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This dissertation reports the results of the investigation of nanoscale pillar structures with 

engineered phononic and photonic properties. It has been proven that phonon states in 

semiconductors can be tuned by external boundaries, either as a result of phonon 

confinement effects in individual nanostructures or as a result of artificially induced 

external periodicity, e.g., phononic crystals. The possibility of engineering acoustic phonon 

spectrum is of ultimate importance from scientific and application perspectives since they 

are the main heat carriers in nonmagnetic semiconductor and insulator materials. The 

change in acoustic phonon dispersion would affect the heat transport properties, alter the 

electron-phonon interactions, and affect the optical properties of the material system. It has 

been recently suggested that periodic structures with properly tuned dimensions can act 

simultaneously as phononic and photonic crystals, strongly affecting the light-matter 

interactions. In this dissertation research, I prepared nanoscale pillar structure samples and 
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investigated their properties. The “pillar with hat” structures were fabricated using electron 

beam lithography on silicon substrates followed by inductively-coupled plasma cryogenic 

dry etching. The hats of the pillars were created with a unique design to have exactly the 

same orientation plane as the substrate. The structures were inspected with scanning 

electron microscopy. I used Brillouin-Mandelstam spectroscopy to measure the dispersion 

of acoustic phonons with energies in the range from 2 GHz up to 20 GHz through the entire 

second and higher order Brillouin zones. I analyzed the spectral signatures resulting from 

the surface ripple mechanism which dominates the light scattering in these specific samples. 

I found clear signatures of the phonon spectrum modification in the appearance of localized 

phonon sub-bands at energies between 2˗20 GHz. The variable angle ellipsometry 

measurements indicated modification of light scattering due to nanostructuring. The 

experimental data confirmed the dual functionality of the structure with engineered 

phononic-photonic properties. The results obtained in this dissertation research have 

important implications for the next generation of photonic and optoelectronic device 

technologies.   
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1 Chapter 1 Introduction 

 

1.1 Motivation 

 

Phoxonic crystals (PxC) are referred to as artificial materials, which exhibit simultaneous 

modulation of the elastic and electromagnetic properties within a single structure as a result 

of externally induced periodic boundaries [1–4]. One can consider PxC to be a structure 

with a concurrent dual functionality of the phononic crystals (PnC) and photonic crystals 

(PtC). Separately, PnCs [5–8] and PtCs [9–12] have been the subjects of intense theoretical 

and experimental investigations for the past two decades. Despite differences in intended 

applications, the structures share common physical characteristics. In PnC, a periodic 

modulation of the elastic constants and mass density define the phonon propagation while 

in PtC a periodic modulation of the dielectric constants define the photon propagation. The 

PnC and PtC arrays are tailored through construction of periodic lattices of holes or pillars, 

or a combination of both, with fine-tuned dimensions and unit cells. Since modulation of 

visible light and acoustic phonons of a certain energy range both require structure 

dimensions on the order of a few hundreds of nanometers one can envision a structure with 

the dual phonon – photon functionality. A proper selection of the periodic structure, with 

contrasting acoustic and optical properties, as well as a specific design of the lattice 

geometry and dimensions set up the common platform for PxCs, where novel phonon and 

photon characteristics and enhanced light-matter interactions are observed [13–15]. This 
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approach has already been utilized in designing new types of optoelectronic devices such 

as phoxonic sensors [16–18] and optomechanical cavities [13,19].  

Engineering the phonon states of materials, i.e. changing the phonon properties by 

imposing spatial confinement in individual [20–23] or by inducing artificial periodicity as 

in PnCs [5–8], has proven to be beneficial for thermal management, particularly at low 

temperatures [24–27], acoustic filtering [28], and wave guiding [29] applications. Acoustic 

phonons are the main heat carriers in electrically insulating and semiconducting materials, 

contribute strongly to the electron-phonon interactions in technologically important 

materials [30–33], and participate in the non-radiative generation-recombination processes 

[34]. The external periodicity of the pillar-based PnCs, additional to the crystal atomic 

periodicity, results in the zone-folding of acoustic phonons, and appearance of the new 

quasi-optical phonon polarization branches with non-zero energy at the Brillouin zone (BZ) 

center (𝜔(𝑞 = 0) ≠ 0 ) [35,36]. The properties of quasi-optical phonons are substantially 

different from those of the fundamental longitudinal acoustic (LA) and transverse acoustic 

(TA) phonons, which have zero energy at the BZ center (𝜔(𝑞 = 0) = 0) and a linear 

dispersion close to the BZ center. The quasi-optical phonons are similar to the true optical 

phonons but have the energies much lower than the optical phonons. The quasi-optical 

phonon modes are generally characterized by the hybridized vibrational displacement 

profiles. These modes change the phonon density of states (PDOS), and influence the 

thermal transport, especially at low temperatures, where the wave nature of phonons starts 

to dominate the phonon scattering processes. Generally, it is believed that the thermal 

conductivity in thin-film PnCs reduces due to nanostructuring [24,25,37]. However, a 
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recent theoretical study suggested that the thermal conductivity can be increased at low 

temperatures via fine-tuning of PnC dimensions and nanopatternings [24,25].  

Tuning the phonon dispersion in the PnC structures and in individual nanostructures can 

affect the optical and electrical properties of the material. Engineering the dispersion in 

PnCs in such a way that the phonon DOS attains its maximum or minimum within the 

energy required to trigger the carrier transition between the defect, i.e. trapping state and 

the conduction or valence band can result in either enhanced or suppressed G-R center 

recombination [38]. A recent experimental study found that modification of the phonon 

dispersion in the core-shell GaAs0.7Sb0.3/InP nano-pillar arrays affects the hot carrier 

relaxation in such structures [39]. In another example, opening up a band gap in a certain 

phonon frequency range with an accurate design of the hole PnCs can strongly influence 

the quasiparticle recombination lifetime in a superconductor [40].  

The periodic modulation of the dielectric constant in PtCs can lead to localization of 

electromagnetic waves, e.g., visible light, of a certain frequency range. In PtCs, a photonic 

energy stop band or a complete band gap can emerge, suppressing the electromagnetic 

wave propagation [10]. A common criterion for designing PtCs is utilization of the periodic 

structures with materials of the highest contrast in the refractive index [10]. Conventionally, 

PtCs, similar to PnCs, are fabricated in two configurations – the arrays of the air-holes [41] 

or the lattices of the pillars [42]. In the pillar-based structures, silicon nano-pillars are 

fabricated on a layer of a low refractive index material, e.g. SiO2, to minimize the optical 

damping by the substrate [43]. However, recent studies demonstrated silicon-on-silicon 

PtCs with symmetric spheroidal-like nano-pillars, which are optically separated from the 
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substrate and have low optical losses [44]. The coexistence of localized phonon and photon 

modes in these structures enhance the light-matter interaction, which can be beneficial for 

certain photonic, optoelectronic, or optomechanical devices [13].   

In this dissertation, we report the results of Brillouin-Mandelstam spectroscopy (BMS) and 

variable angle spectroscopic ellipsometry (VASE) of the nanoscale “pillar with hat” 

periodic silicon structures. The innovative idea of the study is to engineer the shape of the 

nanoscale pillar array in such a way that the phonon spectrum undergoes modification both 

due to periodicity of the arrays and phonon localization in the “hats” of the pillars. The 

larger diameters of the “hats” than that of the pillars are expected to result in better elastic 

decoupling from the substrates and resonant effects promoting acoustic phonon 

localization. From the other side, the periodicity of the structure was selected in the range 

ensuring the structure acts as both PnC and PtC. Our results confirm the interplay of the 

localization and periodicity effects for phonons, as well the dual phonon and light 

functionality of the shape-engineered nano-pillar arrays. The described approach increases 

the range of tuning parameters available for optimization of PxC performance.  

  

1.2 Outline of the Dissertation 

 

The rest of the dissertation is organized as follows:  

• Chapter 2: the basics and fundamentals of Brillouin-Mandelstam spectroscopy 

(BMS) will be discussed. BMS is a non-destructive optical tool used for probing 
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acoustic phonons in transparent and opaque materials. In this chapter, the BMS 

experimental setup and the mechanisms which contribute to the light scattering by 

phonons will be reviewed. We also will demonstrate the applicability of BMS 

spectroscopy on different material systems. It will be demonstrated that BMS can 

efficiently observe acoustic phonons in various materials and nanostructured 

materials.  

• Chapter 3: the procedure for fabrication and characterization of special types of 

nanostructured materials with engineered phononic and photonic properties ‒ 

named “pillar with hat” ‒ will be explained.  

• Chapter 4: we will present the results of BMS spectroscopy and variable angle 

spectroscopic ellipsometry on these structures. It will be discussed that in “pillar 

with hat” structures not only phonon states experience significant modifications, 

but also the dielectric constant, and thus the optical response of the material 

undergoes notable changes in the range of visible light wavelengths and present the 

summary and conclusions of our findings. 
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2 Chapter 2  Brillouin-Mandelstam Light Scattering  

 

2.1 Introduction 

 

Brillouin-Mandelstam spectroscopy (BMS) is an inelastic light scattering technique which 

measures the dispersion of the acoustic phonons and magnons in the energy range from 2 

GHz to 900 GHz near the Brillouin zone (BZ) center. BMS is a nondestructive optical tool 

which has been widely used to probe acoustic phonons and magnons in various types of 

material systems including transparent amorphous and opaque materials [1–4], PnCs [5,6], 

nanospheres [7,8], membranes [9] and nanowires [10], ferromagnetic [11] and 

antiferromagnetic materials [12]. The principles of BMS are similar to those of Raman 

spectroscopy. Raman spectroscopy is used to observe optical phonons with energies of one 

or two orders of magnitudes higher than those of the acoustic phonons detectable with 

BMS. In this chapter, we will discuss the BMS experimental setup in back scattering 

configuration and explain different light scattering mechanisms which contribute to 

Brillouin scattering from different materials.  
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2.2 BMS Experimental Setup Configuration  

 

BMS can be conducted in several optical configurations which have been explained in 

detail in the literature [13–15]. In this dissertation, we carried out BMS experiments in the 

backscattering geometry using a continuous wave (CW) solid state diode laser operating at 

the excitation wavelength 𝜆 = 532 𝑛𝑚. A general schematic of the BMS spectroscopy in 

backscattering configuration is shown in Figure 2-1. The sample is placed on a translation 

stage with an incremental movement of ~1 µm. The laser light with vertical polarization of 

1000:1 ratio passes a beam-splitter which divides it into two different optical paths. A small 

power (~0.1 to 0.5 mW) of the laser light is directed to the Fabry-Perot (FP) interferometer 

which is needed for the alignment purposes. The rest is transmitted to the collimator lenses 

(L1 and L2) in order to reduce the divergence of the beam. Then, using an iris the peripheral 

part of the laser beam is filtered out. The light is directed by the mirror M1 to the Glan-

polarizer which increases the polarization ratio of the light to 100000:1. The half-wave 

plate after the Glan-polarizer selects the polarization (p- or s- polarization) of the incident 

light on the sample. The light hits a small mirror (M2) and focused on the sample using a 

lens (L3) with 𝑓/# = 1.4. The angle of the incident light with respect to the normal to the 

sample is controlled from 15º to 70º using an automatic micro-rotational stage with an 

accuracy of 0.02º. This is required to select the phonon wave vector magnitude as described 

in the next sections. The in-plane orientation of the sample is also controllable using a small 

manual micro-rotational stage. The stage is required to select the crystallographic direction 

of the probing phonon wave vector. The scattered light from the sample is collected using 
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the same lens (L3) and focused and directed to the high resolution (3+3) pass tandem 

Fabry-Perot interferometer (JRS Instruments) via the lens (L4) and periscope system (M3 

and M4). The multi-pass tandem FP interferometer consists of mirrors aligned and fixed 

parallel to each other at some distance spacing denoted by L1 and L2. In opaque materials, 

the elastically scattered light exceeds the intensity of the Brillouin component by more than 

a factor of 104-105. The tandem configuration is to increase the contrast and the finesse 

quality by increasing the cavity length and reducing the free-spectral range. The best 

arrangement of the spacing is fixing L2 close to L1 with ratio of 0.95. The details of the 

tandem FP instrument can be found elsewhere [1]. The transmitted light is detected by 

single-photon counter and analyzed using the special software.   

 

 

Figure 2-1: Schematic of the Brillouin-Mandelstam scattering setup in backscattering 

configuration. The rays represent the laser beam path and “M” and “L” indicate mirrors 

and lenses, respectively. 
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2.3 Light Scattering Mechanisms in Brillouin – Mandelstam Spectroscopy 

 

In BMS, two different mechanisms contribute to light scattering. Their relative strength 

depends on the optical transparency of the material system at the wavelength of the 

excitation laser [1,2]. If the material system is optically transparent, scattering by the bulk 

of the material, involving “volumetric” phonons, is the dominant mechanism. If the 

material system is opaque or semi-transparent, the BMS spectrum is dominated by light 

scattering from the sample surface via the “ripple scattering” mechanism. In the latter case, 

only the in-plane component of the phonon momentum is conserved during the light 

scattering process. The magnitude of the in-plane component of the wave vector (or 

momentum) of the phonon participating in the scattering depends on the incident angle (𝜃) 

of the laser light with respect to the normal to the sample’s surface. We will investigate the 

two aforementioned cases in detail in the succeeding sections.  

 

2.3.1 Light Scattering by Bulk Phonons  

 

Bulk phonons, or the volumetric phonons scatter light through the elasto-optic mechanism. 

Figure 2-2 (a) shows the scattering of light by bulk acoustic phonons with the wave vector 

(𝐪) and frequency (𝜔). As the incident light with wavelength 𝜆𝑖 and wave vector (𝐤𝐢) enters 

a medium with the refractive index of 𝑛, its wavelength and wave vector changes to 𝜆∗  =

 𝜆/𝑛 and 𝑘𝑖
∗ = 2𝜋/𝜆∗ = 2𝜋𝑛/𝜆, respectively. The process of scattering of the light by bulk 
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phonons from the incident light 𝐤𝐢
∗, 𝜔𝑖  into the scattered state with wave vector 𝐤𝐬

∗ and 𝜔𝑠 

must satisfy the conservation of momentum and energy equations which are expressed as 

follows [1]: 

 

𝐤𝐬
∗ − 𝐤𝐢

∗ = ±𝐪 (2-1) 

 

and, 

 

ωs − ωi = ±ω (2-2) 

 

 

Figure 2-2: Schematic of BMS light scattering from bulk phonons. (a) The incident light 

is shown using the orange arrows while the scattered light is represented by the green 

arrows. The yellow arrow shows the acoustic phonon wave vector. The symbol 𝜙 is the 

scattering angle, which is different from the incident light angle 𝜃𝑖 . (b) The light 

scattering process in the backscattering configuration in which the scattering angle 𝜙 =
180°. 

a) b) 
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In the process of light scattering, either the incident photon loses energy to generate a 

phonon (Stokes process) or gains energy by absorbing a phonon (anti-Stokes process). 

These two processes are expressed by “+” and “−” signs on the right hand side of equations 

(2-1) and (2-2), respectively. The change in the wave vector of the incident light during the 

scattering process covers a tiny portion of the BZ (about 108 cm-1) close to BZ center (Γ) 

[2]. The dispersion of acoustic phonons close to BZ center is linear and thus, the angular 

frequency can be related to phonon wave vector as follows: 

 

ω(𝐪) = υ|𝐪| (2-3) 

 

in which υ is the sound velocity in the material. Considering the scattering process depicted 

in Figure 2-2 (a) and considering equation (2-3), the energy conservation equation (2-2)can 

be stated as follows:   

 

|𝐤𝐬| − |𝐤𝐢|

𝑛|𝐪|
=

𝜐

𝑐
  (2-4) 

 

Sound travels at much slower velocities than that of the light. In fact, the order of magnitude 

of υ/c is ~10-5 and hence, we can assume that |𝐤𝐬| ≈ |𝐤𝐢|  = 𝑘  in which 𝑘 = 2𝜋𝑛/𝜆 . 

Therefore, the phonon wave vector probed by BMS is: 
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|𝐪| = (
4πn

λ
) sin (

ϕ

2
) (2-5) 

 

In this equation, ϕ is the scattering angle. In the backscattering configuration (Figure 2-2 

(b)), the scattering angle ϕ = 180°; therefore, the phonon wave vector q is defined as 

follows: 

 

𝑞 =
4𝜋𝑛

𝜆
 

(2-6) 

 

As it is seen, in light scattering by bulk phonons in backscattering configuration, the 

magnitude of the phonon wave vector depends on refractive index of the material, 𝑛, and 

the excitation wavelength of the incident light, 𝜆.  

 

2.3.2 Light Scattering by Ripple Mechanism  

 

High optical absorption in opaque materials induce uncertainties in determining the 

through-plane component of the phonon wave vector in the momentum conservation 

equation [1,2,16,17]. In these types of materials, only the in-plane component of the light 

scattering is conserved during the scattering process. In fact, in opaque and semi-

transparent materials, thin films, metals, and PnCs scattering by ripple mechanism is the 

dominant source of the scattering [1,2]. In backscattering geometry, the in-plane 
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component of the phonon wave vector (𝑞∥) is conserved along the direction parallel to the 

surface of the sample. The incident, scattered, and the in-plane phonon wave vector is 

illustrated in Figure 2-3. Referring to this schematic, 𝑞∥ can be obtained as follows:  

 

𝑞∥ = |𝒌𝒊| sin 𝜃𝑖 + |𝒌𝒔| sin 𝜃𝑠 (2-7) 

 

In backscattering geometry, 𝜃𝑖 = 𝜃𝑠 = 𝜃, the following expression can be stated as:  

 

𝑞∥ = 4𝜋 sin 𝜃 /𝜆 (2-8) 

 

In scattering by ripple mechanism, one can see that 𝑞∥ depends on the laser incident angle 

𝜃 meaning that with variation of 𝜃, one can select the 𝑞∥ and thus obtain the dispersion of 

the phonons.   

 

 

Figure 2-3: Illustration of the ripple scattering in the backscattering configuration. The 

phonon wave vector is parallel to the surface of the sample. In contrast to the scattering 

from bulk phonons, in ripple mechanism 𝑞∥ wave vector can be varied by changing the 

incident angle. 
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2.4 Brillouin-Mandelstam Scattering on Transparent and Opaque Materials 

 

BMS can be used to observe the acoustic phonons in liquids and solid crystalline and 

amorphous materials. Here, we present the results of our measurements of BMS on various 

material systems with different degrees of optical transparency. The experiments were 

intended to verify the BMS system performance and demonstrate its capability for a wide 

range of materials. 

 

2.4.1 BMS of Crystalline Silicon Wafer 

 

The BMS of crystalline silicon has been reported in the archival literature [17]. Due to the 

semitransparent nature of silicon at the excitation laser wavelength of 𝜆 = 532 nm, one 

would expect to observe both scattering from the bulk phonons and surface ripple 

mechanism. The BMS spectrum of the silicon (100) wafer is presented in Figure 2-4. The 

two peaks at 90.6 GHz and 135.3 GHz are attributed to the longitudinal (LA) and transverse 

(TA) acoustic phonons at 𝑞 = 0.0980 nm−1 . The volumetric phonon wave vector is 

calculated according to (2-5) knowing that the refractive index of silicon at 𝜆 = 532 nm is 

𝑛1 = 4.15 [18]. The LA and TA group phonon velocities (sound velocities) are calculated 

as 𝜐𝐿𝐴 =
2𝜋𝑓𝐿𝐴

𝑞
= 8694 ms−1and 𝜐𝑇𝐴 =

2𝜋𝑓𝑇𝐴

𝑞
= 5802 ms−1, respectively. The obtained 

results are in excellent agreement with previously reported data [17,19].  
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Figure 2-4: BMS data for bare silicon substrate. The spectrum shows two peaks 

attributed to the longitudinal (LA) and transverse (TA) acoustic phonons. The green and 

red curves are individual and cumulative Lorentzian fittings of the experimental data. 

The figure is adapted from Chun-Yu Huang et al., “Fine-tuning of the phonon spectrum 

and light – matter interactions in nanoscale pillar arrays,” Nanoscale (in preparation, 

2019). 

 

BMS of the surface acoustic phonons in silicon at three different incident angles of 𝜃 =

40°, 50°, 60°  associated with phonon wave vector of 𝑞∥ = 15.2, 18.1, 20.5 μm−1  are 

presented in Figure 2-5. Note that since the peaks are originated from the scattering of the 

light by surface ripple mechanism, the phonon wave vector should be calculated according 

to equation (2-8). The spectra show a very sharp peak at each laser incident angle which is 

attributed to the surface acoustic Rayleigh wave.  
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Figure 2-5: BMS data for bare silicon substrate at different laser incident angles. The 

spectrum shows one sharp peak at each accumulated spectrum attributed to the Rayleigh 

surface acoustic wave. The figure is adapted from Chun-Yu Huang et al., “Fine-tuning 

of the phonon spectrum and light – matter interactions in nanoscale pillar arrays,” 

Nanoscale (in preparation, 2019). 

 

2.4.2 BMS on Polymeric Materials: PVA and PVA with Single Wall Carbon 

Nanotube Composites 

 

In the next set of experiments, we used Brillouin spectroscopy for the investigation of 

phonons in polyvinyl alcohol (PVA) polymer samples with different concentration of 

single wall carbon nanotubes (SWCNT). BMS has been widely used to detect the acoustic 

phonons and elastic coefficients in polymeric material systems [13–15,20–23]. Figure 2-6 

(a) shows the optical images of the five different samples. The sample on the left is the 
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PVA without any fillers. As the concentration of the SWCNT increases, the sample 

becomes opaque. The samples are arranged from left to right as the filler concentration 

increases.   

The BMS spectra of PVA with different SWCNT concentrations are shown in Figure 2-6 

(b). The sharp peak observed in the BMS spectrum of the PVA film is attributed to the LA 

phonons. The phonon wave vector can be determined using Equation (2-6). With addition 

of SWCNT to PVA, the spectral position of the LA phonons shifts to lower frequencies.  It 

should be noted that with incorporation of CNT fillers, the refractive index of the material 

changes as well. Therefore, in order to calculate the phonon group velocity (𝜐 =
𝜕𝜔

𝜕𝑞
) one 

should also acquire the refractive index as a function of filler concentration. Moreover, the 

full width at half maximum (FWHM) of the peaks increases as a result of adding fillers 

owing to the increase in the optical absorption at higher SWCNT concentrations. It should 

be noted that in BMS experiments for the opaque materials, the theoretical broadening 

follows Δ𝜔 = 2𝑛2/𝑛1 where 𝑛1 and 𝑛2 are the real and imaginary parts of the complex 

refractive index of the material as 𝑛 = 𝑛1 + 𝑖𝑛2.  
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2  

3  
Figure 2-6: (a) Optical image of the PVA samples with different concentrations of 

SWCNT. b) BMS spectra of the samples accumulated in backscattering geometry. The 

increase in the filler concentration in the samples results in decreasing frequency of the 

peaks. The samples were provided by Professor Alex Rozhin Aston University, U.K. 

 

2.4.3 BMS of Mineral Oil with Graphene Fillers 

 

BMS can be used to extract the sound velocity liquids. Different mixtures of mineral oil 

with various concentrations of graphene are prepared and examined with BMS. Figure 2-7 

(a-b) shows the optical images of the compounds and the accumulated data of pure mineral 
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oil and oil with graphene concentrations of 𝑓 = 2, 5, 7 wt%. The peaks detected in all 

spectra are attributed to the volumetric longitudinal sound wave (LSW). As it is seen, the 

spectral position of LSW in mineral oil with 𝑓 = 2 wt% of graphene is shifted to lower 

frequencies comparing to that of the pure mineral oil. With adding more graphene and at 

𝑓 = 5 wt%  the frequency increases and at 𝑓 = 7 wt% it decreases once again. Since the 

light is scattered from the volumetric longitudinal sound waves, the associated wave vector 

can be defined using equation (2-5) once the refractive indices of the compounds are 

measured.  
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5  
Figure 2-7: Thermal interface materials and Brillouin spectra. a) Mineral oil and the 

mixture of graphene and oil. b) Brillouin spectra of the samples with different graphene 

concentrations. 
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3 Chapter 3 Nanofabrication of Phoxonic Crystals  

 

3.1 Introduction 

 

This chapter focuses on the techniques, processes, and tools required for the fabrication of 

different types of PnC structures including air-hole and pillar arrays with different 

diameters and periodicity. At the end of this chapter, the step-by-step fabrication procedure 

of the specially designed “pillar with the hat” structure is described in detail.  

 

3.2 Fabrication Methods 

 

A lithographic approach is usually used to pattern a photoresist using electron beam 

lithography (EBL) and focused ion beam (FIB) direct writing. EBL can provide high 

resolution due to the short wavelength which ranges from 10 keV to 50 keV and can pattern 

complex structures. An example of the pattern used in this study is shown in Figure 3-1. In 

EBL, drift in exposure dose can cause inhomogeneities across the patterned sample. Hence, 

proper dosage and test monitoring are required. The EBL and FIB systems used in this 

study are shown in Figure 3-2 (a-b). The flowchart of the step-by-step fabrication 

procedure via EBL is presented in Figure 3-3. 
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Figure 3-1: Scanning electron microscopy (SEM) of the pattern with different diameters 

and pitches used for making phononic crystal arrays  

 

(a) 

 

(b) 

 
Figure 3-2: (a) Electron beam lithography and (b) Focused ion beam and scanning 

electron microscopy systems used for fabrication of the samples. 
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Figure 3-3: The flowchart of the step-by-step nanofabrication processes using electron 

beam lithography. 

 

FIB can also be used in order to design the PnCs. However, it is more difficult to utilize 

FIB in order to fabricate nanosized structures since one must use low beam current for the 

small spot size and resolution. Comparing the FIB method, EBL is still the most convenient 

way of nanofabrication [3–6]. The step-by-step flowchart of FIB application for PnC 

structures is illustrated in Figure 3-4. 
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Figure 3-4: The flowchart of the step-by-step nanofabrication procedure using FIB.  

 

3.3 Different Shape of Phononic Crystal Structures  

 

PnCs are an array of air holes or pillars arranged in specific lattice configurations. The 

dimensions of the holes and the periodicity define the phonon frequency range to be 

engineered. Typically, in order to modify the phonon dispersion in GHz frequency range, 

one needs to fabricate structures with characteristic size of few tens to hundreds of 

nanometers. A set of phononic crystals with air-hole and pillar structures arranged in square 

lattice fabricated with electron beam lithography is shown in Figure 3-5. The diameter of 

the holes varies from 100 nm to 1μm and the spacing between them is in the range of 50 

nm to 500 nm.  Several parameters in designing of the one-dimensional (1-D) and two-

dimensional (2D) PnCs from fabrication perspectives including the height of the pillars, ℎ, 
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the pitch of the arrays, 𝑎; and the diameter of the air holes, 𝑑, have ben examined. The 

fabrication process is introduced in the following text. 

 
Figure 3-5: Optical and scanning electron microscopy images. (a) Optical microscopy 

image of the air hole pattern and SEM images of (b) the hole array, (c) the poly (methyl 

methacrylate) hole array of 400×400 μm and (d) the poly (methyl methacrylate) pillar 

array. 

 

3.3.1 Fabrication of 1-D PnCs 

 

1-D PnCs are structures consists of periodic layers of materials or grooves with specific 

thicknesses and spacings in one dimension. Previous studies reported the surface 

longitudinal resonance (LR) modes and folding of pure Rayleigh surface acoustic waves 

(RW) and an interaction between them using BMS in 1-D PnCs [5]. Another example is 

the free silicon surface in the form of periodic stripes led to the existence of different 
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dispersive surface acoustic waves (SAW) propagating along the strips and grooves [15,16]. 

We used FIB to fabricate a 1-D PnC structure on the silicon (100) wafer with grooves 60 

nm and periodicity of 300 nm. The characteristic parameters of the 1-D PnC were examined 

and modified several times. The fabricated final structure is shown in Figure 3-6. As 

previously stated, it is rather hard to control the depth of the trench using FIB method. We 

estimated the approximate depth of the grooves to be less than 100 nm. The total sample 

size is about 300 by 300 µm. 

 

 
Figure 3-6: Focused ion beam pattern of 1-D grooves. A schematic of the sample shape 

and direction on silicon (100) substrate with the periodicity a = 300 nm and b = 60 nm. 

 

3.3.2 Fabrication of 2-D PnCs 

 

Similar to 1-D PnCs, the 2-D PnCs are consisted of air-holes or pillars arranged in a specific 

lattice configuration fabricated on a surface of a material. In our study, several 2-D PnC 

structures were fabricated in a square lattice with different hole and pillar characteristic 

dimensions on a (100) silicon substrate. After examining many tunable parameters, we 
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fabricated the “pillar with hat” structures on a silicon (100) orientation wafer cut into 

direction <110>. The pillars were arranged in the square lattice. The general schematic of 

fabrication procedure of the 2-D PnCs is shown in Figure 3-7. Here is the list of steps that 

we followed for fabrication of our structures. Our method is a slightly different variation 

of the methodology followed by other groups A similar [8–11].  

I. Deposition of photoresist layer: A thin film of 950 A2 Poly (methyl methacrylate) 

(PMMA) was dispensed on the silicon chips using a spin coating method at 4000 

rpm. The approximate thickness of the layer created by this method is 200 nm.  

II. Curing of PMMA film: The chip was baked for 1 minute at 170 °C above the glassy 

temperature of PMMA. This results in a solid shiny layer of PMMA on top of the 

silicon wafer.  

III. Patterning with EBL: The structure of the PnC was patterned using electron beam 

lithography (EBL). PMMA breaks down into monomers upon exposure of 

electrons. The exposed regions were rinsed away (developed) using in a methyl 

isobutyl ketone: isopropanol solution (1:3).  

IV. Etching: After the development step, the chip consists of a layer of patterned 

PMMA thin film on top. The silicon is etched away using the Silicon Trench Etch 

system (Oxford Cobra Plasmalab Model 100) (Figure 3-8) at -120 °C. This is 

required to slow down the etch rate. The flow of the SF6 at certain flow rates results 

in air-hole or pillar based PnCs.   

V. PMMA lift-off: The PMMA resist layer was washed away by leaving the sample 

in acetone for 24 hours.  
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VI. SEM characterization: In the end, the samples should be carefully characterized 

by SEM. Different SEM images from various angles of views are required to 

determine the characteristic dimensions of the PnC structures.  

 
Figure 3-7: Schematic of the step-by-step fabrication procedure of air hole and pillar-

based PnC structures.  

 

 
Figure 3-8: Silicon trench etch system used for etching the silicon pillars. 
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4 Chapter 4  Phononic and Photonic Properties of 

Nanopillars with Hats 

 

4.1 Introduction 

 

In this chapter, the results of the BMS experiments and variable angle spectroscopic 

ellipsometry (VASE) of the silicon “pillar with hat” structures are presented. BMS results 

clearly show that phonon dispersion in these structures are modified significantly. The 

experimental data has been analyzed carefully and compared to the finite element method 

(FEM) simulations. The VASE results suggest that these structures also act as photonic 

crystals.  

  

4.2 Sample Fabrication and Characterization  

 

In Figure 4-1 (a-b) we present a schematic of the silicon “pillar with hat” PxCs on a 500-

µm thick silicon substrate with the associated dimensions and substrate crystallographic 

directions. The 500-nm tall pillars are arranged in a square lattice on a 1 mm × 1 mm (100) 

silicon chip along the <110> crystallographic directions with the inter-pillar center-to-

center distance of 𝑑 = 500 nm. The base of the silicon pillars is slightly larger than its end 

where it connects to the “hat” structure. The “hat” structure on top of the pillars has a 
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symmetric shape with 443-nm lateral dimension (Figure 4-1-b). The unit cell of the PxC 

contains a quarter of each pillar with the space between them. Figure 4-1 (c-f) illustrates 

the step-by-step fabrication procedure of the PxCs. A thin layer of photoresist poly (methyl 

methacrylate) (PMMA 950 A2) was spin-deposited on a 500 µm thick (100) orientation 

silicon wafer and patterned in a square lattice arrays in the desired dimensions using the 

electron beam lithography (Figure 4-1-c). The silicon was then etched away using the 

silicon trench etch system (Oxford Cobra Plasmalab Model 100) at -120 ºC under SF6 and 

O2 gas flow at 80 SCCM  and 18 SCCM , respectively. Etching at low temperatures is 

required to slow down and control the process so that the structure will acquire the designer 

“pillar with hat” geometry. The arrangement of the pillars on the silicon wafer and the 

related crystallographic directions are shown in Figure 4-2.  
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Figure 4-1: Schematic of the “pillars with hat” structures on silicon substrate, showing 

(a) the crystallographic directions and the square lattice configuration, and (b) the 

geometry and features sizes of the nano-pillars. The periodic lattice consists of nano-

pillars with 500-nm height and 500-nm pitch. The pillars have a symmetric “hat like” 

structure on top, which provides additional tunability for the phononic ‒ photonic 

crystals. (c-f) Step-by-step illustration of the fabrication procedure. The figure is adapted 

from Chun-Yu Huang et al., “Fine-tuning of the phonon spectrum and light – matter 

interactions in nanoscale pillar arrays,” Nanoscale (in preparation, 2019). 

 



44 

 

 

Figure 4-2: The crystallographic directions of the Si wafer used in this study. The arrays 

of pillars are fabricated in a square lattice along <110> directions. The BMS have been 

conducted with phonon wave vector𝑞∥ along [110] and [010] directions. The figure is 

adapted from Chun-Yu Huang et al., “Fine-tuning of the phonon spectrum and light – 

matter interactions in nanoscale pillar arrays,” Nanoscale (in preparation, 2019). 

 

The obtained samples were characterized using the scanning electron microscopy (SEM) 

(Figure 4-3 (a-d)). It may appear from the side view of the SEM image shown in Figure 

4-3 (a) that the adjacent pillars are connected to each other via their “hats”. However, a 

magnified image of the pillars from the front and top views and at tilted angles presented 

in Figure 4-3 (b-d) confirms that the nanostructures are completely separated as desired. 

The illusion of connected “hats” originates from the optical effects at low magnification 

and a certain angle of view.  
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(c) 

 
(d) 

 

Figure 4-3: SEM images of (a) the side view and (b) front view of the arrays and 

individual pillar structure. (c) SEM image of the pillars at a tilted angle. The cut has been 

created intentionally by FIB milling in order to accurately measure the height of the 

pillars at the tilted angle. (d) Top-view of the area of the cut and the pillars. The figure 

is adapted from Chun-Yu Huang et al., “Fine-tuning of the phonon spectrum and light – 

matter interactions in nanoscale pillar arrays,” Nanoscale (in preparation, 2019). 

 

4.3 Results 

 

4.3.1 BMS Spectra of “Pillar with Hat” 

 

BMS experiments were carried out in the backscattering geometry using a continuous wave 

(CW) solid state diode laser operating at the excitation wavelength 𝜆 = 532 𝑛𝑚 . The 

incident light was p-polarized while there was no polarization selection for the scattered 

light. The laser light was focused on the sample using a lens with 𝑓/# = 1.4. The angle of 

the incident light with respect to the normal to the sample has been changed from 16º to 
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52º using an automatic micro-rotational stage with an accuracy of 0.02º. This is required 

to select the phonon wave vector magnitude as described in the manuscript. The orientation 

of the sample has been adjusted using a small manual micro-rotational stage. The stage is 

required to select the crystallographic direction of the probing phonon wave vector. The 

scattered light from the sample was collected using the same lens and directed to the high 

resolution (3+3) pass Fabry-Perot interferometer (JRS Instruments).  

Figure 4-4 (a) shows BMS data for the “pillar with hats” at 𝜃 = 50° corresponding to the 

phonon wave vector of 𝑞∥ = 18.1 μm−1 along the [110] crystallographic direction. All of 

the observed peaks are fitted using individual Lorentzian functions. The peaks at higher 

frequencies exhibit a rather large full width at half maximum (FWHM) when fitted with 

only one Lorentzian function. However, these broad peaks consist of two or more 

individual phonon peaks with frequencies too close to each other to resolve visually. In 

these cases, the peak deconvolution with several Lorentzian functions has been utilized. 

As one can see, there are nine peaks, including the peak shown in the inset, attributed to 

different phonon polarization branches. The peaks appear in the frequency range from 2 

GHz to 20 GHz as a result of nanostructuring. The intensity of the peak at 2.2 GHz is higher 

than that of the rest of the peaks. For this reason, it has been plotted separately as an inset.  

In Figure 4-4 (b), we present the evolution of the phonon peaks for the “pillar with hats” 

structure as a function of 𝑞∥ varied by changing the incident light angle in the range of 

28° < 𝜃 < 52° . This angle range corresponds to the phonon wave vectors range of 

11.1 μm−1 ≤ 𝑞∥ ≤ 18.6 μm−1. All of the peaks observed in Figure 4-4 (a) are present in 
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the spectra accumulated at different 𝑞∥ with almost no observable changes in their spectral 

position, demonstrating that the frequency of the phonons does not depend on the phonon 

wave vector. This is an indication of the localized or standing phonon modes either within 

the “pillar with hats” structure or in the substrate space between the pillars as a result of 

Bragg's condition. The localized phonon modes possess zero group velocity (𝜐𝑔 =
𝜕𝜔

𝜕𝑞
 ~ 0) 

and are hybrid in nature, revealing a complicated vibration displacement profile. The 

intensity of the peaks, however, changes for the different 𝑞∥. For a semi-infinite opaque 

material, with the light scattering by surface ripple mechanism in the backscattering 

geometry, the total power, 𝑑𝑃 , scattered into the solid angle, 𝑑Ω , for the light with 

polarization in the scattering plane, is described as 
1

𝑃
(

𝑑𝑃

𝑑Ω
) =

𝜔𝑠
4

𝜋2𝑐4 𝐴𝑐𝑜𝑠4(𝜃)𝑅(𝜃)𝑒𝑧(0)2̅̅ ̅̅ ̅̅ ̅̅   

[1,15]. Here 𝜔𝑠 is the frequency of the scattered light, 𝑐 is the speed of light in vacuum, 𝐴 

is the area of the sample under illumination, 𝑅(𝜃) is the surface reflectivity which is by 

itself a function of the incident light angle 𝜃, and 𝑒𝑧(0)2̅̅ ̅̅ ̅̅ ̅̅  is the mean square displacement 

of the surface at sample’s interface. As one can see, the intensity of the scattered light for 

a specific phonon polarization branch depends on the reflectivity at the incident angle of 

𝜃, which now also depends on the orientation and geometry of the pillars. These modes are 

very different from the bulk LA and TA phonons. The true bulk LA and TA phonons of 

silicon reveal two peaks at 90.6 GHz and 135.3 GHz as shown in Figure 2-4.  
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Figure 4-4: Brillouin-Mandelstam spectroscopy data for (a) the “pillar with hat” 

structures accumulated at the incident light angle of 50°, corresponding to the in-plane 

phonon wave vector of 𝑞∥ = 18.1 𝜇𝑚−1. (b) The evolution of the phonon spectra with 

changing the probing phonon wave vector defined by the incident light angle. The figure 

is adapted from Chun-Yu Huang et al., “Fine-tuning of the phonon spectrum and light – 

matter interactions in nanoscale pillar arrays,” Nanoscale (in preparation, 2019). 
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The PxC sample in the current study is an array of pillars arranged in a square lattice and 

thus, possesses a 4-fold rotational symmetry. This means that the results of BMS 

experiment would be the same as the one presented in Figure 4-4 (a) if the sample is rotated 

about the axis normal to the sample by 𝛼 = 90 degrees. The frequency of the phonon 

modes, which are localized within the “hat” or “pillar” structure should not depend on the 

crystallographic direction of the PxC. This fact provides a tool for distinguishing the 

phonon spectrum changes due to the localization from that due to periodicity of the 

structure. Practically, it can be done by conducting BMS experiments at orientation angles, 

𝛼, where 𝑞∥ lies along directions other than the rotational symmetric directions. One should 

note that the orientation angle 𝛼 is different from that of the incident laser light angle 𝜃. 

The former defines the direction and the latter determines the magnitude of the phonon 

wave vector in BMS experiment, respectively. Figure 4-5 presents the results of the BMS 

experiment at constant phonon wave vector 𝑞∥ = 18.1 μm−1  along two different 

crystallographic directions of [110] (𝛼 = 0, black curve) and [010] (𝛼 = 45°, red curve), 

respectively. It is important to note that some phonon modes, which were observed along 

the [110] direction, have disappeared in the spectrum accumulated along the [010] direction. 

One can conclude that the modes, which are present in both spectra with the same 

frequency are spatially localized phonon modes. The modes that disappeared or changed 

their frequency can be the ones either resulting from the nano-pillar arrays’ periodicity, via 

elastic coupling through the substrate, or at least affected by the periodicity.  
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Figure 4-5: Brillouin-Mandelstam spectroscopy data for two different crystallographic 

directions in the same shape-engineered silicon nanoscale pillar array. Note that 

changing the orientation of the BMS scanning results in disappearance of some of the 

phonon peaks. The figure is adapted from Chun-Yu Huang et al., “Fine-tuning of the 

phonon spectrum and light – matter interactions in nanoscale pillar arrays,” Nanoscale 

(in preparation, 2019). 

 

Imposing the artificial periodicity, e.g. adding holes or nano-pillars to the silicon substrate, 

changes the BZ geometry. In our case, since the “pillar with hat” structures are arranged in 

a two-dimensional square lattice, the first BZ has a square geometry with the boundaries 

located at 𝜋/𝑎, where 𝑎 = 500 𝑛𝑚 = 0.5 μm−1 is the pitch, i.e. the distance between the 

central axis of two adjacent pillars along the [110] direction. Thus, the boundaries of the 

first BZ are located at 6.28 μm−1 and 8.88 μm−1, along the [110] and [010] directions, 

respectively. We conducted BMS experiments along the [110] and [010] crystallographic 

directions at various incident light angles ranging from 𝜃 = 18° to 𝜃 = 52°, corresponding 
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to 7.3 μm−1 ≤ 𝑞∥ ≤ 18.6 μm−1, respectively. The experimental data, accumulated in this 

range of 𝑞∥ values, cover the most part of the 2nd and higher order BZ’s along the [110] 

direction, and part of the 1st and higher order BZ’s along the [010] direction. The spectral 

position of the observed BMS peaks along the [110] and [010] directions are plotted as a 

function of 𝑞∥ in Figure 4-6 (a-b). The frequency of the peaks does not depend on the 𝑞∥, 

exhibiting almost a flat dispersion throughout the 1st and higher order BZ’s. The phonon 

modes, which have the same frequency in both plots, are marked with the same symbol 

and colors. These modes are likely confined within the “pillar with hat” structures since 

their dispersion does not change as the periodicity changes by rotating the sample by 𝛼 =

45°.  
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Figure 4-6: Phonon dispersion in the shape-engineered silicon nanoscale pillar array 

shown for (a) [110] and (b) [010] crystallographic directions. Note that the number of 

phonon branches decreases from nine to four with the direction change. The figure is 

adapted from Chun-Yu Huang et al., “Fine-tuning of the phonon spectrum and light – 

matter interactions in nanoscale pillar arrays,” Nanoscale (in preparation, 2019). 
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4.3.2 Theoretical Analysis and Finite Element Method Simulations 

 

To better understand the nature of the flat-band phonons, we calculated the phonon 

dispersion and displacement patterns for the silicon “pillar with hat” structures using the 

finite element modeling (FEM) implemented in COMSOL Multiphysics package. The 

pillars were modeled as part of a 2D periodic arrays, repeated along the X-Y plane. Each 

pillar is allowed to have free vibrations along the growth direction (+𝑧), whereas the back 

part of the bulk substrate has a fixed boundary condition. The equation of motion for this 

phononic structure can be written from the second-order elastic continuum theory as 

𝜌(𝜕2𝑢(𝐫) 𝜕𝑡2⁄ ) = 𝜕S(𝐫) 𝜕𝑥𝑖⁄  where 𝜌 is the mass density and 𝑢(𝐫) is the displacement 

vector at coordinate 𝐫. The stress tensor S(𝐫) can be obtained from displacement by 𝑆𝑖𝑗  =

 𝐶𝑖𝑗𝑘𝑙 𝜀𝑘𝑙, where 𝜀(𝐫) = [(∇𝐮)T + (∇𝐮)]/2 is the elastic strain tensor. For this study, 𝐶𝑖𝑗𝑘𝑙, 

the coefficients for silicon are assumed to be isotropic in both substrate and pillars. To 

obtain the solution of the elasticity equation in the frequency domain, the simulation 

geometry is discretized using finite element scheme 𝜌𝜔2𝑢 = ∇. 𝑆, where 𝜔 is the Eigen 

frequency. Free surface boundary conditions are applied at all outer facets of the pillar as 

well as at the top surface, using 𝜀𝑖𝑗𝑛𝑗 = 0, where 𝑛𝑗  is the outward normal unit-vector. To 

simulate the effect of additional hat-like structure on the phonon properties, we use a star-

like protrusion on top of the pillar using the dimensions carefully extracted from the SEM 

images. The dimensions of the actual nanostructures have been determined from the SEM 

images under different angles. The schematic is shown in Figure 4-1 (a-b) was used for the 

modeling. The simulation results are presented in Figure 4-7 (a-b) for the [110] and [010] 
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crystallographic directions, respectively. The calculated dispersion reveals numerous 

phonon polarization branches with the flat dispersion in both crystallographic directions, 

consistent with the experimental data. At higher frequencies, the phonon dispersion 

becomes a “spaghetti” of many phonon bands crossing and anti-crossing each other, 

making a direct comparison with the experiment impossible. It is important to note that 

these quasi-optical phonon modes are all hybridized in nature, which makes them BMS 

active, with the high degree of confidence. The hybrid modes have vibrational 

displacement components perpendicular to the probing phonon wave vector, which is a 

required condition for being BMS observable. The displacement profiles of some BMS 

activated modes along [110] direction is presented in Figure 4-8.  
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Figure 4-7: Calculated phonon dispersion for the pillar structure with similar geometry 

as the experimental samples. The data are shown for (a) [110] direction and (b) [010] 

directions. The figure is adapted from Chun-Yu Huang et al., “Fine-tuning of the phonon 

spectrum and light – matter interactions in nanoscale pillar arrays,” Nanoscale (in 

preparation, 2019). The simulations are courtesy of T. Debnath and Dr. Roger Lake, UC 

Riverside. 

 



56 

 

 
Figure 4-8: Vibrational displacement profile of BMS-active modes along [110] direction. 

The red color corresponds to stronger displacement. The figure is adapted from Chun-

Yu Huang et al., “Fine-tuning of the phonon spectrum and light – matter interactions in 

nanoscale pillar arrays,” Nanoscale (in preparation, 2019). The simulations are courtesy 

of T. Debnath and Dr. Roger Lake, UC Riverside. 

 

4.3.3 Optical Characterization via VASE 

 

The optical characteristics of the shape-engineered silicon nano-pillar arrays have 

determined using VASE (J.A. Woollam Co.) along the two crystallographic directions at 

the incident light angles 𝛽 = 50°, 55°, 60°, 65°. The details of the Mueller ellipsometry 

have been explained in detail elsewhere [16]. Representative spectra of the Muller matrix 

elements at 𝛽 = 50° for both directions are presented in Figure 4-9. The Mueller matrix 

elements of the “pillar with hat” structures reveal multiple large-amplitude abrupt 

variations for the wavelengths below 𝜆 < 800 nm. The variations are different for two 

different crystallographic directions. The spectrum of silicon substrate is on a contrary 

characterized by very smooth change in the optical parameters. In ellipsometry, the Muller 

matrix is related to the ellipsometric functions of 𝜓 and ∆ as: 
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𝐌 = [

1 −𝑁 0 0
−𝑁 1 0 0

0 0 𝐶 𝑆
0 0 −𝑆 𝐶

]. (4-1) 

 

Here 𝑁 = cos 2𝜓  and 𝐶 = sin 2𝜓 cos ∆  and 𝑆 = sin 2𝜓 sin ∆ , respectively. All the 

indices are normalized with respect to the 𝑚11 element. The strong variations in the Muller 

matrix elements in the relevant wavelength interval, variation differences for two 

crystallographic directions, and a contrast with the optical properties of the reference 

silicon substrate indicate that the nano-pillar arrays act as PtC as well. 
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Figure 4-9: Ellipsometry spectra for the shape-engineered silicon nanoscale pillar array 

for (a) [110] quasi-crystallographic direction and (b) [010] quasi-crystallographic 

direction. Changing the orientation of the phononic – photonic crystal results in different 

interaction of the structure with light. The figure is adapted from Chun-Yu Huang et al., 

“Fine-tuning of the phonon spectrum and light – matter interactions in nanoscale pillar 

arrays,” Nanoscale (in preparation, 2019). 

 

4.4 Conclusions 

 

In conclusion, we used BMS and VASE to demonstrate that a specially designed nanoscale 

“pillar with hat” periodic silicon structures reveal the properties of both phononic and 
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photonic crystals. Acoustic phonon states can be tuned by external boundaries, either as a 

result of phonon confinement effects in individual nanostructures, or as a result of 

artificially induced external periodicity. The shape of the nanoscale pillars was engineered 

to ensure the interplay of both effects. Our BMS data indicate strong flattening of the 

acoustic phonon dispersion in the frequency range from 2 GHz to 20 GHz and the phonon 

wave vector extending to the higher order BZs. The specifics of the phonon dispersion 

dependence on the pillar arrays orientation suggest the presence of both periodic 

modulation and spatial localization effects for the acoustic phonons. Our results suggest 

that smart engineering of the size and shape of the pillars enhances the tuning capability 

for phonon dispersion, which can be changed via spatial localization of confined phonons 

or pillar periodicity.  
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