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QUALITATIVE GEOMETRIC REASONING
Robert K. Lindsay

Artificial Intelligence Laboratory
University of Michigan

ABSTRACT

This paper addresses an old and fundamental problem, the role of visual imagery in cognition.
While the problem has a long history in philosophy and psychology, it has had less attention
explicitly directed toward it in artificial intelligence research on reasoning (as opposed to machine
vision and graphics). This paper addresses the question of what it means for a cognitive agent to
think directly in visual images (depictions), and how such abilities might be formalized and
accomplished with computer hardware. It is argued that the identification of imagery with non-
propositional or with non-digital representations is incorrect; rather, the quality of imagery that
gives it a special character is that it employs non-deductive inference, and this may well be
achieved by descriptive, digital representations. Furthermore, research on knowledge
representation within Al suggests approaches to the classical problems of imagistic thinking. A
program is described for translating propositionally stated geometric assertions into diagrammatic
representations and employing a constraint-propagating procedure to manipulate the
representations, thereby making inferences and testing conjectures.

INTRODUCTION

Much of the imagery debate within psychology still grapples with several puzzles that have been
long with us: If knowledge is represented as depictions which must be "observed"”, how can an
endless regress of homunculi within homunculi be avoided? Since imagery lacks the detail and
vividness of perception, and is not restricted by actual observation of the world but may be
produced "at will" even to represent non-veridical possibilities, how can it be of use in reasoning?
Since anything that can be represented can be represented descriptionally to any desired amount of
detail, and since descriptions can be dealt with computationally in straightforward ways, why
bother with depictional representation at all? Since depictions must be specific, how can they be
used to reach general conclusions? The debate between Kosslyn (1980; Kosslyn & Pomerantz,
1977; Kosslyn et al., 1979) and Pylyshyn (1973, 1980, 1981) testifies to the continuing concern
these problems cause.

Research in artificial intelligence has illuminated many of the issues that have stimulated cognitive
research in general, and its emphasis on explicitly defined computational models offers certain
insights and techniques that can apply productively to the imagery problem. For example, since a
programmed model requires the specification of the processes that construct and use its
representations (in this paper these are called construction and retrieval processes), the homunculus
problem is addressed and solved with each Al implementation. But the major relevant insight of
Al is that, while some sort of general calculus for reasoning may be possible, when one considers
the computational complexity and efficiency issues that must be addressed in the construction of a
real-time intelligence, it becomes clear that not all in-principle adequate representations are
equivalent. Specifically, a representation that captures the geometric properties of space would be
able to make inferences (and, as we will propose here, conjectures as well) by constraint
satisfaction methods that avoid the combinatorial problems of deductive proof. Such methods,

418



LINDSAY

then, are a tool that addresses the frame problem (how knowledge should be updated when some
facts change) by letting "the side effects take care of themselves (Haugeland, 1985, page 229)".

Anderson (1978) has argued that it cannot ultimately be decided whether human thinking is
imagistic or propositional, since it is always possible to impose an imagistic interpretation on a
propositional description, and vice versa. However, two informationally equivalent
representations may nonetheless not be computationally equivalent (as pointed out by Larkin and
Simon, 1987). Thus specific models can succeed or fail to match empirical facts, exhibit varying
amounts of explanatory power, or be computationally and biologically more or less plausible.
Theories must be judged not by direct verification of their underlying assumptions, but by the
usual standards of empirical test of their predictions of observable behavior and their coherence
with other established theory and fact. See Hayes-Roth, 1979. Consequently, this paper is
concerned with accounts of the functional properties of representations rather than with issues of
the nature of the base representation. I believe that imagery is indeed functionally different from
logic-based systems, though not because logic is propositional. I have argued elsewhere (Lindsay,
1988) that there is a difference between knowledge representations that support inference by
deduction, that is, by the use of a proof procedure such as that of first-order logic, and those that
support inference without deduction, such as by heuristic search and/or constraint mechanisms
inherent in the representation. In other words, it is not the distinction between propositional and
non-propositional representations that is at issue, but the distinction between representations based
on a logico-deductive formalism and those that have inherent structure, including but not limited to
schema systems. This is an idea that has also been advanced by others in somewhat different
terms, including Palmer (1978) and Dretske (1981).

Palmer's analysis is particularly illuminating. He defines a hierarchy of three types of

isomorphism between a representation and that which it represents. Physical isomorphisms
preserve information by virtue of representing relations that are identical to the relations

represented. Thus a physical model of a natural terrain preserves the spatial relations of the
represented terrain with the very same relations, including for example elevation, but on a different
scale. Functional isomorphisms, on the other hand, preserve information by representing relations
that have the same algebraic structure as the relations represented. Thus the elevations of a natural
terrain may be represented as colors on a map of the terrain, provided the colors are interpreted
appropriately (as an ordered set) and mapped so as to preserve the order of the physical elevations
of the terrain. Thus physical models are a proper subset of functional models. Palmer introduces a
class of isomorphisms between physical and functional, which he calls natural isomorphisms. In a
natural isomorphism, the representation of preserved relations need not be by means of identical
relations, as in physical isomorphism, hence not all natural isomorphisms are physical
isomorphisms. On the other hand, not just any algebraically equivalent set of relations qualifies.
In a natural isomorphism, the representing constructs have inherent constraints (Palmer’s term);
that is, there is additional structure imposed on the representing objects that limits the ways in
which they may relate. If these inherent constraints preserve the relations of the represented world,
we have a natural isomorphism.

Palmer identifies natural (including physical) isomorphisms with analog (including pictorial)
representations, and functional but non-natural isomorphisms with propositional representations.
Propositional representations are thus less restricted, as we normally suppose, because the
structure of the representing world is extrinsic to it, that is it may be arbitrarily imposed, say in the
form of rules of deduction. However, analog (including pictorial) representations employ
representations that have inherent (non-arbitrary, unalterable) structure (‘inherent constraints') that
allow us to do away with deduction rules. This limits their applicability, but at the same time
increases their power by reducing the computational complexity of inference (and easing the frame
problem). A similar definition of "analog" was suggested by Dretske. Note that this use does not
identify analog with continuous (non-digital) representations.
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The concepts of simulation and constraint satisfaction which derive from artificial intelligence
research provide means to realize these ideas. A program that simulates the behavior of a physical,
geometric, or abstract system may serve the role of a natural isomorphism. A cognitive agent or
program makes inferences about the external situation by running its model, whose inherent
constraints mirror the structural and functional constraints of the situation. With appropriate
implementations, the costly search required by proof procedure methods is avoided. The cost of
using such representations is a loss of the generality of, say, a logic based system which both
permits arbitrary descriptions and provides a proof procedure. A second cost is a loss of generality
due to the need for a variety of representations for a variety of problems. This cost may be
partially offset by the use of analogy, such as when non-geometric problems are translated into
geometric terms.

The essence of this dissolution of the imagery problem is present in many knowledge
representation methods that are not overtly depictional. For example, inheritance hierarchies
(Touretzky, 1986) exhibit the essence of depictional representation simply because certain
inferences (that property P is true of each member of any subset of a class to which P is
appropriately attributed) follow "automatically" from the addition of information to the
representation. Such inferences are inherent in the construction and use of the representation,
without explicitly employing a proof procedure. Hierarchies are, of course, readily and universally
represented propositionally.

Inheritance of properties, however, is a limited and specific form of reasoning. Reasoning with
visual images is a more general and ubiquitous ability for which cognitive (as well as perceptual)
mechanisms are presumably already in place in any organism with vision. Visual reasoning can be
accomplished with a representation whose construction and retrieval processes embody the
inherent geometric and/or physical constraints of space and mechanics. Once this is understood,
the research issues no longer turn on whether the representation is propositional or not, nor
whether it is analog or digital. The issue is how to represent geometric and physical systems in
ways that are computationally efficient and can interface appropriately with other forms of
knowledge representation. Should the representations look like or be readily translatable into a
conventional descriptive format, such as frames, they remain, through the fact of their
specialization, basically different in kind from a general, arbitrarily structurable formalism such as
predicate calculus. They are "natural isomorphisms”, which combine the virtues of a physical
model, whose behavior is forced to obey physical laws, with the virtues of an abstract
representation, which can be recorded and processed by digital computers or brains.

GEOMETRIC REASONING

The bulk of artificial intelligence research on reasoning has not directly addressed imagistic
reasoning in spite of the seeming centrality, along with verbal reasoning, of this mode of thought
as suggested by the long-standing interest in psychology, the common introspective impression of
the layman, and extensive anecdotal evidence from literature on the history of scientific discovery.
The special case of reasoning about two dimensional geometric objects has been addressed both in
the cognitive modelling and Al literature, however. Space does not permit discussion and
comparison with the present work except to acknowledge related research by Gelemnter (1959),
Novak (1977), Funt (1977, 1981), Kosslyn (1980), Forbus (1983), Anderson et al. (1985),
Larkin & Simon (1987), and Koedinger & Anderson (in press). Some of this research has
employed deductive methods augmented by ad hoc coding of diagrammatic information, while
some of it has employed non-deductive representations more centrally, although for circumscribed
tasks. The present work is an attempt to abstract and generalize the insights of these authors.

It is now widely understood that any knowledge representation must specify, in addition to the
underlying format of the recorded data, the procedures for adding and recalling information from
the store. As noted, I call these construction processes and retrieval processes respectively; 1 refer
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to the passive record as the representation-proper. Previous work on models of imagery have
employed several representations-proper. None of these is "purely depictional” in any intuitively
clear way, but as I have argued, that 1s not the issue.

Predicate representations: Individual constants are single letters, such as A, B, C, and D.
Predicates introduce objects, for example, POINT(A), POINT(B), POINT(C), POINT(D),
SEGMENT(POINT(A), POINT(C)), ANGLE(POINT(A), POINT(D), POINT(B)) and
QUADRANGLE(POINT(A), POINT(D), POINT(B), POINT(C)). Metric relations may be introduced with
the use of a numerical equality predicate '=' and numbers [LENGTH(SEGMENT(B,C)) = 10 and
MEASURE(ANGLE(D, A, C)) = 90] or with additional predicates such as RIGHTANGLE(D, A, C).
Non ratio-scale positional relations are expressed with predicates such as BELOW(D, C) and
LONGER(SEGMENT(A, C), SEGMENT(A, D)). In general, arbitrary descriptions may be constructed
including diagrammatically impossible descriptions such as BELOW(D, C) & ABOVE(D, C).
Descriptions may also be incomplete and inaccurate.

Schema (Frame) representations: Schemas are structured propositional knowledge that
relate several predicates and impose restrictions on variable types. For example, a schema for
triangle includes the fact that it is composed of three vertices (which must be point names) and
three sides (which must be segments). Point schemas and segment schemas in turn contain
information about names, locations, and imposed constraints (such as rigidity of a segment or
fixedness of a location); some of this information may be unknown at any given time. For
example, a segment could be recorded in a schema with this format:

SEGMENT SCHEMA

NAME NIL

ENDI A

END2 C

SEGMENTPOINTS ([POINT)#61666 (POINT)#63333. ...
MARKING BLACK

SOURCE PREMISE __INPUT-1: "QUADRANGLE(A, D, B, C)"
LENGTH 10

LENGTHSTATUS FIXED

BEARING 30

BEARINGSTATUS ARBITRARY

Coordinate representations: The representation-proper consists of a set of marked points,
each of which is assigned numerical x,y coordinates. Some of the marked points may have
associated names. Objects exist by virtue of their coordinates satisfying certain defining numerical
relations. For example, a segment exists if all of the coordinates "between" (algebraically defined)
its endpoints correspond to marked points. The definition of a triangle is more complex. Metric
relations are represented implicitly, and are retrieved by computations. For example, the length of
a segment is computed by applying the Euclidian distance function to the coordinates of its
endpoints. Ordinal metric relations such as "to the right of" are defined by appropriate
computations on coordinates.

Pixel Array representations: This representation is similar to Cartesian coordinate
representations except that it is digitized: coordinates must be, say, integers or rational decimals of
limited precision. Each pixel may be one of a finite number of values to denote a grey level or a
color. Pixels are referenced by indices, and relative locations may be determined by arithmetic on
indices. In more elaborate pixel array representations, the "grain" of the array may be stratified
under program control so that some or all of the representation may be "exploded” or
"compressed" to obtain varying levels of detail.
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Pixel Network representations: Elements of the representation-proper are interpreted as
points each of which is connected to eight neighbors: in the north, northeast, east, southeast,
south, southwest, west, and northwest directions. An element may have an associated name and a
marking. Objects such as segments are represented implicitly by marking a connected,
appropriately straight set of elements. Metric relations such as length are retrieved by determining
the cardinality of the set of marked points. Ordinal metric relations are implicit in the topology and
must be retrieved or tested by searching of the connections and applying appropriate definitions
(e.g., B is right of A if there is a path from A to B that goes through more steps in the three "right"
directions (northeast, east, southeast) than in the three "left" directions.

[ have implemented a system for the representation of simple geometric elements such as points,
lines, and triangles in two-dimensional space. At the heart of the system is a fixed set of
construction and retrieval processes. For example, there is a process that constructs a line segment
between two given points (a construction process) and a process that determines whether or not
two line segments are of the same length (a retrieval process). The representation is a pixel
array/network that combines the features of both of these representation types in a single structure,
plus a structure of inter-related schemas for geometric objects (point, line segment, triangle, and so
forth) present in a depiction. The pixel array is finite in extent, and has a certain inherent grain or
minimum resolution both in distance and direction. The distance resolution can be set to coarser
values and this will affect the behavior of the construction and retrieval processes; thus the test of
segment length checks equality to within the currently operative resolution, and the construction of
a line segment will exhibit a corresponding compliance. The frames relate the geometric objects to
the pixel array, and record propositionally specified or derived descriptions of the objects, such as
that a particular line segment is required to be rigid. Predicate representations are used as input
(only). The information thus given to the system is used by the construction processes to build the
three components of the representation system, thereby describing a specific instance of that which
was described in the predicate input.

Although lines in a depiction have specific lengths and polygons have specific areas, only
qualitative judgments about these metric quantities are known to the processes. Thus, a line may
be judged longer, shorter, or equal in length to another, but differences in lengths cannot be
compared unless a construction can be made (with these processes) that produces new line
segments of the appropriate lengths to be compared.

In the human mind, imagery and verbal thought cohabit, interact, and complement one another.
Therefore, it is important to see how such interactions could come about. Although the system
cannot produce representations through visual perception, it can do so from descriptions provided
either externally or by its own higher order goal-driven processes. In addition, the programs
illustrate how images can be used both to produce and to test conjectures about what is possible,
and thus have the ability to run Gedanken experiments in the service of problem solving. This
requires the interaction of the representation with the more conventional search methods of Al as
discussed later.

QUALITATIVE GEOMETRIC REASONING

Certain inferences are straightforward in the system. For example, if a triangle is constructed with
two equal angles, the inference that it has two equal sides can be made by "observation", using the
above cited retrieval process; this is an inference but not a deduction. More interesting is the use of
the system to produce and test conjectures. This depends on the architecture of higher processes
that set appropriate tasks. In my model, all of these problem solving methods work through a set
of "visual routines" that employ the construction and retrieval processes. These visual routines
manipulate existing depictions by propagating small perturbations of point positions or line
lengths. This, in effect, simulates "in the mind's eye" what would happen if real geometric objects
were manipulated physically.
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These processes are called qualitative geomeltric reasoning processes, on analogy to work by de
Kleer & Brown (1984), Forbus (1984), and others (see Bobrow, 1985) on qualitative physical
reasoning methods. In that work, composite physical structures, such as an electronic circuit or a
pressure regulating valve, are modelled from an inventory of components, each of which behaves
according to equations that relate its inputs and outputs. A program reasons about the composite
model by observing its behavior while small qualitative perturbations of physical quantities are
propagated through the model, obeying the componential equations. In my model of qualitative
geometric reasoning, small perturbations of positions (suggested by the higher processes in service
of testing a conjecture or attempting to make a construction in accordance with an externally
supplied propositional description) are propagated while obeying the inherent constraints of two-
space (as implemented by the construction and retrieval processes) and any arbitrary, externally
specified constraints on the depiction (as recorded in the frame structures). Thus the representation
determines whether a proposed alteration is possible, and if it is possible, what follows from it.

To illustrate, consider Figure 1, interpreted as a shortest path problem. A representation of the left
side of Figure 1 is constructed by the program from descriptive statements about points and lines,
including that all line segments are rigid (and hence can be rotated but not stretched or
compressed). External "pulls" are imposed on points A and B in the directions indicated by the
arrows. This manipulation is external in the sense that it is imposed by the "higher processes”
alluded to above, rather than by the geometric representation system itself. A step-wise simulation
of the effects of these forces causes a gradual transformation to the representation illustrated to the
right. At this configuration, no further motion is possible without violation of the rigidity
constraints. This effectively demonstrates that the shortest path from A to B is through D, not C.
While proof of this would require relatively little search of path combinations in this simple
example, the manipulation provides a number of other inferences at the same time, such as that C
remains above D, and the resulting figure is a triangle. On the other hand, while the same
computational procedure could in principle handle networks of dozens or hundreds of nodes to
compute shortest path, we note that people are unable to do so without the aid of a physical string
model or some such external aid. The explanation of this within the terms of the present model
comes from the amplification of errors by the qualitative, low resolution representation. Note
further that the computations involved in this experiment were time consuming because they were
carried out serially, point by point. However, the same computations lend themselves to
distributed processing. If each pixel element in the representation had its own associated
processor to do the vector calculations, the processes would be more rapid.

TESTING OF GEOMETRIC CONJECTURES

The testing of conjectures requires an exploration of "all possible" alterations of a given type. This
involves higher processes that control search, backtracking, and enumeration of possibilities. For
example, it is well-known (to us) that two triangles with corresponding sides equal in length must
be congruent. A non-deductive "visual proof” of this theorem amounts to showing that at most
one triangle can be constructed from three line segments of fixed length. The higher processes set
the task of constructing one such triangle. This would prove impossible if the lengths chosen do
not satisfy the triangle inequality; otherwise, the construction processes succeed in constructing a
triangle. Doing so requires making specific choices for locations of vertices. The motivation of
these choices is determined by the higher processes, and these embody important strategic
assumptions. In the present case, choices are made to produce depictions of a size appropriate to
the current resolution and at locations and orientations that avoid ambiguities and potential
interference during subsequent manipulations of the depiction. Once a triangle is constructed, the
higher processes construct the second triangle, with sides of the same lengths as those chosen for
the first triangle. The triangles of course prove to be congruent. Then to complete the task of
conjecture testing, modifications of the second triangle are proposed to "see" if another triangle can
be constructed that differs from the first. Any proposed modification of the position of a point will
force the modification of other positions in order that lengths remain unchanged, and it will be
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observed that angles thus do not change (the triangle can only rotate or translate rigidly). Any is
here stressed to emphasize that the higher processes must be able to propose all possible
modifications. This is not a trivial matter since it would be foolish to consider all possible triangles
that could be marked on the array: it must be possible for the higher processes to recognize
equivalence classes of proposed perturbations in order to avoid exhaustive search and yet conclude
that a triangle is uniquely determined by three sides. It will be necessary to integrate the depictional
representation with a search architecture to enable the model of geometric reasoning to be fully
goal-directed.
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