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Abstract

Gamma Strength from Quasi-Continuum Lifetimes using 56Fe(p,p’)

by

Leo Edward Kirsch

Doctor of Philosophy in Engineering – Nuclear Engineering

University of California, Berkeley

Karl Van Bibber, Chair

A new experimental method is presented to normalize the Gamma Strength Function (GSF)
using proton-γ coincidences from 56Fe(p,p’γ) with an excitation dependent variation of the
Doppler Shift Attenuation Method where lifetimes of quasi-continuum states delay low-lying
γ-ray transitions by an amount inversely proportional to the GSF magnitude. The E-∆E
scintillator array Phoswich Wall measures proton energies which designate initial nuclear
excitation energy. The γ-ray tracking spectrometer GRETINA measures signature γ-ray
transitions which designate the fed low-lying level. Doppler shift indicates γ-ray cascade time
if comparable to the nuclear stopping time. Results provide the first 56Fe GSF normalization.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

When most quantum systems accumulate a vast sum of energy, the density of available levels
can become intractably large. Inherently complex interactions can prohibit a full description
of even a single level. The strong force that binds nucleons together in the atomic nucleus
is an example of such a chaotic interaction, and certain nuclei possess an enormous number
of levels below the particle evaporation energy. Physicists resort to using two continuous
functions to characterize the average behavior of the complex nature of nuclei: Nuclear
Level Density, ρ(Ex) (or NLD), describing the exponential rise in the number levels with
excitation energy, Ex, and the Gamma Strength Function, f(Eγ) (or GSF), describing the
transition probability between levels via emission of a γ-ray with energy Eγ. A statistical
application of these average functions is most appropriate in the energy region where level
width approaches level spacing, forming a quasi-continuum.

Accurate descriptions of NLD and GSF are essential to obtain reliable results from reac-
tion modeling. These reaction calculations provide cross sections that are critical to a wide
range applications such as nuclear reactors, astrophysics, and homeland security.

The number nuclear fission reactors is likely to increase in the coming decades to meet
the energy demands of a growing population while minimizing the emissions of greenhouses
gases from other dwindling natural resources. As noted in Reference [1], designers of the next
generation of these reactors [2] must simulate the reactor core over short and long timescales
to address fuel depletion, waste production, and accident scenarios. These simulations rely
on a wealth of nuclear reaction cross section data. While the measurement community has
extensively researched long-lived nuclei, it cannot practically measure isotopes with short
half-lives due to fabrication and radioprotection concerns. Therefore, some cross sections in
the actinide region rely on theoretical calculations, extrapolations, and measurements using
the surrogate method [3]. The greatest uncertainty in the models is the NLD as a function
of excitation energy in the actinide region. These uncertainties cause cross sections to vary
by a factor of two or more. Moreover, neutron reactions with elements such as iron, nickel,
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and zirconium produce hydrogen and helium via (n,p) and (n,α) reactions which modifies
the chemical composition and structural integrity of the core walls and fuel cladding. Hence,
there is a compelling argument to measure the NLD of these materials prior to building a
costly prototype reactor. Projects such as the $680 million MAPLE reactors at Chalk River
Laboratories have already suffered termination [4] due to technical problems potentially
related to nuclear data.

The rapid neutron capture process, or r-process, is responsible for the formation of half
the nuclei heavier than iron. Although the astrophysical site of the r-process is still unknown,
it would require a sufficiently high neutron capture rate such that the nucleus does not
have time to decay before another neutron capture occurs, thus producing neutron rich
isotopes. These environments likely have (n,γ)–(γ,n) equilibrium governing relative isotopic
abundances. Simulations require reliable neutron capture and photodisintegration data to
accurately predict these abundances. Unfortunately there is not a great supply of data
on the neutron rich side of the valley of stability. Theoretical calculations are necessary
to determine missing cross sections because a poor estimate is preferable to a non-existent
value. The GSF is an indispensable model input for γ-ray emission and absorption channels.
Recently, an unexpected low-energy enhancement in the GSF was discovered in certain mid-
mass nuclei such as 56,57Fe and 96,97Mo [5]. Currently, this enhancement is not theoretically
well understood, but it changes the predicted abundances of neutron rich isotopes by more
than an order of magnitude [6].

There are many other applications that require accurate knowledge of the properties of
highly-excited nuclear states near the particle separation energy. A survey of these applica-
tions include fusion reactor designs, transmutation of radioactive waste, medical isotope
production, single-event upsets in microprocessors, geophysics, oil-well logging, counter-
proliferation, homeland security, and stockpile stewardship. Furthermore, the more mathe-
matical fields of complexity, deterministic chaos, and quantum indeterminacy can marginally
benefit from the study of nuclear structure.

The nuclear physics community has constructed several tools to measure the NLD and
GSF. The Oslo Cyclotron Laboratory’s MC-35 Scanditronix cyclotron, γ-ray detection scin-
tillator array CACTUS [7], and coupled charged particle detector SiRi [8] provide the exper-
imental means for simultaneous extraction of the energy dependence of NLD and GSF for
a wide range of ions and energies via the Oslo method [9]. The pulsed neutron sources and
long flight path lengths at the LANSCE [10] and n TOF [11] facilities with 4π scintillator
detector arrays DANCE [12] and TAC [13] enable simultaneous measurement of the abso-
lute magnitude of NLD and GSF at the neutron separation energy for nuclei one neutron
off stability. With the advent of the powerful high-purity germanium arrays GRETINA [14]
and AGATA [15] for use in low energy nuclear structure, one may wonder if it is possible to
extract useful NLD and GSF information from high resolution γ-ray spectroscopy. If so, it
would be worthwhile to reanalyze these rich data sets with a reactions-oriented objective.

This work proposes a new method to use high resolution particle and γ-ray detectors,
GRETINA and the Phoswich Wall [16], to determine the absolute magnitude of the GSF
in mid-mass nuclei. The particular nucleus explored is 56Fe, which cannot benefit from the
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Figure 1.1: The quasi-continuum lifetime method. A proton inelastically scatters off an
56Fe nucleus into the Phoswich Wall. The recoiling nucleus decelerates in the iron target
while high-lying states feed a low-lying γ-ray transition. The nucleus is in motion during the
transition and GRETINA absorbs the emitted Doppler shifted γ-ray.

traditional (n,γ) experiments at LANSCE and n TOF since 55Fe is radioactive. The new
technique utilizes Doppler shifted low-lying γ-ray transitions of recoiling 56Fe after proton
inelastic scattering. The sidefeeding from highly excited states delays γ-ray emission during
the deceleration of the nucleus, thus reducing the Doppler shift. This sidefeeding has been
neglected or corrected for in prior nuclear structure literature; however, the quasi-continuum
lifetimes involved in the sidefeeding are indirectly related to the coveted NLD and GSF via
the following equations:

τI = ~

(∑
F,XL

ΓXLI,F

)−1

(1.1)

Γ̄XL(EI , Eγ) =
fXL(Eγ)E

2L+1
γ

ρ(EI , JI ,ΠI)
, (1.2)

where τI is lifetime of initial state I; ΓXLI,F is the partial transition width to possible final state
F ; EI , JI , and ΠI are excitation energy, angular momentum, and parity of the initial state,
respectively; and Eγ is the energy emitted in the transition of electromagnetic character X



CHAPTER 1. INTRODUCTION 4

and multipolarity L. Figure 1.1 briefly illustrates the essential experimental components.
The goal of this work is to establish this quasi-continuum lifetime technique and determine
if it has the capability to extract the GSF magnitude.

1.2 Chapter Overviews

Chapter 2 introduces the experiment which was a pioneering effort to test out the capabilities
of two new detectors: GRETINA and the Phoswich Wall. In an attempt to keep the rest of
the experiment familiar, the well-studied 56Fe(p,p’) reaction was chosen and performed at a
dependable low-energy beam facility. I made the point to put the experiment chapter early
on in this document because there are numerous paths this work could have taken. High
resolution multivariate data sets are incredibly rich. There is a certain beauty to the depth
and scope achievable with such physically large, mechanically intricate, and computation-
ally powerful devices. In fact, this particular experiment was designed in order to confirm a
previously observed anomaly in the low-energy behavior of the GSF, which is not the main
topic of this work; Reference [17] presents these results. I was fortunate to take an experi-
mental shift and I was given the opportunity to study some of the unanalyzed portions of
the data. I felt that it would have been misleading to put a theory chapter first, suggesting
that the newly introduced method flows naturally from theory alone; it does not. In fact,
the recognition of the quasi-continuum lifetime effect was quiet serendipitous: I was trying
to correct for broad peak shapes of the experimental γ-ray spectra. Therefore, Chapter 2
covers the following prerequisite tasks that were necessary before a more theoretical topic
could be studied:

• obtaining a detailed understanding of the geometric configuration

• an inspection of the prominent reaction channels

• weighing the pros and cons of the different layers of signal processing

• recalibration of gain drifts and coincident detector timing

• an optimization of the algorithms used in γ-ray tracking

Chapter 3 describes the theoretical infrastructure supporting the data analysis. When a
complete derivation is not possible within reasonable space constraints, at least give a cursory
outline is provided. For example, it is feasible to fully derive two-body reaction kinematics,
but it is only possible to glimpse the history and modern formalism of stopping power theory.
Furthermore, the introduction of nuclear properties begins with quark level complexities
and describes why it is necessary to treat nucleons as individual particles. Nuclear theory
approximations proceed from the many-body nucleon level, to the shell model level, ending
at the level of statistical mechanics. This chapter concludes with the formal presentation of
the quasi-continuum lifetime method to determine the absolute magnitude of the GSF.
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Equipped with the theory of Chapter 3, Chapter 4 explores concepts beyond the ini-
tial experimental calibrations by delving into physics-based interpretations. This chapter
fully investigates the quasi-continuum lifetime effect in 16 MeV 56Fe(p,p’γ). Certain quasi-
continuum lifetime probes are superior to others: the parent level needs to have a lifetime on
the order of the slowing down time and the γ-ray transition energy needs to be isolated from
other peaks. It is shown that the angular momentum distribution is important in the pop-
ulation of low-lying levels. Systematic uncertainty are addressed. Detailed simulations are
compared with experimental results to normalize the GSF. Neighboring nuclei accessible via
(n, γ) measurements are compared to the final measurement of the 56Fe GSF normalization.

Chapter 5 offers conclusions. Limitations of the quasi-continuum lifetime method can be
reduced with improvements in either experimental equipment or simulation. A suggestion is
made as to how the method might be extended to include the actinide region of the nuclear
chart. Finally, this chapter hypothesizes what impact this method may have on applications.
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Chapter 2

Experiment

This chapter contains the necessary information to understand the equipment in this exper-
iment, the output data one can expect, the various calibrations that make the data reliable,
and the quality of the measurable quantities.

Here, I am greatly indebted to my group members who facilitated the proposal and setup
of the experiment as well as the Argonne National Lab staff members who operated the accel-
erator and hosted our team. Also, I cannot forget my engineering predecessors who set the
stage by achieving the immense technological progress to make this experiment a possibility.
Nor can I disregard the decades of theorists who made this work comprehensible, interesting,
and applicable.

2.1 Argonne National Lab: ATLAS at a Glance

Argonne National Lab located in Darien, Illinois is home to the nation’s premier stable beam
facility, the Argonne Tandem Linear Accelerator System (ATLAS) [18]. Commissioned in
1978, ATLAS was the first to provide the world with heavy ions from a superconducting
accelerator. ATLAS currently consists of 62 superconducting split-ring resonators that boost
the beam energy to as high as 17 MeV/nucleon. The facility supports users in the fields of
nuclear reactions and structure with beams of any stable ion. The resultant nuclear data
primarily supports applications in astrophysics and basic nuclear science, but also contributes
to developments in nuclear energy, medical physics, non-proliferation, and national defense
by extension.

ATLAS supports many types of experiments. Figure 2.1 shows a stripped down di-
agram of ATLAS containing only the parts relevant to the experiment in this work. The
CAlifornium Rare Isotope Breeder Upgrade (CARIBU) [20], the HELIcal Orbit Spectrometer
(HELIOS) [21], the Fragment Mass Analyzer (FMA) [22], the 4π high purity germanium
spectrometer Gammasphere, and the Canadian Penning Trap (CPT) [23] were not utilized
in this experiment.

The Positive Ion Injection system (PII) [24] delivers the initial pulsed beam for the AT-
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Figure 2.1: Experimentally relevant components of ATLAS. [19]

Figure 2.2: The Electron Cyclotron Resonance ion source (left) and Radio Frequency Quad-
rapole (right). [26]

LAS Linac. The left panel of Figure 2.2 shows the first stage of the PII: the 14 GHz Electron
Cyclotron Resonance (ECR) ion source [25]. The ion source utilizes double frequency heat-
ing to maintain a high plasma density confined within a NdFeB hexapole magnetic field and
a strong solenoid axial field. Typically the ECR produces high charge state ions, but this
experiment used only a proton beam with a charge state of +1. Beam pulse bunching first
occurs directly outside the ECR following initial beam diagnostics before transferring to the
Radio Frequency Quadrapole accelerator.

A staple in ATLAS’s modern accelerator design is its Radio Frequency Quadrapole
(RFQ) [27] which is responsible for establishing the beam bunch shape, emittance, and per-
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Figure 2.3: A schematic of one of the split-ring resonators. [29]

forming a portion of the acceleration. The right panel of Figure 2.2 shows the fabrication
stage of the RFQ with its multisegment split-coaxial 4 meter long structure. In the acceler-
ating section of the RFQ, the trapezoidal vane tip modulation increases the shunt impedance
by 60% compared to conventional sinusoidal modulation, allowing the radio frequency eigen-
mode to interact more strongly with the charged particles. The RFQ impedance matches
the initial beam to the superconducting section of ATLAS. Figure 2.3 shows one of the core
accelerating units: the split-ring resonator [28]. ATLAS operating staff independently ad-
just each of these 62 variably sized split-ring resonators to synchronize with the increasing
velocities of passing bunches.

For this experiment, the incident proton energy was 16 MeV, the current on target ranged
from 0.5 to 1.0 nA, the beam pulsed every 40 ns with a 0.5 ns width, and the beam diameter
was 2 mm. Approximately 80 hours of 56Fe(p,p’) data collection was useful for analysis.

2.2 The 56Fe(p,*) Reaction and Detector Array

Overview

This section highlights the important reaction products and introduces the detectors that
will be sensitive to the ejected particles. Further descriptions of these detectors are given in
greater detail in following sections.

Protons from ATLAS impinged upon a self supporting 1 mg/cm2 thick layer of sputtered
iron (Fe) target enriched to 99.7% in 56Fe. Collaborators from Washington University in St.
Louis provided these targets and targets of similar stature used for the carbon calibration
runs shown in Figure 2.4.

The inelastic scattering 56Fe(p,p’)56Fe* was used to generate excited 56Fe nuclei for this
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Figure 2.4: Some of the targets used for calibrations in the experiment.

experiment. The recoiling 56Fe nuclei typically do not have enough energy to escape the thin
foil target material and usually go undetected. Scattered protons emerge from the target
into the chamber at all angles. The Phoswich Wall particle detection array [16] measured the
angle and energy of the protons. In 56Fe(p,p’)56Fe*, p’ indicates that the proton deposited a
fraction of its energy as an internal excitation in the 56Fe nucleus denoted by *. The excited
56Fe* nucleus decays via γ-ray emission. The γ-ray spectrometer GRETINA [14] measured
the angle and energy of the emitted γ-ray’s. GRETINA uses γ-ray tracking to determine
the entire energy of an incident photon including deposition via both the photoelectric and
Compton scattering processes. Any γ-ray with energy greater than twice the rest mass
energy of the electron can produce a positron and electron pair through electromagnetic
interactions with matter. This pair production can occur inside GRETINA or on nearby
detector or structural material. Recoiling positrons and electrons created inside GRETINA
will deposit their recoil energy and generate a signal, while those escaping the detectors
will result in an inaccurate determination of the total energy of the incident γ-ray. After
positrons lose most of their kinetic energy to scattering, they annihilate with nearby electrons
and emit two 511 keV γ-ray’s nearly back to back. GRETINA detects many of these 511
keV γ-ray’s.

16 MeV protons on 56Fe can induce 11 other kinematically allowed non-elastic reaction
channels. The left pane of Figure 2.5 shows these allowable channels. These reactions almost
always produce the heavy nuclei in excited states that subsequently γ-ray decay. Despite
there being many allowable exit channels, GRETINA data only reveals γ-ray’s from five of
these reactions: (p,n)56Co, (p,d)55Fe, (p,pn)55Fe, (p,α)53Mn, and (p,pα)52Cr. The remainder
of the reactions have low cross section and occur infrequently. The right pane of Figure 2.5
shows the observed reactions on the National Nuclear Data Center’s (NNDC) chart of the
nuclides [31].

The Phoswich Wall detection array has the capacity to detect the angle and energy of
the deuterons (d) and alphas (α) from these reactions. The Phoswich Wall can detect 3H
and 3He ejectiles as well, but the production cross section is several order of magnitude
lower. Reactions other than (p,p’) are left unanalyzed in this work. The Phoswich Wall and
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Figure 2.5: Kinematically allowable and observable reactions in 56Fe(p,p’) at 16 MeV. Output
from the web program QCalc [30] and Chart of the Nuclides [31].

GRETINA are not designed to detect the neutrons (n) from the (p,n) and (p,pn) reactions,
but features from these neutrons do appear in the data. The heavy ejectiles 56Co, 55Fe, 53Mn,
and 52Cr like 56Fe typically do not have enough recoil energy to exit the target material and
are undetected.

As seen in the right pane of Figure 2.5, 56Co is unstable to decay via electron capture
(81%) and positron emission (19%) with a half-life of 77 days. The average emitted positron
kinetic energy is 610 keV which is enough to escape the 1 mg/cm2 target. The Phoswich Wall
is not optimal for detecting positrons but some events appear in the data: GRETINA detects
a significant number of annihilation 511 keV γ-ray’s in a narrow coincidence time window
with the Phoswich Wall positron events. Electron capture does not frequently generate high
enough energy Auger electrons to escape the target. The experimental chamber is thick
enough to prevent GRETINA from detecting any of the X-Rays from electron capture. 56Co
decays back into 56Fe and produces the same γ-ray’s as (p,p’).

In summary, the Phoswich Wall detects the angle and energy of the outgoing protons
while GRETINA detects the angle and energy of the emitted γ-ray’s for analysis of the
56Fe(p,p’γ) reaction. The unintended (p,α), (p,d), (p,n) reactions and 56Co β+ decay are
ignored in this data analysis. The remaining 56Fe(p,p’γ) data contains a host of information
on the nuclear structure of 56Fe. Multiple γ-ray emission provides information on the 56Fe
level scheme, γ-ray Doppler shifts provide information on lifetimes of 56Fe excited states,
and angular distributions of both protons and γ-rays provide information on the spin and
parity of 56Fe levels as well as the multipolarity of the transitions between levels. These
phenomena and analytical procedures will be discussed in Chapter 3.
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Figure 2.6: The Phoswich Wall charged particle detector arrays (left). Scattering chamber
and feedthroughs (right)

2.3 The Phoswich Wall Array

This section further describes the Phoswich Wall and its location in the beam line. The
Phoswich Wall’s E−∆E particle identification method is described. Calibrated energy spectra
and particle identification spectra from experimental data are presented. Cross talk algorithms
for enhanced energy resolution and sub-pixel position resolution are explained.

Geometric Configuration

The name “phoswich” is a contraction of “phosphor sandwich”, where phosphors are defined
as substances that exhibit the phenomenon of luminescence, and a stack of such phosphors
is akin to a sandwich. The Phoswich Wall, shown in left panel of Figure 2.6, is a set of
four 8×8 arrays of multianode photomultiplier tubes (PMTs) coupled to a “sandwich” of 2.2
mm thick CsI(Tl) and ∼12 µm thick BC400 fast plastic scintillating material. These arrays
sit inside an evacuated scattering chamber connected to the ATLAS beam pipe, shown in
the right panel of Figure 2.6. A target feedthrough connected to the scattering chamber
supports the 56Fe sample at the center of the chamber. The incident beam strikes the target
and low-mass reaction ejectiles recoil into the phoswich arrays. Any unscattered beam exits
the chamber and enters a beam stop a few meters past the scattering chamber.

A set of coordinate transformations are needed to relate the planes of the four 8 × 8
arrays to the beam coordinate system. In the beam coordinate system, the origin is the
target center and the Z-axis is the beam direction. The transformations from the Cartesian
coordinates of each detector array (x,y) to Cartesian coordinates of the lab (X,Y ,Z) are the
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Figure 2.7: Angles covered by one of the four Phoswich Wall arrays. The other three detector
arrays are each translated by ∆φ = π/2 with respect to the previous array.

following:

X(x, y) = L/2 + δ (2.1)

Y (x, y) = R0 sinΨ− (L/2− y)cosΨ− δ + α (2.2)

Z(x, y) = R0 cosΨ− (L/2− y)sinΨ (2.3)

where L = 49 mm is the length of one side of the square array, δ = 0 mm is the linear
displacement length, α = 10 mm is the backset, R0 = 55 mm is the maximum radius for
δ, α = 0, and Ψ = 50.6◦ is the angle between the normal to detector plane and the beam
axis. The spherical polar coordinates of the beam coordinate system are

r(x, y) =
√
X(x, y)2 + Y (x, y)2 + Z(x, y)2 (2.4)

θ(x, y) = cos−1

(
Z(x, y)

r(x, y)

)
(2.5)

φ1(x, y) = tan−1

(
Y (x, y)

X(x, y)

)
(2.6)

φn(x, y) = φn−1(x, y)− π/2, n = 2, 3, 4 (2.7)

where r is the distance from the target origin, θ is the opening angle with respect to the
direction of the beam axis (the Z axis), φ1 is the azimuthal angle of array 1, and φn are
the azimuthal angles of arrays 2, 3, and 4. Figure 2.7 shows the angular coverage of array
1 in spherical polar coordinates. The detector arrays are all situated at forward angles
(0 < θ < π/2) in this experiment (i.e. downstream of the beam).

The Phoswich Wall has the capability to study both inverse and normal kinematics reac-
tions. In inverse kinematics, the projectiles in the beam are much heavier than the nuclei in
the target. The ejectiles of inverse kinematics reactions are very forward focused by virtue of
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Figure 2.8: The Phoswich Wall configurations to scale. (a) Inverse kinematics configuration
maximizing forward angle coverage (δ = 20, α = 0). (b) Normal kinematics configuration
improving angular resolution while still covering a significant portion of the solid angle in
the forward direction (δ = 0, α = 5). This experiment utilized the normal kinematics
configuration for its high angular resolution.

the conservation of the large quantity of linear momentum along the incident beam direction.
To accommodate inverse kinematics, Figure 2.8a shows the Phoswich Wall configuration that
maximizes forward angle coverage without intercepting any of the unscattered beam. The
forward tilt of the arrays with respect to the beam axis improves solid angle in the CM frame.
In contrast, the experiment presented in this work was performed at normal kinematics: the
proton projectile has a much smaller mass than the 56Fe target. In normal kinematics, there
is not as much linear momentum in the beam direction, but still a large portion of the cross
section for direct reactions is forward focused. In normal kinematics reactions, the measured
angle of the outgoing light ejectile provides a lot of information about the reaction and opens
the possibilities for additional analysis. To accommodate a multitude of analyses in normal
kinematics, Figure 2.8b shows the Phoswich Wall configuration used in this experiment that
has an enhanced angular resolution in comparison to the inverse kinematics configuration
without the forfeiture of a substantial amount of solid angle coverage. Figure 2.9 shows two
examples of typical reactions.

The phoswich arrays have a E−∆E structure for light charged particle identification. Ions
deposit only a portion of their energy (∆E) in the thin fast plastic, and deposit the remainder
of their energy (E) in the thick CsI(Tl). According the Bethe formula [32], the mean energy
loss of an ion traversing the fixed thickness of the fast plastic is proportional to the charge



CHAPTER 2. EXPERIMENT 14

Figure 2.9: Examples of the Phoswich Wall’s participation in and exclusion from detection.
(a) An incident proton (blue) scatters off the 56Fe target (orange) into one of the four the
Phoswich Wall arrays, the recoil of the 56Fe nucleus goes undetected since it does not have
sufficient kinetic energy to escape the target but has an initial velocity vector (red) in a
direction nearly opposite the proton. (b) An event where the proton recoils to an angle
outside the detectable area of the Phoswich Wall.

of the projectile squared: ∆E ∝ Z2. The waveform signal of decaying luminescence gives
an indication of the charge Z of the deposited particle. Figure 2.10 illustrates proton and
alpha output: energy deposited in the fast plastic (∆E) decays away rapidly while energy
deposited in the CsI(Tl) decays on a much longer timescale. A ratio of PMT output integrals
at various times distinguishes the two types of particles on an event by event basis.

The energy resolutions of the phoswich scintillating materials are inferior to silicon par-
ticle detectors. The choice of fast plastic and CsI(Tl) scintillating material was chosen more
for its radiation hardness, mechanical durability, and gain stability rather than its energy
resolution. The fast rise time of the BC400 plastic and the large stopping power of the
thick scintillator also were important considerations. The maximum energy proton that can
be stopped by the 2.2 mm thick CsI is approximately 21 MeV, well below proton energies
achieved in this experiment.

While the segmentation of the Phoswich Wall provides good angular resolution of the
reaction products, light deposited above one PMT section can leak into a neighboring section.
This “cross talk” allows sub-pixel resolution of the position hit. When two adjacent PMT
pixels detect light, the true location of the energy deposition is a function of the ratio of the
two signals. The angular resolution of fully isolated PMT pixels is around 7◦ FWHM, but it
has been shows that analysis of cross talk can achieve up to a 2◦ resolution experimentally
[16]. However, the analysis performed as part of this experiment did not include sub-pixel
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Figure 2.10: Schematic of the Phoswich Wall pulse shape discrimination time intervals (not
to scale).

positioning.
As a final overarching design criteria, the Phoswich Wall has a small volume to fit inside

the limited space at the center of 4 π γ-ray spectrometers. Similarly, the Phoswich Wall has
a low overall mass of detector and structural material to minimize degradation of the γ-ray
spectrum through Compton scattering. The attenuation of 511 keV γ-rays is 2.2% in the 1
mm aluminum chamber and 4.2% in the 2.2 mm CsI(Tl). The γ-rays studied in this work
are primarily above 511 keV.

Calibration and Particle Identification

As introduced earlier, the Phoswich Wall has particle identification capabilities. Three sepa-
rate integrals of PMT output are taken at separate times to capture the E−∆E information.
The early “A” gate captures the ∆E signal from the fast plastic and begins after a 15 ns
delay with respect to the start of the pulse and has a 50 ns duration. The “B” gate captures
some of the fast plastic ∆E signal and some of the E signal from the CsI(Tl); it has a 68 ns
delay and 280 ns duration. The late “C” gate captures the remainder of the E signal; it has
a 1000 ns delay and 1800 ns duration. These gates correspond to the illustration of Figure
2.10. Complete digitizer waveforms were not saved to disk.

Pulse shape discrimination requires knowledge of the PMT central hit location. However,
since gains in neighboring PMT pixels vary by up to 25%, it is not always clear which pixel
contains the central hit. The procedure of gain matching rectifies the situation by using
a mask to prevent particles from hitting pixel edges, thereby isolating events where the
majority of light enters only one PMT. In contrast, interactions near pixel edges produce
scintillation light that enters both adjacent PMTs. With the mask in place the difference in
light yield is greater than 25% between adjacent pixels. Gain are matched and thresholds
are set at the beginning of the experiment with alpha particles from 252Cf and 228Th.



CHAPTER 2. EXPERIMENT 16

The B-gate of the largest hit pixel has the best energy resolution for protons. Resolution
can be improved an additional 30% with face-neighbor add-back. Adding pulse heights of
surrounding pixels typically doubles total pulse height, indicating that the central hit pixel
does not capture a lot of the total scintillation light. Border pixels of the 8 × 8 arrays do
not have the same number of neighbors which complicates add-back. For these pixels, it
is necessary to multiply total pulse height by some function of the cross talk fractions of
available face neighbors. The energy resolution of border pixels is not as good as pixels
with 4 face-neighbors, but at least all pixels yield the same magnitude for a given energy
deposition. Furthermore, some of the central PMT pixels are broken, and more complicated
computational logic is required.

The energy add-back algorithm is similar to the sub-pixel hit positioning algorithm de-
scribed by Sarantities et. al. [16]. An empirical function relates the sub-pixel hit location
with cross talk fraction:

x(f), y(f) = a(2− 1

f
) + b(f − 1

2
) + w (2.8)

where f is the cross talk fraction between adjacent pixels, w = 6.08 is the width of each
pixel, a = 0.470 and b = 10.8 are fitting parameters that vary among the phoswich arrays,
and the coordinates x and y are in units of mm. For f = 1/2, the hit is located directly
on the edge by definition since light enters both pixels equally: x(1/2), y(1/2) = w. For
f = fmin ≈ 0.15, the hit is located at the other edge: x(0.15) = 0.0. The face neighbor
fractions that pinpoint the hit location inside the pixel are labeled fL, fR, fU , fD for left,
right, up, and down, respectively. For example, if fL > fR and fU > fD the hit is located
in the top left quadrant of the pixel. Equation (2.8) determines positions more accurately.
There are two measurements of an axis coordinate when the pixel has two neighbors along
that axis. Typically the larger cross talk fraction is more reliable. When a pixel on the
corner or edge of the array is missing a neighbor pixel, the available neighbors determine
how much light would have entered the missing pixel(s). The calculated energy(ies) of the
missing pixel(s) is(are) added to the total energy of the event when performing add-back.
Energy resolution is not as good when pixels are missing, but the pulse height has the same
relative magnitude.

Several other corrections to the particle energy are necessary. The linearity of the B-gate
proton energy is established with 12C(p,p’)12C and 12C(p,p’)12C*, where the two accessible
excited states of carbon are at 4.439 and 9.641 MeV. Small corrections on a run-by-run
basis correct for gain drift. Corrections for punch-through energy loss are angle dependent.
Charged particles lose energy passing through the 1 mg/cm2 iron target, the 7.28 mg/cm2 tin
absorber, and the varying thicknesses (∼ 1.2 mg/cm2) fast plastic ∆E layer before reaching
the CsI(Tl) E detector. These corrections are not important in an absolute sense because
the alpha particle calibrations establish the magnitude of energy deposition. However, the
incident vectors of the particles are not all parallel to the normal vectors of the planes of the
phoswich arrays. The particles pass through different amounts of material before entering
the CsI(Tl) depending on which pixel they hit. These angle dependent corrections are as
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Figure 2.11: Experimental particle identification and energy calibration of the Phoswich
Wall

large as 13% relative to one another. The calibrations and corrections in this experiment are
only valid for protons. An entirely different set of calibrations would be necessary for alpha
particles and electrons.

Figure 2.11 shows the Phoswich Wall A, B, C gate output from this experiment after
energy calibration, drift correction, add-back, and energy-loss corrections. Recall that the A
gate contains primarily ∆E information, the B gate contains both ∆E and E information,
and the C gate contains primarily E information. As alluded to in previous sections, the
Phoswich Wall detects multiple types of particles. At least three groups of particles are
distinguishable: protons, alphas, and electrons/positrons. Since alpha particles have a larger
Z than protons, the value of ∆E is larger for a given incident E. The Compared to ions,
electrons and positrons have different energy loss parameters due to their small mass and
large Bremsstrahlung losses. The positrons originate from the 19% positron emission decay
branch of 56Co and from γ-ray pair production in the detector material. Energetic electrons
originate from target ionization, γ-ray pair production, Compton scatter, and photoelectric
absorption.

Particle identification is much clearer for the B-C combination because the B and C
pulse heights incorporate all the energy corrections described previously and have better
resolution from a longer charge integral. The B gate likely contains more information on
∆E than it does on E because particle separation is clear in combination with C (which
contains primarily E), but not A (which contains primarily ∆E).

2.4 GRETINA Array

This section begins with a brief overview of GRETINA including its segmented geometry,
signal decomposition method, and concept of γ-ray energy tracking. Performance of crystal-
level γ-ray energy, timing, and position resolution is summarized and supplemented with
experimental data. Tracking parameters, performance, and suggestions are presented. Fi-
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Figure 2.12: The Gamma-Ray In-beam Nuclear Array, GRETINA

nally, a new method to fix various energy/gain instabilities at the crystal level is shown to
be useful.

Geometric Configuration

The Gamma-Ray In-beam Nuclear Array (GRETINA), shown in Figure 2.12, is the first
stage in the construction of a high purity germanium (HPGe) array that covers 4π solid angle.
The finalized version of the array will be called the Gamma-Ray Energy Tracking Array
(GRETA). This detector currently covers over 1π solid angle in the use of 32 electrically
segmented HPGe detectors. The segmentation of each of these crystals is 36-fold, allowing
extraction of each γ-ray interaction point to great precision. Preceding large germanium
arrays such as Gammasphere [33] in the United States, Euroball [34] in Europe, and various
arrangements of clover detectors [35] relied on the Compton suppression method to improve
resolving power.

Compton suppression consists of vetoing single scatter γ-ray escapes with exterior high
density actively detecting shields such as Bismuth Germinate. This gives data analysts
the ability to isolate events with complete energy deposition. GRETINA and its European
counterpart AGATA [15], are the first of their kind to forgo the Compton suppression method
entirely. The full 4π array GRETA will have the maximum coverage of germanium without
bulky suppression shields that occupy a lot of valuable solid angle. This next generation
of γ-ray detection is only possible with the energy tracking method [36]. Energy tracking
utilizes the high degree of crystal segmentation to trace out multiple-scatter γ-ray paths.

The driving motivation for implementation of GRETINA is not its high photopeak ef-
ficiency nor good peak-to-total ratio. It is true these benefits will reduce the beam time
necessary to achieve viable statistics per experiment, but the array was designed primarily
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Figure 2.13: Location of GRETINA with respect to the reaction plane.

to meet the demanding requirements of nuclear structure. Frontiers of nuclear science in-
volve studies of nuclei far from stability. It is rarely feasible to fabricate a target with a high
purity of a radioactive isotope. Neither is it practical to place sensitive detection equipment
nearby such high activity sources of radiation. Therefore, the optimal technique to access
the limits of nuclear structure is in the production of radioactive ion beams (RIBs).

Particles in radioactive beams usually have a much larger mass than target nuclei and
travel with large incident velocities. The reactions take place in inverse kinematics, where
projectile-like fragments recoil at velocities typically β ≈ 0.07. The emission of γ-rays
from these nuclei are subject to significant Doppler broadening. Good angular resolution
and segmentation correct for these effects through the means of event-by-event Doppler
reconstruction. The precise determination of angle is not essential to normal kinematics
experiments such as the present one, but the opportunity opens up new types of experimental
analysis involving nuclear recoil. Figure 2.13 shows GRETINA’s involvement in a typical
reaction: the 56Fe nucleus recoils away from a set of crystals and emits a γ-ray that scatters
in the array.

The inner workings of GRETINA are quite complicated. Excellent bookkeeping is es-
sential to keep all the digital output signals in order. The array is broken up into tiers of
segmentation: GRETINA possesses 8 Quads, each Quad contains 4 crystals, each crystal
has 6 vertical segments, each vertical segment divides into 6 hexagonal segments. The total
segmentation of this experiment is 1152-fold. Each Quad has an identical design, but not
all crystal within a Quad are interchangeable. Figure 2.14 shows the geometric division of
GRETINA. The number of possible ways to tile the surface of a sphere limits the possi-
ble options of crystal configuration. The chosen configuration of the finalized GRETA has
two types of hexagons, an A and B type, with 60 units each. The choice keeps a simple
configuration for manufacturing purposes, limits the amount of germanium material neces-
sary, maximizes solid angle coverage, and minimizes cost. Twelve untiled pentagonal spaces
remain open for beam pipe and cabling.
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Figure 2.14: Quad, crystal, segment-level sectioning of GRETINA [14]

Each Quad stands at an 18.5 cm radial distance from target center to give space for
an auxilary particle detector. Germanium inside each crystal is approximately 9 cm in
thickness and 8 cm in diameter. The effective actively detecting volume is much less than
the total volume of the spherical shell. Gaps and canister wall material create 9.2 mm of
dead space between adjacent crystals in different Quads. Core holes 1 cm in diameter and
7.5 cm in length reduce the germanium volume, but facilitate semiconductor doping. It is
not currently technologically practical to deplete a volume of germanium more than a few
centimeters wide. Furthermore, the aluminum case and cryostat capsule cause scattering
and absorption of γ-rays which interferes with energy tracking.

The crystals are n-type HPGe with less than 1.8× 1010 cm−3 net impurity. Each Quad
has a single liquid nitrogen cryostat. Quads contain 148 charge sensitive preamplifiers to
readout the 37 signals from the four interior crystals. The Field-Effect Transistors (FETs)
that measure the total energy deposited in each crystal are liquid-nitrogen-cooled. The
FETs that measure energy deposited in each segment are outside the cryostat for ease of
maintenance.

Signal Decomposition

Energy tracking requires a better position resolution, ∆r, than the dimensions of the segment,
which is on the order of 25 mm. Often, γ-rays interact multiple times in a single segment.
An event that has two interactions in neighboring segments would have a 180◦ uncertainty
without sub-segment position resolution. Fortunately, output signals depend on the position
of γ-ray interactions allowing for the necessary sub-segment resolution. After Compton
scattering or photoabsorption, the charge migration of electrons and holes through the main
segment determines the shape of the waveform. Furthermore, induced signals in neighboring
segments help pinpoint the location of energy deposition.

The signal decomposition process relies on prior simulation to provide basis signals [37].
A numeric solution of the Poisson equation determines the potential and electric field in
each crystal. Charge trajectories depend on γ-ray interaction energy and location as well
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Figure 2.15: Basis signals for various interaction points in a grid spacing of 8 mm [39]

as detector geometry and applied voltage. Ramo’s theorem determines the signal in nearby
segment electrical contacts by calculating the induced instantaneous electric current [38].
The left panel of Figure 2.15 shows example basis signals for energy deposited at each of the
10 interaction locations in the ∆ = 8 mm grid spacing. An adaptive grid method further
refines the sub-segment interaction position. An onsite computer farm calculates signal
fits via brute force in a least χ2 minimization. Currently, no other exotic fitting routines
provide improvements in computational speed. Full waveforms are not saved; only more
encompassing parameters like position, energy, and time of each interaction are stored on
disk.

Position resolution is an important qualification for a γ-ray energy tracking array [40].
With poor resolution, unless interaction points are spaced a great distance, the uncertainty
in scattering angle can be very large. To study position resolution, Paschalis et. at. [14]
used a strong 60Co source, lots of shielding, and an auxiliary scintillator detector [41]. The
sharply collimated γ-rays scattered off a small volume of germanium inside the GRETINA
crystal into the well shielded scintillator at various prescribed angles. The γ-rays imparted
well defined amounts of energy to the electrons. These strongly constrained interactions
produced a distribution of output signals. The signal decomposition process reconstructed
the positions of the interactions as a spread of locations about the the known scattering
points. They reported an average resolution of ∆r = 1.9 mm with standard deviation 0.9
mm. Cross talk between signal channels was one of the major limiting factor in determining
the locations of the energy deposition.
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Tracking Algorithms

This analysis uses the energy tracking algorithm from Schmid et. al. [36]. The algorithm has
several stages designed to maximize the resolving power of high multiplicity γ-ray events.
The authors of the algorithm focused on their attention on the formation of superdeformed
bands which decay with the emission of 20-25 γ-rays of 0.1-2.0 MeV. A scenario such as this
would have around 100 γ-ray interaction points in a 9 cm thick germanium spherical shell.
The reaction in this experiment, 56Fe(p,p’), has much lower γ-ray multiplicities, typically
2-5. Therefore, not all stages of the tracking algorithm are useful for this low multiplicity
purpose.

A single γ-ray has interaction points that localize in θ−φ space as results of the forward
peaked Klein-Nishina Compton scattering formula [42] and the decreasing average range of
γ-rays with γ-ray energy Eγ. The first stage of tracking involves clustering of interaction
points by angular separation angle, α, as viewed from the target origin. Angular separation
is a variable parameter which produces different sets of clusters for different input values. A
group of clusters will have good, fully absorbed γ-rays while other clusters will not. Often,
two γ-rays are misidentified as one, one is misidentified as two, or one escapes out the
back of the shell after partial energy deposition. These misidentified events require further
processing.

A cluster is characterized as good or bad based on a calculated figure-of-merit, FOM. The
FOM stems from a comparison between the two independent ways to calculate scattering
angles: using deposited energies and interaction locations. The energy-angle relationship of
Compton scattering provides the first way to calculate scattering angle:

θc = cos−1(1 +
mec

2

Eγ
− mec

2

E ′γ
), (2.9)

where E ′γ is the scattered γ-ray energy, me is the electron rest mass, and θc is referred to as
the Compton angle. The second way to calculate scattering angle is

θm = cos−1(v̂ · v̂′), (2.10)

where the v̂ and v̂′ are the unit vectors of the incident and scattered γ-rays, respectively,
and θm is referred to as the measured angle. The reconstructed interaction locations from
the signal decomposition process as well as the target origin determine these vectors. After
computing these two quantities the FOM for a given three point combination is

FOM = θm − θc. (2.11)

Early iterations of the algorithm have the FOM equal to the right hand side of (2.11) divided
by ∆θ, the uncertainty in the difference of the two angles. However, the minor improvement
from dividing by uncertainty does not justify its computational cost.

The algorithm first uses the target origin and all combinations of two interaction points
in the cluster to determine the best 0-1-2 scattering sequence. The sequence is optimal for
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the lowest FOM. Subsequent steps use the scattering location of the previous three-point
sequence as the starting location of the next iteration. The procedure repeats for all points
in the cluster, with the last assumed to be a photoabsorption. The total FOM for the cluster
is an average of each individual sequence’s FOM.

FOMtot =
1

N − 1

N∑
n

FOMn, (2.12)

where N is the number of interactions.
Position resolution is the major limiting factor in FOM minimization. The fractional

uncertainty of θm is on the order of ∆r/λ, where ∆r is the experimental position resolution
and λ is the mean free path of the incident γ-ray. The fractional uncertainty of the Compton
angle is on the order ∆Eγ/Eγ, where ∆Eγ is the energy resolution of the detector. For
Eγ = 1.3 MeV, ∆Eγ ∼ 2 keV making ∆Eγ/Eγ ∼ 0.01. On the other hand, typically ∆r ∼
1 mm and λ ∼ 1 cm making ∆r/λ ∼ 0.1, an order of magnitude larger in uncertainty.

The total FOM is an output parameter for event selection in offline analysis. For example,
FOM might be used when creating histograms of total γ-ray energy. One may enforce a total
FOM ¡ 0.8 for each accepted γ-ray cluster. This choice filters out events in which θc’s and θm’s
disagree by more than 23◦ for the cluster. Ideally, histograms with this gate have improved
peak-to-total ratios (P/T).

The FOM is undefined when the first and only interaction is photoabsorption. The
tracking code assesses these events based on their interaction energy and depth d. A singles
event is assigned a large FOM if d � λ, where λ is the mean free path of a γ-ray with
incident energy equal to the interaction energy. Ideally, this process of singles rejection
removes events where a γ-ray of a couple MeV scatters once in the crystal and escapes out
the back of the germanium shell.

Additional algorithm modes are available in the tracking code. However, these modes
are not always necessary for reactions with low γ-ray multiplicity. Tracking modes, such as
those that attempt to split larger clusters, add significant computational time without much
improvement of P/T.

Detector Performance

Figure 2.16 shows a 60Co singles spectrum from this experiment using the central contact
signal energies from GRETINA. The familiar features include:

1. two peaks at 1173.2 and 1332.5 keV due to the primary γ-rays

2. two corresponding Compton edges from backscatters in the germanium

3. a backscatter peak from backscatters outside the crystal

4. a 511 keV peak from pair production
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Figure 2.16: A simple GRETINA calibration spectrum with 60Co
prior to 56Fe(p,p’)

5. a sum peak at 2506 keV when both γ-rays deposit all their energy in one crystal

6. several low energy X-rays

7. multiple background peaks

The peak to total ratio (P/T) of a 60Co source is often quoted as

P/T =
A(1173) + A(1333) + A(2506)

Atot
. (2.13)

where A(1173) and A(1333) are the areas in the peaks of the source γ-rays of 1173.2 and
1332.5 keV respectively, A(2506) is the sum peak, and Atot is the number of counts up to
just past the sum peak. There are many other ways to quote P/T [43], but equation (2.13)
provides the simplest accounting of γ-rays and applies to both segmented and unsegmented
detectors.

Calculation of P/T requires background subtraction. However, measurements in this
experiment focus on in-beam data where background is assumed to have an empirical func-
tional form. Also, the beam-induced background is completely different from pre-experiment
background because the beam produces many short lived γ-ray emitters. Furthermore, post-
experiment background is different from pre-experiment background because the beam pro-
duces many long-lived γ-ray emitters. Protons hitting the sides of the beam pipe are the
largest producers of long- and short-lived beam-induced activity. Protons activating the iron
target are also major producers of activity.

The photopeak efficiency, εp, is the probability that a single emitted γ-ray is measured in
the photopeak of the spectrum. Calculation of εp involves angular correlations of γ-rays and
a scattering factor CS, the probability for γ-rays to scatter out of one crystal and fully absorb
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Figure 2.17: Experimental GRETINA γ−γ timing resolution with the 847 keV 56Fe 2+
1 → 0+

1

among all 32 crystals

in the remainder of the array. The P/T and absolute efficiencies were not investigated in this
experiment due to the lack of a good background measurement. Lauritsen et. al. [43] report
P/T = 0.381(5) and εp = 6.0(6) % using the central contact energies for 28 crystals. The
32 crystal configuration of this experiment has an extrapolated εp = 6.8%. In comparison,
Gammasphere has εp = 7.8(8)% for 100 active detectors.

GRETINA operates with purely digital electronics after the preamplifier stage. The
timing of γ-ray interactions is determined at the software level from the digitized waveforms.
A constant fraction discrimination (CFD) algorithm subtracts a time-delayed fraction of the
waveform from the original pulse. The pulse height independent zero-crossing of the CFD
output is resistant to walk effects. A polynomial fit to several points above and below the
zero-crossing recovers the intrinsic germanium crystal timing from a 100 MHz sampling rate.

The left panel of Figure 2.17 shows in-beam data from this experiment of coincident
56Fe 847 and 1238 keV γ-rays interacting in separate crystals. The centroid time difference,
µ, between these two γ-rays is approximately equal to zero since they interact at nearly
the same time and have no prescribed ordering in the array of data. The timing standard
deviation, σ, for two crystals is approximately a factor of

√
2 larger than a single crystal’s

timing σsing. Therefore the collection of 32 crystals has an average of σsing = 7.28 ns around
Eγ = 1 MeV, which is a bit larger than a typical single germanium crystal.

The right panel of Figure 2.17 shows in-beam data from this experiment of 56Fe 847 keV
γ-rays coincident with crystal interaction energies from 250 keV to 4 MeV. γ − γ timing
is nearly independent of the second γ-ray’s energy above 1.5 MeV. However, γ − γ timing
severely worsens at low energy due to the small number of charge carriers migrating in the
crystal.

Figure 2.18 shows this experiment’s particle−γ-ray timing, ∆tpγ, with particles of all
energies from the Phoswich Wall and γ-rays above 837 keV from GRETINA. The positive-
valued centroid of the main peak indicates that the data acquisition systems register γ-rays
before particle events. This may be due to the fact that the γ-rays have a shorter time-
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Figure 2.18: The Phoswich Wall (PW) and GRETINA (G) particle−γ-ray timing

of-flight (TOF) than heavy charged particles. However, there are many other factors that
obfuscate an absolute TOF measurement including cable lengths and signal processing. The
smaller ∆tpγ peak at later times is not well understood and could be the result of a mis-
recorded timestamp. The γ-ray energy spectrum of the ∆tpγ second peak is nearly the same
as the energy spectrum from the main ∆tpγ peak, so the feature is likely a digitizer artifact.
Additional digitizer artifacts are visible around 150 ns as sharp timing peaks, which are
likely the result of digitizer discretization. Digitizer issues are on the Phoswich Wall side of
signal processing since the problems were absent in γ-ray−γ-ray coincident timing as seen
in the left panel of Figure 2.17. Since the second ∆tpγ timing peak and other features are
nearly two orders of magnitude smaller than the main ∆tpγ peak, the events are not a large
concern and data analysis is restricted to counts in the main peak.

Particle−γ-ray timing centroids and standard deviations are independent of particle en-
ergy deposition. This timing is in contrast to γ-ray−γ-ray timing which depends on energy
as shown previously in the right panel of Figure 2.17.

Counts with ∆tpγ > 500 ns are primarily from neighboring pulses and partially from
ambient room background activity. Beam pulses arrive roughly once every 40 ns, allowing
several bunches to pass through the target before the timing window closes. The acquisition
system has some inherent deadtime as there is a large drop in counts for 350 < ∆tpγ < 475 ns.
The Phoswich Wall events are global triggers for the acquisition system. GRETINA will only
record waveforms within a prescribed timing window before and after each Phoswich Wall
trigger. Digitizer banks can only readout approximately 15 MB/s per crystal, whereas a con-
tinuous waveform of one signal contact corresponds to 175 MB/s at 14-bit resolution and 100
MHz. Signal trace length is 1.6 µs, corresponding to about 14 kB for an entire crystal for one
event, and limiting the crystal event rate to about 1.1 kHz. Local computational resources
performed data processing during the experiment. The computer nodes reconstructed γ-ray
interactions and saved only segment- and crystal-level energies and timing.



CHAPTER 2. EXPERIMENT 27

Figure 2.19: Crystal interaction locations in the XZ plane (left) and sinusoidal projection of
the GRETINA array (right)

Figure 2.19 shows the results of the signal decomposition process for this experiment.
The left panel shows a superposition of all crystals as a cut through the xz-plane in the
crystal coordinate system. Position reconstruction of signal decomposition has a tendency
to fault on segment edges and corners making segment boundaries visible. The core holes
are necessary to uniformly dope the crystal volume during the fabrication process. The
right panel of Figure 2.19 shows a map of the crystals in the lab polar coordinate system.
The 8 Quad configuration at Argonne National Lab spans a large range of θ in contrast to
the National Superconducting Cyclotron Lab (NSCL) configuration which primarily covers
forward angles (θ < π/2). The Argonne configuration is optimal for the stable beam facility
which often provides reactions of normal kinematics. Covering back angles (θ > π/2) allows
access to a large range of Doppler shifts. The NSCL configuration is optimal for the fast
beam facility which mostly provides reactions of inverse kinematics. The NSCL configuration
maximizes solid angle coverage to account for an effect known as “Doppler focusing” in which
γ-rays emitted isotropically in the frame of the heavy ejectile emit at forward angles in the
lab frame.

Tracking Performance

In this experiment, the clustering algorithm used an angular separation parameter α =
15◦, regardless of the number of interaction points. The central contact signal has better
energy resolution than the 36 segment contact signals because the FET for the central
contact is inside the cryostat and the energy determination does not rely on the success of
the signal decomposition process. Therefore, the tracking code used the central contact as
normalization for individual interaction points inside a crystal to maintain stability. Tracking
modes that recluster with a smaller FOM, split clusters, and try to match isolated singles
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were turned off.
Clustering was only performed if the interaction points are coincident in time. Interac-

tions points with timing difference |∆t| less than 30 ns are automatically deemed coincident,
otherwise further investigation is necessary. The second check deems interaction points i and
j as coincident if their time difference satisfies the following energy dependent equation:

|∆t|
10

<
√
f(Ei)2 + f(Ej)2, (2.14)

where

f(E) =

{
b

E−c + d E > Est
a− E · s E < Est

, (2.15)

and

s =
b+ (a− d) · (c− Est)

(c− Est)Est
, (2.16)

with empirical parameters

a = 4, b = 1600, c = 250, d = 1.5, Est = 400 keV. (2.17)

This check includes low energy γ-ray interactions that have poor timing resolution and
excludes high energy γ-ray interactions from different pulses.

Since a lot of attention is paid to high energy γ-rays in this experiment, the angular
separation parameter might be too small when the mean free path is large. Furthermore,
there are a lot of holes in GRETINA compared to the future GRETA, so a γ-ray might
escape one crystal and pass through a gap to a different part of the array. To reconcile this
fact, the “combinecluster” algorithm was turned on. The combinecluster mode takes a base
cluster that has a FOM > 0.4 and loops through including other clusters to try to reduce
the base cluster’s FOM. Modifications were made to the original code to include singles
hits among loop candidates but not base candidates. Two clusters or singles hits are only
candidates for the combinecluster mode if the mean positions of the two clusters are within
a maximum distance of 25 cm from one another. The value of 25 cm is approximately the
size of a missing Quad gap plus a few cm mean free path. The combinecluster mode does
not combine more than 2 clusters. In this data set, the combinecluster mode improved the
FOM of 7% of clusters with FOM > 0.4.

The “singles rejection” algorithm was turned on and it used interpolated values of max
hit depths dmax from Table 2.1. These values put the photoabsorption probability at 0.5%
past the given depth. For example, a 1750 keV γ-ray has a 0.5868% chance to photoabsorb as
its 1st interaction in an infinite volume of solid germanium. The probability that a 1750 keV
γ-ray transmits through 6.9 mm of germanium without interacting is 85.2%. Therefore, the
probability for an incident 1750 keV γ-ray to first pass through 6.9 mm of germanium then
subsequently photoabsorb is 0.852×0.005868 = 0.005. Compton scattering, photoabsorption,
and pair production values were taken from the NIST mass attenuation database [44]. The
algorithm mode assigns a FOM of 0.05 if d < dmax and 1.9 otherwise.
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Eγ (keV) dmax (cm) Eγ (keV) dmax (cm)
0 0.0 500 4.95
50 0.29 600 4.5
60 0.49 800 3.7
80 1.0 1000 3.0
100 1.65 1250 2.15
150 3.4 1500 1.4
200 4.6 1750 0.69
300 5.4 16300 0.0
400 5.25

Table 2.1: Max Hit Depths for Singles Rejection

Figure 2.20: GRETINA singles spectrum for different restrictions on γ-ray energy tracking

Figure 2.20 compares crystal energies and tracking modes for this experiment. Tracking
reduces the Compton background at low energy (∼200 keV) by a factor of 2, the requirement
that FOM < 0.8 further reduces the Compton background by a factor of 2, and all singles
elimination reduces the Compton background by a factor of 1.5. The left panel of Figure
2.21 shows that tracking increases the number of counts in the 1238 keV 56Fe 4+

1 → 2+
1 peak

since the tracking process recovers Compton scatters in adjacent crystals. The FOM < 0.8
requirement and the elimination of all singles hits lower the Compton background but not
the total area of the peak.

The right panel of Figure 2.21 shows a broad tracking FOM distribution. Finite interac-
tion energy and position resolutions cause Compton escape events to have comparable FOM
values to events of multi-scatter full energy deposition. The FOM cut of 0.8 means that a
measured scattering angle off by 23◦ is acceptable for 2-point interactions.

Another way to estimate the quality of measured scattering angles is by constraining the
Compton angle. If the 56Fe 2+

1 → 0+
1 846.7 keV γ-ray scatters with energy deposition 600±5
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Figure 2.21: The effect of tracking on a mid-energy peak (left) and the tracking FOM
distribution (right)

Figure 2.22: Quality of measured scattering angle after tracking

keV, the scattering angle is 2.06±0.05 radians according to Equation (2.9). Figure 2.22 shows
experimental data of this scenario: events with Eγ = 846.7±5 keV and first interaction point
energy 600± 5 keV. The measured scattering angle has a much larger uncertainty than the
0.05 radian uncertainty on the Compton angle. The resulting uncertainty of the measured
scattering angle is approximately the centroid value of the previous FOM distribution: 0.25
rad.

GRETINA mainly has Compton escapes out crystal sides, whereas GRETA will mainly
have escapes out crystal ends. For a source of 1.3 MeV γ-rays at the center of a 9 cm
thick complete germanium spherical shell, 30% of the emitted γ-rays will leak out with at
least a portion of their energy. The broad FOM distribution will not go away even with the
development of GRETA as the probability for γ-rays to escape out the back is too high and
the tracking algorithm accepts Compton scattering angles discrepant up to 23◦. In contrast,
Gammasphere had partial Compton suppression at the back of each crystal. If the GRETA
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Figure 2.23: Crystal-level centroid mismatch (left), and time dependent gain fluctuation
(right)

had at least some coverage of high density scintillator material at the back of each Quad, it
might be possible to significantly reduce the Compton background.

Linear Event-By-Event Energy Correction and Recalibration

The analysis in Chapter 3 relies on precise values of γ-ray energy. Therefore, this section
devotes a lot of attention to deviations from the initial energy calibration. Crystals, FETs,
amplifiers, analog-to-digital converters (ADCs) are sensitive to temperatures shifts. Paschalis
et. al. [14] show that the drifting ADCs are the primary source of energy/gain instabili-
ties and are on the order of 0.025%/◦F. This experiment experienced gain fluctuations and
mismatches on both the crystal-level and segment-level.

The left panel of Figure 2.23 shows the first indication of energy/gain instability for this
experiment: the photopeak centroids of the 56Fe 846.7 keV γ-ray do not match among the
crystals. Despite initial calibrations with 56Co, 60Co, and 152Eu, centroid energies disagree by
up to 2 keV because the ADC gains independently move away from initial values. The right
panel of Figure 2.23 further investigates the gain fluctuations by displaying the centroid
energy time dependence of a few crystals over the course of the experiment. The several
types of gain fluctuation include:

1. short timescale, small magnitude “dither” on the order of 0.25 keV

2. long timescale, medium magnitude “drift” on the order 0.75 keV

3. short timescale, large magnitude “jumps” on the order 5 keV

Not all crystals experience all three effects.
Figure 2.24 shows an energy dependent gain mismatch at the segment-level for this

experiment. The left panel shows modest agreement in gains for the medium energy 56Fe
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Figure 2.24: Segment-level γ-ray photopeak centroids for Crystal ID 69

Figure 2.25: Run dependent crystal widths

846.7 keV γ-ray. The right panel shows disagreement in gains for the higher energy 56Fe
1238.3 keV γ-ray. The disagreement is periodic every 6th segment because of the hexagonal
geometry of the six crystal layers as described in Section 2.4. This periodic behavior may be
the result of non-uniform cryostat refrigeration, temperature deviations in the warm FETs,
or a temperature gradient in the ADC digitizer board.

Energy resolutions are not identical among the crystals. The left panel of Figure 2.25
shows that certain crystals have a narrow 2.4 keV full width at half maximum (FWHM)
for Eγ = 847 keV. The right panel of Figure 2.25 shows that other crystals have a broader
FWHM which increases and decreases from run to run to as much as 5 keV. Poor energy
resolution is not likely attributable to gain fluctuations: broad width appear with as little
as 100 counts in a peak.

It is not possible to deal with all the problems of energy/gain instabilities from a post-
experiment analysis standpoint. Therefore, a simple algorithm was developed to correct the
data on an event-by-event basis with the focus of eliminating short timescale jumps and
long timescale drifts without introducing any gain issues at high energy. The corrections
were made at the crystal-level before being used in tracking. During the data sorting, two
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Figure 2.26: Residual (Eγ − Etrue) distribution before and after event-by-event correction.
(Note: Crystal # is not the same as Crystal ID)

windows surround the two major γ-ray transitions in 56Fe: the 846.7 keV 2+
1 → 0+

1 and
the 1238.3 keV 4+

1 → 2+
1 . The gain offset is increased (decreased) a small amount if the

lower half of the 846.7 keV window has 2 more (fewer) counts than the upper half. The gain
slope is increased (decreased) a small amount if the lower half of the 1238.3 keV window
has 2 more (fewer) counts than the upper half. After adjustments to gain slope and offset
are made, window tallies are reset and data sorting resumes. The gain offset increment is
0.02 and the gain slope increment is 5 × 10−5. These values are large enough to respond
to large fluctuations in gain, yet small to maintain good energy resolution. The event-by-
event correction is merely linear so as not to disrupt high energy photopeaks; a quadratic
correction with three windows proved disadvantageous.

There are not enough statistics for each individual segment to adjust to rapid changes
in gain. The data rate at the segment-level is a factor of 36 lower than the crystal-level
and full energy deposition of a γ-ray in a single segment is more rare than in an entire
crystal. Warm segment FETs add further unreliability in comparison to cryostat-cooled
central contact FETs. Furthermore, tracking algorithms of Section 2.4 place more emphasis
on central contact energy than individual segment energies.

Figure 2.26 shows the results of the event-by-event correction for the 56Fe 1303.4 keV
6+

1 → 4+
1 transition, a γ-ray different from the two used to perform the correction. Event-

by-event corrected data, “cor”, has lower centroid standard deviation σµ in comparison to
the uncorrected, “raw”, data:

σµ,raw = 0.45 keV, σµ,cor = 0.15 keV. (2.18)

where

σµ =
1

n

n∑
i

(µi − µµ)2, (2.19)
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Source t1/2 (ps) Eγ (keV) Neighbor Eγ (keV)
56Co 3+

1 < 100 158.38 ± 0.03 -
55Fe 1

2

−
1 6+6

−3 411.42 ± 0.21 398, 405.5, 426
56Fe 2+

1 6.07 ± 0.23 846.7638 ± 0.0019 834.5, 843.7, 847.4
55Fe 5

2

−
1 8 ± 3 931.25 ± 0.013 935.5

56Fe 6+
1 2.9 ± 5 1303.44 ± 0.06 1289.8, 1312, 1316.4

55Fe 7
2

−
2 37.9 ± 17 1408.45 ± 0.14 1387, 1417

Table 2.2: Recalibration Source γ-rays

n = 32 is the number of crystals, and µµ is the mean of the means. This shows that after
event-by-event drift corrections, GRETINA contends with typical germanium crystals which
can achieve 100-200 eV peak centroid accuracy at 1.3 MeV.

In general, the event-by-event correction algorithm does not put the photopeak centroids
at their true energies. This is realized in Figure 2.26 where µµ = 0.175 keV 6= 0. The
following phenomena can skew the number of counts in a particular half of a given window
and cause an energy shift in the event correction algorithm:

1. Neighboring peaks

2. Non-flat Compton background

3. Doppler shift from nuclear recoil

4. Incomplete charge collection due to trapping of charge at dislocations in the germanium
crystal lattice

5. Photoelectron escape from the germanium crystal

6. Compton scattering of the γ-ray off external material into the detector

The magnitude of these effects differ among the 36 crystals and are too complicated to
account for on an absolute energy scale. Therefore, a second round of calibration is necessary
for event-by-event corrected data.

The recalibration procedure performs a linear fit to experimental versus database values
of γ-rays from Table 2.2. The Evaluated Nuclear Structure Data File (ENSDF) [45] provides
comparison values. Recalibration is acceptable using external, background, or beam-induced
γ-ray sources. The major restriction on an acceptable recalibration γ-ray is the half-life (t1/2)
of the parent level. Unless the nucleus comes to a full stop before emitting the γ-ray, there
will be an angle-dependent Doppler shift. The slowing down time inside the target is a few
hundred fs for recoil energies of a few hundred keV and A ∼ 56. Therefore, the requirement
for beam-induced recalibration γ-rays is t1/2 > 1 ps of the parent level.

There are not many fully-slowed γ-ray transitions available from the 56Fe(p,*) reaction
products. Nuclei typically emit high energy γ-rays quickly, since transition rates scale as
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Figure 2.27: Multipeak recalibration fits

∼ E3
γ . Level density rises exponentially with nuclear excitation energy Ex, providing more

options in the decay of a highly excited level. These options speed up the transition, making
highly excited levels unlikely candidates for recalibration. Therefore, Table 2.2 includes all
available γ-rays that satisfy the parent half-life requirement.

Figure 2.27 shows that the few unshifted γ-rays that are available often have many
neighboring peaks. Neighboring peaks do not always have the same intensity in different
crystals, so a lot of computational logic is necessary. Fits to main peaks of Table 2.2 have
the following form:

y = C1 ·exp

[
−1

2

(
x− µ1

σ

)2
]

+C2 ·exp

(
x− µ1

β

)
erfc

(
x− µ1√

2σ
+

σ√
2β

)
+C3 ·erfc

(
x− µ1√

2σ

)
(2.20)

C1 = H1(1−R), C2 =
H1R

erfc

(
σ√
2β

) , C3 =
H1S

2
(2.21)

where x is the energy channel number, y is the number of counts in that channel, µ1 is the
energy centroid, σ is the standard deviation, β is the skewedness, H1 is the height of the
peak, R is the incomplete charge collection fraction, and S is the background step factor.
The first term in (2.20) is a standard Gaussian distribution which accounts for complete
charge collection of full γ-ray energy deposition. The second term is a skewed Gaussian
which accounts for incomplete charge collection due to trapping of charge at dislocations
in the germanium crystal lattice. The third term is a step function which accounts for
photoelectron escape from the germanium crystal and Compton scattering of γ-rays into the
detector. During the fitting routine, S = 0.005 and R = 0.1 are fixed to source calibrated
values, but β is allowed to vary. Neighboring peaks are fit with standard Gaussians of
independent heights Hi and centroids µi. All peaks are fit on top of a linear Compton
background.
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Figure 2.28: Residuals (Eγ − Etrue) after event-by-event correction but before recalibration

Figure 2.29: Before and after the combination of event-by-event correction and recalibration

Figure 2.28 shows the results of the fitting routine for three of the crystals. The largest
soure of centroid uncertainty is the shape of the main peak, which often has a more complex
shape than Equation (2.21). Most of the crystals have residuals that are linear with Eγ, so a
linear recalibration was applied to each crystal in addition to the event-by-event correction.
An attempt was made at quadratic recalibration but it worsened agreement among the
crystals at high Eγ.

Figure 2.29 shows the results of recalibration for the 56Fe 1303.4 keV 6+
1 → 4+

1 transition.
In comparison to data with only the event-by-event correction, and for this particular Eγ,
the mean of the means has improved at the cost of a slight deterioration of the centroid
variance.

µµ = −0.10 keV, σµ,recal = 0.185 keV. (2.22)

No external or background sources were used during this experiment. However, it would
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be worthwhile to include nearby high energy γ-ray sources for future experiments with
GRETINA. Since there is no beam axis, the parent level requirement t1/2 > 1 ps is un-
necessary. Sources could even be placed outside of the target chamber, allowing access to
the back layers of the crystal. Tracking would eliminate these γ-rays from further stages of
analysis. It might be possible to do segment-level event-by-event correction and recalibration
with this setup since the back crystal layer is exposed.

The drift correction algorithm and recalibration procedure provide modified inputs for
γ-ray energy tracking. Tracking success is not greatly not greatly improved since position
resolution is the limiting factor, not energy resolution. However, the energy corrections carry
into the output of the tracking algorithms providing enhanced sensitivity for angle dependent
Doppler shifted energies by a factor of σµ,raw/σµ,recal = 2.5 and σµ,raw/σµ,cor = 3.0.
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Chapter 3

Theoretical Basis

This chapter contains the foundations for all the dominant physical mechanisms occurring
in this experiment. This material describes the principles governing nuclear reactions and
the subsequent motion of reaction ejectiles through the target material. The structure of the
nucleus and its emission properties are condensed from through successive levels of approx-
imation and placed in the framework of thermodynamics. The chapter concludes with the
introduction of a new method for determining an important nuclear property: the absolute
magnitude of the Gamma Strength Function.

3.1 Kinematics

This section provides the energy and momentum relationships between the reactants and
products in a general binary reaction.

Consider the following binary reaction:

a+X → Y + b or X(a, b)Y, (3.1)

where a is the projectile, X is the target nucleus, b is the ejectile, and Y is the residual
nucleus. In normal kinematics mX >> ma, where mi denotes the mass of particle i; however,
the following equations apply to reactions of inverse kinematics as well where ma >> mX .
For 16 MeV 56Fe(p,p’)56Fe*, a and b are protons, X is 56Fe and Y is 56Fe*.

The conservation of relativistic energy before and after the reaction is the following

mXc
2 + TX +mac

2 + Ta = mY c
2 + TY +mbc

2 + Tb, (3.2)

where Ti is the kinetic energy of particle i. The reaction Q-value is defined as the initial
mass energy minus the final mass energy:

Q = (mX +ma −mY −mb)c
2. (3.3)
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Figure 3.1: To scale, reaction energetics for proton elastic scattering on 56Fe: a 16 MeV
incident proton (a) scatters off target 56Fe nucleus at rest (X) resulting in outgoing proton
(b) exiting at angle θ and recoiling 56Fe (Y ) exiting at angle ξ.

Conservation of linear momentum along and perpendicular to the beam axis before and after
the reaction give

pa = pb cos θ + pY cos ξ (3.4)

0 = pb sin θ − pY sin ξ, (3.5)

where pi is the momentum of particle i, and θ and ξ are the opening angles of ejectiles b
and Y , respectively. Figure 3.1 illustrates the reaction plane and identifies all the relevant
variables. These equations are valid in 3D simply by rotating the system to the appropriate
azimuthal angle.

Applying the assumption that the target is at rest (TX = 0) and combining Equations
(3.2)-(3.5), the relationship between the outgoing kinetic energy and angle of the ejectile is
dependent on the Q-value [46]:

T
1/2
b =

(mambTa)
1/2 cos θ ± {mambTa cos2 θ + (mY +mb)[mYQ+ (mY −ma)Ta]}1/2

mY +mb

. (3.6)

The threshold energy for reactions with negative Q-value is:

Tth = −Q mY +mb

mY +mb −ma

(3.7)

which occurs at θ, ξ = 0◦. In 16 MeV 56Fe(p,p’), the maximum excitation of 56Fe is 15.72
MeV.

There is a one-to-one correspondence between Tb and θ above incident energy T ′a:

T ′a = −Q mY

mY −ma

. (3.8)
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Figure 3.2: Recoil kinematics for 16 MeV 56Fe(p,p’)56Fe. (a) Recoil kinetic energy, TFe, for
a range of detected proton energies and angles. (b) Recoil opening angle, ξ, for a range
of detected proton energies and angles. The Phoswich Wall can detect protons with angle
0.55 < θ < 1.35. Proton kinetic energies between 5 < Tp < 15 MeV are relevant to this
experiment.

For 16 MeV incident protons, only |Q| > 15.7 MeV poses the double-valued concern, other-
wise measurements of Tb and θ uniquely determine Q:

Q = Tb

(
1 +

mb

mY

)
− Ta

(
1− ma

mY

)
− 2

(
ma

mY

mb

mY

TaTb

)1/2

cos θ. (3.9)

This work only investigates 56Fe excitations below the neutron separation energy, |Q| < Sn =
11.197 MeV, thus avoiding the double-value issue. For reference, population of the first level
in 56Fe corresponds to Q = −0.847 MeV, the minimum energy that the Phoswich Wall can
distinguish between a proton and an α-particle is approximately 2.5 MeV, and the maximum
energy that the Phoswich Wall can fully stop a proton is approximately 21 MeV.

For energies considered in this work, measurements of Tb and θ also uniquely determine
ξ and TY using the following rearrangements of Equations (3.2)-(3.5):

TY = Q+ TX + Ta − Tb, (3.10)

sin ξ =
pb
pY

sin θ. (3.11)

Again there is a one-to-one correspondence between angles θ and ξ in Equation (3.11) since
0 ≤ θ < π and 0 ≤ ξ < π. Since Ti � 2mic

2, the non-relativistic conversion of kinetic
energy to momentum works to good approximation for protons and 56Fe nuclei at the energies
considered in this work:

pi ≈
√

2Timi. (3.12)

Figure 3.2 shows the 56Fe* energies and angles spanned in this experiment. For the angular
coverage of the Phoswich Wall configuration used in this experiment, the minimum and
maximum 56Fe* recoil kinetic energies are approximately 0.07 and 0.42 MeV, respectively.
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3.2 Atomic Collisions

This section provides a brief overview to the theoretical framework of ions traversing matter.
Various experimental questions related to the ion transport of the experiment in this work
are answered using the stopping code SRIM.

Target design requires accurate knowledge of atomic collisions for the minimization of
beam energy losses and maximization of the number of nuclear reactions. Charged particle
detector design requires stopping power information to ensure a particle deposits the correct
proportion of its energy in the various active detection layers. Data analysis requires the
use a theoretical understanding of stopping to deduce fundamental quantities such as the
lifetimes of excited nuclear states. Applications such as these have been the driving forces
behind the development of the physics of atomic collisions for the past century. The new
quasi-continuum lifetime method presented in this work also relies on the slowing down and
angular deflection of ions in matter; therefore, it is instructive to provide a brief account of
contemporary theory.

Lindhard Scharff Schiott Theory

Lindhard, Scharff, and Schiott (LSS) theory [47] is the backbone of current understanding
of low energy ion penetration through matter. Appendix A outlines the important histori-
cal developments that led to this modern perspective. The primary motivation behind the
establishment of LSS theory was the need for a tool to quantify ion ranges in matter re-
sulting from previously unmeasurable nuclear reactions and decays, particularly fission. The
improvement in techniques, which in 1960 allowed the measurement ion ranges to less than
100 Å[48], also provided a lot of new experimental validation. Futhermore, additional quan-
tities such as range straggling, atomic sputtering, and ionization yields started to become
instrumental in the determination of scattering parameters [49].

The major success of LSS theory was the unification of the competing processes of nuclear
and electronic interactions into a single model. Prior literature on heavy particle transport
theory [50] neglected electronic stopping and overcompensated with an increase in nuclear
stopping [47]. On the other hand, prior literature on continuous slowing down theory [51,
52] focused on electronic stopping, treated nuclear stopping as a small perturbation, and
attributed experimental discrepancies to incorrect Coulomb screening parameters [53, 54].
LSS theory combined the strengths of statistical and continuous approaches which proved
difficult considering electronic and nuclear impact parameters differ by nearly four orders of
magnitude.

To determine atomic deflection angles, LSS theory uses the Binet equation of central
force motion derived in Appendix B:

d2u

dφ
+ u+

F (u)

u2µv2
∞b

2
= 0, (3.13)
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Figure 3.3: Scattering in the center of mass frame. The total deflection, θ, is equal to π−φ1.

where φ is the polar angle, u = 1/r is the inverse distance of ion-atom separation, µ is the
reduced mass, F (r) is the interatomic repulsive force, b is the impact parameter, and v∞ is
the initial center of mass velocity. The point of closest approach occurs at angle φ1 and the
total deflection angle is θ = π − φ1. Figure 3.3 depicts an ion-atom scattering event. The
majority of the nuclear scattering portion of LSS theory focuses on an accurate determination
and simplification of F (r) and the procedure to solve Equation (3.13) for φ1. For a force
that depends on Z, Za, and r, the total deflection angle is a function of four variables:

θ = θ(Z,Za, Tµ, b), (3.14)

where Tµ = µv2
∞/2 is the center of mass kinetic energy. A major goal of LSS theory is to

achieve similarity, the concept that the dependent variable which characterizes scattering
(such as θ) is a function of only one independent variable, such that any scattering cal-
culation can apply the same equation. LSS attains similarity through the reduction and
approximation of the interaction potential described in Appendix C

To obtain the functional dependence of the screening parameter a on Z and Za, LSS
theory uses scaling laws of the Thomas-Fermi model. The Thomas-Fermi (TF) model [55]
is a semiclassical theory developed in 1927 to approximate the distributions of electrons in
atoms and molecules. The theory is a precursor to modern Density Functional Theory and
is only valid in the limit of infinite nuclear charge, but it can reproduce general features
in electron density. Appendix D provides an introduction to the Thomas Fermi model and
applies the theory to ion scattering screening parameters.

In LSS theory, the electronic portion of stopping occurs as a continuous process between
nuclear collisions. Since minuscule deflections have some finite probability even at large
distances, scattering calculations only consider collisions above a specified energy trans-
fer threshold. In the high velocity regime LSS theory applies the Bethe formula of (A.1),
and for the low velocity regime LSS theory applies a velocity proportional stopping from
Thomas-Fermi calculations [56] where the electronic stopping acts as a frictional force be-
tween scattering events.
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The remainder of LSS theory combines the nuclear and electronic components of stopping
and goes about doing the following:

• the search for simpler power law forms of the interaction potential that have solutions
of total deflection θ that are a function of only one independent parameter

• the extrapolation of momentum transfer small angle scattering to wider angles while
maintaining similarity

• the evaluation of the accuracy of wide angle extrapolations of power law potentials com-
pared to an assortment of exact solutions of the Thomas-Fermi, Lenz-Jensen, Ruther-
ford, and Bohr potentials (which do not have similarity)

• the introduction of a general scattering formula which is applicable to a wide range of
reduced energies and angles

• the comparison of experimental range and straggling data to corresponding calculations

For the sake of brevity, the mathematical formalism involved in these steps has been omitted
but is implemented in modern stopping power codes. LSS theory prospers in situations
where both electronic and nuclear scattering influence stopping power across a wide range
of incident ion energy.

SRIM - The Stopping and Range of Ions in Matter

The Stopping and Range of Ions in Matter (SRIM) [57] is a package of computer codes that
simulates the penetration of energetic ions into matter. It covers a wide range of energies,
incident ion and target atom species, as well as target molecular compounds. SRIM calculates
ranges, straggling, and target damage effects including ionization, lattice displacement, and
the creation of phonon and plasmon excitations. While there is a lot of literature on the
measurement of experimental stopping powers, direct interpolation to other ions, atoms, and
energies is not always possible to the desired accuracy. Therefore, SRIM uses the unified
theoretical concepts outlined in the previous subsection to calculate general scattering cross
sections and stopping powers.

To demonstrate the capabilities of SRIM, consider some of scenarios encountered in this
experiment in which ions penetrate matter:

1. Protons from the beam lose energy in the 1.3 µm thick 56Fe target

2. Elastically and inelastically scattered protons deposit energy in the 2.2 mm thick
CsI(Tl) back layer of Phoswich Wall

3. Elastically and inelastically scattered 56Fe nuclei escape the target and penetrate the
12 µm thick BC-400 front layer of the Phoswich Wall
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Figure 3.4: Proton penetration through the 12 µm thick iron target. (a) Incident 16 MeV
beam passing through the full target thickness. (b) Protons after depositing 6 MeV via a
nuclear reaction with outgoing angle 30◦. (c) Protons after depositing 11 MeV via a nuclear
reaction with outgoing angle 65◦. There are 5000 incident protons in each simulation. Energy
loss and angular deflection via electronic stopping are minimal in all cases . 1%. Nuclear
stopping power is three orders lower than electronic stopping for these energies.

4. Elastically and inelastically scattered 56Fe nuclei recoil in the 56Fe target

Basic SRIM output can answer questions such as:

• How much does the 56Fe target thickness degrade the incident beam energy?

• At what maximum energy can the Phoswich Wall fully stop a proton?

• Will 56Fe recoils trigger the Phoswich Wall data acquisition system?

Answers to these questions are crucial to comprehending the data analysis.
Figure 3.4 shows the penetration of 5, 10, and 16 MeV protons at various angles and

depths in the 1.3 µm thick target of 56Fe. The proton energy losses and angular deflections
(. 1%) are much lower than the energy and angular resolutions of the Phoswich Wall
detector (∼5–10%). Hence, the Coulombic interactions between the beam and target do not
significantly interfere with measurements in this experiment.

Figure 3.5 shows the implantation of 21 MeV protons in the 2.2 mm thick CsI back layer
of the Phoswich Wall. The CsI active detection layer is able to fully stop protons of ≤ 21
MeV. Although the Thallium dopant (Tl) is important for the scintillation mechanism, it
has a small concentration and negligible effect on the stopping power. Proton energies do
not exceed 16 MeV in this experiment, thus no proton can penetrate the back layer of the
Phoswich Wall in this work.

Figure 3.6 shows the implantation of 400 keV 56Fe in the 12 µm thick BC-400 fast plastic
front layer of the Phoswich Wall. An incident kinetic energy of 400 keV is approximately the
maximum recoil of an 56Fe nucleus that can hit the Phoswich Wall front layer (cf. Fig. 3.2)
under the assumption that the reaction occurred near the back surface of the target with
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Figure 3.5: Proton implantation in the Phoswich Wall (PWall) back layer. There are 500
incident protons shown.

Figure 3.6: Iron nuclei stopping in the Phoswich Wall (PWall) front layer. There are 500
incident 56Fe ions shown.

no energy loss. Since no 56Fe ions can penetrate the BC-400 fast plastic front layer of the
Phoswich Wall, they cannot deposit any energy in the CsI(Tl) back layer. Thus, any 56Fe
energy deposition generates only a fast signal. The Phoswich Wall data collection software
will not save data to disk if there is no accompanying late signal (cf. Fig. 2.10). The higher
atomic number Z and lower kinetic energy causes the 56Fe ion range to be many orders of
magnitude lower than the proton ranges in this experiment.

Figure 3.7 shows the recoil of 150 and 300 keV 56Fe in the 56Fe target. The slowing
down time for 100–400 keV ions is on the order of 20–200 fs. For an initial spatially uniform
distribution of 56Fe recoils at these energies, most ions do not escape the target; typically,
the few that do escape have low kinetic energy (. 50 keV). Nucleon-nucleon Coulombic
interactions dominate for Fe-Fe scattering in this energy range as seen by the wide angle
scatters in Figure 3.7b. These complicated trajectories are useful for the Doppler Shift
Attenuation Methods of Section 3.3.

Figure 3.8 shows plots from the SRIM scientific citation website [58] containing com-
parisons of theoretical and experimental stopping powers in the region of atomic number
Z,Za ∼ 26. Unfortunately, there is no data available for iron stopping in iron. According to
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Figure 3.7: Iron nuclei recoiling in the iron target. (a) 2-dimensional projections of 56Fe
recoil show that the stopping range is on the order of 10% of the target thickness for 300
keV recoils. (b) 56Fe recoil trajectories visualized at a different projection angle for two
different initial recoil energies. Nuclear scattering is a dominant stopping mechanism and
causes the wide angle deflections.

the similarity principle outlined in Appendix C, the interatomic potential is approximated by
a function of Z/Za; therefore, the data with Z,Za ∼ 26 give an estimate of the uncertainty
for Z,Za = 26. For recoil energies of 2–20 keV/amu, the nickel and iron plots do not have
much Z,Za ∼ 26 data primarily due to experimental difficulties. Extrapolations of the data
suggest that modern stopping power accuracy is approximately 5–8%, which is sufficient for
the purpose of implementing the Doppler Shift Attenuation Method discussed in Section 3.3.

3.3 Doppler Shift Attenuation

This section provides derivations of the Doppler effect, the total angle between ion recoil and
photon emission, and lifetime. The Doppler Shift Attenuation Method is outlined through
the use of simulation.

Doppler Effect

Consider a photon source traveling along the x-axis with velocity β = v/c emitting photons
in the x− y plane at angle Θ with respect to its velocity vector in the lab frame. In natural
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Figure 3.8: Relative error in the comparison of experiment and theoretical calculations of
SRIM. (a) Ions stopping in Iron, Za = 26 [59]. (b) Ions stopping in Nickel, Za = 28 [60]. The
full list of data sets and citations is available in Reference [58]. The SRIM scientific citation
website states that discrepant points beyond 10% error are more likely due to systematic
experimental error than theoretical issues.
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units (c = 1), the lab frame 4-momentum of the emitted photon is

pµ = (E, p cos Θ, p sin Θ, 0), (3.15)

where E and p are the emitted photon’s energy and 3-momentum magnitude, respectively.
For massless particles such as photons, momentum and energy are equivalent: p = E. The
4-momentum of the emitted photon in the rest frame of the photon source follows from a
Lorentz transformation:

p′ν = pµΛµ
ν = (γE − γβE cos Θ, −γβE + γE cos Θ, E sin Θ, 0), (3.16)

where γ = 1/
√

1− β is the Lorentz factor of the photon source and a Lorentz boost along
the x-axis is given by

Λµ
ν =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 (3.17)

The energy of the emitted photon in the frame of the photon source is

E ′ = γE(1− β cos Θ), (3.18)

which provides a concise relationship between velocity and energy. For non-relativistic ve-
locities (small β, γ) a series expansion of Equation (3.18) returns the familiar non-relativistic
Doppler shift formula:

E =
E ′

γ(1− β cos Θ)
≈ E ′

1− β cos Θ
= E ′[1 + β cos Θ + (β cos Θ)2 + . . . ] (3.19)

E ≈ E ′(1 + β cos Θ), (3.20)

which is the appropriate form for the low velocities considered in this experiment in which
all 56Fe recoil velocities have β < 0.0035.

Total Angle

To determine the angle Θ between the direction of the moving photon source and the direction
of photon emission, consider the two unit vectors in polar coordinates:

v̂i = (sin θi cosφi, sin θi sinφi, cos θi), (3.21)

where θ, φ are spherical polar coordinates having identical axes and origins and i = e, s
denotes the directions of emission and source velocity, respectively. The dot product of the
unit vectors is related to the total angle between source recoil and emission as follows

cos Θ = v̂e · v̂s = cos θe cos θs + sin θe sin θs cos(φe − φs). (3.22)

Equation (3.22) provides a succinct formula for the Doppler shift angle Θ of Equation (3.20)
in terms of experimentally determined quantities θi, φi.
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Lifetimes

Consider a large ensemble of excited nuclear states. The decay rate of this ensemble is
proportional to N , the number of excited nuclei in the ensemble:

dN

dt
= −λN, (3.23)

where λ is the decay constant. The solution to this differential equation is an exponential
decay function,

N(t) = N0e
−λt = N0e

−t/τ = N02−t/t1/2 , (3.24)

where N0 is the number of nuclei present at t = 0 and τ and t1/2 are the lifetime and half-life
of the excited nuclear state, respectively. The relationship between τ and t1/2 is

τ =
t1/2
ln 2

= λ−1. (3.25)

Note that Equation (3.24) is only applicable for a one-step transition. For a single excited
nuclear state, the differential decay probability is similar to Equation (3.24),

P (t) = τ−1e−t/τ (3.26)

where P (t) is the differential probability that the state will decay near time t and the
coefficient τ−1 ensures the probability distribution integrates to unity.

Stopping Time Simulation

The Doppler Shift Attenuation Method (DSAM) relies on precise simulations of slowing
down and γ-ray emission time. Figure 3.9 shows an example SRIM simulation of 300 keV
56Fe ions stopping in the iron target. The condition cos ΘI = 1.0 signifies that the recoil
and γ-ray detection angles are parallel, where the subscript I denotes the initial state.
For reference, γ-rays detected antiparallel to the initial nuclear recoil vector have cos ΘI =
−1.0, corresponding to the maximum backward angle. Both recoil energy loss and angular
deflection contribute to a reduction in average Doppler shift as in Equation (3.20).

A modern DSAM experiment typically has particle and γ-ray detectors at many angles
to maximize the number of counts and enhance angular sensitivity. In these scenarios, the
stopping simulation must also cover a wide range of initial total angles, ΘI , and generate
more complicated quantities for experimental comparison. For a fixed lifetime on the order
of the slowing down time, tslow, the Doppler shift is a approximately linear function of the
quantity vI cos ΘI . The slope of this function is usually represented as F (τ),

F (τ) =
d(∆E)

d(vI cos ΘI)
. (3.27)
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Figure 3.9: The stopping and decay of 56Fe nuclei with parallel initial recoil and γ-ray
emission vectors. (a) Component of velocity parallel to emission as a function of time. (b)
Illustration of decay probabilities for several different lifetimes, where tslow is the approximate
slowing down time. (c) Illustration of average Doppler shifts in energy, ∆E, for the previously
mentioned lifetimes values.

Figure 3.10 shows an example of a simulation of F (τ) using processed SRIM particle tra-
jectories. An experiment can observe F (τ) by measuring the centroid energy of the γ-ray
peak for various values of vI cos ΘI . The determination of the excited state lifetime involves
a comparison between the experimentally measured and simulated F (τ)’s as demonstrated
in Figure 3.11. More specifically, this method is referred to as Centroid Shift DSAM (cf.
Ref. [61] for another demonstration).

Experimental energy and angular resolution, as well as non-linearities in stopping power,
tend to limit the accuracy of lifetime measurements. While resolutions are typically at their
experimental limits, non-linearities in stopping power can be minimized by experimental
modifications, such as using a target of a different thickness, or by using a different lifetime
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Figure 3.10: Simulated GRETINA detector response to Doppler shifted 1037.8 keV γ-rays at
various initial recoil angles and velocities. The simulation uses the experimental solid angle
coverage of the particle and γ-ray detectors as well as the initial recoil velocity distribution
of the 56Fe. The simulated lifetime of 62 fs produces a slope of F (τ) = 538 keV, whereas
very long and very short lifetimes produce no slope and maximum slope, respectively.

Figure 3.11: Illustration of an F (τ) curve. The intersection of the experimental and simulated
F (τ) values determine τ . Error bars on the experimental F (τ) value translate to error bars
on the lifetime measurement.



CHAPTER 3. THEORETICAL BASIS 52

technique. Knowledge of stopping power is crucial to the DSAM technique; fortunately
modern codes can calculate stopping powers to within 5% accuracy (cf. Fig. 3.8) thanks to
the physics community’s extensive study of slowing down theory (cf. Sec. 3.2). Therefore,
theory is not the limiting factor in this experiment.

It is possible to measure lifetimes with other experimental techniques such as the Recoil
Distance Method (RDM) [46, 62]. In RDM, reaction ejectiles escape from a thin target and
travel downstream toward a secondary high density stopper. RDM γ-ray spectra have two
peaks for most transitions: in-flight and stopped. Adjusting the target to stopper distance
results in a change of these relative peak heights. The ratio modulation relates to lifetime
information. No stopping simulation is necessary if the slowing down time in stopper is
known to be much shorter than the lifetime (tslow << τ). However, RDM requires a larger
fraction of recoils to escape the target than occurs in the 16 MeV 56Fe(p,p’) reaction explored
in this work. RDM is more appropriate for experiments where ejectiles have higher initial
recoil velocities and atomic number Z (for faster energy loss in the stopper) as typically
occurs in reactions of inverse kinematics.

Another practical lifetime technique is Line Shape Analysis (LSA) [46, 63]. In LSA
experiments, the γ-rays that are observed at one angle have a broadened peak shape due to
target slowing. Slowing and decay time simulations generate peak shapes for comparison.
A least-χ2 fit of experimental data with the simulated peaks quantifies lifetime. LSA is
appropriate for experiments that have Doppler shifts 5–10 times greater than the γ-ray
detector energy resolution for the transition of interest. The Doppler shifts in this work are
on the order of 2–3 times the detector resolution. Lifetime techniques with fewer detectors are
naturally more susceptible to gain drift issues. An online calibration using unshifted γ-ray
transitions can ameliorate gain drift issues as mentioned in Section 2.4. However, issues with
gain differential non-linearities (DNL) can complicate the recalibration procedure and leave
the analysis without additional consistency checks. The Centroid Shift DSAM technique is
equally susceptible as LSA to gain drifts, but is more resilient to DNL due to the fact that
the detector setup records γ-rays at many angles.

3.4 Nuclear Properties

This section describes the fundamentals of nuclear structure including models of Nuclear
Level Density and the Gamma Strength Function. This section also covers the basics of
nuclear reactions and introduces the reactions code TALYS.

Nuclear physics can seem like a “messy” field because many important details of internal
nuclear structure are lacking and complete descriptions of nuclei are unavailable. However,
not all problems in physics require explicit solutions. On the contrary, a completely mi-
croscopic approach to a simple situation may complicate rather than simplify results. For
example, variables such as temperature and pressure better represent an expanding gas than
would a complete quantum description of every individual atom. Thus, as is the case with
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thermodynamics, nuclear physics relies on models and approximations that are mathemati-
cally tractable to explain experimental data and predict new properties.

The approximations begin with the nucleus’s basic unit, the nucleon, which is itself not
fundamental. Each nucleon is composed of three quarks which exchange gluon force carriers
to bind the compound particle together. Quarks in separate nuclei do not exchange gluons
due to color confinement, which näıvely seems as if the force between nucleons is absent.
However, the pion exchange mechanism provides a residual binding force while obeying
color confinement. This nucleon-nucleon interaction is not well understood. It is repulsive
at distances shorter than 0.7 fm due to the Pauli exclusion principle, it is attractive with a
maximum strength around 0.9 fm, and it has an exponential diminishing strength becoming
negligible around 2.5 fm [64]. Currently there is no complete theory that can obtain the
nucleon-nucleon interaction from the quark-quark interaction. Regardless, the existence of
such a relationship in vacuum would be very different from the interaction in nuclear matter.
To address the unknown interaction, the next approximation is the formulation of an effective
mean nuclear field.

There are two main approaches to simplifying the potential of the mean nuclear field.
The Hartree-Fock method iteratively solves the Schrodinger equation and variational prin-
ciple of single particle orbitals starting from a trial nuclear wavefunction to self-consistently
obtain the associated nuclear potential. This method involves adjusting the parameters
in the functional form of the nucleon-nucleon interaction such that the calculated energies
match experimental data. The second and more phenomenological approach parameterizes
the function of the nuclear potential itself. Typically, mean field potentials contain terms
corresponding to Coulomb repulsion, the centrifugal potential, a spin-orbit interaction, and
a central force potential often cast into a Wood-Saxon form [65].

The shell model [66, 67] presupposes a set of basis state wavefunctions represented by
quantum numbers to describe the arrangement of nucleons in terms of orbital fillings and
energy levels. Arguably the biggest success of the shell model is its ability to explain differ-
ences between experimental nuclear binding energies and those calculated from a macroscopic
model. Distinct deviations appear near N,Z = 2, 8, 20, 28, 50, 82, and 126; these are known
as the magic numbers. These deviations are the result of orbital filling such that the binding
energy of the first nucleon in an open shell is significantly less than the last one in the full
shell. The first few magic numbers 2, 8, and 20 can be obtained by placing two groups
of non-interacting Fermions into a potential that is a combination of a square well and
three-dimensional isotropic harmonic oscillator while obeying the Pauli exclusion principle.
Obtaining the remainder of the magic numbers requires breaking some of the degeneracy by
adding an adjustable spin-orbit coupling term as seen in Figure 3.12.

The extreme independent particle version of the shell model assumes that little or no
interaction occurs between individual nucleons and that each proton and neutron moves
in its own orbit as if the other nucleons were absent. In this picture, nucleons can be
independently promoted out of closed shells into the open orbitals to form excited states as
long as the Pauli exclusion principle remains satisfied. The angular momentum and parity
of these excited state corresponds to the orbital properties of unpaired valence particles and
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Figure 3.12: The first few orbitals of the shell model [68]. Left: the number of levels in
each shell and the total number of cumulative levels for the Harmonic Oscillator and Square
Well potential. Right: the addition of Spin Orbit to the potential yields the magic numbers
beyond 20.

holes.
Modern shell model theory includes additional sophistication to describe excited nuclear

states. The basis single-particle wavefunctions specified by quantum numbers are used to
produce a fully antisymmetric product known as a Slater determinant. The Hamiltonian
matrix elements include one- and two-body interactions. To confront the combinatorial dif-
ficulties associated with a large number of particles and orbitals, a division into core and
valence spaces is necessary. The core is the inert set of low-lying orbitals that are completely
occupied for all considered excitations and do not contribute to the Slater determinant. The
valence space is the set of partially filled orbitals which do contribute to the Slater determi-
nant. The excited state energies are the diagonal elements of the diagonalized Hamiltonian
matrix of the valence basis. The two-body matrix elements are typically fit to experimen-
tal data, but another approach adjusts the mean field parameters of the potential or the
microscopic interaction. Resultant energy levels are sensitive to the chosen nucleon-nucleon
interaction and the division of core and valence spaces. Hamiltonian matrices have a very



CHAPTER 3. THEORETICAL BASIS 55

large number of elements even for a modest valence space and require intense computational
power. Due to these valence space limitations, the shell model has difficulty reproducing
level properties at high excitation energies.

The Liquid Drop Model (LDM) [69] gives a more macroscopic picture of the collective
behavior of nuclear matter. The LDM approximates the nuclear binding energy, EB, from
proton and neutron numbers by treating the nucleus as an incompressible spherical fluid:

EB = aVA− aSA2/3 − aC
Z2

A1/3
− aA

(N − Z)2

A
− δ(A,Z), (3.28)

where aV , aS, aC , and aA represent the coefficients for the volume, surface, Coulomb, and
asymmetry terms, respectively. The asymmetry term arises from the Pauli exclusion princi-
ple and the δ(A,Z) term is due to pairing. The LDM provides the smooth reference function
for the observation of shell structure in experimental binding energies.

Figure 3.13 provides a schematic of the levels of approximation used in nuclear structure
physics. The quark-gluon level of detail is rarely useful in the comprehension of nuclear spec-
troscopy, whereas the LDM often oversimplifies matters. A good starting point for structure
and reactions calculations is the mean field potential. However, there is not complete infor-
mation about the basis state wavefunctions nor is it possible to calculate all combinations
of wavefunctions with limited valence and core spaces. Thus, when extending theory to
higher excitation energies, it becomes necessary to utilize continuous functions which are
not mathematically present in discrete low-lying structure.

Nuclear Level Densities

To confront the issues of limited valence spaces in shell model calculations, it is necessary to
use a more statistical approach by via the concept of a Nuclear Level Density (NLD). NLD
is defined as the number of levels per unit energy at a certain excitation energy.

Levels at low excitation energy are experimentally accessible and resolvable. Nuclear
structure describes the low-lying levels well and data evaluations confirm their complete
physical descriptions. Reactions populate levels higher in energy than is typically experi-
mentally resolvable. Especially in intermediate and heavy mass nuclei, there is incomplete
knowledge of these high-lying levels and there is a significant chance of level overlap due to
the finite energy width of each state. Above the particle separation energy, NLD becomes
a continuous function due to the plane wave nature of particle unbound wavefunctions. In
contrast, the states below the particle separation energy do not form a continuous function
of accessible energies, but for mathematical convenience, a continuous description is used to
describe these states. The term “quasi-continuum” is frequently used to describe this high
density of bound nuclear states simplified in terms of continuous functions.

Figure 3.14 gives an example of experimental discrete level counting which shows that
NLD increases rapidly with excitation energy. Results from s-wave neutron resonance cap-
ture experiments reveal an enormous number of levels near the neutron binding energy
confirming that NLD continues to rise exponentially. Capture experiments also reveal that
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Figure 3.13: The evolution of approximation in nuclear structure theory from the quark-
gluon level [70] to the mean field level [71] to the liquid drop level [72]. The shell model
utilizes the mean field potential but is restricted by the use of valence and core spaces. The
continuum approximation allows extensions of theory on level densities and transition widths
to higher excitation energies.

Figure 3.14: The number of cumulative levels in 56Fe from ENSDF data [45]. The database
starts missing levels around 5.5 MeV due to the limits of experimental energy resolution.
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Figure 3.15: Single Fermion gas of equally spaced orbitals. The configuration shown has
excitation energy 4d shared between two particles.

the NLDs in nuclei near a closed shell is several orders of magnitude smaller than the NLDs
in nuclei far from a closed shell demonstrating that shell structure strongly influences NLD.
Even-even nuclei have relatively few excited states at low excitation energies in comparison
to odd-even and odd-odd nuclei; however, above a certain energy, the NLD of even-even
nuclei increases rapidly which suggests that a nucleus must contain the energy necessary to
break a nucleon pair before forming shell model configurations. A successful statistical NLD
theory reproduces the above shell structure and pairing behavior and provides a function
that can match experimental NLD data up to high excitation energies.

A Fermi gas model [73] can fulfill the criteria for a successful NLD theory. First consider
a collection of one type of independent fermions that occupy one-particle orbitals that have
equal energy spacing d. Excited states appear as multiples of d and are degenerate. The
ground state has all orbitals occupied up to the Fermi energy. The first excited state has the
fermion that was in the highest occupied orbital moved up to the lowest unoccupied orbital
for a total energy of d. The second excited state of energy 2d has a degeneracy of two:
either the highest occupied orbital Fermion moved up by two or the second highest occupied
orbital moved up by two. At 3d there are three states, and at 4d there is the first possibility
of simultaneously exciting multiple particles as shown in Figure 3.15. This simple model
produces the desired exponential rise in NLD with excitation energy; in fact, any system
described by elementary excitation degrees of freedom with additive energies possesses an
exponential rise of NLD [73]. The residual interactions between valence nucleons break the
degeneracies present in the simple model and change the nature of highly excited states with
small spacings by mixing wavefunctions. Therefore, it becomes more appropriate to describe
the NLD as a continuous function.

Due to the statistical nature of NLD, the literature on this subject borrows a lot of the
vocabulary from thermodynamics. The partition function describing the system of eigen-
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values E1, E2, . . . , Ei is defined as

Z(β) =
∑
i

e−βEi , (3.29)

and the NLD is a sum a Dirac delta functions for each level

ρ(E) =
∑
i

δ(E − Ei), (3.30)

where an average over an energy interval containing many states will yield an approximately
smoothly varying function. The partition function can be expressed in terms of ρ(E) as

Z(β) =

∫ ∞
0

ρ(E)e−βEdE. (3.31)

Applying a Laplace transform and the method of steepest descent gives a minimum for β
determined by

− d

dβ0

lnZ(β0) = E (3.32)

yielding a NLD of

ρ(E) =
elnZ(β0)+β0E√

2π d
2 lnZ(β0)

dβ2
0

(3.33)

where the entropy S is given by

S = lnZ(β0) + β0E, (3.34)

and t = 1/β0 is the temperature of the system. The same relations of energy and entropy as
in thermodynamics apply,

dS

dE
=

d

dE
[lnZ(β0) + β0E] =

dβ0

dE

d

dβ0

lnZ(β0) + β0 + E
dβ0

dE
= β0 =

1

t
, (3.35)

and NLD becomes

ρ(E) =
eS√
−2π dE

dβ0

, (3.36)

where the NLD is now inherently a smooth function due to the application of the method
of steepest descent. Thermodynamics usually neglects the variation of the denominator in
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Equation (3.36), but in nuclear physics the excitation energy is not much larger than the tem-
perature, so the denominator much be included. To keep the language of thermodynamics,
the nuclear temperature, T, is defined as

1

T
=

d

dE
ln ρ(E). (3.37)

To extend this formalism to describe a Fermi gas of two types of Fermions with a pairing
interaction, one must include the grand canonical partition function considering all possible
values of the available quantum numbers simultaneously. The details of the calculation [73]
are omitted for brevity. The NLD for this system is [74, 75]:

ρFG(U) = g0

√
g2

0dndp
4

61/4

12

e2
√
π2g0U/6

(g0U)5/4
, (3.38)

where g0 = 1/dn+1/dp is the single Fermion density and U = E−E1 is the effective excitation
energy. The equidistant neutron and proton orbital spacings are dn and dp, respectively. The
quantity E1 is the backshift which is related to the pairing energy. This formula has the
desired exponential increase in NLD with excitation energy, accounts for a shift due to
pairing, and can incorporate the shell spacing effects into the level density parameter “a”:

a =
π2g0

6
. (3.39)

To obtain the dependence of NLD on the projection of total angular momentum, M , one
must apply the concept of random coupling to the sum of the z-axis projections of angular
momentum, m, of the independent excited Fermions. The central limit theorem of statistics
gives a Gaussian distribution for a large number of excited particles:

ρ(U,M) =
ρ(U)√
2πσ2

exp

(
−M

2

2σ2

)
, (3.40)

with the mean square deviation

σ2 = ν〈m2〉, (3.41)

where ν is the average number of excited particles and holes. The NLD of a given total
angular momentum, J , is then the difference in NLD of M = J and M = J + 1:

ρ(U, J) = ρ(U,M = J)− ρ(U,M = J + 1) ' (2J + 1)ρ(U)

2
√

2πσ3
exp

(
−(J + 1/2)2

2σ2

)
, (3.42)

where each value of total angular momentum has degeneracy 2J+1 in the magnetic quantum
number M .
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For the purposes of this work, there is approximately an even distribution of postive and
negative parities Π for any U , J :

π(U, J,Π) = 1/2. (3.43)

Using the variables σ, a, and the approximation g2
0dndp/4 ≈ 1, the Fermi gas NLD of

Equation (3.38) becomes

ρFG(U, J,Π) =
1

2
· 2J + 1

2
√

2πσ3
exp

[
−(J + 1/2)2

2σ2

] √
π

12

exp(2
√
aU)

a1/4U5/4
. (3.44)

The literature often refers to the mean square deviation, σ, as the “spin cutoff” parameter
which is a bit of a misnomer. In the nucleus, σ refers to the distribution of total angular
momentum which is the sum of orbital and spin components (not just the spin component
itself). However, this work retains the name spin cutoff for consistency purposes. The precise
value of σ is dependent on the details of the nuclear model under consideration.

The sum of the Fermi gas NLD in Equation (3.44) over J and Π yields

ρtotFG(U) =
1

12
√

2σ

exp
(

2
√
aU
)

a1/4U5/4
, (3.45)

which depends only on energy. A further simplification of the energy dependence of total
NLD is the Constant Temperature Model [76]:

ρCT (E) =
1

T0

exp

(
E − E0

T0

)
, (3.46)

where E0 is backshift and T0 is temperature which come from experimental fits to the data
as in 3.14. The CTM reproduces the desired low energy linear exponential behavior, but
begins to deviate from the Fermi gas model at high excitation energies (∼15 MeV in 56Fe).
Additional NLD models not mentioned include the incorporation of an energy dependence
into the parameter a and the parity distribution π(U, J,Π).

Gamma Strength Functions

The Fermi gas formalism of the previous section describes the average distribution of levels,
but cannot give much insight about the transitions between levels. These transitions are
very important in the decay and reaction calculations pertaining to this work. This section
outlines the theory and phenomenology surrounding nuclear transitions.

A partial transition width from some initial state I to final state F is defined as

ΓXLI,F (E,Eγ) =
2π

~
|〈ΨF |HXL|ΨI〉|2, (3.47)
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where 〈ΨF |HXL|ΨI〉 is the matrix element connecting initial state wavefunction, ΨI , and
final state wavefunction, ΨF which includes both the residual nucleus and emitted radiation.
The energy of the initial state is E and the energy of the final state is E−Eγ, where Eγ is the
energy of the emitted radiation, typically a γ-ray. The transition operator HXL connecting
the states has electromagnetic character X and multipolarity L. The total transition width
out of an initial state is

ΓI,tot =
∑
F,XL

ΓXLI,F , (3.48)

where the partial width sum includes possible transition types XL, to final states F below
the initial energy. Decay widths incorporate both γ-ray emission width, ΓXLγ , and electron
internal conversion width:

ΓXLI,F = ΓXLγ · [1 + αXL(Eγ)], (3.49)

where αXL are relativistic internal conversion coefficients such as calculated from the evalu-
ated BrIcc tables [77]. Transition widths can be recast into other dimensionless forms such
as branching ratios. The branching ratio to a specific final state is the ratio of a particular
decay channel width to the total width of the state:

BRI,F =
∑
XL

ΓXLI,F
ΓI,tot

. (3.50)

Furthermore, total transition width is inversely proportional to the lifetime of the initial
state:

τ =
~

ΓI,tot
. (3.51)

In real nuclei, partial widths are hypothesized to independently fluctuate about an average
according to a width fluctuation distribution (WFD) commonly cast into a χ2 distribution:

P (x, ν) = ν/2 · g(ν/2)−1

(
νx

2

)ν/2−1

e−νx/2 (3.52)

where x = ΓXL(E,Eγ)/Γ̄
XL(E,Eγ) is the ratio of a given width to the average, g is the

mathematical Gamma function, and ν is the number of degrees of freedom inherent to the
system. By far the most widely used WFD is the Porter-Thomas Distribution (PTD) with
ν = 1 [78]:

P (x, ν = 1) =
e−x/2√

2πx
, (3.53)

which is equivalent to a Gaussian distribution squared. This form has a physical expla-
nation [78]: the matrix element of Equation 3.47 is equal to an integral over a multipole
operator between two wavefunctions which are presumably unrelated to one another due to
the complexity of the residual nuclear interaction. Therefore one may expect the matrix
element probability distribution to be Gaussian with zero mean. However, recent results
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from Koehler et. al. [79] show that the WFD may be more akin to a distribution with
ν ≈ 0.5, suggesting that there may be more symmetry in the system.

The individual partial widths of Equation (3.47) are numerous, difficult to measure ab-
solutely, and subject to fluctuations. Fortunately, the inverse process of γ-ray decay, γ-ray
absorption, provides a lot of insight about the average partial transition width. The cross
section for the absorption of a γ-ray of energy Eγ by a nuclear ground state of angular mo-
mentum Jg to a single isolated level of index i, angular momentum J , and excitation energy
Ei is [80]

σγ,i(Eγ) = πgλ̄2 Γ0,i

Γ

1

[(2/Γ)(Eγ − Ei)]2 + 1
, (3.54)

where λ̄ = ~c/Eγ is the γ-ray wavelength, Γ is the full width of the excited state, Γ0,i is the
partial width for de-excitation to the ground state, and

g =
2(2J + 1)

2Jg + 1
, (3.55)

is a statistical factor accounting for the angular momentum difference. The cross section
integrated over the resonance is∫

σγ,i(Eγ)dEγ =
π2λ̄2

2
gΓ0,i. (3.56)

The corresponding average cross section for an energy interval ∆E which contains n levels
of the same spin J is

〈σγ〉 =
1

∆E

n∑
i=1

∫
σγ,i dEγ =

π2λ̄2g

2

1

∆E

n∑
i=1

Γ0,i =
π2λ̄2g

2
· n〈Γ0〉

∆E
(3.57)

where 〈Γ0〉 is the average partial transition width to the ground state near excitation E = Eγ.
For large n, 〈Γ0〉 is independent of ∆E and n, and ρ(E) = n/∆E. Then

〈σγ〉 =
π2λ̄2g

2
ρ(E)〈Γ0〉, (3.58)

which corresponds to one particular J value. The energy dependence of the partial de-
cay width to the ground state has a well known dependence on multipolarity. For dipole
radiation,

Γ0,i ∝ E3
γ |〈i|z|0〉|2, (3.59)

where 〈i|z|0〉 is the dipole matrix element connecting the nuclear excited state i to the nuclear
ground state. The amount of dipole matrix element per unit excitation energy, f(Eγ), is

f(Eγ) =
ρ(E)〈Γ0〉

E3
γ

∝ 〈σγ〉
Eγ

. (3.60)
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The function f(Eγ) will be referred to as the Gamma Strength Function (GSF).
The absorption of the γ-ray can be interpreted as resulting in a collective oscillatory

motion of the proton and neutron clouds in the nucleus. According to the Brink hypothesis
[81], the collective motion can be built equally on the ground and excited states independently
of J and Π. Furthermore, the extreme statistical model postulated by Bohr [82] assumes
the decay of a nuclear level is independent of the way in which it is formed and the reverse
process has an equivalent matrix element. Thus, in general [83]

Γ̄XLγ (E,Eγ) =
fXL(Eγ)E

2L+1
γ

ρ(E, J,Π)
, (3.61)

where now the individual components of the GSF are separated out by electromagnetic
character and multipolarity.

Experimental and theoretical photoabsorption cross sections guide the energy dependence
of GSF models as related in Equation (3.60). The Standard Lorentzian (SLO) form of GSF
is [84, 80]

fXL(Eγ) = KXL
SXLEγG

2
XL

(E2
γ − E2

XL)2 + E2
γG

2
XL

(3.62)

where SXL, EXL, and GXL are the magnitude, centroid energy, and width of the giant reso-
nance, respectively and

KXL =
1

(2L+ 1)π2~2c2
. (3.63)

There is also the Generalized Lorentzian (GLO) of the form of Kopecky and Uhl [85]:

fXL(Eγ, T ) = KXLSXLGXL

×

[
F`
GXL4π2T 2

E5
XL

+
EγG̃XL(Eγ, T )

(E2
γ − E2

XL)2 + E2
γG̃XL(Eγ, T )2

]
,

(3.64)

where F` = 0.7 is derived from the Fermi theory of liquids taking into account collisions
between quasiparticles. The energy-dependent damping width is

G̃XL(Eγ, T ) = GXL

E2
γ + 4π2T 2

E2
XL

, (3.65)

and nuclear temperature is

T =

√
E − E1 − Eγ

a
, (3.66)

where E1 is the backshift and a is the level density parameter as in the Fermi Gas model.
Other forms include a single-particle states model of constant strength, the KMF model
[86], the Kopecky and Chrien model [87], and the Enhanced Generalized Lorentzian (EGLO)
model [88]. The common parameters of magnitude, width, and strength depend on the size
of the nucleus and the relative number of protons and neutrons.
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Figure 3.16: E1 and M1 Components of the Gamma Strength Function. The E2 GSF has
a magnitude below the visible scale shown here. The excitation energy determines the low
energy tail behavior of the giant electric dipole resonance as in Equation (3.64).

Nuclear matter possesses oscillation modes beyond dipole proton and neutron oscillation.
The literature refers to these non-statistical GSF features below the giant dipole resonance
as Pygmy resonances [83, 89]. For instance, some nuclei show an M1 scissors resonance when
N>Z [90] which is hypothesized to correspond an oscillation of the excess neutron skin about
the proton-neutron core [91]. Furthermore, recent results from the Oslo [92, 93] and Direct
Reaction Two Step Cascade [94] methods show an enhancement in the GSF at low Eγ [5]
which currently has no physical explanation. Figure 3.16 shows a few of the various GSF
features.

A good representation and understanding of the GSF is important to nearly all reaction
calculations because γ-ray emission is a universal decay channel. The GSF governs the
balance between γ-ray and neutron emission and is therefore critical to many nuclear physics
applications. Particularly, the overall magnitude of the GSF has the biggest impact on
reaction rates since the average cross section scales with the average transition width as seen
in Equation (3.60).

Reaction Mechanisms

Section 3.1 provided the details on the conservation of kinetic and rest mass energy in nuclear
reactions, but it did not cover the more intricate processes that govern the internal reorien-
tation of nucleons that occurs on very short timescales. This section aims to briefly outline
the framework governing these reactions and provide some simulation examples relevant to
the experiment in this work.
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A nuclear reaction is the process in which two energetic nuclei collide to produce one or
more nuclides that are distinct from the nuclides that began the process [95]. Scattering
is the process where nuclides interact without changing the nature of either nucleus. A
reaction could involve more than two incident nuclei, but because the timescale over which
the reaction takes place is so short, the chance that three nuclei meet at the same location
is very unlikely. Radioactive decay is the process of spontaneous emission of particles from
an excited nucleus and occurs during or after the reaction.

There are numerous types of nuclear reactions including, but not limited to, the following:

• absorption - a heavy target nucleus absorbs an incoming light projectile and gives off
γ-rays

• inelastic scattering - an energetic projectile induces an excited state in the target
nucleus without changing the proton and neutron composition

• fusion - two nuclei join together to form a heavier nucleus in addition to γ-rays or other
light particles

• fission - a very heavy nucleus splits into two fragments; can occur spontaneously or
after absorption or inelastic scattering

• spallation - a very energetic particle strikes a nucleus and ejects many light particles

As mentioned in Chapter 2, the 16 MeV 56Fe(p,p’γ) reaction studied in this experiment is
considered a low energy proton inelastic scattering reaction, but many other reactions are
also possible at this energy.

In this experiment, protons in the beam interact with 56Fe target nuclei via Coulomb, nu-
clear elastic, and nuclear inelastic scattering. The Coulomb scattering only involves the elec-
trostatic repulsion of the nuclear cores and does not involve strong nuclear forces. Coulomb
scattering can result in large angular deflections especially for high Z and low center of
mass energy. Section 3.2 on Lindhard Scharff Schiott theory gave a brief introduction to the
formalism of this Coulomb scattering process.

Inelastic reactions can be broken down into direct and compound components. In a direct
reaction involving a very high energy projectile and ejectile, the wavelength of the incident
particle is small which causes the interaction to spatially localize on one single nucleon
inside the target nucleus. Direct reactions transfer energy and nucleons in a single event,
such as the knockout of a neutron, and leave the residual nucleus in one discrete excited
state. Direct reactions occur on short timescales with no opportunity for the redistribution
of internal energy during the transit of the incident projectile. On the other hand, compound
reactions occur over long timescales in which the incident energy is fully absorbed and shared
throughout the target nucleus. In compound reactions, low energy particle emission is akin
to a statisical evaporation process: the amount of energy that randomly concentrates in
one particle is enough to overcome the mutual attraction of the nucleus and escapes. The
compound nucleus has no memory of how the initial compound nuclear state was formed
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and emission is isotropic in the center of mass frame. Compound reactions favor emission of
ejectiles with low Z, preferably neutrons. There is also the possibility for an intermediate
process known as pre-equilibrium in which the struck nucleon makes a few collisions with
other target nucleons before ejection. In this scenario, the nucleus retains information on
how it was formed which effects subsequent decay. There are not clear divisions between
compound, pre-equilibrium, and direct processes; rather, the coupling between entrance and
exit channels decreases systematically with the number of intranuclear collisions.

The inner workings of reactions are extremely complex due to the copious number of
initial, intermediate, and final state possibilities. Fortunately there has been a lot research
in the way of general reaction modeling with codes such as EMPIRE [96], ALICE [97],
GNASH [98], and TALYS [99]. I have relegated the reaction calculations in this work to
TALYS for its completeness and user-friendliness. TALYS in turn relegates the integrated
optical model and coupled-channels calculations to the code ECIS-06 [100].

TALYS aims for complete and accurate simulation of nuclear reactions involving photons,
neutrons, protons, deuterons, 3He, and alpha particles across the wide incident energy range
of 1 keV to 200 MeV and for target nuclei of mass 12 or higher. The primary purpose of
this code is as a nuclear physics tool for the analysis of nuclear reaction experiments, so
that the intersection between experiment and theory can illuminate fundamental properties
of nuclei and their interaction. Once the reaction models are sufficiently constrained, they
have predictive power for future or unmeasurable data. TALYS can then generate nuclear
data for simulations of radiation transport in new nuclear technologies.

TALYS developers take the general approach of dividing effort equally among all reaction
types instead of investing in a perfect implementation of a complicated channel with a
minuscule contribution to the output. The reaction calculation takes every energetically
feasible binary reaction and evaluates every sequence of possible decay routes. Competing
direct, compound, and pre-equilibrium production mechanisms determine the distribution
of initial nuclear states, and the properties of the residual nuclei determine the decay paths.
TALYS’s primary contribution to the calculations of ECIS-06 is the convenient inclusion of
separation energies, level densities, gamma strength functions, optical model parameters,
and other nuclear properties as well as the implementation of modern reaction and decay
models.

To see TALYS in action, consider the 16 MeV 56Fe(p,p’) reaction explored in this work.
Figure 3.17a shows the initial state population of the residual nucleus after binary proton
emission. This initial energy and angular momentum distribution is largely independent of
γ-ray emission properties due to the differing orders of magnitude between particle and γ-
ray emission widths. Figure 3.17b shows various discrete level population cross sections for
protons outgoing at a certain angle. These angular distributions demonstrate that particle
and γ-ray emission have non-trivial angular correlations. Figure 3.18 shows the total γ-ray
emission spectra. As a result of the continuum approximation, TALYS’s simulated nuclei
have large energy bins which cannot provide high resolution particle emission spectra. This
binning issue is fixed with the decay code RAINIER [101] which eliminates the continuum
approximation in the γ-ray cascade. RAINIER will be described in the next section and
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Figure 3.17: TALYS simulations of 16 MeV 56Fe(p,p’). (a) EIJI distributions; ΠI equipar-
tition is assumed. The line EI = Ecrit is the boundary between discrete and continuous
approximations. (b) The angular distribution of protons after binary population of var-
ious discrete states. For reference, the Phoswich Wall in this experiment covers angles
32◦ < θ < 77◦. Proton detection has a coincident nuclear angular momentum dependence
since the angular intensity map is strongly correlated with J .

Figure 3.18: Low energy resolution in γ-ray emission spectra from TALYS simulations of 16
MeV 56Fe(p,p’γ).
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used extensively in Chapter 4.
TALYS does not determine the alignment of M -states, and cannot be used to determine

the angular distribution or polarization of emitted γ-rays; TALYS’s γ-ray output is assumed
isotropic. Fortunately, an M -state distribution does not have a large effect on the method
introduced in this work. An M -state distribution leads to a variation in γ-ray intensity as a
function of angle, however, one of the main strengths of the novel method introduced in the
next section is its independence of γ-ray intensity. Thus, no detector efficiency calibrations
are necessary.

RAINIER

The Randomizer of Assorted Initial Nuclear Intensities and Emissions of Radiation (RAINIER)
[101] incorporates a Monte Carlo construction of nuclear level structure with the ability to
populate a set of states spanning a wide range of EJΠ, thereby enabling the interpretation
of discrete state population data to inform nuclear structure models in the quasi-continuum.
A similar program, DICEBOX [102], uses the Monte Carlo method to simulate level and
width fluctuations but is restricted to γ-ray decay from no more than two initial states such
as de-excitation following thermal neutron capture. On the other hand, modern reaction
codes such as TALYS and EMPIRE populate a wide range of states in the residual nucleus
prior to γ-ray decay, but do not go beyond the use of deterministic functions and therefore
neglect cascade fluctuations. This combination of capabilities allows RAINIER to be used
to determine quasi-continuum properties through comparison with experimental data.

While RAINIER has many possible applications, it was specifically written to calculate
feeding time distributions to low-lying levels from high-lying states that span a wide range
of E, J , and Π. The experimental conditions in this work encouraged the development of
such a code and this new capability will be beneficial for many experiments to come.

RAINIER’s intended use is for modeling γ-ray cascades only (e.g., following emission of
the last massive particle). RAINIER takes the following steps to simulate the complete,
high-resolution γ-ray spectra from the residual nucleus:

• Build the low-energy portion of the level scheme from available information in structure
databases

• Use NLD models to construct the upper portion of the level scheme. This set of
artificially generated discrete levels is known as a nuclear “realization”

• Populate a user-specified distribution of initial levels

• Depopulate levels using GSF models

• Compute and histogram quantities such as emitted γ-ray energies, level populations,
and decay times
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These steps are described in greater detail in Reference [101].
Figure 3.19 shows the execution order of RAINIER. To achieve low statistical uncertainty,

users set the maximum number of events, evmax, large enough to obtain many instances of a
desired observable. Users also set the maximum number of nuclear realizations, R, to track
the influence of level spacing and width fluctuations on that observable.

3.5 Quasi Continuum Lifetimes

This section outlines the importance of Nuclear Level Densities and Gamma Strength Func-
tions for reaction calculations, discusses the current techniques for measuring these quanti-
ties, and introduces a novel method for determining the absolute magnitude of the Gamma
Strength Function.

Gamma-ray emission is a universal decay channel; reaction calculations are not reliable
without an adequate quantification of the GSF. Nuclear Level Density is equally important
because the number of γ-ray decay options is proportional to the number of levels below
the excited state’s energy. These two quantities determine the mission critical reaction rate
cross sections such as neutron capture (n,γ) for medical isotope production [103], next-
generation reactor design [2], and other applications. When a direct measurement of (n,γ) is
not possible, an application’s success depends on theoretical calculations and by extension
GSF and NLD.

Level counting determines NLD at low energies. Many different types of reactions access
levels at low excitation energy. Experimental data is tabulated, evaluated, and stored in
the Evaluated Nuclear Structure Data File (ENSDF) [45]. A complete picture of a level
scheme is only trustworthy up to a certain energy threshold, Ethres, beyond which there are
either missing or misassigned levels. Researchers such as Von Egidy and Bucurescu [104,
105] analyze the completeness of these low-lying level schemes and fit NLD models (c.f. Sec.
3.4) to obtain extrapolations of low-lying levels to higher excitation energies. This procedure
is effective with a level scheme complete up to about 50–100 levels and the extrapolation
holds up to approximately the neutron separation energy. An estimate of the NLD near
the neutron separation energy improves the quality of the extrapolation. Using the neutron
Time Of Flight (nTOF) method [10, 11], researchers can count the number of s-wave neutron
capture resonances [106] to determine the number of levels with angular momentum Jg±1/2,
where Jg is the ground state angular momentum of the target nucleus. A theoretical estimate
of the spin cutoff parameter (c.f. Sec. 3.4) is necessary to relate the number of levels with
Jg ± 1/2 to levels with all J .

There are many experimental methods that probe the energy dependence of the GSF.
The well-tested Oslo Method [9] uses light ion inelastic and transfer reactions, a procedure
of detector response unfolding [93], and iterative subtraction [92] to obtain primary γ-ray
spectra for simultaneous extraction of NLD and GSF. Recently, the Beta-Oslo method [107]
extended the Oslo technique to nuclei further from the valley of stability by using fast ra-
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dioactive beams and a γ-ray total absorption spectrometer in coincidence with β-decay. The
well-established Two Step Cascade method (TSC) [108] analyzes γ-ray spectra following
thermal neutron capture and compares γ-ray intensities to NLD and GSF simulation. Re-
cently, an extension of the TSC method using direct reactions and particle-γ-γ coincidences
[94] provided a model-independent confirmation of an anomalous low-energy enhancement
in the GSF in 95Mo [5]. These GSF methods observe relative γ-ray emission as a function
of energy and thus rely on independent normalization.

Neutron capture experiments provide the major of GSF normalization data by using the
previously mentioned nTOF method [10, 11]. These experiments quantify the average total
radiative width Γ̄γ near the neutron binding energy Bn through the use of high resolution
transmission measurements [109]. However, many studies of important stable and unstable
nuclei cannot benefit from (n,γ) measurements because short half-lifes or low isotopic abun-
dances prohibit target fabrication. Photoabsorption experiments provide an alternative to
measuring the GSF magnitude [85]. Section 3.4 and Equation (3.60) outline the definitional
relationship between photoabsorption cross section and the GSF. The photoabsorption pro-
cess probes collective excitations built on the ground state; unfortunately, levels are sparse at
low excitation energies causing low energy γ-ray absorption data to be scarce. Furthermore,
width fluctuations in the few existing low energy data points disrupt the ability to resolve
the continuous nature of the GSF.

While outstanding features in the energy dependence of the GSF have profound theo-
retical implications, the GSF overall magnitude is the primary governing factor of practical
applications. The GSF magnitude shapes the balance between γ-ray and neutron emission
in thermal neutron reactions [99]. Hence, an independent method of GSF normalization
is needed to address the gaps in neutron capture cross section data. The following sec-
tion attempts to address this gap by proposing a new experimental technique to normalize
the GSF. This technique extends the procedure of the Doppler Shift Attenuation Method
(DSAM) [110] to infer quasi-continuum lifetimes which are fundamentally related to the GSF
magnitude.

Statement of Method

Heavy ion fusion reactions populate a long chain of states along and slightly above the
yrast band. In the determination of lifetimes using the Doppler Shift Attenuation Method,
preceding decay from off-yrast states is an issue known as sidefeeding in the literature.
Sidefeeding is typically corrected for by quantifying the γ-rays of interband transitions. To
the knowledge of this author and collaborators, sidefeeding was never utilized to extract
additional nuclear properties. Instead of using a small tangential distance off-yrast, the goal
of this novel method is to populate unresolved states well above the yrast band. It is possible
to access these states with light ion reactions. The lifetimes of these states depend on the
NLD and GSF; therefore the Doppler shift of a low-lying transition following a γ-ray cascade
yields information about global nuclear properties.
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This method is intended for inelastic scattering or transfer reaction experiments using
coincident particle and γ-ray spectrometers. Detection of the energy and angle of the light
ejectile specifies the struck target nucleus’s initial excitation energy and recoil velocity. The
recoiling nucleus radiates its excitation energy via a γ-ray cascade while losing its kinetic
energy via scatters with target atoms. Detection of a signature γ-ray from a low-lying
transition specifies a particular emission excitation energy, angular momentum, and parity.
The average Doppler shift of this γ-ray reveals information about the nuclear recoil velocity
at emission time. The velocity reduction from initial excitation to γ-ray emission specifies
the slowing down time (via sophisticated stopping simulations). This slowing down time is
equivalent to a γ-ray cascade time. This cascade time depends on the intermediate quasi-
continuum lifetimes which in turn depend on the magnitude of the GSF (via sophisticated
cascade simulations). Proper recoil simulation requires refined slowing down theory and
experiment. Proper cascade simulation requires prior knowledge of the NLD and the energy
dependence of the GSF (e.g. via low energy level counting and Oslo Method experiments).

To further illustrate the concept of this method, Figure 3.20 depicts the reaction, particle
detection, nuclear recoil, and γ-ray cascade of this method in the context of the 16 MeV
56Fe(p,p’γ) reaction from this work. The Phoswich Wall detects the proton energy and angle
providing the initial 56Fe excitation energy EI and initial recoil velocity vector ~vFe,I . The
56Fe nucleus can de-excite along many different decay paths while losing its kinetic energy via
scattering with target iron atoms. GRETINA detects the signature 4+

2 → 4+
1 Eγ = 1037.83

keV γ-ray transition which specifies that the decay path traversed two well known states in
56Fe: EB = 3.123 MeV, EA = 2.085 MeV, JA,B = 4, ΠA,B = +, where A and B denote
the 4+

1 and 4+
2 decay states, respectively. GRETINA detects many such Eγ = 1037.83 keV

γ-rays and the average Doppler shift yields the average emission velocity. SRIM simulations
use the average emission velocity to determine the average slowing down time. RAINIER
simulations use the average slowing down time which is equivalent to an average cascade
time to determine quasi-continuum lifetimes. These quasi-continuum lifetimes depend on
the magnitude of the GSF via Equations (3.51) and (3.61).

There are additional nuances that factor into this method of exploiting quasi-continuum
lifetimes to normalize the GSF. The primary experimental observables of this method are
F (EI , LB → LA), where F is the Doppler shift slope of the γ-ray emitted in the transition
from level LB to level LA (c.f. Eq. (3.27)) and EI is the initial excitation energy of the γ-ray
cascade (EI 6= EB). A combination of SRIM, TALYS, and RAINIER provide simulated
comparisons of F (EI , LB → LA) in the following stages:

1. SRIM generates 56Fe trajectories, ~vFe(t). To make this simulation as near to real exper-
imental conditions as possible, the SRIM input initial recoil vectors are sampled from
experimentally determined values. This prescription ensures the SRIM simulations in-
corporate the Phoswich Wall detector geometry. Example trajectories were shown in
Figure 3.7.

2. TALYS generates the EIJIΠI distribution, P (EI , JI ,ΠI). In contrast to the γ-ray
detector which fully specifies EBJBΠB of emission, the proton detector only speci-
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Figure 3.20: Energy exchange in a reaction that populates quasi-continuum states. A proton
from the incident beam excites an 56Fe nucleus. The proton detected by the Phoswich Wall
specifies the intial 56Fe recoil velocity, vFe,I . The recoiling nucleus slow downs in the iron
target to velocity vFe,B while de-exciting to energy EB over the cascade time tcas. The
nuclear transition from excitation energy EB to EA radiates a γ-ray while the nucleus still
is in motion. GRETINA fully absorbs this Doppler shifted γ-ray.
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fies EI . TALYS provides the best estimate of JI for a given EI after binary proton
emission through the use of the optical model and Distorted Wave Born Approxima-
tion. Equipartition of parity is assumed since the incident proton beam is unpolarized.
Figure 3.21a shows the TALYS P (EI , JI) distribution for this reaction.

3. RAINIER generates cascade times, tcas. Due to fluctuations of level spacing and tran-
sition width, RAINIER takes the following steps to generate a distribution of cascade
times:

• NLD models are used to build a discrete level scheme.

• The P (EI , JI ,ΠI) distribution is used to determine an initial discrete state as
shown in Figure 3.21b. TALYS and RAINIER simulations have the same un-
derlying models and parameters, but for level energies above Ethres TALYS uses
a continuum approximation while RAINIER generates a discrete level scheme
realization.

• GSF models are used to determine branching ratios and decay times. Figure 3.22
shows RAINIER simulations of the 4+

2→4+
1 cascade time distribution for various

EI .

4. Remaining steps for F (EI , LB → LA) determination:

• Randomly sample tcas and ~vFe(t) from their respective distributions to generate
an emission time vector for each event, ~vFe(tcas).

• Determine Θ (c.f. Eq. (3.22)) from ~vFe(tcas) and γ-ray emission angles θγ and φγ.
To make this simulation as near to real experimental conditions as possible, θγ
and φγ are sampled from experimentally determined values in conjunction with
the initial recoil vectors. This prescription ensures the Doppler shifts incorporate
the GRETINA detector geometry.

• Use |~vFe(tcas)| cos Θ to determine the event by event Doppler shifted γ-ray ener-
gies, Eγ,Dopp (c.f. Eq. (3.20)).

• Create histograms of Eγ,Dopp vs. |~vFe(tcas)| cos Θ separated into group of initial
excitation EI . Figure 3.23 shows Eγ,Dopp vs. |~vFe(tcas)| for the 4+

2 → 4+
1 and 1

MeV wide initial excitation gates of EI = 3.12, 5.4, 10.4.

• Determine the Doppler shift slopes F (EI , LB → LA) from the Eγ,Dopp vs. |~vFe(tcas)| cos Θ
histograms.

• Fit F (EI , LB → LA) to experimental observations. Minimize the difference be-
tween experiment and simulation by modifying the GSF normalization. Figure
3.24 shows F (EI , 4

+
2 → 4+

1 ) for EI = 3.12, 5.4, 6.4, 7.4, 8.4, 9.4, 10.4, 11.4, 12.4 and
two GSF normalizations.

Chapter 4 presents experimental comparisons of F (EI , LB → LA) for three transitions in
56Fe and explains the fine tuning of simulation parameters for the nuclear models. Known
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Figure 3.21: Population of 56Fe initial states from 16 MeV (p,p’). (a) TALYS calculation.
(b) RAINIER randomly samples the continuous distribution of TALYS output above Ethres
and selects the nearest discrete level of the constructed level scheme.

to this author, the result is the first recorded measurement of the magnitude of the GSF for
56Fe.
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Figure 3.22: Left: RAINIER simulation of the decay time distribution of the 4+
2→4+

1 with
different initial excitation energies EI . Direct population of the 3.12 MeV 4+

2 results in a
simple exponential decay distribution, but indirect feeding from higher excitations results
in time delay. Right: Schematic of the initial excitation energy gates that feed the 4+

2→4+
1

transition. The EIJIΠI intensity distribution of Figure 3.21 is implied.

Figure 3.23: Doppler shifts of the Eγ = 1.037 MeV, 4+
2→4+

1 in 56Fe. (a) Direct population
with largest Doppler shift slope, F . (b) Initial population slightly above the 4+

2 with smallest
F . (c) Initial population at high exicitations with intermediate F .
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Figure 3.24: Doppler shift slopes of the 4+
2→4+

1 at various initial excitation energies. The
only remaining free model parameter is the magnitude of the GSF; the Oslo method can
determine the NLD and GSF energy dependence. Normalization 1 of the GSF is taken from
mass table extrapolations of neighboring nuclei. Normalization 2 is a factor of three larger
as suggested by Algin et. al. [111] to match 57Fe.
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Chapter 4

Analysis and Interpretation

4.1 Observation of Quasi-Continuum Lifetimes

This work involves measurements of additional slowing due to the time spent decaying
through quasi-continuum states; we will refer to this as quasi-continuum lifetimes. This sec-
tion presents the first indications of quasi-continuum lifetimes by unraveling the 56Fe(p,p’)
data.

It should be possible to observe quasi-continuum lifetimes in many experiments that
have energetic light ions incident upon a heavy target. A first observation may not require
additional sort code if the energy and angle of light ejectiles and coincident γ-rays are already
available. As done in the following paragraphs, displaying the existence of quasi-continuum
lifetimes is straightforward. Perhaps this section will inspire the interested reader to dig
further into a past data set and put a bit of effort into extracting the GSF. To observe
quasi-continuum lifetimes, perform the following:

1. Compare sealed source and in-beam γ-ray energy widths

2. Compare sealed source and in-beam γ-ray energy centroid dependence on emission
angle

3. Compare in-beam γ-ray energy centroid dependence on angle as a function of initial
nuclear excitation energy

Note that the γ-ray peaks should not be so broad that there is continuous overlap.
There are two data collection modes relevant to this work: a self-triggered mode to

detect γ-rays with no external correlation and an externally-triggered mode to detect γ-rays
in coincidence with some event. The self-triggered mode is typically used with γ-ray emitting
sealed calibration sources, but it will cause large detectors such as GRETINA to pick up a
lot of background radiation since any cosmic muon or terrestrial γ-ray that passes through
the large volume of germanium crystal will trigger the whole device. The self-triggered
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mode can also be used with a beam on target, but GRETINA will detect many unwanted
beam-induced events such as interactions with the beam pipe or collimators. On the other
hand, the externally-triggered mode is typically used in conjunction with a particle detector
or a radio-frequency signal from the beam; GRETINA records and processes waveforms for
approximately 1 µs before, after, or during the triggering event. The externally-triggered
mode significantly reduces recorded background counts because the unfiltered background
count rate is much lower than 1 µs−1. The background rate is reduced even farther if the
particle detector registers the correct particle and particle energy, thereby vetoing unwanted
beam-induced radiation.

This experiment recorded data of both types:

• 56Co electron capture decay with GRETINA self-triggering

• Beam-induced 56Fe(p,*) with the Phoswich Wall externally-triggering GRETINA

These two scenarios conveniently produced identical excited states of 56Fe, albeit with differ-
ing population intensities. Figure 4.1 compares γ-ray energy spectra near Eγ = 1.037 MeV
corresponding to the 56Fe 4+

2→4+
1 transition. Since the beam-induced 56Fe* emits γ-rays in

flight, the peak is much broader in energy than the same transition from the sealed calibra-
tion source. Note that the additional broadening is not due to gain drifts in the digital data
acquisition system; the same phenomenon occurs within a short time interval. The sealed
source produces 56Fe via electron capture decay of 56Co. Since the mass of the emitted neu-
trino is much smaller than the mass of the 56Fe, the nuclear recoil kinetic energy is trivial.
According to Figure 3.2a, the typical 56Fe recoil kinetic energy after inelastic scattering is
approximately 300 keV, corresponding to vFe ≈ 0.0034c. The broadening due to this recoil
velocity will be on the order of the maximum Doppler Shift, Eγ ·vFe ≈ 3.5 keV, which agrees
with the magnitude of the additional broadening in Figure 4.1.

All 56Fe in this experiment scatter in the forward direction; a light projectile is kine-
matically forbidden from causing a heavy target to recoil backward if the reaction has a
negative Q-value. Figure 4.2 shows typical 56Fe recoil angles with respect to the incident
proton beam. According to Figure 3.2b, the nuclear recoil opening angle is confined to values
0.5 < ξ < 1.3 for the proton energies and angles covered in this experiment. The GRETINA
geometry is such that there is more active detection volume for θ > π/2. Since γ-rays are
mostly detected at backward angles, one can expect the average Doppler shift to be negative.
Figure 4.1 confirms this expectation since the centroid of the beam-induced peak is lower in
energy than the sealed source.

To further confirm that the additional peak broadening is the result of Doppler shift,
Figure 4.3 shows how peak centroid depends on γ-ray detection angle. For the beam-induced
spectrum, it is clearly visible that peaks at backward detection angles, θγ > π/2, have lower
centroid energies than peaks at forward angles, θγ < π/2. For the sealed source spectrum,
the peak centroids appear independent of θγ as anticipated. The beam-induced peaks retain
a broad width because there is currently no restriction on 56Fe recoil angle which can take on
any azimuthal angle 0 < φ < 2π in addition to the aforementioned range of opening angles,
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Figure 4.1: Peak broadening of the 56Fe 4+
2→4+

1 γ-ray transition. Germanium detector
resolution dominates the sealed source peak width. Doppler shift dominates the beam-
induced peak width.

Figure 4.2: Typical angles of nuclear recoil and γ-ray detection.
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Figure 4.3: Angular dependence of centroid energies. The recoil momentum from γ-ray
emission alone is a minor concern; therefore the sealed source spectrum is detection-angle-
independent. The recoil momentum from proton bombardment is non-trivial; therefore the
beam-induced spectrum is detection-angle-dependent. Note that GRETINA does not cover
θ uniformly – there are more detectors at backward angles.

0.5 < ξ < 1.3. According to Equation (3.20), the total angle between recoil and emission,
Θ, governs Doppler shift. Θ takes on a wide range of values if there is no restriction on
the nuclear recoil angle apart from the fact that the nucleus generally recoils forward. For
reactions of inverse kinematics where the mass of the projectile is much larger than the mass
of the target, the projectile-like product travels in the forward direction with ξ ≈ 0 with a
recoil velocity nearly two orders of magnitude greater, vrecoil ∼ 0.3c. In that case, the peak
centroid energy depends much more strongly on θγ.

Not all beam-induced γ-rays have a slope. Figure 4.4 shows the beam-induced 56Fe
2+

1→0+
1 Eγ = 847 keV transition with τ ≈ 6 ps. According to Figure 3.9, the slowing down

time for a 300 keV recoil varies from 40-400 fs. The nucleus comes to a halt before γ-ray
emission, resulting in no Doppler shift.

Since the nuclear recoil angle can take on such a wide range of values, the independent
variable must be improved to enhance the sensitivity to Doppler shift. The independent
variable is switched from “θγ” to “vFe,I cos ΘI”, where ΘI is the initial total angle and the
initial nuclear recoil velocity is

vFe,I =

√
2 TFe,I

mFe

, (4.1)

where mFe = 55.9 amu is the nuclear recoil mass and TFe,I is the initial nuclear recoil kinetic
energy according to the kinematics of Equations (3.9) and (3.10). Note that particle detectors
can only deduce nuclear recoil kinetic energy immediately after the reaction, whereas the
Doppler shift depends on the kinetic energy at the moment of emission which may be very
different due to slowing down in the target. Determination of ΘI requires measurements from
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Figure 4.4: Fully stopped transition with no Doppler shift. Although the beam causes
nuclear recoil before emission, the target material slows down the nucleus well before the
nucleus emits a γ-ray

both particle and γ-ray detectors according to Equation (3.22). This angle also changes since
the recoiling nucleus deflects off target atoms in flight.

The independent variable vFe,I cos ΘI is a great improvement over θγ: there is now almost
precise knowledge of the nuclear recoil velocity as opposed to knowing the fact that the nu-
cleus generally recoils in the forward direction. Note that vFe,I cos ΘI is a better independent
variable than cos ΘI alone because according to Figure 3.2 the initial recoil kinetic energy
varies from 70-400 keV corresponding to a velocity range of 0.001c-0.004c. The variable
cos ΘI is only a good candidate for measuring Doppler shift when the initial nuclear recoil
velocity does not vary much or there is sufficient data to produce multiple plots of specified
initial velocity. The velocity stipulation is prevalent in lifetime literature, but there is not
enough data in this experiment to make the additional cut. Figure 4.5 shows detected γ-ray
energy as a function of the new independent variable vFe,I cos ΘI . The energy and angle
resolution is much better than Figure 4.3.

According to Equation (3.20),

∆E = Eγ · vFe cos Θ, (4.2)

where ∆E is Doppler shift. For vFe,I cos ΘI = −0.002c and Eγ = 1810.7 keV, one may näıvely
expect ∆E = −3.6 keV. In contrast, Figure 4.5 shows ∆E = −2.2 keV at vFe,I cos ΘI =
−0.002c. This 38% reduction is attributable to lifetime. Recoiling ions encounter frictional
target electrons and scatter off heavy, highly-charged target nuclei (c.f. Fig. 3.7). Since the
recoiling nucleus slows down and changes angle, the quantity vFe cos Θ is on average lower
at the moment of emission compared to initial formation, resulting in lower Doppler shift.
For this transition the lifetime is τ ≈ 40 fs. For these recoil energies, the slowing down
is a stochastic process on the order of 40-400 fs. Figure 4.6 shows several transitions of
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Figure 4.5: Doppler shifted 56Fe 2+
2→2+

1 Eγ = 1810.7 keV transition. The variable vFe,I cos ΘI

uncovers a strong Doppler shift: when the nucleus emits a γ-ray in the forward direction
of motion the lab frame energy is high; when the nucleus emits a γ-ray in the backward
direction the lab frame energy is low.

varying slopes indicating differing lifetimes. Lifetime is a complicated fundamental nuclear
quantity which depends on internal nuclear structure and is beyond the scope of the current
discussion.

Quasi-continuum lifetimes are most apparent in a plot of Doppler shift slopes, F , as a
function of initial nuclear excitation energy where F is the variation in Doppler shift as a
function of vI cos ΘI . Consider the 56Fe 4+

2→4+
1 Eγ = 1037.8 keV transition where the 4+

2

level has an excitation energy of 3.123 MeV. There are a number of event scenarios in which
GRETINA will detect a Eγ ≈ 1037.8 keV γ-ray:

1. Direct Population: a proton inelastically scatters off 56Fe to populate the 4+
2 level;

the 4+
2→4+

1 transition emits a Eγ = 1037.8 keV γ-ray; the Phoswich Wall absorbs the
proton; GRETINA absorbs the γ-ray.

2. Quasi-Continuum Feeding: a proton inelastically scatters off 56Fe to populate a level
above the 4+

2 level, likely among quasi-continuum states; the upper level decays to the
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Figure 4.6: Doppler shifts of several 56Fe γ-ray transitions. The differing slopes indicate
differing lifetime, e.g. the 2523 keV transition has τ ≈ 25 fs, the 2470 keV transition has
τ ≈ 136 fs, and the 2373 keV transition has τ ≈ 38 fs.

4+
2 which then feeds the 4+

2→4+
1 transition; the Phoswich Wall absorbs the proton;

GRETINA absorbs the Eγ = 1037.8 keV γ-ray.

3. Random Coincidence: a proton inelastically scatters off 56Fe to produce the Eγ =
1037.8 keV γ-ray either directly or indirectly; a second proton from the same or neigh-
boring beam bunch elastically scatters off another target nucleus; GRETINA absorbs
the Eγ = 1037.8 keV γ-ray; the Phoswich Wall only absorbs the elastically scattered
proton.

4. Compton Coincidence: a proton inelastically scatters off 56Fe and populates a level
which emits a γ-ray with Eγ > 1037.8 keV, this proton misses the Phoswich Wall, and
the γ-ray Compton scatters in GRETINA depositing ≈1037.8 keV; a second proton
inelastically scatters off 56Fe and populates the 4+

2 level, the Phoswich Wall absorbs
the proton, and GRETINA misses any emitted γ-ray from the 2nd reaction.

Figure 4.7 illustrates each of these scenarios. Using initial nuclear excitation energy EI = −Q
(c.f. Eq. (3.9), (3.10)), Figure 4.8 shows the number of counts yielding the Eγ ≈ 1037.8 keV
γ-ray. The first three phenomena from the aforementioned list are evident. The initial
excitation energy resolution is poor (0.4 < σEI

< 1.0 MeV) due to the poor proton energy
resolution of the Phoswich Wall. Figure 4.9 shows evidence of the fourth phenomenon,
Compton coincidence. These Compton coincidences contribute about 14% of the events
within Eγ = 1037.8± 7 keV. I present an algorithm for removing these erroneous events in
Section 4.2.

Quantifying the four previously mentioned phenomena is necessary for later stages of
analysis, but quasi-continuum lifetimes are evident with only rough EI gates in Doppler
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Figure 4.7: Four types of events with the Phoswich Wall and GRETINA. The top two panels
show events useful in the analysis: the direct events are used to determine lifetimes of discrete
states while the quasi-continuum (QC) feeding events are used to determine the GSF. The
bottom two panels show false coincidence events that need to be addressed in the analysis:
random coincidences are primarily due to high Rutherford scattering cross section while the
Compton coincidences are due to γ-rays scattering out of the germanium detectors.

shift slope plots. Figure 4.10 shows Doppler shift slopes of the 4+
2→4+

1 transition for three
EI gates: direct, indirect, and quasi-continuum. Results are similar to the simulation of
Figure 3.23 from Chapter 3. The Doppler shift is much smaller with an EI gate just above
the 4+

2 level: a preceding transition adds slowing down time. The Doppler shift is not as
small with an EI gate in the quasi-continuum: the large factor of E3

γ makes large energy
transitions proceed faster (c.f. Eq. (3.61)).

After an assessment of the systematic uncertainties, details of how quasi-continuum life-
times are used to extract the GSF absolute magnitude will be discussed in Section 4.3.
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Figure 4.8: Events yielding Eγ = 1037.8± 7 keV as a function of nuclear excitation energy.
See text and Figure 4.7 for more details on the various features. The particle identification
issues are the result of intersecting C- vs. B-Gate cuts in the Phoswich Wall data analysis
(c.f. Fig. 2.11).

Figure 4.9: Evidence for the Compton Coincidence in the data. An excitation energy gate
of 2.2 < EI < 3.6 MeV preferentially selects events that directly populate the 4+

2 level.
However, the incident proton beam bunches are dense and inelastic coincidences generate
γ-rays that Compton scatter in GRETINA. Note that the gate width of 7 keV used in Figure
4.8 adequately captures all 1037.8 keV γ-rays.
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Figure 4.10: Doppler shifts of the Eγ = 1.037 MeV, 4+
2→4+

1 in 56Fe. The lifetime of this
transition, τ , is on the order of the nuclear slowing down time, tslow, causing lifetime effects.
(a) Direct population with largest Doppler shift slope, F . (b) Initial population slightly
above the 4+

2 with smallest F . (c) Initial population at high excitations with intermediate
F . The changing slope is evidence for quasi-continuum lifetimes. (d) Schematic of the
excitation gates relative to the 4+

2→4+
1 transition.

4.2 Systematic Uncertainties

This section explores the possible systematic errors that may arise in obtaining Doppler
shift slopes, presents results for three γ-ray probes, and offers interpretations of the various
features.

Quantifying Contaminants

The large random coincidence peak in Figure 4.8 is burdensome because its 1 MeV half-
width overlaps the direct population peak. From a comparison of peak areas, a proton
which populates the 4+

2 level has a smaller chance of scattering into the Phoswich Wall than
another proton in coincidence elastically scattering into the Phoswich Wall. The elastic
coincidence probability is so immense because the Rutherford scattering cross section is so
high:

dσ

dΩ
=

(
Z1Z2α~c

4EK sin2(Θ/2)

)2

(4.3)

where Z1 = 1 and Z2 = 26 are the charges of the incident proton and target 56Fe, respectively,
α ≈ 1/137 is the fine-structure constant, ~c ≈ 197 MeV fm, and EK = 16 MeV is center of
mass kinetic energy. This formula neglects electron screening, but it gives a good estimate
of the magnitude of scattering. Figure 4.11 shows that the differential cross section for
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Figure 4.11: Rutherford and direct cross sections for 56Fe(p,p) and (p,p’). Direct cross
sections to other levels are of the same order as the 3.123 MeV level.

Table 4.1: Levels that feed the 3.123 MeV 4+
2

E (MeV) JΠ τ (fs) BR (%) Eγ (keV)
3.388 6+ 4200(300) 1.3 265.5
3.755 6+ 180(30) <2 632.6
3.856 3+ 36(4) 1.1 733.5
4.100 4+ 62(7) 11 977.4
4.120 3+ 200(60) 1.2 996.9
4.298 4+ 160(70) 61 1175
4.395 3+ 50(25) 9.3 1271
4.458 4+ 38(14) 58 1335
4.509 3− 120(40) 9 1386
4.554 4+ 140(50) 17 1432
4.608 2+ 70(40) 10 1486
4.683 (2+)3+ 100(60) 12 1560
4.692 4+ 50(10) 7 1569
5.131 3+,4+,(2+) 100(30) 24 2009

Rutherford scattering is more than two orders of magnitude greater than that of inelastic
scattering directly to the 3.123 MeV 4+

2 level. Note that compound elastic scattering to the
4+

2 is negligibly small; if the incident kinetic energy disperses evenly among all nucleons, there
is only a small chance that all the energy will localize back into one proton and evaporate.

The large indirect population peak in Figure 4.8 is also burdensome because it overlaps
the direct population peak. Table 4.1 lists many of the known neighboring levels that feed the
4+

2 . Assuming an excitation energy uncertainty of 0.5 MeV, the levels in bold in the table are
the biggest contaminants to the direct level peak. The magnitude of contamination of these
peaks can be deduced from a fit of the Counts vs. EI curve with several Gaussian functions.
Figure 4.12 shows the results of the fit using peaks at 0 MeV for elastic coincidence, 3.123
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Figure 4.12: Events yielding Eγ = 1037.8± 7 keV as a function of nuclear excitation energy.
Counts in the range 2.7 < EI < 3.4 MeV have contributions from direct population, elastic
coincidences, and indirect population.

Table 4.2: Fraction of the Eγ = 1037.8± 7 keV counts in the range 2.7 < EI < 3.4 MeV

Peak Type E (MeV) Contribution (%)
Elastic Coincidence 0 3.1
Direct Population 3.123 94.5

Indirect Population 4.298 2.0
Indirect Population 4.458 0.4

MeV for direct population, and two indirect population peaks. The fitting range is 0–4.35
MeV; a higher EI range would require an additional Gaussian function for each additional
level. Two indirect peaks are flexible enough to account for minute contributions from
the remaining contaminants of Table 4.1. A good direct population excitation window is
2.7 < EI < 3.4 MeV which minimizes the coincidence and indirect contaminants while
keeping a large number of direct populations. Table 4.2 lists the integral of the peaks in this
EI range. Direct population always has approximately a 94.5% contribution regardless of
the number of indirect peaks and the maximum fit range EI . Figure 4.13 shows that the
γ-rays from the two indirect populations appear in the 1D spectrum with excitation gate
2.7 < EI < 3.4 MeV. The magnitude of the contaminant peaks is within a factor of two of
the expectations of Table 4.2; the differing inelastic scattering cross sections make up the
difference.
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Figure 4.13: γ-ray spectra for the excitation range 2.7 < EI < 3.4 MeV. The 4+
1→2+

1

Eγ = 1238 keV transition follows 1037.8 keV γ-ray emission with 100% intensity.

For higher excitation gates, the elastic coincidence peak is not an issue since the tail has a
negligible contribution for EI > 3.5 MeV. Furthermore, the indirect contribution is no longer
a contaminant but precisely the subject of study when measuring quasi-continuum lifetimes.
In fact, the direct population peak is the contaminant for higher EI gates. The tail of direct
contamination has negligible contribution for EI > 5 MeV. For quasi-continuum lifetimes at
higher excitations, the inclusion of multiple indirect peaks is acceptable. Quasi-continuum
lifetimes depend on the GSF which is an average quantity in the first place. Therefore, the
0.5 MeV excitation energy resolution provides a built-in averaging when determining the
GSF with quasi-continuum lifetimes.

The elastic coincidence and indirect contaminants are not detrimental to direct lifetime
determination. An algorithm in a following subsection negates the uncorrelated elastic coin-
cidences. Since the indirect contaminants are quantifiable, they propagate into the lifetime
uncertainty, as described in the following subsection.

Recoil Accuracy

This section discusses average vI cos ΘI uncertainty which is used to bin the data when
measuring Doppler shift slopes.

The Phoswich Wall’s proton energy and angle uncertainties have approximately constant
values of σTp = 0.5 MeV and σθ = 3◦, respectively. According to Equation (3.9), the reaction
Q-value is roughly independent of θ such that the nuclear excitation energy uncertainty is
nearly equal to the proton kinetic energy uncertainty. In contrast, the nuclear recoil velocity
and angle have a more complicated dependence:

TFe =
m

M

(
T ′p + Tp − 2 cos θ

√
T ′pTp

)
(4.4)
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Figure 4.14: Uncertainties in 56Fe recoil velocity and angle as a function of detected proton
energy and angle.

vFe =
√

2TFe/M (4.5)

sin ξ = sin θ
(

1 + T ′p/Tp − 2 cos θ
√
T ′p/Tp

)−1/2

, (4.6)

where m and M are the proton and 56Fe masses, respectively, Tp and θ are the detected
proton energy and angle, TFe and ξ are the undetected 56Fe recoil energy and angle, and
T ′p = 16 MeV is the incident proton energy. Figure 4.14 shows results of linear uncertainty
propagation:

σf =

√(
σx
∂f

∂x

)2

+

(
σy
∂f

∂y

)2

+ . . . , (4.7)

where σf is the uncertainty of the function f , σx is the uncertainty of variable x, σy is the
uncertainty of variable y, and so forth. The uncertainties in the recoil velocity and angle
are approximately 5% and 6%, respectively. These uncertainties help determine bin width
for histogram projections when measuring Doppler shift slopes. As an example, Figure 4.15
shows the Doppler shift of the 56Fe 4+

2→4+
1 Eγ = 1037.8 transition after direct population,

EI = 3.123 MeV. When measuring the γ-ray centroid energy at various values of vI cos ΘI ,
it is not yet clear how wide to make the projection bins. The vI cos ΘI bin widths should
be as big as or larger than the uncertainty in vI cos ΘI , but they must be small enough to
measure the variation in γ-ray centroid energy. A higher number of projections gives a better
estimate of the Doppler shift slope.

Linear propagation of uncertainty in total angle σΘ diverges when 56Fe emits a γ-ray
at 90◦; hence a purely analytical approach to uncertainty breaks down. An uncertainty
Monte Carlo simulation could map out the standard deviations of |Detected–True| values
of vI cos ΘI for the 5 correlated variables and the specific geometry of this experiment.
However, this statistical approach is even more complicated and defeats the event-by-event
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Figure 4.15: Projections of vI cos ΘI γ-ray spectra. The projection bin width must be as
big as or larger than the uncertainty, but small enough to map change in the γ-ray centroid
energy. Compton Coincidences are noticeable in the projection and must be addressed by
fitting a Gaussian function with a constant background.

histogram technique already in motion. Instead, an overestimate of the uncertainty suffices
when setting a projection bin width. The coefficient cos ΘI is of order unity or smaller,
and so vI dominates the maximum vI cos ΘI deviation of poorly resolved γ-ray and proton
measurements. A good estimate for bin width is twice the maximum vI deviation, which
according to Equations (4.4)–(4.5) and Figure 4.14 is 2 · σvFe,max = 0.0003c. Hence, the
projection bin width of 0.00064c in Figure 4.15 was an overestimate and can be reduced to
0.0003c.

Tracked γ-ray data has high angular resolution. A typical angular acceptance of a ger-
manium crystal might be on the order of 15◦ in comparison to GRETINA’s ≈2◦ tracked
resolution. The Phoswich Wall ∼1 MeV proton energy resolution is the dominant factor in
the vI cos ΘI uncertainty. Silicon particle detectors can achieve as good as 20 keV resolution
if cooled, but are have other technical issues such as fabrication, gain drifts, and radiation
hardness. The large energy resolution of the Phoswich Wall is acceptable for quasi-continuum
lifetime measurements which aim to measure the GSF which is an average quantity.

Centroid Algorithms

Projections of vI cos ΘI , as in Figure 4.15, have approximately a Gaussian form on top of
a constant background. The centroid parameter from a χ2-minimization of the following
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function is used to determine the Doppler shift slopes:

y(x) = H · exp

[
−(x− µ)2/σ2

2

]
+B, (4.8)

where H is the height of the peak, µ is the centroid, σ is the standard deviation, and B
is the constant background. The independent variable x is the detected γ-ray energy and
the dependent variable y is the number of counts within the energy bin. There are a few
drawbacks to using a χ2-minimization technique to determine the centroid:

• Lineshape defects from the statistical slowing down process skew the peak toward the
rest frame γ-ray emission energy.

• Incomplete charge collection skews the peak toward the low energy side.

• The goodness-of-fit of a Gaussian function is not simple to define, nor does it have a
lot of physical significance.

However, the χ2-minimization is a more stable technique than the use of the arithmetic mean
of a γ-ray energy window, defined as,

Ēγ =

∑N
i=1 niEγ,i∑N
i=1 ni

, (4.9)

where Ēγ is the mean γ-ray energy of the projection, N is the number of γ-ray bins in the
projection, ni is the number of counts in bin i, and Eγ,i is the energy of the γ-ray bin.
Unfortunately, Compton coincidences interfere too much to use the arithmetic mean. These
events are not correlated with vI cos ΘI and add a constant background of counts which tends
to shift the arithmetic mean toward the center of the window. The Compton coincidence
contamination is on the order of 10-15% of the counts in the projection window (c.f. Fig. 4.9).
The source of these Compton coincidences was described in previous section (c.f. Fig. 4.7). To
address this issue, a fit using the function of Equation (4.8) could get the underlying quantity
of background counts. However, experience has demonstrated that eradication of Compton
coincidences is extremely sensitive to the width of the γ-ray energy window: fluctuations in
counts near window edges tend to make the arithmetic mean fluctuate greatly.

On the other hand, random coincidences have no correlation with vI cos ΘI and add
counts uniformly underneath the γ-ray peak alone and not outside the peak boundaries.
For direct population, random coincidence contamination is on the order of 3-4% of counts
in the projection window (c.f. Fig. 4.8). Reduction in Doppler shift slope is proportional
to fractional contamination and persists regardless of centroid algorithm. This additional
sub 5% uncertainty is manageable in the grand scheme of the total Doppler shift slope
uncertainty. These random coincidences are only an issue for direct population since the tail
of the elastic coincidence curve does not reach past EI ≈ 3.5 MeV.
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In contrast to random coincidences, indirect population does have a correlation with
vI cos ΘI . Indirect contamination is on the order of 1-2% of the counts in the projection win-
dow (c.f. Fig. 4.8). Similar to random coincidences, indirect contaminants necessarily reduced
slope. However, the indirect reduction is smaller in magnitude than the elastic reduction
since indirect γ-rays retain a vI cos ΘI correlated Doppler shift just with a later emission
time. Instead of absorbing the indirect contamination into the Doppler shift slope uncer-
tainty, the simulation mechanisms of Section 4.3 account for indirect population. Knowledge
of the approximate nuclear recoil velocity makes this treatment possible since the recoil ve-
locity is not very sensitive to the reaction Q-value. The simulation uses the proton energy
uncertainty, σTp ≈ 0.5 MeV, when assigning particle energy. Simulations allow for an in-
direct population to be mistaken for a direct population. As mentioned previously, when
measuring Doppler shift slopes of quasi-continuum feeding, the indirect population events
are no longer contaminants but the object of study. Therefore, it is acceptable that indirect
population EI gates contain many peaks because the GSF is an average quantity.

Finally, the corresponding uncertainty in the vI cos ΘI value is σvFe,max as described in
the previous subsection. This uncertainty is on the conservative side since it suggests that all
bin entries have nearly the maximum recoil velocity. In principle, this particular uncertainty
is more statistical than systematic because the spread of values is not the result of calibration
offset errors, but rather the result of fluctuations in the readings of a measurement apparatus.

Doppler Shift Slope

Now with an established technique for determining the centroid and its uncertainty, a linear
regression determines the Doppler shift slopes at various initial nuclear excitation energies.
A minimum of 1500 entries in a γ-ray projection window ensures an accurate estimate of the
centroid and its uncertainty, otherwise the point is discarded. Figure 4.16 shows results of
linear fits to the centroids from direct and quasi-continuum population. Note that roughly
2/3 of the error bars on the points pass through the fit line as expected with statistics-
limited uncertainty. Note that Doppler shift is not necessarily linear with vI cos ΘI . There
may be peak shape defects associated with the statistical slowing down process. However,
some quantification of Doppler shift that has few parameters is needed; a linear fit to the
aforementioned centroids performs well.

Since all uncertainties have been kept as near to their statistical limits as possible, the
uncertainty returned from the linear regression is assigned to the uncertainty in the Doppler
shift slope. Reference [112] explains how uncertainties in the independent and dependent
variables propagate into the χ2-statistic.

Figure 4.17 shows the Doppler shift slopes of the 4+
2→4+

1 transition at various values of
initial excitation energy. Listing from low to high excitation energy, the important features
in the Doppler shift slope data are the following:

(a) Direct population has the largest Doppler shift slope, F .



CHAPTER 4. ANALYSIS AND INTERPRETATION 95

Figure 4.16: Measured γ-ray centroids as a function of vI cos ΘI for direct and quasi-
continuum population of the 56Fe 4+

2 E = 3.123 MeV level. Quasi-continuum feeding results
in later γ-ray emission time, additional slowing in the target, a smaller emission velocity,
and reduced Doppler shift slope.

(b) A decrease in F just above direct population at EI = 4.4 MeV. Precursor γ-rays add
a lot of time when the energy gap between levels is small. The extra time allows the
nucleus to slow down more before making the 4+

2→4+
1 transition. The lower velocity

results in a reduced γ-ray emission Doppler shift. This point at EI = 4.4 MeV is not
the minimum Doppler shift slope likely due to the anomalous low-energy upbend in
the GSF. However, this inflection feature could also be the result of direct population
contamination of the indirect excitation energy bin.

(c) An increase in F as EI goes from 5.4 to 9.4 MeV. According to Equation 3.61, the average
dipole transition rate is proportional to E3

γ . The precursor transition rate increases as
the energy gap grows larger. Furthermore, the precursor has a larger number of decay
options to non-4+

2 levels. More decay options increase the total transition rate, reducing
the average precursor lifetime. The smaller precursor lifetime results in a larger Doppler
shift.

(d) A decrease in F as EI goes from 9.4 to 11.4 MeV. There are now many decay options
to levels above the energy of the 4+

2 , E = 3.123 MeV, which potentially decay to the
4+

2 and emit the Eγ = 1037.8 keV γ-ray. Multistep precursor transitions add additional
time for the nucleus to slow down and reduce Doppler shift. Here the large number
of multi-step decay paths outweigh the increasing partial transition rates. In contrast,
below EI = 9.4 MeV the precursor decays were mostly one-step due to the fact that the
NLD is low in light, even-even, non-deformed nuclei with few valence particles. Note that
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Figure 4.17: Doppler shift slopes of 56Fe 4+
2→4+

1 , Eγ = 1037.8 keV as a function of initial
nuclear excitation energy. The 56Fe neutron separation energy is Sn = 11.197 MeV. See text
for interpretation of the many features.

this behavior may be different for different values of angular momentum, e.g. if instead
the γ-ray emitting level was 2+ instead of 4+ since the intrinsic angular momentum
distribution governs the number of possible decay paths.

One might expect an increase in F above the neutron separation energy, Sn. Neutron
evaporation is a very fast process, on the order of 100 times the amount of time it takes
for a nucleon to traverse the nucleus ∼10−7 fs. However, the ground state of 55Fe has a
low value of angular momentum, J = 3/2 whereas the most likely populated value of JI
is approximately 3–4~ according to Figure 3.21. Emitted neutrons would need a lot more
energy than is available in the compound nucleus to leave with an orbital component of
angular momentum. There is not a sufficient number of counts to measure the Doppler shift
slope beyond the ground state energy of 55Fe: E1 = 0.411 MeV, J1 = 1/2; E2 = 0.931 MeV,
J2 = 5/2.

Candidates

Up to now the 4+
2→4+

1 transition has demonstrated quasi-continuum lifetimes. The 4+
2→4+

1

transition was selected after careful assessment of all possible γ-ray probes because this
extended Doppler shift attenuation method does not work well for all transitions. This
subsection presents quasi-continuum lifetimes in two other 56Fe γ-ray emissions and attempts
to devise good selection criteria for future experiments.

The second useful γ-ray probe is the 2+
2→2+

1 , Eγ = 1810.8 keV. Figure 4.18a shows that
the 2+

2 level has more direct population contamination than the 4+
2 because the neighboring

levels have higher population intensity. Figure 4.18b shows that the 2+
2→2+

1 has less statisti-
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Figure 4.18: 56Fe 2+
2→2+

1 Eγ = 1810.8 keV γ-ray probe. (a) Events yielding the Eγ =
1810.8± 12 keV as a function of nuclear excitation energy. (b) Measured γ-ray centroids as
a function of vI cos ΘI for direct and quasi-continuum population.

cal fluctuation in the γ-ray centroids than the 4+
2→4+

1 because there are more γ-ray counts.
There is a trade-off using this γ-ray transition: the contaminants make it more difficult to
measure the direct 2+

2 lifetime, but the larger number of counts make it easier to measure
quasi-continuum Doppler shift slopes. The short lifetime of the 2+

2 makes the Doppler shift
non linear with vI cos ΘI , so only section from -0.002–0.002c is used to determine the Doppler
shift slopes for this transition. Figure 4.19 shows the Doppler shift slope of the 2+

2→2+
1

as a function of initial nuclear excitation energy. The features of the Doppler shift slope of
the 2+

2→2+
1 are similar to that of the 4+

2→4+
1 with the exception of overall scale and small

indirect fluctuations.
The third useful γ-ray probe is the 2+

3→2+
1 , Eγ = 2113.1 keV. Figure 4.20 shows the

Doppler shift slope of this transition as a function of nuclear excitation energy. There are
not as many counts for this γ-ray transition since the level is slightly off-yrast. The Doppler
shift centroid and excitation contamination plots are omitted for brevity.

For the quasi-continuum lifetime analysis, there were two other γ-ray probes considered
but not studied extensively:

1. The E = 3.370 MeV, 2+
4→2+

1 , Eγ = 2523.1 keV. The quasi-continuum does not pop-
ulate this level as frequently since it is further off-yrast. The γ-ray energy of the
transition is slightly outside of the recalibration range of this experiment. Since the
level is higher in energy and the level density increases with excitation energy, there
are more direct population contaminants.

2. The E = 4.100 MeV 4+
3→2+

1 , Eγ = 3253.5 keV. This γ-ray is also off-yrast and has
low statistics. The γ-ray energy is even farther outside the recalibration range. The
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Figure 4.19: Doppler shift slopes of 56Fe 2+
2→2+

1 , Eγ = 1810.8 keV as a function of initial
nuclear excitation energy. Note the increase in scale in the F -axis by a factor of two in
comparison to Figure 4.17. The larger number of low-lying J = 2 states results in faster
transitions and larger Doppler shifts. See text for further explanation of the differences.

Figure 4.20: Doppler shift slopes of 56Fe 2+
3→2+

1 , Eγ = 2113.1 keV as a function of initial
nuclear excitation energy. See text for further explanation of features.
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Table 4.3: 56Co γ-ray transitions used in the untracked relative efficiency calibration.

Eγ (keV) Relative Intensity
977.4 1.439 ± 0.015
1037.8 13.99 ± 0.1
1175.1 2.279 ± 0.02
1238.3 67.6 ± 0.4
1360.2 4.33 ± 0.04
1771.4 15.69 ± 0.15
1810.8 0.64 ± 0.01
1963.7 0.72 ± 0.015
2015.2 3.08 ± 0.03
2034.8 7.88 ± 0.07
2598.5 17.28 ± 0.15
3009.6 1.049 ± 0.01

direct population has many more contaminants.

The best transitions that probe quasi-continuum lifetimes are usually between the first and
second levels of the same angular momentum and parity, JΠ

2 →JΠ
1 . This specification ensures

that the γ-ray has sufficient statistics and fast transition rate. This first level off-yrast, JΠ
2 ,

typically has 10 < τ < 200 fs, it is strongly populated directly, strongly fed at all EI , and
has a high branching ratio for JΠ

2 →JΠ
1 . It is also important that the JΠ

2 →JΠ
1 γ-ray has no

neighboring peaks at any EI and that Eγ . 2500 keV so that it is easy to correct drifts with
recalibration.

Low-Lying Population of Angular Momentum

As suggested in the previous subsection, the JI distribution strongly influences the Doppler
shift slopes. The low-lying level populations from a given nuclear excitation energy help
determine the JI distribution. First a tracked relative efficiency curve is needed to normalize
the γ-ray peak areas. Figure 4.21 shows an untracked relative efficiency calibration using a
56Co sealed source and the γ-ray transitions from Table 4.3. A simple fit to this untracked
relative efficiency curve is

εu,r(Eγ) ∝ (Eγ + 100)−0.660, (4.10)

where Eγ is the γ-ray energy in keV and ε is the efficiency in percent. Other authors present
similar efficiency curves. Weisshaar et. al. [113] suggest the following untracked absolute
efficiency curve for GRETINA singles spectra:

εu,a(Eγ) = 4.532(Eγ + 100)−0.621. (4.11)
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Figure 4.21: Untracked relative efficiency curve for GRETINA singles spectra using a 56Co
sealed source and the transitions mentioned in Table 4.3.

Lauritsen et. al. [43] present a plot with the following tracked absolute efficiency curve for
GRETINA singles spectra:

εt,a(Eγ) = 1.70(Eγ + 100)−0.477, (4.12)

however the authors did not publish the full equation, so Equation (4.12) is a rough estimate.
The γ-ray peak areas of signature transitions are divided by their corresponding branching

ratios and relative efficiencies to determine the low-lying relative populations as a function
of EI . Using the tracked efficiency curve of Equation (4.12), Figure 4.22 shows the low-
lying relative populations of the 56Fe levels from Table 4.4. To compare populations for

Table 4.4: 56Fe low-lying levels.

Level E (keV) Eγ (keV) BR (%)
4+

1 2085.1 1238.3 100.0 ± 2
2+

2 2657.6 1810.8 97.0 ± 0.3
0+

1 2941.5 2094.9 100.0 ±
2+

3 2960.0 2113.1 98.0 ± 2
1+

1 3120.1 2273.2 95.4 ± 0.7
4+

2 3123.0 1037.8 99.2 ± 0.4
2+

4 3370.0 2523.1 85.5 ± 1
6+

1 3388.6 1304.4 98.7 ± 4
3+

1 3445.3 1360.2 20.1 ± 0.4
6+

2 3755.6 1670.8 82.0 ± 5
3+

2 3856.5 1771.3 91.8 ± 0.3
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Figure 4.22: Populations of the low-lying levels from Table 4.4 relative to the 4+
1 .

different EI , the population intensities of this figure are relative to the 4+
1 population for the

corresponding excitation window. Most of the transitions from the initial state are single
step; therefore, to give a rough sense of JI distribution, the abscissa in Figure 4.22 is the
level’s J value. Visually, the maximum relative population is between 2 and 5~, hinting that
the mean of the JI distribution is between those limits.

TALYS estimates the JI distribution through the use of the optical model, the Distorted
Wave Born Approximation, and numerical integration of the Schrodinger equation; Figure
3.21a has already shown these results. This calculation averages the results for proton
emission to any angle, but the Phoswich Wall in this experiment detected protons at specified
angles. TALYS is currently not able to calculate the JI distribution for proton emission to a
specific angle due to limitations of its numerical Schrodinger equation integration program
routine. However, reactions with low particle emission energy are mostly compound in
nature, and therefore nearly independent of particle emission angle. Figure 4.23 shows
TALYS calculations for differential angle cross section in terms of reaction components.
From 7.4–10.4 MeV of nuclear excitation energy, the reaction is primarily compound with
a small component of preequilibrium. Therefore, the JI distribution of Figure 3.21a should
work to good approximation for protons emitted at a specified angle. An experimental test
confirms this hypothesis: Figure 4.24 shows relative low-lying populations for two different
ranges of proton emission angle. If the JI distribution was strongly correlated with the
proton emission angle, the relative populations would disagree by more than just statistical
scatter. Overall, the two angle relative populations are in good agreement; there may be
some contribution from the preequilibrium reaction mechanism so further refinements of the
angular momentum distributions may be necessary.
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Figure 4.23: Differential cross sections calculated for the three reaction mechanisms. The
compound reaction mechanism typically occurs at low particle emission energy and is inde-
pendent of particle emission angle.

Figure 4.24: Relative low-lying populations of 56Fe levels from excitation EI = 9.4 ± 0.5
MeV at forward and side proton emission angles. The strong agreement suggests that the
reaction mechanism is mostly compound.
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4.3 Comparison to Simulation

Chapter 3 briefly covered some of the γ-ray decay simulations, particularly Sections 3.3
through 3.5. That material illustrated the basic concepts but did not fully specify or fine-tune
the parameters of the underlying nuclear models. This section aims to pick up where Section
3.5 left off by simulating Doppler shift slopes to determine the absolute magnitude of the
Gamma Strength Function.

Models in Use

In the Back Shifted Fermi Gas (BSFG) model, the effective excitation energy is related to
nuclear excitation energy by U = E − E2, where the energy backshift E2 is an empirical
parameter related to the pairing energy which accounts for the fact that pairs of nucleons
must break before each nucleon can be excited individually. When a level scheme is complete
up to 50–100 levels and the level density near the neutron separation energy is known, one
can fit the BSFG level density function to determine E2. Von Egidy and Bucurescu [104,
114] tabulate E2 from fits to experimental data and report a global phenomenological model:

E2 = −0.477 + 0.5Pa′ + 0.442
dS(Z,N)

dA
(4.13)

where

Pa′ = [M(A+ 2, Z + 1)− 2M(A,Z) +M(A− 2, Z − 1)]/2 (4.14)

is the deuteron pairing energy, M(A,Z) are mass excess values [115], and

dS(Z,N)

dA
= [S(Z + 1, N + 1)− S(Z − 1, N − 1)]/4, (4.15)

where

S(Z,N) = Mexp −MLD (4.16)

is the difference between the nuclear mass from the liquid drop model and the observed
experimental value (c.f. Eq. (3.28)). For 56Fe, the level density at the neutron separation
energy is not known experimentally so this global parameterization is used: Pa′ = 2.905
MeV; S = −3.731 MeV; dS/dA = −0.104 MeV; and E2 = 0.5245 MeV. TALYS uses a
different global phenomenological parameterization:

E2 = χ
12√
A

+ δ, (4.17)
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where

χ = −1, for odd–odd, (4.18)

= 0, for odd–even, (4.19)

= 1, for even–even, (4.20)

and δ is an adjustable parameter to fit experimental data on a nucleus by nucleus basis. For
56Fe, TALYS defaults to χ = 1, δ = −1.24213 MeV, and E2 = 0.3614 MeV.

In shell model nuclei, the level density parameter “a” depends on the neutron and proton
orbital spacings. In a rotational, vibrational, or transition nuclei, a characterizes the aver-
age energy spacing between excitation modes of the many independent degrees of freedom.
However, the energy spacings in shell model orbitals and other independent degrees of free-
dom are not necessarily constant with excitation energy. For instance, in shell model nuclei
there may be large energy spacings near a closed shell. For this reason, an energy dependent
version of a is implemented:

a(E) = ã

[
1 +W

1− exp(−d · U)

U

]
, (4.21)

where ã is the asymptotic value of a devoid of shell effects, d is the damping parameter which
determines how rapidly shell effects disappear, and

W = S(Z,N)− 0.5Pa′, (4.22)

is the shell correction energy. Von Egidy and Bucurescu [104, 114] use d = 0.06 MeV−1 and
tabulate ã from fits to experimental data and report a global phenomenological model:

ã = A(0.127− 9.05× 10−5 · A). (4.23)

For 56Fe, the level density at the neutron separation energy is not known experimentally so
a global extrapolation is used: W = −2.279 MeV and ã = 6.8282 MeV−1. TALYS uses a
different global parameterization:

ã = αA+ βA2/3, (4.24)

with α = 0.0722396, β = 0.195267, and

d =
d1

A1/3
+ d2, (4.25)

with d1 = 0.410289 and d2 = 0. For 56Fe, TALYS defaults to d = 0.10724 MeV−1 and
ã = 6.90358 MeV−1 and uses the shell correction energy directly from its database: W =
−2.1515 MeV. Figure 4.25a compares the various values of a for the excitation range of 56Fe
in this experiment.
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Figure 4.25: Nuclear model parameters. (a) Level density parameter a for 56Fe. Von Egidy
and Bucurescu (VE+B ’05/’09 G) [104, 114, 105] also report two global constant values of a:
6.1959 and 5.854 MeV−1 with corresponding values of energy backshift, E1: 0.939 and 1.071
MeV. (b) Spin cutoff parameter for 56Fe. For the first three σ models, a = 5.854 MeV−1

and E1 = 1.071 MeV. The σ models do not agree as well as the a models because it is more
difficult to experimentally determine J than E; theoretical guidance is limited. TALYS also
provides an interpolation between the Constant Temperature Model and the BSFG known
as the Gilbert and Cameron Model (G+C).

The spin cutoff parameter σ represents the width of the angular momentum distribution.
Theoretical versions of the energy dependent spin cutoff parameter include a low energy
model [116]

σ2
LE = 0.0146A5/3 1 +

√
1 + 4aU

2a
, (4.26)

a single-particle states model [117]

σ2
SP = 0.1461

√
aUA2/3, (4.27)

and a rigid sphere model [118]

σ2
RS = 0.0145

√
U/aA5/3. (4.28)

Von Egidy and Bucurescu [105] provide a global phenomenological fit:

σ2
V B = 0.391A0.675(E − 0.5 · Pa′)0.312. (4.29)

The spin cutoff parameter for a range of levels in the discrete level sequence is:

σ2
d =

1

3
∑NU

i=NL
(2Ji + 1)

NU∑
i=NL

Ji(2Ji + 1), (4.30)
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where the lowest level in the range, NL, has energy EL and the upmost level in the range,
NU , has energy EU . TALYS defaults to a slightly modified version of the rigid sphere model
that retains the asymptotic energy dependence of a:

σ2
T = 0.01389

A5/3

ã

√
aU. (4.31)

At low excitation energies, TALYS incorporates an interpolation method to determine σ
when U < 0 by calculating the distribution of J of the low-lying discrete levels:

σ2(E) = σ2
d for 0 ≤ E ≤ Ed (4.32)

= σ2
d +

E − Ed
Sn − Ed

[σ2
T (Sn − E2)− σ2

d] for Ed ≤ E ≤ Sn (4.33)

= σ2
T (E) for E ≥ Sn, (4.34)

where Ed = (EL + EU)/2. For 56Fe, TALYS uses NL = 3, NU = 20, EL = 2.658 MeV,
EU = 4.049 MeV, Ed = 3.354 MeV, σd = 2.399 ~, and Sn = 11.197 MeV. Figure 4.25b
compares the σ models for the excitation range of 56Fe in this experiment.

Equation (3.45) provides the energy dependence of the total level density in the Back
Shifted Fermi Gas model:

ρtotFG(U) =
1

12
√

2σ

exp
(

2
√
aU
)

a1/4U5/4
,

where a and σ are energy dependent parameters. Equation (3.46) provides the energy de-
pendence of the total level density in the Constant Temperature Model:

ρCT (E) =
1

T0

exp

(
E − E0

T0

)
. (4.35)

TALYS interpolates between these two models to get the appropriate behaviors at low and
high excitation energies. The literature refers to this procedure as the Gilbert and Cameron
(G+C) model [119]; Figure 4.25 shows the values of a and σ for this model. Figure 4.26
compares the three most reliable NLD models.

The most difficult simulation inputs are the GSF energy dependence and low energy
magnitude. References [120, 121, 111] use the Oslo method to extract data on the energy
dependence of the GSF in 56Fe for Eγ = 2–10 MeV. The Oslo method extracts the sum of
all components of the GSF: E1, M1, E2, and so forth. The Oslo method does not indepen-
dently provide GSF normalization since it relies on branching ratios such that the absolute
magnitude of f(Eγ) cancels out. The Oslo method typically uses the average total radiative
width at the neutron separation energy, Γ̄γ(Sn), to normalize its results. However, for 56Fe
there is no (n,γ) data to determine Γ̄γ(Sn) due to difficulties with 55Fe target fabrication.
Algin et. al. [111] scale their 56Fe Oslo method data to match the GSF of 57Fe; however,
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Figure 4.26: Level density models: TALYS Gilbert and Cameron (G+C); TALYS Back
Shifted Fermi Gas (BSFG); and Von Egidy and Bucurescu (VE+B ’09 G) with global ex-
trapolations of a, E1, and σ from Reference [105]. Level density data from Schiller et. al.
[5] and Algin et.a al. [111] are shown for reference.

this may be misleading since 57Fe is an odd-A nucleus with higher level density and higher
total radiative width at equivalent excitation energies.

The (γ, n) reaction can probe the GSF for γ-ray energies around 20 MeV. Equations
(3.58) and (3.60) provide a conversion from (γ, n) cross section to f(Eγ). Unfortunately
there are no 56Fe(γ,n) experimental data available. Figure 4.27 shows converted (γ,n) data
for neighboring nuclei in the A = 48− 64 region [122, 123, 124, 125], but the magnitude and
energy dependence of the resultant GSFs vary greatly. Typical GSFs possess a Giant Dipole
Resonance (GDR) which is related to the oscillation of neutron and proton clouds. The
character of the GDR depends strongly on the geometric shape of the nucleus. Split GDRs
are indicative of oscillation modes parallel and perpendicular to the axis of deformation. The
mass region A = 48 − 64 is transitional between several different nuclear structures: shell
model, spherical, and vibrational. As shown in Figure 4.27, the shell model nuclei 54Fe and
58Ni do not have a split GDR, but off-shell 55Mn, 59Co, and 64Zn do have a split GDR. 56Fe
is off-shell and likely has a split GDR; however, the problem of low energy magnitude is
not resolved since the tails of neighboring split GDRs differ by a factor of 2 near 10 MeV.
This variability is troublesome because reaction simulations rely on the GSF all the way
down to 0 MeV. Often times, separate (γ,n) experiments of the same nucleus report GDR
magnitudes differing by a factor of 2–3; the discrepancies indicate the difficult technical
nature of (γ,n) experimental work. Even if the magnitude of the GDR at the resonance
energy is correct, differing models of the GSF (such as SLO, GLO, EGLO, and KMF; c.f.
Sec. 3.4) have low-energy tails which differ by more than an order of magnitude.

The TALYS database provides global values of the GSF which have been adjusted to fit
an abundance of low energy nuclear data. Table 4.6 provides the TALYS global interpolation
of the giant dipole resonance parameters for 56Fe. Alternatively, a χ2-minimization on the
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Table 4.5: Phenomenological GSF Parameters for 56Fe from Global Fits.

XL EXL (MeV) GXL (MeV) SXL (mb)
E1 18.687 6.976 91.52
M1 10.717 4.000 1.101
E2 16.467 5.438 0.075

Table 4.6: Split GDR fit of 55Mn.

XL EXL (MeV) GXL (MeV) SXL (mb)
E1,A 16.648 ± 0.106 2.603 ± 0.474 18.440 ± 3.508
E1,B 20.790 ± 0.715 16.723 ± 2.828 48.723 ± 3.472

split giant dipole resonance of neighboring 55Mn is used to model the GSF of 56Fe. I use the
Generalized Lorentzian (GLO) model for the giant electric dipole resonance and the Standard
Lorentzian (SLO) model for the giant magnetic dipole and the giant electric quadrupole
resonances. The Oslo method data show an anomalous upbend at low γ-ray energies which
is modeled with a soft-pole form:

fup(Eγ) = C1exp(−C2Eγ) (4.36)

where C1 and C2 are experimentally fit parameters. The nature of the upbend is assumed
to be M1. Figure 4.27 shows the results of the fit using the function:

f(Eγ) =fE1,A(E = 8.6 MeV, Eγ) + fE1,B(E = 8.6 MeV, Eγ) + fM1(Eγ) + fup(Eγ) + fE2(Eγ)/E
2
γ ,

(4.37)

where A and B denote the two oscillation modes of the split GDR. The χ2-minimization
and the global extrapolations show that the normalization of the Oslo method data is too
high. Figure 4.28 shows the Oslo method data rescaled down by a factor of 2.2 in order to
match the fit. The best fit low energy upbend parameters of Equations (4.36) and (4.37)
are C1 = 4.8 × 10−7 MeV−3, and C2 = 3.0 MeV−1; Table 4.6 shows the best fit split GDR
parameters of 55Mn.

The first 32 of the low-levels from the RIPL database [88] up to threshold excitation
energy Ethres = 4.510 MeV are used. A Poisson level spacing distribution distribution is
used to generate levels above Ethres; equipartition of parity is assumed. A Porter Thomas
width fluctuation distribution [78] is used to model the variation in partial transition widths.
TALYS is used to determine the EI and JI populations similar to Figure 3.17a. Population
files corresponding to the VE+B ’09 G, TALYS BSFG, and TALYS G+C models will be
tested. For 56Fe, the internal conversion coefficients, α, are negligible since Z is low and
most decays have high transition energy.
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Figure 4.27: Oslo method data of the energy dependence of the GSF from Larsen et. al.
[120], Voinov et. al. [121], and Algin et. al. [111]. Photoneutron data, (γ,n), converted into
absolute GSF data from Katz et. al. [122], Carlos et. al. [123], Norbury et. al. [124], and
Alvarez et. al. [125].

Figure 4.28: Rescaled Oslo Method data by a factor of 2.2 to align with the General
Lorentzian split giant dipole resonance of 55Mn.
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Angular Momentum Distribution

Accurate assessments of the initial and intrinsic angular momentum distributions are indis-
pensable in order to properly model γ-ray decay. Simulations of low-lying level populations
help gauge whether models properly describe these distributions. Figure 4.22 displayed ex-
perimental results while the simulations that follow will use the computer program RAINIER
[101].

RAINIER uses the “realization” concept to replicate the chaotic nature of nuclei. A
nuclear realization is one ensemble of unchanging, yet randomly distributed set of level
spacings and transition widths. In reality, each nucleus of a given isotope has an identical
set of spacings and widths and is effectively a single realization. Unfortunately, the nuclear
physics community can only build a complete level scheme up to a certain energy, above which
experimental methods become unreliable. RAINIER generates several unique realizations of
the unknown portion of the level scheme to demonstrate how statistical fluctuations influence
observables. Furthermore, reactions populate levels psuedo-randomly which tends to further
intensify statistical fluctuations. RAINIER is currently the only code available that can fully
implement the extreme statistical model in reactions that populate and decay a wide range
of EI , JI , and ΠI .

Figure 4.29: A comparison of simulation and experimental measurements of relative low-
lying level populations after 16 MeV 56Fe(p,p’) with EI = 9.4 ± 1 MeV. These simulations
use the TALYS G+C model to generate several nuclear realizations.

Figure 4.29 shows RAINIER simulations of low-lying level populations for multiple nu-
clear realizations. The agreement between simulation and experiment is promising: six
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experimental points are within the realization spread, two are just outside, and the remain-
ing two are off by a factor of 1.5 or less. The realizations alone have approximately 15–25%
spread for a single low-lying population.

Low-lying populations depend not only on the angular momentum distribution, but also
on the nuclear realization since the level density in 56Fe is so sparse. There could be a
realization that brings the simulation into perfect agreement with the data. However, it is
more likely that other factors can better explain the lingering differences:

• Systematic experimental calibration error. The γ-ray tracking efficiency is not known
perfectly and likely depends on γ-ray multiplicity. In multi-detector systems, γ-ray
peak areas are hard to quantify since the independent gains drift at different rates.
Doppler shifts further broaden the peak resolution depending on level lifetime and
cascade time.

• Pre-equilibrium contamination. Employment of the TALYS JI distribution assumed
that the reaction was fully compound and did not depend on the fact that the Phoswich
Wall detected protons at a specific angle. However, Figure 4.24 showed evidence that
the populations of the 2+

2 and 2+
3 levels depend slightly on outgoing angle of the proton

and Figure 4.23 showed that the preequilibrium differential cross section was non-
trivial. Direct and preequilibrium reactions selectively populate JI by ejectile angle.

• Missing physics. Collective behavior is not always well-characterized by extreme sta-
tistical models. Reaction dependent quantum numbers could be involved in the pop-
ulation of levels in the quasi-continuum. Rotation, deformation, vibration, and shell
model phenomenon may be present at high excitation energies.

Gamma Strength Magnitude

To reproduce the experimental data in Figures 4.17, 4.19, and 4.20, TALYS, RAINIER,
and SRIM plus the TALYS G+C, TALYS BSFG, and VE+B ’09 G nuclear models are
used to simulate Doppler shift slopes of γ-ray transitions as a function of initial nuclear
excitation energy. Simulated slopes are analyzed with same analysis code as the data (c.f.
Sec. 4.2). Note that Doppler shift slope simulations are not possible without the Monte
Carlo method. Since the nucleus has a finite recoil slowing down time, the tail end of the
γ-ray emission time distribution does not contribute Doppler shift. Deterministic codes such
as TALYS or EMPIRE could be modified to output lifetimes and average cascade time, but
cannot generate a statistical distribution, nor can they see the effect of variable realizations.
RAINIER steps in at right time to provide the appropriate statistical capabilities.

Figure 4.30 compares experimental data to simulated Doppler shift slopes using the
TALYS G+C model and the experimental fit of the GSF in Figure 4.28. The Doppler
shift slope data of the 2+

3→2+
1 transition has been omitted due to suspected issues with the

database value of the of 2+
3 direct lifetime. These Doppler shift slope simulations fit the data

better than the low-lying populations of Figure 4.29 which are likely hampered by erratic
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(a) 2+2→2+1 (b) 4+2→4+1

Figure 4.30: Doppler shift slopes as a function of excitation energy. Experimental data is
compared to simulations using the TALYS G+C NLD model and the experimental fit of
the GSF in Figure 4.28. Seaman et. al. in 1969 [126] measured the direct lifetime of 56Fe;
the values have been translated into Doppler shift slopes using vI cos ΘI as the independent
variable. The RAINIER simulation has difficulty reproducing the low-energy upbend in the
GSF due to the steep gradient of the GSF and the large excitation energy resolution.

GRETINA detection efficiencies. Furthermore, low-lying populations are more sensitive to
the more uncertain JI distribution, whereas Doppler shift slopes are more sensitive to the
NLD and GSF input parameters which have experimental support.

Figure 4.31 explores the statistical variations in the simulated Doppler shift slopes by
testing three nuclear realizations and three NLD models: TALYS G+C, TALYS BSFG, and
VE+B ’09 G. Figure 4.31 also explores three normalizations of the GSF by scaling the 55Mn
GDR fit of Figure 4.28 by factors of 1.0, 2.2, and 0.3. The simulations show the following
trends:

• The realization psuedo-random number generator parameters slightly affect the simu-
lation’s Doppler shift slope outcome. Lifetime is inversely proportional to the sum of
the many partial exit channel widths. While individual partial widths fluctuate greatly,
the central limit theorem dictates that their sum fluctuates much less. However, slight
fluctuations remain since the level density in 56Fe is sparse. The low excitation Doppler
shift slopes have the most variability since the number of decay paths are few.

• Since the level densities and angular momentum distributions differ between models,
the TALYS G+C, TALYS BSFG, and VE+B ’09 G realizations are naturally distinct
from one another. The TALYS G+C is likely the best fit to the Doppler shift slope
data because this model is the default in TALYS and the global parameterization of
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(a) 2+2→2+1 (b) 4+2→4+1

(c) 2+2→2+1 (d) 4+2→4+1

(e) 2+2→2+1 (f) 4+2→4+1

Figure 4.31: Doppler shift slopes as a function of excitation energy. Top: experimental
data is compared to three realizations of the TALYS G+C NLD simulation model. Middle:
experimental data is compared to simulations using the TALYS G+C, TALYS BSFG, and
VE+B ’09 G models of NLD. Bottom: experimental data is compared to three normalizations
of the GSF. See text for interpretation.
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Gilbert and Cameron NLD has been fit to an abundance of experimental data. Addi-
tionally, the TALYS G+C model uses interpolated values of the spin cutoff parameter
determined from low-lying levels whereas the other models are more dependent on
theory. The models align at high excitation energy.

• The simulations support the normalization of Figure 4.28 that uses the Generalized
Lorentzian fit to the split GDR of 55Mn with an extrapolation to the low energy tail.
The estimate of Algin et. al. is factor of 2.2 higher in scale and gives Doppler shift
slopes that are systematically high. A reduction in scale by a factor of 0.5 yields
Doppler shift slopes that are systematically low in scale.

The low-lying population simulations take approximately 10 minutes each, but the Doppler
shift slope simulations take approximately 10 hours because of the need to simulate many γ-
ray emission angles and nuclear recoil velocities; therefore, the number of simulations in this
work are limited. There could be more model fine tuning or introduction of new physics, but
rapid testing would require a slight rework of RAINIER to harmonize with ROOT’s PROOF
parallel processing framework so as to be set up on a computer cluster. The experimental
data, sort code, and simulation package can be made available for anyone up to the task.

The average total radiative width at the neutron separation energy, Γ̄γ(Sn), is often
an important component of the GSF normalization. Neutron time-of-flight experiments
determine Γ̄γ(Sn) by averaging the resonance widths of s-wave neutron capture. The Γ̄γ(Sn)
average is taken over levels with E & Sn and J = Jg.s.,N−1 ± 1/2, where Jg.s.,N−1 is the
ground state angular momentum of the target nucleus. Table 4.7 shows the known Γ̄γ(Sn)
of nuclei in the Z = 24− 28 region. The values of Γ̄γ(Sn) in this region vary greatly due to
differing values of Sn; the number of levels below Sn in the sum of partial widths depends
on an exponentially increasing value of NLD with excitation energy.

For 56Fe there is no (n,γ) data available to determine Γ̄γ(Sn) since 55Fe is radioactive.
Instead, the best fit simulation model determines Γ̄γ(Sn). Doppler shift slope data and
simulation can arrive at the value of Γ̄γ(Sn) only once the NLD and GSF are known; this
order of events is the reverse of the Oslo method in which the value of Γ̄γ(Sn) helps nor-
malize NLD and GSF. Since Jg.s.,55Fe = 3/2, the 56Fe levels are averaged over J = 1, 2; the
average is taken over the excitation range E = 11.197–11.297 MeV. Table 4.8 shows the
Γ̄γ(Sn) value determined for 56Fe from experimental Doppler shift slopes of this work. The
uncertainty in the 56Fe Γ̄γ(Sn) value is a combination of Porter-Thomas width fluctuations,
statistical variation of separate simulated nuclear realizations, and a systematic 1σ overlap
of uncertainties in the Doppler shift slopes from data and simulation. Assuming the capture
state could have angular momentum of either J = 1, 2, the combined uncertainties yield
Γ̄γ(Sn) = 1100 ± 500 meV. Algin et. al. [111] estimate Γ̄γ(Sn) = 2300 ± 1200 meV from
global extrapolation systematics, but they do not specify in the text exactly how they arrive
at this normalization. The largest Γ̄γ(Sn) uncertainty in any nucleus with any measurement
technique is the variation of total width. Neighboring levels near Sn can have vastly differing
total width due to Porter-Thomas fluctuations of partial widths. If there were an infinite
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Table 4.7: Average Total Radiative Width at the Neutron Separation Energy, Γ̄γ(Sn) from
the RIPL database [88].

Nucleus A
ZX Jg.s.,N−1 Sn (MeV) Γ̄γ(Sn) (meV)

51
24Cr 0 9.261 1100(400)
53
24Cr 0 7.939 2000(500)
54
24Cr 3/2 9.719 1400(500)
55
24Cr 0 6.246 1500(500)
56
25Mn 5/2 7.270 750(150)
55
26Fe 0 9.298 1600(700)
57
26Fe 0 7.646 920(410)
58
26Fe 1/2 10.044 1850(500)
59
26Fe 0 6.581 1130(110)
60
27Co 7/2 7.492 540(50)
59
28Ni 0 8.999 2030(800)
60
28Ni 3/2 11.388 2200(700)
61
28Ni 0 7.820 1120(200)
62
28Ni 3/2 10.596 2000(500)
63
28Ni 0 6.838 910(270)
65
28Ni 0 6.098 1400(700)

Table 4.8: Γ̄γ(Sn) for 56Fe determined with Doppler shift slope measurements and simulated
comparisons. Width fluctuations (Wid.), experimental systematic error (Sys.), and realiza-
tion variability (Real.) contribute separate uncertainties. Since Jg.s.,55Fe = 3/2, the capture
state angular momentum could be J = 1, 2.

J Γ̄γ(Sn) (meV) Wid. Sys. Real.
1 1300 ±700 ±400 ±70
2 960 ±190 ±300 ±30

1,2 1100 ±400 ±300 ±40

number of possible partial decay paths, the uncertainty in Γ̄γ(Sn) would be non-existant;
however, the number of levels with lower energy is not large enough for the central limit
theorem to smooth out the fluctuations.
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Chapter 5

Conclusions

5.1 Considerations

This section reviews the lessons learned and summarizes the optimal characteristics of the
quasi-continuum lifetime analysis. This section condenses the relevant information that is
necessary to perform a good experiment and lists certain pitfalls to avoid.

In this work I have outlined the experimental setups of ATLAS, GRETINA, and the
Phoswich Wall for the 56Fe(p,p’γ) reaction. The theory surrounding nuclear structure, re-
actions, and interactions with matter was instrumental to the understanding of the many
features in the data analysis. The deficit in knowledge about the Gamma Strength Func-
tion inspired a new experimental method to measure its absolute magnitude using quasi-
continuum lifetimes. Weaknesses of this method include the following:

• It requires sophisticated equipment that is capable of high energy and angle resolution.
This requirement is achievable with highly segmented detectors which are in short
supply. These detectors require a multitude of tedious gain calibrations and event-by-
event drift corrections to maintain high energy resolution.

• The method requires independent simulation of recoil trajectories. The Stopping Range
of Ions in Matter (SRIM) code provides sufficient accuracy only for a specific range
of target atom species, incident ion species, and initial recoil kinetic energies. The
target must be thin enough so as not to degrade the energies of the incident beam or
outgoing ejectiles. The target must be thick enough to generate a high reaction rate
and minimize recoil escape.

• The method requires independent simulation of γ-ray cascades. The Randomizer of
Assorted Initial Nuclear Intensities and Emissions of Radiation (RAINIER) code pro-
vides this capability, but has long run times. It is difficult to incorporate NLD and
GSF model uncertainties into simulation.
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• This method requires independent simulation of the initial angular momentum dis-
tribution of the residual nucleus. The code TALYS provides good estimates of this
distribution, but is limited in terms of ejectile emission angle.

• This method requires some knowledge of the NLD and energy dependence of the GSF.
Techniques such as discrete level counting, the Oslo method, photoneutron, and neu-
tron capture reactions provide a good starting point for these two functions. The spin
cutoff parameter is an important model input, but knowledge on this topic is narrow.

• Not all nuclei have γ-ray probes of optimal transition rate. The recoil slowing down
time needs to be on the same order as the lifetime of the parent level. These life-
times need to be known accurately or measurable with the experimental setup. The
uncertainties of many database lifetimes are on the order of 10–50%.

• The NLD must be high enough to average level spacing and width fluctuations. The
code RAINIER can estimate these fluctuations before the experiment occurs or before
data from a past experiment is reanalyzed using this method.

Highly segmented γ-ray detection is achievable with GRETINA and AGATA and perhaps
other high purity germanium arrays. Gamma-ray energy tracking is not a requirement; over-
all uncertainty of this method is not at the limit of sub-centimeter γ-ray position resolution.
Simulations are only an obstacle because they are tedious and the SRIM and TALYS soft-
wares are not set up by default to provide the necessary output in a convenient manner. In
comparison, understanding theoretical fits to cross section data requires the same complex
reactions simulations; hence the nuclear physics community is familiar with such techniques.
The prerequisite NLD and GSF knowledge need not be precise; we can fine tune models to
match the quasi-continuum lifetime data.

Some of the strengths of this method include the following:

• The method does not require precise counting efficiencies. The low-lying level popula-
tion data were not critical to the understanding of the Doppler shift slope data. The
Doppler shift slope data are more sensitive to NLD and GSF, whereas the low-lying
populations are more sensitive to the energy dependence of the spin cutoff parameter.
Doppler shift slopes are primarily governed by the decay time of one-step transitions,
whereas low-lying level populations are governed by fractional branching to all inter-
mediate levels.

• This method can probe the low energy magnitude of the GSF. In contrast, (n,γ) and
(γ,n) reactions only probe the GSF at high energies, near Sn and 20 MeV, respectively.

• This method can use multiple γ-ray probes in the same data set to verify measurements.
In this work, the 2+

2→2+
1 and the 4+

2→4+
1 yielded comparable results.
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The differences in nuclei, reactions, and detection equipment uniquely affect the quality
of the quasi-continuum lifetime method. Some of the fortunate circumstances in this work
include the following:

• The particle and γ-ray angle resolution was excellent. GRETINA has 1152 segmenta-
tion and the Phoswich Wall has 256 segmentation.

• The γ-ray energy resolution was excellent. High purity germanium crystals are a
requirement for this procedure.

• The slowing down time of recoiling 56Fe was on the order of the cascade times and the
direct lifetimes of several low-lying transitions. It is high recommended that the low-
lying transitions of interest are compared to stopping simulations before experimental
execution.

• There was minimal recoil leakage from the target. The beam energy, target thickness,
and recoil angles were well matched. In reality recoil leakage is not detrimental—one
can easily incorporate target thickness into Monte Carlo simulations. Such a correction
was estimated to be unnecessary. A high density stopper is not required if the code
properly accounts for leakage.

• There exists a lot of good Oslo method data on the energy dependence of the GSF
for 56Fe. 56Fe was the first nucleus for which the low energy upbend in the GSF was
observed and there were many experiments that provided further confirmation and
exploration.

All of these points serve to make this particular experiment well suited to obtain a good
result. If other datasets lack many of these benefits, quasi-continuum lifetime analysis may
be more difficult. However, the experiment in this work also had many downfalls. Some of
the unfortunate circumstances include the following:

• The biggest frustration was the Phoswich Wall 1 MeV proton energy resolution. Many
problems can be fixed with cooled, or even uncooled, silicon detectors. The ejectile
energy resolution is the biggest source of systematic uncertainty since the outgoing
particle determines the recoil angle and excitation energy of the residual nucleus.

• There were only 80 hours of beam time. A lot of the γ-ray peaks are statistics lim-
ited. Many γ-ray probes that have a lot of potential for their nuclear properties were
unanalyzed.

• 56Fe has a low level density. Partial width and level spacing distributions cause a lot
of lifetime fluctuation. A nucleus with a larger level density such as that with an odd
number of neutrons and protons or a larger mass altogether will have more possible
decay paths and smaller fluctuations of total width.
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• There was not much guiding (n,γ) and (γ,n) data. NLD extrapolations did have a
normalization point at the neutron binding energy. The starting estimate of the GSF
absolute magnitude relied on extrapolations of neighboring nuclei.

If some of these shortcomings are fixed in other experiments and datasets, the quasi-continuum
lifetime analysis will perhaps be much easier.

To reiterate Section 4.2, the optimal γ-ray probe has the following properties:

• The best transition stems from the first level off yrast, JΠ
2 , which typically has a decent

transition rate, 10 < τ < 200 fs, it is strongly populated directly, strongly fed at all
EI .

• The γ-ray probe should have no neighboring peaks at any EI . Neighboring peaks
may interfere or complicate algorithms that determine the Doppler shifted γ-ray peak
centroid.

• The γ-ray transition energy is Eγ . 2500 keV so that it is easy to correct drifts with
recalibration. Higher energy γ-ray peaks drift proportional to their energy.

If there are more statistics, the quasi-continuum lifetime analysis may be possible with
additional γ-ray probes that do not satisfy these criteria.

5.2 Validation

This section uses discrete lifetimes to validate the normalization of the Gamma Strength
Function determined in this work. Other methods of validation are suggested such as pho-
toneutron and neutron capture reactions.

Thanks to the suggestion of Guttormsen et. al. [127], many direct lifetimes of 1+ and 1−

states are available in 56Fe from the photoelastic data of Bauwens et. al. [128] and Shizuma
et. al. [129]. These experiments use dipole transitions to bound states by means of the
nuclear resonance fluorescence method. The photon scattering cross section integrated over
a single resonance is proportional to Γ0Γi/Γ, where Γ0, Γi, and Γ represent the ground state
decay width, the decay width to an intermediate level, and the total decay width of the
considered excited state, respectively. For elastic transitions where the excited state decays
back to the ground state (Γi = Γ0), the observed cross section is proportional to Γ2

0/Γ. If the
total decay width is known, one can determine Γ, and with Γ one can determine lifetime.
Figure 5.1 plots these derived lifetimes.

Similar to the average total radiative widths, RAINIER can determine lifetimes as a
function of angular momentum, parity, and excitation energy. Using the NLD and GSF
parameters that best fit the quasi-continuum lifetime Doppler shift slope data, Figure 5.1
shows the simulated lifetimes of 1+ and 1− states in 56Fe as a function of excitation energy.
The scatter and magnitude of the simulated lifetimes match experimental data well lending
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Figure 5.1: A comparison of 56Fe lifetimes. Experimental points are derived from photoelastic
data of Bauwens et. al. [128] and Shizuma et. al. [129]. RAINIER simulation points are
calculated from the NLD and GSF parameters that best fit the quasi-continuum lifetime
data in this work.

support to the measurements from this work and the work of both Bauwens and Shizuma.
The RAINIER simulation does not include NLD or GSF model uncertainties; the scatter
in lifetime is the result of width and level spacing fluctuations. The width fluctuations and
large uncertainties in experimental lifetimes may be too large to determine the normalization
of the GSF without other supporting measurements.

In order to fully validate this method it may be necessary to use different nuclei. Neutron
capture experiments provide the best average total radiative width at the neutron separation
energy. Since (n,γ) experiments catalog many total widths, both the average, Γ̄γ(Sn), and

the fluctuation,
√〈

(Γγ − Γ̄γ)2
〉
, are valuable validation tools. A high purity target is critical

to the success of an (n,γ) experiment. A quasi-continuum lifetime experiment can utilize the
same high purity target to study the same N + 1 nucleus via the (d,p) reaction. In fact, a
high purity target is not critical to the success of a quasi-continuum lifetime experiment since
signature γ-rays indicate the participating nucleus. It might be possible to find an incident
projectile and beam energy that is amenable to the quasi-continuum lifetime analysis for two
or more nuclei provided that the particle detector can distinguish between ejectile species.
Furthermore, quasi-continuum lifetime analysis may be possible with radioactive targets;
one can easily veto events where the signature γ-ray is absent.

Photoneutron data would help guide the fitting procedures of the GSF. Split giant dipole
resonances vary strongly as seen in Figure 4.28. The GSF derived from photoneutron cross
section data of 59Co, 55Mn, 64Zn, and 58Ni do not align perfectly and it is challenging to
extrapolate the magnitude of both peaks and both centroids in the split resonance. The
neighboring nuclei of 56Fe that have (γ,n) data are either odd-A or are on a closed neutron
or proton shell. Shell model closures strongly influence the GSF and pairing might have
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some effect. Similar to 56Fe, the nucleus 54Cr has one valence neutron pair off a shell closure
and is not on a closed proton shell. The cross sections of 56Fe(γ,n) and 54Cr(γ,n) would help
guide the low energy behavior of the GSF in 56Fe. The isotopic abundances of 54Cr and 56Fe
are 2.4% and 91.2%, respectively; therefore, target fabrication is feasible.

The nucleus 57Fe may be a good candidate to attempt a full validation. There is a lot
of available data on 56Fe(n,γ)57Fe, the NLD and GSF has been measured many times via
the Oslo method [5, 111, 121], and the level scheme is nearly complete up to the neutron
separation energy [130]. The lifetimes of the 1/2−2 , 3/2−3 , and 3/2−4 are in the 10 < τ < 100
fs range and emit γ-rays within a good energy recalibration range. There may be a possible
issue with γ-ray doublets separated by 14.41 keV due to the low first excited state energy,
but this should not be a problem so long as the nuclear recoil velocity is kept low.

5.3 Impact on Cross Sections

This section uses the Gamma Strength Function determined in this work to simulate the
neutron capture cross section of 55Fe. The quasi-continuum lifetime method can be used to
determine the Gamma Strength Function of many other important nuclei for a wide range
of applications.

Section 4.3 used quasi-continuum lifetime measurements to estimate the 56Fe average
total radiative width at the neutron binding energy, Γ̄γ(Sn); Table 4.8 showed these results.
Perhaps the most useful application of Γ̄γ(Sn) is its importance to neutron capture cross
sections. The 55Fe(n,γ) capture reaction may have narrow practical application, but this
proof-of-concept shows what one can expect quantitatively in more influential nuclei. Figure
5.2 shows 55Fe(n,γ) cross sections using the Γ̄γ(Sn) values determined from this work.

One application of the 55Fe(n,γ) cross section is astrophysical nucleosysthesis. The iso-
topes of iron are at the end of the stellar fusion process since they have the highest binding
energy per nucleon. The slow neutron capture process is responsible for the production of
elements heavier than iron. A time dependent model for calculating the creation of these
isotopes requires accurate boundary conditions of iron seed nuclei. The neutron capture rate
at the beginning of the s-process, such as determined by the 55Fe(n,γ) cross section, influ-
ences the entire chain of subsequent neutron captures. In a sense, 55Fe may be considered
as one of the first s-process branch points. Additionally, photoneutron 55Fe(γ,n) may be
an important intermediate process in the production of 54Fe since this isotope cannot be
produced via slow neutron capture.

The fission yield of 55Fe is negligible. To have a 55Fe neutron capture event in a nuclear
reactor or weapon, neutrons would first need to induce 56Fe(n,2n) or 54Fe(n,γ) in the steel
support structures. However, the production rate of 55Fe in these environments is likely too
low to have a significant influence on the overall uncertainty of either simulation.

The normalization of the 56Fe GSF does not strongly influence neutron inelastic scattering
in 56Fe. Since the compound nuclear state in 56Fe(n,n’) is 57Fe, the NLD and GSF of 57Fe
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Figure 5.2: 55Fe(n,γ) cross sections using the values of Γ̄γ(Sn) from this work and the estimate
of Algin et. al. [111].

and the NLD of 56Fe determines the magnitude of the cross section. However, a different
energy dependence of the 56Fe GSF will result in different γ-ray production spectra.

The 56Fe GSF normalization has a small influence on the 56Fe(n,2n) cross section since
there is a pre-equilibrium excited state of 56Fe in the multiple compound emission process.
The 56Fe(n,2n) reaction is important to the neutron economy of both a nuclear reactor and
a thermonuclear device. Validation of the quasi-continuum lifetime effect would not be easy
with a measurement of the 56Fe(n,2n) cross section. The intermediate 56Fe excited state is
short-lived and the 56Fe GSF normalization contributes little.

If extension of the quasi-continuum lifetime method to higher mass regions proves feasible,
the results may be useful to help constrain neutron capture cross sections of the actinides
and fission product yields. These cross sections are valuable to nuclear forensics in the
determination of the radiation history of a reactor, the fireball of a thermonuclear detonation,
or the ground water transport of residual contamination. Knowledge of the cross sections
of fission product yields relies on reaction calculations since the isotopes are mainly many
neutrons above the valley of stability where target fabrication is difficult. When modeling
the cross sections, one must infer the GSF; therefore a wealth of nuclear data is valuable to
allow for global extrapolations.

5.4 Future Possibilities of the Quasi-Continuum

Lifetime Method

This section discusses future possibilities for the quasi-continuum lifetime method. There
are many nuclei where this method can be of use, including many nuclei not accessible via
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Figure 5.3: Nuclei accessible with the quasi-continuum lifetime method in the mass region
near 56Fe. The reactions below the chemical symbol identify which reaction is optimal for the
method. If the nucleus is accessible with neutron capture, the (n,γ) reaction is listed above
the chemical symbol. In this range, the quasi-continuum lifetime method can access 40 nuclei
via light-ion reactions whereas neutron capture experiments can only access 14 nuclei. The
highlighted 57Fe nucleus is the best candidate for further validation of the method. Chart of
the nuclides taken from Reference [131].

neutron capture. It is difficult to say whether this method will be extendable to the actinide
region, but this section outlines a potential roadmap to such a goal.

Neighboring Nuclei

Section 5.2 outlined ways to further validate the quasi-continuum lifetime method. The
procedure should be valid for nuclei in the mass region near A = 56 provided that there are
low-lying levels with lifetimes on the order of 10–100 fs. Figure 5.3 shows the nearby nuclei
that are accessible with the quasi-continuum lifetime method. The best nuclei to apply
the quasi-continuum lifetime method are those with available (n,γ) data. Once the nuclear
physics community perfects the method, there will be enough confidence to make estimates
of Γ̄γ(Sn) without supporting (n,γ) data.

The quasi-continuum lifetime method can access approximately three times the number
of nuclei feasible with neutron capture experiments because of the flexibility of reaction
mechanism. This method vastly expands the scientific capability to model neutron capture
environments outside the valley of stability.
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Relevance to Applications for Nuclei with Higher Masses

National security motivations might pave the way forward in the development of the quasi-
continuum lifetime method. Fission fragments are key to the assessment of weapons perfor-
mance. The simulation of reactions on unstable radioactive nuclei following a thermonuclear
detonation require good inputs such as the NLD and GSF. For instance, in the low mass
region of the fisson yields (FYs), zirconium is an important radiochemisty diagnostic that is
subject to high neutron flux. Furthermore, zirconium is a fission reactor fuel cladding mate-
rial; capture reactions on these stable nuclei influence the reactor’s neutron economy. There
is a lot of nuclear structure data available for 96Zr; it will not be necessary to completely
rebuild the level scheme and measure every lifetime. In contrast, there are few known J , Π,
and τ for 94,95,97Zr; a quasi-continuum lifetime experiment would require adequate particle
energy and angle resolution to remeasure the important low-lying states.

In the high mass, high FY region, xenon and cesium both have high fission yields, but
xenon is a noble gas and cesium is chemically reactive. Target fabrication may prove difficult
and stopping power has larger uncertainties in chemical compounds. Barium might be the
best candidate for extending the quasi-continuum lifetime method into the high mass, high
FY region: 138Ba has a 235U FY of 4 × 10−5, a natural abundance of 71.7%, and has many
known J , Π, and sub-picosecond lifetimes. Neodymium is a good alternative in this mass
region. There is a lot of (n,γ) data on these isotopes and the energy dependence of the GSF
at low energy has been extensively studied by Bečvář et. al. [132]. For these heavier isotopes
one may need to use the reaction (α,α’) as an alternative to (p,p’) to give the heavier recoil
nucleus a larger initial kinetic energy. Longer slowing down time compensates for longer
lifetimes.

The rare earth and heavy metals may require other lifetime techniques to apply the
quasi-continuum lifetime method. An experiment may require particle detectors at backward
angles with respect to the incident beam so that the backscatter imparts additional recoil
momentum. The (α, α’) reaction may not be sufficient to generate recoil slowing down times
on the order of 1–10 ps, which is typical of low-lying lifetimes in this mass region. However,
the quasi-continuum lifetime method may also be possible with the Recoil Distance Method
[62] which would enable reactions of heavier projectiles such as (7Li,7Li’) or higher. The
level densities of these nuclei are high and overlap of γ-ray peaks may be cumbersome. In
compensation, when the level density increases, Porter-Thomas width fluctuations become
less of a concern since the total width includes many more decay paths. The highest mass,
non-actinide, quasi-continuum lifetime candidates are 206−208Pb and 209Bi. These nuclei do
not have too high of level densities and they possess several low-lying lifetimes on the order
of 10–100 fs.

The higher mass regions may require approximation techniques. Simulation of γ-ray
cascades for every event is computationally intensive. RAINIER does not currently possess
parallel processing capabilities, but extending its abilities should not require significant effort.
Development of approximation methods may prove difficult considering that Porter-Thomas
width fluctuations and multi-step γ-ray cascades have a large influence on results. Recoil
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slowing down strongly depends on statistical nuclear scatter at low energies, but electronic
slowing down is a continuous and more predictable process. Electronic stopping simulations
may lift the computational burden of statistical scatter.

The feasibility of the quasi-continuum lifetime method in the actinide region is unclear.
Thorium, uranium, and plutonium have important energy and homeland security applica-
tions. However, there is not an abundance of structure information in this mass region and
the NLD of these nuclei are very high. The recoil distance method will need to be merged
with the quasi-continuum lifetime method. As opposed to the wide angle nuclear scatter of
56Fe in this work, electronic stopping power will be the dominant slowing down mechanism.
One may wonder if the quasi-continuum lifetime method will work with radioactive beams
and inverse kinematics. For residual nuclei traveling near β ∼ 0.3, there is a large Doppler
shift for in-flight decay. The lifetime effect would only be noticeable if the nucleus can lose a
significant portion of its velocity. This rapid deceleration would require a high density stop-
ping material, and the stopping times may be on the order of ns. For the quasi-continuum
lifetime effect to be profitable, the cascade time, the low-lying level lifetime, and the slow-
ing down time must all be within the same order of magnitude. First, the nuclear physics
community must extend the quasi-continuum lifetime method into the higher mass regions
before attempting a leap into the actinide region. However, a successful measurement of
the average total radiative width using the quasi-continuum lifetime method would be very
beneficial in actinide applications.
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Appendix A

Stopping Theoretical Development

The interaction of charged particles with matter is a complex problem that involves several
different physical phenomena. Early scientists had to take into account the fact that new
energy loss mechanisms arise as an ion’s kinetic energy decreases. An explanation of all
the different components of ion-material interactions are detailed by Ziegler [133]. Some
of the first developments of the slowing down theory began soon after the discovery of
radioactivity via the experimental work of Curie in 1900 [134]. Shortly thereafter in 1905,
Bragg and Kleeman demonstrated the rapid increase of linear energy transfer with decreasing
ion velocity [135]. Figure A.1 shows a modern example of the widely-recognized Bragg curve
in which the maximum linear energy transfer of a charged particle occurs near the end of its
path. However, the lack of a coherent description of the atom stifled theoretical descriptions
of early experimental work.

After the pioneering work of Gieger in the study of α-particle penetration through thin
foils in 1909 [137] and subsequent atomic theory by Rutherford in 1911 [138], many scientists

Figure A.1: Stopping of 205 MeV protons in High Density Polyethelene (HDPE) [136]. The
peak in linear energy transfer at 26.1 cm is known as the Bragg peak.
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including Thomson in 1912 [139] and Bohr in 1913 [140] attempted theoretical descriptions
of the stopping of charged particles in matter. Bohr separated energy loss into two separate
mechanisms: nuclear and electronic. The nuclear component of energy loss is the result of the
Coulomb interaction between the positively charged nuclear cores of the target material and
the incident ion. The electronic component is the result of the interaction between electrons
in the target material and the nucleus of the incident ion. However, quantum mechanics
was not well established at this time and there were many open questions impeding further
development.

Bethe in 1930 [141] and Bloch in 1933 [142] applied relativistic quantum mechanics and
perturbation theory to the slowing down of fully stripped charged particles traversing matter.
Bethe’s formula of the average stopping power of charged particles is

−
〈
dE

dx

〉
=

4π

mec2

nZ2

β2

(
e2

4πε0

)2 [
ln

(
2mec

2β2

I(1− β2)

)
− β2

]
, (A.1)

where v and Z are the ion’s velocity and charge, respectively, I is the mean excitation
potential, β = v/c, me and e are the electron mass and charge, respectively, and

n =
NAZaρ

AMu

(A.2)

is the target material electron density where ρ is the density, Za is the atomic number, A
is the atomic mass, and Mu is the molar mass of the material. Although this formula has
excellent experimental confirmation at high energy, it breaks down at low energy in which
the ion is not fully stripped of its orbital electrons. Therefore, this formula does not apply
to many experimental scenarios nor is it of practical use to many industrial applications.

The observation of fission by Hahn and Strassman [143] and explanation by Meitner and
Frisch [144] in 1939 brought about a resurgence in atomic collision theory. In the early
1940’s, Bohr and others returned to the issue of low energy stopping of partially stripped
heavy ions to describe fission fragment recoil. Bohr implemented Thomas-Fermi screening
in which the incident ion is stripped of its electrons that have orbital velocities less than the
ion velocity [51]. In 1941, the estimate of an ion’s effective charge Z∗ [52] was

Z∗ = Z1/3v/v0, (A.3)

where v0 = αc is the Bohr velocity and α is the fine structure constant.
In 1940, Fermi helped quantify the degree of electric polarization of a charged particle

within dielectric material [145], noting that the induced polarization from the incident ion
alters the interaction with the sea of electrons in the target. In this work, Fermi also
contributed a proportional scaling law that showed stopping powers were a function of the
mass traversed by the ion. In 1941, Knipp and Teller applied Fermi’s stopping power scaling
law together with the effective charge in Equation (A.3) to relate H, He, C, N, O, F, and light
fission fragment stopping powers [146]. These scaling laws gave experimentalists a basis for
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interpolation and extrapolation of known stopping powers to unmeasured target materials
and ion velocities.

Throughout the mid 1950’s, Lindhard continued the work on the penetration of a charged
particle into a quantized electron gas but focused on a non-relativistic approximation [147].
Linhard brought together the work of previous literature incorporating the assumptions that
electrons are at zero temperature in the form of plane waves on a positive background for
overall neutrality, that the electron density is constant before polarization, and that the ion
provides a small perturbation to the target material. Lindhard’s work provided the basis
for a coherent theory of ions stopping in matter and deeply analyzed the energy transfer in
screened Coulomb collisions. In screened Coulomb collisions, the mutual potential between
ion and atom is

V (r) =
Z∗Zae

2

r
exp(−r/a), (A.4)

where r is the distance between ion and atom and a is known as the screening parameter
which accounts for the shielding of nuclear charge by inner orbital electron. In 1958, Firsov
implemented new numerical techniques to fit experimental data and obtained the following
form for the screening parameter [148] and Northcliffe further refined the effective charge of
Equation (A.3) in 1963 by fitting experimental data [149]. Their relations showed that ion
and electron velocities were the important factors in determining the degree of ionization as
opposed to electron binding energies. However, a fundamental derivation of effective charge
was still lacking.

In the mid 1960’s Lindhard, Scharff, and Schiott (LSS) compiled the existing theory on
ion stopping power into a single unified theory [47]. With the introduction of LSS theory,
experimentalists had the ability to calculate ion ranges with a single model that incorporated
both electronic and nuclear stopping and applied to any element and energy. The Thomas-
Fermi theory provided the backbone of LSS theory and is therefore accurate in the energy
and ion range where there are many bound electrons, i.e. in the regime where ions are neither
fully stripped nor almost neutral.

Further developments of stopping calculations included the employment of computers
by Rousseau et. al. for the electronic component in 1970 [150] and Wilson et. al. for the
nuclear component in 1977 [151]. These numerical methods complemented and advanced
stopping theory and allowed a more realistic treatment of bound electrons using Hartree-Fock
atoms. During the 1980’s there were further modifications to the phenomenological models
used to estimate effective charge, the screening parameter, and the mutual potential. More
experimental data, fits, and evaluations helped guide the fine tuning of model parameters.

Section 3.2 gives a brief overview of the computer code SRIM [57] which encompasses the
most up to date stopping power physics and model parameters to calculate ion trajectories.
SRIM is the dominant software in the field of radiation material science and quotes stopping
power accuracy to within 5% for the ions, targets, and energies of this experiment in this
work.
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Appendix B

Binet Equation

This Appendix derives the Binet equation of central force motion used in the Linhard Scharff
Schiott Theory of atomic collisions.

The equations of motion in LSS theory begin with Newton’s second law (F = ma) in
polar coordinates for a purely centralized force in the center of mass system:

F (r) + Fc(r) = µr̈, (B.1)

where r is the distance of ion-atom separation, µ is the reduced mass, F (r) is the interatomic
repulsive force, and Fc(r) is the centrifugal force:

Fc(r) = µrφ̇2, (B.2)

where φ is the polar angle. The substitution u = 1/r makes the following algebra simpler.
Taking the first derivative of u gives

du

dφ
=
dt

dφ
· d
dt

(
1

r

)
= − ṙ

r2φ̇
= − ṙ

h
, (B.3)

where

h = r2φ̇ =
L

µ
, (B.4)

is a constant by the conservation of angular momentum, L:

L = r2µφ̇ = constant. (B.5)

Continuing with the derivatives of u,

d2u

dφ2
=

d

dφ

(
− ṙ
h

)
= − dt

dφ
· d
dt

(
ṙ

h

)
= − r̈

hφ̇
= − r̈

hu2r2φ̇
= − r̈

h2u2
, (B.6)
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where the inserted pair ur = (ur)2 = 1. Substituting Equations (B.3), (B.6), and (B.2) into
(B.1) yields the Binet equation:

F (r) = µ(r̈ − rφ̇2) = µ

(
−h2u2d

2u

dφ
− u3h2

)
= −µh2u2

(
d2u

dφ
+ u

)
, (B.7)

where rearranging the equality (r2φ̇)2 = h2(ur)3 gives rφ̇2 = u3h2. The initial condition
φ→ 0 gives u→ 0, v → v∞, and r sinφ→ b, where b is the impact parameter and v∞ is the
initial center of mass velocity. Applying this initial condition gives

µh2 = L2/µ = µ(rv⊥)2 = µ(v · r sinφ)2 → µb2v2
∞ (B.8)

where v⊥ = rφ̇ = v sinφ.
Rearrangement of Equation (B.7) using (B.8) including the initial condition and its

derivative gives the following set of differential equations for the center of mass motion:
d2u
dφ

+ u+ F (u)
u2µv2∞b2

= 0

u(φ→ 0) = 0
du
dφ

(φ→ 0) = −1
b
.

(B.9)
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Appendix C

Similarity

This Appendix outlines the concept of similarity which allowed the work of Linhard Scharff
Schiott Theory to be successful in the description of stopping power across a wide range of
particle energies and species.

The first step toward similarity is the the reduction and approximation of the interaction
potential, V :

V (u) = uZZae
2w, (C.1)

where F (r) = −dV (r)/dr and w is the reduced potential which has limits w → 1 as r → 0
(to restore the Coulomb potential) and w → 0 as r → ∞ (to achieve complete Coulomb
screening at large distances). Unfortunately, a velocity independent potential,

w = w(Z,Za, r) (C.2)

has > 104 possibilities for the various combinations of atoms and ions and therefore would
require far too many experiments and evaluations to fully characterize a universal scattering
equation. A potential resulting the Thomas-Fermi equations [55] has just two independent
parameters and is a step closer to similarity:

w = w(Z/Za, r/a), (C.3)

where a is the screening parameter as mentioned in (A.4). Here, the independent variable
Z/Za has reduced the total number of independent parameters by one. The Thomas-Fermi
potential is roughly independent of Z/Za and a further approximation reduces the number
of independent parameters yet again at the cost of some precision:

w = w(r/a). (C.4)

This potential gives a total deflection of only two parameters:

θ = θ(ε, b/a), (C.5)
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where the reduced kinetic energy, ε, is

ε = Tµ
a

ZZae2
. (C.6)

A further step in LSS theory is to encode the interaction potential’s dependence on Z and
Za into the yet unspecified screening parameter a.

In the limit of small deflection, a perturbation calculation of the transverse momentum
transfer is

θ ≈ 1

µv2
∞

∫ ∞
−∞

K⊥(b, z)dz =
1

µv2
∞

∂

∂p

∫ ∞
−∞

V ([b2 + z2]1/2)dz, (C.7)

where, K⊥ denotes the force perpendicular to the path. For a screened Coulomb potential
of the form of Equation (C.4),

θ =
2ZZae

2

µv∞b
g

(
b

a

)
, (C.8)

where g(y) is a complicated mathematical function. Using the reduced energy of Equation
(C.6), the number of independent variables shrinks to one:

ε · θ =
a

b
· g
(
b

a

)
, (C.9)

where the dependent variable characterizing the scattering is now εθ. Thus, Equation (C.9)
achieves similarity for small angles.
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Appendix D

Thomas Fermi Model

This Appendix outlines the Thomas Fermi model of electron density distribution in atoms
and molecules. The Linhard Scharff Schiott Theory of atomic stopping powers uses the
Thomas Fermi model extensively to determine the Coulomb screening parameters in the
interaction potential.

To obtain the functional dependence of the screening parameter a on Z and Za, LSS
theory uses scaling laws of the Thomas-Fermi model. The Thomas-Fermi (TF) model [55]
is a semiclassical theory developed in 1927 to approximate the distributions of electrons in
atoms and molecules. The theory is a precursor to modern Density Functional Theory and
is only valid in the limit of infinite nuclear charge, but it can reproduce general features in
electron density.

The TF model begins with a small spatial volume element ∆V of an atom in its ground
state with spherical momentum space volume Vf filled up to the Fermi momentum pf :

Vf =
4πp3

f (x)

3
, (D.1)

where x is a spatial point in ∆V . The phase space volume of this spatial volume element is

∆Vph = Vf∆V. (D.2)

Considering that a maximum of 2 electrons can occupy a phase space volume of h3, where
h is Planck’s constant, the number of electrons in ∆Vph is

∆Nph =
2∆Vph
h3

. (D.3)

The total number of electrons in ∆V is

∆N = ρe(x)∆V, (D.4)
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where ρe(x) is the electron density at point x. Setting Equations (D.3) and (D.4) equal and
solving for ρe(x) gives the electron density in terms of the Fermi momentum:

ρe(x) =
8π

3h3
p3
f (x). (D.5)

TF model uses the integral of Equation (D.5) to obtain kinetic and potential energies
of the electrons in the system. At x, the fraction of electrons with momentum between p
and dp is the ratio of a shell of momentum space of radius p and thickness dp to the total
momentum space volume:

Fx(p)dp =

{
4πp2dp
4
3
πp3f (x)

, p ≤ pf (x)

0, else
(D.6)

The specific non-relativsitic, classical kinetic energy of the electrons is

t(x) =

∫
p2

2me

ρe(x)Fx(p)dp (D.7)

= ρe(x)

∫ pf (r)

0

p2

2me

4πp2dp
4
3
πp3

f (x)
(D.8)

=
3h2

10me

(
3

8π

)2/3

[ρe(x)]5/3, (D.9)

with the implication that the total kinetic energy of the system is a function of only the
electron density distribution. The specific potential energy of electrons in the field of the
nuclear charge is

vN = ρe(x)V (x), (D.10)

where V (x) is the potential energy of a single electron due to the nuclear electric field.
Extending the Thomas-Fermi treatment to interatomic potentials in ion scattering leads

to the following dependence of the screening parameter:

a ∝ Z−1/3 or ∝ Z−1/3
a , (D.11)

where the “or” is due to the fact that the reduced potential w is symmetric in Z and Za.
This Z−1/3 proportionality is a result of scaling laws in the TF model described as follows.
Consider a case where the TF equations are solved for Z, Za, and separation r; subsequent
scaling of the nuclear charges by a factor of α results in a corresponding scaling in the
separation by factor β:

Z ′ = αZ

Z ′a = αZa

r′ = βr.
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The scaling does not effect the relative distribution of electrons and therefore does not affect
the ratio of local kinetic to potential energy:

const =
t

vN
∝ ρe(x)5/3

ρe(x)V (x)
, (D.12)

which scales as

ρe(x)2/3

V (x)
∝ (α/β3)2/3

α/β
= α−1/3β−1 = const, (D.13)

implying β = α−1/3. Thus a scaling of the reduced potential with a ∝ Z−1/3,

w
(r
a

)
→ w

(
βr

α−1/3Z−1/3

)
, (D.14)

is left unchanged, proving the assertion in Equation (D.11).
In the Lagrange minimization of the total kinetic and potential energy for the limit that

Z = 1 and Za � 1, the reduced potential is approximately the TF potential of a single atom:

w = ϕ(r/a) (D.15)

where ϕ(y) is the Fermi function [152] and

a =
a0

4

(
9π2

2

)1/3

Z−1/3
a , (D.16)

where a0 = ~2/mee
2 is the Bohr radius. The details of the Lagrange minimization have been

omitted for brevity [153]. This solution is consistent with a ∝ Z
−1/3
a .

In the other extreme limit where Z ≈ Za, LSS theory begins by using the Bohr approxi-
mation of the screening length dependent on both Z and Za [154]:

a =
a0

4

(
9π2

2

)1/3

(Z2/3 + Z2/3
a )−1/2. (D.17)

The numerical perturbation methods of Gombas [152] and Firsov [148] give more precise
parameterizations of the screening length:

a =
a0

4

(
9π2

2

)1/3

(Z1/2 + Z1/2
a )−2/3, (D.18)

which do not differ from Equation (D.17) by more than 5% in most cases. These forms of
the screening length deviate from more precise numerical estimates only for r/a & 5, but
additional modifications to the reduced potential provide a correction in the limit of large
separation distances.
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