross deletion in the 
CRX gene has been previously published in association with 
Leber congenital amaurosis [28]. The proband’s other three 
children (#10397, #10,398, and #11,704) were genetically and 
clinically tested as available (#10398 was unable to undergo 
clinical testing due to illness), and each child was found to 
harbor one or both of the identified mutations. Segregation 
of the identified mutations is detailed in Table 1 and Figure 1.

DISCUSSION

Using targeted capture NGS, we are discovering multiple 
genes contributing to the retinal dystrophy genotypes within 
a family [19,29,30]. Individuals from FAM1, FAM2, and 
FAM3 each had the initial provisional diagnosis of RP associ-
ated with a likely autosomal dominant pattern of inheritance. 
Two of the three families contained a potential non-penetrant 
individual, and the third family had documented phenotypic 
variability

Traditional Sanger-based sequential, single gene testing 
of the index case failed to reveal the underlying cause of 
retinal disease for these families. For FAM1, two different 
genes accounted for retinal disease in a non-overlapping 
manner in this relatively small family. The proband in FAM1 
presented with typical RP symptoms, including night blind-
ness, reduced visual fields, and bone spicule-like pigmentary 
deposits, all of which are plausibly consistent with previously 
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reported phenotypes caused by mutations in RP1 in domi-
nant RP with and without reduced penetrance [20,31]. The 
proband’s phenotype, which included sensorineural hearing 
loss from an initially uncertain cause, was ultimately 
explained, through the use of targeted capture NGS, by muta-
tions in the USH2A gene which is associated with syndromic 
and non-syndromic RP [32-34].

FAM2 and FAM3 presented a far more complex genetic 
puzzle with disease-causing mutations identified in multiple 
genes that in some individuals likely contributed concurrently 
to their retinal dystrophy phenotype. It is not entirely clear 
what impact having two autosomal dominant gene muta-
tions may have on phenotypic severity or the progression 
of disease. In FAM2, we observed dominant mutations in 
PRPH2 and PRPF8 in a single individual. The PRPH2 and 
PRPF8 genes have been widely reported to result in intrafa-
milial phenotype variability, including incomplete penetrance 
[35-40]. FAM3 was found to have two individuals with domi-
nant mutations in PRPH2 and CRX. The identification of only 
the dominant PRPH2 gene was initially determined to be the 
cause of RP for the family because mutations in the PRPH2 
gene can result in a broad spectrum of phenotypes ranging 
from RP to adult vitelliform macular dystrophy and even 
cone-rod dystrophy [35,41].

Inherited retinal diseases are exceptionally heteroge-
neous with more than 3,500 mutations in more than 80 genes 
known to cause various forms of non-syndromic retinitis 
pigmentosa [5]. Autosomal dominant retinitis pigmentosa 
alone can be caused by mutations in at least 27 genes (https://
sph.uth.edu/retnet/). Precise clinical diagnosis and detailed 
pedigree information are the first keys to correct identifi-
cation of disease-causing mutations. Even with meticulous 
characterization of the phenotype, considerable variability 
and overlap of disease presentation in patients with inherited 
retinal disease can lead to challenges in correctly identifying 
the disease-causing mutation in individuals. The implementa-
tion of NGS platforms in the field of inherited retinal diseases 
has led to the identification of cases with inconsistencies 
between initial clinical findings and actual genetic result 
that required a revision of diagnosis for individuals [41-45]. 
Intrafamilial variability is not uncommon in families with 
inherited retinal disease. Even family members with the same 
causative mutation can show different phenotypes, which can 
further complicate molecular diagnosis.

In practice, evaluation of a patient or family with an 
inherited retinal disease can be divided into three overlapping 
stages: clinical characterization of the patient and available 
family members, family history including pedigree, and 
molecular testing. Because of the complexity of inherited 

retinal diseases, it is often necessary to reconcile the clinical 
diagnosis, family diagnosis, and molecular diagnosis. This 
can best be done in a team approach, ideally in centers that 
include retinal specialists, genetic counselors, molecular 
biologists, and other experts.

Families with considerable phenotypic variation or 
apparent non-penetrant individuals raise the possibility of 
complex inheritance. Furthermore, these findings underscore 
that caution should be taken when attributing a single gene 
disease-causing mutation (or inheritance pattern) to a family 
as a whole and has implications for directing appropriate 
genetic testing and genetic counseling. Multiple family 
members should always undergo independent genetic testing 
whenever possible. Targeted single gene genetic testing may 
not be a sufficient prescreening for gene-directed therapies. 
Until we have a much better understanding of the complexity 
of RP and related diseases, diagnosis and treatment must be 
approached with caution and an open mind.
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