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Convergence In Neural Nets

MORRISW. HIRSCH

Department of Mathematics

University of California, Berkeley, CA 94720

INTRODUCTION

In designing a neural net, either for biological modeling, cognitive

simulation, or numerical computation, it is usually of prime importance to know

that the corresponding dynamical system isconvergent, meaning that every

trajectory converges to a stationary state (which can depend on the initial state

of the trajectory);' A weaker condition, but practically as useful, is for the

trajectory of almost every initial state (in the sense of Lebesgue measure) to

converge; such a system is calledalmost convergent. Another useful but

slightly weaker property is for a system to bequasiconvergent,meaning that

every trajectory approaches asymptotically a bounded set of equilibrium points

(such a set is necessarily connected); an individual trajectory with this property

will also called quasiconvergent. Finally there isalmost quasiconvergence

(defined below). In this article I review several ways to guarantee these

desirable convergence-like properties for certain kinds of systems of differential

equations

xi~Fi(x" ... ,xn)~Fi(x), i=l, ... ,n (l)

that can be used for neural nets. It is interesting that many of these methods

were originally motivated by biological models.

'W. Freeman's (1987] model of olfaction in rabbits seems to have chaotic

dynamics, however; Skarda and Freeman [1987] present interesting reasons why

chaos might useful'in this context.
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We assume that F:lR'-+R' is a C' vector field, and that there exists a

number R>O such that every trajectory xtt) satisfies Ix(tJ/<R for all sufficiently

large t>O.

LlAPUNOV FUNCTIONS

One of the commonest ways to guarantee convergence is to find aLiapun-

ov Junction, i.e, a function V on the state space which is nonincreasing along

trajectories. Such a V is constant on the set of limit points of a trajectory. If

V is a strict Liapunov function, meaning that V is strictly decreasing on

nonconstant trajectories, then all limit points of any trajectory are stationary.

Thus a strict Liapunov function forces every trajectory to approach

asymptotically a set of equilibria. Thus the system is quasiconvergent. If the

set of equilibria of a quasiconvergent system is countable (or more generally,

totally disconnected) then every trajectory has a unique limit point, or in other

words the system is convergent. Even for non-strict Liapunov functions it is

often possible to guarantee convergence (LaSalle's invariance principle). In

dissipative mechanical systems, energy is (by definition) a strict Liapunov

function; hence Liapunov functions are sometimes called energy functions.

Entropy is a strict Liapunov function in thermodynamical systems. There is

unfortunately no general method for constructing Liapunov functions.

An early use of Liapunov functions in ecological systems is due to R. H.

MacArthur [1969] for Gause-Lotka- Volterra systems of interacting species

having symmetric community matrices. M. Cohen and S. Grossberg [1983] greatly

extended this results by constructing Liapunov functions for all systems of the

form

(2)

where a,2 0, the constant matrix [c"J is symmetric, and d: 2 0 .

System (2) can be used to represent a neural network:Xi is the activity

level of node i; d,(x,) is the output of nodeIe and c" is the strength of the

connection between nodei and nodeIe. If we suppose all xj and dj are 20, then

the connection from nodek: to node i is inhibitory if c,,>O and excitatory if
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c,,<O. By assumption these relationships are symmetric. The sum in (2)

represents the net input to nodei. Equation (2) means that the activity of node

i decreases if and only if the net input to nodei exceeds a certain intrinsic

function b, of its activity, and the amplification factor a,(x,) is positive. If all

connections are inhibitory then we can think of theXi as competing among

themselves, the competition being modulated by the functions a"b, d, and the

matrix [c,,].

The Liapunov function discovered by Cohen and Grossberg for system(2)

is

(3)

They showed that when ai > 0 and d,' > 0, and in some more general

circumstances, the system is convergent, and in fact F is then a gradient vector

field. Convergence here means that for arbitrary initial values x,(O), the

competition comes to a definite conclusion; the possible outcomes can be found

by solving F(x)=O. Quasiconvergence means the competition will cease for all

pracical purposes, since the velocity of quasiconvergent trajectories decreases to

O.

A Liapunov function for a special case of(2) was given by J. Hopfield

[1984], where

~CiX i+Si L:Tijg(x",
J

(4)

where [Ti) is a constant symmetric matrix, c, and s, are constant, and g'~O.

A CONVERGENCE THEOREM WITHOUT LlAPUNOV FUNCTIONS

Grossberg proved a remarkable convergence theorem for a class of

competitive systems for which no Liapunov functions are known; these have the

form

a,(x)[b,(x,)- C(x1, •.. ,xn)] (5)
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where a,> 0 and ac/ax, > 0 for all i. Notice that a, is a fuction of all the

variables while the b, are functions of one variable, and that the function C:

JRn--+JR does not depend oni. In [1978] Grossberg showed that if the functions b,

In fact even withoutsystem is convergent.are piecewise monotone then

piecewise monotonicity, it can be proved that the system is quasiconvergent.

This result can be extended to systems of the form

(6)

where a,> 0, a, is uniformly bounded in t for each x, and a,h> O. This is a

rare example of a convergence theorem for nonautonomous systems.

COMPETING SPECIES

A great deal of attention has been paid to systems ofcompeting species:

these are systems of the form(1) where F,(x" ... ,xn) = x,N,(x"... ,xn) and aN/(lxj:S;:O

for i~j. Here the x, are assumed ;:>:0,since they represent populations (or

denstties).? It is known that in dimensionn=2 such systems are always

convergent (Albrecht et. al. [1974]), but this is by no means true in higher

.dimensions. In dimension 3 there can be periodic orbits (Coste et.al. [1979]),

Gilpin [1975]) and nonperiodic oscillations

al. [1979]), but there cannot be so-called

chaotic dynamics (Hirsch [1982-1987a]).

(May and Leonard [1975], Schuster

"strange attractors" or any kind of

et.

numerically chaotic dynamics (Arnedoet.

et. at. [19781,Kerner [19611,Levin [1970].

Smale [1976Jshowed that any (n-ll-dimensional system can be embedded as

In higher dimensions there can be

at. [1982]); see also the papers by Coste

an attractor in a system ofn competing species. This unexpected result shows

that only special kinds of systems of competing species can be convergent, for

2This rather abstract formulation of competition is mathematically elegant

but hard to verify from real biological or economic data; it is more useful to

mathematicians than to biologists or economists. Many other mathematical

models of competition have been devised, some of which have even been

experimentally validated: see e.g. Hsu, Hubbell and Waltman [1978, 1978al .
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example the symmetric Gause-Lotka-Volterra systems studied by MacArthur.

Convergence theorems for other special classes have been proved by Chenciner

[1977J,Coste et.al. [1978], Grossberg [19781. Cohen and Grossberg[1983].

COMPETITIVE, COOPERATIVE AND SIGN SYMMETRIC SYSTEMS

So far we have discussed convergence theorems under various restrictive

algebraic assumptions on the vector field F. We now allow the alegbraic form of

F to be completely general; but we assume, first, that the Jacobian matrices

DF(x) are irreducible: for distinct indices i and j we can find a chain of indices

i=ko•... km=j such that oFk loxk "':0, r=l, ... ,m. For a neural net this mild
r r-l

generic condition means that the output of any node can at least indirectly

affect the activations of all nodes. We further assume the off-diagonal entries

in the matrices DF(x) have constant signs independent of x, and aresign-

symmetric, i.e. of/oxJ and of/ox, are both :2:0 everywhere or both :>:0

everywhere for i,..:j. To a system of this type we associate a combinatorial

signed interaction graph r with nodes 1, .. , ,n and an edge betweeni and j if

and only if i,..:j and either of/ox; orof/ox, is not identically zero. Attached to

each edge is a+ or - sign corresponding to the sign of the corresponding

partial derivatives. The system iscompetitive if all edges are negative, and

cooperative if all edges are positive? For example system (2) is competitive if

all c,,:2:0.while system (4) is cooperative if all TiJ:2:0. Many common systems (e.

g. predator-prey) are neither sign-symmetric nor of constant sign.

Suppose a neural net having nonnegative activations is represented by a

system of differential equations. If all connections are inhibitory then the

3A competitive system becomes cooperative under time-reversal. This is a

useful trick in investigating compact invariant sets, since cooperative systems

enjoy special properties derived from the Kamke-Muller comparison principle (see

Coppel [1965)) : if x(t) and yet) are solutions to a cooperative system and

x,(O),,;:y,(O)for all i then x,(t),,;:y,(t) for all t>O.
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system is competitive, while if they are all excitatory the system is cooperative.

On the other hand some nets having both excitatory and inhibitory connections

can likewise be represented by cooperative systems by changing the signs of

certain variables, as will be explained below.

In Hirsch [1984, 1987] it is proved that cooperative systems arealmost

quasiconvergent the trajectory of almost every initial value (in the sense of

Lebesgue measure) is quasiconvergent. If the equilibrium set of such a

system is countable then the system isalmost convergent,i.e, the trajectory of

almost every initial value converges to an equilibrium as t-+oo. If in addition

we know that every equilibrium p is hyperbolic- i.e. the eigenvalues of Df(p)

have nonzero real parts (a generic condition)- then the trajectoryot almost

every initial value converges to a sink (~ asymptotically stable equilibrium). In

view of these results, we know that cooperative systems cannot have very

exotic dynamics. While there are examples of cooperative systems that are not

convergent because they contain nonconstant periodic solutions, these periodic

orbits cannotbe stable.

This result extends to certain sign-symmetric systems which are not

cooperative. To describe these systems we introduce some combinatorial terms:

A loop in a signed graphr is even if it contains an even number of negative

edges, andodd otherwise. We sayr (or the system it comes from) has the

even-loop propertyif every loop is even; an example is a cooperative system.

For even-loop systems we will find a change of var-iables, obtained by reversing

the sign of certainXi' which converts the system into a cooperative one. (This

idea has been used by Smith [1986c, I986eJ). Such a system is therefore almost

quasiconvergent.

As an example, consider a competitive system whose interaction graph is a

subgraph of a cubical or hexagonal lattice: Every edge is negative and every

loop has an even number of edges. Therefore every loop is even, so the system

transforms into a cooperative system by changing the sign of some variables.

This shows that asystem of this typeis almost quasiconvergent. This result

does not hold for for triangular lattices: ther are three-dimensional competitive

systems whose interaction graph is a triangle, which have stable nonconstant

periodic orbits.
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£YEN-LOOP GRAPHS

We now give an inductive procedure for converting an even-loop system

into a cooperative one. Denote byr a connected signed graph with only even

loops. If r comes from a sign-symmetric system then each vertex v corresponds

to a system variablex, If that variable is replaced with the new variable y,=

-Xi we obtain a new system whose interaction graph is the same except that the

edges incident with v have their signs reversed. Consider first the case of a

competitive even loop system. Pick any vertex v and let V denote the set of all

vertices whose Hamming distance from v is even: a vertex w is in V if and only

if there is a path from v to w comprising an even number of edges -- this is a

consistent definition owing to the even loop property. Every edge has exactly

one vertex in V. It follows that if we change the signs of the variable

corresponding to vertices in V then the new system is cooperative. Notice that

we could instead change the signs of the complementary set of variables, and

this would produce a another cooperative system.

Now consider a connected signed even-loop graphr having both positive
and negative edges. Fix some positive edge E with endpoints band c. By

collapsing E to a point v' we obtain a new graphI", having one less edge and one

less vertex, and which also has the even-loop property. We assume as an

induction hypothesis that there is a set V' of vertices ofI" with the property

that every negative edge ofI" contains exactly one vertex of V', and every

positive edge of I" contains either 0 or 2 vertices ofI". (We allow the

possibility that some "edges" ofI" are really loops,i, e. they connect a vertex

to itself. Such an edge is said to contain its vertex 2 times.) The induction

starts from a purely negative even-loop graph, using the same argument as given

above for competitive systems. We choose V' so asnot to contain vr, replacing

V' by its complementary set of vertices if need be. Each vertex in V' thus

corresponds to a unique vertex ofr. Denote this set of vertices ofr by V.
The edge E does not have any endpoints in V, and all other edges of T are also

edges of I", Therefore the inductive argument is complete: every edge ofr
contains exactly one vertex of V if the edge is negative, and 0 or 2 vertices if

it is positive. It follows that if r is the interaction graph of a sign-symmetric
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system, then a cooperative system is obtainedby reversing the signs of the

variables corresponding to V.

PERTURBATIONS

Even for sign-symmetric systems whose graphs contain odd loops, in some

cases almost-quasiconvergence can be proved, namely for those which are small

perturbations of cooperative systems (or of systems that can be made

cooperative by a change of variables, such as even-loop systems). Consider a

sign-symmetric system of the form:

X; = f;ex;)+ :E gijex,) (7)
j

with g,: of constant sign. Suppose we can find an nXn matrix "Y'jof zeroes and

ones such that if we define hJx)="Y;jgJx) then the system

x; = f,ex,)+ :E hijex) - K;ex). (8)
j

is sign-symmetric and has the even-loop property. Assume also that the Jacobian

matrices DK(x) are irreducible. Then system (8) becomes cooperativeby the

sign-changing trick, and hence it is almost quasiconvergent. Think of system (7)

as a perturbation of (8). Then it can be shown that there exists a number £>0,

depending on system (8) and in principle calculable, such that if Igij-h,}+lgij'-hij'l

< e then (8) too is almost quasiconvergent. This follows from a result about

general cooperative systems of the type considered here: Not only is such a

system almost quasiconvergent, but so are all perturbations of it which are

sufficiently. small in the C' topology. See Theorems 1.2 and 4.1 of Hirsch

[19851,orTheorems 7.1 and 5.3 of Hirsch [19841.

As an example of this method of ensuring quasi convergence of most

trajectories, consider a purely competitive system whose interaction graph is

part of a cubical lattice in some Euclidean space. As was pointed out above,

such a system can be made cooperative by the sign changing trick; it is

therefore almost quasiconvergent. Now by introducingarbitrary new couplings
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between any pairs of variables

are sufficien tly weak, the

quasiconvergent.

J. Smillie· 119841 considered tridiagonal competitive systems with

irreducible Jacobian matrices: this means that. aF/axj=O if li-jl>l. The

interaction graph of such a system consists ofn vertices arranged in a line

with only nearest neighbors connected. Smillie showed that if F is sufficiently

smooth (C'"! suffices) then the system is in factconvergent. (It is not known if

the extra smoothness is necessary).

If the perturbation method described above is applied to a tridiagonal

competitive system, then we see that if the perturbation is small enough. the

perturbed system will be almost quasiconvergent.

The general structure of competitive systems, in the special sense defined

here. has been studied by Smale 119761,Grossberg [1977. 1978. 1978a. 19801.Smith

[1986, 1986a. 1986b. 1986c. 1986dl, Holtz [19871, and Hirsch [1982, 1985, 1987.

1987al. For cooperative systems one may consult Smith [l986d. 1986el and Hirsch

[1982, 1982a. 1983, 1984. 1985.19871. See also the survey by Freedman [19801.

which treats many related types of systems .

.For certain systems in which aF/axj and aF/ax; haveopposite signs for

irfj R. Redheffer and W. Walter [19841 give an interesting algorithm for

we obtain a -new system. Provided the couplings

new system is guaranteed to be almost

determining convergence.

and Zhou [1981].

Related convergence results are given in Redheffer
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