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The dissertation investigates buoyancy e�ects in turbulent blu�-body wakes that

evolve in stratified fluids. The investigation utilizes high-resolution numerical simulations

and employs a body-inclusive approach to describe the flow from the body into the far wake

unlike the usual temporal-model approximation of most prior stratified-wake simulations.

The dissertation is composed of three main parts. The first part focuses on the dynamics

of vorticity that accounts for the unexpected regeneration and increase of turbulence in the

near-to-intermediate wake when stratification increases in the regime of low body Froude

numbers. The second part characterizes buoyancy e�ects on the evolution of turbulent

kinetic energy in a sphere wake at moderate Froude number and an intermediate Reynolds
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number. The third part concerns the decay of a disk wake at relatively high Reynolds

number and a wide range of Froude numbers, constitutes the major contribution of this

thesis, and is summarized below.

Large-eddy simulations (LES) of flow past a disk are performed at Re = UbLb/‹ =

50, 000 and at Fr = Ub/NLb = Œ, 50, 10, 2; Ub is the free-stream velocity, Lb is the disk

diameter, ‹ is the fluid kinematic viscosity, and N is the buoyancy frequency.

In the axisymmetric wake in a homogeneous fluid, it is found that the mean

streamwise velocity deficit (U0) decays in two stages; U0 Ã x≠0.9 during 10 < x/Lb < 65

followed by U0 Ã≥ x≠2/3. Consequently, none of the simulated stratified wakes is able to

exhibit the classical 2/3 decay exponent of U0 in the interval before buoyancy e�ects set in.

The turbulent characteristic velocity, taken as K1/2 with K the turbulent kinetic energy

(TKE), satisfies K1/2 Ã≥ x≠2/3 after x/Lb ¥ 10.

Turbulent wakes are a�ected by stratification within approximately one buoyancy

time scale (Ntb ¥ 1) after which, provided that RehFr2
h Ø 1, we find 3 regimes: weakly

stratified turbulence (WST), intermediately stratified turbulence (IST), and strongly strat-

ified turbulence (SST). The regime boundaries are delineated by the turbulent horizontal

Froude number Frh = uÕ
h/NLHk; here, uÕ

h and LHk are r.m.s horizontal velocity and TKE-

based horizontal wake width. WST begins when Frh decreases to O(1), spans 1 . Ntb . 5

and, while the mean flow is strongly a�ected by buoyancy in WST, turbulence is not.

Thus, while the mean flow transitions into the so-called non-equilibrium (NEQ) regime,

turbulence remains approximately isotropic in WST. The next stage of IST, identified by

progressively increasing turbulence anisotropy, commences at Ntb ¥ 5 once Frh decreases

to O(0.1). During IST, the mean flow has arrived into the NEQ regime with a constant

decay exponent, U0 Ã x≠0.18, but turbulence is still in transition. The exponent of 0.18

for the disk wake is smaller than the approximately 0.25 exponent found for the stratified

sphere wake. When Frh decreases by another order of magnitude to Frh ≥ O(0.01), the
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wake transitions into the third regime of SST that is identified based on the asymptote of

turbulent vertical Froude number (Frv = uÕ
h/Nlv) to a O(1) constant. During SST that

commences at Ntb ¥ 20, turbulence is strongly anisotropic (uÕ
z π uÕ

h), and, both uÕ
h and

U0 satisfy x≠0.18 decay signifying the arrival of the NEQ regime for both turbulence and

mean flow. Turbulence is patchy and temporal spectra are broadband in the SST wake.

Energy budgets reveal that stratification has a direct and positive influence on the

prolongation of wake life. During the WST/early-IST stage, energy budgets show that

the mean buoyancy flux acts to augment the MKE before the additional augmentation by

reduced turbulent production. On the other hand, during WST/early-IST, the decay of

TKE is faster than the unstratified case because of negative buoyancy flux (a sink that

serves to increase turbulent potential energy) and increased dissipation and, additionally,

also by the reduced production. In the late-IST/early-SST stages, production is enhanced

and, additionally, there is injection from turbulent potential energy so that the TKE decay

slows down. Only in the SST stage, when NEQ is realized for both the mean and turbulence,

the turbulent buoyancy flux becomes negative again, acting as a sink of TKE.
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Chapter 1

Introduction

1.1 Turbulent flows

Turbulence in a fluid remains the most di�cult unsolved problem in classical

mechanics. It is ubiquitous in nature, widespread in industrial applications, and often

considered as the natural state of fluid flow. Multi-scale, random, di�usive, and dissipative

are descriptive of the state of motion referred to as turbulent flow. While there is no

rigorous definition for the phenomenon of turbulence, one can easily di�erentiate a turbulent

flow from other states of motion by its characteristic descriptions. For instance, is the flow

in figure 1.1 turbulent?

• Multi-scale phenomenon. If we were to sketch a photo to resemble the drawing of

fluid motion by Leonardo Da Vinci from the 16th century, we would draw a number of

somewhat circular shapes of di�erent sizes where smaller circles were placed inside the

boundary of a bigger one. We would then continued to fill in yet more even smaller

circles inside the small circles and so on. We would carefully outline our “eddies”

so that they could fit into the bigger eddies. This exercise illustrates the multiscale
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Figure 1.1: Visualization of a jet in crossflow, side-view (top) and top-view (bottom).
The figure is taken from Chongsiripinyo et al. (2008).

nature of turbulence. Apart from the multi-scale property, the concepts of energy

cascade and similarity play a crucial role in the theory of turbulence formulated

by Andrey Nikolaevich Kolmogorov in 1941. As beautifully depicted by Lewis Fry

Richardson, ‘Big whirls have little whirls, That feed on their velocity; And little

whirls have lesser whirls, And so on to viscosity.’

• Randomness. The picture we drew representing a snapshot of a time-varying

motions appears unpredictable and chaotic. Especially for those tiny structures

embedded in a larger circle, we could call their motions loosely as random fluctuations.

Perhaps, a hummingbird might describe them di�erently! Nevertheless, Newton’s

laws of motion, being the underlying physical mechanism, are deterministic. One
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Figure 1.2: Leonardo da Vinci’s illustration of the turbulent flows.

often, therefore, refers to the phenomenon as ‘deterministic chaos’.

• Di�usion. Turbulent flow is considered to possess “super di�usivity” which, in

fact, is the enhanced transport by turbulent advection. G.I. Taylor originated the

idea of turbulent advection and published a paper titled ‘Di�usion by continuous

movements’ in 1922, Taylor (1922). Taylor’s paper led to the idea of velocity

correlation, considered to be one of the three most important workhorses in the

statistical theory of turbulence (besides second-order structure function and energy

spectrum). The paper was motivated by his earlier publication titled ‘Eddy motion

in the atmosphere’, GI Taylor (1915), where Taylor observed that turbulent motion

could di�use heat and other di�usive scalars. In his 1922 paper, he started with

the problem of random migration in one dimension and found that the amount of

“di�usion” is proportional to the square-root of time provided that the process has
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gone for a su�ciently long time. The significance is that the dimensions of the

coe�cient multiplying time in Taylor’s result is the same as that of the kinematic

viscosity, thus qualifying as a di�usion coe�cient. Di�usion by continuous movements

is synonymous to transport by small-scale velocity fluctuations. This is why we often

model Reynolds stresses as di�usion with a so-called “turbulent viscosity”, that is a

property of fluid motion and is not a material property.

• Dissipation. Turbulent flows exhibit small scales of motion where the e�ect of

viscous dissipation in enhanced. The small scale motions have large vorticity that is

the direct result of vortex stretching that increases the velocity gradient from that

of the large-scale flow instabilities until vortex stretching is ultimately arrested on

the scale where viscosity dominates (around Re ≥ O(1)). According to a theorem of

hydrodynamics, the total rate of dissipation is proportional to the volume integrated

vorticity,

≠ d

dt

⁄ 1
2flv2dV = µ

⁄
|Ò ◊ Ôv|2dV, (1.1)

where Ôv denotes velocity, ‹ is molecular viscosity, and V stands for volume. Thus,

sustaining turbulence in a fluid requires a su�cient rate of energy injection to overcome

small-scale irreversible conversion from kinetic energy to thermal energy.

The state of fluid motion can be characterized by competition between di�usion and

advection acting upon linear momentum fluÕ
i. Pressure is a Lagrangian multiplier that

imposes the solenoidal constraint on velocity, is related to the velocity through a Poisson

equation, and does not change the essence of the following argument. Consider a control

volume that bounds a region of fluid. The linear momentum of the control volume will keep

increasing if fluÕ
i is advected into the control volume, by uÕ

j, with a rate faster than di�usion

can react. If so, it leads to a more non-uniform distribution of linear momentum in the

flow field or an increase in velocity gradient. Essentially, it is the competition between a
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mechanism that relaxes curvature in three-dimensional space versus another mechanism

that promotes non-uniformity. In other words, if the di�usion timescale is larger than the

advection timescale, the velocity field becomes locally non-uniform corresponding to an

increase in vorticity (a building block of turbulent flows). The ratio between di�usion and

advection time scales is given by the Reynolds number introduced by Osborne Reynolds in

1883,

Re = ·‹

·i
= l2/‹

l/u
= ul

‹
. (1.2)

Turbulent flow is a collection of eddies of various Reynolds numbers, from Re÷ ≥ O(1)

to a su�ciently large Rec. Since, dissipation peaks at Re÷ ≥ O(1), turbulent flow can be

characterized using a single number, Rec = UL/‹ where U and L are the characteristic

velocity and characteristic length scale of the energy-containing range. On the other side,

Re÷ ≥ O(1) characterizes the smallest scale in turbulent flow, the Kolmogorov microscale.

In between, but su�ciently far from the dissipative range, turbulent eddies in the inertial

subrange manifest self-similarity as there is no external scale imposed from either side

leading to the famous -5/3 exponent of the energy spectrum.

1.2 Density-stratified flows

Density-stratified flows behave di�erently than their unstratified counterparts due

to the additional vertical gravitational body force that acts on fluid parcels whose density is

di�erent from the background stable configuration. A fluid parcel being in non-equilibrium

seeks to return to its stable configuration with gravitational assist, i.e buoyancy. The

magnitude of the vertical force of buoyancy is a function of gravity and deviation of density

from the background. Density stratification can significantly a�ect a state of flow if the

buoyancy force it introduces is comparable to inertial and viscous forces. For stratified

flows, the so-called ‘buoyancy Reynolds number’ is analogous to the Reynolds number
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in which it serves as a good indicator for determining a state of a flow. The buoyancy

Reynolds number,

Reb = Á

‹N2 , (1.3)

can be considered a “modified Reynolds number” which accounts for the additional forces

in stratified flow. Here, Á is the rate of dissipation of turbulent kinetic energy and N is the

buoyancy frequency. Section 2.2 gives more details on the buoyancy Reynolds number via

the scaling analysis of stratified turbulence. The results of chapter 6 support the notion

that the flow state becomes or remains turbulent providing that the buoyancy Reynolds

number is su�ciently large even when stratification is strong.

The other crucial dimensionless number that quantifies the strength of density

stratification is Froude number,

Fr = ·b

·i
= N≠1

l/u
= u

Nl
. (1.4)

Froude number, being the ratio between buoyancy time scale and inertial timescale,

is the normalized temporal response of buoyancy e�ect. Small Froude number corresponds

to strong stratification and vice-versa. While eddies in a stratified turbulent flow have

a direct correlation between their sizes and their Reynolds number, there is an inverse

correlation between their sizes and their Froude numbers. Therefore, it is possible for

the existence of a region lying in wavenumber space that is far enough from the Ozmidov

length scale, lo = (Á/N3)1/2 (the largest scale at which an eddy can overturn), and from the

Kolmogorov dissipative scale in which similarity can prevail for Kolmogorov-like turbulence.

Results in chapter 6 show that a stratified turbulent wake may exhibit unstratified high-

Reynolds-number isotropic decay of velocity fluctuations although the largest scales of the

flow are a�ected by buoyancy.

Besides altering the characteristics of eddies at di�erent scales, a stratified environ-
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ment is known to suppress energy influx to turbulent motions. This is due to the tendency

of a fluid element to return to a stable configuration. The suppression of vertical motion

leads to a reduction of Reynolds stresses associated with vertical velocity fluctuation. This,

in turn, reduces production of turbulent kinetic energy. This is generally true in the early

response of a turbulent flow to stratification in which its local Reynolds number is large.

The reduction in production of turbulent kinetic energy signifies that a stratified flow

better retains mean kinetic energy in comparison to its unstratified counterpart while its

turbulent portion is expected to be less energetic. Additionally, stratification enables a

potential energy reservoir that is capable of receiving and injecting energy to the kinetic

motions, both the mean and turbulent, through the so-called ‘buoyancy flux’. The ability to

store and transfer between two types of energy enables a stratified medium to periodically

exchange energy. Stratified flow can, therefore, propagate energy in the form of a wave or

specifically an ‘internal gravity wave’.

1.3 Numerical simulations

Numerical simulations are a useful tool in the scientific endeavor to understand

natural phenomena, describe reality, and also design engineering devices/products. Among

the approaches of physical experiments, theories, and simulations, physical experiments

are the only approach which have a direct connection with nature. Numerical simulations

and the theoretical approach have helped us make tremendous progress in scientific e�orts.

Numerical simulations seek an approximate discrete solution to a governing equation (or

a system of governing equations), derived from a physical law that is too complex to be

solved analytically. Equations derived by mathematicians/theoreticians which are to be

explored numerically need not relate to the real world as we perceive it. Indeed, numerical

simulations can be used to explore exotic theories which describe phenomena that are not
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yet observable. However, from our engineering point of view, we utilize the Navier-Stokes

equations currently known to be the best representation of the dynamics of a fluid. The

Navier-Stokes equations, theorized by the French engineer/physicist Claude-Louis Navier

and the Irish mathematician/physicist George Gabriel Stokes, have been tested against

numerous experiments and remain the top candidate for describing flow motions.

Numerical simulation arrives at an approximate solution by solving a discrete version

of a governing equations. The discretization is done typically for all independent variables,

space and time, within the framework of the time-varying Navier-Stokes equations. We then

seek out a proper numerical method or a combination of numerical methods for solving the

discrete system as e�ciently as possible. Normally, an accuracy of a numerical solution is

inversely proportional to how fast we obtain it computationally. Depending on practicality,

70% accuracy could be su�cient for an engineer to make decisions with a high level of

confidence.

With this information, the need for improved computational power and speed follows.

Computing performance is quantified by operations per second or floating-point operations

per second (‘FLOPS’) for real-number arithmetic. Questions such as ‘How many FLOPS is

enough?’ depend upon what problem we are tackling. To elaborate, we provide an example

adapted from Pacheco (1997). Suppose we would like to predict the weather over the entire

state of California for the next day. Also, suppose that we want to model the atmosphere

from sea level to an altitude of 10 kilometers, and we need to make a prediction of the

weather at each hour for the next day. A standard approach is to put a computational

box over the region of interest with a grid and then predict the weather at each vertex of

the grid. Suppose we use a cubical grid, with each cube measuring 10 meters on each side.

Since the area of the state of California is about 150,000 square miles or roughly 400,000

8



square kilometers, we’ll need at least

400000 km2 ◊ 10 km ◊ ( 1
0.01)3 cubes per km3 = 4 ◊ 1012 grid points. (1.5)

If it takes 100 calculations to determine the weather at a grid point, then it takes about

414 calculations to predict the weather one hour from now. For 24 hours, we will need to

make about 24 ◊ 4 ◊ 1014 ¥ 1016 calculations. If we dare to use a single processing unit

that is able to execute 1 billion (109) calculations per second, it will take about

1016 calculations/109 calculations per second = 107 seconds ¥ 115 days. (1.6)

This means that by the time the simulation is done, the weather would be 114 days ahead

of us! Two additional points to be considered are that, first, using a time step so as to

segment 1 hour using 100 calculations can be problematic and, second, using a cube of

size 10 meters on each side may cause a numerical issue. Unless a chosen combination of

governing equations and algorithms is numerically stable, we will not be able to perform

the simulation in the first place.

There is a number of ways in which we can accelerate our weather prediction. First,

we can use multiple processing units to tackle the problem rather than using a single core.

A simulation that takes 115 days can be done in about 2 days if we use 64 CPUs providing

that our choice of algorithm allows an e�cient parallel scalability. The ideal scaling is to

get the same work done N times faster on N CPUs as opposed to 1 CPU.

Second, we realize that fluid turbulence is multi-scale. Depending on our objective,

we can choose not to resolve all scales down to the Kolmogorov microscale. Since capturing

an eddy of size L requires resolution of approximately L/2 (similar to the idea of the

Nyquist frequency), solving a high Reynolds number turbulent flow can be extremely time

consuming. The process of deriving a governing equation that only contains a selected
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range of scales is called ‘filtering’. Generally, a low-pass filter is applied in which the

resulting filtered Navier-Stokes equations govern the dynamics of large-scale eddies leaving

the small-scale influence to be modeled. In weather prediction, for example, a system of

filtered equations is almost always employed. On the other hand, solving the governing

Navier-Stokes equations directly is what is referred to as performing a ‘Direct Numerical

Simulation’ or DNS. ‘Large-Eddy Simulation’ or LES solves the filtered Navier-Stokes

equations in which small-scale eddies beyond a certain size are modeled rather than directly

solved. As LES models treat small-scale eddies as locally homogenous isotropic, the filter

size has to lie in the inertial subrange in which such behavior is realized. Lastly, in the

‘Reynolds-Averaged Navier-Stokes’ or RANS, we model all turbulent activity and only solve

for mean quantities. Obviously, DNS is the most computationally demanding and RANS is

the least. In this work, we use DNS for simulations presented in chapter 3 and 5, while

LES is used for simulations presented in 4, 5, and 6.
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Chapter 2

Background

Wakes, in general, are distinctive disturbances from a background state caused

by flow past an obstruction. The wake in a fluid has long been considered to be one of

the canonical problems in fluid dynamics. Its ubiquity comes from the fact that wake

formation requires only a non-zero relative velocity between an object and the fluid that the

object is immersed in. Often we are unaware of its presence. Wakes can be found virtually

everywhere from a very large to a very small scale, e.g. flow around topographic features

such as islands and mountains, behind a moving vehicle, behind us while we are walking,

behind an object in an air-circulated room, behind a droplet or a red blood cell, etc. While

understanding application-scale wakes can, for example, help reduce fuel consumption, alter

mixing e�ciency and improving engine performance, large-scale wakes in the environment

can have significant impact on local weather, air pollution, ocean stratification, etc.

Wakes in the ocean are almost always subject to stabilizing buoyancy forces at some

point in their lifetime since the ocean interior has stable density stratification. Atmospheric

wakes are subject to stabilizing buoyancy forces in the stable atmospheric boundary layer

(ABL) but are destabilized by buoyancy in the convective ABL. An initial estimate of

the influence of buoyancy can be obtained by comparing the buoyancy timescale to the
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integral time scale of the wake. The timescale of a wake can be calculated by assuming

that the initial velocity deficit, Uc, is comparable to the relative velocity between the wake

generator and the ambient flow, UŒ. The initial wake dimension, Lc, is comparable to

the lengthscale of the wake-generating body, L. This gives N≠1/LU≠1
Œ = Fr as a measure

of the initial strength of stratification. A local downstream strength of stratification is

inversely measured by the “deficit” Froude number, Fr(x) = N≠1/Lc(x)U≠1
c (x), where x is

the downstream distance from the body and Lc(x) is the wake width. The value of Fr(x)

strictly decreases with increasing x, implying that even with initially weak stratification, a

stratified wake will eventually be a�ected by stratification.

2.1 Evolution of stratified wakes

A stratified wake evolves through three distinct dynamical regimes referred to as the

three-dimensional (3D), non-equilibrium (NEQ), and quasi-two-dimensional (Q2D) regimes

as described by Spedding (1997). Even without an imposed mean velocity, de Bruyn Kops

& Riley (2019) recently found that the patches of initially isotropic homogenous turbulence

pass through di�erent regimes analogous to those seen in the stratified wake behind a

sphere as in the work by Spedding (1997). Consider a stratified wake resulting from a

uniform flow past an axisymmetric body. The following sections explain each regime of

decay.

2.1.1 The three-dimensional (3D) regime

In early development, given a su�ciently large initial Fr = UŒ/NL, an initially

axisymmetric stratified wake evolves as if in an unstratified fluid during the so-called

3D regime. Though the wake remains axisymmetric and appears largely unchanged, the

buoyancy force progressively increases with respect to the inertial force. Considering a
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su�ciently high Re = UŒL/‹ at which we expect the high-Re self-similarity solution where

the decay rate of mean streamwise velocity deficit, U0 Ã x≠2/3, and the spread of lateral

wake dimension, L Ã x1/3, (Townsend, 1976; Tennekes & Lumley, 1972; George, 1989), the

inertial force and the buoyancy force (per unit mass) are proportional to

U2
0 L≠1 Ã x≠5/3 and N2L Ã N2x1/3 (2.1)

, respectively, in a stably stratified fluid where N2 = ≠gfl≠1
0 ˆzfl with fl0 and z being the

reference density and the vertical direction. In other words, the local Froude number decays

like

Fr2 = U2
0 L≠1

N2L
Ã (Nx)≠2 æ Fr Ã (Nx)≠1 (2.2)

or Fr ≥ (Nt)≠1 where t = x/UŒ. If we assume that turbulent quantities such as a

component of velocity fluctuation or a lateral wake dimension scales with their mean flow

counterparts, the local turbulent Frt = uÕ/Nl Ã (Nx)≠1 or Frt ≥ (Nt)≠1. The decay of

local Froude number for the homogeneous, isotropic high-Re turbulence of Sa�man (1967)

which assumes E(k) ≥ Lsk2 as k æ 0 (Ls is the Sa�man integral) subjected to stable

stratification will initially be Fr ≥ t≠3/5/Nt2/5 ≥ (Nt)≠1.

Riley et al. (1981); Riley & Lelong (2000) studied the decay of homogeneous

turbulence in density-stratified fluids and found that the early evolution is expected to

last for about one buoyancy time scale Nt ¥ 1 after flow initiation. Similarly, Liu (1995)

also found that the grid turbulence responses to stratification after one buoyancy period,

specifically an abrupt reduction the decay rate of the turbulent kinetic energy occurs at

Nt/2fi ¥ 1. In the experiment of decaying turbulent wakes in a stably stratified fluid,

Spedding (1997) identified Nt = 1.7 ± 0.3 as the location where the 3D regime ends.
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2.1.2 The non-equilibrium (NEQ) regime

As the buoyancy force becomes comparable to the inertial force, quantified by the

Fr ¥ 1, the e�ect of stratification manifests and the stratified wake transitions towards

the intermediate stage or the NEQ regime where the vertically-disturbed fluid seeks its

equilibrium causing the wake’s vertical span to decrease. While the e�ect of stratification

directly acts upon large-scale components, small-scale structures whose timescale is not yet

comparable to N≠1 can be indirectly a�ected due to reduction of turbulence production

(Pal et al., 2017; Chongsiripinyo & Sarkar, 2017) and the modification of nonlinear dynamics

via suppression of vortex stretching (Chongsiripinyo et al., 2017). Even though ‘wake-

collapse’ is used to qualify this regime, it is understood in the sense that the wake’s vertical

span decreases but the very definition of the wake involving deficit of mean streamwise

momentum remains intact.

The NEQ period is the least understood because the wake adjusts to stratification

by complex coupling in anisotropic (both in velocity components and in length scales)

motions among buoyancy, inertial and viscous forces. However, its general attributes

have been characterized. After the “collapse”, it has been found that the decay rates

of centerline mean deficit velocity, total kinetic energy, and turbulence are inhibited;

turbulent-generated internal gravity waves propagate; and a complicated exchange between

kinetic and potential energies takes place. In the universal evolution of a stratified wake

proposed by Spedding (1997), the evolution of U0 is experimentally found to be close to

U0 Ã x≠0.25. A similar substantial reduction of the wake decay from the unstratified rate of

decay theoretically derived as U0 Ã x≠2/3 has also been repeatedly observed in numerical

simulations, Dommermuth et al. (2002); Brucker & Sarkar (2010); Diamessis et al. (2011);

de Stadler et al. (2010); Redford et al. (2015); Pal et al. (2017); Chongsiripinyo & Sarkar

(2017), and was theoretically described by Meunier et al. (2006). Associated with U0
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are the horizontal wake width (Lh) and the vertical wake height (Lv). While the rate of

decay U0 Ã x≠m is fairly well established, the rates of growth for Lh,v remain somewhat

inconclusive. Meunier et al. (2006), using the conservation of momentum deficit, arrived at

the relation U0LhLv = const = UŒL(cd/2)1/2/8 where cd is the drag coe�cient of a wake

generator. The relation suggesting the constraint LhLv = U≠1
0 const is based, however, on

the presumption that a downstream lateral profile of U0 is Gaussian. Temporal-model

towed-wake simulations of Brucker & Sarkar (2010) and Diamessis et al. (2011) show

Lh Ã x1/3 over a large portion of the wake development. During the NEQ phase, the

vertical wake span Lv initially decreases (because of the “collapse”) and has been found to

slightly decrease later on (Brucker & Sarkar, 2010). We will look closely at the evolution

of Lv in the disk-wake study of this thesis.

The stratified wake preserves kinetic energy as evidenced from a reduction in its rate

of decay. According to Spedding (1997); Dommermuth et al. (2002); Diamessis et al. (2011),

this is attributed to the ‘restratification’ e�ect where available potential energy is being

transfered back to kinetic energy during the collapse via the buoyancy flux. Brucker &

Sarkar (2010) argued that the implicit e�ect of stratification on production and dissipation

of turbulent kinetic energy is another possibility and can be as important as buoyancy flux

in the preservation of wake life. Recently, Redford et al. (2015) showed that the implicit

e�ect of buoyancy, in which stratification modifies turbulent structures (associated with

Reynolds stresses), leads to a substantial increase in turbulent production in the late wake

rather than a decrease. Interestingly, the result of Redford et al. (2015) revealed that the

direct e�ect of buoyancy plays a secondary role. Our simulations of flow over a disk in

6 compare the direct and indirect e�ects of buoyancy and o�er an explanation of why

stratified wakes ‘live longer’.

The NEQ was experimentally found to last from Nt ¥ 2 to Nt ¥ 50 by Spedding

(1997). However, the simulations of Brucker & Sarkar (2010); Diamessis et al. (2011)

15



later found that the duration of the NEQ regime is prolonged at higher Reynolds number.

Diamessis et al. (2011) attributed the regime prolongation to instabilities, possible at high

Re, in inclined shear layers. The theoretical model of Meunier et al. (2006) also indicated

that the beginning of the quasi-two-dimensional regime that follows the NEQ regime is

approximated at x/Dm ¥ Fr2/3Re, a function of both Fr and Re numbers.

2.1.3 The quasi-two-dimensional (Q2D) regime

The influence of stratification becomes progressively more prominent as the local

Froude number keeps decreasing. This is because of the progressive increase in the flow

inertial timescale that becomes significantly larger than that of the buoyancy. The stratified

wake patch becomes increasingly two-dimensional due to the strong suppression of vertical

motions. While the Q2D regime is often associated with the existence of ‘pancake’ vortices,

the regime can be strictly characterized by the reduction of U0. According to Spedding

(1997), the regime happens much earlier at Nt ¥ 50 while the two-dimensional pancake-

like structures are found to emerge at Nt ¥ 250 in the simulations of Brucker & Sarkar

(2010). Nt ¥ 250 can be translated into a downstream distance that depends on the

initial Froude number. For example, pancake structures were found at x/D ¥ 6 at the

very low Fr = 0.025 by Chongsiripinyo et al. (2017), or Nt ¥ 250 where D is the sphere

diameter. Although pancake structures are widely observed in the far field of the stratified

wake, they are in fact a generic feature of strongly stratified flows as their ‘vertically-thin’

manifestation is commonly caused by suppression of vertical motions. Investigations of the

emergence and evolution of pancake-like coherent structures can be found, among others,

in Flór et al. (1995); Riley & Lelong (2000); Beckers et al. (2001); Godoy-Diana & Chomaz

(2003); Godoy-Diana et al. (2004); Praud (2005); Spedding et al. (1996b). Of interest is

the work of Godoy-Diana et al. (2004) who suggested the viscous scaling Lv © LhRe≠1/2

based upon the conditions Frh π 1 and ReFr2
h π 1.
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2.2 Scaling analysis of stratified turbulence

The introduction to high-Re stratified wakes explored in this dissertation would not

be complete without a scaling analysis of the Navier-Stokes equations subject to density

stratification. The analysis is performed with the focus on a highly-stratified environment.

The Froude number is small, i.e. the horizontal velocity, U , the horizontal length scale,

lh, and the buoyancy frequency, N , are such that Frh = U/Nlh < O(1). Examination

of the dominant balances in the nondimensional equations leads not only to the vertical

length scale, lv, but also the factor R related to the shear Richardson number suggesting

that even for Frh π 1, turbulence can be obtained for su�ciently high Re. The governing

equations are

Òú
h · uú

h + ˆwú

ˆzú = 0, (2.3)

ˆuú
h

ˆtú + (uú
h · Òú

h)uú
h + wú ˆuú

h

ˆzú = ≠ 1
fl0

ˆpú

ˆxú
h

+ ‹
ˆ2uú

h

ˆxú
jˆxú

j

, (2.4)

ˆwú

ˆtú + (uú
h · Òú

h)wú + wú ˆwú

ˆzú = ≠ 1
fl0

ˆpú

ˆzú + ‹
ˆ2wú

ˆxú
jˆxú

j

≠
Âflúg

fl0
, (2.5)

ˆ Âflú

ˆtú + uú
h

ˆ Âflú

ˆxú
h

+ wú ˆ Âflú

ˆzú + wú ˆfl

ˆzú = Ÿ
ˆ2 Âflú

ˆxú
jˆxú

j

. (2.6)

Here, a superscript ú denotes dimensional quantity and a subscript h denotes

horizontal direction. Âflú is deviation of density from the background density fl. The

governing equations are non-dimensionalized by characteristic variables where U denotes

the horizontal velocity scale while lh and lv denote the horizontal and vertical length
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scales, respectively. The quantity – = lv/lh is the vertical-to-horizontal aspect ratio. Since

we are interested in pancake-vortex dynamics, the advection time scale lh/U is used as

the characteristic time scale rather than the buoyancy time scale, N≠1. Thus internal

gravity waves on a faster time scale are excluded from the dynamics. The characteristic

pressure fluctuation is floU2. As noted earlier, Frh is the horizontal Fr number defined by

Frh = U/lhN where buoyancy frequency is N = [gCú/fl0]1/2 and Cú = ≠ˆfl̄(z)/ˆzú |bg is

the background density gradient.

Characteristic vertical velocity, and characteristic density variation are yet to be

determined. Let Âflc and wc be characteristic density variation and characteristic vertical

velocity, respectively. Equation (2.6) can be non-dimensionalized as follows

5 ÂflcU

lh

6
ˆ Âfl
ˆt

+
5 ÂflcU

lh

6
uú

h

ˆ Âfl
ˆxh

+
5
wc Âflc

lv

6
w

ˆ Âfl
ˆz

+
C

ˆfl

ˆzú wc

D

w = ŸÂflc

l2
v

C

–2 ˆ2 Âfl
ˆx2

h

+ ˆ2 Âfl
ˆz2

D

. (2.7)

The first obvious choice in choosing Âflc comes from equating the first (or second) term with

the third term. This gives,

wc|1 = Ulv
lh

(2.8)

which also is in agreement with the continuity equation. Another scaling, however, comes

from equating the first term with the fourth term giving,

wc|2 =
ÂflcU

[lh(ˆfl/ˆzú)] =
ÂflcFrhg

floN
. (2.9)

Both, the background density gradient and the horizontal motion are relevant to

the problem. Therefore, equations (2.8) and (2.9) must constrain the vertical velocity to

the same order of magnitude, i.e. wc|1 = wc|2. The vertical momentum equation (2.5) is

non-dimensionalized based on wc|2 leading to
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Fr2
h

C
ˆw

ˆt
+ uh

ˆw

ˆxh
+

ÂflcgFrh

floNU–
w

ˆw

ˆz

D

= ≠ U2fl

lv Âflcg

ˆp

ˆz
≠ fl + Fr2

h

Re

C
1
–2

ˆ2w

ˆz2 + ˆ2w

ˆx2
h

D

. (2.10)

In the limit of strongly stratified flow with small viscous influence (Frh æ 0 and Re ∫ 1),

the temporal derivative of vertical velocity, advection terms, and viscous di�usion are

smaller, by a factor of Fr2
h, in comparison to the vertical pressure gradient and the baroclinic

terms. Thus, the flow satisfies a hydrostatic balance to leading order. The vertical pressure

gradient has to be balanced by density perturbation giving U2fl/(lv Âflcg) ≥ O(1). This

means that density variation varies as

Âflc = U2flo

glv
. (2.11)

The vertical length scale, lv, can now be estimated as follows. Since the two vertical

velocity scales are equal (wc|2 = wc|1), we can equate the right hand side of the equations

(2.8) and (2.9) to obtain

lv = flc

fl0

g

N2 , (2.12)

which, upon using the expression for flc given by equation (2.11) yields

lv = U

N
. (2.13)

Notice that, the vertical length scale lv was not suggested in advance as U/N but

this scaling comes naturally based on the dominant balances in the limit of Frh < O(1).

The governing equations namely conservation of momentum, conservation of volume, and

the density transport equation can now be written in the high-stratification regime as
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follows

ˆuh

ˆt
+ uh

ˆuh

ˆxh
+ Fr2

h

–2 w
ˆuh

ˆz
= ≠ ˆp

ˆxh
+ 1

Re–2
ˆ2uh

ˆz2 , (2.14)

≠ˆp

ˆz
≠ fl = 0, (2.15)

ˆuh

ˆxh
+ Fr2

h

–2
ˆw

ˆz
= 0, (2.16)

ˆ Âfl
ˆt

+ uh
ˆ Âfl
ˆxh

+ Fr2
h

–2 w
ˆ Âfl
ˆz

= w + 1
RePr–2

ˆ2 Âfl
ˆz2 . (2.17)

The relative magnitude of the vertical advection term O(Fr2
h/–2) and the viscous

term O(1/Re–2) distinguishes two dynamically di�erent regimes by introducing the ratio of

these two terms: R = ReFr2
h. For motions with large length scale R ∫ 1, the viscous and

di�usion terms can be neglected. The governing equations can be rewritten in dimensional

form as follows

ˆuú
h

ˆt
+ uú

h

ˆuú
h

ˆxú
h

+ wú ˆuú
h

ˆzú = ≠ 1
flo

ˆpú

ˆxú
h

, (2.18)

≠ 1
flo

ˆpú

ˆzú ≠
Âflúg

flo
= 0, (2.19)

ˆuú
h

ˆxú
h

+ ˆwú

ˆzú = 0, (2.20)
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ˆ Âflú

ˆtú + uú
h

ˆ Âflú

ˆxú
h

+ wú ˆ Âflú

ˆzú ≠ N2 flo

g
wú = 0. (2.21)

Following Billant & Chomaz (2001), an interesting part of these dimensional equa-

tions after scaling analysis is that equation (2.18) to (2.21) remain unchanged under a

certain type of transformation. The governing equations are invariant under the following

introduced variables,

N = N̂/—, zú = —ẑú, wú = —ŵú, flú = (1/—)fl̂ú, tú = t̂ú , (2.22)

where — is a constant and the other variables remain unchanged. This implies that the

time evolution of a solution of (2.18)–(2.21) can be deduced from the solution for any other

frequency N̂ , uú
h = ûú

h(x, y, zN, t). After non-dimensionalization of independent variables,

a solution uú
h is uú

h = ûú
h(x/Lh, y/Lh, zN/U, tU/lh). This suggests vertical length scale of

lv = U/N which is identical to equation (2.13) confirming that when N increases, the

vertical lengthscale decreases with an inverse proportionality.

If we follow the forward-cascade hypothesis where the dissipation is the ratio of

fluctuating kinetic energy u2 to the horizontal turn-over time scale lh/u, the horizontal

length scale can be written as lh = u3/‘. This makes the parameter R to be

R = ReFr2
h = ulh

‹

u2

l2
hN2 = u3

‹N2(u3/‘) = ‘

‹N2 (2.23)

which is identical to the buoyancy Reynolds number, Reb = ‘/‹N2. Pal et al. (2016)

found that Reb is O(1) in the region between x/D = 1 and 3, where turbulence regenerates

behind the sphere for their Fr = 0.125 simulation. According to Brethouwer et al. (2007),

if R ∫ 1, an energy cascade from large to small scale is possible allowing the existence of

an inertial range in horizontal energy spectra. The inverse of factor R is also identical to
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the local Richardson number Ri defined in Riley & deBruynKops (2003) to be

Ri = ≠g

flo

ˆflT

ˆz

M S

U
A

ˆu

ˆz

B2

+
A

ˆv

ˆz

B2T

V = N2/S2
v . (2.24)

Here, flT (x̨, t) = fl̄(z) + fl(x̨, t) is the sum of the ambient and fluctuating density

fields. Provided that dissipation from horizontal strain rate is small in comparison to

dissipation from vertical strain rate, dissipation can be estimated as

‘ ≥ ‹

S

U
A

ˆu

ˆz

B2

+
A

ˆv

ˆz

B2T

V . (2.25)

For a strongly stratified horizontal layer, with no energy accumulation on any scale,

energy of large horizontal eddies u2
h is forwardly transferred with the time scale of lh/uh to

smaller eddies and is dissipated at the same rate. Therefore,

S

U
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ˆu

ˆz

B2

+
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ˆv
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V ≥ 1
‹
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h
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The Richardson number thus scales as

Ri = N2
3

1
‹

u3
h

lh

4 = N2l2
h

u2
h

‹

uhlh
= 1

F 2
lh

1
Relh

= 1
R . (2.27)

Therefore, according to Riley & deBruynKops (2003), the flow will become or remain

turbulent if approximately Ri < 1 or R > 1. To further investigate that turbulence can

be activated at low-Fr but R Ø 1, investigation of higher-Re flow past a blu� body is

desirable and motivates the presented simulations.
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2.3 Dissertation questions

Previous investigations have provided a broad characterization of the turbulent

wake under the influence of density stratification. However, it is apparent that several

questions remain unanswered. The advancement in computer hardware which alleviates

the limitation of low Re and the temporal models make possible the use of numerical

approaches to answer these questions.

Recently, Pal et al. (2016) conducted a direct numerical simulation (DNS) of flow

past a sphere in a stratified fluid at Re = 3700, the largest Re for a body-inclusive

model at that time. Their results revealed that the cross-wake integrated TKE increased

with increased stratification (decreased Froude number) beyond Fr = UŒ/ND < 0.5.

One remaining question regarding the TKE increase is whether the non-linear dynamics

associated with the creation of subsequent small-scale eddies took place and turbulence

was in fact ‘re-generated’ at the very low Fr. This question is tackled in chapter 3 where

we investigated the dynamics of near-field vorticity with emphasis on the prevalence of

non-linear vortex stretching at low Fr.

The first body-inclusive simulation of flow past a heated sphere at Re ≥ O(104)

was performed by de Stadler et al. (2014). While de Stadler et al. (2014) emphasized the

passive-scalar mixing of the weakly-heated body, their results revealed a rate of decay of

U0 Ã x≠1 despite wake turbulence appeared to be fully-developed. A question which arose

following comparison between the results of de Stadler et al. (2014) and Pal et al. (2017) is

whether a sphere wake at Re = 104 but under stable density stratification would behave

di�erently. This is explored and answered in chapter 4 where we look into the rate of

U0 decay as well as budgets of turbulent kinetic energy of stratified flow past a sphere at

Re = 104. Additionally, a previous observation regarding the low-Re rate of U0 decay at

the immediate Reynolds number motivated us to look further into the classical proposed

23



scaling laws of the axisymmetric wake. This work is presented in chapter 5.

Lastly, the scaling analysis of stratified turbulence poses questions that can only be

answered with a su�ciently high-Re stratified wake that accesses stratified turbulence with

low local Fr. The analysis introduced the so-called buoyancy Reynolds number (Reb) and

essentially suggested that if Reb is su�ciently large, turbulence can be generated or sustained

even at small values of local Fr. While the stratified turbulent regime has been under

investigation, e.g. Riley & deBruynKops (2003); Lindborg (2006); Brethouwer et al. (2007);

Riley & Lindborg (2008); Lindborg & Brethouwer (2008) among others, stratified turbulence

has been computationally observed only in temporal-model simulations of wakes Brucker

& Sarkar (2010); Diamessis et al. (2011) but not in a realistic body-generated stratified

wake. Chapter 6 presents the first body-inclusive simulation of the stratified turbulent

wake behind a disk at Fr = 2 where the stratified turbulence regime at low Fr and high

Reb is observed.
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Chapter 3

On the vortex dynamics of flow past

a sphere at Re = 3700 in a uniformly

stratified fluid

3.1 Abstract

Vortex dynamics in the flow past a sphere in a linearly stratified environment is

investigated numerically. Simulations are carried out for a flow with Reynolds number of

Re = 3700 and for several Froude numbers ranging from the unstratified case with Fr = Œ

to a highly stratified wake with Fr = 0.025. Isosurface of Q criterion is used to elucidate

stratification e�ects on vortical structures near the sphere and in the wake. Vortical

structures in the unstratified case are tube-like and show no preference in their orientation.

Moderate stratification alters the orientation of vortical structures but does not change

their tube-like form. In strongly stratified cases with Fr Æ 0.5 there is strong suppression

in vertical motion so that isotropically oriented vortex tubes of approximately circular

cross-section are replaced by flattened vortex tubes that are horizontally oriented. At Fr
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= 0.025, pancake eddies and surfboard-like inclined structures emerge in the near wake and

have a regular streamwise spacing that is associated with the frequency of vortex shedding

from the sphere. Enstrophy variance budget is used to analyze the vortical structure

dynamics. Increasing stratification generally decreases enstrophy variance for Fr Ø O(1)

cases. The flow enters a new regime in strongly-stratified cases with Fr Æ 0.25: increasing

the stratification increases enstrophy variance, especially near the body. Stratification

distorts the cross-sectional distribution of enstrophy variance from a circular isotropic shape

in the unstratified wake into di�erent shapes, depending on Fr and distance from the

sphere, that include: 1) elliptical distribution, 2) twin peaks suggestive of two-dimensional

vortex shedding, and 3) triple-layer distribution where a relatively low enstrophy layer is

sandwiched between upper and the lower layers with high enstrophy. In the near wake,

vortex stretching by fluctuating and mean strain are both responsible for enhancing vorticity.

Increasing stratification (decreasing Fr) to O(1) values tends to suppress vortex stretching.

Upon further reduction of Fr below 0.25, the vortex stretching takes large values near the

sphere and, consequently, enstrophy variance in the near wake increases. The increase in

vortex stretching is associated with unsteady, intermittent shedding of the boundary layer

from the sides of the sphere in highly-stratified wakes with Fr < 0.25.

3.2 Introduction

Turbulence presents a spatially complex distribution of vorticity. Turbulent flow

contains a wide range of vortical structures with various length scales and turn-over time

scales. The influence of these vortical structures on turbulence dynamics from nonlinear

cascade to scalar mixing to kinetic energy dissipation has been the subject of much study

but less so in stratified flows. Stratification is ubiquitous in the environment and buoyancy

a�ects the turbulent flows past marine swimmers, underwater submersibles, flying vehicles,

26



underwater topography, islands and mountains.

Turbulent wakes in stratified fluid have been the subject of experimental study for

over 30 years as summarized below but numerical turbulence-resolving simulations of the

wake that include the body are relatively recent. Lin & Pao (1979) reviewed experimental

studies that showed stratification suppresses vertical motion, promotes downstream hori-

zontal coherent eddies, and enables propagation of internal gravity waves into the far field.

Hanazaki (1988) numerically simulated stratified flow over a sphere at Reynolds number

(Re) of 200 and Froude number FrR œ [0.25,200] (FrR = U/NR, where U , N , and R are

free stream velocity, buoyancy frequency, and radius of the sphere). DNS of Hanazaki (1988)

provided visualization of downward motion of vertical velocity and isopycnal lines showing

a lee wave behind the sphere at low Fr. Chomaz et al. (1992) experimentally showed that

the downward motion induced by stratification delays separation. The downward motion

also alters the separation region from circular to a bow-tie shape. Chomaz et al. (1993)

identified four di�erent regimes based on Fr where Fr = U/ND. For Fr < 0.4, the wake

corresponds to triple-layer flow with two lee waves surrounding a layer of two-dimensional

motion. Between Fr of 0.4 and 0.75, the saturated lee wave suppresses the separation

region or splits it into two. Between Fr of 0.75 and 2, the wake progressively recovers its

behavior in a homogeneous fluid. For Fr larger than 2.25, the near wake is similar to the

homogeneous case.

A stratified wake at high Fr exhibits three distinct regions. The first region is

the near wake (NW) where the wake spreads uniformly in all dimensions and turbulence

behaves as it does in a homogeneous fluid. It is followed by a second non equilibrium

(NEQ) regime identified by Spedding (1997) where there is an onset of stratification e�ect

including conversion of stored potential energy to kinetic energy and anisotropy between

horizontal and vertical motions. The third region (Q2D) is characterized by the existence

of vertically suppressed two-dimensional eddies, the so-called “pancake vortices”. The
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formation mechanism of the pancake vortices has been debated. Pao & Kao (1977) states

that it is due to the helical vortex shed by the sphere that persists into the far wake while

Spedding (2001) attributes the mechanism to a combination of KH instability and spiral

mode instabilities. Bonnier et al. (1998); Gourlay et al. (2001) argue that the existence

of pancake vortices does not require coherent structures in the near wake. Later DNS

by Dommermuth et al. (2002); Brucker & Sarkar (2010); Diamessis et al. (2011) also

find pancake vortices in their temporal flow model with initial conditions that do not

explicitly include coherent structures. Note that the temporal flow model refers to an

approximation where the streamwise direction in the computational domain is assumed

to be periodic, the Reynolds-averaged statistics evolve in time, and these statistics are

obtained by streamwise averaging. The temporal approximation is applicable to a frame

moving with the body velocity U , and is adequate if the wake deficit is small relative to

U and if realistic initial conditions for the flow field can be prescribed. The numerical

approach of this paper is a spatially evolving model where streamwise periodicity is not

assumed and the Reynolds-averaged statistics, computed by temporal averaging, evolve

as a function of streamwise distance. Pasquetti (2011) avoids ad-hoc prescription of the

initial conditions in a temporal model by first performing body-inclusive spatially evolving

simulation and then symmetrically embedding a subdomain from that simulation into a

larger domain for the temporal model. Similar to experiments, Pasquetti (2011) found that

an intermediate NEQ regime was followed by large scale quasi-2D structures in the late

wake.

Investigation of coherent structures and vorticity statistics has provided useful

information regarding the turbulent wake structure. Yun et al. (2006) numerically traced

vortical structures behind a sphere at Re = 3700 and 104. Constantinescu & Squires

(2004) visualized vortical structures using the method of Jeong & Hussain (1995) in the

subcritical and supercritical regimes, where the boundary layer on the sphere surface is

28



laminar and turbulent, respectively. These studies, however, did not include background

density gradient. Spedding (1997) visualized vertical vorticity of stratified wake up to Nt

= 1600 revealing large scale pancake vortices. Spedding (2002) examined vortical structure

in wakes with Fr Ø 2 and stated that most of the late-time properties of long-lived vortex

structure are independent of initial Froude number.

Recently Pal et al. (2016) performed DNS of stratified flow past a sphere at Re =

3700 over a wide range of Fr in the range [0.025, Œ]. They found that the near wake at

Fr = 0.5 has very low fluctuation energy but further reduction of Fr to 0.25 and beyond

regenerates turbulent fluctuations in the near wake. The turbulent kinetic energy (TKE)

in the near wake (x/D < 20) of these low-Fr wakes became substantially larger than that

in the unstratified case. The simulation data is analyzed in the present paper and new

results on the behavior of the small scales are presented by analyzing the behavior of all

components of enstrophy and its budget. We also examine the changes in vortex dynamics

and coherent structures, identified using the Q-criterion, that are brought about by increased

stratification. All prior numerical studies of the vorticity structure in a stratified wake

have employed a temporal flow model for the simulations while the present study has the

advantage of using a spatial flow model that includes the body. We address the following

questions. How does stratification change vortical structures near the body and in the

wake? Is there any qualitative di�erence in terms of enstrophy magnitude and distribution

between the moderately and strongly stratified regimes? What are the mechanisms that

are responsible for changes in enstrophy (a metric of small-scale fluctuations) induced by

stratification?
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3.3 Formulation

3.3.1 Governing equations

Continuity:

ˆuú
i

ˆxú
i

= 0, (3.1)

Momentum:

ˆuú
i

ˆtú + uú
j

ˆuú
i

ˆxú
j

= ≠ 1
fl0

ˆpú

ˆxú
i

+ ‹
ˆ2uú

i

ˆxú
jˆxú

j

≠
Âflú

fl0
g”i3, (3.2)

Density:

ˆflú

ˆtú + uú
j

ˆflú

ˆxú
j

= Ÿ
ˆ2flú

ˆxú
jˆxú

j

. (3.3)

The ú superscript denotes dimensional quantities. ‹ is the kinematic viscosity and Ÿ is

the density di�usivity. The density is decomposed into a background density, fl0, a linear

variation in x3 direction, fl̄ú(x3) and a fluctuation, fl̃ú(xi, t):

flú = fl0 + fl̄ú(x3) + fl̃ú(xi, t), (3.4)

where flú ≠ fl0 π fl0. Density variation enters the momentum equation only through the

buoyancy term. These equations are non-dimensionalized using U (the free stream velocity),

D (the diameter of the sphere), fl0, and Cú = ≠ˆfl̄ú(x3)/ˆxú
3 |(t=0) that denotes the constant

vertical gradient of background density. The new non-dimensional variables obtained are:
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t = túU

D
, xi = xú

i

D
, ui = uú

i

U
, fl = flú

fl0
, fl̃ = fl̃ú

DCú , p = p̃ú

fl0U2 . (3.5)

Substituting equation (3.5) into (3.1)-(3.3), we obtain the non-dimensionalized form

as:

Continuity:

ˆui

ˆxi
= 0, (3.6)

Momentum:

ˆui

ˆt
+ uj

ˆui

ˆxj
= ≠ ˆp

ˆxi
+ 1

Re

ˆ2ui

ˆxjˆxj
≠ 1

Fr2 Âfl”i3, (3.7)

Density:

ˆfl

ˆt
+ uj

ˆfl

ˆxj
= 1

RePr

ˆ2fl

ˆxjˆxj
. (3.8)

Here, the relevant non-dimensional parameters are as follows: the Reynolds number,

Re = UD/‹, the Prandtl number, Pr = ‹/Ÿ, and the Froude number, Fr = U/(ND),

where N is the buoyancy frequency defined by N = [gCú/fl0]1/2. In the following discussion,

all variables referenced are non-dimensional unless otherwise noted.

3.3.2 Numerical scheme

The governing equations (A.38)–(A.40) are solved numerically using direct numerical

simulation (DNS) in a cylindrical coordinate system on staggered grids. The sphere is

represented by the immersed boundary method of Yang & Balaras (2006); Balaras (2004).
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The governing equations are marched using a combination of explicit and implicit schemes.

Implicit marching by the second order Crank-Nicolson (CN) scheme is performed for the

viscous terms to alleviate the sti�ness of the discretized system. The remaining terms are

marched explicitly using a third-order Runge-Kutta (RK3) scheme. The periodic boundary

condition in the azimuthal direction reduces the discretized Poisson equation into inversion

of a pentadiagonal matrix. The pentadiagonal matrix system is solved using a direct solver,

Yang & Balaras (2006). Inflow and convective outflow boundary conditions are applied at

the inlet and outlet of the domain. In order to control spurious reflections from internal

waves and other disturbances propagating out of the domain, sponge regions are employed

near the free stream and inlet boundaries where the following relaxation terms are added

to the governing equations:

≠„(xi)[ui(xi, t) ≠ Ui], ≠„(xi)[fl(xi, t) ≠ flŒ(x3)] . (3.9)

The sponge layer takes the form of a Rayleigh damping function which is designed in such

a way that it gradually relaxes the velocities and density to their respective values at the

boundaries. Here Ui is the freestream velocity and flŒ(x3) is the density of the stratified

background. This is accomplished by adding the explicit damping terms of equation (4.4)

to the right hand side of equation (A.39) and (A.40), respectively. The variable „(xi) is

constructed such that it increases quadratically from „ = 0 to „ = 1 over a sponge region

of thickness 10 grid points at the inflow and at the freestream boundaries.

3.3.3 Parameters

Table 3.1 shows parameters for the eight simulations that range from an unstratified

case to the highly-stratified case with Fr = 0.025. All simulations are performed with

Re = 3700 and the number of points in the azimuthal direction is chosen to be N◊ = 128.
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Table 3.1: Simulation parameters. The sphere center is at x = 0, and the streamwise
domain length is split into downstream (L+

x ) and upstream (L≠
x ) portions;

Lx = L
+
x + L

≠
x .

Case L+
x /D L≠

x /D Lr/D Nx Nr

Fr = Œ 80.1 13.8 16.2 4608 632
Fr = 3 80.1 13.8 59.7 4608 692
Fr = 1 80.1 25.7 59.7 4608 692
Fr = 0.5 79.3 39.2 59.7 4608 692
Fr = 0.25 79.3 39.2 59.7 4608 692
Fr = 0.125 79.3 39.2 59.7 4608 692
Fr = 0.05 23.3 39.2 59.7 3072 692
Fr = 0.025 23.3 39.2 59.7 3072 692

The choice of Re = 3700 allows validation against DNS of unstratified flow past a sphere by

Rodriguez et al. (2011). The choice of Pr = 1 is justified by de Stadler et al. (2010). Lx/D

and Lr/D are domain sizes in the streamwise and radial directions, respectively. Domain

size in the radial direction and in the upstream direction for all stratified case are enlarged

to allow free propagation of internal gravity waves. The total number of grid points is

approximately 400 million. Grid stretching is used in radial and streamwise directions to

concentrate points near the sphere surface in order to resolve the laminar boundary layer.

The domain is decomposed only in the streamwise direction which reduces communication

time between processors as compared to three-dimensional decomposition. Each simulation

requires approximately 500 hours run time on 512 processors. Temporal averaging of

data to compute statistics is performed over 80-100 time units or approximately a single

flow-through time unit after statistical steady-state.

3.4 Methods of data analysis

The flow is statistically inhomogeneous in all directions. Thus, Reynolds-averaged

statistics are obtained by averaging solely over time. Vorticity is computed in cylindrical

33



coordinates prior to transformation into Cartesian coordinate. The total enstrophy can

be decomposed into mean and fluctuating components. In the present paper, we examine

the fluctuating enstrophy which hereafter is simply called enstrophy (the second term of

the rhs in equation 3.11). Reynolds average is denoted with overline. Three dimensional

visualization of vortices is done using the Q-criterion of Hunt et al. (1988) which defines a

vortex by the region where the rate of rotation tensor, �ij, exceeds strain rate tensor, Sij.

Large positive Q implies strong swirling motion.

ui = ui + uÕ
i, fli = fli + flÕ

i, fl̃i = fl̃i + fl̃Õ
i, pi = pi + pÕ

i (3.10)

1
2 (ÊiÊi) = 1

2 (Êi Êi) + 1
2

1
ÊÕ

iÊ
Õ
i

2
; Êi = ‘ijk

ˆuk

ˆxj
(3.11)

Q = 1
2(|�|2 ≠ |S|2); �ij = 1

2

A
ˆui

ˆxj
≠ ˆuj

ˆxi

B

, Sij = 1
2

A
ˆui

ˆxj
+ ˆuj

ˆxi

B

(3.12)

3.5 Results

The numerical method and grid resolution of the present DNS was validated using

experimental measurements and numerical results available in the literature by Pal et al.

(2016). Comparison of nondimensional vortex shedding frequency, St = fD/U , separation

angle, Ïs, drag coe�cient, Cd, and rearward stagnation pressure coe�cient, Cpb, agree

well with the previous investigations Schlichting & Gersten (1968); Kim & Durbin (1988);

Sakamoto & Haniu (1990); Seidl et al. (1997); Tomboulides & Orszag (2000); Constantinescu

& Squires (2004); Yun et al. (2006); Rodriguez et al. (2011) as discussed by Pal et al.
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(2016).

3.5.1 Wake vortices

3.5.1.1 Vortex configuration

Figure 3.1 visualizes instantaneous vortical structures in the wake using the Q-

criterion at Q = 1 for the unstratified case. Since Q, defined by equation (3.12), represents

a region where the rate of rotation tensor �ij exceeds the strain rate tensor Sij, a high value

of Q signifies intense rotation of fluid elements. Close to the body, vortex rings are shed

from the sphere in the unstratified wake (figure 3.1). These rings remain circular before

breaking down at around x/D = 2.4, Rodriguez et al. (2011). Immediately downstream

of the transition, a bundle of entangled vortical structures emerges. These vortices are

tube-like structures with high length-to-diameter aspect ratio, the so-called vortex tube.

For both Fr, even though the vortex tubes in general do not have directional preference, the

subset of streamwise-oriented tubular structures have high-magnitude streamwise vorticity

and no preference for other vorticity components. In figure 3.1, the density of vortex tubes

per unit volume based on Q = 1 decreases significantly after x/D ¥ 7.
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Figure 3.2 shows vortices at higher magnitude of Q = 50. At this level of Q, vortical

structures in the unstratified Fr = Œ wake are present in the region 1.5 < x/D < 5 while

they are absent elsewhere. The fact that the strength (Q) of the vortex tubes spanning

1.5 < x/D < 5 is higher than that of vortices shed from the body indicates that vortex

shedding is not the only source of vorticity. The mechanisms generating vorticity will

be explained later in section 3.5.3. Streaky structures closer to the sphere seem to have

prefered orientation in the streamwise direction while this preference is lost away from

the body. Stratification at Fr = 1, figure 3.2 (right), elongates the vortex tubes and thus

increases their aspect ratio. The vortical structures have a vertical undulation owing to

a steady lee wave pattern behind the body. The number density of vortical structures is

significantly smaller than that in the unstratified wake showing suppression of enstrophy

(will be quantified later) at this level of stratification. Stratification at Fr = 0.5 confines

vortex tubes to streamwise-oriented regions as shown in figure 3.3. Two pairs of streaks are

observed having their size longer than the sphere’s diameter. That fluctuating enstrophy

is suppressed by stratification is evident since vortical structures at Fr = 0.5 are barely

observed even with Q = 5.

While vortical structures depicted by isosurface of Q for weak stratification (Fr Ø

0.5) bear some similarities to the unstratified case in terms of size, aspect ratio and

orientation, structures at stronger stratification (Fr = 0.125) shown in figure 3.3 (right)

are significantly di�erent. From figure 3.3 (right), immediately after the sphere there is a

stack of long thin flattened tubes that alternate on either side of the vertical center-plane.

This is due to quasi two-dimensional vortex shedding from the sides of the sphere.

The azimuthal vorticity, Êy, is organized into a triple layer as shown by the side view

of the Fr = 0.25 case in Figure 3.4. The lee wave is apparent in the stratified case and the

variability of vorticity is diminished. The vertical wake height is narrower in comparison to

the unstratified case and the wake is bounded by the top and bottom shear layers which
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Figure 3.2: Iso-surface of Q criterion at Q = 50 for Fr = Œ (top) and Fr = 1
(bottom). Inset on right panel shows the circular cross-section of the
vortex tube.
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Figure 3.3: Iso-surface of Q criterion at Q = 5 for Fr = 0.5 (top) and for Fr = 0.125
(bottom). Inset on right shows the elliptical cross-section of the vortex
tube in the strongly stratified regime.
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Figure 3.4: Side view azimuthal vorticity (Êy) for Fr = Œ (top) and Fr = 0.25
(bottom).

exhibit vertical undulations impressed by a steady lee wave pattern but little turbulence.

The middle layer contains horizontal strips of vorticity that are thin in the vertical. The

isosurface of Q at Fr = 0.25 is similar to that of Fr = 0.125 and is not shown here.

The quasi-2D regime is a feature of the far wake, appearing at x/D ¥ 1000 or

Nt ¥ 250 in the moderately stratified Fr = 4 wake simulated by Brucker & Sarkar (2010)

in a temporal flow model. When the stratification is very high, pancake vortices emerge in

the near wake. Isosurface of Q = 0.25 in the perspective view of figure 3.5 (top) reveals

two types of organized structures, both are thin in the vertical. Pancake vortices which

take the form of discs are clear and the first pancake eddy is seen in the perspective view

of the top panel at x/D ¥ 6 which corresponds to Nt = 6/Fr = 240 which is close to the

value of Nt ¥ 250 quoted by Brucker & Sarkar (2010). While the pancake vortices are

located o� the center line, there are “surfboard” structures sequentially located closer to

the middle. The side view (figure 3.5 middle) shows that, while the pancakes are located

on the horizontal center plane, the surfboard-like structures are not horizontally oriented
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Figure 3.5: Coherent structures in a strongly stratified wake (Fr = 0.025) visualized
with the isosurface of Q = 0.25. Top panel is a perspective of the wake
with the sphere at the upper left corner. Middle panel is a side view (flow
from left to right) and bottom panel is a top view.
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and their leading edges are located at the same x/D location as of the pancake eddies. In

the side view, each surfboard pair appears as a V with the vertex of the V coincident with

the pancake. An average distance between the pancake eddies is x/D = 4.41 according to

figure 3.5 (bottom). The advection velocity of a pancake is obtained by tracking an eddy

through time as shown in Figure 3.6. Figure 3.7 (left) reveals an advection velocity of 0.846.

The spacing between two subsequent pancake eddies and this estimate of advection velocity

allows conversion to temporal frequency of the pancake eddy, leading to a Strouhal number

of St = fD/U = 0.192. The primary peak in the streamwise and spanwise velocities power

spectra (figure 3.7 right panel) is at St ¥ 0.2. Therefore, the origin of these pancake eddies

is shedding of boundary layer vorticity from the sides of the sphere (similar to the Karman

vortex street of a cylinder). This frequency is close to the shedding frequency of flow past

a cylinder at (St = 0.208) reported in Parnaudeau et al. (2008). The surfboard structures

are shed from the sphere with the same frequency as of the pancakes. Inspection of the

flow near the sphere suggests that the surfboards are an interaction of the top and bottom

separated boundary layers with the horizontal vortex shedding.

Another kinematic aspect of the pancakes and of the surfboards apart from their

convective translation is their rotational direction. The isosurface of Q is colored with

vertical vorticity. The pancake disks originate from quasi 2D shedding of the boundary layer

in the horizontal center plane. The shedding occurs from alternate sides of the sphere and

the sign of the vertical vorticity of a pancake disk depends on the side of the centerline that

it occupies. Two surfboard structures that form a ‘V’ in figure 3.5 (middle) have the same

orientation of vertical vorticity as the pancake at the vertex of the V suggesting continuity

of vortex lines at the leading edge of the V. The vertical vorticity amplitude of these

surfboards is, however, smaller than that of the pancake disks. Overall, the distribution of

vorticity is indicative of a sinuous instability mode.
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Figure 3.6: Location of a pancake eddy for Fr = 0.025 versus time.

1

Figure 3.7: Location of a pancake eddy vs time (left) and power spectra of velocity
components for Fr = 0.025 at x/D = 2.19, y/D = 0.51 and z = 0 (right).

3.5.1.2 Separation

While there are quantitative changes in how the incoming flow goes past the sphere

under di�erent levels of stratification, the cases of Fr = 0.5 and 0.125 shown in Figure 3.8

are su�cient to illustrate the qualitative changes induced by buoyancy on the flow at the

sphere and its separation. At moderate Fr, the incoming flow has enough kinetic energy to

go above and below the sphere which can be seen from the smooth and continuous isosurface

of Q at Fr = 0.5. There is a di�erence with respect to the axisymmetric separation in the

unstratified case. Stratification delays separation at the top and bottom of the sphere with

respect to its sides. Due to conversion of stored potential energy to kinetic energy, fluid at

the top and bottom regions gains momentum which helps the boundary layer overcome

the adverse pressure gradient and remain attached to the surface further downstream than
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Figure 3.8: Isosurface of Q criterion used to examine flow separation.

in the horizontal plane. This results in the delay of separation in the vertical plane. The

separation line viewed from the rear (bottom-left panel of Figure 3.8) has a bow-tie shape.

At su�ciently low Fr, there is another qualitative change: flow blocking, i.e. the incoming

flow does not have enough kinetic energy to go past the top and bottom points of the

sphere. Therefore, the flow is forced to go around the sphere for Fr = 0.125 as shown by

the absence of Q isosurface in the central region on the frontward-facing surface of the

sphere (Figure 3.8, bottom right panel). The boundary layer at Fr = 0.125 is shed from

the sides of the sphere (Figure 3.8, top and bottom right panels)
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Fr = 1 Fr = 3 Fr = 1

1

Figure 3.9: Enstrophy, ÊÕ
iÊ

Õ
i/2, plotted over a transverse cross-section at various

streamwise locations. Cases with Fr = Œ, 3, and 1 are shown.

45



Fr = 0.25 Fr = 0.125 Fr = 0.05

1

Figure 3.10: Enstrophy, ÊÕ
iÊ

Õ
i/2, plotted over a transverse cross-section at various

streamwise locations. Cases with Fr = 0.25, 0.125, and 0.05 are shown.
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3.5.1.3 Spatial distribution of enstrophy variance

Figure 3.9 shows the spatial distribution of enstrophy at di�erent downstream

locations for Fr = Œ, 3, and 1. Beyond x/D = 2.5, the enstrophy in the core of the wake

tends to decrease with decreasing Fr until Fr = 0.5 (not plotted) where the enstrophy is

rather small, about 1 % of that at Fr = Œ. The distribution of enstrophy also changes

among cases. Consider x/D = 0.52 (top panel). For Fr = Œ, there is a thin circular ring

of high enstrophy associated with the separating boundary layer, also seen as a sequence of

vortex rings in the visualization of Q (figure 3.1). The separating boundary layer forms an

unstable ring-like shear layer that has enhanced enstrophy. As stratification increases (Fr

decreases), the boundary of the region with relatively high enstrophy starts distorting from

a circle to an ellipse. This non-circular cross-section very close to the sphere is consistent

with the previous discussion of boundary layer separation occurring at di�erent angles

as measured from the sphere forward stagnation point. At x/D = 0.52, the Fr = 1 case

shows the highest enstrophy among the three cases which can also be surmised from the

isosurface of Q = 50 where intense swirling vortex tubes move slightly closer to the sphere

as compared to Fr = Œ in figure 3.2.

The fluctuating enstrophy increases moving downstream to x/D = 1.5. While

peak enstrophy still resides at the periphery, there is significant enstrophy in the core

associated with the recirculating flow and unsteady, flapping shear layer. Stratification

causes downward motion behind the sphere keeping relatively high enstrophy closer to the

sphere. Moving downstream, the buoyancy-induced anisotropy of cross-sectional enstrophy

becomes more pronounced. At x/D = 1.5, the Fr = 1 cases loses the signature of the

vortex ring and, instead, has a dumbbell shape with two local peaks, one on each side of

the centerline. These two blobs of enstrophy are approximately 4 times larger in magnitude

compared with Fr = Œ and 3. At x/D = 2.5, the enstrophy increases for Fr = Œ and
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Fr = 3 while it fades for Fr = 1. By x/D = 10 (bottom panel), the two separated

peaks of enstrophy are no longer prominent in the Fr = 1 wake. Although the enstrophy

increases rapidly near the body for Fr = 1, stratification at this level suppresses small-scale

turbulence after x/D = 1.5 according to figure 3.9.

Figure 3.10 shows cross-sectional enstrophy at low Fr of 0.25, 0.125, and 0.05.

There is a striking increase of enstrophy in these low-Fr cases relative to the moderate-Fr

cases of figure 3.9. This implies that small scale fluctuations reappear when Fr decreases

beyond 0.25. Furthermore, the distribution of enstrophy is also di�erent in this low-Fr

regime relative to that at higher Fr. The flow separates from the sides of the sphere

leading to intensified vertical side lobes of vorticity at x/D = 0.52. The separated shear

layer responds to stratification by developing instabilities with small vertical scale as was

seen in the Q-visualizations and also flaps unsteadily (more so in the Fr = 0.125 and

0.05 cases) in the horizontal plane. As a result the enstrophy variance takes the form of

a horizontally-oriented triple layer: there are two outer layers with high enstrophy and a

central layer with low enstrophy. The aspect ratio (horizontal to vertical) of these layers

becomes progressively larger with increasing Fr.

3.5.2 Area-integrated values of enstrophy and its components

The enstrophy increases dramatically, by almost two orders of magnitude. The

enstrophy integrated over the y-z cross-section is shown in figure 3.11 for di�erent Fr.

In all cases the enstrophy increases, reaches a maximum close to the sphere surface, and

then decays. In the low- or moderate-stratification regime with Fr Ø O(1), the e�ect of

buoyancy is to reduce enstrophy. The onset of the stratification e�ect scales as Nx/D so

that the deviation of enstrophy relative to the unstratified case in the Fr = 3 wake occurs

further downstream than in the Fr = 1 case. The value of Fr = 0.5 appears to be a critical

Fr where the integrated enstrophy in the near wake (x/D < 20) is the smallest among all
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Figure 3.11: Streamwise variation of area-integrated enstrophy.

cases.

There is a qualitative change in the stratification e�ect on enstrophy when Fr

decreases below 0.5, namely, the integrated enstrophy near the body (x/D < 2) monotoni-

cally increases with decreasing Fr. As discussed previously, the boundary layer sheds in a

two-dimensional manner in this low-Fr regime; furthermore, vortices are shed unsteadily in

the horizontal plane from various vertical locations, develop instabilities with small vertical

scale, U/N , and also flap unsteadily in the horizontal plane. These aspects of unsteady

motion create a wide range of scales of motion explaining why the enstrophy near the body

increases again once Fr < 0.5.

The enstrophy near the body (x/D < 2) in the low-Fr cases with Fr Æ 0.125

exceeds the corresponding values in the unstratified case substantially, by 1-2 orders of

magnitude. There is a rapid rise of enstrophy in the unstratified case which brings its

value close to that in the low-Fr regime soon after. However, the relatively rapid spread of

the unstratified wake thickness causes a corresponding decrease in enstrophy so that, for

10 < x/D < 70, the unstratified wake has lower enstrophy than these low-Fr cases. This

is in contrast to the situation in the Fr Ø O(1) regime where the unstratified wake has

larger enstrophy for 10 < x/D < 70.
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Figure 3.12: Partition of area-integrated enstrophy into: (a) horizontal component,
and (b) vertical component.

Figure 3.12 shows decomposition of area-integrated fluctuating enstrophy into

vertical (ÊÕ
z), and horizontal (ÊÕ

h) components. Since, ÊÕ
x and ÊÕ

y components behave

similarly, both contributions are lumped together in that of ÊÕ
h. The behavior of the

unstratified case (black dash-dot line) shows that there is little di�erence between the

evolution of horizontal and vertical components. It was shown in figure 3.11 that the

low-Fr cases with Fr Æ 0.125 have larger enstrophy relative to the unstratified case. This

remains true for ÊÕ
h, but only very near the body (x/D < 2.5) in the case of ÊÕ

z. The

reason for the similar behavior of ÊÕ
z and ÊÕ

h for x/D < 2.5 is that vortex shedding from

the side of the sphere (observed in figure 3.9 and figure 3.10) and subsequent instabilities

of the shed vorticity layers increase all components of fluctuating vorticity for x/D < 2.5.

However the stabilizing e�ect of buoyancy acts further downstream so that the contribution

of the vertical component in all stratified wake simulations tends to decrease faster than

the unstratified case at x/D ¥ 4.

50



3.5.3 Enstrophy mechanisms

The vortex dynamics is analyzed by means of equation (3.13) below for the enstrophy

variance. Each term is computed at statistical steady-state and the temporal derivative

term thus vanishes. The interesting aspect of this equation is whether each term behaves as

a source or as a sink of enstrophy. At su�ciently high Re, the dominant source term for the

enstrophy equation is stretching by turbulent vorticity (S1) and the dominant sink term is

dissipation (DISSIP ), Tennekes & Lumley (1972). Vortex stretching underpins the energy

cascade from large to small scales. The strongly positive values of S1 in figure 3.13 implies

that stretching outweighs compression of vortex lines and the net e�ect of the strain field

is to create enstrophy, Tennekes & Lumley (1972).

Consider the unstratified case first. The dominance of stretching and dissipation

plotted in figures 3.13 and 3.14, respectively, is clear. Among the three stretching

terms, stretching by fluctuating strain (S1) is dominant, stretching by mean strain (S2) is

substantial while stretching of mean vorticity by fluctuating strain (S3) (figure 3.16, right)

is the smallest. Recall that, although there were intense vortical structures (Q = 50) in

figure 3.2 between 1.5 < x/D < 5, they were absent near the sphere for x/D < 1.5. It is

the large positive value of the vortex stretching terms (S1 and S2) in 1.5 < x/D < 5 that

enables the formation of these large-Q structures. Viscous dissipation (DISSIP ) is the

dominant sink for enstrophy while advection by mean (ADV EC) tends to redistribute

enstrophy from the region near peak enstrophy. The other terms are at least an order

of magnitude less than S1, S2, ADV EC, DISSIP as well described by the order of

magnitude analysis of Tennekes & Lumley (1972).
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The physical meaning of each term is as follows:
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Buoyancy significantly a�ects the distribution and magnitude of enstrophy as

has been discussed in previous sections, e.g. section 3.5.2 shows that area-integrated

enstrophy generally decreases with increasing stratification in moderately stratified wakes

with Fr = O(1) and generally increases with increasing stratification for highly stratified
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Figure 3.13: Cross-sectional integration of stretching term S1 (left) and S2 (right).

wakes with Fr Æ 0.125. Quantification of equation (3.13) allows examination of the

underlying reason for the stratification e�ect observed in the simulations. Surprisingly, the

area-integrated baroclinic torque (BT ) is found to be relatively small (figure 3.16, left) and

not the primary reason. Rather it is the implicit e�ect of buoyancy on vortex stretching as

elaborated below.

Figure 3.13 shows that vortex stretching tends to decrease when the stratification

increases as Fr is reduced to O(1) values. In accordance with integrated enstrophy in

figure 3.11, Fr = 0.5 is the critical Fr number beyond which a further reduction of Fr

increases the vortex stretching term. Fr = 0.125 and Fr = 0.05 wakes experience higher

peak in stretching by turbulent strain compared to the unstratified case. This increase

is also observed in the stretching by the mean strain where S2 increases when Fr < 0.5.

Reactivated velocity fluctuations and high velocity gradient in the vertical direction (the

mean flow is reorganized into multiple two-dimensional layers) combine to increase S2.

It is interesting to note that, while integrated enstrophy and their components shown in

figure 3.11 and 3.12 for Fr = 0.25 and 0.125 are larger than that of unstratified wake

until the far end of the downstream domain, vortex stretching remains large only closer
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Figure 3.14: Cross-sectional integration of dissipation (left) and advection(right).

to the sphere and become less than unstratified stretching by x/D ¥ 3. Regardless of

the numerical approach one uses (LES,RANS) away from the body, it is thus imperative

that the model accounts for motions near the sphere in these low-Fr wakes to capture the

near-sphere enhancement of enstrophy that then lasts far downstream.

The stratified cases with Fr Æ 0.125 experience stronger vortex stretching compared

with the unstratified case and stratified case at Fr Ø 0.25. The peaks of vortex stretching

lie in the vicinity of highly rotational coherent vortices which shift upstream in the low Fr

cases. Thus, as stratification increases, enstrophy is produced via stretching mechanism

closer to the sphere. Even with relatively high mean strain in the near wake compared to

late wake, fluctuating strain still exceeds the mean strain resulting in the higher value of

S1 compared to S2 in all cases.

While stretching and tilting by mean and fluctuating strain act mainly as the source,

advection and dissipation balance them by being a transport and a sink of the enstrophy.

Similar to the unstratified case, small scale dissipation remains the primary sink in the

fluctuating enstrophy equation while mean advection acts secondarily. Unlike advection

by mean flow, turbulent transport and production increase enstrophy near the sphere
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Figure 3.15: Cross-sectional integration of turbulent di�usion (left) and production
(right).

and decrease enstrophy further downstream as shown in figure 3.15. Both transport and

production terms are larger in magnitude in the low-Fr regime. Stretching, S3, and viscous

di�usion term, V Diff (not shown here) are two orders of magnitude smaller than S1 and

do not significantly alter the enstrophy field.

3.6 Summary and Conclusions

DNS of flow past a sphere at Re = 3700 has been carried out in moderate-to-highly

stratified cases and results with eight stratification levels of Fr = Œ, 3, 1, 0.5, 0.25, 0.125,

0.05, and 0.025 are reported; here, the unstratified case corresponds to Fr = Œ. Vortex

dynamics is investigated by means of visualization of instantaneous vortical structures with

the Q criterion, spatial distribution and magnitude of enstrophy (ÊÕ
iÊ

Õ
i/2), and computation

of terms in the enstrophy transport equation.

The Q criterion enables three-dimensional visualization of vortical structures. In the

unstratified case, circular vortex rings are shed from the sphere which then break down into

small structures after approximately one and a half times the sphere diameter. These small
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Figure 3.16: Cross-sectional integration of baroclinic torque (left) and stretching term
S3 (right).

structures in the unstratified case are tube-like and show no preference in their orientation.

Highly rotational vortex tubes are seen in the 1.5 < x/D < 5 region behind the sphere

and their rotational strength gradually decreases downstream. Moderate stratification,

Fr = O(1), preferentially orients vortex tubes in the streamwise direction but does not

change their tube-like shape. At 0.25 < Fr < 1, the lee wave impresses its undulation on

the vortical structures.

High stratification, Fr Æ 0.125, significantly changes both the shape and orientation

of the vortical structures. The cross-section of vortex tubes are no longer circular but

flattened. The orientation of the vortex tubes lies in the horizontal plane. At Fr = 0.025,

isosurface of Q shows distinct pancake eddies and inclined surfboard structures, both

structures being thin in the vertical. The pancake eddies are disc-like structures located

in the central horizontal plane that occur alternately on each side with an o�set from the

center line, and have an alternating sign of vertical vorticity. The surfboard structures

are located in the middle, are inclined with the horizontal, and form successive V-shaped

structures. The pancakes are regularly spaced with distance between two consecutive

pancake eddies on the same side approximately 5D corresponding to the energy spectrum
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peak at Strouhal number of 0.2 associated with vortex shedding. Surfboard structures are

shed with the same frequency as the pancake eddies. Thus, pancake eddies that occur

in the near wake when the stratification is high are associated with the dominant vortex

shedding mode at Re = 3700. The vorticity pattern is akin to that of a sinuous mode. The

behavior at higher Re or at moderate-to-low stratification (Fr Ø O(1)) requires further

exploration.

The distribution of enstrophy (ÊÕ
iÊ

Õ
i/2) across the wake cross-section is isotropic

in the unstratified case. Stratification distorts this distribution from circular to elliptical,

close to the sphere. The enstrophy magnitude decreases with increasing stratification until

Fr of 0.5. In contrast, there is a rapid increase of enstrophy with increasing stratification

when Fr is decreased to 0.125 and beyond. At Fr = 0.25, three distinct horizontal layers

are found where relatively low enstrophy is sandwiched between upper and lower layers

with high enstrophy. With increasing stratification, these three layers are vertically located

closer to each other leaving a small thin layer in the middle.

The enstrophy equation shows that the dominant balance in the unstratified wake is

between vortex stretching and dissipation with secondary contributions from advection and

turbulent di�usion. In the stratified wake, the dominant balance remains between vortex

stretching and dissipation with the contribution of the baroclinic term being secondary.

Thus, the implicit stratification e�ect on vortex stretching is responsible for the changes in

enstrophy with stratification observed in the simulations. In particular, stratified wakes with

Fr < 0.125 have large vortex stretching in the region near the body that is associated with

unsteady and intermittent shedding of the boundary layer from various vertical locations

at the sides of the sphere. The vortex stretching in the region x/D < 2 is su�ciently

large so that the enstrophy remains larger than in the unstratified case far downstream.

The implication is that it is important to resolve the near-body flow for low-Fr wakes in

order to obtain accurate results for the far wake. Simulations will have to be continued
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into the quasi 2D regime for Fr Ø O(1) to investigate the persistence of near-body flow

characteristics.

The content of Chapter 3, in full, is a reprint of the material as it appears in

Chongsiripinyo K., Pal A., and Sarkar S., “On the vortex dynamics of flow past a sphere

at Re=3700 in a uniformly stratified fluid”, Phys. Fluids., 29(2), 020704, 2017. The

dissertation author was the primary researcher and author of this paper.
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Chapter 4

E�ect of stratification on the

turbulent wake behind a sphere at

Re = 10,000

4.1 Abstract

Large eddy simulation of flow past a sphere in a density-stratified fluid is performed

at a Reynolds number of Re = UŒD/‹ = 10,000 and Fr = UŒ/ND = Œ, 3, and 1 where

Fr = Œ refers to the unstratified case. Here, UŒ, D, and N are the free-stream velocity,

sphere diameter, and constant background buoyancy frequency, respectively. The choice of

Fr = O(1) allows investigation of the turbulent wake under conditions where the buoyancy

time scale, 1/N , is comparable to the mean flow time scale, D/UŒ. Visualizations in the

form of Q-criterion and azimuthal vorticity show that stratification introduces qualitative

changes in the near wake structure as well as the helical mode instability. The centerline

defect velocity, U0, in the unstratified wake decays according to the power law, U0 Ã x≠m,

with m = 1 instead of the classical value of m = 2/3. In the stratified wakes, U0 exhibits
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an “oscillatory modulation” owing to the lee-wave pattern created by the sphere. As

a result, U0 increases in the region fiFr 6 x/D 6 2fiFr instead of the usual decrease.

Further downstream, there is an overall decrease of U0 but the exponent m in the power

law, U0 Ã x≠m, is reduced to m = 0.4. The turbulent kinetic energy (t.k.e.) budget is

quantified to assess the influence of stratification. The relative roles of advection, production,

dissipation, transport and buoyancy flux are found to be altered over the entire wake at

Fr = 1 and in the intermediate and far wake at Fr = 3.

4.2 Introduction

Turbulent wakes under stratification are ubiquitous, e.g. in flows past marine

swimmers, underwater submersibles, underwater topography, islands and mountains. In

the early years, stratified wakes were studied primarily using experimental methods. Early

experiments, as reviewed in Lin & Pao (1979), showed that stratification suppresses

vertical motion, promotes downstream horizontal coherent eddies, and enables propagation

of internal gravity waves into the far field. With better experimental instruments and

advances in numerical simulation, more accurate qualitative and quantitative results have

been obtained. Chomaz et al. (1993) experimentally showed that stratified wakes can

be divided into four di�erent regimes based on Fr = U/ND. For Fr < 0.4, the wake

corresponds to triple-layer flow with two lee waves surrounding a layer of two-dimensional

motion. For Fr between 0.4 and 0.75, the saturated lee wave suppresses the separation

region or splits it into two. When Fr is between 0.75 and 2, the buoyancy e�ect on the

near wake progressively decreases in importance and, by Fr > 2.25, the near wake is

similar to the homogeneous case. A stratified wake at high Fr (Fr > O(1)) exhibits three

distinct regions. The first region is the near wake (NW) where the wake spreads uniformly

in all directions and turbulence behaves as it does in a homogeneous fluid. It is followed
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by a second non-equilibrium (NEQ) regime identified by Spedding (1997) where there is

an onset of buoyancy e�ects including conversion of stored potential energy to kinetic

energy and anisotropy between horizontal and vertical motions. The third region (Q2D) is

characterized by the existence of vertically suppressed two-dimensional eddies, so called

“pancake vortices”.

Recently Pal et al. (2016) and Pal et al. (2017) performed DNS of stratified flow

past a sphere at Re = 3700 over a wide range of stratifications that encompass the

Fr < O(1) regime, the Fr = O(1) regime and the lower boundary of the Fr > O(1) regime.

Unlike previous DNS/LES of stratified wakes that used a temporal flow model (Brucker &

Sarkar, 2010; Diamessis et al., 2011), the body was included in these simulations. Though

computationally expensive owing to resolution of the boundary layer, the simulation led to

new results regarding the near and intermediate wake. It was found that the body-generated

lee waves cause oscillatory modulation of the mean defect velocity. Also, the flow enters a

new regime of horizontal vortex shedding and turbulence when Fr smaller than about 0.25.

The objective of the present paper is to examine stratified and unstratified flow

past a sphere at a higher Re = 104 and contrast the results with our knowledge of the

Re = 3700 wake. We address the following questions. Do decay rates of centerline defect

velocity change at higher Re? Do oscillatory modulations persist at the higher Re? What

qualitative and quantitative changes occur in the turbulent kinetic energy budget?

4.3 Equations

A sphere of diameter D is immersed in a stream with velocity U . The background

is density-stratified with a constant vertical density gradient, dflb/dx3, and buoyancy

frequency N that is defined by N2 = ≠(g/flo)dflb/dx3 with fl0 a reference density that is

representative of the background. The filtered Navier-Stokes equations under the Boussinesq
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approximation for density e�ects are solved along with an advection-di�usion equation for

the filtered density. A dynamic eddy viscosity model is utilized. The following system of

non-dimensional governing equations is numerically solved.

Continuity:

ˆui

ˆxi
= 0, (4.1)

Momentum:
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In Eq. (A.39), fld is the deviation of the density from the background density, flb(x3). Here,

‹ is the constant kinematic viscosity and Ÿ is the constant di�usivity of density while ‹sgs

and Ÿsgs are the subgrid transport coe�cients introduced by the LES model. The fluid has

molecular Prandtl number, Pr = ‹/Ÿ = 1, and the subgrid Prsgs = ‹sgs/Ÿsgs is assumed

to be unity leading to the simplified form of the RHS of Eq. (A.40). The Froude number,

Fr = U/ND, and the Reynolds number, Re = UD/‹, are the primary non-dimensional

parameters. In the following discussion, all variables discussed are non-dimensional unless

otherwise noted. Subgrid viscosity, ‹sgs, is obtained using the dynamic eddy viscosity model

of Germano et al. (1991). The coe�cient C, as in ‹sgs = C�2|S|, is dynamically computed

using a method of Lilly (1992). C is dynamically averaged along flow trajectories with an

exponential weighting function chosen to give more weight to recent times in flow history.
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4.4 Numerical methods

Governing equations (A.38)–(A.40) are solved numerically in a cylindrical coordinate

system on a staggered grid. The sphere is represented by the immersed boundary method

of Balaras (2004); Yang & Balaras (2006). The equations are marched using a combination

of explicit and implicit schemes. Implicit marching by the second order Crank-Nicolson

(CN) scheme is performed for the terms in the azimuthal direction to alleviate sti�ness of

the discretized system. The remaining terms are marched explicitly using a third-order

Runge-Kutta (RK3) scheme. A periodic boundary condition in the azimuthal direction

transforms the discretized Poisson equation into inversion of a pentadiagonal matrix. The

pentadiagonal matrix system is solved using a direct solver, Rossi & Toivanen (1999).

Inflow and convective outflow boundary conditions are applied at the inlet and outlet of the

domain. In order to control spurious reflections from internal waves and other disturbances

propagating out of the domain, sponge regions are employed near the free stream and inlet

boundaries where the following relaxation terms are added to the governing equations:

≠„(xi)[ui(xi, t) ≠ Ui], ≠„(xi)[fl(xi, t) ≠ flŒ(x3)] . (4.4)

The sponge layer takes the form of a Rayleigh damping function which is designed in such

a way so as to gradually relax the velocities and density to their respective values at the

boundaries. Here Ui is the freestream velocity and flŒ(x3) is the density of the stratified

background. This is accomplished by adding the explicit damping terms of equation (4.4)

to the right hand side of equation (A.39) and (A.40). The variable „(xi) is constructed

such that it increases quadratically from „ = 0 to „ = 1 over a sponge region of thickness

10 grid points at the inflow and at the freestream boundaries.
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4.5 Parameters

All simulations are performed with Re = UD/‹ = 104. Three cases are investigated

with Fr = Œ (unstratified), Fr = 3, and Fr = 1. The choice of Re = 104 allows for

validation against the LES of Rodríguez et al. (2013), Yun et al. (2006), and Constantinescu

& Squires (2004). Domain sizes in the upstream, downstream, and radial directions are

L≠
x /D = 40.16, L+

x /D = 80.62, and Lr/D = 59.84, respectively. The sphere center is at

(x/D, r/D) = (0, 0). In comparison to the unstratified flow past a sphere of Rodríguez

et al. (2013), the domain sizes in the radial and upstream directions are enlarged to allow

free propagation of internal gravity waves induced by stratification. While this is not

necessary for the unstratified case, the same domain size is kept for consistency. The

number of grid points in the streamwise, radial, and azimuthal directions are Nx = 6144,

Nr = 918, and N◊ = 128 giving a total number of grid points of approximately 720

million. Grid stretching is used in the radial and streamwise directions to concentrate

points near the sphere surface in order to resolve the laminar boundary layer. To compute

statistics, temporal averaging of data is performed over 100 non-dimensionalized time units

or approximately one flow-through time unit after statistical steady-state. Each simulation

uses 512 processors with approximately 1700 hours of wall clock time. The computations

utilize a Cray XC40 system with Intel Xeon E5-2698v3 (Haswell-EP) processors clocked at

2.3 GHz.

4.6 Validations

Validation of the unstratified case is performed by examination of the distributions

of mean pressure coe�cient and mean skin friction coe�cient on the body, mean separation

angle, drag coe�cient and shedding frequency. Computation of the mean is done by
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Figure 4.1: Temporal-azimuthal average of pressure coe�cient and shear stress on
the sphere.

Table 4.1: Comparision of near field statistics.

Studies St „s Cd Cpb

Present LES 0.199 88.1 0.407 -0.251
Rodríguez et al. (2013) 0.195 84.7 0.402 -0.272
Yun et al. (2006) 0.17 90 0.393 -0.274
Constantinescu & Squires (2004) 0.195 84 0.393

averaging both in time and in the azimuthal direction. These results are compared with

previous results (Rodríguez et al., 2013; Constantinescu & Squires, 2004). Figure 4.1 shows

that pressure and skin friction coe�cients are well captured in our simulation. The variable

„ in the figure denotes the angle from the forward stagnation point of the sphere, „ = 0.

Mean separation angle, „s, is determined by the position, „, where mean Cf = 0. The

minimum value of Cp, located at „ = 72o, marks the onset of an adverse pressure gradient.

The rise in Cp beyond „ = 72o indicative of this adverse gradient contributes to a continuous

decrease in Cf until the flow detaches from the surface at separation angle of „s = 88.1o.
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4.7 Visualizations

Three-dimensional visualization of instantaneous vortical structures in the wake

is done using the Q-criterion of Hunt et al. (1988), Q = 0.5(|⌦|2 ≠ |S|2) where �ij =

0.5 (ˆui/ˆxj ≠ ˆuj/ˆxi) and Sij = 0.5 (ˆui/ˆxj + ˆuj/ˆxi). Figure 4.2 shows isosurface of

Q = 2, 1, and 0.5 for Fr = Œ, 3, and 1, respectively. The reduction of isosurface Q-level

with increasing Fr is required to enable su�cient downstream extent of the wake-structure

visualization. Regions with intensified fluid element rotation are signified by a large positive

value of Q where the rate of rotation tensor, �ij, exceeds the rate of strain tensor, Sij. For

the unstratified case in the range, 0.5 6 x/D 6 1, axisymmetric vortex rings are shed from

the sphere. Helical orientation of the unstratified wake previously observed by Yun et al.

(2006) is apparent in Figure 4.2 (top). Visualization of the isosurfaces at di�erent times

confirms that helical structures do not rotate around the streamwise axis as they travel

downstream but rather simply translate downstream as stated in Yun et al. (2006). At

Fr = 3 and especially Fr = 1, the vortex rings are distorted into ellipsoids with the major

axis in the spanwise, y, direction. The suppression of vertical motion is, thus, immediate

for Fr = O(1) wakes and influences how the incoming freestream travels around the sphere.

In their results for stratified flow past a sphere at (Re, Fr) = (3700, 0.5), Chongsiripinyo

et al. (2017) visualized blocking in front of a sphere, i.e there is insu�cient kinetic energy

to vertically displace incoming fluid over the poles of the sphere. The incoming fluid is,

thus, forced to travel horizontally around the sphere when Fr < O(1).

Besides the helical orientation in the unstratified case, a wavy orientation is present

at Fr = 3 but only in the horizontal plane while this feature disappears for Fr = 1. The

number density of vortical structures in all cases decrease downstream. Chongsiripinyo

et al. (2017) investigated dynamics of vortical structures by means of the enstrophy budget.

Their results show that stretching/tilting of vorticity fluctuation by fluctuating strain,
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ÊÕ
iÊ

Õ
js

Õ
ij, is primarily responsible for the high density of vortical structures in a small region

behind the sphere 1.5 < x/D < 5.

Figure 4.3 and 4.4 show contours of instantaneous spanwise vorticity in the vertical

center plane (y = 0) for ≠1 < x/D < 10 and 10 < x/D < 40. For the unstratified

case, given that the present Re = 104 is much smaller than the critical Reynolds number,

Re ≥ 3 ◊ 105, the entire boundary layer remains laminar from the forward stagnation

point until separation. The separated shear layer breaks down into small scale motions via

Kelvin-Helmholtz (KH) instabilities at the separated shear layer for both Fr = Œ and 3.

At Fr = 1, the separated shear layers initially conform with lee waves that have higher

amplitude than those at Fr = 3; consequently, the shear layers bend toward the centerline.

The location where the shear layers plunge at the centerline is also where production of t.k.e

achieves its maximum. The t.k.e. budget is explained in a subsequent section. Figure 4.4

shows not only the apparent vertical suppression but also the gradual disappearance of

small-scale eddies as stratification increases. Internal gravity waves emitted from the wakes

are also detected in both stratified cases.
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Figure 4.2: Isosurface of Q for Fr = Œ (top, Q=2), Fr = 3 (middle, Q=1), and
Fr = 1 (bottom, Q=0.5).
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4.8 Defect velocity

Figure 4.5 shows the temporal mean streamwise defect velocity at the centerline.

There is an initial rise of defect velocity for all cases close to the sphere in the recirculation

zone. For the unstratified case, after the peak, the defect velocity monotonically decreases

and approaches an approximate constant decay rate of (x/D)≠1. This (x/D)≠1 power

law is also observed in an unstratified flow past a sphere at lower Re = 3700 in Pal et al.

(2017). The equilibrium similarity analysis of axisymmetric wakes from George (1989)

has shown that the (x/D)≠1 decay rate of defect velocity can be derived from the low

Re dissipation scaling, D0 ≥ ‹u2
0/”2, where u0 and ” are the characteristic velocity and

length scale, respectively. However, this dissipation scaling is not valid in high-Re flow with

fully developed turbulence. Recently, NediÊ et al. (2013) introduced a modified dissipation

scaling, D0 ≥ (UŒl/‹)m(u0”/‹)≠nu3
0/” where l is the size of the wake generator. By setting

m = n = 1, they obtain U0 ≥ (x/D)≠1 which, in contrast to George (1989), is independent

of global Reynolds number ReG = UŒl/‹.

Centerline defect velocities in stratified cases behave di�erently from their unstratified

counterpart. Distributions of the defect velocities over the streamwise centerline for both

stratified cases contain information imposed by the body and the buoyancy frequency.

Both velocities reach their first minimum at half of their buoyancy period, x/D = fiFr,

away from the sphere center. Downstream of the first minimum, the defect velocity, U0,

increases and reaches a peak at one full buoyancy period, x/D = 2fiFr. Bonnier & Ei�

(2002) used hot-film measurement and identified a region known as “accelerated collapse”

which is characterized by an increase in defect velocity until achieving a so-called transition

region where the defect velocity starts to decrease again. The “accelerated collapse" is

better termed “oscillatory modulation” and the initial increase of U0 occurs in the region

fiFr 6 x/D 6 2fiFr. In fact, the defect velocities in both stratified cases continue to
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Figure 4.5: Centerline mean streamwise defect velocity.

alternately increase and decrease further downstream in response to the steady lee-wave

pattern created by the sphere. These oscillatory modulations especially those downstream

are also visible for lower Re = 3700 as in Pal et al. (2017). Beyond x/D = 2fiFr,

the defect velocities decay with an overall trend U0 Ã x≠m where m ƒ 0.4. Bonnier

& Ei� (2002) report m = 0.38 in their stratified flow past a sphere experiments with

(Fr = U/ND, Re) = (1.5, 3400); (3, 6900); (5, 11500). The fact that the decay rate of defect

velocity in the stratified wakes is smaller than that of the unstratified wake implies that

stratified wakes live longer in the mean.
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4.9 Turbulent kinetic energy

The evolution of turbulent kinetic energy is given below. This t.k.e. budget details

the energy dynamics from the fluctuating flow components. It is used to quantify and

analyze the relative roles of advection, production, dissipation, transport, and buoyancy

flux. The t.k.e. = ÈuÕ
iu

Õ
iÍ/2 is denoted as K from here on.

ˆK

ˆt
= A + P + ‘ + T + B. (4.5)

A and P are advection and production terms defined as

A = ≠ÈujÍ
ˆK

ˆxj
, P = ≠ÈuÕ

iu
Õ
jÍ

ˆÈuiÍ
ˆxj

. (4.6)

‘, the turbulent dissipation rate and B, the buoyancy flux, are defined as follows.

‘ = ≠ 1
Re

K

(1 + ‹sgs

‹
) ˆuÕ

i

ˆxj

ˆuÕ
i

ˆxj

L

, B = ≠ 1
Fr2 ÈflÕ

duÕ
zÍ. (4.7)

T is the transport of K defined as

T = ≠ 1
2

ˆ

ˆxi
ÈuÕ

iu
Õ
ju

Õ
jÍ ≠ ˆÈpÕuÕ

iÍ
ˆxi

+ 1
2Re

K
ˆ

ˆxj

A

(1 + ‹sgs

‹
)ˆ(uÕ

iu
Õ
i)

ˆxj

BL

+ 1
Re

K

uÕ
i

ˆuÕ
j

ˆxi

ˆ(‹sgs/‹)
ˆxj

L

. (4.8)

The cross-sectional area integrated terms in the turbulent kinetic energy budget are

shown in Figure 4.7. For simplification, we divide the streamwise domain into 3 regions,

0.7 < x/D 6 10, 10 < x/D 6 40, and 40 < x/D 6 70 referred to as near, intermediate,

and far wake, respectively. Note that this nomenclature is consistent with unstratified-wake
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Figure 4.6: Area integrated turbulent kinetic energy.

literature and does not correspond to regimes based on buoyancy frequency.

The near-wake evolution of t.k.e. (left column of Figure 4.7) reveals that the

generation, destruction, and transport of t.k.e. are relatively large close to the sphere,

0.7 6 x/D 6 5. Both production and dissipation reach their peaks at approximately the

same location of x/D ƒ 1.5. Integrated advection is initially negative in the vicinity of

the recirculation region and, further downstream, is positive acting as a local source. The

transport term, unlike in simulations of stratified flow past a sphere at lower Re = 3700 by

Pal et al. (2017), is no longer negligible for the entire downstream domain regardless of

Fr. Chomaz et al. (1993) points out that for Fr > 2.25, the near-wake is similar to the

homogeneous case. Consistent with Chomaz et al. (1993), quantitative changes relative to

the unstratified counterpart are largely insignificant in the Fr = 3 near-wake budget.

The near-wake balance of t.k.e. is significantly altered at Fr = 1. The peak

production is approximately 50% larger but large P spans a shorter streamwise distance so

that the t.k.e. shown in Figure 5.5 is smaller than in the unstratified case. The dissipation

is significantly reduced so that at the point of maximum production, P/‘ ƒ 6 compared to

the unstratified-wake value of 2. There is a significant increase in advection. The maxima
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of production and advection occur at approximately the same location where the upper

and lower separated shear layers plunge toward the centerline as observed in Figure 4.3.

While the buoyancy term is negligible in the near wake of the Fr = 3 case, it is significant

in the Fr = 1 case. B has an oscillatory signature that persists for the entire downstream

domain. Note that since lee waves are introduced by a wake generator, a simulation using a

temporal flow model, as in Brucker & Sarkar (2010), is unable to capture these oscillatory

modulations in U0, P and B. Buoyancy flux, B, as well as turbulent production, P , cross

zero at x/D = fi, the same location where the mean streamwise centerline defect velocity

reaches its first local minimum. Thereafter, over the entire downstream region, both B and

P show oscillations with wavelength of 2fiFr. At Fr = 3, B and P also cross zero but in

the intermediate wake and also exhibit oscillatory behavior. It appears that, in Fr = O(1)

wakes, the turbulent production crosses zero at x/D ¥ fiFr and, thereafter, both P and B

exhibit an oscillatory modulation with spatial period of 2fiFr.

The middle column of Figure 4.7 depicts the intermediate-wake region. In the

unstratified case, production becomes small relative to the other terms and the flow evolves

as freely decaying turbulence. Although shear production is also small in the stratified

wakes, there are clear di�erences in the behavior of the di�erent terms in the t.k.e. balance.

At Fr = 3, advection decreases by an approximate factor of two while the transport term

becomes smaller by an even larger proportion. In addition, oscillatory modulations of

buoyancy and production are visible. Dissipation is the only term which does not show the

oscillatory signature but monotonically decays. This is because the small spatial scales

responsible for turbulent dissipation also have a small time scale, much smaller than the

buoyancy time scale of 1/N . Beyond x/D ¥ 15, buoyancy and transport dominate the

Fr = 1 budget and balance one another.

Budget distributions are distinctive for all three simulated stratifications in the far

wake as shown in Figure 4.7 (right column). The budget for the unstratified case remains

75



similar to that of the intermediate wake where production is relatively small suggesting

that the wake continues to behave as freely-decaying turbulence. In addition, advection

is balanced by transport and dissipation. For Fr = 3, all terms are of the same order of

magnitude. For both stratified cases, production has order of magnitude O(10≠5), two

order of magnitude larger than in the unstratified case with O(10≠7). The dissipation takes

similar values in the Fr = 3 and 1 wakes. At Fr = 1, buoyancy and transport remain

dominant. This is contrary to the t.k.e. budget for Fr = 1 at lower Re = 3700 presented

in Pal et al. (2017) where the buoyancy term is balanced by the advection term in the

far-wake.

The content of Chapter 4, in full, is a reprint of the material as it appears in

Chongsiripinyo K. and Sarkar S., “E�ect of stratification on the turbulent wake behind

a sphere at Re=10,000”, 10th International Symposium on Turbulence and Shear Flow

Phenomena (TSFP10), Chicago, USA, 2017. The dissertation author was the primary

researcher and author of this paper.
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Figure 4.7: Terms in the t.k.e. budget for Fr = Œ (top row), Fr = 3 (middle row),
and Fr = 1 (bottom row) in the near-wake region 0.7 < x/D 6 10 (left
column), the intermediate-wake region 10 < x/D 6 40 (middle column),
and the far-wake region 40 < x/D 6 70 (right column).
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Chapter 5

Scaling laws in the axisymmetric

wake of a sphere

5.1 Introduction

An axisymmetric turbulent wake is often assumed to be self-similar when the

streamwise location x is su�ciently far from the wake generator. Thus, profiles of the

single-point statistics have the local wake width, ”(x), and the centerline streamwise mean

defect velocity, U0(x), as the characteristic length and velocity scales. Under self-similarity,

the evolution of the scaling parameters, U0 and ”, is described by power laws: U0/UŒ Ã xm

and ”/D Ã xn where D is a characteristic length scale of the body. The power-law

coe�cients m and n were found theoretically (George, 1989) to be (mL, nL) = (≠1, 1/2)

and (mH , nH) = (≠2/3, 1/3) for low-Re and high-Re regimes, respectively. According to

Johansson et al. (2003), the high-Re regime should apply only after the initial transient has

decayed so that uÕ/U0 becomes constant and only as long as the local Reynolds number

is su�ciently large, Rel = U0”/‹ > 500. The decrease in local Reynolds number as one

travels downstream distinguishes the turbulent axisymmetric wake from other free shear
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flow. There may be a transition from the high to low-Re scaling at large x where Rel is

su�ciently small. It is worth noting that the dissipation is taken to scale as ‘ ≥ U3
0 /”

at high Re while ‘ ≥ ‹U2
0 /”2 at low Re. Recently, NediÊ et al. (2013) have found that

the axisymmetric wake of high-drag, irregularly shaped plates exhibit (m, n) = (≠1, 1/2)

while flow past a regular circular disk and a square plate leads to a wake with the classical

high-Re scaling of (m, n) = (≠2/3, 1/3). The Reynolds number was not small in the

experiments of NediÊ et al. (2013) and, di�erent from George (1989), a nonequilibrium

(NEQ) dissipation law is proposed by NediÊ et al. (2013) to explain their finding of the

anomalous (m, n) = (≠1, 1/2) scaling.

In the present work, we consider another canonical wake generator, a sphere, that

gives rise to an axisymmetric wake. Numerical simulations are conducted with the objective

of characterizing the power laws and discussed in the context of the previous work on this

topic.

5.2 Numerical approach

The incompressible Navier-Stokes equations along with the continuity equation are

numerically solved in a cylindrical coordinate system.The sphere is represented by the

immersed boundary method (Balaras, 2004; Yang & Balaras, 2006). The equations are

marched using a combination of explicit (third-order Runge-Kutta) and implicit (Crank-

Nicolson) schemes. Periodicity allows Fourier transformation of the Poisson equation in

the azimuthal direction and the resulting equation for the Fourier modes is solved using a

direct solver. Velocity boundary conditions (BCs) are Dirichlet, convective outflow, and

free-stream at the inlet, outlet and outer radial directions, respectively. The dynamic eddy

viscosity model is utilized for the Re = 104 (LES) case. Table 5.1 lists the computational

parameters. The values of Cp and Cf at the body have been validated previously for both
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Table 5.1: Computational domains. L
≠
x and L

+
x refer to domain upstream and down-

stream lengths. N is number of grid points.

Re Lr/D L◊ L≠
x L+

x Nr N◊ Nx Ntotal(·106)
3700 (DNS) 16 2fi 23 80 632 128 4608 372.77
104 (LES) 59 2fi 40 80 918 128 6144 721.94

Re = 3700 (Pal et al., 2017) and Re = 104 (Chongsiripinyo & Sarkar, 2017).

Figure 5.1: Contours of azimuthal vorticity magnitude. z/D is cross-stream direction
normalized by sphere diameter.

5.3 Decay of turbulent wake

Figure 5.2 and 5.3 show the present simulation results of U0(x) and ”(x), respectively,

along with previous results of the sphere wake. At Re = 10, 000, the recirculation region

is shorter than at Re = 3700. Further downstream, both cases exhibit a power law

close to U0 Ã x≠1. The literature shows di�erent combinations of power-law exponents.

At Re = 50, 000, the temporally evolving model of Brucker & Sarkar (2010) exhibits

(m, n) = (≠2/3, 1/3). Note that the temporal model uses synthetic initial turbulence that

does not contain the large scale helical structures that arise from shedding of the sphere

boundary layer (Yun et al., 2006; Chongsiripinyo et al., 2017). A laboratory experiment at

similar Re = 65, 000 (Gibson et al., 1968) in figure 5.2 exhibits a power-law decay of U0 at
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Figure 5.2: Centerline streamwise mean defect velocity. Legends are as follows:
G1968, Gibson et al. (1968); UF1970, Uberoi & Freymuth (1970); BL1978,
Bevilaqua & Lykoudis (1978); BE2002, Bonnier & Ei� (2002); BS2010,
Brucker & Sarkar (2010); S2002, Spedding (2002).

least during 10 < x/D < 60. This decay rate is, however, neither m = ≠1 nor m = ≠2/3.

Let us turn to sphere wakes at lower Re. The laboratory experiment of Bevilaqua &

Lykoudis (1978) at Re = 10, 000 exhibits (m, n) = (≠2/3, 1/3). In contrast, the wakes

spanning Re = 2000 ≠ 12, 000 studied by Bonnier & Ei� (2002) show behavior closer to

(m, n) = (≠1, 1/2).

The evolution of local Rel = U0”/‹ is shown in figure 5.4. If the criterion (Johansson

et al., 2003) of Rel = UO”/‹ > 500 for the high-Re regime is true, it can be inferred from

figure 5.4 that the present simulations at Re = 3700 and 10, 000 do not fall into the high-Re

regime and, therefore, m = ≠2/3 and n = 1/3 would not be expected. Note that the

experiment of Bevilaqua & Lykoudis (1978) contradicts the criterion of Johansson et al.

(2003) since their Re = 10, 000 wake exhibits (m, n) = (≠2/3, 1/3) despite that fact that

Rel < 500.

The evolution of centerline t.k.e (K) is shown in Figure 5.5. The x≠3/2 power law
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Figure 5.3: Wake half width, Lv (or ”). The dashed-dotted line is ” Ã (x/D)1/2 and
the dashed-dotted-dotted line is ” Ã (x/D)1/3. The legend is the same as
figure 5.2.

Figure 5.4: Local Reynolds number, Rel = U0”/‹.
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Figure 5.5: Turbulent kinetic energy, t.k.e (or K) and dissipation, Á, at the centerline
for the Re = 10, 000 LES. The dashed-dotted line is K ≥ (x/D)≠3/2 and
the dashed-dotted-dotted line is ‘ ≥ (x/D)≠5/2.

of K translates to a uÕ Ã x≠3/4 scaling for the turbulence velocity scale of uÕ =
Ô

K. The

streamwise velocity fluctuation (not shown) also shows a ≠3/4 decay exponent. It is worth

noting that uÕ does not vary at the same rate as U0.

The turbulent kinetic energy (Figure 5.5) follows x≠5/2. The classical high-Re

scaling of Á ≥ U3
0 /” leads to an exponent of ≠7/2 while the low-Re scaling of Á ≥ ‹U2

0 /”2

introduced by George (1989) leads to an exponent of ≠3. Both of these scaling laws lead to

steeper decay of Á than the ≠5/2 behavior found in the simulations. We can alternatively

use uÕ as the velocity scale instead of U0 in the dissipation estimate. The low-Re scaling

of Á ≥ ‹uÕ2/”2 leads to Á Ã x≠5/2 which is in agreement with the LES result. Thus, one

explanation of the behavior of Á in the simulations is low-Re.

The energy spectrum in the LES at Re = 10, 000 has a decade of broad-band

fluctuations (not k≠5/3 but similarly steep) in the intermediate wake where the wake

power laws with (m, n) = (≠1, 1/2) are already established. We, therefore, explore the
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Figure 5.6: Scalings of dissipation for the Re = 10,000 case. The classical high-Re

scaling: Á ≥ U
3
0 /”; the classical low-Re scaling: Á ≥ ‹U

2
0 /”

2; the classical
inviscid estimate: ‘ ≥ K

3/2
/”; the modified low-Re scaling: Á ≥ ‹u

Õ2
/”

2;
and the NEQ scaling: ‘ = C‘K

3/2
/” with C‘ = (ReG/Rel)1/2.

implications of the high-Re NEQ dissipation (ansatz NediÊ et al. (2013); Vassilicos (2015))

and find that NEQ dissipation provides an alternate explanation for the Á power law

found in the simulations. According to the NEQ dissipation formulation, the coe�cient

C‘ in ‘ = C‘K3/2/” is no longer a universal constant but takes the form C‘ = Rem
G/Ren

l .

Here ReG is a global Reynolds number characteristic of the inflow and is taken to be

ReG = UD/‹, the sphere Reynolds number.

By taking the decay rates of centerline dissipation and t.k.e., shown in figure 5.5,

along with the growth rate of wake dimensions in figure 5.3, it follows that C‘ = ‘K≠3/2”

varies as x1/4 which contradicts the classical Kolmogorov theory of constant C‘. However,

the decay of defect velocity as in figure 5.2 along with the growth rate in figure 5.3

gives C‘ = Rem
G/Ren

l Ã x1/4 if we choose m = n = 0.5. This is in agreement with the

simulation result of ‘K≠3/2”. Note, Dairay et al. (2015) reports m=n=0.5 to be e�ective

at 55 < x/Lb < 100, where Lb is their equivalent wake generator length scale. Thus, the
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new non-equilibrium dissipation law in which C‘ as in ‘ = C‘K3/2/” is not a constant but

takes the value C‘ = (ReG/Rel)1/2 provides an alternative explanation. Figure 5.6 shows

the evolution of centerline Á normalized according to di�erent theoretical scaling laws. It

can be seen that both the modified low-Re and the NEQ dissipation theory are successful

in explaining the power law for Á found in the Re = 10, 000 simulation.

The content of Chapter 5, in full, is a reprint of the material as it appears in

Chongsiripinyo K., Pal A., and Sarkar S., “Scaling laws in the axisymmetric wake of a

sphere”, Direct and Large-Eddy Simulation XI (ERCOFTAC Series), pp. 439-444, 2019,

Springer. The dissertation author was the primary researcher and author of this paper.
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Chapter 6

Decay of turbulent wakes behind a

disk in homogeneous and stratified

fluids

6.1 Abstract

The primary objective of the present work is to investigate buoyancy e�ects in a

turbulent blu�-body wake that evolves at relatively high Reynolds number in a stratified

fluid. Large-eddy simulations (LES) with high resolution are conducted for the flow past

a disk at Re = UbLb/‹=50,000 and at Fr = Ub/NLb = Œ, 50, 10, 2; here, Ub is the

free-stream velocity, Lb is the disk diameter, ‹ is the fluid kinematic viscosity, and N is

the buoyancy frequency. Unlike most other numerical studies of stratified wakes that use a

temporal model, body-inclusive spatially-evolving simulations are performed.

In the axisymmetric wake in a homogeneous fluid, it is found that the mean

streamwise velocity deficit (U0) decays in two stages; U0 Ã x≠0.9 during 10 < x/Lb < 65

followed by U0 Ã≥ x≠2/3. Consequently, none of the simulated stratified wakes is able to
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exhibit the classical 2/3 decay exponent of U0 in the interval before buoyancy e�ects set in.

The turbulent characteristic velocity, taken as K1/2 with K the turbulent kinetic energy

(TKE), satisfies K1/2 Ã≥ x≠2/3 after x/Lb ¥ 10.

Turbulent wakes are a�ected by stratification within approximately one buoyancy

time scale (Ntb ¥ 1) after which, provided that RehFr2
h Ø 1, we find 3 regimes: weakly

stratified turbulence (WST), intermediately stratified turbulence (IST), and strongly strat-

ified turbulence (SST). The regime boundaries are delineated by the turbulent horizontal

Froude number Frh = uÕ
h/NLHk; here, uÕ

h and LHk are r.m.s horizontal velocity and TKE-

based horizontal wake width. WST begins when Frh decreases to O(1), spans 1 . Ntb . 5

and, while the mean flow is strongly a�ected by buoyancy in WST, turbulence is not.

Thus, while the mean flow transitions into the so-called non-equilibrium (NEQ) regime,

turbulence remains approximately isotropic in WST. The next stage of IST, identified by

progressively increasing turbulence anisotropy, commences at Ntb ¥ 5 once Frh decreases

to O(0.1). During IST, the mean flow has arrived into the NEQ regime with a constant

decay exponent, U0 Ã x≠0.18, but turbulence is still in transition. The exponent of 0.18

for the disk wake is smaller than the approximately 0.25 exponent found for the stratified

sphere wake. When Frh decreases by another order of magnitude to Frh ≥ O(0.01), the

wake transitions into the third regime of SST that is identified based on the asymptote of

turbulent vertical Froude number (Frv = uÕ
h/Nlv) to a O(1) constant. During SST that

commences at Ntb ¥ 20, turbulence is strongly anisotropic (uÕ
z π uÕ

h), and, both uÕ
h and

U0 satisfy x≠0.18 decay signifying the arrival of the NEQ regime for both turbulence and

mean flow. Turbulence is patchy and temporal spectra are broadband in the SST wake.

Energy budgets reveal that stratification has a direct and positive influence on the

prolongation of wake life. During the WST/early-IST stage, energy budgets show that

the mean buoyancy flux acts to augment the MKE before the additional augmentation by

reduced turbulent production. On the other hand, during WST/early-IST, the decay of
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TKE is faster than the unstratified case because of negative buoyancy flux (a sink that

serves to increase turbulent potential energy) and increased dissipation and, additionally,

also by the reduced production. In the late-IST/early-SST stages, production is enhanced

and, additionally, there is injection from turbulent potential energy so that the TKE decay

slows down. Only in the SST stage, when NEQ is realized for both the mean and turbulence,

the turbulent buoyancy flux becomes negative again, acting as a sink of TKE.

6.2 Introduction and objectives

Canonical shear flows such as wakes, jets, shear layers and boundary layers have

received much attention because they are relatively simple examples that serve as building

blocks for more complex flows. The wake in a density-stratified background is such

a canonical flow whose importance stems from engineering, biological and geophysical

applications such as underwater submersibles, aerial vehicles, marine swimmers, wind

turbines, and flows past topographic features on land and under water. Our interest is in

the wake of ocean submersibles that inevitably operate in a density-stratified background.

Such wakes are almost always turbulent with a Reynolds number (Re = UbLb/‹) that is

large, e.g. Re ≥ O(104 ≠ 107), and is subject to stratification whose strength is measured

by a Froude number, Fr = Ub/NLb, that takes values of O(1 ≠ 102).

Turbulent wakes of axisymmetric bodies, when subject to stratification, are non-

axisymmetric, inhomogeneous, and multistage. Axisymmetry is broken as a result of gravity-

suppressed vertical motion. Wake turbulence is inhomogeneous due to the spatial variation

from the wake core to the wake boundary as well as streamwise (x) evolution. As the wake

evolves in x, the relative strength of stratification increases even for constant N , since

the ‘local Froude number’ (FrH = U0/NLH) based on a local wake size (LH) continually

decreases. Therefore, the wake evolution is multistage as was first categorized by Spedding
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(1997), who experimentally measured U0 behind a towed sphere in a salt-stratified tank,

and identified three-dimensional (3D), non-equilibrium (NEQ), and quasi-two-dimensional

(Q2D) stages in the evolution of U0. Later, Meunier et al. (2006) pointed to a viscous-three-

dimensional (V3D) regime, a final stage of the evolution. While subsequent studies have

confirmed the existence of these stages, quantitative results regarding regime characteristics

and the transition points between successive regimes are not strictly consistent, and the

applicability of these regimes to turbulence statistics is unclear.

During the initial 3D stage, a stratified wake shows little e�ect of buoyancy and

unstratified wake laws apply. For a high-Re unstratified wake, classical theory (Tennekes

& Lumley, 1972; Townsend, 1976) o�ers the power law, U0 Ã x≠2/3, for the far wake.

Later, George (1989) proposed that U0 Ã x≠1 applies to a low-Re wake. While these two

scalings have been “found” in early experiments and numerical simulations (see review by

Johansson et al. (2003)), their universality is not clear. Evidence of axisymmetric wakes

with power laws that do not conform to U0 Ã x≠2/3 has accumulated, e.g. Bonnier & Ei�

(2002); NediÊ et al. (2013); de Stadler et al. (2014); Dairay et al. (2015); Pal et al. (2017);

Chongsiripinyo & Sarkar (2017). NediÊ et al. (2013) suggested that this contradiction

can be explained if the inviscid dissipation estimate Á ≥ uÕ3/l, that is consistent with

classical similarity analysis as applied to the TKE equation, is modified. Here, uÕ is the

r.m.s streamwise velocity fluctuation and l is taken to be the wake width. It is also

worth nothing that a proportionality uÕ ≥ U0 is assumed in the classical analysis. An

alternative to the inviscid estimate is Á = CÁuÕ3/l where CÁ ≥ Rem
Global/Ren

Local, as discussed

by Vassilicos (2015); here, ReGlobal is a global Reynolds number based on inlet conditions,

and ReLocal is a local Reynolds number based on local velocity and length scales. This

‘non-equilibrium’ dissipation scaling has been tested in a variety of turbulent flows, e.g.

decay of fractal-generated turbulence (Seoud & Vassilicos, 2007), fractal-plate turbulent

wake (NediÊ et al., 2013; Dairay et al., 2015), and a sphere wake (Chongsiripinyo et al.,
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2019).

Following the 3D regime in stratified wakes is the NEQ regime. Here, the decay of

U0 slows down substantially and is close to U0 Ã x≠0.25 (Spedding, 1997) in sphere-wake

experiments. This is the regime whose dynamics allows a stratified wake to ‘survive

longer’ than its unstratified counterpart. Brucker & Sarkar (2010) attributed the slower

decay of U0 to the reduction of the mean-to-turbulence energy transfer by production,

P = ≠ÈuÕ
xuÕ

zÍˆzÈuxÍ, an e�ect that was attributed to buoyancy-induced reduction of the

correlation between uÕ
x and uÕ

z. Following NEQ, the wake enters into the Q2D regime where

uÕ
h ∫ uÕ

z (hence the ‘two-dimensional’ attribute). According to Spedding (1997), the Q2D

regime exhibits an increase in wake decay to U0 Ã x≠3/4, and the NEQ-to-Q2D transition

takes place at Ntb = 50, where tb = x/Ub. It is worth noting that later studies, e.g. Brucker

& Sarkar (2010); Diamessis et al. (2011), find that the span of the NEQ regime increases

with Re. The other distinct characteristic of the Q2D wake is the presence of horizontally

large but vertically-thin ‘pancake eddies’ at large Ntb, e.g. at Ntb ¥ 250 in the simulations

of Brucker & Sarkar (2010); Chongsiripinyo et al. (2017).

The evolution of stratified wakes through each regime has becoming clearer owing

to previous work. However, much of our later understanding derives from simulations that

utilize the so-called temporal model, e.g. Gourlay et al. (2001); Dommermuth et al. (2002);

Diamessis et al. (2005); Brucker & Sarkar (2010); Diamessis et al. (2011); de Stadler &

Sarkar (2012); Abdilghanie & Diamessis (2013); Redford et al. (2015) among others. The

temporal model invokes the Galilean transformation that relates time T = x/U in the

reference frame (implicitly moves with the body velocity U) of the simulation to distance

(x) from the wake generator in the laboratory frame.

The temporal model has proved important to track wakes over a long time (equiva-

lently, streamwise distance) and into the Q2D regime. However, temporal-model simulations

are sensitive to the choice of initial conditions. Redford et al. (2012) found that the early
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and intermediate evolution of the axisymmetric wake in the temporal model depends on

not only whether coherent vortex rings are initially introduced, but also on their relative

spacing. For example both of the power-law exponents, U0 Ã x≠1 and x≠2/3, were found

to arise from two initial conditions that di�er by the presence of coherent vortex rings.

Interestingly, Redford et al. (2015) found the canonical rate of decay U0 Ã x≠2/3 despite the

statistics not being fully self-similar. To the best of our knowledge, the early/intermediate

development of case VR (with vortex rings) from Redford et al. (2015) is the only simulation

utilizing the temporal-model approximation that produces U0 Ã x≠1.

Body-inclusive simulations naturally capture flow separation and vortex shedding

from the body and, importantly, avoid the uncertainty introduced by assumed initial

conditions in the temporal model. The disadvantage, however, is the high computational

cost of boundary-layer resolution so that a long domain that captures all the three regimes

(3D, NEQ, Q2D) becomes infeasible for a high-Fr wake. A work-around is to continue

a body-inclusive simulation with separate simulations, e.g. a temporal model (Pasquetti,

2011) or a spatially-evolving model (VanDine et al., 2018).

Body-inclusive simulations of stratified turbulent wakes are of recent origin, e.g. a

Re = 103 sphere by Orr et al. (2015) and Re = 3700 sphere wakes at Fr < O(1) (Pal et al.,

2016; Chongsiripinyo et al., 2017) and Fr = O(1) (Pal et al., 2017). These simulations

have captured vortex-shedding modes (Orr et al., 2015), oscillatory modulation of the wake

by body-generated lee waves (Pal et al., 2017), the re-energization of fluctuations at low

Fr (Pal et al., 2016), and the associated change in vortex dynamics (Chongsiripinyo et al.,

2017).

Stratified wakes are inhomogeneous turbulent flows with mean shear that are subject

to stratification. There has been much work, e.g. Lilly (1983); Billant & Chomaz (2001);

Riley & deBruynKops (2003); Brethouwer et al. (2007); Kimura & Herring (2012); Ma�oli

& Davidson (2016); de Bruyn Kops & Riley (2019) in the related problem of fluctuations
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that evolve without mean shear in a stratified fluid. The interest is in the behavior of

‘stratified turbulence’ defined as fluctuations that have low values of Froude number (e.g.

Frh defined by Eq. (6.7) is < 1) but the Reynolds number is not low (e.g. Reb defined by

Eq. (6.6) is > 1).

A limitation of the previous body inclusive simulations is that Re = O(103) was

not su�ciently large to have a developed region of stratified turbulence with fluctuations

at low Froude number and high Reynolds number. Furthermore, wakes with high Fr

(> O(10)) were not simulated. We are therefore motivated to simulate wakes at a higher

Re = 5 ◊ 104 and over a wide range of stratifications, {Fr = 2, 10, 50, Œ}. We will

explore links between the findings in our simulations and those in the general topic of

stratified turbulence. Furthermore, we consider a disk rather than a sphere to broaden the

stratified-wake literature. The unstratified Fr = Œ case allows examination of power laws

at a higher Re than in prior simulations and assess the possibility of non-canonical power

laws for U0 and L.

The primary objective of the present study is to improve our understanding of the

evolution of relatively high-Re stratified wakes. In particular: What are the power laws

that are satisfied by characteristic velocities/lengthscales as the wake progresses? Are

there di�erences between the progression of mean and r.m.s turbulence as they react to

stratification? How does the evolution of wake turbulence relate to the broader area of

stratified turbulence decay? Lastly, what are the reasons underlying the slower decay of

the wake in the NEQ regime?

The numerical setup and the parameters of the simulated cases are given in section 6.3.

Definitions used in the analysis and interpretation of results are given in section 6.4.

Presentation of the results begins with section 6.5 which introduces the e�ect of stratification

by visual contrasts among the di�erent cases. Section 6.6 reports on the evolution of

centerline values of the mean and the three r.m.s components for each of the cases,
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separately. Section 6.7 presents a consolidated picture of all stratified cases in phase

space. We discuss links with previous work on regimes (characterization and transitions)

of stratified wakes and stratified turbulence in both sections 6.6 and 6.7. Section 6.8

concerns the evolution of two distinct wake sizes; one is derived from profiles of U0 and the

other is based on TKE. Section 6.9 discusses the evolution of area-integrated kinetic and

potential energy in stratified wakes and contrasts with the unstratified wake. Section 6.10

delves deeper into the evolution of MKE and TKE through their budgets. Section 6.11

discusses possible scaling laws for the dissipation (Á) of TKE. We end with a summary and

conclusions in section 6.12.

6.3 Numerical simulations

The questions above exclude the possibility of utilizing temporal-evolving simulation

where a wake-like initial condition is always required. We address the questions introduced

in section 6.2 with large-eddy simulations (LES) of flow past a circular solid disk placed

perpendicular to the uniform free stream. The background is taken to have a uniform

stratification. These body-inclusive simulations of flow into the far wake (up to x/D = 125)

are at a relatively high Re of 50,000 and computationally intensive because of the necessity

of resolving the separated flow at the body and the turbulent recirculation region. The

following non-dimensional filtered Navier-Stokes equations under the Boussinesq assumption

for density e�ects along with the filtered advection-di�usion equation for density are

numerically solved:

Continuity : ˆiui = 0, (6.1)

Momentum : ˆtui + ujˆjui = ≠ˆip + Re≠1ˆj [(1 + ‹s/‹)ˆjui] ≠ Fr≠2fld”i3, (6.2)

Density : ˆtfl + ujˆjfl = (RePr)≠1ˆj [(1 + Ÿs/Ÿ)ˆjfl] . (6.3)
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The symbol ˆi denotes a spatial derivative with respect to xi where i = 1, 2, and

3 refer to streamwise (x), lateral (y), and vertical (z) directions with ux, uy, and uz the

corresponding velocities, respectively. The governing equations are non-dimensionalized

with the following parameters: the background free-stream velocity (Ub), the disk diameter

referred as the body length scale (Lb), advection time (Lb/Ub), dynamic pressure (fl0U2
b ),

and characteristic change in background density deviation across the body (≠Lbˆ3flb).

Under the Boussinesq approximation, the density deviation from its equilibrium alters the

momentum equation only through the last term on the RHS of Eq. (6.2). Here ”i3 is the

Dirac-delta function. The density is decomposed into a constant reference density (fl0),

the linearly varying deviation of the background flb(x3) and the flow-induced deviation,

fld(xi, t), as follows

Density decomposition : fl(xi, t) = fl0 + flb(x3) + fld(xi, t). (6.4)

Note that fld(xi, t) = Èfld(xi, t)Í + flÕ
d(xi, t); where Èfld(xi, t)Í is not necessarily zero but

takes a value of ˆnÈfld(xi, t)Í=≠ˆnflb(x3) at a solid surface; n is a surface normal direction.

Background density and static linear variation are absorbed into the modified pressure.

The body Reynolds number is Re=UbLb/‹ where Ub is the free-stream velocity, Lb is

the characteristic length taken to be the disk diameter, and ‹ is the fluid kinematic

viscosity. The body Froude number Fr=Ub/NLb is the ratio of buoyancy time scale to

the characteristic advection time scale, Lb/Ub; here, N is the constant buoyancy frequency

defined by N2=≠(g/flo)ˆ3flb. The background is stably stratified if ˆ3flb is negative, as

is the case here. The disk thickness of 0.01Lb is small. The Prandtl number, Pr=‹/Ÿ,

that is the ratio of velocity and density (temperature) di�usivities is assumed to be unity.

Additional variables from small unresolved scales are subgrid kinematic viscosity, ‹s, and

density di�usivity, Ÿs. The Prandtl number based on these subgrid variables is also assumed
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to be unity. The study of the Prandtl number e�ects in a stratified wake can be found in

de Stadler et al. (2010).

Since the turbulent wake under weak-to-intermediate stratification is quasi-axisymmetric

in the 3D and in the early NEQ regimes, a cylindrical coordinate system is employed.

The choice of cylindrical coordinates allows e�cient distribution of grid points especially

from the core to the wake periphery. Spatial numerical derivatives are obtained with

second-order accurate central di�erences while temporal marching is done with a fractional-

step method that combines a third-order Runge-Kutta explicit scheme with the second

order Crank-Nicolson implicit scheme. To alleviate sti�ness of the discretized system,

especially near the coordinate streamwise axis, implicit marching is performed for viscous

and advection terms (both velocities and density) that involve spatial discretization in

the azimuthal direction. In the fractional-step method, the Poisson equation is formed

by taking the divergence of the momentum equation for predicted velocity. The periodic

boundary condition in the azimuthal direction transforms the discretized Poisson equation

into inversion of a pentadiagonal matrix. The pentadiagonal matrix system is then inverted

using a direct solver (Rossi & Toivanen, 1999). The disk is represented by the immersed

boundary method of Balaras (2004); Yang & Balaras (2006). Kinematic subgrid viscosity,

‹s, is obtained using the eddy viscosity model of Germano et al. (1991), a variant of the

dynamic Smagorinsky model (Smagorinsky, 1963). The coe�cient C, as in ‹t = C Â�2| ÂS|

where Â�3 = V is a measure of the local cell volume and | ÂS| is the instantaneous strain rate

magnitude of filtered velocity, is dynamically computed using a method of Lilly (1992) that

takes the cumulative average of C along flow trajectories with an exponential weighting

function chosen to give more weight to recent times in flow history. Boundary conditions at

the inlet and outlet of the domain are Dirichlet inflow and Orlanski-type convective outflow,

ˆt„+Cˆ1„ = 0. The magnitude of convective velocity, C, is set at Ub. Note that a localized

mean value of C as an alternative to Ub is tested with negligible consequence. Neumann
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Table 6.1: Physical and numerical parameters used in the simulations. Nr, N◊, and Nx

are the number of nodes in the radial, azimuthal, and streamwise direction,
respectively. Note that all lengths are normalized by diameter, Lb, of the
disk.

Case.# Re Fr Pr Nr N◊ Nx Lr L◊ Lx

UNS 50,000 Œ 1 364 256 4608 15.14 2fi 125.51
F02 50,000 2 1 529 256 4608 80.00 2fi 125.51
F10 50,000 10 1 529 256 4608 80.00 2fi 125.51
F50 50,000 50 1 529 256 4608 80.00 2fi 125.51

condition is used at the outer radial boundary. Unlike Pal et al. (2017) and Chongsiripinyo

& Sarkar (2017) who use a “sponge” region to absorb internal gravity wave, the domain’s

radial extent in this present study is enlarged to 80Lb allowing free propagation of internal

gravity waves while minimizing reflection from the boundary without artificially adjusting

the farfield to a background state.

Parameters of the simulations are given in table 6.1. The distribution of the

computational grid is optimized on the basis of the unstratified case where the turbulent

dissipation rate is known to decays as Á Ã x≠m, m Æ 5/2, in the self-similar solution

(George, 1989), thus leading to an estimate of the Kolmogorov length. The streamwise-

dependent radial distribution of Á is estimated from the DNS of Dairay et al. (2015) and

LES of Chongsiripinyo & Sarkar (2017). The resulting number of grid points for the

weakly stratified cases is 624 millions cells. In the unstratified wake, �x/÷ is at worst ¥ 17

near the centerline at x/Lb ¥ 2.5; ÷ is the Kolmogorov scale calculated directly from the

turbulent dissipation rate by ÷ = (Re3Á)≠1/4. Beyond about x/Lb = 10, the centerline

�x/÷ is smaller than 10 and gradually decreases to about 6 at x/Lb = 125. The distribution

of �x/÷ and �r/÷ are given in figure 6.1. The approximate time step for all the cases

lies between 2 ≠ 9 · 10≠4Lb/Ub. Statistics are collected over �t/(U≠1
b Lb) œ (200 ≠ 250)

during a statistically steady state determined by convergence of moving-window averages
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Figure 6.1: Grid quality: (a) Streamwise variation of nondimensional streamwise grid
spacing, and (b) Radial profiles of nondimensional radial grid spacing.
Kolmogorov length scale, ÷ = (‹3

/Ák)1/4, is computed using the turbulent
dissipation rate of the unstratified wake.

of centerline streamwise and radial velocities at x/Lb = 100. The steady state is reached

after initial transient that typically takes two to three flow through times (300Lb/Ub). For

the unstratified case, we use an averaging time of 500Lb/Ub. The CPU usage, between

750,000 and 106 core hours distributed over 512 cores for each case, is large because of the

long integration time. The averaged drag coe�cient in the unstratified case is found to be

Cd = 1.145 comparable to the value of Cd = 1.12 in Fail et al. (1959).
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6.4 Analysis and interpretation

6.4.1 Statistics

The ensemble, collected once statistical steady state is reached, is Reynolds decom-

posed, „ = È„Í + „Õ, where „ is an instantaneous realization. Representing an ensemble

average, the angle bracket È·Í denotes an appropriate averaging operator and performs

averaging in all applicable homogeneous directions wherever applicable. Simulated in

a spatially-evolving domain, the turbulent wake in a homogeneous fluid is statistically-

homogeneous in time and in the azimuthal direction. The stratified wake is statistically

homogeneous in time and is statistically-symmetric across vertical and horizontal center

planes, È„Í(x, y, z)=È„Í(x, ±y, ±z). The other type of statistic is obtained from cross-wake

area integration indicated by braces {·},

{„}(x) =
2Lk(x,◊)⁄

0

„(x, r, ◊)dC, (6.5)

where the wake width (Lk) is described in section 6.4.2. In order to include only wake

turbulence and exclude internal wave contributions, a small integral number (2LK) of wake

widths is chosen for the radial limits of the integral. Lee waves, especially at intermediate

stratification, generated by a wake generator can propagate considerably into the far field

and we prefer to exclude the far field in the area integral.

6.4.2 Mean and turbulent lengthscales

In a homogeneous fluid, an axisymmetric half-length L measures an azimuthally-

averaged distance from the centerline to a position where the streamwise mean velocity

deficit is reduced to half of its centerline value, U0|r=L = U0|r=0/2. The other half-length,
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Lk, is based on profiles of the turbulent kinetic energy (TKE), K = ÈuÕ
iu

Õ
iÍ/2 as opposed to

U0, taking K|r=Lk
= K|r=0/2. In a stratified fluid, horizontal and vertical length scales are

defined separately but again based on U0 and K profiles, and denoted as

LH , LV , LHk, LV k .

Here, the horizontal width (LH) and vertical height (LV ) represent half lengths in the

lateral (y) and in the vertical (z) direction based on U0, while LHk and LV k are derived

from profiles of the TKE. Since U0 and K are obtained from the È·Í operator, a half length

is calculated based on an appropriately-averaged ensemble. Note that at steady state of all

cases, although instantaneous wakes can meander around a mean position, the centerline

peak values of U0 and K remain close to the axis of the cylindrical grid.

The turbulent integral length scale is not easy to calculate in a spatially-evolving

stratified wake where spatial homogeneity is absent. We use the wake width (LHk) as a

surrogate for the horizontal integral length scale. The turbulent vertical length scale, lv,

is calculated along the centerline and its method of calculation is adopted from Riley &

deBruynKops (2003) as l2
v = ÈuÕ2

x + uÕ2
y Í/È(ˆzuÕ

x)2 + (ˆzuÕ
y)2Í.

6.4.3 Reynolds numbers and Froude numbers

The buoyancy Reynolds number (Reb), the horizontal-motion Reynolds number

(Reh), and the microscale Reynolds number (Re⁄) are defined as follows:

Reb = Ák

‹N2 , Reh = uÕ
hLHk

‹
, Re⁄ = uÕ

x⁄

‹
, (6.6)

where uÕ
h = (uÕ2

x + uÕ2
y )1/2 is the rms horizontal velocity and ⁄ is the Taylor microscale

defined by ⁄2 = 15‹uÕ2
x /Ák. The mean vertical Froude number (FrV ), the mean horizontal
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Froude number (FrH), the turbulent vertical Froude number (Frv) and the turbulent

horizontal Froude number (Frh) are defined as follows:

FrV = U0
NLV

, F rH = U0
NLH

, F rv = uÕ
h

Nlv
, F rh = uÕ

h

NLHk
. (6.7)

6.5 Visualization

Before diving into the detailed analysis of wake statistics, we begin with a visual-

ization that contrasts flow structures of the stratified wakes with those under unstratified

conditions. Snapshots of the streamwise velocity (ux) for the Fr = Œ, 10, and 2 wakes are

shown in figure 6.2, 6.3, and 6.4, respectively. The body moving through the background

leaves its imprint that grows and lasts for a long distance, with its visual presentation

being strongly dependent on the strength of stratification. When the stratification is

weak (Fr = 10), the near wake remains relatively unchanged relative to Fr = Œ but the

anisotropy between vertical and horizontal cuts is readily apparent in the intermediate

and far wake. When the stratification is strong (Fr = 2), the wake quickly responds to

the background stratification; even the near wake is vertically contracted and the interme-

diate/far wake is more coherent than at Fr = Œ. As buoyancy forces become relatively

stronger characterized by the decreased local Froude number; the far-field Fr = 10 wake

behaves similarly to the near-field Fr = 2 wake, horizontally wide but vertically thin.

In fact, they are qualitatively in-sync if we compare the two at a normalized distance,

i.e., (x/Lb)Fr≠1 = Ntb. This aspect will be quantitatively elaborated in sections 6.6 and

6.7. As vertical motions become progressively suppressed, the wakes become increasingly

two-dimensional, with the appearance of horizontal waviness that drives the formation of

large-scale horizontal but vertically thin ‘pancake’ eddies that will emerge later in the Q2D

regime.
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6.6 Evolution of mean deficit velocity and turbulence

intensities

Centerline values of mean streamwise velocity deficit (U0) and root mean square

(r.m.s) velocity fluctuations in streamwise (uÕ
x), spanwise (uÕ

y) and vertical (uÕ
z) directions are

shown in figure 6.5 for the unstratified wake. The initial increase of U0 in the recirculation

zone to exceed the freestream velocity (Ub) is accompanied by an increase in all r.m.s

components signifying the establishment of turbulence. R.m.s fluctuations peak at x/Lb ¥

2.5 which lies in the recirculation region. U0/Ub decays over 2 Æ x/Lb Æ 10 with a rate that

gradually decreases with increasing x. The subsequent evolution of U0 in figure 6.5 reveals a

break in slopes at x/Lb ¥ 65 that separates two stages with di�erent power-law exponents.

The first stage of 10 < x/Lb < 65 exhibits approximately U0 Ã x≠0.9 while the second

stage of 65 < x/Lb < 125 satisfies U0 Ã x≠0.6, close to the classical U0 Ã x≠2/3 behavior. A

similar transition between two di�erent power laws was found by Dairay et al. (2015) in the

axisymmetric wake of a fractal plate. They identified U0 Ã x≠1 (an exponent of -0.94 in

their Re = 5000 DNS and -1.03 in their Re = 50, 000 experiment) for 10 < x/Lb < 50 that

transitions to a di�erent power law reported as U0 Ã x≠0.81 in the Re = 5000 DNS. The

evolution of U0 showed behavior close to x≠1 scaling in our previous simulations of sphere

wakes: DNS at Re = 3700 by Pal et al. (2017) and LES at Re = 10, 000 by Chongsiripinyo

et al. (2019). Although it is tempting to attribute the x≠1 power law of U0 to low-Re

viscous decay (e.g George (1989)), that is not the case. As we will show later during the

analysis of mean kinetic energy (MKE), the turbulent production that acts as a sink of

MKE is much larger in magnitude than the viscous dissipation term in the MKE equation.

Furthermore, the microscale Reynolds number that varies between Re⁄ = 200 at x/D = 10

and Re⁄ = 120 at x/D = 100 is not small.
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Figure 6.5: Unstratified wake. Evolution of centerline values of mean streamwise
velocity deficit (U0), r.m.s velocity fluctuation (uÕ

x, u
Õ
y, u

Õ
z), and turbulent

velocity (K1/2). The inset shows the evolution of turbulence velocity
quantities normalized with the local U0(x).

In contrast to U0, the evolution of the turbulent velocity scale (K1/2) does not break

into two separate power laws. The decay of K1/2 (green circles in figure 6.5) is found to

be K1/2 Ã x≠0.71, close to x≠2/3 from x/Lb = 10 to the end of the computational domain.

Thus, the mean velocity scale in the intermediate wake (10 < x/Lb < 65) decays with a

di�erent power law exponent (-0.9 as shown in figure 6.5) than the exponent satisfied by

the turbulence velocity scale. Similarity theory for the turbulent wake (e.g. Tennekes &

Lumley (1972)) assumes the same velocity scale for both mean and turbulence. In the

present simulation, it is only beyond x/Lb = 65 that the power law exponents for U0 and

K1/2 become similar and close to the classical value of ≠2/3. Near-wake turbulence is found

to be anisotropic with uÕ
x substantially smaller than uÕ

y and uÕ
z near the body; however, the

r.m.s velocity components (inset of figure 6.5) become more isotropic for x/D > 40.
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Figure 6.6: Case F50. (a) Evolution of U0, u
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1/2. Inset shows quantities
normalized by the corresponding unstratified-wake value (symbols and
black solid line are as in the main figure). (b) Evolution of di�erent Froude
numbers defined by Eq. 6.7.
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The evolution of U0 in case F50 (figure 6.6) shows little deviation from the UNS case

until x/Lb ƒ 50 or Ntb ƒ 1, consistent with theoretical arguments (e.g. Riley & Lelong

(2000)) that it takes a time interval of Nt ≥ 1 for buoyancy forces to become comparable to

inertial forces in a flow that originates with weak buoyancy e�ects. The inset emphasizes

the importance of Ntb = 1 by showing that U0/U0Œ abruptly increases at Ntb ¥ 1; here,

U0Œ denotes the centerline deficit in the UNS case. The inset also shows that stratification

increases the rate of decay of U0 as early as x/Lb = 10 or Ntb = 0.2 (observe that U0/U0Œ

starts decreasing around x/Lb = 10). Thus, there is a mild e�ect of buoyancy in the

weakly stratified wake before Ntb = 1. Buoyancy increases the decay rate of K1/2 (green

circles) relative to the unstratified case (dashed green line). The inset shows that all three

turbulence components in F50 are reduced with respect to UNS, but the di�erence relative

to UNS is smaller than that in U0. The delay in the turbulence response to stratification

in comparison to the mean velocity deficit will be more apparent in the F10 case and the

reason for this delay will be made clear in the discussion of the F02 case.

The evolution of Froude numbers based on mean and r.m.s components is shown

in figure 6.6 (b). We defer discussion of Froude numbers to later in this section after

introducing the results regarding the velocity in the F02 case.

In the F10 case (figure 6.7), buoyancy forces become comparable with inertial forces

at a location closer to the body relative to F50 but at a similar value of Ntb. U0 deviates

from the unstratified case at x/Lb ¥ 10 (equivalently, Ntb ¥ 1) and, as emphasized by the

inset, U0/U0Œ increases sharply at x/Lb ¥ 10. There is a strong e�ect of buoyancy on r.m.s

velocity fluctuations but it is delayed until x/Lb ¥ 50 when, as shown by the inset, r.m.s of

the horizontal components increase while the vertical r.m.s decreases relative to UNS. It is

clear that the stratified wake exhibits a regime between Ntb ¥ 1 and Ntb ¥ 5 wherein the

e�ect of buoyancy on the mean velocity is much stronger than that on turbulence. Beyond

Ntb ¥ 5, the Reynolds stresses deviate strongly from isotropy towards a “pancake” with
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Figure 6.7: Case F10. Caption as in figure 6.6.
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uÕ
x ¥ uÕ

y ∫ uÕ
z.

The behavior of Fr = O(1) wakes is quite di�erent in the near and intermediate

wake from the Fr Ø O(10) cases that have been discussed so far. Consider U0 at Fr = 2

(case F02) in figure 6.8 (a) together with the evolution of Froude numbers in figure 6.8 (b).

The mean recirculation region (has negative velocity and deficit velocity U0 > 1) is shorter

because the incoming fluid that is vertically displaced by the body has su�cient buoyancy

so that it plunges back in the separated flow towards the centerline. In contrast to F10 and

F50, there is a region after the recirculation region where U0 increases instead of decreasing.

There is a local minimum of U0 at Ntb ƒ fi, i.e., a half lee-wave period behind the disk;

subsequently, U0 increases and reaches a local maximum at Ntb ƒ 2fi. This behavior is the

manifestation of the lee-wave induced ‘oscillatory modulation’ of U0 reported in the DNS

of the Re = 3700 sphere wake by Pal et al. (2017). In the NEQ regime, U0 is found to

decay with a rate that is close to x≠0.18. The rate of decay is smaller than the U0 Ã x≠0.25

behavior in the sphere wake experiments of Spedding (1997).

We now turn to the Froude numbers. Consider FrV = U0/NLV based on mean

wake deficit velocity. The value of FrV (red curve in figure 6.8 (b)) reaches 1 at x/D ¥ 5,

a location at which U0 commences a rapid deviation from the unstratified result. FrV

remains close to unity further downstream. Interestingly, in the F10 (figure 6.7 (b)) and

F50 (figure 6.6 (b)) cases too, FrV decreases to O(1) before U0 commences to deviate from

unstratified behavior and plateaus at an O(1) value further downstream.

The role of Froude number, Frv (based on fluctuation rather than mean-flow

statistics), in the evolution of r.m.s turbulence is analogous to that of FrV in the evolution

of the mean flow. When Frv decreases to O(1) (x/Lb ¥ 20), the evolution of r.m.s

turbulence deviates strongly from unstratified behavior since buoyancy becomes comparable

to inertial forces in the inertial-range turbulent motions. The F02 case (figure 6.8 (a)) has

a distinguished region between x/Lb = 5 and x/Lb = 20 where FrV = O(1) so that the
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mean is strongly a�ected by buoyancy and Frv > O(1) so that r.m.s turbulence is not.

Since the Reynolds number (both Re⁄ and Reb) is su�ciently high in this distinguished

region between x/Lb = 5 and 20 that has Frv > O(1), the decay of turbulence is close

to the classical Kolmogorov decay law for unstratified turbulence, u2 Ã t≠10/7, as can be

seen by comparing the evolution of K1/2 with the x≠5/7 line in figure 6.8 (a). Despite the

weak e�ect of buoyancy on turbulence, U0 in this same distinguished region exhibits strong

buoyancy e�ects since FrV has decreased to O(1). In the vicinity of Frv ƒ 1 and beyond,

the decay rates of uÕ
h and K1/2 are reduced with respect to their unstratified counterparts.

Once their decay has “settled” in the NEQ regime, it is found that K1/2 Ã x≠0.18, i.e.,

turbulence and mean evolve with the same power law. This can be regarded as the o�cial

arrival of the NEQ regime. uÕ
z continues to monotonically decrease with an approximate

power-law decay of uÕ
z Ã x≠1 agreeing with the t≠1 scaling observed in the experiment of

Lin & Pao (1979) and close to the t≠1.08 scaling observed in the numerical simulation of

Brucker & Sarkar (2010). Notice that uÕ
y > uÕ

x in the late wake, a result that is consistent

with coherent vortex patches that are located laterally o�-centerline.

6.7 Turbulence in phase space

The Frh ≠ RehFr2
h phase presents a consolidated view of the progression of wake

turbulence under the influence of stratification. The phase-space map (Figure 6.9) of wake

evolution shows the progression of each of the simulated cases through di�erent stages

which, as elaborated below, exhibit qualitatively di�erent e�ects of buoyancy. Decreasing

Frh implies an increasing e�ect of buoyancy. Large scales of motion are preferentially

a�ected by buoyancy and, as Frh decreases, the largest scale a�ected by buoyancy also

decreases. The quantity RehFr2
h has been introduced by Billant & Chomaz (2001) as a

parameter that must be > 1 to prevent viscous e�ects from directly a�ecting turbulent
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motions, and Riley & deBruynKops (2003) relates RehFr2
h to an inverse Richardson number

of fluctuating motions so that RehFr2
h > 1 implies the possibility of local shear instability.

RehFr2
h can be related to the buoyancy Reynolds number, denoted by Reb, via the inviscid

estimate dissipation scaling, Ák ≥ uÕ3
h /LHk. Reb can be expressed as a ratio of inertial and

viscous forces,

Reb = uolo
‹

; uo =
3

Ák

N

41/2
, lo =

3
Ák

N3

41/2
, (6.8)

i. e. the Reynolds number of Ozmidov-scale eddies. Eddies with size less than the Ozmidov

length, lo, are not restrained from overturning by buoyancy. Since Reb = (lo/÷)4/3 where

÷ = (‹3/Ák)1/4 is the Kolmogorov scale, it follows that when Reb ∫ 1 there is a large scale

separation between the Ozmidov and the Kolmogorov scales which is necessary for the

presence of an inertial subrange that is una�ected by either buoyancy or viscous forces.

The turbulent horizontal Froude number, Frh = uÕ
h/NLHk, is the ratio of the buoyancy

timescale (N≠1) to the turbulent horizontal timescale (LHk/uÕ
h), and is a measure of the

strength of buoyancy e�ects on the energy-containing scales; a decrease in Frh implies an

increase in the relative strength of buoyancy. Frh can also be interpreted based on length

scales using Ák ≥ uÕ3
h /LHk that leads to Frh = (lo/LHk)2/3.

The Frh ≠ RehFr2
h phase portrait serves to distinguish among the di�erent manifes-

tations of the influence of buoyancy as the wake evolves through progressively decreasing

values of both Frh and RehFr2
h. As Frh decreases, the lower bound (lo) on the length

scale of buoyancy-a�ected motions decreases. As RehFr2
h decreases, the scale separation

between lo and ÷ decreases so that, for a given Frh, the parameter RehFr2
h is a measure of

the range of scales that can support turbulent motions. The wake is found to pass from a

state of weak buoyancy (WB) to stratified turbulence (ST) at Frh = 1 when the large-eddy

lengthscale, LHk, becomes equal to the Ozmidov lengthscale, lo = (Ák/N3)1/2. Figure 6.10

(a) shows that Frh = 1 is achieved at about the first buoyancy adjustment period (Ntb = 1)

for all the simulated wakes. As was discussed in section 6.6, U0/U0Œ is found to deviate

111



10≠2

10≠1

100

101

10≠2 10≠1 100 101 102 103 104 105 106 107

Intermediately stratified turbulence

Weak buoyancy e�ects

Viscous regime Flow

Strongly stratified turbulence

Weakly stratified turbulence

F
r h

RehFr2
h

F50
F10
F02

Figure 6.9: The trajectory of each of the simulated wakes in Frh ≠ RehFr
2
h phase

space computed using centerline values of Frh and RehFr
2
h. Stratified

turbulence (Frh < 1 and RehFr
2
h > 1) is divided into three regimes by

the horizontal lines through Frh = 0.1 and 0.03.

112



(a)

10≠2

10≠1

100

101

10≠2 10≠1 100 101 102

(Ntb)≠1
WST

IST

SST

F
r h

Ntb

F50
F10
F02

(b)

10≠1

100

101

102

103

104

105

106

107

10≠2 10≠1 100 101 102

R
e h

F
r2 h

Ntb

F50
F10
F02

Figure 6.10: Evolution of phase-space parameters: (a) Frh, and (b) RehFr
2
h. The

horizontal grey lines in (a) divide the wake into WST, IST, and SST
regimes.

113



sharply from unity at Ntb ¥ 1 marking a point when buoyancy has begun to significantly

a�ect the largest scales of the flow.

Stratified wake turbulence can be further subcategorized into 3 regimes: weakly

stratified turbulence (WST), intermediately stratified turbulence (IST), and strongly

stratified turbulence (SST) as marked in figure 6.9. In the WST stage, the e�ect of

buoyancy on the mean flow is significant but its e�ect on turbulence is not. In particular,

turbulence anisotropy is hardly a�ected in the WST regime. The value of Frh has to

decrease from unity by almost an order of magnitude before there is a trend of increasing

turbulence anisotropy associated with r.m.s in the horizontal progressively becoming larger

than in the vertical. As discussed in section 6.6, turbulence anisotropy increases in both

Fr = 2 and 10 wakes at Frh ¥ 0.1. This suggests that WST transitions at Frh ≥ O(0.1) to

a regime of intermediately stratified turbulence (IST) that is distinguished by progressively

increasing turbulence anisotropy. The final stage of strongly stratified turbulence (SST)

is based on Frh becoming Frh ≥ O(0.01). In particular, we consider SST to commence

at Frh = 0.03, based on the value of Frv = uÕ
h/Nlv approaching an O(1) constant. It is

worth noting that Frh = 0.03 is close to the prediction of Lindborg (2006) that the critical

horizontal Froude number Frh,crit = 0.02.

Figure 6.9 shows that the entry of stratified wakes into the three ST regimes depends

on the Fr of the wake. The F50 trajectory enters WST relatively late and is not able

to enter IST. Notice that Frh is however close to 0.1 (near the entry of IST) by the

end of the computational domain and turbulence starts becoming anisotropic as seen in

figure 6.6 (a). Both F10 and F02 trajectories access the IST regime with a su�ciently

large RehFr2
h ¥ 100.Turbulence anisotropy progressively increases as the wake traverses

the IST regime as shown by the divergence of uÕ
z from K1/2 in figures 6.7 (a) and 6.8 (a).

In the IST regime, the inertial force on the mean flow dynamically adjusts to balance the

buoyancy force such that FrV becomes close to an O(1) constant (see figure 6.7 (b) and 6.8
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(b)). However, buoyancy becomes progressively stronger in the case of turbulent eddies as

indicated by the continued decrease of Frv as the flow evolves. The Fr = 2 wake is able to

cross the Frh = 0.03 boundary to access the SST regime and remains in the regime until

the end of the simulation domain. Figure 6.8 (b) shows that Frv = uÕ
h/Nlv asymptotes

to an O(1) constant in the SST regime. Thus, stratification imposes a characteristic

buoyancy length scale, lv = uÕ
h/N , on small-scale turbulence in the SST regime. Since

lv = uÕ
h/ˆzuÕ

h, it follows that vertical shear of the fluctuations asymptotes to O(N). lv

becomes approximately constant in case F02 (Figure 6.11) when Ntb > 20. The value

of Ntb = 20 also marks the entry of Case F02 into the SST regime as indicated by the

crossing of Frh ƒ 0.03 at Ntb ¥ 20 by the F02 trajectory in figure 6.10.

Since RehFr2
h ≥ O(10) as the F02 wake enters into the SST regime, figure 6.12

(a) reveals small-scale patchiness of turbulence displayed by a contour of instantaneous

turbulent dissipation. While F02 turbulence has decayed in amplitude during the SST

regime, figure 6.12 (b) shows that the power spectra of centerline streamwise velocity

remains broadband during the SST regime. Figure 6.13 displays the three regimes of

stratified turbulence. At F02, the SST spans a substantial streamwise distance (almost 85

body diameters from x/Lb ¥ 40 to the end of the computational domain) indicating that

the dynamics of strongly stratified flow is important to the evolution of high-Re wakes.
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6.8 Wake lengthscales

The evolution of the geometrical dimensions of the wake is closely related to the

decay of U0 owing to conservation of momentum deficit.The horizontal (LH) and vertical

(LV ) wake extents derived from profiles of mean streamwise velocity deficit are shown in

figure 6.14. The width and height of the unstratified case are identical by construction

as they are obtained from additional azimuthal averaging. It is found that during the

interval, 10 < x/Lb < 65, the wake satisfies L Ã x0.45 in accord with momentum-deficit

conservation, U0L2 = const and the U0 Ã x≠0.9 law found in that interval. During the

interval, 65 < x/Lb < 125, the wake length grows with an exponent L Ã x0.29, close to

L Ã x1/3, the classical similarity law for L in the turbulent far wake.

Consider the wake length Lk, derived from profiles of TKE in the UNS case, and

plotted in figure 6.15 (solid-black line). Unlike L which exhibits a breakpoint at x/Lb ¥ 65,

there is no corresponding breakpoint in the evolution of Lk. Rather, a least-squares power-

law fit to Lk yields Lk Ã x0.31 close to x1/3 during the entire domain after x/Lb > 10.

Therefore, it is a combination of quantities derived from turbulence (K1/2 and Lk) and not

those derived from the mean flow (U0 and L) that appears to satisfy the classical high-Re

similarity result.

We return to figure 6.14 and discuss how buoyancy sets in to create anisotropy

between LH and LV in stratified wakes. For the weakly-stratified Fr=50 and 10 cases,

both LH and LV behave in the near wake as expected with little to no variation compared

to the UNS case. Further downstream, the growth of LV reduces at Ntb ¥ 1 (recall that

Ntb = Fr≠1x/Lb). As far as we know, this is the first body-inclusive stratified wake

simulation that finds a continuous decrease of vertical thickness. The horizontal width

LH , for both Fr = 10 and 50, deviate away from the UNS case before LV does. Beyond

x/Lb = 10 in the Fr = 10 wake, the growth of LH is close to LH Ã x1/3 over a long interval
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until the end of the computational domain.

The wake dimensions in the Fr = 2 case are significantly di�erent from the UNS

case. LH and LV start deviating from the UNS case close behind the body indicating an

absence of the ‘3D, unstratified’ regime. The deviation is consistent with conservation of

momentum deficit; LH is enhanced to counteract the contraction of LV as buoyancy returns

vertically-displaced fluid towards its neutral equilibrium. After x/Lb = 2 that marks the end

of the recirculation zone, LH commences to increase with a rate slightly larger than that of

the UNS case until x/Lb = 5 or Ntb = 2.5 where the growth rate decreases. At x/Lb ¥ 2fi,

where the mean wake enters into the next phase of the oscillatory modulation depicted

by the rapid increment of LV , the velocity deficit (U0) increases and, as a consequence

of conservation of momentum deficit, LH decreases sharply to satisfy U0LHLV ¥ const.

This sharp lateral contraction of LH leads to the F02 trajectory crossing its unstratified

counterpart at x/Lb = 10. Beyond x/Lb = 20, the growth rate of LH progressively

approaches LH Ã x1/3. After the rapid growth of LV over 2fi < x/Lb < 4fi (fi < Ntb < 2fi),

the oscillatory modulation remains visible, albeit with diminished amplitude, throughout

the wake evolution until the end of the computational domain.

The Fr = 2 power-law exponents of LH and LV can, in fact, be inferred based

on FrV æ const. and the conservation of momentum. The proportionality FrV Ã x0

implies that LV Ã U0. Invoking the conservation of streamwise momentum deficit where

U0LV LH ¥ const and assuming that the shape of deficit profiles in the y ≠ z plane is

characterized by the two lengths scales LH and LV , yields LHL2
V ¥ const or LH Ã L≠2

V .

Since U0 Ã x≠0.18 in the Fr = 2 wake, it directly follows that LV Ã x≠0.18 and LH Ã x0.36,

which are close to the present result.

The horizontal extent (figure 6.15 a) of the TKE profile become comparable to that

of the UNS case, even in the NEQ regime, with a grow rate of LHk Ã x1/3. In the vertical

direction, the half-height (LV k) based on TKE decreases similar to LV . For example, LV k
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Figure 6.14: Wake dimensions based on the the velocity profile: (a) horizontal wake
width (LH), and vertical wake height (LV ).

120



at F10 begins to deviate away from the UNS case around x/Lb = 10 (Ntb = 1), practically

identical to where LV deviates from its UNS counterpart. In case F02, once wake turbulence

enters into the NEQ stage, it is found that LV k Ã K1/2(Ã x≠0.18) in agreement with the

predicted vertical length scaling of strongly stratified flow.

6.9 Histories of kinetic and potential energies

In section 6.6, we discussed buoyancy e�ects on centerline values of mean and

r.m.s velocity. The evolution of area-integrated values of the kinetic and potential energy,

each split into mean and turbulent constituents, is also of interest. Figure 6.16 shows

the histories of area integrals, denoted by {·}, of mean kinetic energy, EM
k = ÈudÍ2/2,

turbulent kinetic energy, ET
k = ÈuÕ

iu
Õ
iÍ/2, mean available potential energy, EM

fl =“ÈfldÍ2/2

where “=g2fl≠2
0 N≠2, and turbulent available potential energy, ET

fl =“ÈflÕ2Í/2. The subscript

‘d’ denotes deviation of velocity from background velocity (Ub, 0, 0) or density from the

linearly-varying background density.

Consider first the decay of EM
k (figure 6.16 (a)). The decay of EM

k in the stratified

wakes slows down once the downstream location in each wake has reached the corresponding

Ntb = 1. The inset shows that EM
k , when normalized by the corresponding UNS value,

increases as approximately x0.5 which can be explained as follows. If U0, LH , and LV are

the characteristic velocity and lateral wake lengthscales for the mean deficit velocity profile,

then

{EM
k } ≥ U2

0 LV LH Ã U0 . (6.9)

The second proportionality comes from invoking conservation of deficit momentum and,

again, assuming that the shape of the deficit profile is characterized by LH and LV . Thus,

{EM
k }/{EM

k }Œ ≥ U0/U0Œ, where U0/U0Œ Ã≥ x≠0.18/x≠2/3 Ã x0.49 which is close to the x0.5
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Figure 6.15: Wake dimensions based on the the profile of turbulent kinetic energy:
(a) horizontal width (LHk), and (b) vertical height (LV k)
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scaling in the inset. Similarly, scaling ET
k shows that

{ET
k } ≥ KLV LH Ã K

U0
. (6.10)

In the WST regime, the evolution of K is unchanged while U0 increases relative to the

unstratified case, so that Eq. (6.10) implies that {ET
k } decreases relative to UNS once

the stratified wakes enter the WST regime. This can be seen in figure 6.16 (b) where the

Fr = 10 and 50 wakes access the WST regime at their corresponding Ntb ¥ 1, at which

point they decrease faster than the UNS case. The inset shows that the reduction of the

{ET
k }/{EM

k } ratio relative to the unstratified case largely takes place in the WST and

the early-IST regimes and reaches a plateau in the SST regime. In the unstratified case,

the mean component becomes much smaller than the turbulent component. However, as

inferred from the inset of figure 6.16 (b), the mean wake remains at long distance from the

body in stratified cases even when the turbulence has decayed.

Consider the evolution of potential energies in figure 6.16 (c, d). {EM
fl } is largest

initially in the F02 wake where the the disk displaces fluid under the highest stratification

of the cases simulated here. Subsequently, {EM
fl } decreases with the decay rate being

larger in the IST and SST regimes than in WST. Examination of the budget of {EM
fl } (not

shown) reveals that the dominant balance is between advection and the mean buoyancy

flux, BM
k = ≠gfl≠1

0 ÈfldÍÈu3Í. The mean buoyancy flux in the F02 wake acts to transfer

energy to the mean kinetic energy during the IST and SST regimes, leading to a sharp

drop in EM
fl . By the end of the computational domain, {EM

fl } in case F02 becomes smaller

than in the other cases. The turbulent buoyancy flux, BT
k = ≠gfl≠1

0 ÈflÕuÕ
3Í, acts to transfer

energy into the turbulent available potential energy (APE) leading to a decrease in the

decay rate of {ET
fl } during the SST phase of case F02.

The inset in the figure 6.16 (c) shows that, in the Fr = 10 and Fr = 50 wakes,
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{EM
fl }/{EM

k } increases with downstream distance reaching ¥ O(0.1). On the other hand,

the inset in the figure 6.16 (d) shows the turbulent kinetic and turbulent potential energies

are more evenly partitioned with {ET
fl }/{ET

k } ¥ O(1) over a substantial distance in the

Fr = 2 and Fr = 10 wakes. This is a consequence of hydrostatic balance of vertical motion

in buoyancy-dominated high-Re flow, where the vertical pressure gradient is balanced

by buoyancy giving flÕ ≥ uÕ2
h fl0/glv and, since lv ≥ uÕ

h/N , it follows that flÕ2 Ã (uÕ
hN)2 or

ET
fl ≥ ET

K .

6.10 Budgets of mean and turbulent kinetic energies

The velocities, lengthscales, and energies discussed in the previous sections are

statistical representations of mean flow and turbulence whose evolution is modified in

stratified wakes. We further elaborate on the dynamical processes responsible for these

modifications in stratified wakes by means of the evolutionary equations for MKE and

TKE. The budget of MKE is written as

ˆtE
M
k = ≠AM

k ≠ Pk ≠ DM
k ≠ T M

k + BM
k , (6.11)

where the advection, production, dissipation, transport, and buoyancy flux are defined

as follows: AM
k = ÈujÍˆjEM

k , Pk = ≠ÈuÕ
iu

Õ
jÍˆjÈuiÍ ≠ È· s

ijÍˆjÈuiÍ, DM
k = ‹ˆjÈuiÍˆjÈuiÍ +

‹ˆjÈuiÍˆiÈujÍ, T M
k = ˆi{ÈpÍÈudiÍ + ÈudjÍÈuÕ

iu
Õ
jÍ} ≠ ‹ˆjjEM

k ≠ ‹ˆjÈuiÍˆiÈujÍ + ˆj(È· s
ijÍÈudiÍ),

and BM
k = ≠gfl≠1

0 ÈfldÍÈu3Í. Similarly, the budget of TKE is written as

ˆtE
T
k = ≠AT

k + Pk ≠ DT
k ≠ T T

k + BT
k , (6.12)

where the advection, dissipation, transport, and buoyancy flux are defined as follows:

AT
k = ÈujÍˆjET

k , DT
k = ‹ÈˆjuÕ

iˆjuÕ
iÍ+‹ÈˆjuÕ

iˆiuÕ
jÍ≠È· s

ijˆjuiÍ, T T
k = ˆi{ÈpÕuÕ

iÍ+ÈuÕ
iu

Õ
ju

Õ
j/2Í}≠
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Figure 6.16: Histories of cross-wake integrals of kinetic and potential energies. (a)
Mean kinetic energy, {E
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k }Œ. (b) Turbulent kinetic energy, {E
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of turbulent to mean kinetic energy.
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‹ˆjjET
k ≠ ‹ÈˆjuÕ

iˆiuÕ
jÍ + ˆjÈ· Õs

ij uÕ
iÍ, and BT

k = ≠gfl≠1
0 ÈflÕuÕ

3Í. The only additional term arising

from the subgrid viscosity is
e
uÕ

iˆj· s
ij

f
, where · s

ij = 2‹sSij and Sij = (ˆjÈuiÍ + ˆiÈujÍ)/2.

The contribution of this term is is found to be negligible.

We start by contrasting area-integrated kinetic energy budgets between the Fr = 2

and Fr = Œ wakes. Terms in the MKE budget, Eq. (6.11), are plotted in figure 6.17 (a, c).

The figure shows that the magnitude of {Pk} ∫ {DM
k } (recall that {·} denotes an integral

over cross-sectional area in the y ≠ z plane) indicating that the production of TKE is the

primary sink of MKE. This is another manifestation of high-Re behavior of this flow; the

close to x≠1 scaling of U0 in the UNS case cannot be attributed to a low-Re similarity result.

The large pressure transport, {T M
k,p} in the insets, is a consequence of the relaxation of the

flow from the low-pressure recirculation zone with increasing streamwise distance. While

the Fr = Œ pressure transport decreases significantly and becomes virtually negligible

after the relaxation, the Fr = 2 pressure transport manifests wave-like behavior with a

wave length of gravity lee waves, ⁄ ¥ 2fiFr, and progressively decreasing amplitude. This

oscillatory modulation is observed in the behavior of every term in the MKE budget except

the dissipation. The oscillations of the advection, {AM
k }, and the pressure transport have

opposing phase, and the wave length of the mean buoyancy flux, {BM
k }, is ⁄ ¥ fiFr.

Terms in the TKE budget, Eq. (6.12), are plotted in figure 6.17 (b, d). Turbulence

is established early on as shown by the large positive production, {Pk}, that exceeds the

dissipation, {DT
k }, in the region before x/Lb ¥ 5. While the decay of TKE in the Fr = Œ

wake via {DT
k } is counteracted solely by {Pk}, the turbulent buoyancy flux, {BT

k }, plays a

role in stratified wakes, e.g. it is found in the Fr = 2 wake to be significant after x/Lb = 5.

{BT
k } has an order of magnitude that is comparable to the production and the dissipation,

and it is in phase with the advection term.

To help understand how MKE and TKE evolve, the production, buoyancy flux,

and dissipation are normalized by the Lagrangian rate of change of their corresponding
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Figure 6.17: Terms in the MKE budget (top) and in the TKE budget (bottom) for
the Fr = Œ wake. Insets show budgets in the near-field 0.5 Æ x/Lb Æ 10
while the main figure depicts the budgets in 10 Æ x/Lb Æ 100.
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10 while the main figure depicts the budgets in 10 Æ x/Lb Æ 100.
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energy, taken to be ”tEk ≥ O(EkUb/x), and plotted in Figure 6.18. It is clear that all

the simulated wakes are, again, of the high-Re type until the end of the domain since the

compensated production, {Pk}M = {Pk}/{”tEM
k }, is a much larger sink for MKE than its

dissipation counterpart, {DM
k }M . The inset in figure 6.18 (a) shows that the production

is suppressed in the presence of stratification after Ntb ¥ 1 but not necessarily for the

entire wake. Thus, {Pk}/{Pk}Œ is < 1 for the Fr = 50 and 10 wakes but becomes > 1

in the Fr = 2 wake beyond about x/Lb = 60. However regardless of the fact that the

Fr = 2 production is promoted later in the Fr = 2 wake ({Pk}F 02/{Pk}Œ > 1), the

compensated production for all the stratified wakes remain relatively small at all time after

Ntb ¥ 1 ({Pk}M < {Pk}MŒ). Figure 6.18 (c) shows that the mean buoyancy flux takes

positive values indicating that energy is transferred from mean APE to MKE. Observe the

Fr = 2 wake; the oscillatory modulation induces a huge jump in the mean buoyancy flux

at x/Lb ¥ 2fi, the same location where the production is most suppressed. This relatively

large BM
k where {BM

k }M |peak ≥ O(1) implies that BM
k is an important contributor to

EM
k being larger in stratified wakes relative to their unstratified counterpart. Therefore,

reduction in the decay rate of EM
k in the stratified Fr = 2 wake has two reasons: (i) the

early suppression of production, and (ii) the significant positive mean buoyancy flux.

TKE is reduced in stratified wakes as seen in figure 6.16 (b) and the reasons can

be deduced from Figure 6.18 (right column). Interestingly, it is primarily the turbulent

buoyancy flux (BT
k ) and, additionally, the dissipation of turbulent kinetic energy (DT

k )

that cause the initial reduction of ET
k , and it is only later that the direct e�ect of reduced

production sets in to further reduce the TKE. This is seen from compensated {BT
k }T

(= {BT
k }/{”tET

k }) that becomes strongly negative (implying that TKE is being used to stir

the density field and generate TAPE) and {DT
k }T that is increased prior to where {Pk}T

significantly deviates from the unstratified counterpart. The result is evident in the Fr = 2

wake where x/Lb = 5 marks the location where buoyancy begins to significantly a�ect
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{Pk}T while {BT
k }T and {DT

k }T have already been altered earlier in the wake.

Consider the F02 wake behavior in Figure 6.18 (right column). While the enhanced

{DT
k }T explains the enhanced decay rate of {ET

K} during 10 Æ x/Lb Æ 40, {Pk}T pro-

gressively increases. {BT
k }T is found to be partially positive with the peak {BT

k }T ¥ 0.5

at x/Lb ¥ 30. Thus, the reduction in the {ET
k } decay rate after x/Lb ¥ 40 seen in the

figure 6.16 (top-right) is the result of the increased {Pk}T along with the positive {BT
k }T

so that the combined source terms become comparable to {DT
k }T . Thus, turbulence in

the Fr = O(1) wakes is energized by the potential energy that was injected during the

intermediate-wake period and not only the enhanced production. Later, the significant

increased {Pk}T is su�cient to counteract with {DT
k }T once {BT

k }T has become negative

so that the reduced decay rate of {ET
k } remains intact.

It is worth noting that (consider the Fr = 2 case) if the NEQ regime is characterized

solely by the reduced decay rate of {EM
k } in figure 6.16 (a), the present result of partially

positive BT
k will be in contrast with the finding of Redford et al. (2015) for weakly-stratified

wakes that BT
k is a sink of ET

k throughout the NEQ regime. However, as described in the

section 6.6, the o�cial arrival of the NEQ regime should be based on the reduced decay

rate of {ET
k } in figure 6.16 (b), i.e. Ntb ¥ 20 or the entry into the SST regime. If we accept

Ntb ¥ 20 as the o�cial arrival of the wake (both mean and turbulence) into NEQ, then

BT
k behaves as a sink in the NEQ regime in agreement with Redford et al. (2015).

6.11 Dissipation

The evolution of turbulent dissipation (Á), characterized by centerline values, is

discussed and possible scaling laws are explored in this section. The dissipation (Ák) of

TKE in lines and the dissipation (Áfl) of TPE in symbols are shown in figure 6.19. Given

that the unstratified wake has high Re, classical theory suggests the scaling Á Ã x≠7/3,
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Figure 6.18: Ratio of cross-wake integrated budget terms for the evolutionary equation
for E

M
K (a, c, e). The budget terms are normalized by the Lagrangian

rate of change of their corresponding energy, ”t{Ek} = {Ek}Ub/x.
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Figure 6.18: (Cont.) Ratio of cross-wake integrated budget terms for the evolu-
tionary equation for E
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K (b, d, f). The budget terms are normal-

ized by the Lagrangian rate of change of their corresponding energy,
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which is a direct result from substituting the self-similarity solution uÕ Ã x≠2/3 and l Ã x1/3

into the inviscid estimate Á ≥ uÕ3/l. To test the preceding inviscid scaling of Á, we take

uÕ = K1/2 and l = Lk to be the half-width of the TKE profile. For the unstratified wake,

however, power-law exponents obtained from the least-square fits, m as in Á Ã xm, is found

to be m ¥ ≠2.25 followed by m ¥ ≠2 (after a slope change at x/Lb ¥ 50). Thus, Á power

law in the unstratified case is not consistent with the uÕ3/l scaling prediction of x≠2.44 that

follows by the power-law exponents uÕ = K1/2 Ã x≠0.71 and l = Lk Ã x0.31 found in the

simulations as discussed in section 6.6. Note that, interestingly, Á(U3
0 /L)≠1 ¥ const beyond

x/Lb ¥ 65.

Figure 6.20 (a) emphasizes the point that Á evolves di�erently from uÕ3/l by showing

that the scaled dissipation, CÁ = Á(uÕ3/l)≠1 in green triangles, is not constant but increases

with streamwise distance in the wake. This apparent contradiction between Á and uÕ3/l

was previously found in an experiment on turbulence generated by a fractal grid (Seoud &

Vassilicos, 2007) where CÁ ”= const despite an observed -5/3 inertial range in the energy

spectrum. Vassilicos (2015) points to accumulating evidence in some turbulent shear flows

that CÁ = Rem
Global/Ren

Local(”= const) in a so-called ‘nonequilibrium region’ wherein the

rate at which the turbulent kinetic energy cascades from large to small scales motion,

uÕ3/l (formed by a dimensional argument), is not strictly equal to the dissipation, Á, felt

by the TKE. Our result shown in figure 6.20 (b) presents additional support that the

centerline dissipation can reasonably be scaled by the form (Ren
Global/Ren

Local)K3/2/L where

ReLocal = U0L/‹ at least beyond x/Lb = 40.

In stratified flows, the dissipation of turbulent kinetic and potential energy have

often been suggested to scale using the inviscid estimate, with uÕ and l replaced by uÕ
h and

lh, i.e. Ák,fl ≥ uÕ3
h /lh. This comes from the notion that the non-linear forward energy cascade

is driven largely from the fluctuating energy present in horizontal motions. However, if the

nonequilibrium region exists in the stratified wakes, we should expect that Ák,fl = CÁk,ÁfluÕ3
h /lh
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Figure 6.20: The Fr = Œ wake: (a) Centerline scaled dissipation, CÁ, and (b) the
product CÁ(Rel/ReG). Lines approximate the simulation data (symbols)
with Bézier splines.
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where CÁk,Áfl ”= const. While CÁ is found close to a constant in the homogeneous stratified

turbulence of Ma�oli & Davidson (2016), assessing this hypothesis can be di�cult for

localized turbulence such as in a core of the stratified wake where the lack of a homogeneous

direction presents a challenge for the estimation of lh. If Ák ≥ uÕ3
h /lh, lh ≥ LHk, and

centerline estimates are employed, the decay rate of Ák should reduce once the stratified

wake has entered into the IST regime where the decay rate of uÕ
h is reduced. This is seen

in figure 6.19 for the Fr = 2 wake but not for the Fr = 10 case. In the Fr = 2, 10 wakes,

Áfl appears to decay like its Ák counterpart but only after Ntb ∫ 1, i.e. after the initial

adjustment between the APE of the displaced fluid and its KE is completed. Scaling of the

Fr = 2 dissipation of TKE is presented in figure 6.21 (a). Similar to the Fr = Œ wake,

Ák ≥ (U3
0 /L) after about x/Lb ¥ 65. The scaling Ák ≥ uÕ2

h N appears valid as the wake

approaches the SST regime in which there is turbulence (Reb & O(1)) and it is largely

controlled by buoyancy. As the Fr = 2 wake approaches toward the viscous regime, our

result (not shown) reveals that Ák is becomingly dominated by the components associated

with the vertical shear of horizontal motions. This implies that the scaling Ák ≥ ‹uÕ2
h /l2

v,

deduced from a dimensional argument, should become applicable. Indeed, Ák(‹uÕ2
h /l2

v)≠1

flattens in the downstream direction. The nonequilibrium dissipation scaling is shown in

figure 6.21 (b). Unlike the unstratified wake, there is no evidence that the nonequilibrium

dissipation scaling works for the simulated Fr = 2 wake.

6.12 Summary and conclusions

The present work is devoted to an examination of relatively high-Reynolds number

turbulent wakes that evolve in stratified fluids. Body-inclusive LES of unstratified and

stratified flows past a circular thin disk placed perpendicular to background stream are

conducted. The wakes are simulated at a Reynolds number of Re=UbLb/‹=50,000 and
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Figure 6.21: The Fr = 2 wake. Caption as in figure 6.20.
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over a wide range of stratifications: Fr=Ub/NLb=Œ, 50, 10, and 2.

In the axisymmetric wake at Fr = Œ, it is found that the centerline deficit velocity

(U0) does not always scale with the turbulence velocity scale (K1/2) contrary to classical

theory. The mean flow decays in two stages with a break in slopes at x/Lb ¥ 65 but no such

transition is found for turbulence. The first stage of 10 < x/Lb < 65 exhibits U0 Ã x≠0.9

and L Ã x0.45. It is only after x/Lb ¥ 65 that U0 exhibits a power law that is close to the

high-Re scaling U0 ≥ K1/2 Ã≥ x≠2/3 and L ≥ Lk Ã≥ x1/3. As a result, none of the stratified

cases considered here display the U0 Ã x≠2/3 scaling in the 3D regime before buoyancy

e�ects set in. It is worth noting that the x≠0.9 behavior of U0 in the intermediate stage of

the disk wake is similar to the approximately x≠1 behavior found in the intermediate stage

of sphere wakes at Re = 3700 by Pal et al. (2017), Re = 10, 000 by Chongsiripinyo et al.

(2019), fractal-plate wakes at Re = 5000 (DNS) and Re = 50, 000 (laboratory experiment)

by Dairay et al. (2015).

Stratified wakes evolve practically without being a�ected by buoyancy until ap-

proximately one buoyancy time scale (Ntb ¥ 1). At this point, the vertical mean Froude

number decreases to and remains at FrV ≥ O(1) and the stratified wake then enters into

a stratified turbulence regime (ST) which can be further subcategorized into 3 regimes:

weakly stratified turbulence (WST), intermediately stratified turbulence (IST), and strongly

stratified turbulence (SST) depending on the value of turbulent horizontal Froude number

Frh = uÕ
h/NLHk. At the entry of the WST stage, Frh = 1, i.e. the large-eddy lengthscale

(LHk) becomes equal to the Ozmidov lengthscale (lo = (Ák/N3)1/2). As the wake progresses

in the WST stage, Frh reduces from O(1) to O(0.1) and, while the e�ect of buoyancy on

the mean flow is significant, its e�ect on turbulence is insignificant. Thus, during WST

that spans 1 . Ntb . 5, the mean flow progressively transitions into the non-equilibrium

(NEQ) regime but turbulence remains approximately isotropic (uÕ
h ¥ uÕ

z). A transition

towards the next stage of IST takes place at Frh ≥ O(0.1) in the proximity of Ntb ¥ 5.
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The IST stage is distinguished by progressively increasing turbulence anisotropy. In IST,

while the mean flow has arrived at the NEQ-regime behavior of U0 Ã x≠0.18, turbulence is

still in transition towards a di�erent regime, namely, SST.

The stratified wake enters into the third stage of SST, demarcated by the value of

Frv asymptoting to a O(1) value. We find that, at Frh ¥ 0.03 which occurs at Ntb ¥ 20,

the wake enters the SST regime with Frv æ 0.65. Indeed, a key feature of the SST regime

of stratified flows in general is that buoyancy imposes a vertical length scale, lv Ã uÕ
h/N ,

i.e. Frv æ O(1) const (Billant & Chomaz, 2001), as has been seen in previous simulations

of decaying homogeneous turbulence (de Bruyn Kops & Riley, 2019; Ma�oli & Davidson,

2016). It is expected that SST lasts as long as the modified Reynolds number, RehFr2
h > 1

(Riley & deBruynKops, 2003; Brethouwer et al., 2007), which remains true in the F02

wake from x/D ¥ 40 to the end of the domain at x/D = 125. In the SST regime of the

wake, turbulence is strongly anisotropic (uÕ
z π uÕ

h) and arrives into the NEQ regime with

uÕ
h ≥ U0 Ã x≠0.18 while uÕ

z Ã x≠1. Furthermore, the SST wake is patchy as inferred from

visualizations of fluctuating dissipation rate, and temporal spectra are broadband.

Throughout the IST-SST period, the vertical mean lengthscale (wake height) is

naturally selected by the flow so that mean inertial and buoyancy forces remain in balance,

LV ≥ U0/N that yields FrV ¥ const. This leads to the continuous decrease in LV

to accommodate the ongoing U0 decay. The need to obey conservation of momentum

(U0LHLV ¥ const.) indicates that the wake width (LH) is thus indirectly selected by

buoyancy as LH Ã U≠1
0 L≠1

V Ã U≠2
0 . It is worth noting that LV exhibits a decreasing trend

throughout the computational domain indicating that, unlike our prior low-Re simulations,

the low-Re e�ect of viscous di�usion and its concomitant increase of LV is absent in the

present simulations.

It is worth noting that, in the present work, it is Lk and not L that possesses the

power law close to the x1/3 growth in the unstratified wake and the 3D region of stratified
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wakes. It is intriguing that the results for power laws satisfied by the mean velocity deficit

and horizontal wake width from temporal-model simulations (e.g. Dommermuth et al.

(2002); Brucker & Sarkar (2010); Diamessis et al. (2011)) are similar to power laws in the

present work that are based on fluctuation (
Ô

K) and not mean profiles. A possible reason

for the di�erence in the power laws for U0 between temporal and body-inclusive simulations

is the consequence of a large-scale structure introduced by the body into the wake that is

not present in the initial conditions of the temporal simulations.

The present results suggest re-examination of the NEQ regime of stratified wakes.

At Ntb ¥ 1 that has been taken to be the commencement of the NEQ wake, it is only the

mean flow that is su�ciently influenced by buoyancy, i.e. the decay of U0 is slowed down

and the mean-based Froude number (FrV ) becomes O(1). In other words, LV becomes

O(U0/N). It is much further downstream, Ntb ¥ 20, when the turbulence-based Froude

number (Frv) becomes O(1), turbulence becomes strongly anisotropic with uÕ
z π uÕ

h, and

the decay of turbulence is also reduced so that uÕ
h ≥ U0. The U0 Ã x≠0.18 found for the

NEQ disk wake is di�erent from the previously found sphere-wake behavior of U0 Ã x≠0.25

in the NEQ regime. Further study will be useful to ascertain how the geometry of the wake

generator a�ects the exponent of the U0 power law in the NEQ region of stratified wakes.

An overall picture of stratified wakes emerges when plotted in phase space. We

choose centerline values of (RehFr2
h, F rh) as the phase-space coordinates which is analogous

to the study of stratified turbulence in a periodic box by de Bruyn Kops & Riley (2019)

who use (Reb, F rh) where Frh is defined using the horizontal r.m.s velocity and a horizontal

integral length scale. The Fr = 10 and 2 wakes at Re = 50, 000 come close in phase space

once they enter ST at Frh = 1. Therefore, the Fr = 10 wake can be expected to access

the SST regime at Frh = O(0.01) similar to what is found for the Fr = 2 wake. The SST

regime of the Fr = 2 wake commences at x/Lb ¥ 40 and continues until the end of the

domain which is about 85 body diameters away. For a given body Fr, the span of the SST
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regime is expected to increase with increasing body Re of the wake.

Stratification prolongs the life time of the wake. The mechanisms leading to the

preservation of wake mean kinetic energy (MKE) originate in the WST/early-IST stages,

where the NEQ regime of the mean flow is being established. In particular, the mean

buoyancy flux is positive so that energy is transferred from APE to MKE and, additionally,

production of TKE that acts as a sink of MKE is reduced. In the late-IST/SST stages, the

decay rate of MKE remains relatively smaller as the production in the late wake remains

small in normalized form. The decay rate of turbulent kinetic energy is initially increased

in the WST/early-IST stages primarily because of negative buoyancy flux and increased

dissipation. It is only later that the direct e�ect of reduced production sets in to further

reduce the TKE. In the late-IST/early-SST stages, not only is production enhanced but

also turbulence is energized by the injection from turbulent potential energy. Consequently,

the TKE decay slows down similar to the buoyancy-induced slow down of U0 that had

occurred closer to the body. As mean and turbulent buoyancy fluxes are positive during

the establishment of the mean and turbulence NEQ regimes, respectively, it is clear that

stratification has a direct and positive e�ect on the prolongation of wake life. Only in the

SST stage, does the turbulent buoyancy flux becomes negative, acting as a sink of TKE

and to mix the buoyancy field.

The lee-wave induced ‘oscillatory modulation’ of U0 reported in the DNS of the

Re = 3700 sphere wake by Pal et al. (2017) is a manifestation of the transfer between APE

and MKE in the NEQ regime. Oscillatory modulation is found in the present simulations

as well showing its importance in the case of a disk as the wake generator as well as at an

order of magnitude higher Re = 50, 000.

In the unstratified wake, it is found that the decay of Á is not consistent with the

classical K3/2/Lk scaling but is described better with the non-equilibrium scaling (Vassilicos,

2015) of the form Á = CÁ(K3/2/Lk) with CÁ = Ren
Global/Ren

Local(”= const). In the Fr = 2
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wake, the scaling Ák ≥ uÕ2
h N appears valid as the wake approaches the SST regime in which

there is turbulence (RehFr2
h & O(1)) but it is largely controlled by buoyancy.

Further research is required to explore the SST regime of the stratified turbulent

wake. Although the SST regime is recognized in the Fr = 2 wake, it will be beneficial

to further increase the buoyancy Reynolds number. A follow-up study of disk wakes is

planned at a larger Re and a smaller Fr, a change that would increase Nt for the same

x/Lb and RehFr2
h for the same value of Nt.

The content of Chapter 6, Chongsiripinyo K. and Sarkar S., “Decay of turbulent

wakes behind a disk in homogeneous and stratified fluids”, has been submitted for publica-

tion in J. Fluid Mech. The dissertation author was the primary researcher and author of

this paper.
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Chapter 7

Conclusions

A series of numerical experiments has been conducted to improve our understanding

of the dynamics of turbulent blu�-body wakes subject to density stratification. Body-

inclusive simulations capable of naturally depositing deficit momentum into the fluid stream

and forming realistic turbulent wakes were performed at intermediate-to-high Reynolds

numbers and a wide range of Froude numbers.

Body-inclusive simulation of stratified flow past a blu�-body at Re Ø O(103) is

relatively new. During the first phase we have explored di�erent tools in order to numerically

represent a body, from the generalized-coordinate solver ‘Fibre’, an in-house immersed

boundary method (IBM) on a cartesian-coordinate system, to the IBM embedded in a

cylindrical-coordinate grid using ‘Eddy’. The dissertation focuses on the second phase,

presenting physics of stratified turbulent wakes in Chapter3-6. The important conclusions

from the second phase of our studies are summarized here.

In Chapter 3, the sphere’s wakes at an intermediate Reynolds number and a

wide range of Froude number were investigated with the focus on dynamics of vorticity.

Direct numerical simulations (DNS) were carried out at Re = 3700 and Fr œ [Œ, 0.025].

Visualization using the Q criterion reveals that the unstratified instantaneous vortical
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structures are tube-like and with no directional preference. Vortical structures are altered

in their orientation but remain tube-like at moderate stratification, Fr ≥ O(1). Structures

are flattened and horizontally oriented at stronger stratification, Fr Æ 0.5. At Fr =

0.025, pancake eddies and surfboard-like inclined structures emerge in the near wake. A

new regime is found in strongly-stratified cases with Fr Æ 0.25 where enstrophy variance

does not monotonically decrease as stratification is increased. Rather, increasing the

stratification increases enstrophy variance near the body. This is quantified through the

enstrophy transport equation. In the near wake, vortex stretching by fluctuating and mean

strain are both responsible for enhancing vorticity. Increasing stratification to Fr ≥ O(1)

tends to suppress vortex stretching. Upon further reduction of Fr below 0.25, the vortex

stretching takes large values near the sphere and, consequently, enstrophy variance in

the near wake increases. The increase in vortex stretching is associated with unsteady,

intermittent shedding of the boundary layer from the sides of the sphere in highly-stratified

wakes with Fr < 0.25.

In Chapter 4, Re = 104 sphere wakes at Fr = Œ, 3, 1 were simulated using large

eddy simulation (LES) to assess the decay of the characteristic centerline velocity and the

evolution of turbulent kinetic energy. ‘Oscillatory modulation’ that reflects the sinusoidal

behavior of U0 caused by the lee-wave pattern created by the sphere at Re = 3700 (Pal

et al., 2017) is found to occur at Re = 104 too. The so-called “wake collapse” is simply

the first manifestation of the oscillatory modulation during fiFr 6 x/D 6 2fiFr. In the

non-equilibrium (NEQ) regime, the exponent m in the power law, U0 Ã xm, is found to

be m = ≠0.4. The relative roles of all the terms in the turbulent kinetic energy budget

are altered over the entire wake at Fr = 1. In particular, the net increase of TKE is

concentrated close to the sphere due to the increase in the production and the decrease in

the dissipation. The peak production term is significantly increased from the plunging of

the shed shear layers towards the centerline. At the point of maximum production, P/‘ ƒ 6
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compared to the unstratified-wake value of 2. However, the alteration of the production

and dissipation observed only in the body-inclusive simulation has a short span, and the

overall TKE of the Fr = 1 wake is smaller than that of the unstratified wake.

In Chapter 5, we revisit the classical self-similarity solutions of unstratified axisym-

metric wakes (Tennekes & Lumley, 1972; George, 1989). The power-law exponents, m and

n; as in U0/UŒ Ã xm and ”/D Ã xn; were theoretically found to be (mL, nL) = (≠1, 1/2)

and (mH , nH) = (≠2/3, 1/3) for low-Re and high-Re wakes. These power laws were ob-

tained from the low-Re (Á ≥ ‹U2
0 /”2) or the high-Re (Á ≥ U3

0 /”) dissipation scaling. Our

turbulent wake at ReG = UD/‹ = 104 shows that while (m, n) ¥ (≠1, 1/2), Á Ã x≠5/2 in

disagreement with the theory. It is found that dissipation can, however, be scaled with

the non-equilibrium dissipation scaling (Vassilicos, 2015) of the form ‘ = C‘K3/2/” with

C‘ = (ReG/Rel)1/2 where the local Reynolds number is taken to be Rel = U0”/‹.

Lastly, Chapter 6 presents an investigation of the decay of high-Reynolds-number

stratified wakes. This final part of the work is a major contribution of the thesis. LES

of flow past a disk are performed at Re = UbLb/‹=50,000 and at Fr = Ub/NLb = Œ,

50, 10, 2 in a computational domain that extends to 125 disk diameters; here, Ub is the

free-stream velocity, Lb is the disk diameter, ‹ is the fluid kinematic viscosity, and N is

the buoyancy frequency. Unlike most other numerical studies of stratified wakes that use a

temporal model, body-inclusive spatially-evolving simulations are performed. The evolution

of mean flow and turbulence statistics is reported with particular attention to changes as

the flow passes through di�erent phases. Budgets of mean and turbulent kinetic energies

are analyzed, reasons for the long-lived nature of stratified wakes are advanced, and the

scaling of dissipation is discussed.

In the axisymmetric wake at Fr = Œ, it is found that the centerline deficit velocity

(U0) does not always scale with the turbulence velocity scale (K1/2) contrary to classical

theory. The mean flow decays in two stages with a break in slopes at x/Lb ¥ 65 but no such
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transition is found for turbulence. The first stage of 10 < x/Lb < 65 exhibits U0 Ã x≠0.9

and L Ã x0.45. It is only after x/Lb ¥ 65 that U0 exhibits a power law that is close to the

high-Re scaling U0 ≥ K1/2 Ã≥ x≠2/3 and L ≥ Lk Ã≥ x1/3. As a result, none of the stratified

cases considered here display the U0 Ã x≠2/3 scaling in the 3D regime before buoyancy

e�ects set in. It is worth noting that the x≠0.9 behavior of U0 in the intermediate stage of

the disk wake is similar to the approximately x≠1 behavior found in the intermediate stage

of sphere wakes at Re = 3700 by Pal et al. (2017), Re = 10, 000 by Chongsiripinyo et al.

(2019), fractal-plate wakes at Re = 5000 (DNS) and Re = 50, 000 (laboratory experiment)

by Dairay et al. (2015).

Stratified wakes evolve practically without being a�ected by buoyancy until ap-

proximately one buoyancy time scale (Ntb ¥ 1). At this point, the vertical mean Froude

number decreases to and remains at FrV ≥ O(1) and the stratified wake then enters into

a stratified turbulence regime (ST) which can be further subcategorized into 3 regimes:

weakly stratified turbulence (WST), intermediately stratified turbulence (IST), and strongly

stratified turbulence (SST) depending on the value of turbulent horizontal Froude number

Frh = uÕ
h/NLHk. At the entry of the WST stage, Frh = 1, i.e. the large-eddy lengthscale

(LHk) becomes equal to the Ozmidov lengthscale (lo = (Ák/N3)1/2). As the wake progresses

in the WST stage, Frh reduces from O(1) to O(0.1) and, while the e�ect of buoyancy on

the mean flow is significant, its e�ect on turbulence is insignificant. Thus, during WST

that spans 1 . Ntb . 5, the mean flow progressively transitions into the non-equilibrium

(NEQ) regime but turbulence remains approximately isotropic (uÕ
h ¥ uÕ

z). A transition

towards the next stage of IST takes place at Frh ≥ O(0.1) in the proximity of Ntb ¥ 5.

The IST stage is distinguished by progressively increasing turbulence anisotropy. In IST,

while the mean flow has arrived at the NEQ-regime behavior of U0 Ã x≠0.18, turbulence is

still in transition towards a di�erent regime, namely, SST.

The stratified wake enters into the third stage of SST, demarcated by the value of
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Frv asymptoting to a O(1) value. We find that, at Frh ¥ 0.03 which occurs at Ntb ¥ 20,

the wake enters the SST regime with Frv æ 0.65. Indeed, a key feature of the SST regime

of stratified flows in general is that buoyancy imposes a vertical length scale, lv Ã uÕ
h/N ,

i.e. Frv æ O(1) const (Billant & Chomaz, 2001), as has been seen in previous simulations

of decaying homogeneous turbulence (de Bruyn Kops & Riley, 2019; Ma�oli & Davidson,

2016). It is expected that SST lasts as long as the modified Reynolds number, RehFr2
h > 1

(Riley & deBruynKops, 2003; Brethouwer et al., 2007), which remains true in the F02

wake from x/D ¥ 40 to the end of the domain at x/D = 125. In the SST regime of the

wake, turbulence is strongly anisotropic (uÕ
z π uÕ

h) and arrives into the NEQ regime with

uÕ
h ≥ U0 Ã x≠0.18 while uÕ

z Ã x≠1. Furthermore, the SST wake is patchy as inferred from

visualizations of fluctuating dissipation rate, and temporal spectra are broadband.

Throughout the IST-SST period, the vertical mean lengthscale (wake height) is

naturally selected by the flow so that mean inertial and buoyancy forces remain in balance,

LV ≥ U0/N that yields FrV ¥ const. This leads to the continuous decrease in LV

to accommodate the ongoing U0 decay. The need to obey conservation of momentum

(U0LHLV ¥ const.) indicates that the wake width (LH) is thus indirectly selected by

buoyancy as LH Ã U≠1
0 L≠1

V Ã U≠2
0 . It is worth noting that LV exhibits a decreasing trend

throughout the computational domain indicating that, unlike our prior low-Re simulations,

the low-Re e�ect of viscous di�usion and its concomitant increase of LV is absent in the

present simulations.

It is worth noting that, in the present work, it is Lk and not L that possesses the

power law close to the x1/3 growth in the unstratified wake and the 3D region of stratified

wakes. It is intriguing that the results for power laws satisfied by the mean velocity deficit

and horizontal wake width from temporal-model simulations (e.g. Dommermuth et al.

(2002); Brucker & Sarkar (2010); Diamessis et al. (2011)) are similar to power laws in the

present work that are based on fluctuation (
Ô

K) and not mean profiles. A possible reason
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for the di�erence in the power laws for U0 between temporal and body-inclusive simulations

is the consequence of a large-scale structure introduced by the body into the wake that is

not present in the initial conditions of the temporal simulations.

The present results suggest re-examination of the NEQ regime of stratified wakes.

At Ntb ¥ 1 that has been taken to be the commencement of the NEQ wake, it is only the

mean flow that is su�ciently influenced by buoyancy, i.e. the decay of U0 is slowed down

and the mean-based Froude number (FrV ) becomes O(1). In other words, LV becomes

O(U0/N). It is much further downstream, Ntb ¥ 20, when the turbulence-based Froude

number (Frv) becomes O(1), turbulence becomes strongly anisotropic with uÕ
z π uÕ

h, and

the decay of turbulence is also reduced so that uÕ
h ≥ U0. The U0 Ã x≠0.18 found for the

NEQ disk wake is di�erent from the previously found sphere-wake behavior of U0 Ã x≠0.25

in the NEQ regime. Further study will be useful to ascertain how the geometry of the wake

generator a�ects the exponent of the U0 power law in the NEQ region of stratified wakes.

An overall picture of stratified wakes emerges when plotted in phase space. We

choose centerline values of (RehFr2
h, F rh) as the phase-space coordinates which is analogous

to the study of stratified turbulence in a periodic box by de Bruyn Kops & Riley (2019)

who use (Reb, F rh) where Frh is defined using the horizontal r.m.s velocity and a horizontal

integral length scale. The Fr = 10 and 2 wakes at Re = 50, 000 come close in phase space

once they enter ST at Frh = 1. Therefore, the Fr = 10 wake can be expected to access

the SST regime at Frh = O(0.01) similar to what is found for the Fr = 2 wake. The SST

regime of the Fr = 2 wake commences at x/Lb ¥ 40 and continues until the end of the

domain which is about 85 body diameters away. For a given body Fr, the span of the SST

regime is expected to increase with increasing body Re of the wake.

Stratification prolongs the life time of the wake. The mechanisms leading to the

preservation of wake mean kinetic energy (MKE) originate in the WST/early-IST stages,

where the NEQ regime of the mean flow is being established. In particular, the mean
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buoyancy flux is positive so that energy is transferred from APE to MKE and, additionally,

production of TKE that acts as a sink of MKE is reduced. In the late-IST/SST stages, the

decay rate of MKE remains relatively smaller as the production in the late wake remains

small in normalized form. The decay rate of turbulent kinetic energy is initially increased

in the WST/early-IST stages primarily because of negative buoyancy flux and increased

dissipation. It is only later that the direct e�ect of reduced production sets in to further

reduce the TKE. In the late-IST/early-SST stages, not only is production enhanced but

also turbulence is energized by the injection from turbulent potential energy. Consequently,

the TKE decay slows down similar to the buoyancy-induced slow down of U0 that had

occurred closer to the body. As mean and turbulent buoyancy fluxes are positive during

the establishment of the mean and turbulence NEQ regimes, respectively, it is clear that

stratification has a direct and positive e�ect on the prolongation of wake life. Only in the

SST stage, does the turbulent buoyancy flux becomes negative, acting as a sink of TKE

and to mix the buoyancy field.

The lee-wave induced ‘oscillatory modulation’ of U0 reported in the DNS of the

Re = 3700 sphere wake by Pal et al. (2017) is a manifestation of the transfer between APE

and MKE in the NEQ regime. Oscillatory modulation is found in the present simulations

as well showing its importance in the case of a disk as the wake generator as well as at an

order of magnitude higher Re = 50, 000.

In the unstratified wake, it is found that the decay of Á is not consistent with the

classical K3/2/Lk scaling but is described better with the non-equilibrium scaling (Vassilicos,

2015) of the form Á = CÁ(K3/2/Lk) with CÁ = Ren
Global/Ren

Local(”= const). In the Fr = 2

wake, the scaling Ák ≥ uÕ2
h N appears valid as the wake approaches the SST regime in which

there is turbulence (RehFr2
h & O(1)) but it is largely controlled by buoyancy.
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Appendix A

A brief description of Eddy

All of the simulations presented in this dissertation were performed using ‘Eddy’, a

parallelized computational code written in FORTRAN 77/90. Eddy was first developed

in 1993 by Elias Balaras. Over the past two decades, new features have been added, e.g.,

subgrid viscosity models for performing Large-Eddy Simulations (LES) and the Immersed

Boundary Method (IBM). Eddy solves the governing equations in parallel using either a

cartesian or a cylindrical coordinate system with one-dimensional domain decomposition.

The ability to use IBM on a cylindrical coordinate grid together with the robust dynamic

Smagorinsky model is attractive for simulating the high-Re turbulent wake behind an

axisymmetric body such as a sphere or disk. The boundary layer on an axisymmetric

body can then be well captured using a minimal number of grid points in contrast to

IBM/Cartesian-system combinations such as de Stadler (2013) and Rapaka & Sarkar

(2016). For density-stratified flow, the convection-di�usion equation for density transport

was incorporated into Eddy. The following sections briefly summarize numerical algorithms

used by Eddy in the preceding simulations.
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A.1 Governing equations

The Eulerian representation of unsteady viscous flow for a Newtonian fluid can be

described using the following governing equations in a cartesian coordinate system. For

Boussinesq fluid, density variation enters the Navier-Stokes equations only through the

buoyancy term. The incompressible Navier-Stokes momentum equation is given by

ˆui

ˆt
+ uj

ˆui

ˆxj
= ≠ 1

fl0

ˆp

ˆxi
+ ‹

ˆ2ui

ˆxjˆxj
≠ fl

fl0
g”i3. (A.1)

Incompressibility is imposed by the volumn constraint

ˆui

ˆxi
= 0. (A.2)

The convection-di�usion density transport equation is given by

ˆfl

ˆt
+ uj

ˆfl

ˆxj
= Ÿ

ˆ2fl

ˆxjˆxj
. (A.3)

Turbulent flow contains a wide range of scales where the ratio of the smallest to

largest length scales is of the order inversely proportional to Re3/4. LES takes advantage

of the idea, specifically Kolmogorov’s second similarity hypothesis (Kolmogorov (1941))

that at su�ciently high Reynolds number, the statistics of the motions of scale l in the

range lo π l π ÷ have a universal form that is uniquely determined by Á independent of ‹

(Pope (2000)). In LES, sub-grid l-scale dynamics is modeled whereas larger-scale motions

are directly solved. Depending on the choice of grid size, this can significantly reduce the

computational power required to capture small-scale motions. Virtually all LES models

utilize Kolmogorov’s hypothesis of local isotropy in which the small-scale turbulent motions
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are statistically isotropic. By applying a spatial filter (~) to the governing equations

(A.1)-(A.3), we obtain the following set of equations.

ˆ Âui

ˆt
+ Âuj

ˆ Âui

ˆxj
= ≠ 1

fl0

ˆ Âp
ˆxi

+ ‹
ˆ2 Âui

ˆxjˆxj
≠

Âfl
fl0

g”i3 ≠ ˆ·ij

ˆxj
(A.4)

ˆ Âui

ˆxi
= 0 (A.5)

ˆ Âfl
ˆt

+ Âuj
ˆ Âfl
ˆxj

= Ÿ
ˆ2 Âfl

ˆxjˆxj
≠ ˆ⁄i

ˆxi
(A.6)

The stress tensor, ·ij= Áuiuj-Âui Âuj, represents the contribution of stresses from small-

scale motion acting on the filtered velocity field. Analogously, ⁄i=Áuifl-Âui Âfl represents

small-scale density flux acting on the filtered density field.

A.2 Subgrid viscosity

To model the stress tensor ·ij, the dynamic subgrid-scale eddy viscosity model of

Germano et al. (1991), and later Lilly (1992), is employed. The advantage of modeling

small scales with the approach of Germano et al. (1991) over Smagorinsky (1963) is its use

of information available at the resolved scales. In essence, the method derives the subgrid

tensor from its relation with the additional stress tensor obtained using a larger spatial

filter (the so-called two test filter approach). Consider the following equation,

ˆui

ˆt
+ ˆuiuj

ˆxj
= Ri. (A.7)
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Applying the first filter (level 1: Â⇤) gives,

ˆ Âui

ˆt
+ ˆ Âui Âuj

ˆxj
= ÂRi ≠ ˆ·ij

ˆxj
. (A.8)

Applying the second filter (level 2: ‚⇤) to (A.8) and letting Lij = ‰Âui Âuj ≠ „Âui
„Âuj,

ˆ‚Âui

ˆt
+ ˆ‚Âui

‚Âuj

ˆxj
= ‚ÂRi ≠ ˆ‚·ij

ˆxj
≠ ˆLij

ˆxj
. (A.9)

The following Germano identity relates the subfilter stress tensor at the second filter level,

Tij, to quantities available at the first filter level, Âui,

Lij = Tij ≠ ‚·ij = ‰Âui Âuj ≠ „Âui
„Âuj. (A.10)

Apparently, Lij represents the di�erence between the two stress tensors. Introducing the

eddy viscosity model for the subfilter stresses at both filter levels yields

·ij ≠ 1
3”ij·kk = ≠2‹t

ÂSij = ≠2C·
Â�2| ÂS| ÂSij, (A.11)

and

Tij ≠ 1
3”ijTkk = ≠2‹T

‚ÂSij = ≠2CT
‚Â�

2
|‚ÂS|‚ÂSij. (A.12)

Substituting (A.11) and (A.12) into (A.10) gives

Lij ≠ 1
3”ijLkk = ≠2 Â�2[( ‚Â�/ Â�)2CT |‚ÂS|‚ÂSij ≠ \C· | ÂS| ÂSij]. (A.13)
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Let CT = C· = C. Generally, the variable C is assumed to be a weak function in space

and can be taken out of the second filter operation, ‚⇤. By introducing Mij,

Mij = Â�2[( ‚Â�/ Â�)2|‚ÂS|‚ÂSij ≠ \| ÂS| ÂSij]. (A.14)

(A.13) can be abbreviated to

Lij ≠ 1
3”ijLkk = ≠2CMij. (A.15)

In determining the subgrid viscosity, ‹t = C Â�2| ÂS|, the only unknown variable C is solved

using the least-square method proposed by Lilly (1992),

C = ≠1
2

LijMij

MijMij
. (A.16)

The subgrid viscosity is thus obtained from

‹t = ÈLijMijÍ
ÈMijMijÍ

Â�2| ÂS|. (A.17)

Here, È⇤Í is an appropriate averaging. The variable C is calculated using Lagrangian

averaging (as in Meneveau et al. (1996)) over fluid pathlines to avoid the possibility of C

becoming locally negative. The present study sets the ratio between the second and first

level filters, ‚Â�/ Â�, to be
Ô

6 as set forth by Lund (1997). Spatial filtering is simply done

using a box-filter routine with the trapezodial rule for non-uniform grids.

The final form of the filtered non-dimensional governing equations can be written

in a cartesian coordinate system as follows:

ˆ Âui

ˆxi
= 0 (A.18)
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ˆ Âui

ˆt
+ Âuj

ˆ Âui

ˆxj
= ≠ ˆ Âp

ˆxi
+ 1

Re

3
1 + ‹s

‹

4
ˆ2 Âui

ˆxjˆxj
≠ 1

Fr2 Âfl”i3 (A.19)

ˆ Âfl
ˆt

+ Âuj
ˆ Âfl
ˆxj

= 1
RePr

3
1 + Ÿs

Ÿ

4
ˆ2 Âfl

ˆxjˆxj
, (A.20)

where the relevant non-dimensional parameters are the Reynolds number, Re = UD/‹,

the Prandtl number, Pr = ‹/k, and the Froude number, Fr = U/(ND). Here, U and D

are characteristic velocity and lengthscale, N being the buoyancy frequency. There is an

important assumption from which the subgrid di�usivity is determined. The large-eddy

simulations performed in this work assume that the subgrid Prandtl number, ‹s/Ÿs, is unity

and therefore, Ÿs is replaced by ‹s/1. The non-dimensional filtered governing equations in

a cylindrical coordinate system used in the simulations in chapter 4 and 6 are written as

follows:

1
r

ˆrÂur

ˆr
+ 1

r

ˆ Âu◊

ˆ◊
+ ˆ Âux

ˆx
= 0 (A.21)

ˆ Âur

ˆt
+ (Ôu · Ò)Âur ≠ u2

◊

r
= ≠ˆp

ˆr
≠ 1

Fr2 Âflêr · êz

+ 1
Re

3
1 + ‹s

‹

4 A

Ò2 Âur ≠
Âur

r2 ≠ 2
r2

ˆ Âu◊

ˆ◊

B

(A.22)

ˆ Âu◊

ˆt
+ (Ôu · Ò)Âu◊ +

Âur Âu◊

r
= ≠1

r

ˆp

ˆr
≠ 1

Fr2 Âflê◊ · êz

+ 1
Re

3
1 + ‹s

‹

4 A

Ò2 Âu◊ ≠
Âu◊

r2 + 2
r2

ˆ Âur

ˆ◊

B

(A.23)

ˆ Âux

ˆt
+ (Ôu · Ò)Âux = ≠ˆp

ˆx
+ 1

Re

3
1 + ‹s

‹

4
Ò2 Âux ≠ 1

Fr2 Âflêx · êz (A.24)
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ˆ Âfl
ˆt

+ (Ôu · Ò)Âfl = 1
RePr

3
1 + Ÿs

Ÿ

4
Ò2 Âfl (A.25)

where:

Ôu · Ò = ur
ˆ

ˆr
+ u◊

r

ˆ

ˆ◊
+ ux

ˆ

ˆx
and Ò2 = 1

r

ˆ

ˆr

A

r
ˆ

ˆr

B

+ 1
r2

ˆ2

ˆ◊2 + ˆ2

ˆx2 (A.26)

A.3 Numerical methods

A.3.1 Spatial and temporal discretizations

For the turbulent wake behind an axisymmetric body, a cylindrical coordinate

system is chosen over the cartesian coordinate system to reserve a su�cient number of

grid points for resolving the boundary layer around the body. In using a cylindrical grid,

the spatial discretization near the axis and the aspect ratios between azimuthal grid size

and the other two directions can pose challenges. This section briefly describes numerical

approaches for spatial and temporal discretizations including methods used to overcome

such challenges. Derivative terms in the governing equations, (A.22) - (A.25) are spatially

discretized using the standard second-order, central finite di�erence on a staggered grid,

in which each component of velocity is located on the cell face respective to its direction

while pressure and density are stored at the cell center. Along the axis (r = 0), a radial

component of velocity, ur, is obtained by interpolation from both sides (ur|◊=0 and ur|◊=fi)

where required. The spatially discretized equations are then discretized in time using a

combination of explicit/implicit schemes.

A severe timestep constraint due to the small grid size in the azimuthal direction

near the axis is overcome by temporally marching the azimuthal direction implicitly using

the second-order Crank-Nicholson (CN2) scheme for both advection and di�usion terms.

The other two directions are marched explicitly using the third-order Runge-Kutta (RK3)
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scheme. A detailed description of each scheme on a generalized curvilinear coordinate is

given in Appendix B.

To concurrently solve the governing equations, Eddy employs one-dimensional

domain decomposition. In the present study, parallelization in the streamwise direction

has many advantages. First, the discretized system of governing equations is, in our case,

not ‘sti�’ in the streamwise direction. If, however, there was to implicitly march the

convection and di�usion terms in the streamwise direction, the performance of the code

would be impractical. This is due to the fact that a pipeline algorithm is required to solve

the tridiagonal matrix across multiple processor. Implicit marching is only required in

the azimuthal direction where the tridiagonal matrix constructed during the predictor

step is occupied by a single processor. Second, parallelization in one direction simplifies

processor topology and thus reduces computational overhead. Third, the fact that the

azimuthal direction is not decomposed allows for fast execution of Fourier transforms

without non-local communications among processors. This allows us to e�ciently solve for

pressure correction without using a multigrid method.

A.3.2 Poisson equation

The present simulations use the fractional step method where one first solves for

predicted (or intermediate) velocity using the mix explicit/implicit temporal marching

scheme. This is followed by the correction step in which incompressibility is imposed by

use of a pressure correction on the predicted velocity. The pressure equation is of type

Poisson, constructed by taking the divergence of the governing Navier-Stokes equations.

Since correction must be done after velocity prediction at the end of each RK3 substep,

performance of the code is highly dependent on how fast one solves the Poisson equation.

To address this challenge, Eddy takes advantage of the undecomposed azimuthal domain

by transforming the Poisson equation into azimuthal Fourier modes. This results in a
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discretized Poisson equation with 5-point stencils. The resulting pentadiagonal system for

each azimuthal wave number can then be solved directly without using an iterative method.

The following elaboration is adapted from Chapter 2.3 of Yang (2005) which describes how

Eddy handles the Poisson equation.

Consider the Poisson equation

Ò2„ = f, (A.27)

written in the discretized form on cylindrical coordinates as

C
1
r

”

”r

A

r
”

”r

B

+ 1
r2

”2

”2◊
+ ”2

”2z

D

„i,j,k = fi,j,k. (A.28)

r, ◊, and z denote respectively radial, azimuthal, and streamwise directions. Here, the

solution procedure in cylindrical coordinates is discussed as the equation for cartesian

coordinates is recovered when r in (A.28) is set to unity. Discretizing (A.28) yields

+ 1
rp

i (rp
i+1/2 ≠ rp

i≠1/2)

C

rp
i+1/2

A
„i+1,j,k ≠ „i,j,k

rp
i+1 ≠ rp

i

B

≠ rp
i≠1/2

A
„i,j,k ≠ „i≠1,j,k

rp
i ≠ rp

i≠1

BD

+ 1
rp2

i (◊p
j+1/2 ≠ ◊p

j≠1/2)

CA
„i,j+1,k ≠ „i,j,k

◊p
j+1 ≠ ◊p

j

B

≠
A

„i,j,k ≠ „i,j≠1,k

◊p
j ≠ ◊p

j≠1

BD

+ 1
zp

k+1/2 ≠ zp
k≠1/2

CA
„i,j,k+1 ≠ „i,j,k

zp
k+1 ≠ zp

k

B

≠
A

„i,j,k ≠ „i,j,k≠1
zp

k ≠ zp
k≠1

BD

=fi,j,k. (A.29)

The superscript p as in ⇤p denotes that ⇤ is located at the same location as pressure (at

cell center). Because variables are stored on the staggered grid system, rp
i+1/2 can also

be written as ru
i or rp

j≠1/2 as rv
j≠1. Equation (A.29) can otherwise be rewritten using the
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following coordinate transformations

› = 2�›

ri+1 ≠ ri≠1
, ÷ = 2�÷

◊j+1 ≠ ◊j≠1
, ’ = 2�’

zk+1 ≠ zk≠1
, (A.30)

where �›, �÷, and �’ are mapped computational grid sizes arbitrarily chosen to be of

size 1. Equation (A.29) is abbreviated as

+ 1
rp

i

›p
i

1
�›2

Ë
ru

i ›u
i („i+1,j,k ≠ „i,j,k) ≠ ru

i≠1›
u
i≠1(„i,j,k ≠ „i≠1,j,k)

È

+ 1
rp2

i

÷p
j

1
�÷2

Ë
÷v

j („i,j+1,k ≠ „i,j,k) ≠ ÷v
j≠1(„i,j,k ≠ „i,j≠1,k)

È

+’p
k

1
�’2

Ë
’w

k („i,j,k+1 ≠ „i,j,k) ≠ ’w
k≠1(„i,j,k ≠ „i,j,k≠1)

È

=fi,j,k. (A.31)

Rearranging (A.31) gives a 7-point stencils set of equation

ami„i≠1,j,k + bmi„i,j,k + cmi„i+1,j,k

+ alj„i,j≠1,k + blj„i,j,k + clj„i,j+1,k

+ ank„i,j,k≠1 + bnk„i,j,k + cnk„i,j,k+1 = fi,j,k, (A.32)

where ami = (�›2rp
i )≠1›p

i ru
i≠1›

u
i≠1, bmi = ≠ami ≠ cmi, cmi = (�›2rp

i )≠1›p
i ru

i ›u
i , alj =

(�÷2rp2
i )≠1÷p

j ÷v
j≠1, blj = ≠alj ≠ clj, clj = (�÷2rp2

i )≠1÷p
j ÷v

j , ank = (�’2)≠1’p
k’w

k≠1, bnk =

≠ank ≠ cnk, cnk = (�’2)≠1’p
k’w

k . An iterative method can be used to solve the set of

equation (A.32) but, again, iteratively converging the solution of the Poisson equation is

known to likely be a bottleneck when it comes to computational performance even with

multigrid acceleration.

Fourier tranformation of (A.27) in the azimuthal direction yields a set of two-
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dimensional Helmholtz equations in the uncoupled wave number space,

C
1
r

”

”r

A

r
”

”r

B

+ ”2

”2z
+ 1

r2 kÕ
l

D

„̂i,j,l = f̂i,l,k, (A.33)

with the modified wave number kÕ
l defined as

kÕ
l = 2

�◊2

C

1 ≠ cos

A
2fil

N◊

BD

. (A.34)

Here, l is the wave number, N◊ is the number of grid cells in the ◊ direction excluding

ghost cells and �◊ is the cell size in the ◊ direction. (A.32) can be rewritten as

ami„̂i≠1,l,k +
A

bmi ≠ kÕ
l

rp2
i

B

„̂i,l,k + cmi„̂i+1,l,k

+ank„̂i,l,k≠1 + bnk„̂i,l,k + cnk„̂i,l,k+1 = f̂i,l,k. (A.35)

which can be solved separately for each wave number.

The real-number forward fast Fourier transform RFFTF routine from the FFTPACK

library (Swarztrauber (1984)) is used for the forward transformation fi,j,k æ f̂i,l,k. Then,

the pentadiagonal system (A.35) for each wave number is directly solved for „̂, using the

BLKTRI routine with a generalized cyclic reduction algorithm (Swarztrauber (1974)). The

major advantage of solving (A.35) directly is, again, that the solution is converged to

machine accuracy with only one iteration, a great saving when compared with iterative

solvers. Afterwards, the subroutine RFFTB from the FFTPACK library is used for the

backward transformation „̂i,j,k æ „i,l,k. Note that to be able to utilize the subroutines

from FFTPACK, the computational grid must be uniform in the direction in which the

fast Fourier transform (FFT) is performed.

In cases where periodic boundary conditions are used in both streamwise and

spanwise directions, an FFT is also applied in the streamwise direction, and the resulting
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series of (cyclic) tridiagonal equations are solved using the (cyclic) tridiagonal system solver

from Numerical Recipes (Press (1992)).

A.3.3 Immersed boundary method

In order to represent a solid body in a computational domain, the immersed boundary

method (IBM) of Yang & Balaras (2006); Balaras (2004) is used. The advantage of using

the immersed boundary method is its ability to embed a complex geometry into the

computational domain. More importantly, one can avoid the use of a generalized curvilinear

coordinate system that involves coordinate transformation leading to mixed derivatives

that typically require a larger stencil. In practice, even though an increase in stencil size

does not necessarily impact a computational speed, given that neighboring variables are

usually stored together in memory space, it can cause a significant overhead if any reside

non-locally. This section summarizes how the immersed boundary method works.

B

F

P

Forcing points
Boundary points
Fluid points

SOLID

FLUID

Figure A.1: Generalized interpolation stencil used in IBM for implementing appropri-
ate boundary condition on the forcing points. Here, B is the boundary
point, F represents the forcing point and P is the interpolation point. BF
line segment is normal to the fluid-solid interface.

Consider a two-dimensional computational domain that contains an interface sepa-

rating a solid body and fluid such as the one shown in Figure A.1. We first give definitions
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for grid points residing in di�erent parts of the domain. The grid points inside the body

are the ‘solid points’. ‘Fluid points’ are located outside of the body. ‘Forcing points’ are

fluid points in the vicinity of the interface boundary. Here, ‘in the vicinity’ means that a

forcing point has at least one solid point as its neighbor. A ‘boundary point’ is identified

on the interface where its distance to the nearest forcing point is minimal. A collection

of ‘marker points’, read from the input file, defines the solid boundary. All simulations

performed in the present work identify these points only at the beginning because the

bodies, relative to the grids, are stationary. Readers are encouraged to consult Yang &

Balaras (2006) regarding the process of identifying these points.

The idea behind an IBM method is to add a forcing term to the equations that

govern fluid motion at a forcing point. The forcing term behaves similarly to how fluid

at the forcing point perceives the influence from the interface. In the present study, fluid

grids are designed such that points are concentrated near the bodies so that forcing points

are inside the boundary layers. The forcing amplitude is estimated as follows. First, we

draw a straight line connecting the forcing point (F) and its corresponding boundary point

(B). Second, this straight line is then extended away from the boundary until it reaches the

point (P) where all neighbors are fluid points. The distance between P and B is arbitrarily

set. Third, we obtain velocity at point P by straight-forward weight-averaged interpolation

from its neighbors. Finally, tangential velocity (to the interface) at the forcing point F is

obtained from weight-averaged interpolation between the tangential velocity at point P

and that of point B. The additional term thus forces fluid velocity at the forcing point

towards the desired value.

Solving the governing equations with the IBM forcing term is done by estimating

an artificial forcing for each forcing node using predicted velocity rather than velocity at a

current step. Consider the following equation on the domain � for an immediate velocity
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Ôuú:
Ôuú ≠ Ôun

�t
= 3

2H(Ôun) ≠ 1
2H(Ôun) + ”pn

”Ôx
+ Ôfn+1 (A.36)

where the operator H contains the convective, viscous and subgrid stress terms. On forcing

points �, the forcing is calculated from

Ôfn+1 =
ÔuÂ ≠ Ôun

�t
≠ 3

2H(Ôun) + 1
2H(Ôun) ≠ ”pn

”Ôx
. (A.37)

In summary,

1. Calculate Ôuú from (A.36) without the forcing term.

2. Use the velocity field Ôuú to obtain velocity ÔuÂ at forcing points using the method

explained previously.

3. Calculate Ôfn+1 using (A.37).

4. Compute Ôuú from (A.36) but with the forcing term Ôfn+1.

5. Solve the Poisson equation for pressure correction based on Ôuú.

6. Obtain Ôun+1 and pn+1 by updating Ôuú and pn.

A.4 Validation

An experiment was performed to validate the solver after the density transport

equation was added. The experiment also allowed for evaluation of the subgrid viscosity

and subgrid di�usivity. Validation is performed by comparing, with literatures, statistics

of three-dimensional turbulent channel flow simulated both in unstratified and stratified

environments.
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Figure A.2: Perspective view of the computational domain colored by instantaneous
streamwise velocity of the unstratified turbulent channel flow at Re· = 395
(DNS).

Table A.1: Simulation parameters. D denotes DNS and L denotes LES.
Case Re· Ri· Lx/h Ly/h Nx Ny Nz x+ y+ z+

wall

D180.0 180 0 4fi 4fi/3 256 128 128 8.83 5.89 0.98
D180.18 180 18 4fi 4fi/3 256 128 128 8.83 5.89 0.98
D395.0 395 0 2fi fi 256 192 192 9.69 6.46 0.30
L395.0 395 0 2fi fi 64 160 192 38.77 7.75 0.30
L550.0 550 0 2fi fi 128 128 256 27.00 13.50 1.30
L550.60 550 60 2fi fi 128 128 256 27.00 13.50 1.30

The problem is setup inside a channel with periodicity in the streamwise and spanwise

directions while the flow is confined by the no-slip top and bottom flat boundaries. We do

not use the IBM to represent the walls as it has already been validated in Balaras (2004)

and Yang & Balaras (2006). The flow is driven by an imposed favorable pressure gradient

with nondimensional magnitude of -1. Friction velocity u· , channel half-height h, and

density di�erence between the two walls, �fl are used as the characteristic velocity, length

scale, and density reference, respectively. The governing dimensionless set of equations are

ˆui

ˆxi
= 0, (A.38)
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ˆui

ˆt
+ uj

ˆui

ˆxj
= ≠ ˆp

ˆxi
+ 1

Re·

ˆ2ui

ˆxjˆxj
≠ Ri· Âfl”i3 ≠ ˆ·ij

ˆxj
, (A.39)

ˆfl

ˆt
+ uj

ˆfl

ˆxj
= 1

RePr

ˆ2fl

ˆxjˆxj
≠ ˆ⁄j

ˆxj
, (A.40)

With the dimensionless parameters,

Re· = u· h

‹
, Ri· = �flgh

flou2
·

, P r = ‹

k
. (A.41)

where Re· , Ri· , and Pr are, respectively, Reynold number, Richardson number and Prandtl

number. Pr is fixed at 0.7 while Prsgs = ‹sgs/ksgs is fixed at 1.

Table 1 lists parameters for the 6 simulations including Re· and Ri· along with

domain size and resolution. The domain sizes are chosen based on literature with which

statistics are to be validated against, except at Re· = 550 where we use a reduced domain

size to save computational cost. The vertical grid spacing is compressed near the walls to

resolve small-scale dynamics in the boundary layer and is stretched towards the centerline.

For the DNS cases, the streamwise resolution is kept at x+ © �x/”‹ = u· �x/‹ Æ 10 and

spanwise resolution is kept at y+ ¥ 6.
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Figure A.4: DNS: Re = 395, Ri = 0 (Note: y is wall-normal direction in this plot)
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Figure A.3: Visualization of instantaneous streamwise velocity on the vertical cut.
From top to bottom: D395.0, L550.0, and L550.60.
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Figure A.5: LES: Re = 395, Ri = 0 (Note: y is wall-normal direction in this plot)
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Figure A.6: DNS: Re = 180, Ri = 0

For the LES cases, a grid resolution is reduced by a factor of 3-4 relative to the

DNS cases. The initial condition, for all the cases, is set by introducing uniform streamwise

velocity at u/u· = 20 while density is set as -0.5 and 0.5 at the top and bottom wall

with linear variation inbetween. After h/u· ¥ 2, while the laminar boundary layer keeps

developing, velocity fluctuations in the form of white noise are imposed throughout each

vertical grid layer. The root-mean-square magnitude of the fluctuations is designed to

distribute parabolically where the strongest noise is added near the wall. This mimics the

nature of turbulent channel flow where turbulence is concentrated near the walls. The

white-noise disturbance is su�cient to attain turbulence without having to introduce a

complicated type of noise, i.e. di�erent amplitudes at di�erent wave numbers. The steady

state is determined by a constant plane-averaged drag-coe�cient on the wall.
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Figure A.7: DNS: Re = 180, Ri = 18

To validate stratified channel flow without a turbulence model, two-way communica-

tion between the Navier-Stokes equation (NSE) solver and the density equation (DE) solver

is enabled. The strength of stratification is set as Ri· = 18 (D180.18). Density profile and

density flux are in good agreement with Armenio & Sarkar (2002), shown in figure A.7.

Some qualitative observations are made from the visualizations plotted in Figure

A.3 for the D395.0, L550.0, and L550.60 cases. The low-speed (dark blue) fluid extends

toward the centerline in large coherent patches at Re· = 395 (Figure A.3 a). The low-speed

fluid stays closer to the wall at higher Re· = 550 (Figure A.3 b). The stratified case

(Figure A.3 c) shows that there is a central layer of high-speed fluid with undulations and

sheared structures at its peripheries. This “jet” feature is distinct because vertical mixing

is suppressed in the central region where the gradient Richardson number is larger relative

to that near the wall.
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Figure A.8: LES: Re = 550, Ri = 0

We first validate the NSE solver while the DE solver is turned o�. At Re· = 395,

unstratified channel flow simulations are performed using DNS and LES in cases D395.0

and L395.0. Velocity profiles and Reynolds stresses are compared against data of Moser

et al. (1999), referred to as MKM from here on. All statistics are averaged spatially along

170



the two periodic directions and also in time. The results are shown in Figures A.4 and

A.5. For the DNS, the mean streamwise velocity profile and Reynolds stresses are in

good agreement with the reference. For the LES, the mean streamwise velocity near the

channel center is smaller than expected. The LES also slightly underpredicts longitudinal

streamwise and vertical Reynolds stress components.

To validate the DE solver without a subgrid model, a DNS is performed at Re·

= 180 with density being a passive scalar (Ri· = 0), referred to as case D180.0. Root-

mean-square (rms) velocities are compared with that of MKM. Density profiles, density

rms, and density flux are compared withArmenio & Sarkar (2002), referred the as AS, and

Kawamura et al. (2000), referred to as KAK. The results are shown in Figure A.6. DNS

slightly underpredicts turbulent intensities, compared to MKM, especially away from the

wall. Fluctuating momentum flux < uw > matches very well with the LES of AS. Density

profiles, density rms, and density flux are in good agreement with KAK.

For the validation of a stratified channel flow with the subgrid model, LES is

performed with Re· = 550 and Ri· = 0, 60. Velocity profiles, density profiles, velocity

rms, density rms, fluctuating momentum flux, fluctuating density flux, and dissipation are

compared with the DNS of Garcia-Villalba & Del Alamo (2011), referred to as GdA. The

passive scalar is shown in Figure A.8 and the active scalar is shown in Figure A.9. For the

passive scalar case, as compared to GdA, the LES underpredicts both mean and rms of

streamwise velocity. This is due to the lack of near-wall resolution required to correctly

capture small-scale fluctuations. Mean density (not shown) and turbulent density flux

match well with GdA. Density rms is more energetic near the wall compared to that of AV.

The active scalar case, at Ri· = 60, is shown in Figure A.9. There is an underprediction of

mean and rms of streamwise velocity and slight discrepancy in the density statistics. Note

that in this case, the size of the computational domain is much smaller than that of GdA.

Overall the LES is able to qualitatively capture the first and second order statistics.
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Figure A.9: LES: Re = 550, Ri = 60

Within the range of parameters simulated, the results are good. Some quantitative

discrepancies come from the fact that computational domain size and resolution were

chosen to be adequate rather than excellent.

The contents of this appendix are parts of unpublished technical reports written by
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the dissertation author.
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Appendix B

A brief description of Fibre

B.1 A generalized coordinate solver

The turbulent wake is a disturbance that naturally forms behind a body obstructing

an incoming stream. Whether a turbulent wake is realistically realized in a computer

simulation is to a large degree dependent on how it is generated. Generally, the body can

either be placed inside a computational domain using an immersed-boundary method or

on the boundary of a domain. However, both methods can be used in conjunction where a

complex geometry is partially “wrapped” by a curvilinear grid and partially represented

by immersed-boundary points. While the first method is employed by Eddy described in

the previous section, the latter method used by another tool, Fibre, is the central focus

in this section. While the advantages of using an IBM method have been laid out in the

previous chapter, using a body-fitted grid allows for a more accurate representation of an

solid-fluid interface. Although it comes with a higher computational cost, a body-fitted

grid simulation avoids artificial forces perceived by fluid nodes. This is accomplished by

wrapping a grid around a body’s surface allowing straight-forward implementation of the

no-slip boundary condition. Using a body-fitted grid is suitable whenever the dynamics
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on the surface of a body must be accurately captured as in the case of separation of a

turbulent boundary layer. A simple example of using a body-fitted grid is a simulation of

flow in a channel where the interfaces of the two bodies (the top and bottom walls) are

“fitted” by a cartesian grid.

We started the project ‘Fibre’ and explored its usability particularly in the study of

strongly stratified flow past a sphere in which statistics on a body are important. Fibre is

a parallelized CFD solver capable of solving the incompressible Navier-Stokes equations

and the density transport equation on a generalized curvilinear coordinate system. This

chapter describes grid transformations, algorithms, external libraries, and parallelization

used in Fibre as well as a validation of the solver.

B.2 Coordinate transformation

Solving the governing transport equations in a generalized curvilinear coordinate

system requires an addition step called ‘coordinate transformation’ in which a physical law

written on a cartesian system is transformed into the alternative form based on generalized

curvilinear coordinates. Information related to the transformation is stored in the ‘Jacobi

matrix’. In this context, ‘grid transformation’ is often used synonymously with coordinate

transformation as the curvilinear grid has been transformed into the new computational

cartesian grid.

Physical law written in the cartesian system

Physical curvilinear grid
`̀
`̀
`̆ Grid transformation

Physical law written in the generalized system

Computational cartesian grid, Jabobi terms
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The transformation leads to additional coe�cients for all spatial derivatives in the

governing equations. Equations (B.1) and (B.2) give the Navier-Stokes equations before

and after the transformation, respectively. xi denotes the coordinate i of the cartesian

system and ’i denotes the coordinate i of the generalized system.

ˆui

ˆt
+ ˆujui

ˆxj
= ≠ ˆp

ˆxi
+ 1

Re

ˆ2ui

ˆxjˆxj
≠ 1

Fr2 fl”i3 (B.1)

ˆ|J≠1|ui

ˆt
= ≠ˆCniP

ˆ’n
≠ ˆ[Cnjuj]ui

ˆ’n
+ 1

Re

A
ˆ

ˆ’n
Gnj

ˆui

ˆ’j

B

≠ 1
Fr2 fl”i3 (B.2)

Here J≠1, Cij, and Gij are

J≠1 =

S

WWWWWWU

ˆx/ˆ’ ˆy/ˆ’ ˆz/ˆ’

ˆx/ˆ÷ ˆy/ˆ÷ ˆz/ˆ÷

ˆx/ˆ› ˆy/ˆ› ˆz/ˆ›

T

XXXXXXV
=: [ˆxi/ˆ’j] , (B.3)

Cij = |J≠1| ˆ’i

ˆxj
Gij = |J≠1| ˆ’i

ˆxk

ˆ’j

ˆxk
. (B.4)

Physically, the determinant |J≠1| is the volume ratio of the original cell to the transformed

cell. Cij and Gij are grid elongation and skewness coe�cients, respectively. The volume of

a transformed cell is typically chosen to be unity.

Figure B.1: Stencils used for computing B.6, B.7, and B.8.
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Figure B.2: A transformed computational cell associated with the grid point (i,j,k);
where i, j, k are integer indices used to identify discrete space in the ’, ÷,
and › directions respectively.

B.3 Spatial discretization

B.3.1 Jacobi terms

Consider a cell (i,j,k) in a transformed computational domain; where (i,j,k) identifies

the cell among other cells in the computational domain and has no relation with a component

of the coordinates. The Jacobi terms, J≠1, Cpq, and Gpq as in (B.3) and (B.4) are defined

on the cell’s faces as shown in Figure B.2. To obtain Cpq and Gpq, we compute J≠1 and

perform inversion as follows.

1. Compute J≠1 at every cell faces, denoted by J≠1,fc; where fc indicates cell face (1-3),
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by calculating the 9 components in J≠1. For example, we can calculate the members

of J≠1,2 of cell (i,j,k) as follows,

(ˆÔx/ˆ’)|i,j,k = 0.125 ú ( + Ôx|i+1,j+1,k + Ôx|i+1,j,k + Ôx|i+1,j+1,k+1 + Ôx|i+1,j,k+1

≠ Ôx|i≠1,j+1,k ≠ Ôx|i≠1,j,k ≠ Ôx|i≠1,j+1,k+1 ≠ Ôx|i≠1,j,k+1)

(ˆÔx/ˆ÷)|i,j,k = 0.5 ú ( + Ôx|i,j+1,k + Ôx|i,j+1,k+1 ≠ Ôx|i,j,k ≠ Ôx|i,j,k+1)

(ˆÔx/ˆ›)|i,j,k = 0.5 ú ( + Ôx|i,j+1,k+1 + Ôx|i,j,k+1 ≠ Ôx|i,j,k ≠ Ôx|i,j+1,k)

2. Calculate det(J≠1,fc), denoted by |J≠1,fc|

3. The variable |J≠1| in the governing equations (B.2) is an averaged value at the cell

center calculated from the six surrounding faces:

|J≠1|i,j,k = 1
6

Q

a
3ÿ

fc=1
|J≠1,fc|i,j,k + |J≠1,1|i,j+1,k + |J≠1,2|i+1,j,k + |J≠1,3|i,j,k+1

R

b

4. Compute Jfc = [ˆ’i/ˆxj] simply by the straight-forward inversion, J≠1,fc:

{J≠1,fc}≠1 = det(J≠1,fc)≠1{cof(J≠1)}T

5. Calculate Cpq and Gpq at face fc, denoted by Cfc
pq and Gfc

pq from Jfc

B.3.2 Discretization

Discretizing (B.2) in space (’, ÷, ›) is done simply with the second-order central

finite di�erence scheme. As an example, consider the term (B.5) with Figure B.1 illustrating

stencils used in the central finite di�erence.

ˆ

ˆ’p

C

Gpq
ˆ„

ˆ’q

D

(B.5)
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(B.5) consists of 9 terms. Here we give examples of the discretized term 1 (p=1 and q=1),

term 2 (p=1 and q=2), and term 3 (p=1 and q = 3).

A
”

”’1

C

G11
”„

”’1

DB

i,j,k

=
C

G11
”„

”’1

D

i+1/2,j,k

≠
C

G11
”„

”’1

D

i≠1/2,j,k

= + G2
11|i+1,j,k[„|i+1,j,k ≠ „|i,j,k]

≠ G2
11|i,j,k [„|i,j,k ≠ „|i≠1,j,k] (B.6)

A
”

”’1

C

G12
”„

”’2

DB

i,j,k

=
C

G12
”„

”’2

D

i+1/2,j,k

≠
C

G12
”„

”’2

D

i≠1/2,j,k

= + G2
12|i+1,j,k

2

C

+„|i,j+1,k + „|i+1,j+1,k

2

≠„|i,j≠1,k + „|i+1,j≠1,k

2

D

≠ G2
12|i,j,k

2

C

+„|i,j+1,k + „|i≠1,j+1,k

2

≠„|i,j≠1,k + „|i≠1,j≠1,k

2

D

(B.7)

A
”

”’1

C

G13
”„

”’3

DB

i,j,k

=
C

G13
”„

”’3

D

i+1/2,j,k

≠
C

G13
”„

”’3

D

i≠1/2,j,k

= + G2
13|i+1,j,k

2

C

+„|i,j,k+1 + „|i+1,j,k+1
2

≠„|i,j,k≠1 + „|i+1,j,k≠1
2

D

≠ G2
13|i,j,k

2

C

+„|i,j,k+1 + „|i≠1,j,k+1
2

≠„|i,j,k≠1 + „|i≠1,j,k≠1
2

D

(B.8)
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B.4 Temporal discretization

The governing equations (B.2) are solved using the fractional-step method where

a velocity field is sequentially advanced in multiple substeps (hence ‘fractional step’).

Afterwards, the zero-divergence condition is imposed. Marching to an intermediate field

requires a combination of the Alternating Direction Implicit method (ADI), the Crank-

Nicolson method (CN), and the third-order low-storage Runge-Kutta method (RKW3).

B.4.1 Alternating Direction Implicit method

Fibre uses the Alternating Direction Implicit (ADI) method to march the viscous

term in each spatial direction implicitly, one direction at a time. Suppose we want to solve

(B.9). If we use the Euler method, the procedure is to perform implicit Euler in the x

direction with explicit Euler in the y direction for first half (�t/2), and vice versa for the

second half �t/2 as shown in (B.10) and (B.11).

ˆ„

ˆt
= –

C
ˆ2„

ˆx2 + ˆ2„

ˆy2

D

(B.9)

„n+ 1
2 ≠ „n

�t/2 = –

S

Uˆ2„n+ 1
2

ˆx2 + ˆ2„n

ˆy2

T

V (B.10)

„n+1 ≠ „n+ 1
2

�t/2 = –

S

Uˆ2„n+ 1
2

ˆx2 + ˆ2„n+1

ˆy2

T

V (B.11)
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B.4.2 Crank-Nicolson method

The Crank-Nicolson method equally splits the right hand side (rhs) input into two

parts, the implicit and the explicit parts as shown in (B.12) and (B.13).

ˆ„

ˆt
= –

ˆ2„

ˆx2 (B.12)

„n+1 ≠ „n

�t
= –

2

C
ˆ2„n+1

ˆx2 + ˆ2„n

ˆx2

D

(B.13)

B.4.3 Third order Runge-Kutta method

The third-order low-storage Runge-Kutta method (RKW3) uses only two storage

variables. Marching is accomplished in three substeps briefly summarized here. Given an

equation for „,
ˆ„

ˆt
= R(„). (B.14)

RKW3 is done in the following manner,

„rk ≠ „rk≠1

hrk
= —rkR(„rk≠1) + ’rkR(„rk≠2) . (B.15)

Here, rk goes from substep 1 to substep 3. h, —, and ’ are given in Table B.1.

Table B.1: RKW3 parameters

Substep h̄ —̄ ’̄
1 8�t/15 1 0
2 2�t/15 25/8 -17/8
3 1�t/3 9/4 -5/4
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B.4.4 The ADI-CN-RK3 combined marching scheme

The algorithms briefly described above are used in combination to construct a set of

temporally-discrete governing equations in the intermediate field. Essentially, the right hand

side of equation (B.2) is split into terms that are to be marched explicitly and implicitly,

shown as the subscripts ex and im in (B.16). Depending on the grid skewness Gij, the

diagonal parts of the viscous terms can be susceptible to the sti�ness of the discretized

systems and are marched implicitly. Since there are three viscous terms containing G11,

G22, and G33, the Alternating Direction Implicit method is used. At a given time, they are

split into two parts using the Crank-Nicolson method. These steps are shown in (B.17),

(B.18), and (B.19) as an example for the substep 1 of the RKW3 marching scheme. Note

that 2 represents all the terms to be marched explicitly.

ˆJ≠1ui

ˆt
=

S

U≠ˆCniP

ˆ’n
≠ ˆ[Cnjuj]ui

ˆ’n
+ 1
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Gnj

ˆui

ˆ’j

B

n”=j

≠ 1
Fr2 fl

Õ
”i2

T

V
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+
S

U 1
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A
ˆ

ˆ’n
Gnj

ˆui

ˆ’j

B

n=j

T

V
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+ ˆ
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(B.18)
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J≠1uııı
i = J≠1uıı

i ≠ 1
Re

h(1)
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ˆ
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G33
ˆun
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+ 1
Re

h(1)

2
ˆ

ˆ›

C

G33
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(B.19)

Fibre computes uı
i , uıı

i , uııı
i from the set of tridiagonal matrices constructed in the

’, ÷, and › directions based respectively on (B.17), (B.18), and (B.19). The intermediate

velocity uııı
i is the first step in the fractional-step scheme.

Figure B.3: The ADI-CN-RK3 combined marching scheme.

B.5 Thomas algorithm

Fibre employs the parallel Thomas algorithm with pipelining (either with or without

periodic boundary conditions). It is a remarkably e�cient algorithm used to solve a

tridiagonal system such that those constructed from (B.17), (B.18), and (B.19) for uı, uıı,

and uııı. Readers are encouraged to consult Bewley (2012) for a detailed description of

the algorithm.
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B.5.1 Sequential algorithm

Consider solving the problem Ax = g for x resulting from spatial discretization of,

for instance, (B.17) where A is a tridiagonal matrix:

S

WWWWWWWWWWWWWWWWWWWWWWU

b0 c0

a1 b1 c1

a2 b2 c2

· · ·

· · ·

an≠1 bn≠1 cn≠1

an bn cn

T

XXXXXXXXXXXXXXXXXXXXXXV

S

WWWWWWWWWWWWWWWWWWWWWWU

x0

x1

x2

·

·

xn≠1

xn

T

XXXXXXXXXXXXXXXXXXXXXXV

=

S

WWWWWWWWWWWWWWWWWWWWWWU

g0

g1

g2

·

·

gn≠1

gn

T

XXXXXXXXXXXXXXXXXXXXXXV

(B.20)

The first 2 relations in (B.5.1) are,

b0x0 + c0x1 = g0 (B.21)

a1x0 + b1x1 + c1x2 = g1. (B.22)

Substituting x0 from (B.21) into x0 in (B.22) gives

b
Õ

1x1 + c1x2 = g
Õ

1 (B.23)

where b
Õ
1 =

Ë
b1 ≠ a1b

≠1
0 c0

È
and g

Õ
1 =

Ë
g1 ≠ a1b

≠1
0 g0

È
. The algorithm involves two steps,

forward sweeping and backward substitution (or backward sweeping). During forward
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sweeping, the subdiagonal elements a1-an are Gaussian eliminated. B.5.1 becomes

S

WWWWWWWWWWWWWWWWWWWWWWU

b0 c0

0 b
Õ
1 c1

0 b
Õ
2 c2

· · ·

· · ·

0 b
Õ
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·

·
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xn

T

XXXXXXXXXXXXXXXXXXXXXXV

=

S
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g0

g
Õ
1

g
Õ
2

·

·

g
Õ
n≠1

g
Õ
n

T

XXXXXXXXXXXXXXXXXXXXXXV

(B.24)

At the end of forward sweeping, we can solve for xn as in xn = g
Õ
n/b

Õ
n in B.5.1. For the

backward substitution, we sequentially solve for xn≠1-x0 (equations n ≠ 1 until 0) as in

xi = (gÕ
i ≠ cixi+1)/b

Õ
i. Once completed, x0-xn are all solved.

If we encounter a system with periodic boundary condition, a modifed version of

the Thomas algorithm is required. For example, for the grid in the Section B.8, periodic

boundary conditions are enforced in the ÷ direction. The algorithm is modified as follows.

Consider the discretized system Ax = g with periodicity as in (B.25) where x1 = xn≠1 and

x2 = xn.

S

WWWWWWWWWWWWWWWWWWWWWWU

b1 c1 a1

a2 b2 c2

· · ·

· · ·

· · ·
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·

·
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T

XXXXXXXXXXXXXXXXXXXXXXV

(B.25)

The first step is to separate (B.25) into the tridiagonal system (B.26) and an addition
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equation (B.27)

S

WWWWWWWWWWWWWWWWWWU

b1 c1

a2 b2 c2

· · ·

· · ·

· · ·

an≠1 bn≠1

T

XXXXXXXXXXXXXXXXXXV
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x1
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·

·
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XXXXXXXXXXXXXXXXXXV
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S

WWWWWWWWWWWWWWWWWWU

g1
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·

·
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gn≠1
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XXXXXXXXXXXXXXXXXXV

+

S

WWWWWWWWWWWWWWWWWWU

≠a1

0

0

·

·

≠cn≠1

T

XXXXXXXXXXXXXXXXXXV

xn (B.26)

cnx1 + anxn≠1 + bnxn = gn. (B.27)

Define [Ac] as the tridiagonal matrix on the left hand side and [g] as the g-column matrix

on the right hand side. Let

[x] = [x1] + [x2]xn (B.28)

be the solution of the system (B.26) where

[x1] = [Ac]≠1[g] (B.29)

[x2] = [Ac]≠1[≠a10 · · · ≠cn≠1]T . (B.30)

Substituting x in (B.28) into x1 and xn≠1 in (B.27) gives

cn(x11 + x21xn) + an(x1n≠1 + x2n≠1xn) + bnxn = gn. (B.31)

Rearrage B.31 for xn

xn = gn ≠ cnx11 ≠ anx1n≠1
bn + cnx21 + anx2n≠1

. (B.32)
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The following steps are used to solve the system (B.25)

1. Construct (B.29) and (B.30)

2. Solve (B.29) and (B.30) for [x1] and [x2] from index 1 to index n ≠ 1

3. Substitute [x1] and [x2] into (B.32) and solve for xn

4. Calculate [x] from (B.28) using [x1], [x2], and xn

B.5.2 Parallel algorithm

Fibre decomposes a computational domain into a number of smaller subdomains.

Each contains an equal number of grid points and is chosen to be occupied by one process

(we will use the word ‘CPU’ in place of the more proper term ‘process’). Figure B.4 provides

an example of 4◊4◊4 CPU topology in the decomposed computational domain.

Figure B.4: Example of a 4◊4◊4 CPU topology in a single computational domain.
Numbers in the figure represent an individual CPU’s rank (id).
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As a result of the decomposition, tridiagonal matrices and vectors emerge from

spatially discretizing (B.17), (B.18), or (B.19) to span several CPUs. Consider figure B.4
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as an example. The tridiagonal matrices constructed from the discretized version of (B.19)

span over the entire › space index, e.g. over CPU0≠3 illustrated by the solid-red line in

the figure . Similarly, the tridiagonal matrices constructed from the discretized version of

(B.18) span over the entire ÷ space index (e.g. over CPU19≠31).

Considering (B.33), forward sweeping is carried out starting at CPU0. Once the

sweeping reaches the interface between CPUi and CPUi+1, CPUi sends b
Õi
e , ci

e, and g
Õi
e to

CPUi+1. Then, CPUi+1 continues to carry out the sweeping by sending data b
Õi+1
e , ci+1

e , and

g
Õi+1
e to CPUi+2 and so on. After the forward sweeping is finalized, backward substitution

starts and the sweep is done in reverse as shown in B.5.2. However, the only information

being sent from CPUi+1 to CPUi is xi+1
s .

For a periodic system, we use the following steps:

1. Construct (B.29) and (B.30)

2. Use the parallel thomas subroutine to solve B.30 and B.30 for [x1] and [x2]

3. CPU0 owning the first block (contains node 1) sends x11 and x21 to CPUN that owns

the last block (contains node n)

4. CPUN calculates xn and broadcasts xn to every CPU that owns a subsystem of (B.25)

5. Every CPU calculates [x] from (B.28)

Notice that, by splitting (B.25) into (B.26) and (B.27), CPUN solves the tridiagonal system

(B.28) which has size one element less than the others.
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B.5.3 Pipelining

In the previous subsection, we summarize how to solve a tridiagonal system in

parallel. It is done simply by completing the forward/backward sweep and sending data

to the proper neighbor in order to continue marching. CPUi that finishes the forward

sweep sends data to CPUi+1 until the last block is reached. Generally, each CPU can be

responsible for thousands of tridiagonal subsystems contained in a single subdomain (or ‘a

block’). This subsection summarizes how to e�ciently solve such a big system.

Consider a computational domain containing (nx, ny, nz) grid points. For the sake of

simplicity, the domain is equally decomposed only in the y direction into NJ blocks so that

CPU0 occupies block 0, CPU1 occupies block 1, and so on. Thus, each CPU owns a block

of size (nx, ny/NY, nz); given that ny/NY is, by design, an integer. Supposing that we

choose to perform an implicit marching in the y direction, the resulting tridiagonal matrix

is subdivided into NY sections. The easiest, however least e�cient, way to solve these

systems is to let CPU0 solve all of its subsystems across the (nx, ny/NY, nz) grid before

sending data to CPU1. That is, CPU0 performs forward sweep at cell (1, 1 æ ny/NY, 1),

at cell (1, 1 æ ny/NY, 2), and so on until cell (nx, 1 æ ny/NY, nz). Next, CPU0 packs

the plane data with nx ú nz ú 3 elements (recall b
Õi
e , ci

e, and g
Õi
e in the previous subsection)

at (1 : nx, ny/NY, 1 : nz) and sends it to CPU1. By following the same process for the

subsequent CPUs until CPUNY ≠1 is reached, the backward substitution is then carried out

in the same way from CPUNY ≠1 to CPU0. The obvious drawback is that only one CPU is

operating at a given time and the whole process will be even slower than using the serial

version since there is additional communication overhead.
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Figure B.5: Illustration of pipelining with the parallel Thomas algorithm. The figure
is adapted from Figure VI.16 of Taylor (2008).

Pipelining is employed in an attempt to minimize the numbers of idle CPUs

while optimizing communication overhead. In essence, rather than sweeping across the

(nx, ny/NY, nz) grid all at once, each CPU performs the sweeps only for a portion of the

grid and shares data with its neighboring CPU in the sweep direction, downstream in a

forward sweep and upstream for a backward sweep. A portion of the grid can be chosen

for the first CPU with the others obeying the same portion. The example given here is

called pencil-type pipelining. Consider figure B.5 and the following steps:

(a) CPU0, process rank 0 in the figure, performs the forward sweep in the y direction at

cell (i, k) = (1, 1) from (i, j, k) = (1, 1, 1) to (i, j, k) = (1, ny/NY, 1); here i and k are

dummy indices pointing to a grid location in x and z directions, respectively. CPU0,

then repeats the forward sweep until (i, k) = (1, nz). Notice that the forward sweep

is in the y direction but the ‘pencil’ aligns in the z direction. At this point, CPU0

packs and passes data to CPU1. The data is of size nz ú 3 elements containing b
Õ0
ny/NY ,

c0
ny/NY , and g

Õ0
ny/NY for each k œ [1, nz] (with 1-element width in the x direction,

hence the word ‘pencil’)
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(b) CPU1 continues the forward sweep while CPU0 starts solving the new tridiagonal

system by shifting 1 step from the first block in the x, ‘slide’, direction. The ‘slide’

and ‘pencil’ directions can be swapped.

(c) CPU1 passes data to CPU2 for the sliding index i = 1, receives data from CPU0 at

the sliding index i = 2, and continues the forward sweep.

(d) The same process is carried out until CPUNY ≠1 reaches the slide index i = nx

(e) CPUNY ≠1 starts the backward sweep at the sliding index i = nx, shares data of size

nz ú 1-element containing xNY ≠1
1 for each k œ [1, nz] with CPUNY ≠2, and starts the

backward sweep at the sliding index i = nx ≠ 1.

(f) The backward sweeping process is carred out in the same way as in the forward

sweep.

(g) Solving the system of tridiagonal matrices is finalized after CPU0 finishes the backward

sweep at the sliding index i = 1

B.5.4 Handling wake cut

So far, we are able to solve (B.17), (B.18), and (B.19) in parallel for uı, uıı, and

uııı using the parallel Thomas algorithm with pipelining. Now, consider an example of

using Fibre to solve the problem of flow past a sphere. Figure B.7 shows an example of a

C-type grid with indications of sphere body and boundary locations. The C-type grid is

chosen due to its advantages in studying wake flow. In contrast to an O-type grid, a C-grid

domain can be extended downstream without losing resolution or having to extend the

grid upstream. A C-type grid is generated in two dimensions, such as in the Figure B.7.

The two-dimensional C-type grid is then rotated around the centerline axis to form the

complete three-dimensional fluid grid, shown in Figure B.6.
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Figure B.6: Three-dimensional completed grid formed by revolving the C-type grid
360o around the centerline.

Figure B.7: C-type grid and boundary conditions used in the simulations of flow past
a sphere.
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Figure B.8: The cartesian transformed grid from the curvilinear grid shown in Fig-
ure B.7.

Consider Figure B.8 showing the transformed grid. The left side of the domain

parallel to the ÷ direction, indicated by the word ‘Wake cut’, corresponds to the left ‘Branch

cut’ part of the domain shown in Figure B.7. The left subsection of the bottom part of

the transformed domain, the ‘Body surface’, corresponds to the bottom hemisphere part

of the domain in Figure B.7. The right subsection of the bottom part of the transformed

domain (wake cut) corresponds to the right branch cut part of the domain in Figure B.7.

The words ‘Wake cut’ or ‘Branch cut’ represent a shared interface among CPUs that “cuts”

through the centerline.

Figure B.9: Solving a tridiagonal system across a wake cut.

There are two directions that contain a wake cut, ’ and ÷. A tridiagonal system in
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the ’ direction, formed by discretizing (B.17), is interrupted with the wake cut on the left

while that of the ÷ direction, formed by discretizating (B.18), is interrupted with the wake

cut at the bottom (except if it occupies the body surface). To handle the wake cut, the

tridiagonal system from one side of the cut is merged with the system on the opposite side.

Therefore, the resulting system is twice as large as the system without the cut.

To provide an example, consider solving a system in the ÷ direction in the figure B.9

(right). In the forward sweeping, CPU45 owning point A starts solving from point A then

passes information to CPU41 until the forward sweeping reaches CPU33. Then, CPU33

owning point B passes the information to CPU35 owning point BÕ on the other side of

the cut. CPU35 keeps performing the forward sweep by sending data to CPU39 and so on

until the sweep reaches A
Õ owned by CPU47. The backward substitution follows the same

procedure by starting from point AÕ and marching until the substitution reaches back to

point A. The same process is employed for solving the tridiagonal matrix in the ’ direction

starting from point C. Forward and backward sweeping are done using the pencil-type

pipeline Thomas algorithm explained previously.

B.6 Pressure correction

Recall that Fibre uses a combination of the ADI-CN-RKW3 methods to obtain uııı,

the intermediate velocity. The remaining procedure in the fractional step method is to

remove divergence residual from the projected velocity uııı at the end of each sub-RKW3

step. This step requires solving for pressure correction. As the name suggests, pressure is

modified to account for the divergenceless field.

Rewriting equation (B.2) as (B.35); where 2 represents the advection, di�usion

and baroclinic terms. (B.35) is temporally discretized into (B.36) and (B.37). Here, uııı
i

denotes velocity at the third step of the ADI and h is a sub-time step of RKW3.
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ˆJ≠1ui
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i
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J≠1un+h
i ≠ J≠1un
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(B.37)-(B.36) gives:
J≠1un+h

i ≠ J≠1uııı
i

h
= ≠ˆCji”P h

ˆ’j
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Taking divergence of (B.38) gives (B.39). Note that ˆiu
n+h
i = 0.

1
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ˆ’j
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This yields the Poisson equation (B.40) for pressure correction ”P h

ˆ

ˆ’i

ˆ

ˆ’j

Ë
Gijh”P h

È
= ˆ

ˆ’j
[Cjiu

ııı
i ] (B.40)

Removing divergence from the uııı field is done by solving (B.40) for ”P h̄ and

computing un+h̄
i using (B.41).

un+h̄
i = uııı

i ≠ 1
J≠1

ˆ

ˆ’j

Ë
Cjih̄P h̄

È
(B.41)

The Poisson equation for pressure correction is solved using the Semi-Coarsening

Multigrid routine in the HYPRE library. The divergence-free field un+ ¯h(1) marks the end

of RKW3 first sub step. We follow the same procedure until un+ ¯h(1)+ ¯h(2)+ ¯h(3) = un+1 is

obtained. Figure B.3 illustrates the entire process.

HYPR is a library of scalable linear solvers and multigrid method (Falgout & Jones

(2000); Falgout & Yang (2002)). Our choice of HYPRE stems from its ability to construct

stencils at will. This allows a combination of multiple conditions on a single boundary.

With the SStruct (Semi-Structured-Grid System) interface, HYPRE allows us to make
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connections between various ‘parts’ of a domain, a necessary requirement for handling wake

cut. Fibre utilizes two solvers provided by HYPRE: 1) SMG, a parallel semicoarsening

multigrid solver for linear systems (Brown et al. (2000)) and 2) BoomerAMG, a parallel

implementation of the algebraic multigrid method (Ruge & Stüben (1987); Yang et al.

(2002)).

Construction of stencils for each node (i,j,k) as a result of spatially discritizing

(B.40) is summarized as follows. Consider (B.40) written in the form

ˆ

ˆ’p

C

Gpq
ˆ„

ˆ’q

D

= R. (B.42)

The discritization of the left hand side of(B.42) for the first three terms is given

in (B.6), (B.7), and (B.8). Discritization of the other terms and omitted here. The

second-order central finite di�erence discretized version of (B.42) is

+ sc0„|i,j,k

+ sc1„|i≠1,j,k + sc2„|i+1,j,k + sc3„|i,j≠1,k

+ sc4„|i,j+1,k + sc5„|i,j,k≠1 + sc6„|i,j,k+1

+ sc7„|i,j≠1,k≠1 + sc8„|i,j+1,k≠1 + sc9„|i,j+1,k+1

+ sc10„|i,j≠1,k+1 + sc11„|i≠1,j,k≠1 + sc12„|i≠1,j,k+1

+ sc13„|i+1,j,k+1 + sc14„|i+1,j,k≠1 + sc15„|i≠1,j≠1,k

+ sc16„|i+1,j≠1,k + sc17„|i+1,j+1,k + sc18„|i≠1,j+1,k = R|i,j,k, (B.43)

where
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sc0 = ≠G2
11|i+1,j,k ≠ G2

11|i,j,k ≠ G1
22|i,j+1,k ≠ G1

22|i,j,k ≠ G3
33|i,j,k+1 ≠ G3

33|i,j,k (B.44)

sc1 = +G2
11|i,j,k + 0.25(≠G1

21|i,j+1,k + G1
21|i,j,k ≠ G3

31|i,j,k+1 + G3
31|i,j,k) (B.45)

sc2 = +G2
11|i+1,j,k + 0.25(+G1

21|i,j+1,k ≠ G1
21|i,j,k + G3

31|i,j,k+1 ≠ G3
31|i,j,k) (B.46)

sc3 = +G1
22|i,j,k + 0.25(≠G2

12|i+1,j,k + G2
12|i,j,k ≠ G3

32|i,j,k+1 + G3
32|i,j,k) (B.47)

sc4 = +G1
22|i,j+1,k + 0.25(+G2

12|i+1,j,k ≠ G2
12|i,j,k + G3

32|i,j,k+1 ≠ G3
32|i,j,k) (B.48)

sc5 = +G3
33|i,j,k + 0.25(≠G2

13|i+1,j,k + G2
13|i,j,k ≠ G1

23|i,j+1,k + G1
23|i,j,k) (B.49)

sc6 = +G3
33|i,j,k+1 + 0.25(+G2

13|i+1,j,k ≠ G2
13|i,j,k + G1

23|i,j+1,k ≠ G1
23|i,j,k) (B.50)

sc7 = 0.25(+G1
23|i,j,k + G3

32|i,j,k ) (B.51)

sc8 = 0.25(≠G1
23|i,j+1,k ≠ G3

32|i,j,k ) (B.52)

sc9 = 0.25(+G1
23|i,j+1,k + G3

32|i,j,k+1) (B.53)

sc10 = 0.25(≠G1
23|i,j,k ≠ G3

32|i,j,k+1) (B.54)

sc11 = 0.25(+G2
13|i,j,k + G3

31|i,j,k ) (B.55)

sc12 = 0.25(≠G2
13|i,j,k ≠ G3

31|i,j,k+1) (B.56)

sc13 = 0.25(+G2
13|i+1,j,k + G3

31|i,j,k+1) (B.57)

sc14 = 0.25(≠G2
13|i+1,j,k ≠ G3

31|i,j,k ) (B.58)

sc15 = 0.25(+G2
12|i,j,k + G1

21|i,j,k ) (B.59)

sc16 = 0.25(≠G2
12|i+1,j,k ≠ G1

21|i,j,k ) (B.60)

198



sc17 = 0.25(+G2
12|i+1,j,k + G1

21|i,j+1,k) (B.61)

sc18 = 0.25(≠G2
12|i,j,k ≠ G1

21|i,j+1,k). (B.62)

The locations of these stencils are chosen as shown in Figure B.10.

Figure B.10: Locations of stencils sc0-sc18.

Modification of these stencils is required for any cell containing a boundary/boundaries.

For example, if the Dirichlet condition „outlet = 0 is used at the outlet ’max, then

„i+1,:,:=≠„i,:,:. This indicates that when setting up all the stencils for the celli,j,k, sc0 =

sc0 ≠ sc2 and so on for the stencils associated with „i,:,:. Applying boundary conditions for

any cell that contains more than one boundary is done in a similar manner.

B.6.1 Multigrid method

The brief description of Fibre would not be complete without the inclusion of the

cornerstone method used to solve the Poisson-type pressure correction equation. As stated

previously, Fibre is able to use the semi-coarsening multigrid (SMG) or the algebraic
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multigrid method (AMG) from the HYPRE library. The essential idea behind a multigrid

method is that a solution to the Poisson-type problem can be decomposed into a linear

combination of various modes, di�erentiated by spatial wave lengths. Di�erent modes

demand di�erent numbers of iteration (or relaxation) to obtain an acceptably converged

solution. Therefore, we ought to strategically optimize iterative steps for each mode in

an attempt to minimize computational cost. As an example, a turnover time scale of an

enormous eddy in a turbulent flow is much larger than that of a tiny eddy; and thus,

in an attempt to numerically evolve the huge eddy with the tiny time step would be

computationally costly and impractical. The idea of the multigrid method is, in a sense,

similar to a multi-level large-eddy simulation in which multiple successive-coarsening grids

with their own filtered governing equations are used.

While SMG relies on the geometry of a grid to perform coarsening, AMG makes a

decision based solely on the matrix A, as in AÔu = Ôf. It builds an abstract geometry based

on the so-called ‘graph’ consisting of ‘vertices’ (or nodes) and ‘links’, determined by the

non-zero members of the matrix A. We will skip details regarding AMG in terms of node

dependency, influence, and smoothness as there are already many excellent resources, i.e.

Briggs & McCormick (2000). It is important, rather, to summarize the core concept and to

include a simplified example of how a multigrid method works. The following explanation

is summarized from Chapter 2 of Briggs & McCormick (2000).

B.6.1.1 Relaxation

Consider a sparse linear system, such as (B.43) for all of indices in a computational

domain, to be solved using an iterative method on a single grid.

AÔu = Ôf (B.63)
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Here, A is a n ◊ n matrix. We use Ôv to denote an approximation to the exact solution Ôu,

giving the error Ôe = Ôu ≠ Ôv. Since the error Ôe is as inaccessible as the exact solution itself, a

computable measure of how well Ôv approximates Ôu is the residual, given by Ôr = Ôf ≠ AÔv.

Using the definitions of Ôe and Ôr, we obtain from (B.63) the residual equation

AÔe = Ôr, (B.64)

or,
Ôu = Ôv + A≠1Ôr. (B.65)

Identifying Ôv with the current approximation Ôv0 and Ôu with the new approximation Ôv1, an

iteration may be formed by taking

Ôv(1) = Ôv(0) + BÔr (B.66)

, where B is an approximation to A≠1. If B can be chosen to be close to A≠1, then the

iteration should be e�ective. Letting R be a general iteration matrix stemming from an

iterative technique that “relaxes” Ôv towards Ôu, (B.66) can be written

Ôv(1) = Ôv(0) + BÔr(0) = Ôv(0) + B(Ôf ≠ AÔv(0))

= (I ≠ BA)Ôv(0) + BÔf

= RÔv(0) + BÔf. (B.67)

Applying m iterations of R on Ôv gives

Ôv(m) = RmÔv0 + [
m≠1ÿ

n=1
Rn + I]BÔf. (B.68)
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Since the exact solution Ôu satisfies (B.63) and can not be ‘further relaxed’, then

Ôu = RmÔu + [
m≠1ÿ

n=1
Rn + I]BÔf. (B.69)

Subtracting B.68 from B.69 gives the error in the mth approximation

Ôe(m) = RmÔe(0). (B.70)

It has been shown that

lim
mæŒ

Rm = 0 if and only if fl(R) < 1, (B.71)

where fl(R) = max|⁄(R)| is the spectral radius of the iteration matrix R. It follows that

the iteration (B.68) converges for all initial guesses if and only if fl(R) < 1. The eigenvalues

of R can be related to the rate of decrease in e over iteration step. The fact that the

eigenvectors of the matrix A correspond very closely to the eigenfunctions of the continuous

model problem allows us to represent e(0) as a linear combination of A’s eigenvectors Ôwk,

Ôe(0) =
n≠1ÿ

k=1
ck

Ôwk, (B.72)

where the coe�cient ck œ R gives the amount of each mode in the error. Substituting Ôe(0)

from B.72 into B.70 gives

Ôe(m) = RmÔe(0) =
n≠1ÿ

k=1
ckRmÔwk =

n≠1ÿ

k=1
ck⁄m

k (R)Ôwk =:
n≠1ÿ

k=1

Ôe(m)
k . (B.73)

Therefore, the kth mode of the mth iteration error is a result of a reduction of the kth

mode of the initial error by a factor of ⁄m
k (R). To illustrate that the rate of damping of one

mode di�ers from another, consider the following matrix A stemmed from discretization of
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a 1-dimensional system AÔu = Ôf ,

A =

S

WWWWWWWWWWWWWWU

2 ≠1

≠1 2 ≠1

· · ·

· · ≠1

≠1 2

T

XXXXXXXXXXXXXXV

. (B.74)

A general framework to construct an iterative scheme is based on the concept of splitting

A = B ≠ C where B is non singular. Setting Bv(1) ≠ Cv(0) = f yields

v(1) = B≠1Cv(0) + B≠1f. (B.75)

Typically, the splitting A = D ≠ L ≠ U is used; where D, L, and U are the diagonal,

strictly lower and upper triangular parts of the matrix A. With this regular splitting,

di�erent iterative schemes can be obtained by choosing B and C. For example, choosing

B = Ê≠1D and C = Ê≠1[(1 ≠ Ê)D + Ê(L + U)] leads to the weight Jacobi iteration,

v(1) = [I ≠ ÊD≠1A]v(0) + ÊD≠1f . The Gauss-Seidel iteration is a result of choosing

B = D ≠ L and C = U , v(1) = (D ≠ L)≠1Uv(0) + (D ≠ L)≠1f . We can write

Ôv(1) = RJ
Ôv(0) + D≠1Ôf, (B.76)

where RJ = D≠1(L + U) is the Jacobi iteration matrix obtained by setting Ê = 1. In the

weight Jacobi method, v(1) is obtained from weight averaging v(1) from (B.76) and v(0) is

written
Ôv(1) = RÊ

Ôv(0) + ÊD≠1Ôf, (B.77)
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where the weight Jacobi iteration matrix is given by RÊ = [(1 ≠ Ê)I + ÊRJ ]. It follows,

from (B.6.1.1) and the definition of RJ and RÊ that

RÊ = I ≠ Ê

2

S

WWWWWWWWWWWWWWU

2 ≠1

≠1 2 ≠1

· · ·

· · ≠1

≠1 2

T

XXXXXXXXXXXXXXV

. (B.78)

Since the eigenvalues of A are

⁄k(A) = 4sin2
A

kfi

2n

B

, 1 Æ k Æ n ≠ 1, (B.79)

it follows that the eigenvalues of RÊ are

⁄k(RÊ) = 1 ≠ Ê

2 ⁄(A) = 1 ≠ 2Êsin2
A

kfi

2n

B

, 1 Æ k Æ n ≠ 1. (B.80)

Equation (B.80) indicates not only that fl(RÊ) < 1 for 0 < Ê < 1 (guaranteeing convergence)

but also that the damping factor varies as a function of wavenumber k for a given A with

the chosen weight Jacobi method. Notice that with the Jacobi method (Ê = 1), both the

high and low wave number components of the error are damped very slowly, |⁄| æ 1. With

Ê = 1/2, the high frequency components are damped much more quickly. As an aside, it is

straight-forward to show that if we want to best damp the high frequency components with

the chosen n/2 Æ k Æ n ≠ 1, the optimal value of Ê is 2/3. One important message is that

the damping factor of each signal component is related to the eigenvalues of the iteration

matrix and varies with the component wavenumber and the method of relaxation. There is

an interesting aspect of (B.80) which arises when we want to find an optimal value of Ê
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that makes ⁄k(RÊ) as small as possible for all k. Consider mode k = 1,

⁄k=1(RÊ) = 1 ≠ 2Êsin2
3

fi

2n

4

= 1 ≠ 2Êsin2
A

fih

2

B

¥ 1 ≠ Êfi2h2

2 ≥ 1 ≠ O(h2), (B.81)

where grid spacing h = 1/n and n is number of grid points. The eigenvalues associated with

the smoothest mode will always be close to 1 regardless of Ê (for 0 < Ê Æ 1). Decreasing the

grid spacing h increases ⁄k=1 resulting in the lesser reduction in the error, Ôe(m)
k=1 associated

with k = 1. This attempt to improve the accuracy of the solution worsens the convergence

of not only ⁄k=1 but all the smooth components of the error.

On one hand, this limitation guides us to use a coarser grid (increased grid spacing)

to solve for smooth components since the smaller the grid spacing, the closer ⁄k=1 is to

1. At the same time, we want to utilize a su�ciently high-resolution grid for oscillating

components. A multigrid method exploits this idea by successively coarsening a grid and

by recursively solving the residual equation on di�erent levels. This is done in order to

e�ectively relax components that are distinct in their wave numbers and to obtain an

improved approximation to the exact solution. The idea of using successively coarser grids

to correct an initial guess to the exact solution is called the correction scheme. It is also

the basis of a strategy called nested iteration.

B.6.1.2 The correction scheme

In this part, the correction scheme is demonstrated using a two-grid scheme. Consider

a one-dimensional problem AÔu = Ôf discretized on the grid �x, where x denotes the grid

resolution. An example using the correction scheme is as follows:

1. Starting at �h, we relax m times on AhÔuh = Ôfh using B.77 with Ê = 2/3 and initial

guess Ôvh.
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2. Compute the residual at �h, Ôrh = Ôfh ≠ AhÔvh.

3. Transfer the residual Ôrh to the next coarser level grid �2h using straight injection,

partial-weighting restriction, or full-weighting restriction defined with the operator

I2h
h ; Ôr2h = I2h

h
Ôrh.

4. Solve A2hÔe2h = Ôr2h for Ôe2h.

5. Transfer the error Ôe2h to the fine level grid by interpolation, Ôeh = Ih
2h

Ôe2h.

6. Correct the latest approximation Ôvh Ω Ôvh + Ôeh.

7. Repeat until residual at the fine level grid is su�ciently small.

Essentially, the correction scheme obtains an improved initial guess by solving the residual

equation on the next level coarser grid. The two-grid scheme can be easily extended into

the V-Cycle scheme, the µ-Cycle scheme, the full multigrid V-Cycle scheme, etc. This is

because the fourth step itself (solving the residual equation) can be considered as to begin

solve a new system AhÕ ÔuhÕ = 0 in which the same algorithm can be recursively called.

B.7 Density equation

Fibre solves the fluctuating density equation and imposes the e�ect of density

variation on the Navier-Stokes equations under the Boussinesq approximation via the

additional term ≠Fr≠2flÕ”i3, on the right hand side of (B.1). The fluctuating density

equation is formed by substituting the density decomposition flú(xú
i , t) = flú

0+flú(z)+flÕú(xú
i , t)

into (B.82) and is then non-dimensionalized by (B.83) where the superscript ú denotes

dimensional variable.
ˆflú

ˆtú +
ˆuú

jfl
ú

ˆxú
j

= Ÿ
ˆ2flú

ˆxú
jˆxú

j

(B.82)
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ui = uú
i

Uc
, xi = xú

i

Lc
, t = tú

Lc/Uc
, p = p

fl0U2
c

, fl = flú

≠Lcˆzfl(z)|bc
(B.83)

Note that the pressure term in (B.1) is now interpreted as there vertical gradient of the

modified pressure accounting for hydrostatic pressure related to the linearly-stratified

background density, flú(z). Also, notice that flÕú defined here accounts for both fluctuating

density and density deviation.

ˆflÕ

ˆt
+ ˆujflÕ

ˆxj
= uz + 1

RePr

ˆ2flÕ

ˆxjˆxj
(B.84)

To validate if the density equation is correctly implemented, we simulated a vertically

oscillating sphere in stratified fluids and measure directions of propagating internal gravity

waves. The directions are then compared with that of linear internal wave theory (Lighthill

(1955)) in which propagating angle should satisfy the dispersion relation Ê/N = cos(◊)

where Ê, N , ◊ are vertical frequency of disturbance, buoyancy frequency of fluid, and

propagating angle with respect to the vertical direction. Here, Ê is assumed to be close to

the frequency of the oscillating sphere. The simulations are setup using a C-type grid with

vertical forcing. This resembles the entire computational domain being fixed in space and

immersed in a vertically oscillating background stratified fluid. The boundary condition

for flÕ at sphere’s surface is ˆnflÕ = ≠ˆnfl(z) derived from the fact that the normal gradient

of total density on the surface vanishes, ˆnfl = 0 = ˆnfl(z) + ˆnflÕ. Note this is equivalent

to flÕ = 0 and ˆnfld = ≠ˆnfl(z) if we further decompose the fluctuating density into its

deviation and a fluctuating component. Figure B.11 shows one validation case where ◊ is

expected to be 45o.
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Figure B.11: Contour of fluctuating density on the vertical cut through the center
of the vertically oscillating sphere. Oscillation frequency is set at 0.5N
giving Ê ƒ 0.50N. The propagating angle is expected to be at ◊ = 45o.

B.8 Flow past a sphere

In this section, direct simulations of unstratified and stratified flow past a sphere

at Re=3700 using Fibre are presented. The choice of Re allows validation against the

unstratified flow past a sphere of Rodriguez et al. (2011). Two stratified cases are simulated

at Fr = UŒ/ND = 1, 0.25 using 256 CPUs. The simulations are done using the C-type

grid similar to that of Figure B.7. The sphere’s center is located at the origin, (x, r) = (0, 0).

The computational domain spans ≠3 < x/D < 7 and ≠7.5 < z/D, y/d < 7.5 where x is

the streamwise direction, z and y are the vertical and the spanwise directions, respectively.

The initial condition is set at (u, v, w) = (1, 0, 0) throughout the entire computational

domain. The boundary conditions and numbers of grid points are listed in Figure B.7.

The outside of the ‘C’ is assigned a Dirichlet condition with the background constant free

stream; (u, v, w) = (1, 0, 0) and zero density fluctuation. The outflow is of type Neumann

for all velocity and density fluctuations. No-slip boundary conditions are applied at the

surface of sphere where, for the density, ˆnflÕ = ≠ˆnfl(z) is implemented. The variable „ in

the figure represents pressure correction.
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Figure B.12: Temporal and azimuthal averaged pressure and shear stress coe�cients
on the sphere surface, Cp and · , for the unstratified flow past a sphere
at Re = 3700.

Validation of the unstratified case is performed by examination of the distributions

of mean pressure coe�cient, mean skin friction coe�cient on the body, and vortex shedding

frequency. Due to the azimuthal invariance of statistics in the unstratified case, computation

of the mean pressure and mean shear stress are done by averaging both in time and in the

azimuthal direction.

Figure B.12 shows pressure and shear coe�cients on the sphere surface in comparison

to Rodriguez et al. (2011), Kim & Durbin (1988), and Seidl et al. (1997). The pressure

coe�cient agrees very well with the references. The shear coe�cient also agrees well the

with references except for the region where the shear coe�cient changes abruptly between

40-60 degrees from the sphere’s leading stagnation point where the underestimation could

be improved with a higher grid resolution. Figure B.13 shows the power spectrum of radial

velocity at the location (x, r) = (2.4, 0.6) where r is in the radial direction. Two spectral

peaks are observed. St = 0.219 is responsible for the large scale shedding frequency while

St = 0.8 ≠ 0.9 is responsible for the Kelvin-Helmholtz instability in the separated boundary

layer. These frequencies agree well with the results of Rodriguez et al. (2011).

209



Figure B.13: Contour of the magnitude of azimuthal vorticity (top). Power spectra
of the radial velocity fluctuation (bottom), probed at (x, r) = (2.4, 0.6),
showing two dominant Strouhal numbers associated with large-scale
vortex shedding and small-scale instability at the shed shear layer.

Next, we introduce stratification to the flow. This is done by gradually decreasing

Fr. Two cases are performed with Fr = 1 and Fr = 0.25. After decreasing Fr until

reaching the desired values, the simulations are kept running for another cycle (one flow

through). Figures B.14 and B.15 show vorticity magnitudes and total densities for the

Fr = 1 and Fr = 0.25 cases.
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Figure B.14: Vorticity magnitude. Top: Fr = 1. Bottom: Fr = 0.25. Left: vertical
cut. Right: horizontal cut.

Figure B.15: Total density. Top: Fr = 1. Bottom: Fr = 0.25. The contour level
spans from (blue) ≠1 Æ fl Æ 1 (red).
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Figure B.16: Total density. Top: Fr = 1. Bottom: Fr = 0.25.

Figure B.17: Limiting streamlines.
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Figure B.18: Wall-normal horizontal profiles (left) and vertical profiles (right) of
tangential velocity at the angle – measured from the forward stagnation
point.
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Some observations are detailed as follows. The vertical cuts of Figures B.14 and

B.15 show the separated boundary layer on the vertical cut for both cases bending toward

the centerline. This can also be seen in the magnified views in Figure B.16. At Fr = 1, a

high density gradient package, periodically flapping vertically with St = 0.42, is observed

in the collapsed region. At Fr = 0.25, Kelvin-Helmholtz instabilities are observed closer to

the sphere than those in the unstratified case. The boundary layer does not start developing

from the sphere’s leading edge as the incoming fluid situated below a certain height does not

have enough kinetic energy to overcome the gravitational pull. This is why the separated

shear layer does not bend completely toward the centerline. The e�ect of stratification at

Fr = 1 on the boundary layer development in the horizontal plane is almost not noticable.

On the other hand, Fr = 0.25 there is delayed separation in the horizontal. In the vertical

cut, however, stratification delays separation for both cases. The limiting streamline, shown

in Figure B.17, sees gradual deformations of the originally axisymmetric separation line in

the unstratified case into a bow-tie shape at Fr = 1 and a star shape at Fr = 0.25.

B.9 Summary

We have successfully developed, from stratch, a generalized coordinate solver capable

of solving the governing equations in parallel. Validations were performed with a vertically

oscillating sphere in a stratified fluid and unstratified flow past a sphere. We obtained

satisfactory results using Fibre to simulate stratified flows past a sphere at Fr = 1 and

Fr = 0.25. Preliminary results from the simulations aided our understanding of the

near-body dynamics of intermediately/strongly stratified flow past a blu� body and ignited

our curiosity for the investigations presented in this thesis.

The contents of this appendix are parts of unpublished technical reports written by

the dissertation author.
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Appendix C

Kinetic energy equations

Derivations of the kinetic energy equations used in chapter 6 are recorded in this

section. An alternative form of the turbulent kinetic energy (TKE) equation in which

the subgrid stress is decomposed in a di�erent manner is also included. A TKE budget

without the subgrid contribution is described first followed by two forms including the

subgrid contribution. A mean kinetic energy (MKE) budget is also presented. Derivations

of turbulent and mean available potential energies (TAPE and MAPE) are synonymous to

that of the TKE and MKE budget and are thus not included. Lastly, an explanation of

calculating spatial derivatives is provided.

C.1 Turbulent kinetic energy

We start with the density-normalized physical law that governs an infinitestimal

element acted upon by a stress tensor. Implementing the constitutive relation relating the

stress tensor, fij , and the rate-of-deformation tensor, ˆjui, we obtain fij = (≠p+⁄ˆmum)”ij+

2‹ˆjui. Here, the second kinemetic viscosity given by the Stoke’s hypothesis, ⁄ = ≠2‹/3,

indicates a friction coe�cient associated with volumetric expansion (or dilatation). However,

under the incompressible assumption, ⁄ˆmum vanishes. Note that since ”ij and Sij are
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symmetric, fij must also be symmetric. In summary,

Dtui = ˆjfij = ≠ˆip + ˆj·ij = ≠ˆip + ‹ˆjjui

where ·ij is a shear stress tensor. Decomposing velocity and pressure into their means and

fluctuations, ui = ui + uÕ
i, yields

ˆtui + ˆtu
Õ
i = ≠ ujˆjui ≠ uÕ

jˆjui ≠ ujˆju
Õ
i ≠ uÕ

jˆju
Õ
i

≠ ˆip ≠ ˆip
Õ + ‹ˆjjui + ‹ˆjju

Õ
i. (C.1)

Multiplying C.1 with uÕ
i and taking an average gives

ˆt(uÕ
iu

Õ
i/2) = ≠ uÕ

iu
Õ
jˆjui ≠ ujˆj(uÕ

iu
Õ
i/2) ≠ ˆj(uÕ

iu
Õ
iu

Õ
j/2)

≠ ˆipÕuÕ
i + ‹uÕ

iˆjjuÕ
i|A. (C.2)

Rewriting term A results in

‹uÕ
iˆjjuÕ

i|A = ‹ˆjj(uÕ
iu

Õ
i/2)|A1 ≠ ‹ˆjuÕ

iˆjuÕ
i|D1

= 2‹ˆi(uÕ
jS

Õ
ij)|V T ≠ ‹ˆjuÕ

iˆiuÕ
j|D2 ≠ ‹ˆjuÕ

iˆjuÕ
i|D1. (C.3)

Therefore, the turbulent kinetic energy without a subgrid contribution becomes

ˆt(uÕ
iu

Õ
i/2) = ≠ ujˆj(uÕ

iu
Õ
i/2) (≠Advection)

≠ uÕ
iu

Õ
jˆjui (+Production)

≠ ˆi(pÕuÕ
i) ≠ ˆj(uÕ

iu
Õ
iu

Õ
j/2) + 2‹ˆi(uÕ

jS
Õ
ij) (≠Transport)

≠ ‹ˆjuÕ
iˆjuÕ

i|D1 ≠ ‹ˆjuÕ
iˆiuÕ

j|D2 (≠Dissipation). (C.4)
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Now, we consider the contribution from subgrid stress. The shear stress term can be written

as a combination of ongrid and subgrid viscosities

Dui = ≠ˆip + ˆj(·ij + · s
ij). (C.5)

The first form of the turbulent kinetic energy equation involves decomposition of the subgrid

shear stress into its mean and fluctuating components

· s
ij = · s

ij + · Õs
ij . (C.6)

Therefore, the only term to be added to the evolution of turbulent kinetic energy, C.4, is

uÕ
iˆj· Õs

ij which can be expanded into

uÕ
iˆj· Õs

ij = + ˆj· Õs
ij uÕ

i (Transports)

≠ · s
ijˆjui (Dissipations)

+ · Õs
ij ˆjuÕ

i (Productions). (C.7)

Here, the superscript 2s does not necessarily indicate that mechanism 2 happens at the

subgrid level. It is rather a contribution of the subgrid stress.

The other form first expresses the subgrid shear stress as subgrid viscosity multiplied

by strain rate, · s
ij = 2‹sSij; Sij = (ˆjui + ˆiuj)/2. Then, only velocity is decomposed while

the subgrid viscosity is chosen to remain composed as follows

ˆj·
s
ij = ˆj{2‹sSij} = ˆj{‹s(ˆjui + ˆiuj)}

= ‹sˆjjui + ˆjuiˆj‹s + ˆiujˆj‹s

= ‹sˆjjui + ‹sˆjju
Õ
i + ˆjuiˆj‹s + ˆju

Õ
iˆj‹s + ˆiujˆj‹s + ˆiu

Õ
jˆj‹s. (C.8)
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As in the construction of the TKE equation, we first multiply C.8 with velocity fluctuations

and take an average. Multiplying C.8 with uÕ
i, and noting that uÕ

iˆj· s
ij = uÕ

iˆj· Õs
ij , we obtain

uÕ
iˆj· Õs

ij = + ‹suÕ
iˆjjuÕ

i|B + ‹suÕ
iˆjjui|C + uÕ

iˆj‹sˆjui|D

+ uÕ
iˆj‹sˆiuj|E + uÕ

iˆj‹sˆjuÕ
i|F + uÕ

iˆj‹sˆiuÕ
j|X . (C.9)

Rewriting term B gives

‹suÕ
iˆjjuÕ

i|B = ‹sˆjjuÕ
iu

Õ
i/2|B1 ≠ ‹sˆjuÕ

iˆjuÕ
i|B2. (C.10)

Consider B1 + F ,

‹sˆjjuÕ
iu

Õ
i/2|B1 + uÕ

iˆj‹sˆjuÕ
i|F = ˆj{‹sˆj(uÕ

iu
Õ
i/2)}|B1F . (C.11)

The physical meaning of the term B1F is realized by the following expansion

ˆj{‹sˆj(uÕ
iu

Õ
i/2}|B1F = + ˆj{‹suÕ

i(ˆjuÕ
i + ˆiuÕ

j ≠ ˆiuÕ
j)}

= + ˆj{2‹suÕ
iS

Õ
ij}|T

≠ ‹sˆjuÕ
iˆiuÕ

j|B3

≠ uÕ
iˆj‹sˆiuÕ

j|≠X . (C.12)

Here, the term T represents subgrid transport while the combination of B2 + B3 indicates

subgrid dissipation. Note that the term ≠X cancels out X. The combination of C + D + E,

‹suÕ
iˆjjui|C + uÕ

iˆj‹sˆjui|D + uÕ
iˆj‹sˆiuj|E = uÕ

iˆj(2‹sSij)|P , (C.13)
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is the contribution to production of the subgrid viscosity. In conclusion,

uÕ
iˆj· Õs

ij = + ˆj{2‹suÕ
iS

Õ
ij} (Transports)

+ uÕ
iˆj(2‹sSij) (Productions)

≠ ‹sˆjuÕ
iˆjuÕ

i ≠ ‹sˆjuÕ
iˆiuÕ

j (Dissipations) (C.14)

can be considered an alternative form of the subgrid contribution to the turbulent kinetic

energy equation. For a density-stratified flow under the Boussinesq approximation, the

governing momentum equation C.1 includes ≠gfl≠1fl”i3 on the right hand side. By mul-

tiplying the decomposed density fl = fl + flÕ by uÕ
i and taking an average, the turbulent

kinetic energy equation in either form has an additional term

gfl≠1
0 flÕuÕ

i”i3 (Turbulent buoyancy flux) (C.15)

otherwise known as turbulent buoyancy flux.

C.2 Mean kinetic energy

Deriving the mean kinetic energy budget is done by taking an average of C.1 and

multiplying the result by the mean velocity. This gives

ˆt(uiui/2) = ≠ ujˆj(uiui/2) ≠ uiˆjuÕ
iu

Õ
j ≠ ˆi(uip) + ‹uiˆjj(ui)

= ≠ ujˆj(uiui/2) (≠Advection)

+ uÕ
iu

Õ
jˆjui (≠Production)

+ ˆj{≠ujp ≠ uÕ
iu

Õ
jui + ‹ˆj(uiui/2)} (≠Transport)

≠ ‹ˆjuiˆjui (≠Dissipation). (C.16)
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Adding the subgrid part by taking an average of C.6 and multiplying the result by the

mean velocity yields

uiˆj·
s
ij = + ˆj(· s

ijui) (≠Transports)

≠ · s
ijSij (≠Productions). (C.17)

As in the TKE budget for a density-stratified flow under the Boussinesq approximation,

the governing momentum equation C.1 includes ≠gfl≠1fl”i3 on the right hand side. By

multiplying the decomposed density fl = fl + flÕ by ui and taking an average, the mean

kinetic energy equation has an additional term

gfl≠1
0 uifl”i3 (Mean buoyancy flux). (C.18)

otherwise known as mean buoyancy flux.

C.3 Computing the budgets

Lastly, budget calculations are finalized in the cartesian coordinate system. Spatial

derivatives are computed in a simulated coordinate system, being either generalized curvi-

linear coordinates or cylindrical coordinates, after which a transformation into the cartesian

coordinate system is performed. In the generalized coordinate system, the transformation

J≠1ˆju
Õ
i = ˆ’ [(J≠1ˆj’)uÕ

i] + ˆ÷[(J≠1ˆj÷)uÕ
i] + ˆ›[(J≠1ˆj›)uÕ

i] (C.19)

220



is used. Considered a subset of generalized curvilinear coordinates, the following transfor-

mation

ˆyuÕ
i = cos◊ˆru

Õ
i ≠ r≠1sin◊ˆ◊u

Õ
i (C.20)

ˆzuÕ
i = sin◊ˆru

Õ
i ≠ r≠1cos◊ˆ◊u

Õ
i (C.21)

is employed for the cylindrical coordinate system.
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Appendix D

Enstrophy equation

The derivation of the fluctuating enstrophy equation appearing in chapter 3 is

provided in this section. The derivation follows the exact procedure used in the previous

section for the derivation of the turbulent kinetic energy budget. We start with the vorticity

equation obtained from taking the curl of the governing linear momentum equation, shown

in D.1.

ˆtÊi + ujˆjÊi = Êjˆjui + ‹ˆjjÊi ≠ gfl≠1Áijkˆjfl”k3 (D.1)

Decomposing Ê, u, and fl into their mean and fluctuating components gives

ˆtÊi + ˆtÊ
Õ
i = ≠ ujˆjÊi ≠ ujˆjÊ

Õ
i ≠ uÕ

jˆjÊi ≠ uÕ
jˆjÊ

Õ
i

+ Êjˆjui + Êjˆju
Õ
i + ÊÕ

jˆjui + ÊÕ
jˆju

Õ
i

+ ‹ˆjjÊi + ‹ˆjjÊ
Õ
i ≠ gfl≠1Áijkˆjfl”k3 ≠ gfl≠1Áijkˆjfl

Õ”k3. (D.2)
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Multiplying by ÊÕ
i and taking an average yields

ÊÕ
iˆtÊÕ

i = ≠ ujÊÕ
iˆjÊÕ

i ≠ ÊÕ
iu

Õ
jˆjÊi ≠ ÊÕ

iu
Õ
jˆjÊÕ

i

+ ÊjÊÕ
iˆjuÕ

i + ÊÕ
iÊ

Õ
jˆjui + ÊÕ

iÊ
Õ
jˆjuÕ

i

+ ‹ÊÕ
iˆjjÊÕ

i ≠ gfl≠1ÁijkÊÕ
iˆjflÕ”k3. (D.3)

The viscous term can be rewritten as

‹ÊÕ
iˆjjÊÕ

i = ‹ˆjjÊÕ
iÊ

Õ
i/2 ≠ ‹ˆjÊÕ

iˆjÊÕ
i, (D.4)

where the first term on the left hand side represents di�usion and the other represents

dissipation of fluctuating enstrophy. Rearranging D.3 gives

ˆt(ÊÕ
iÊ

Õ
i/2) = ≠ ujˆjÊÕ

iÊ
Õ
i/2 ≠ uÕ

jÊ
Õ
iˆjÊi ≠ ˆjuÕ

jÊ
Õ
iÊ

Õ
i/2

+ ÊÕ
iÊ

Õ
jS

Õ
ij + ÊÕ

iÊ
Õ
jSij + ÊjÊÕ

iS
Õ
ij

+ ‹ˆjjÊÕ
iÊ

Õ
i/2 ≠ ‹ˆjÊÕ

iˆjÊÕ
i ≠ gfl≠1ÁijkÊÕ

iˆjflÕ”k3. (D.5)

Equation describing the evolution of mean-square turbulent vorticity is analogous to the

turbulent kinetic energy budget which governs the evolution of mean-square velocity fluctu-

ation. The gradient production, ≠uÕ
jÊ

Õ
iˆjÊi, exchanges enstrophy between mean enstrophy,

ÊiÊi and turbulent enstrophy, ÊÕ
iÊ

Õ
i. The transport term, ≠ˆjuÕ

jÊ
Õ
iÊ

Õ
i/2, describes advections

of turbulent enstrophy by velocity fluctuations while the advection term, ≠ujˆjÊÕ
iÊ

Õ
i/2,

transports turbulent enstrophy by the mean velocity. Unlike in the TKE budget, turbulent

enstrophy can be generated or removed by vortex stretching or squeezing. This process

is described by the turbulent strain rate, S Õ
ij, via ÊÕ

iÊ
Õ
jS

Õ
ij and by the mean strain rate,

Sij, via ÊÕ
iÊ

Õ
jSij. The term ÊjÊÕ

iS
Õ
ij represents stretching/tilting of mean vorticity by the

turbulent strain rate. The “spatial curvature” of turbulent enstrophy is relaxed by the
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di�usion term, ‹ˆjjÊÕ
iÊ

Õ
i/2. The term ≠‹ˆjÊÕ

iˆjÊÕ
i represents the rate of di�usion of turbu-

lent enstrophy. Lastly, density-stratified flow enables a mechanism called baroclinic torque

given by ≠gfl≠1ÁijkÊÕ
iˆjflÕ”k3.
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