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Abstract

Can we know a word by the company it keeps? Aspects of
meaning that concern physical interactions might be partic-
ularly difficult to learn from language alone. Glenberg and
Robertson (2000) found that although human comprehenders
were sensitive to the distinction between afforded and nonaf-
forded actions, distributional semantic models were not. We
tested whether technological advances have made distribu-
tional models more sensitive to affordances by replicating their
experiment with modern Neural Language Models (NLMs).
We found that only one NLM (GPT-3) was sensitive to the af-
fordedness of actions. Moreover, GPT-3 accounted for only
one third of the effect of affordedness on human sensibility
judgements. These results imply that people use processes that
go beyond distributional statistics to understand linguistic ex-
pressions, and that NLP systems may need to be augmented
with such capabilities.
Keywords: neural language models; distributional semantics;
affordances; embodied cognition

Introduction
A long-standing debate in cognitive science concerns the ex-
tent to which the meaning of a word can be learned from in-
formation about how it is distributed in language. The de-
bate is important both theoretically, for explaining how hu-
man comprehenders understand language, and practically, for
building computational systems that represent and respond to
language in a human-like way. Previous work has shown that
distributional theories fail to account for affordances—the ac-
tions that an agent can perform with an object—suggesting
that information about how words are distributed is insuf-
ficient to explain what they mean (Glenberg & Robertson,
2000). We re-evaluate this claim with contemporary models,
testing whether technological advances make it possible to
extract affordance information from distributional statistics.

Distributional theories of meaning are based on the dis-
tributional hypothesis: words derive their meanings from
the linguistic contexts in which they are used, i.e. the way
they are distributed in language (Firth, 1957; Harris, 1954;
Wittgenstein, 1953). These theories have been operational-
ized in computational models that learn, for instance, that
road and street are similar, because the contexts in which
they are used are similar. Recent methodological innovations
have produced computational models that encode an impres-
sive amount of linguistic knowledge (Rogers, Kovaleva, &
Rumshisky, 2020; Tenney, Das, & Pavlick, 2019); and pre-
dict a number of behavioral measurements, including word

relatedness (Trott & Bergen, 2021; Li & Joanisse, 2021), vi-
sual similarity ratings (Lewis, Zettersten, & Lupyan, 2019),
category-membership judgements (Lenci, 2018), N400 am-
plitude (Michaelov, Coulson, & Bergen, 2021; Frank, Otten,
Galli, & Vigliocco, 2015), and reading time (Shain, 2019;
Goodkind & Bicknell, 2018). Schrimpf et al. (2021) find that
transformer-based NLMs predict nearly 100% of explainable
variance in neural responses to sentences (fMRI and ECoG)
and suggest that “predictive ANNs serve as viable hypotheses
for how predictive language processing is implemented in hu-
man neural tissue” (p.8). Critics of the distributional account,
however, argue that trying to understand a word’s meaning
from its linguistic context is “like trying to learn a language
by listening to the radio” (Elman, 1990).

The debate relates to a broader discussion about whether
cognition is constituted by embodied perceptual and motor
experiences of the world (Barsalou, 1999) or by formal op-
erations on disembodied, amodal symbols (Mahon, 2015).
A central critique of disembodied theories of cognition—
including distributional theories of meaning—is that they do
not provide a mechanism for meanings to be grounded. That
is, the meanings of symbols in the system can only be defined
with reference to other abstract symbols, and therefore do not
make contact with the world (Harnad, 1990; Searle, 1980).

Glenberg and Robertson (2000) illustrated this critique by
testing the sufficiency of distributional models to deal with an
aspect of meaning which appears to rely on embodied expe-
rience: affordances. The concept of an affordance was intro-
duced by Gibson (1979) to describe the set of actions that an
environment makes possible for an animal. Affordances are
co-determined by the environment and agent: a chair might
afford sitting for a person, but not an elephant. Through our
interaction with the environment, we learn about nonobvious
affordances of objects that might never be described in lan-
guage. For instance, though we may never have tried to chisel
ice from a windshield with either a golf club or a ham sand-
wich, we have learned incidentally through our experience
with these objects that the former would be more suitable
than the latter. We might fail to pick up on such incidental
properties through language experience alone.

Glenberg and Robertson (2000) tested the hypothesis that
human comprehenders would be sensitive to the distinction
between afforded and nonafforded actions in a way that dis-
tributional models were not. They constructed scenarios in
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which characters used objects in ways that were either af-
forded or nonafforded while ensuring that a distributional
model, Latent Semantic Analysis (LSA; Landauer & Dumais,
1997) , showed no effect of the afforded/nonafforded distinc-
tion. Human comprehenders rated the afforded scenarios as
significantly more sensible than the nonafforded scenarios,
implying that they were sensitive to the affordances of ob-
jects, and were using information not available to LSA when
comprehending the sentence. The authors took this result
as evidence for the insufficiency of distributional semantic
methods in accounting for human language comprehension.

There are several reasons to revisit this study, 22 years
later. First, the claim that distributional semantic methods in
general are insufficient to account for the influence of affor-
dances could be undermined by data from any distributional
model. It is therefore sensible to test this claim using a va-
riety of distributional models. Second, enormous progress
in natural language understanding in the last two decades—
catalyzed by increases in processing power, training data, and
architecture improvements—make modern Neural Language
Models (NLMs) far more sensitive to nuances of linguistic
meaning than LSA was (Kocijan, Davis, Lukasiewicz, Mar-
cus, & Morgenstern, 2022; Wang, Singh, et al., 2019; Wang,
Pruksachatkun, et al., 2019). Forbes, Holtzman, and Choi
(2019) found that BERT (an NLM) is competitive with hu-
mans at predicting affordances from objects. Finally, LSA’s
word representations are fixed and context-invariant. Glen-
berg & Robertson identified this as a crucial obstacle to un-
derstanding how objects could be used in novel ways. Mod-
ern NLMs account for the influence of context on a word’s
meaning, providing an additional reason to believe they will
have a better handle on affordances.

However, there are reasons to temper optimism. The sce-
narios were creatively designed to ensure that participants
were unlikely to have encountered the afforded objects be-
ing used in these ways. By extension, models are unlikely
to have encountered these object affordances explicitly ex-
pressed in their training data. For example, although a warm
thermos could be used to press wrinkles out of a skirt, it is
unlikely that this specific use appears in the training data. In
order for an NLM to make this connection, warm thermos
would need to have a sufficiently similar distributional pat-
tern to other lexical items for which this association already
exists (e.g., iron), such that a statistical model could identify
this regularity and use it for prediction. This lack of relevant
training data is compounded by reporting bias: perceptually
obvious features of objects are often not discussed explic-
itly, precisely because they are perceptually obvious (Gordon
& Van Durme, 2013). Finally, these models make frequent
commonsense errors, which indicate that they lack capabili-
ties such as world knowledge and causal reasoning (Bender
& Koller, 2020; Davis & Marcus, 2015).

In the present work, we first ask whether modern NLMs are
sensitive to affordances, by testing for an effect of afforded
vs nonafforded actions on several NLM measures. Secondly,

we ask whether NLMs can account for the influence of affor-
dances on human judgements. We test whether the Afforded-
ness condition (Afforded vs Nonafforded) explains marginal
variance in human sensibility judgements when controlling
for NLM measures. If condition explains variance on top of
NLM measures, it would indicate that affordedness influences
humans in a way that NLM measures do not capture.

Study 1: NLM Analysis
In our first study, we asked whether NLMs were sensitive
to the distinction between afforded and nonafforded actions.
Glenberg and Robertson (2000) designed their stimuli to en-
sure that LSA showed no difference between these condi-
tions. Therefore, an effect of Affordededness on NLM mea-
sures would suggest that technological advances in language
modelling have allowed models to extract sufficient infor-
mation from distributional statistics of language to make a
distinction between afforded and nonafforded actions, even
when both actions were rated as equally unrelated by LSA.

Method
Materials The stimuli, from Glenberg and Robertson
(2000) Experiment 1, comprised 18 scenarios. Each scenario
contained a setting sentence (1) and a critical sentence (2) that
described a character using an object to perform an action.

(1) After wading barefoot in the lake, Erik needed some-
thing to get dry.

(2) a. He used his shirt to dry his feet. [Afforded]
b. He used his glasses to dry his feet. [Nonaf-

forded]
c. He used his towel to dry his feet. [Related]

There were three versions of each critical sentence, corre-
sponding to the three conditions in the experiment. The ver-
sions differed only in the objects used by the character, re-
ferred to as the distinguishing concepts (italicized). Each crit-
ical sentence also featured a central concept (boldface), which
was the same across conditions and was intended to concep-
tually capture the use to which the object was being put. Ob-
jects in the Afforded condition (2-a) afforded the character’s
intended action, while objects in the Nonafforded condition
(2-b) did not. It is easy to imagine how a shirt could be used
to dry wet feet; the same is not true for glasses.

To control for distributional information, the authors found
the cosine angle between the LSA representations of i) the
setting and critical sentences, and ii) the central and distin-
guishing concepts. The stimuli were designed so that there
was no difference on either LSA measure between the Af-
forded and Nonafforded conditions. That is, to the extent that
LSA measures relatedness, the distinguishing concepts in the
Afforded and Nonafforded conditions were equally unrelated
to the rest of the scenario. In the third, Related, condition
(2-c), the object also afforded the character’s intended action
(as in the Afforded condition). However, the object in the
Related condition was more closely related to the rest of the
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scenario compared to the Afforded and Nonafforded condi-
tions, as measured by LSA. Both towels and shirts could be
used to dry wet feet, but towels are more strongly associated
with drying than shirts are. These distinctions allowed us to
separately test for an effect of affordedness (shirt vs glasses)
and relatedness (towel vs shirt) on our NLM measures.

NLM Measures We elicited responses to the stimuli from
three transformer-based NLMs: BERT (large, cased) (Devlin,
Chang, Lee, & Toutanova, 2019), RoBERTa (large) (Liu et
al., 2019), and GPT-3 (davinci) (Brown et al., 2020). These
models learn to encode representations of language by pre-
dicting sequences of tokens (word-parts) on the basis of the
surrounding linguistic context. GPT-3 is unidirectional: its
representations are conditioned only on the preceding tokens
in a sequence (the left context). BERT and RoBERTa are
both bi-directional: their representations are conditioned on
both left and right context.

We selected BERT because it is probably the most widely
studied transformer NLM, having become “a ubiquitous base-
line in NLP experiments” (Rogers et al., 2020); RoBERTa
because it uses a BERT-like architecture, but with more ex-
tensive pre-training, which substantially improved its per-
formance on several benchmarks (Liu et al., 2019); and
GPT-3 because it set SOTA performance on several bench-
marks without any task-specific fine-tuning. GPT-3 is much
larger (175B parameters) and has been trained on much more
data (300B tokens) than either BERT (340m parameters,
3.3B words) or RoBERTa (340m parameters, ∼30B words).
We accessed BERT and RoBERTa through the Transform-
ers Python package (Wolf et al., 2020), and accessed GPT-3
through the OpenAI API.

We elicited six measures from these NLMs. The first
two measures closely paralleled the Glenberg and Robertson
(2000) analysis. We found the cosine distance between the
mean BERT embeddings for the setting and critical sentences
(BERT Cosine S-C), and between the central and distin-
guishing concepts (BERT Cosine C-D). We used the second-
to-last layer of BERT because it was found to perform better
than any other single-layer representation on a named entity
recognition task (Devlin et al., 2019). Larger cosine distances
indicate that the distinguishing concepts are more dissimilar
from their contexts, and would therefore be expected for less
sensible objects.

In addition to providing representations of tokens in a sen-
tence, NLMs also generate predictions for observing specific
tokens given their surrounding context. We took advantage
of this by comparing the surprisal (− log2 p(token)) of the to-
kens in the distinguishing concepts of each scenario version.
Larger surprisal indicates a lower probability of observing
the distinguishing concepts, and would therefore be expected
for less sensible objects. We elicited BERT Surprisal and
RoBERTa Surprisal by masking the distinguishing concept
tokens and finding the mean surprisal of the masked tokens.
Because GPT-3 is unidirectional, and important information
appears in the right context of the distinguishing concepts, we

used two different measures of GPT-3 surprisal. In the first,
GPT-3 Surprisal (dc), we measured the sum surprisal of the
tokens in the distinguishing concept, conditioned on the left
context. In the second, GPT-3 Surprisal (dc+rc), we mea-
sured the mean surprisal of the tokens in the distinguishing
concept and their right context. We used mean surprisal to
control for variation in the length of the right context.

Figure 1: Only GPT-3 is surprised by nonafforded actions.
GPT-3 Surprisal is significantly higher for Nonafforded ac-
tions than Afforded ones: both the total surprisal of the dis-
tinguishing concept (dc; χ2(1) = 9.125, p = 0.003), and the
mean surprisal of the distinguishing concept plus right con-
text (dc+rc; χ2(1) = 6.617, p = 0.010). RoBERTa Surprisal
and the cosine distance between the central and distinguish-
ing concepts (BERT Cosine C-D) show an effect of Related
vs Afforded, but not Afforded vs Nonafforded. The BERT
Cosine between setting and critical sentences (BERT Cosine
S-C) and BERT Surprisal show no effects of either compari-
son.

Results
We created two subsets of the scenarios to separately test
whether models were sensitive to affordedness (Afforded vs
Nonafforded) and relatedness (Afforded vs Related). We con-
structed linear mixed effects models that predicted each NLM
measure on the basis of condition, controlling for the log fre-
quency of the distinguishing concept, and with random in-
tercepts by scenario. We used likelihood ratio tests to assess
whether condition improved model fit for each comparison.

Two of the NLM measures showed no differences for any
of the condition analyses (BERT Cosine S-C, and BERT Sur-
prisal). RoBERTa Surprisal and BERT Cosine C-D showed
a significant difference for the Related/Afforded distinction.
Both GPT-3 Surprisal (dc) (χ2(1) = 9.125, p = 0.003) and
GPT-3 Surprisal (dc+rc) (χ2(1) = 6.617, p = 0.010) showed
a significant effect of the Afforded/Nonafforded comparison,
but no effect of Afforded/Related. Surprisal was higher for
Nonafforded scenarios than for Afforded ones (see Figure 1).
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Discussion
None of the BERT or RoBERTa measures showed an effect of
Affordedness. In contrast, GPT-3 surprisal was significantly
larger for Nonafforded vs Afforded scenarios. It is possible
that BERT surprisal would show an effect on a larger sam-
ple (n=18), however, the GPT-3 effect shows that power is in
principle sufficient. GPT-3’s sensitivity to the Affordedness
distinction might be used to support claims regarding tacit
knowledge available in the model, i.e., that the model under-
stands a shirt can be used to dry one’s feet but glasses cannot.

It seems likely that GPT-3 performed better than the other
models due to the relationship between the amount of com-
pute used to train a model and its language modelling perfor-
mance Brown et al. (2020). It is striking that neither of the
GPT-3 measures show the effect of relatedness that was seen
for the central-to-distinguishing LSA cosine distances in the
original study, and the similar BERT Cosine C-D measure.
This might indicate that GPT-3 is exploiting deeper contex-
tual cues beyond the superficial co-occurrence statistics that
characterize relatedness.

Study 2: Comparison of Human and NLM
responses

The results of the NLM re-analysis provide evidence that at
least one NLM (GPT-3) is sensitive to the distinction between
afforded and nonafforded actions. In order to test the stronger
claim that distributional information is sufficient to explain
the interpretation of language by human comprehenders, we
asked whether NLM measures can account for the effect of
affordedness on human judgements. We replicated Experi-
ment 1 from Glenberg and Robertson (2000), which asks hu-
man participants to rate scenarios based on how sensible they
are. We then tested whether condition (Afforded vs Nonaf-
forded) explains marginal variance in human sensibility rat-
ings when controlling for the effect of NLM measures. A
marginal effect of condition would imply that affordedness is
influencing human comprehension in a way that NLM mea-
sures cannot account for.

Method
Participants All research was approved by the University’s
Institutional Review Board. We recruited 142 undergraduate
students from the Psychology Department Subject pool, who
provided informed consent using a button press and received
course credit as compensation for their time. We excluded
2 participants who indicated they were not native English
speakers; 7 participants who took over 1 hour to complete
the experiment; 10 participants who failed > 1/3 attention
checks; and 1 participant who had > 20% of their trials ex-
cluded. We excluded 6 trials where the response time was
> 120s (indicating inattention), and 66 trials where the re-
sponse time was ±2.5SD from the participant mean. We re-
tained 2142 trials from 123 participants (90 female, 30 male,
2 non-binary, 1 prefer not to say; mean age = 20.6, σ = 2.97).
The study lasted 17.6 mins on average (σ = 6.37).

Procedure We used the same stimuli as described in the
NLM re-analysis section above. The procedure was similar
to the method outlined in Glenberg and Robertson (2000), in
that participants were asked to read the scenarios and rate the
sensibility of the sentences, on a scale from 1 (virtual non-
sense) to 7 (completely sensible). In the original study, par-
ticipants also rated sentences for how easy they were to en-
vision, but we only elicited sensibility judgements because
the results from both ratings were very similar (r ≥ 0.9) and
because eliciting envisioning ratings might artificially induce
participants to recruit perceptual experience. Moreover, in
the original experiment, each participant rated all versions of
each scenario. We decided to present only one version of each
scenario to each participant, to prevent them from implicitly
comparing different versions of the scenario. The experiment
was designed using jsPsych (De Leeuw, 2015) and hosted on-
line. Participants saw one scenario at a time and rated it on a
seven point scale by clicking on a rating. Each participant saw
18 scenarios. The version of the scenario (condition) was ran-
domized, so that all participants saw scenarios from all three
conditions, but no two versions of the same scenario. The or-
der of the items was randomized. Each participant also saw 3
attention checks that asked them to select a specific rating.

Results
We replicated the original effect of condition on human sen-
sibility judgements in both the Afforded vs Nonafforded
(χ2(1) = 45.7, p < 0.001) and Afforded vs Related (χ2(1) =
10.6, p = 0.001) comparisons (see Figure 2, left).

For the Afforded vs Nonafforded comparison, three NLM
measures significantly improved the fit of a base model that
predicted human sensibility judgements with a fixed effect of
the log frequency of the distinguishing concept, random in-
tercepts by item and participant, and a random effect of con-
dition by participant (see Table 1, Afforded vs Nonafforded,
NLM vs Base). For all NLM measures, a significant im-
provement in model fit was produced by including condition
as an additional variable (see Table 1, Afforded vs Nonaf-
forded, Full vs NLM). While GPT-3 Surprisal (dc) explained
the highest proportion of variance in human sensibility judge-
ments of any of the NLM measures (R2 = 0.13), condition
explained a much larger proportion of variance (R2 = 0.34).

Only BERT Surprisal improved model fit over a base
model in the Afforded vs Related dataset. Again, the addi-
tion of condition in the full model improved model fit over all
NLM measures (see Table 1, Afforded vs Related).

Discussion
Although three of the NLM measures showed a significant
effect on human sensibility judgements, no measure was able
to account for all of the variance explained by Affordedness
condition. This is the crucial test. If NLMs were sufficiently
sensitive to affordance information to explain the effects of
affordances on human language comprehension, then there
would be no residual variance in responses remaining that
would be explained by condition after the effect of NLM mea-
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Figure 2: Human raters made more fine grained distinctions
between experimental stimuli than did NLMs. Left: On a
scale of 1 (nonsense) to 7 (sensible), participants rated Re-
lated actions as more sensible than Afforded but unrelated ac-
tions (χ2(1)= 10.6, p= 0.001), and Afforded actions as more
sensible than Nonafforded ones (χ2(1) = 45.7, p < 0.001).
Right: GPT-3 Surprisal for the distinguishing concept (dc)
tokens, inverted to facilitate comparison, showed no effect of
Afforded vs Related and a less pronounced effect of Afforded
vs Nonafforded (χ2(1) = 9.125, p = 0.003).

sures on human sensibility ratings had been accounted for. In
fact, the best performing measure—GPT-3 Surprisal (dc)—
explains only around a third of the variance explained by Af-
fordedness. This implies that human sensibility judgements
are being influenced by affordances in ways that are not being
captured by even state of the art NLMs.

General Discussion
Glenberg and Robertson (2000) found that distributional
techniques of the time were unable to account for the influ-
ence which affordances have on human language comprehen-
sion. They took this as evidence that human comprehenders
draw on experience and processes that go beyond distribu-
tional linguistic information in order to understand language.
Techniques in distributional semantics have progressed enor-
mously in the last 22 years. We therefore asked whether mod-
ern NLMs can account for the influence of affordances, which
would undermine the claim that distributional information is
insufficient for learning these relations.

On a weaker interpretation of this question—are NLMs
sensitive to the distinction between afforded and nonafforded
actions?—we see progress. Specifically, GPT-3 surprisal is
higher for Nonafforded vs Afforded uses of objects. This is
noteworthy for several reasons. First, it contrasts with the
result obtained from LSA in Glenberg and Robertson (2000),
and undermines the conclusion that distributional information
is insufficient to capture affordance information. Second, it is
striking that only GPT-3 shows this sensitivity to affordances.

Figure 3: Affordedness explained more variance than any of
the NLM measures. Left: For the Afforded vs Nonafforded
comparison, GPT-3 Surprisal of the distinguishing concept
tokens (GPT-3 Surprisal, dc) explained more variance in hu-
man sensibility judgments than any other NLM measure (R2

= 0.13, see §NLM Measures), but only a fraction of the vari-
ance explained by condition (R2 = 0.34). Right: NLMs are
much closer to explaining the effects of relatedness on human
judgements.

All of the BERT and RoBERTa measures fail to show a sig-
nificant difference between Afforded and Nonafforded condi-
tions. This implies that affordance-sensitivity is a non-trivial
property of GPT-3, specifically: perhaps a result of its larger
number of parameters and training data.

On a stronger interpretation of the question—are NLMs
capable of accounting for the influence of affordances on
human comprehension?—distributional methods continue to
fall short. None of the NLM measures were able to account
for the effect which Affordedness had on human sensibility
judgements. That is, even after controlling for the influence
of the NLM measures, a large amount of variance in human
responses could be explained by including condition as a pre-
dictor. This suggests that the fact of an action being afforded
has a consistent influence on human sensibility judgements
that is not captured by the distributional information learned
by any of these NLMs. This is the crucial sense in which
distributional semantics still can’t account for affordances.

The evidence of progress in Study 1 invites one interpre-
tation of these results: distributional semantic techniques are
improving and with sufficient data, parameters, or architec-
tural improvements, models will become capable of extract-
ing any relevant information from the distributional signal
needed to explain influences on human language comprehen-
sion. This interpretation is consistent with research on scaling
laws: model performance increases in a law-like manner with
increased computational resources (Kaplan et al., 2020).

Alternatively, one might interpret the failure of all of the
NLMs to account for the influence of affordances on human
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LRT χ2 (p-value)
NLM Measure Afforded vs Nonafforded Afforded vs Related

NLM vs Base Full vs NLM NLM vs Base Full vs NLM
BERT Cosine C-D 0.00 (0.993) 45.7 (<0.001) *** 0.226 (0.634) 11.7 (<0.001) ***
BERT Cosine S-C 0.946 (0.331) 45.3 (<0.001) *** 0.742 (0.389) 10.8 (<0.001) ***
BERT Surprisal 4.74 (0.029) * 44.5 (<0.001) *** 10.6 (0.001) ** 7.10 (<0.001) ***
RoBERTa Surprisal 1.77 (0.184) 45.9 (<0.001) *** 2.54 (0.111) 8.37 (<0.001) ***
GPT-3 Surprisal (dc) 11.1 (0.001) ** 36.8 (<0.001) *** 3.59 (0.058) . 10.2 (<0.001) ***
GPT-3 Surprisal (dc+rc) 7.48 (0.006) ** 39.4 (<0.001) *** 0.192 (0.661) 10.7 (<0.001) ***

Table 1: Results of Likelihood Ratio Tests comparing Base models (random effects + log frequency), NLM models (Base +
NLM Measure), and Full models (Base + NLM + Condition) in predicting human sensibility judgements. For the Afforded
vs Nonafforded comparison, three NLM measures significantly predicted human sensibility ratings: BERT Surprisal, GPT-3
Surprisal (dc) and GPT-3 Surprisal (dc+rc), see §NLM Measures. The full model, with condition as an additional predictor,
explained significant variance on top of all NLM measures, indicating that none of the NLM measures accounted for all of the
variance caused by Affordedness. Only one NLM measure (BERT Surprisal) improved fit over the Base model in the Afforded
vs Related comparison. Again the inclusion of condition improved model fit over each NLM-only model.

judgements in Study 2 as evidence for a limit on the suffi-
ciency of distributional information to explain word mean-
ing. This interpretation is consistent with the proposal in
Glenberg and Robertson (2000) that human comprehenders
draw on their embodied experience of the world to simulate
how the affordances of objects will mesh with novel actions.
The NLMs assessed in this work clearly lack this bodily expe-
rience, which might explain their inability to account for the
influence of affordances. The results are equally consistent,
however, with proposals that NLMs lack other crucial capaci-
ties: innate knowledge about concepts (Fodor, 1975), a delib-
erative reasoning faculty (Russin, O’Reilly, & Bengio, 2020),
or an internal workspace to store and retrieve intermediate
products of their cognition (VanRullen & Kanai, 2021). In
order to test whether humans owe the affordance-sensitivity
highlighted by these results to their embodiment, more ev-
idence is needed. Suitable experiments might try to inter-
fere with participants’ sensitivity to affordances, by limiting
their embodied experience with relevant objects, or burden-
ing non-linguistic systems that are theorized to play a role
in the deployment of embodied information during language
comprehension (Ostarek & Bottini, 2021).

If the performance limitations of NLMs are indeed a re-
sult of their lack of embodied experience, how might we
augment models to endow them with the relevant capabili-
ties? In their initial presentation of LSA, Landauer and Du-
mais (1997) argued that distributional linguistic representa-
tions can be grounded in perceptual experience of the world
by training models on multimodal data: “Indeed, if one judi-
ciously added numerous pictures of scenes with and without
rabbits... LSA could easily learn that the words rabbit and
hare go with pictures containing rabbits” (p. 227). While this
task may not be as easy as Landauer and Dumais had orig-
inally envisioned, there are a number of promising avenues
for improving the sensitivity of these models to the physi-
cal affordances of objects. One approach is to enrich dis-
tributional representations with perceptual norms generated

by human participants (Andrews, Vigliocco, & Vinson, 2009;
Davis & Yee, 2021; Hoffman, McClelland, & Lambon Ralph,
2018). Johns and Jones (2012) applied this technique to the
Glenberg and Robertson (2000) stimuli used here and repro-
duced the pattern observed in human data. Similarity between
verbs and objects in the critical sentence was greatest for the
Related, intermediate for Afforded, and smallest for the Non-
afforded scenarios. This result provides compelling evidence
that the information which LSA lacked in order to make the
Afforded/Nonafforded distinction could have been perceptual
in nature. This result also highlights that there are multiple
ways to acquire the same knowledge: evidence that distribu-
tional information is sufficient for a task does not imply that
humans use it. Other promising approaches include having
models learn joint representations over linguistic and percep-
tual input, for instance by learning to match video frames to
an audio transcript (Zellers, Lu, et al., 2021) or having lan-
guage agents interact with real or simulated environments, on
the grounds that the sensorimotor contingencies that humans
learn through their interaction with the world form the ba-
sis for the meanings they assign (Bisk et al., 2020). A final
possibility is that models lack—beyond relevant data—a ca-
pacity to simulate novel events. Future work should explore
training models to generate dynamic simulations of described
events, inspired by evidence for similar capacities in humans
(Battaglia, Hamrick, & Tenenbaum, 2013; Zellers, Holtzman,
et al., 2021)

The results presented here show that distributional methods
have progressed substantially in the last two decades at ex-
ploiting diffuse linguistic cues to learn nonobvious relation-
ships between agents, objects, and actions. However, these
models are still far from being able to explain the rich influ-
ence of these subtleties on human comprehenders. This gap
will continue to be closed by more powerful models. How-
ever, these results also encourage us to look elsewhere—to
our embodiment and the world—to explain human language
comprehension, and to engineer machines that think like us.
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