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Neutrino flavor transformation in the lepton-asymmetric universe
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3Department of Physics, University of Torino, Via P. Giuria 1, I—10125 Torino, Italy
(Received 8 August 2016; published 4 October 2016)

We investigate neutrino flavor transformation in the early Universe in the presence of a lepton
asymmetry, focusing on a two-flavor system with 1–3 mixing parameters. We identify five distinct regimes
that emerge in an approximate treatment neglecting collisions as the initial lepton asymmetry at high
temperature is varied from values comparable to current constraints on the lepton number down to values
at which the neutrino-neutrino forward-scattering potential is negligible. The characteristic phenomena
occurring in these regimes are (1) large synchronized oscillations, (2) minimal flavor transformation,
(3) asymmetric (ν- or ν̄-only) MSW, (4) partial MSW, and (5) symmetric MSW. We examine our numerical
results in the framework of adiabaticity, and we illustrate how they are modified by collisional damping.
Finally, we point out the existence of matter-neutrino resonances in the early Universe and show that they
suffer from nonadiabaticity.
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I. INTRODUCTION

In this paper we examine how cosmological lepton
asymmetries spawned at high temperature affect the ensu-
ing evolution of neutrino flavor. Despite the particle’s
humble stature, the consequences of neutrino physics for
the early Universe are profound. As the Universe cools to a
temperature of a few MeV, the weak-interaction rates that
have safeguarded thermal equilibrium in the neutrino sector
begin to falter in their competition with Hubble expansion.
At roughly the same time, electrons and positrons are
annihilating and dumping entropy into the plasma. Some
neutrinos share in this heating, but not all—leaving their
once-equilibrium spectra deformed and cool compared to
those of photons, which remain in equilibrium by dint of
their swift electromagnetic interactions. [See, for example,
Ref. [1] for a recent discussion of the Boltzmann transport
of neutrino energy and entropy through weak decoupling
and Big Bang nucleosynthesis (BBN).]
During this period neutrinos are all the while undergoing

capture on free nucleons and contributing to blocking
factors in electron/positron capture and neutron decay.
Through their role in these processes, neutrinos shape
the neutron-to-proton (n=p) ratio that will be available
when the nucleus-building begins in full force at
T ∼ 70 keV. The primordial byproducts of BBN—most
promisingly, from an observational perspective, the ele-
ments D and 4He—depend on the n=p ratio, and the
protracted freeze-out of weak interactions means that there
is ample time for the evolving, nonequilibrium neutrino
spectra to leave their mark on the nuclide abundances [2].

Even after neutrinos have decoupled from the plasma,
they are no mere spectators, as their energy density helps to
set the expansion rate of the Universe. In the era following
e� annihilation, neutrinos are relativistic and therefore
contribute, along with photons (and possibly other particles
beyond the Standard Model), to the radiation energy
density ρrad. The energy density of these species is
commonly parametrized in terms of the quantity Neff,
defined by the relation

ρrad ¼ 2

�
1þ 7

8

�
4

11

�
4=3

Neff

�
π2

30
T4: ð1Þ

This parameter is sensitive not just to the number of flavors
of neutrinos but also to their postdecoupling spectra, which,
as noted above, inevitably sustain nonthermal distortions.
Determining the precise form of these distortions and their
impact on BBN and Neff is a rich and persistent problem in
cosmology [1–10].
Of particular importance in this regard is the lepton

number

Lν ¼
nν − nν̄

nγ
; ð2Þ

defined in terms of the number densities of neutrinos (nν),
antineutrinos (nν̄), and photons (nγ). In thermal equilibrium
a finite lepton number is tantamount to one or more
nonzero chemical potentials in the neutrino sector, with
clear ramifications for Neff. Away from equilibrium the
chemical potentials are no longer well-defined, but the
implications of nonzero Lν for the radiation energy density
still stand. A cosmological lepton number also exerts an
influence through the special role, indicated previously, that
the electron flavor plays in mediating the reactions*ljohns@physics.ucsd.edu
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νe þ n⇌pþ e−;

ν̄e þ p⇌nþ eþ: ð3Þ

The unique leverage on the primordial 4He abundance that
νe and ν̄e are afforded by virtue of these reactions [11] has
driven interest in the possibility that Lν is not only nonzero
but is (or once was) distributed unevenly across the
individual flavors. The evolution of an initial lepton
asymmetry—a difference between Lνe and Lνx in the
effective two-flavor scenario that we investigate—depends
on the interplay between collisions and medium-enhanced
oscillations, both of which are capable of shuttling lepton
number between flavors. In a lepton-asymmetric universe
especially, precise predictions of Neff and YP (the mass
fraction of 4He) therefore demand a careful treatment of
neutrino flavor transformation.
Due to the influence of sphalerons, the lepton number is

expected in many baryogenesis models to be comparable
to the baryon asymmetry (or baryon-to-photon ratio)
η ¼ nB=nγ ≈ 6 × 10−10 [12–14]. But the fact remains that
the lepton number is only modestly constrained by mea-
surements: Even the most stringent bounds currently permit
asymmetries of ∼5 × 10−2 [15–20], a full eight orders of
magnitude above η. Moreover, the past several decades
have brought forth a number of models [21–31] that can
generate a large lepton number without contravening the
impressive agreement on η between cosmic microwave
background (CMB) and BBN data. A measurement of the
lepton number of the Universe, whatever its value turns
out to be, will serve as a probe of physics at and above the
scale of electroweak symmetry breaking and will put to the
test theories of baryogenesis.
Asofrecently,acareful treatment isnowmotivatedfromyet

another direction. The detections [32,33] of a mysterious
x-ray line in a number of galaxies and galaxy clusters at
∼3.55 keV have ignited speculation that the line may be
attributable todarkmatterdecay.One scenarioconsistentwith
this interpretation—indeed,ascenario thatmaybesaid tohave
predicted the appearance of a keV decay line [34]—is the
resonant production of sterile neutrino dark matter in the
presence of a nonzero lepton number [35–37]. (For reviews
of the dark-matter candidacy of sterile neutrinos, see
Refs. [38,39].) Given the energy and flux of the alleged decay
line, resonant production singles out a range of preresonance
leptonnumbers on the order ofLν ∼ 5 × 10−4 as being in best
agreement with the x-ray observations [40]. Since the pro-
duction mechanism is agnostic to the details of how Lν is
distributed, it leaves the door open to lepton asymmetries and
any signatures that they may have left behind.
Investigation into the evolution of the individual lepton

numbers dates back at least to the work of Savage et al. [41],
who considered the role of resonant neutrino oscillations—a
topic that is amajor themeof the presentwork.But the current
orthodoxy on the subject originated a decade later with the
watershed numerical study by Dolgov et al. [15] and the

papers by Abazajian et al. [42] and Wong [43] that followed
shortly thereafter. (See also Ref. [44].) The authors of
Ref. [15] concluded that equilibration of the lepton number
across the flavors—the shorthand for which is simply flavor
equilibration—is achieved prior to the onset of BBN
for a lepton asymmetry on the order of the Lν constraint.
Subsequent papers on the topic [18,19,42,43,45–47] have
refined this original treatment of the problem, examining the
connections to Neff , YP, and the D abundance ½D=H�.
The literature in this area has largely been inspired by the

quest to establish rigorous limits on the neutrino degeneracy
parameters ηνα ¼ μα=T, where μα is the chemical potential
of neutrino flavor α. In the event that a lepton number
completely equilibrates, the BBN-derived limits that con-
strain ηνe likewise apply to the other flavors.Conversely, if no
equilibration occurs, then the constraints on ηνμ and ηντ are
considerably weaker than those on ηνe , as they are bounded
solely by their contribution to the radiation energy density.
The objective of this paper is not to revisit the question of
constraints on neutrino degeneracy, but rather to explore
more fully the panoply of flavor evolution that may have
occurred in the early Universe. While smaller values of Lν

push into the realm of effects that are thought to be currently
undetectable, we demonstrate—with an eye to forthcoming
observational improvements—that varying the initial lepton
number leads to dramatically different behaviors.
To this end we identify five regimes of coherent flavor

evolution that may be found for lepton numbers at or below
observational constraints (Fig. 1). We label these regimes

FIG. 1. Schematic illustration of the landscape of coherent flavor
evolution in the inverted hierarchy as a function of lepton
asymmetryL ¼ Lνe − Lνx. The black swath at the top of the figure
indicates the realm of lepton asymmetries that are currently
excluded by 4He measurements. The five regimes at subconstraint
values of L are labeled by their most prominent characteristics.
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by their principal characteristics, which are, in order of
decreasing lepton asymmetry,

(I) large synchronized oscillations,
(II) minimal flavor transformation,
(III) asymmetric (ν- or ν̄-only) MSW conversion,
(IV) partial MSW conversion, and
(V) symmetric MSW conversion.

We elucidate the physics behind these behaviors with
frequent recourse to the framework of (non)adiabatic level
crossings. We also discuss how the inclusion of collisions,
in the approximate form of scattering-induced quantum
damping, differently affects these regimes. Coarse features
of the coherent oscillation physics are found to persist in the
presence of damping. We argue that this finding motivates
further exploration of the lepton-asymmetric terrain with a
treatment that goes beyond the approximations of the
present study.
The equations of motion relevant to the evolution of a

lepton asymmetry in the early Universe are set out in
Sec. II. The regimes of coherent evolution are presented in
Sec. III, followed by discussions of adiabaticity, the matter-
neutrino resonance, and the importance of collisions. A
conclusion is given in Sec. IV. Throughout this paper we
use natural units in which c ¼ ℏ ¼ kB ¼ 1.

II. NEUTRINO KINETICS IN THE
EARLY UNIVERSE

For reasons made clear below, the active period for
neutrino flavor transformation begins around 10–20 MeV
and continues down to—or, depending on the lepton
asymmetry, through—the epoch of neutrino decoupling
at ∼1 MeV. Over these temperatures the three flavors of
active neutrinos are immersed in a hot, dense bath of
electrons, positrons, and free nucleons; the μ� and τ� that
abounded at higher temperatures have all but disappeared,
while e� remain relativistic through to the very bottom of
this temperature range. Protons and neutrons, in contrast,
have long since become nonrelativistic, and their densities
are minuscule in comparison on account of the high
entropy of the plasma. Within this medium neutrinos
experience oscillations enhanced by forward (coherent)
scattering with matter particles (e�) and other neutrinos.
They also undergo momentum-changing (incoherent) scat-
tering with both populations.
In Sec. II A we explain how the problem of neutrino

flavor evolution under these conditions can be reduced to
an effective two-flavor scenario. We then go on to describe
in Sec. II B the potentials that drive the coherent mixing
between the two flavors and the incoherent scattering that
competes against it. We provide in Sec. II C the relevant
background on resonant flavor transformation and collec-
tive oscillations. Lastly, in Sec. II D we briefly summarize
the numerical approach adopted in this study.

A. Two-flavor system

Under the condition that Lνμ ¼ Lντ , the paucity of muons
and tauons in the plasma—and, correspondingly, of
charged-current interactions involving νμ and ντ—entails
that neutrinos are well modeled by an effective two-flavor
system consisting of νe and νx, where νx is a superposition
of νμ and ντ. We present here a derivation of the effective
mixing parameters relevant to this two-flavor system. A
similar view on the reduction to two flavors can be found
in Ref. [48].
An effective mixing angle θ parametrizes vacuum mix-

ing in the two-flavor system, with the orthogonal trans-
formation between the mass and flavor states given by

νe ¼ ν1 cos θ þ ν2 sin θ;

νx ¼ −ν1 sin θ þ ν2 cos θ; ð4Þ
where ν1;2 are mass eigenstates with masses m1;2. [Strictly
speaking, as Eq. (6) below makes clear, ν1 is only an
eigenstate in the limit that two of the three physical neutrino
masses are degenerate. This is exactly the limit that we will
take.] The electron neutrino νe in the two-flavor system is
identical to its three-flavor counterpart ν0e, which after
transforming to the appropriate mass bases yields the
constraint

ν1 cos θ þ ν2 sin θ ¼ ν01 cos θ
0
12 cos θ

0
13

þ ν02 sin θ
0
12 cos θ

0
13e

−iφ1

þ ν03 sin θ
0
13e

−iδe−iφ2 ; ð5Þ
using primes to denote three-flavor mixing parameters and
δ and φi to denote the Dirac and Majorana CP-violating
phases. We identify θ ¼ θ013, so that the two-flavor mass
eigenstates are related to the three-flavor ones by the
relations

ν1 ¼ ν01 cos θ
0
12 þ ν02 sin θ

0
12e

−iφ1 ;

ν2 ¼ ν03e
−iδe−iφ2 : ð6Þ

The phases δ and φ2 amount to an overall rephasing of ν2
and exert no influence on our calculations; similarly for the
other Majorana phase. We point out that this conclusion
regarding δ is consistent with the study of CP violation in
the neutrino-degenerate early Universe in Ref. [46], which
showed that effects of CP violation from the Dirac phase
appear only when Lνμ ≠ Lντ .
A third mass eigenstate, orthogonal to ν1 and ν2 and

having mass m3, may also be defined in order to complete
the transformation between the primed and unprimed
bases:

ν3 ¼ −ν01sin θ012 þ ν02cos θ
0
12e

−iφ1 : ð7Þ
This state decouples from the other two and is identical to
the third flavor eigenstate in the unprimed basis: ν3 ¼ νy.
Written in terms of the physical flavor states,
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νe ¼ ν0e;

νx ¼ ν0μ sin θ023e
−iδ þ ν0τ cos θ023e

−iδ;

νy ¼ ν0μ cos θ023 − ν0τ sin θ023: ð8Þ

From Eqs. (6) and (7) it follows that

m2
1 ¼ m02

1 cos
2 θ012 þm02

2 sin
2 θ012;

m2
2 ¼ m02

3;

m2
3 ¼ m02

1 sin
2 θ012 þm02

2 cos
2 θ012: ð9Þ

Since we are concerned primarily with qualitative behavior
in this paper, we are content to take m02

1 ≈m02
2, which

leads to

δm2 ≡m2
2 −m2

1 ≈m2
2 −m2

3 ≈ δm02
31: ð10Þ

To this level of approximation the νi (i ¼ 1, 2, 3) states are
genuine mass eigenstates and, moreover, ν3 is degenerate
with ν1 and decouples from the νe − νx mixing channel.
With the proviso that the lepton numbers Lνμ and Lντ are
the same (but not necessarily equal to Lνe), the flavor
transformation that occurs in the temperature range we
investigate here is therefore adequately captured by νe − νx
oscillations with 1–3 mixing parameters.
This effective two-flavor system distills many of the

important aspects of the full three-flavor problem, and
the flavor-transformation phenomena we describe below
carry over to mixing in other channels. The locations and
sizes of features shift with changing parameters—δm2⊙,
for instance, gives rise to resonance behavior at lower
temperatures than does δm2

atm—but the physics behind
these features is resilient. Nonetheless, it should be kept in
mind that transformation among three flavors likely leads
to an even richer landscape of flavor evolution than in the
two-flavor scenario, especially in the event that Lνe , Lνμ ,
and Lντ are all unequal.

B. The kinetic equations

Tracking the flavor content of an ensemble of neutrinos
and antineutrinos is accomplished by following the evo-
lution of the density matrices ρ and ρ̄, which for each
comoving energy ϵ ¼ E=T ≈ p=T have the 2 × 2 structures

ρðϵ; tÞ ¼
�
ρee ρex

ρ�ex ρxx

�
; ρ̄ðϵ; tÞ ¼

�
ρ̄ee ρ̄ex

ρ̄�ex ρ̄xx

�
; ð11Þ

where the individual matrix elements tacitly depend on ϵ
and t. (Throughout this paper we denote the analogous
objects for antineutrinos using the prescription να → ν̄α.
The antineutrino analogues are always denoted with an
overbar.)
We choose a normalization such that at high temperature

ρ assumes the form

ρðϵÞ ≅
�
fðϵ; ηνeÞ 0

0 fðϵ; ηνxÞ
�
; ð12Þ

where the diagonal entries are Fermi-Dirac equilibrium
distribution functions

fðϵ; ηναÞ ¼
1

eϵ−ηνα þ 1
: ð13Þ

In general, whether at high temperature or not, the diagonal
entries of ρ encode the number densities of νe and νx
and the off-diagonal entries measure quantum coherence
between the two flavors.
The initial conditions given in Eq. (12) are justified by

the quasiequilibrium that obtains at the starting temper-
atures used for our calculations. At these temperatures the
neutrinos exchange energy with the plasma on time scales
short compared to the Hubble time, ensuring that the
neutrino spectra retain their thermal Fermi-Dirac shape
on the latter time scale, even while the chemical potentials
are evolving. (To be precise, it is the number densities in
energy eigenstates that are proportional to Fermi-Dirac
functions; the validity of using them in the flavor-basis
density matrix lies in the fact that at high T the flavor and
energy bases are nearly coincident.) As the temperature
drops, oscillations grow in importance relative to incoher-
ent scattering, and the ability of scattering to preserve
equilibrium spectra diminishes. But in the scattering-
dominated limit, in which our initial temperatures safely
fall, neutrinos have distribution functions as in Eq. (12),
and coherence between the flavors is efficiently stamped
out by the high scattering rate.
For each mode ϵ the neutrino and antineutrino density

matrices obey the equations of motion

ið∂t −Hp∂pÞρðϵ; tÞ ¼ ½Hðϵ; tÞ; ρðϵ; tÞ� þ C;

ið∂t −Hp∂pÞρ̄ðϵ; tÞ ¼ ½H̄ðϵ; tÞ; ρ̄ðϵ; tÞ� þ C̄; ð14Þ

where H is the Hubble parameter, H is the Hamiltonian,
and C is the collision term encapsulating incoherent
scattering [49]. The collision term depends on the neutrino
density matrices and the background-particle distribution
functions across all energies.
The Hamiltonian consists of three ingredients: a vacuum

potential Hvac, which is driven by the mass-squared
splitting δm2 and the vacuum mixing angle θ; a thermal
potential He, which is due to forward scattering of
neutrinos with the e� jostling about in the plasma; and a
self-coupling potential Hν, which arises from neutrino-
neutrino scattering. Written out,
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H ¼ Hvac þHe þHν

¼ δm2

2E
B −

8
ffiffiffi
2

p
GFEϱe�
3m2

W
L

þ
ffiffiffi
2

p
GF

2π2

Z
dE0E02½ρðE0Þ − ρ̄�ðE0Þ�; ð15Þ

where in the flavor basis B ¼ Uðdiag½−1=2; 1=2�ÞU† with
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix U,
L ¼ diag½1; 0�, ϱe� denotes the energy density of e�, GF
is the Fermi constant, and mW is the W boson mass.
The time dependence of E, ϱe� , ρ, and ρ̄ is implicit.
Antineutrinos, meanwhile, evolve under the Hamiltonian
H̄ ¼ Hvac þHe −H�

ν.
Strictly speaking, the Hamiltonian relevant to neutrino

propagation in a medium contains more terms than
those shown in Eq. (15) [50]. In addition to the finite-
temperature charged-lepton potential (∼ϱe�) and the finite-
density neutrino potential [∼ðnνe − nνxÞ for the diagonal
portion], neutrinos also experience a finite-temperature
neutrino potential [∼ðϱνe − ϱνxÞ, again for the diagonal
portion] and a finite-density charged-lepton potential
[∼ðne− − neþÞ]. By the charge neutrality of the Universe,
however, the e� asymmetry must balance the baryon
asymmetry, making this contribution to the potential very
small. The thermal neutrino potential, meanwhile, is
OðG2

FÞ and is further suppressed by a factor comparable
to the lepton asymmetry. Lastly, we leave out the μ�
contribution to He, as in the scenarios we are concerned
with, their population has dwindled close to 0 by the time
flavor transformation begins.
The collision term C in Eq. (14) represents inelastic

scattering of neutrinos and is proportional to G2
F. A fully

realistic treatment involves computing quantum Boltzmann
collision integrals [51,52], a task that has only recently
been accomplished for the first time [53]. Whereas in
Ref. [53] de Salas and Pastor executed a high-precision
calculation of Neff in the standard (i.e., lepton-symmetric)
scenario, our aim here is to point out that an initial lepton
asymmetry at high temperature shapes the subsequent
neutrino flavor evolution in diverse and complicated ways.
For this study we instead set C to be a quantum damping
term that is proportional to ρ but has vanishing diagonal
entries [54–59]. Using such a term for C amounts to the
ansatz that the chief effect of collisions is to eliminate
coherence between the flavors.
The paradigm typically associated with quantum damp-

ing holds that a collision acts as a measurement of the
scattered neutrino, thereby collapsing it into a definite
flavor state. Although this picture is only a heuristic and has
its limitations, it correctly suggests that a system of (anti)
neutrinos immersed in a thermal bath ultimately approaches
a mixed state with equal νe (ν̄e) and νx (ν̄x) probabilities.
One of the fundamental issues at stake with a lepton
asymmetry is the time scale over which this descent to a

maximum-entropy state (and the concomitant flavor
equilibration) transpires. Conceptual aid notwithstanding,
damping does not in fact capture all of the microphysics of
scattering, and in Sec. III D we address the deficiencies of
this approximation at length.
Rather than solving for the flavor evolution directly as a

function of t, we work in terms of a parameter x ¼ Ma,
where M is an arbitrary energy scale and a is the scale
factor; doing so transfigures the equations of motion into
ordinary differential equations. Furthermore, for a two-
flavor system the density matrix ρ can be projected onto the
Pauli matrices according to

ρ ¼ 1

2
ðP0 þ ~P · ~σÞ: ð16Þ

Given that C has vanishing diagonal entries, the trace of ρ is
preserved by the equations of motion and has value

Trρ ¼ P0 ¼ fðηiνeÞ þ fðηiνxÞ; ð17Þ

where fðηiναÞ is the initial distribution function of να, prior
to any significant flavor transformation. The polarization
vector ~P, meanwhile, does evolve: If similar projections are
performed for H and C, Eq. (14) can be recast as

Hx
d~P
dx

¼ ~H × ~P −D~PT: ð18Þ

Along the same lines, we make use of the notation

H ¼
�
Hz HT

H�
T −Hz

�
; V ¼

�
Vz VT

V�
T −Vz

�
; ð19Þ

where V ¼ He þHν denotes the weak-interaction poten-
tial arising from coherent forward scattering and where,
for example, HT ¼ Hx − iHy encodes the component
of the Hamiltonian vector ~H that is transverse to the
flavor (z-) axis. The damping parameter D that appears in
Eq. (18) is related to the scattering amplitudes of the
neutrino flavor states. To illustrate, if the medium were
such that the two flavors had equal scattering amplitudes,
interactions would be unable to differentiate between the
two flavors and there would be no damping (D ¼ 0). At
the other extreme, if one of the flavors were noninteracting
(for instance, in active-sterile mixing), then the damping
parameter would be half the total interaction rate Γα of the
other flavor (D ¼ Γα=2).
In the plasma of the early Universe, νe and νx scatter

with different (but nonzero) cross sections, and a detailed
derivation of D would add up the contributions from
all the individual weak-interaction processes relevant to
this environment. We opt for a coarser treatment here,
taking
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D ≈
1

2
ðΓe − ΓxÞ ≈

1

2
dexG2

FpT
4 ð20Þ

with dex ≈ 0.35 [59]. The approximation in Eq. (20) is
sufficiently accurate for the objectives of this study.
Indeed, for most of the paper we focus on the coherent
regime, in which D ¼ 0; it is only in Sec. III D that we let
D assume the approximate form given above. To be sure,
the flavor evolution we are tracking occurs over a range of
temperatures in which collisions are important. But as we
discuss in detail in Sec. III D, broad characteristics of the
coherent regime survive the inclusion of damping, and a
close analysis of the coherent transformation sheds light
on the physics underlying the behavior in the presence of
both oscillations and collisions.
Translating the density matrix ρ into the polarization

vector ~P affords a geometric interpretation to the flavor
evolution of the system (more detailed expositions of which

may be found in Refs. [55,60]). At high temperatures ~P lies
along the z axis because of the peremptory destruction of
coherence by collisions. As the temperature (and by

extension the scattering rate) drops, ~P is able to travel
away from the z axis: The path it follows is determined by a
competition between its desire to precess around the

Hamiltonian vector ~H and the constant push exerted by

collisions back toward the flavor axis. Meanwhile ~H itself
migrates in response to the falling temperature and the

movement of the individual polarization vectors. ~P tries to

track ~H as the latter drifts, but its success in doing so is
moderated by the constant buffeting of collisions and the
degree of nonadiabaticity. We address the latter criterion in
Sec. III B.
At any time the relative number density of νe and νx of a

given mode ϵ (taken to have finite width dϵ) can be read off
by projecting that mode’s polarization vector onto the
flavor axis and providing the appropriate thermodynamic
prefactor:

Pz;ϵ ¼ ρee;ϵ − ρxx;ϵ

⇒ dnνe;ϵ − dnνx;ϵ ¼
T3

2π2
dϵϵ2Pz;ϵ: ð21Þ

We have written the number density of να in mode ϵ as
dnνα;ϵ in preparation for integrating over all modes.
Performing the sum over ϵ and dividing by T3 (to get a
redshift-invariant quantity) yields the z component of the
integrated polarization vector,

Pz;int ≡ 1

2π2
X
ϵ

dϵϵ2Pz;ϵ ¼
nνe − nνx

T3
; ð22Þ

where nνe and nνx are the total number densities across all
energies. The quantities P̄z and P̄z;int, appropriate to
antineutrinos, are defined analogously. We present many
of our numerical results as plots of Pz;int and P̄z;int, as they

convey the “average” flavor evolution of the system; where
illuminating, we zoom in on the individual modes. Note
that with these definitions Pz > 0 (P̄z > 0) reflects a
predominance of electron neutrinos (antineutrinos).

C. Resonant flavor mixing and collective oscillations

One of the linchpins of neutrino flavor phenomenology
in the early Universe and other astrophysical environments
is the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism
by which coherent scattering with a matter background
causes neutrinos to acquire effective masses and mixing
angles [61,62]. Letting Δ≡ δm2=2E, the in-medium mass-
squared splitting δm2

M is defined by

Δ2
M ≡

�
δm2

M

2E

�
2

≡ Δ2 sin2 2θ þ ðΔ cos 2θ − VzÞ2 ð23Þ

and the in-medium mixing angle θM by

sin2 2θM ≡ Δ2 sin2 2θ
Δ2

M
: ð24Þ

[For the purposes of introducing the traditional MSW
mechanism, we are neglecting neutrino-neutrino scattering
in Eqs. (23) and (24), but we return to these definitions later
on in order to incorporate self-coupling.] Resonance occurs
when Vz ¼ Δ cos 2θ: The effective mixing angle is at its
maximum (to wit, θM ¼ π=4) and the effective mass-
squared splitting at its minimum. Since the thermal
potentialHe [Eq. (15)] depends only on the energy density
of e� in the plasma, the matter background modifies the
oscillations of neutrinos and antineutrinos in precisely the
same way.
Neutrino-neutrino coherent scattering gives rise to

“index-of-refraction” effects in much the same fashion as
a matter background, but with an added layer of complex-
ity. As seen in Eq. (15), the evolution of ρðϵÞ for a particular
mode ϵ depends, through the self-coupling potentialHν, on
the density matrices for all other modes ϵ0, meaning that the
problem of flavor evolution in a dense neutrino system is a
nonlinear one. A fascinating range of collective behaviors
has been shown to result. (See Ref. [63] for a review, or
Refs. [64–69] for a selection of recent work in this active
area.) The role of nonlinear coupling in the early Universe
is perhaps best epitomized by the phenomenon of
synchronized oscillations that emerges when the self-
coupling is strong enough to “glue” all of the individual
modes together and prevent them from kinematically
decohering [70–73].
Synchronized oscillations are seen in our results to be

one of the hallmarks of coherent flavor evolution in a
universe with a lepton asymmetry within a couple orders of
magnitude of the current constraint on Lν. At the other end
of the spectrum, with a lepton asymmetry on the order of
the baryon asymmetry η, self-coupling is unimportant and
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the MSW mechanism reigns supreme. In the following
section we discuss these two regimes and several others that
emerge at intermediate lepton asymmetries.
The type of behavior exhibited depends fundamentally

on the relative sizes of the individual contributions to the
Hamiltonian. We depict in Fig. 2 the magnitudes of the
diagonal potentials as functions of temperature, with four
different curves for Hν;z corresponding to different initial
lepton asymmetries. As we describe below, one of the basic
determinants of the flavor evolution is the magnitude of
Hν;z where the vacuum- and thermal-potential curves
intersect, which is to say at MSW resonance. We will also
see the limitations of this picture, which fails to account for
the off-diagonal components of the Hamiltonian.

D. Numerical details

We have employed two independent programs for
solving the equations of motion [Eq. (18)], one based on
a fourth-order explicit Runge-Kutta solver and the other on
a Magnus-method solver. The Magnus method, which is
tailor-made for tracking unitary evolution, has been used
previously in work on neutrino flavor transformation in
supernovae; for a thorough description, see Ref. [74]. We
have achieved consistent results with the two codes, and we
have confirmed that in the coherent limit each one
individually conserves j~Pj and Trρ ¼ P0 to high precision.
As shown below, certain flavor-evolution regimes host

rapid, highly aperiodic oscillations, and in such regimes the
behavior of individual modes depends sensitively on the
physical and computational parameters of the calculation.
The very fine features displayed in these scenarios are
without (and may simply defy) a detailed physical explan-
ation and, moreover, are beyond the level of precision
aimed at in this study. Rather, our focus is on the major
qualitative features, which we have found to be robust.

III. RESULTS AND DISCUSSION

In this section we present our results through the
example of five different initial lepton asymmetries that
typify the major regimes of coherent flavor evolution in
the inverted hierarchy (IH). We then apply the concept of
adiabaticity to gain insight into the behaviors manifested in
these prototypical cases. Following a discussion of the
coherent regimes, we introduce collisions in the form of
quantum damping. As a rule of thumb, the impact of
damping is (in a nonquantitative sense) proportional to the
amount of flavor transformation that would occur in the
absence of damping: That is to say, for damping to gain
leverage on the evolution of ~P, a significant ~PT must
develop, and for this to be the case there must be substantial
transformation of ~P away from the initial flavor eigenstate.
To understand the results with damping, it is therefore
necessary to understand the results without.
In what follows we focus most of our attention on the IH

because it, unlike the normal hierarchy (NH), plays host to
an MSW resonance and, by implication, to generally more
substantial flavor transformation. We briefly discuss the
NH when we turn to damping.

A. Regimes of coherent evolution

Before any flavor transformation has occurred neutrinos
of flavor α are described by a Fermi-Dirac equilibrium
spectrum with neutrino degeneracy parameter ηνα
[Eq. (13)]. For the purposes of this study we assume that
at high temperatures the lepton number is positive and
entirely contained in νe, so that ηνx ¼ 0 and ηνe can be
deduced from the lepton number via

Lν ≈
1

12ζð3Þ ðπ
2ηνe þ η3νeÞ ≈ 0.68ηνe ; ð25Þ

where the second approximation applies for the small
degeneracy parameters we are considering. We would find
similar results, but with the roles of neutrinos and anti-
neutrinos swapped, if instead we were to take a negative ηνe
or were to put the lepton number entirely in νx.
Furthermore, the choice of setting ηνx ¼ 0 at high temper-
ature is inessential for our results, as it is the lepton
asymmetry which dictates the role of the self-coupling
potential.
Note that we take no stance on what mechanism actually

produces the initial lepton numbers. The question of how to
generate an asymmetry that survives washout from scatter-
ing processes is an important one and has been examined in
Ref. [75]. This question is, however, outside the purview of
the present study.
The five regimes of coherent flavor evolution that we

have identified in our numerical results are depicted
schematically in Fig. 1. In our sweep of the lepton-number
terrain, the values of ηνe that we have found best embody

9 7 5 3 1
T (MeV)

10 18

10 15

10 12

Potential (MeV)

FIG. 2. Magnitudes of the individual diagonal potentials for
ϵ ¼ 3: jHvac;zj (red, upper solid curve at T ¼ 1 MeV), jHe;zj
(blue, other solid curve), and jHν;zj (black, dashed). The last of
these was computed assuming no flavor transformation. From top
to bottom the dashed curves correspond to degeneracy parameters
ηνe ¼ 5 × 10−3, 5 × 10−5, 2 × 10−6, 1.5 × 10−7, and 5 × 10−8

[Eq. (25)]; chemical potentials in νμ were taken to be 0.
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the features associated with these regimes are as follows:
5 × 10−8, 1.5 × 10−7, 2 × 10−6, 5 × 10−5, and 5 × 10−3.

1. ηνe = 5 × 10−8: symmetric MSW

Generally speaking, the dominant feature in the flavor-
transformation landscape is the equality of jHvac;zj and
jHe;zj, which for 1–3 mixing occurs in the region of
T ∼ 5 MeV. For ηνe ≲ 5 × 10−8 this is the only feature
(Fig. 3), as the self-coupling is so weak as to leave trans-
formation through the resonance essentially untouched.
At these small lepton numbers—as would be expected
if neutrino-neutrino scattering were simply omitted—
neutrinos and antineutrinos of all modes undergo complete
MSW conversion. We emphasize that, unlike in a supernova
environment, both neutrinos and antineutrinos resonantly
transform due to He being CP symmetric: At high temper-
atures νe and ν̄e are at energies lower than νx and ν̄x,
respectively, thanks to the thermal potential, but at low
temperatures (in vacuum) are at higher energies, thanks to
the IH.
Evidently, if the neutrino chemical potential is entirely in

νe and if it is of the same order as the baryon asymmetry η,
then neutrino-neutrino scattering has an ignorable impact

on flavor evolution. This conclusion is unsurprising given
Fig. 2, which shows that jHν;zj for ηνe ¼ 5 × 10−8 is
always about an order of magnitude or more below either
jHvac;zj or jHe;zj. It is worth pointing out that at such small

lepton numbers the e� finite-density potential HðFDÞ
e ¼ffiffiffi

2
p

GFðne− − neþÞL should be included in the equations of
motion for consistency, but this term likewise makes an
inconsequential contribution to the total Hamiltonian. The
effect of the thermal potential from the neutrino back-
ground is yet more feeble.

2. ηνe = 1.5 × 10−7: partial MSW

As ηνe is scaled up, MSW transformation becomes
overall less effective for both neutrinos and antineutrinos
(Fig. 4). The incompleteness of the conversion of Pz;int and
P̄z;int is attributable to the differing outcomes of individual
modes: The lowest-energy modes go through MSW unfet-
tered while higher-energy modes exhibit large, aperiodic
oscillations of high frequency (Fig. 5).
The higher-energy modes transform inefficiently due

to a loss of adiabaticity, as indicated in Fig. 6. Prior to
resonance the off-diagonal potential HT fluctuates rapidly
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FIG. 3. Symmetric MSW: Pz;int (blue, upper curve at
T ¼ 20 MeV) and P̄z;int (red) in the IH with initial degeneracy
parameters ηνe ¼ 5 × 10−8, ηνx ¼ 0.
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FIG. 4. Partial MSW: Pz;int (blue, upper curve at T ¼ 20 MeV)
and P̄z;int (red) in the IH with initial degeneracy parameters
ηνe ¼ 1.5 × 10−7, ηνx ¼ 0.
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FIG. 5. Partial MSW: Pz;ϵ for ϵ ¼ 1.15 (blue, bottommost curve
at T ¼ 2 MeV), 2.36 (red, topmost curve at T ¼ 2 MeV), and
4.78 (purple), with the same parameters as in Fig. 4. Note that
here and in subsequent plots Pz;ϵ has been normalized to an initial
value of unity for each ϵ; this choice puts all modes on equal
footing for the purpose of comparing flavor evolution.
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FIG. 6. Partial MSW: Hz (blue, nearly vertical curve) and jHT j
(red) as functions of T for the ϵ ¼ 4.78 mode shown in Fig. 5.
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and achieves (nearly) vanishing magnitude at various
points. Since jHT j mediates the transition probability
between states, this behavior allows neutrinos to depart
from their initial energy-eigenstate track at the level cross-
ing. In Sec. III B we introduce the quantitative measure
of adiabaticity traditionally used in studies of resonant
neutrino conversion, and we explore further the role it plays
in our results. For now, suffice it to say that in this regime
self-coupling suppresses adiabaticity because it is strong
enough to influence H but not strong enough to force the
individual modes to pass through resonance collectively.
Such behavior is connected to the fact that for most modes
the three contributions to the Hamiltonian are of compa-
rable magnitude in the MSW region.

3. ηνe = 2 × 10−6: asymmetric (ν- or ν̄-only) MSW

Moving to greater values of ηνe , the partial conversion of
neutrinos becomes even more stunted while the conversion
of antineutrinos actually grows more effective (Fig. 7).
The cancellation of Hvac;z and He;z in the MSW region

precipitates some degree of transformation in both neu-
trinos and antineutrinos. However, since Hν;z exceeds the
other two by a factor of ∼10 in magnitude, MSW con-
version is stillborn (in the case of neutrinos) or delayed
until the vacuum potential overtakes the self-coupling soon
thereafter (in the case of antineutrinos). Starting at the
MSW region and continuing down to T ∼ 3 MeV, anti-
neutrinos gradually cross over from predominantly ν̄x to
predominantly ν̄e; by the bottom of this temperature range
they have almost completely transformed.
Neutrinos undergo only marginal conversion because the

large self-coupling potential, which enhances the effective
mass of νe relative to νx, props up νe into the higher energy
eigenstate over most of this temperature range, thus wiping
out what would otherwise be an MSW resonance. (A level
crossing does occur at higher temperature where the
thermal and self-coupling potentials cancel, but this reso-
nance appears well before the MSW region and, as we
discuss in Sec. III C, is neutralized by nonadiabaticity.)

Conversely, the initial population of ν̄x is effectively
immersed in a bath of νe, which serves to elevate the
energy of ν̄x over that of ν̄e until Hvac becomes dominant.
Hence self-coupling does not eliminate the antineutrino
level crossing in the MSW region, though it does signifi-
cantly alter evolution through it.
A notable characteristic of this regime is that the location

of jHν;zj ∼ jHvac;zj has been pulled away from that of
jHe;zj ∼ jHvac;zj—compare to the partial MSW regime,
where they coincide—but the regions are still close enough
together that the flavor transformation instigated by the
traditional MSW mechanism can be capitalized on to enact
a flavor swap by the later jHν;zj ∼ jHvac;zj cancellation. As
we observe in the next regime, increasing further the
separation between the two locations leads to MSW
manqué—but here the separation actually salvages efficient
conversion of antineutrinos.

4. ηνe = 5 × 10−5: minimal transformation

With ηνe ¼ 5 × 10−5 the locations of jHν;zj ∼ jHvac;zj
and jHe;zj ∼ jHvac;zj are well removed from one another. As
a result the MSW level crossing is now thwarted entirely,
and virtually no flavor conversion takes place (Fig. 8).
What transformation does occur commences near
T ∼ 5 MeV, as usual, but fails to get very far due to the
strong “inertial” effect exerted by Hν. The self-coupling
keeps νe and ν̄x in the heavier eigenstates throughout MSW,
preventingHz from ever crossing into negative territory (or
H̄z into positive).
Since coherence between the flavors only marginally

develops at these lepton numbers, there is meager fuel for
decoherence to consume, and the minimal-transformation
regime is consequently the best preserver of its initial
lepton asymmetry when damping is turned on. It is a
tantalizing coincidence that this regime also encompasses
the range of lepton numbers suggested by resonant pro-
duction of sterile neutrino dark matter, which favors the
neighborhood of Lν ∼ 5 × 10−4 [40] when the ∼3.55 keV
x-ray line of Refs. [32,33] is attributed to the decay of
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FIG. 7. Asymmetric MSW: Pz;int (blue, upper curve at
T ¼ 20 MeV) and P̄z;int (red) in the IH with initial degeneracy
parameters ηνe ¼ 2 × 10−6, ηνx ¼ 0.
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FIG. 8. Minimal transformation: Pz;int (blue, upper curve at
T ¼ 10 MeV) and P̄z;int (red) in the IH with initial degeneracy
parameters ηνe ¼ 5 × 10−5, ηνx ¼ 0.
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sterile neutrinos. These lepton numbers occupy the top end
of the minimal-transformation regime, where synchronized
oscillations are beginning to grow in amplitude but are still
unable to realize a large net conversion of flavor.
A phenomenon notably absent from this regime and the

foregoing ones is the spectral swap, in which nearly all
antineutrinos below a certain energy threshold change
flavor and nearly all antineutrinos above the threshold
do not (or similarly for neutrinos) [76,77]. For ηνe ≲ 10−7

spectral swaps are ruled out by virtue of the fact that
the self-coupling potential never dominates. But for
ηνe ¼ 5 × 10−5, for instance, Hν remains dominant suffi-
ciently far below temperatures at which jHvac;zj ∼ jHe;zj
that the requisite conditions for a spectral swap might be
thought to prevail as Hvac;z finally does overtake Hν;z.
In actuality the spectral swap is preempted by the MSW
region, which in the minimal-transformation regime depos-
its neutrinos and antineutrinos essentially into the nearest
mass eigenstates. With all well-populated modes already in
mass eigenstates before Hvac takes over, no spectral swap
can occur. The synchronized-oscillation regime proves to
be the exception to this trend, as we discuss below.

5. ηνe = 5 × 10−3: large synchronized oscillations

In this regime the lepton asymmetry is large enough that
neutrino-neutrino scattering shifts towards promoting
rather than resisting transformation. Once the expansion
rate and the e� density have dropped sufficiently, large
synchronized oscillations ensue, with all of the modes
locked together by self-coupling (Fig. 9).
Although on the face of it this regime hosts perhaps the

most active flavor evolution, in some ways the behavior is
just that of the minimal-transformation regime writ large. In
both regimes modes undergo synchronized oscillations
after first gesturing towards MSW conversion, and then
move into mass eigenstates as Hν becomes unimportant.
But for larger ηνe the gesture towards MSW is stronger, the
synchronized oscillations last longer and have larger
amplitudes, and the movement into mass eigenstates entails

more significant transformation at late time. The minimal-
transformation scenario of ηνe ¼ 5 × 10−5 is an extreme
example of the shrinking of these features, down to a size
indiscernible at the scale of Fig. 8.
The qualitatively novel feature that distinguishes the

synchronized-oscillation regime from the minimal-
transformation regime is that (for ηνe > 0) antineutrinos
do not return en masse to the lighter mass eigenstate;
instead many modes move to the heavier one, more closely
associated with ν̄e. Conversion of antineutrinos in this
manner is more dramatic for larger initial ηνe , even causing
P̄z;int to change sign for ηνe ≳ 5 × 10−3. The upward
drifting of Pz;int at low temperatures reflects the spectral
swap that occurs as Hvac comes to dominate (Fig. 10). The
threshold energy, below which ν̄ swap, moves up to higher
ϵ as the lepton asymmetry is increased; it is for this reason
that the spectral swap has no discernible impact on the
minimal-transformation regime.
Large-amplitude synchronized oscillations are associ-

ated with a solution of the equations of motion in which the
off-diagonal elements of Hν steer the evolution of the
system into self-sustained maximal mixing for both neu-
trinos and antineutrinos [78]. What our results highlight is
the fact that this solution is not easily accessed in the early
Universe: As shown in Fig. 9, even an asymmetry of ∼10−3
does not foster maximal mixing, even though the mixing
angle is still significantly enhanced over its value in
vacuum. In the minimal-transformation regime, where
the mixing angle is suppressed, the failure to enter this
off-diagonal-driven mode is at its most spectacular.
In a sense the very largest allowable lepton asymmetries

—those about an order of magnitude greater even than
the exemplar asymmetry portrayed in Fig. 9—actually
overshoot this mode of self-sustained maximal mixing,
displaying instead synchronized MSW transformation at
T ∼ 5 MeV followed by synchronized oscillations of
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FIG. 9. Large synchronized oscillations: Pz;int (blue, upper
curve at T ¼ 10 MeV) and P̄z;int (red) in the IH with initial
degeneracy parameters ηνe ¼ 5 × 10−3, ηνx ¼ 0.

10 5 2 1 0.5 0.2
T (MeV)

1.0

0.5

0.0

0.5

1.0

Pz, Pz, (10 MeV)

FIG. 10. Large synchronized oscillations: P̄z;ϵ for ϵ ¼ 1.15
(upper blue curve at T ¼ 0.2 MeV), 2.36 (upper red curve at
T ¼ 0.2 MeV), 3.57 (purple), 4.78 (lower blue curve at
T ¼ 0.2 MeV), and 5.99 (lower red curve at T ¼ 0.2 MeV),
computed with the same parameters as in Fig. 9. A spectral swap
—wherein modes below the threshold ϵth ≈ 3.5 change flavor and
those above do not—is evident.
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nonmaximal amplitude (Fig. 11). The phenomenon of
synchronized MSW, where all modes undergo efficient
MSW conversion in unison, can be understood from the
following perspective. Decomposing the Hamiltonian into
its constituents and taking the coherent limit, Eq. (18)
becomes

Hx
d~P
dx

¼ ð ~Hvac þ ~He þ ~HνÞ × ~P: ð26Þ

At high temperature all of the individual modes point along

the z axis, and in the limit j ~Hνj ≫ j ~Hvacj, j ~Hej they remain
locked together even as the temperature cools and they
depart from that axis. Their alignment implies that, for any

given mode, ~P (very nearly) points along ~Hν and so
Eq. (26) can be approximated as

Hx
d~P
dx

≈ ð ~Hvac þ ~HeÞ × ~P: ð27Þ

The upshot is that all modes follow the track that the
average energy mode ϵ ≈ 3.15 would undergo if there were
no self-coupling. (Further details on synchronized MSW
conversion are provided in, for example, Ref. [42].)
Lepton asymmetries at the top end of the synchronized-

oscillation regime are converging on this limit, but as
shown in Fig. 11 (for an initial degeneracy parameter
ηνe ¼ 5 × 10−2) the resonant conversion is incomplete, as

the approximation that all ~PðϵÞ are aligned is an imperfect

one. Since j ~Hνj ≫ j ~Hvacj for the entire temperature range
depicted in Fig. 11, synchronized oscillations then take

over at T ≲ 5 MeV, once j ~Hej has fallen off. As the lepton
asymmetry is dialed up further, the efficiency of conversion
through the synchronized MSW mechanism increases and
the amplitude of post-MSW synchronized oscillations
decreases. In a somewhat poetic turn, the evolution of
Pz;int and P̄z;int at infinite lepton asymmetry is identical (up
to scale) to that at zero lepton asymmetry.
We wish to underscore the point that despite the

dominance by several orders of magnitude of Hν all the

way through the MSW region, this regime strongly bears
the fingerprints of the matter background. If it were not for
the cancellation between Hvac;z and He;z, the amplitude of
the oscillations would be diminished down to the scale set
by the vacuum mixing angle (as indeed it is in the NH), and
the spectral swaps at these lepton asymmetries would be
erased. The synchronized-oscillation regime thus high-
lights the insistent influence that can be exerted even by
a would-be MSW resonance.

B. Adiabaticity

In our discussion of the five regimes just laid out, we
have stressed the decisive role of level crossings in
determining flavor transformation. But the presence or
absence of level crossings is not the whole story. An
important tool for understanding the behavior of neutrinos
as they pass through resonance is the adiabaticity parameter
γ, which quantifies the efficiency of flavor conversion
[79–82]. The parameter is defined as

γ ≡ 2π
δt
lresM

≈ Δres
M

���� dHz

dt

����−1
res
δHz; ð28Þ

with lresM ≡ 2π=Δres
M the in-medium oscillation length at

resonance and δt the resonance width, which is to say the
time required for sin2 2θM to fall to half its resonant value.
The approximation above comes from the definition of lresM
and a recasting of δt in terms of δHz. Since the self-
coupling and thermal potentials are varying much more
rapidly than the vacuum potential, we can make the further
approximation that, for the purposes of computing adia-
baticity,Hvac;z is constant. We then obtain an expression for
γ equivalent to that in Ref. [36].
An adiabaticity parameter γ ≫ 1 corresponds to a

resonance width broad enough to contain many oscillation
lengths, indicating that the potentials change sufficiently
slowly that neutrinos are able to track the Hamiltonian
through the level crossing. A small value of γ, conversely,
corresponds to a large probability of neutrinos jumping
from one energy eigenstate to the other: The Landau-Zener
probability for such a transition is P ≈ e−πγ=2 [83,84]. The
early Universe is ripe for adiabaticity, as γ is ultimately a
comparison of the fast-fluttering dynamical time scale set
by oscillations to the molasseslike Hubble time scale set by
gravity. We will see, however, that under certain circum-
stances self-coupling can compromise this propensity.
Resonance occurs whenever the vacuum potential can-

cels with the weak-interaction potential, producing degen-
erate instantaneous energy eigenstates:

Vz ¼
δm2 cos 2θ
2ϵresT

: ð29Þ

The left-hand side implicitly depends on ϵres. [Recall the
definition of V in and below Eq. (19).] Solving for the
resonant comoving energy yields
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FIG. 11. Top end of the synchronized-oscillation regime: Pz;int
(blue, upper curve at T ¼ 10 MeV) and P̄z;int (red) in the IH with
initial degeneracy parameters ηνe ¼ 5 × 10−2, ηνx ¼ 0.

NEUTRINO FLAVOR TRANSFORMATION IN THE LEPTON- … PHYSICAL REVIEW D 94, 083505 (2016)

083505-11



ϵres ¼
Hν;z

2 ~He;z

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2δm2 cos 2θ
T

~He;z

ðHν;zÞ2

s �
; ð30Þ

with ~He;z ¼ jHe;zj=ϵ. While this expression is always valid,
its predictive power, in the sense of allowing one to identify
where resonance will occur without solving the equations
of motion, is questionable due to the nonlinearity inherent
in neutrino evolution. Broadly, Eq. (30) can be used to
predict the locations of level crossings only so long as no
significant flavor transformation has yet occurred. But once
the polarization vectors have departed appreciably from
their initial alignment along the z axis, Hν has therefore
also departed appreciably from its initial value, and so all
bets are off as far as Eq. (30) goes. These comments are
especially germane to the entire minimal-transformation
regime and to much of the synchronized-oscillation regime,
wherein resonance is never achieved despite the appearance
that Eq. (30) would countenance the existence of one.
Our numerical results demonstrate that tuning the lepton

asymmetry does not considerably shift the location of the
MSW resonance, provided that the self-coupling is not
large enough to eliminate the resonance altogether.
This finding suggests that an analysis of the adiabaticity
neglectingHν may prove enlightening as to how the lepton
asymmetry “perturbs” the matter-only MSW scenario.
Ignoring the contribution from self-coupling, the resonant
weak-interaction potential is

Vz ¼ Hres
e;z ¼

�
7

ffiffiffi
2

p
π2GF

45m2
W

jδm2j cos 2θ
�1=2

T2; ð31Þ

introducing the notation Hres
e;z to denote the thermal poten-

tial of the mode instantaneously at resonance. While for any
particular mode ϵ the thermal potential He;z is dropping
precipitously as T5, the resonant thermal potential Hres

e;z

drops only as T2. It turns out that the relatively sluggish
descent ofHres

e;z ensures that MSW is always adiabatic in the
early Universe, so long as electrons and positrons are
relativistic and the neutrino self-coupling can be neglected.
Under these circumstances the adiabaticity parameter is

γ ≈
1

23=4
1

5

ffiffiffi
7

π

r
mPl

mW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GF

g�
jδm2j cos 2θ tan4 2θ

s
; ð32Þ

wheremPl is the Planck mass,mW is theW boson mass, and
g� is the number of relativistic degrees of freedom. Both
mPl and g� enter through the derivative of the thermal
potential, which is dictated by Hubble expansion: In the
radiation-dominated epoch the Hubble constant is

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8π3g�
90

r
T2

mPl
: ð33Þ

We have taken g� to be constant over the span of temper-
atures relevant to this study, thus ignoring the small

decrease that occurs as the last remaining μ� disappear
near the top of this temperature range and the later decrease
that occurs as the e� population starts to become non-
relativistic near the bottom.
Looking at Eq. (32), the adiabaticity parameter is

evidently independent of temperature when Hν ¼ 0 and
is, moreover, very large: γ ≈ 130 for 1–3 mixing, guaran-
teeing that all modes undergo efficient MSW conversion,
regardless of the temperature at which their respective
resonances occur. This fortuitous behavior, which is pecu-
liar to the thermal potential, occurs because the resonance
width and the in-medium oscillation length are growing
with the same dependence on T. The growth of the
resonance width can be traced directly to the slowing-
down of the Hubble rate H ∝ T2.
Even as the resonance width is broadening, the rate at

which the resonance sweeps upward through the energy
modes is accelerating as a function of temperature:
ϵres ∝ 1=T3. Figure 12 shows ϵresðTÞ for Hν set to 0.
Reassuringly, ϵavg≈3.15 becomes resonant right near
5 MeV.
The preceding discussion gives credence to the notion

that the resonant flavor transformation seen at T ∼ 5 MeV
across a range of lepton asymmetries is adiabatic by default
—that is, when onlyHvac andHe are considered. But as our
numerical results have revealed, self-coupling can obstruct
the efficiency of resonant conversion in nontrivial ways.
One can glean some general insights into the effects of

neutrino-neutrino scattering by rederiving the in-medium
mixing angle and mass-squared splitting, allowing in
particular for the off-diagonal elements of Hν. In general
these elements consist of nonzero real and imaginary parts,
which [in keeping with our notation in Eq. (19)] we write as
Vx and Vy, respectively. A complex potential, however,
spoils the reformulation in terms of effective in-medium
oscillation parameters, so we rotate to a flavor-space
coordinate system in which the off-diagonal part of the
entire Hamiltonian H is real. Effective mixing parameters

10 9 8 7 6 5 4 3
T (MeV)

0.5

1

5

10

res

FIG. 12. Resonant comoving energy ϵres (red, solid) as a
function of T, with Hν ¼ 0. Also plotted is the Fermi-Dirac
average-energy mode ϵavg ≈ 3.15 (black, dashed).
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can be defined in this new coordinate system and then
translated back in terms of Vx and Vy from the original,
with the results

Δ2
M ¼ ðVz − Δ cos 2θÞ2 þ ðΔ sin 2θ þ VxÞ2 þ V2

y

sin2 2θM ¼ ðΔ sin 2θ þ VxÞ2 þ V2
y

ðΔ sin 2θ þ VxÞ2 þ V2
y þ ðVz − Δ cos 2θÞ2 :

ð34Þ

It is important to note that these are only instantaneous
mixing parameters, as the coordinate system required to
make the off-diagonal elements of H real is constantly
changing. The validity of employing such a technique in an
analysis of adiabaticity is made plausible by noting that
rotations about the flavor axis do not mix Hz and HT .
Working from Eq. (34), the resonance width expressed as

a weak-interaction potential is

δVz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ sin 2θ þ VxÞ2 þ V2

y

q
; ð35Þ

and, just as in the Hν ¼ 0 case, Δres
M ¼ δVz. The definition

of γ [Eq. (28)] then leads to

γ ≈
ðΔ sin 2θ þ VxÞ2 þ V2

y

j5HHe;z þ 3HHν;z −
_Lνe− _Lνx
Lνe−Lνx

Hν;zjres
≈
���� jHT j2

_Hz

����
res

; ð36Þ

where in the last expression we emphasize an alternative
interpretation of the adiabaticity parameter as the ratio of
the off-diagonal part ofH (squared) to the rate of change of
its diagonal part. In evaluating the derivative we have again
taken g� to be constant.
While the term proportional to He;z in the denominator

of Eq. (36) is always negative, the two terms proportional to
Hν;z are of the same sign leading into resonance. When
Hν;z dominates overHe;z, the final term in the denominator
therefore makes γ smaller. On the other hand, when He;z
dominates, the term can either make γ smaller (if ηνe < 0
initially) or make it larger (if ηνe > 0 initially). That
adiabaticity plummets as flavor conversion proceeds in
the moderate-to-large-L regime is well known from studies
of resonant production of sterile neutrinos. It reflects the
fact that as the potential sweeps through resonance more
rapidly, the resonance width contracts and conversion
becomes less efficient. What is less familiar is that flavor
conversion can evidently feed back positively on the
adiabaticity of the resonance when the lepton number is
small but nonzero.
Equation (36) is comparable to expressions in

Refs. [36,37,85,86], all of which consider resonant trans-
formation between an active and a sterile state. In that
context the derivative of the lepton number drags down the

adiabaticity with such resolve that the depletion of the
lepton number ultimately halts the conversion process. As
suggested in the preceding paragraph, in our context as well
the possibly adverse effect of _Lνe on γ implies that
adiabaticity may fail for some initial lepton asymmetries.
It deserves emphasis, however, that there is a crucial
difference between the resonant production of sterile
neutrino dark matter and the resonant conversion between
active flavors: Because the sterile flavor eigenstate is
uncharged under weak interactions, the forward-scattering
neutrino-neutrino potential in an active-sterile system does
not have off-diagonal elements. In the polarization-vector
picture for active-sterile mixing, the self-coupling potential
consequently points along the z axis, whereas for active-
active mixing it tracks the polarization vectors away from
the flavor axis. This distinction corresponds in Eq. (36)
to Vx and Vy being nonzero; it adds, as a result, another
lever controlling adiabaticity. In cases where cancellation
occurs in the term ðΔ sin 2θ þ VxÞ2, the off-diagonal weak-
interaction potential can in fact enfeeble γ, producing
nonadiabaticity so long as Vy is not too large. In other
cases, though, off-diagonal self-coupling bolsters γ by
enlarging the resonance width and the in-medium mass-
squared splitting.
Adiabaticity accounts for the general behavior seen in

our numerical results wherever a level crossing is present.
Despite these successes, as an analytical tool it has two
shortcomings: One, it is too coarse an instrument to explain
the precise evolution of individual modes through reso-
nance, which often display radically different behavior
from one another even when nearby in energy. (The partial-
MSW regime exemplifies this point, as flavor evolution in
this case exhibits highly nontrivial dependence on neutrino
energy.) And two, adiabaticity offers no insights into those
regimes where the nonlinearity of self-coupling causes the
system to avert resonance altogether.

C. Matter-neutrino resonances in the early Universe

In this paper we have presented scenarios in which flavor
evolution prior to T ∼ 10 MeV is quite restrained: The
large potentials at high temperatures ensure that θM is
minuscule, thereby preventing significant transformation
away from the initial flavor eigenstates. In truth it is not
obvious a priori that this statement always holds, as lepton
asymmetries for which self-coupling dominates at
∼10 MeV will have some higher temperature at which
He;z surpasses Hν;z in magnitude. If the two potentials are
of opposite sign, then there will be a level crossing at this
higher, pre-MSW temperature. Such a level crossing has
been dubbed a matter-neutrino resonance (MNR) and in
recent years has been shown to be a possible conduit for
significant flavor transformation in merger and accretion-
disk environments [87–92]. (Related, albeit distinct, analy-
ses have also been performed for supernovae [93].) No
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explorations of MNR in the early Universe have yet been
conducted.
We have searched the regimes discussed above for signs

of flavor transformation associated with the MNR mecha-
nism. Our numerical results have confirmed that level
crossings do indeed occur, but in the scenarios we have
examined the transformation associated with these reso-
nances is in most cases negligible. The explanation appears
to lie in the fact that the resonances are generally traversed
nonadiabatically. Referring again to Eq. (36), γ may be
diminished either by a small off-diagonal potential HT or
by a large sweep rate in the diagonal potential Hz. We
speculate that both factors are at play in preventing efficient
conversion through the MNR. At the high temperatures at
which these resonances occur the overall magnitude of Hz
leading into the level crossing is larger than it is for the
lower-temperature MSW resonance. Moreover, the Hubble
constant, which sets the resonance sweep rate, is larger as
well. At the same time, whereas the off-diagonal weak-
interaction potentials are expected to be small leading into
either an MSW resonance or an MNR because neutrinos
have yet to leave their initial flavor states to any appreciable
extent, the off-diagonal vacuum potential is smaller at high
temperatures.
As one would anticipate based on this argument, the

most visible impact of MNR is found when the level
crossing occurs at relatively low temperatures. In particular,
ηνe ∼ 10−6 seems to be most clearly affected by the
presence of the MNR, which induces non-negligible flavor
transformation starting at temperatures near 10 MeV. Hints
of MNR conversion can be seen in our asymmetric-MSW
exemplar (Fig. 7), where it appears that neutrinos are on
their way through resonance before abruptly halting their
conversion at T ∼ 8 MeV. Ultimately the overall amount of
conversion is limited here too by nonadiabaticity, and the
intermingling of the MSW transition with the MNR largely
reverses the conversion that does occur. (Interestingly, for
ηνe ∼ 10−6 the MNR begets some degree of flavor trans-
formation in the NH as well, in defiance of the general trend
for this hierarchy. The flavor evolution, as it happens, is
very similar to that in the IH but with the behavior of
neutrinos and antineutrinos exchanged.)
We conclude that conversion through MNR is limited

given the parameters adopted in our study. However, we do
not rule out the possibility that a more thorough inves-
tigation of the MNR phenomenon in the early Universe
may reveal sizable effects under appropriate circumstances.
We reiterate that such resonances can exist in the early
Universe, but that the obstacle to significant transformation
is nonadiabaticity.

D. Flavor evolution with quantum damping

Up to this point the discussion has been couched in the
coherent limit. In reality collisions—which we model as
quantum damping—will modify these results. The generic

effect of damping is to battle against the development of
coherence between the flavors. It is the combination of
oscillations and coherence-erasing damping that leads
to depolarization (Pz, P̄z → 0) and therefore flavor
equilibration.
Indeed, equilibration is generally most effective when

flavor transformation is, in the absence of damping, most
appreciable. An immediate consequence is that equilibra-
tion is relatively ineffective for most lepton numbers in the
NH, which typically fosters only minimal coherent flavor
transformation due to the lack of a level crossing in the
MSW region. While the effects of damping are not entirely
insubstantial in the NH, they are usually confined to the
relatively placid period during which neutrinos and anti-
neutrinos migrate from their initial flavor eigenstates to the
nearby mass eigenstates.
Damping is a more potent force in the IH. The

synchronized-oscillation regime, for example, evinces
much more efficient depolarization than is witnessed in
the NH for the same lepton asymmetries. At the other end,
in the symmetric-MSW regime, depolarization is nearly
complete. But the general trend of efficient depolarization
in the IH is not without exception: The development of
coherence in the minimal-transformation regime is so
limited—self-coupling is too overpowering for an MSW
resonance to occur but too weak to elicit large-amplitude
synchronized oscillations—that damping leaves intact a
sizable fraction of the initial asymmetry between the flavors
(Fig. 13). Previous authors have noted that MSW transi-
tions and synchronized oscillations are vehicles for flavor
equilibration, but the existence of a region where neither
phenomenon is very compelling, and therefore damping is
relatively muted, has not been pointed out before.
In comparing Fig. 13 (damped) with Fig. 8 (coherent), it

may come as a surprise that equilibration is not less
substantial in the damped case than what is shown in
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Pj,int ( 10 6)

FIG. 13. Minimal transformation (damped): Pj;int for j ¼ z
(blue, topmost curve at T ¼ 1 MeV), j ¼ x (red, bottommost
curve at T ¼ 1 MeV), and j ¼ y (purple), with the parameters of
the minimal-transformation scenario in Fig. 8 (initial degeneracy
parameters ηνe ¼ 5 × 10−5, ηνx ¼ 0), in the presence of colli-
sional damping. Antineutrinos undergo qualitatively similar
evolution.
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Fig. 13. The reason is that the flavor evolution plays out in a
hierarchy of scales in which the oscillation length is smaller
than the mean free path, which in turn is smaller than the
MSW resonance width that would obtain for Hν ¼ 0. The
picture is this: In the MSW region neutrinos and antineu-
trinos partially convert flavor, much as they do in the
absence of damping. The polarization vectors accordingly
swing away from the flavor axis, and as they do so damping
shrinks ~PT . But due to the high oscillation frequency
relative to the scattering rate, the change in j~PT j is quickly
redistributed over all of the components of ~P, so that rather
than being flattened against the flavor axis, the polarization
vectors are able to evolve in a manner reminiscent of the
coherent case, albeit with shrinking magnitude. In spite of
collisions the modes remain largely synchronized, so that
~P ∼ ~Hν ∼ ~H (where ∼ indicates that the vectors are roughly
parallel) as long as self-coupling dominates. At low
temperatures ~Hvac takes over and all modes move adia-
batically into the upper mass eigenstate, just as they do in
the coherent limit. As a matter of fact, the evolution of
Pz;int=j~Pj is very similar for the damped and coherent cases;
the visual differences between Figs. 13 and 8 are primarily
a result of the long time scale over which the MSW region
extends.
Figure 14 further illustrates the principle that the degree

of depolarization is related to the degree of flavor trans-
formation that takes place in the coherent limit. For
ηνe ¼ 2 × 10−6, Pz;int at weak-decoupling temperatures is
∼1=3 of its initial value at T ≳ 20 MeV, whereas P̄z;int only
retains ∼1=12 of its initial magnitude and manages to
change its sign. The damping of antineutrinos takes place
almost entirely during the Hν-mediated MSW resonance,
of which the small residual P̄z;int is a consequence. The
damping of neutrinos, on the other hand, is more compli-
cated (Fig. 15). Low- and medium-energy modes damp
through the MSW region, with greater depolarization
associated with greater ϵ, but the high-energy modes

undergo damping both through the MSW region and the
MNR that occurs at T ∼ 10 MeV. Since the scattering rate
increases rapidly with temperature, the effectiveness of
damping is amplified at the MNR.
Although collisional damping has traditionally been

employed in studies of lepton asymmetries, it is nonethe-
less wanting in realism. As some authors have noted
[45,47], modeling incoherent scattering strictly through
this traditional off-diagonal damping term is dubious
inasmuch as thermal equilibration requires scattering proc-
esses that shuffle neutrinos between energy bins, which
such a term cannot provide. More specifically, if collisions

are taken simply to impose damping (C → −D~PT in the
polarization-vector language), then one can show that
depolarization is inconsistent with the preservation of
Fermi-Dirac spectra.
To see that this is so, suppose that at some initial

temperature T1 the neutrino gas is in thermal equilibrium
with the plasma. Then, according to our normalization of ρ,
P0 is the sum of the Fermi-Dirac equilibrium spectra that
obtain at this temperature: P0ðϵ;T1Þ¼fðϵ;ηiνeÞþfðϵ;ηiνxÞ.
Suppose also that at some lower temperature T2 damping
has achieved complete depolarization: Pzðϵ; T2Þ ≈ 0 for
all ϵ. Using the fact that coherent evolution and quantum
damping both preserve Trρ ¼ P0, it follows that

ρeeðϵ; T2Þ ¼
Pzðϵ; T2Þ þ P0ðϵ; T2Þ

2

¼ fðϵ; ηiνeÞ þ fðϵ; ηiνxÞ
2

: ð37Þ

Since the average of two Fermi-Dirac spectra is not in
general another Fermi-Dirac spectrum, this result implies
that the νe distribution function ρee picks up distortions
from Fermi-Dirac as the polarization vectors shrink to 0, a
troubling conclusion if Pz goes to 0 at high enough
temperature that neutrinos must still be in thermal
equilibrium.
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FIG. 14. Asymmetric MSW (damped): Pz;int for neutrinos
(blue, upper curve at T ¼ 20 MeV) and P̄z;int (red), with the
parameters of the asymmetric-MSW scenario in Fig. 7 (initial
degeneracy parameters ηνe ¼ 2 × 10−6, ηνx ¼ 0), in the presence
of collisional damping.
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FIG. 15. Asymmetric MSW (damped): Pz;ϵ in the collisionally
damped scenario depicted in Fig. 14, for ϵ ¼ 1.15 (blue, topmost
curve at T ¼ 2 MeV), ϵ ¼ 3.57 (red), and ϵ ¼ 5.99 (purple,
bottommost curve at T ¼ 2 MeV).
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The consequences of Eq. (37) are borne out numerically:
Because the damping term is proportional to neutrino
momentum, it engenders a spectral feature wherein
higher-energy modes undergo greater depolarization than
their lower-energy counterparts. This feature would be
smoothed out somewhat by a more rigorous treatment
of incoherent scattering, but it is also indicative of the
nontrivial evolution of a system of neutrinos toward
equilibrium. Spectral distortions associated with the
flavor-equilibration process may compound those known
to be generated thermally through the overlapping epochs
of e� annihilation and weak decoupling.
The crucial missing ingredient that enforces thermal

equilibrium is momentum-changing scattering, which is
disallowed when collisions are modeled strictly as quantum
damping. In this vein, the need for a detailed treatment of
incoherent scattering was emphasized by Wong [43],
who cautioned that the extent of flavor equilibration
depends on how collisions are implemented. To date, the
most sophisticated analyses of flavor evolution with a
lepton asymmetry are those performed by the authors of
Refs. [18,19,45,47], who have combined an off-diagonal
damping term with classical Boltzmann collision integrals
along the diagonals of C. By revealing a wider range of
possible coherent phenomena than has hitherto been
recognized, our results buttress the need for continued
progress in this direction.
As the findings of Ref. [1] have demonstrated, BBN

calculations that self-consistently couple neutrino transport
to the thermodynamics of the plasma yield changes in the
predicted primordial abundance of D—relative to the case
of instantaneous neutrino decoupling—that are an order of
magnitude larger than they would be if the nonlinear
feedback between the neutrinos, plasma, and nuclides
were omitted. The calculations of Ref. [1], however, were
performed with zero lepton number in the classical
Boltzmann limit. Reference [53], meanwhile, tackled the
full problem of oscillations and quantum collision integrals
but was predicated on the assumption of zero lepton
asymmetry. A similar approach to the complete quantum
kinetic equations [51,94–97], including fully realistic
quantum collision integrals [52] and a nonzero lepton
asymmetry, may divulge signatures of flavor evolution in
the early Universe that are currently believed to be
unobservable.

IV. CONCLUSION

In this paper we have numerically solved the coherent
equations of motion governing neutrino flavor transforma-
tion in the early Universe with a range of initial lepton
asymmetries. In so doing we have discovered that beneath
the current constraints on the lepton number there lurks a
menagerie of possible coherent flavor phenomena, which
we have sectioned off into five distinct regimes. Starting
from a lepton asymmetry comparable to the present bound

and moving down to the realm of negligible self-coupling,
these regimes are as follows: (1) Large synchronized
oscillations, (2) minimal transformation, (3) asymmetric
MSW, (4) partial MSW, and (5) symmetric MSW. The
existence of these regimes is a testament to the richness of
the nonlinear problem of flavor evolution in a dense,
expanding environment. And as we have demonstrated,
this richness is not entirely erased by collisional damping—
a finding that points to the merits of further study of this
problem with quantum kinetics that go beyond the approx-
imations employed here.
To explain the phenomena observed in our numerical

results we have employed the conceptual apparatus of (non)
adiabatic level crossings and the well-established under-
standing of synchronized evolution as a collectivemode that
emerges when the self-coupling potential is dominant. Yet
we also contend that in fact the minimal-transformation
regime, which occurs for lepton asymmetries on the order of
∼5 × 10−5, points to the limitations of these concepts. The
distinctive absence of flavor conversion in this regime is due
to it encompassing lepton asymmetries that are strong
enough to eliminate level crossings in the MSW region
but not strong enough for Hν to develop the dominant off-
diagonal components needed for large-amplitude synchron-
ized oscillations, much less for Hν to bind the individual
modes sufficiently for a synchronized MSW transition to
take place. As far as we are aware, a convincing analytical
understanding of this regime does not currently exist. We
note again that it is an intriguing coincidence that the range
of lepton numbers most consistent with an interpretation of
the unidentified x-ray line reported in Refs. [32,33] falls
within this regime, which is the one most resistant to
damping-induced flavor equilibration.
We have also reported for the first time the existence of

an MNR in the early Universe. The influence of the
resonance on coherent flavor evolution is very modest
except for a small range of lepton asymmetries for which
the level crossing occurs shortly before the MSW region.
Its presence is accentuated by damping, which capitalizes
on the coherence developed through the resonance. We
have found that adiabaticity restricts the amount of flavor
conversion through the MNR, but mixing through the δm2⊙
channel, which has MSW resonances at lower temperatures
than those studied here, may permit more adiabatic
circumstances.
The subconstraint lepton asymmetries we have inves-

tigated are, by definition, thought to lie presently out of
reach of observation. Nonetheless, the diversity of flavor
phenomena revealed in this study may have unrecognized
implications for BBN. The current era is one of precision
cosmology, with 30-meter-class telescopes [98–100], forth-
coming spectroscopic galaxy surveys [101–103], and a
stage-IV CMB experiment [102,104] at the vanguard—to
name just a few. Impressive advances in determinations of
Neff , YP, ½D=H�, and other cosmological observables are on

JOHNS, MINA, CIRIGLIANO, PARIS, and FULLER PHYSICAL REVIEW D 94, 083505 (2016)

083505-16



the horizon. These measurements promise to provide new
insights, but exploiting them thoroughly will require a
scrupulous treatment of neutrino evolution. It remains to be
seen whether a solution of the full quantum kinetic
equations coupled to BBNwill unearth traces of the physics
presented in this study.
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