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Abstract

Orbital dynamics that lead to longitudinal libration of celestial bodies also result in

an elliptically deformed equatorial core-mantle boundary. The non-axisymmetry of the

boundary leads to a topographic coupling between the assumed rigid mantle and the un-

derlying low viscosity fluid. The present experimental study investigates the effect of non

axisymmetric boundaries on the zonal flow driven by longitudinal libration. For large

enough equatorial ellipticity, we report intermittent space-filling turbulence in particular

bands of resonant frequency correlated with larger amplitude zonal flow. The mechanism

underlying the intermittent turbulence has yet to be unambiguously determined. Nev-

ertheless, recent numerical simulations in triaxial and biaxial ellipsoids suggest that it

may be associated with the growth and collapse of an elliptical instability (Cébron et al.,

2012). Outside of the band of resonance, we find that the background flow is laminar and

the zonal flow becomes independent of the geometry at first order, in agreement with a

non linear mechanism in the Ekman boundary layer (e.g., Calkins et al., 2010; Sauret

and Le Dizès, 2012b).
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1. Introduction

Librations, oscillatory motions of the figure axis of a planet, arise through gravita-

tional coupling between a quasi-rigid celestial object and the main gravitational part-

ner about which it orbits (Yoder, 1995; Comstock and Bills, 2003). Several librating

bodies also possess a liquid layer, either an iron rich liquid core like on Mercury, Io,

Ganymede, and the Earth’s Moon, and/or a subsurface ocean like on Europa, Titan,

Callisto, Ganymede and Enceladus (Anderson et al., 1996, 1998, 2001; Williams et al.,

2001; Spohn and Schubert, 2003; Hauck et al., 2004; Breuer et al., 2007; Margot et al.,

2007; Williams et al., 2007; Lorenz et al., 2008; Van Hoolst et al., 2008). The interac-

tion of the fluid layer with the surrounding librating solid shell resulting from viscous,

topographic, gravitational or electromagnetic coupling leads to dissipation of energy and

angular momentum transfer that need to be accounted for in thermal history and orbital

dynamics models of these planets.

There is a whole variety of celestial objects to which our approach will be applicable,

in the next paragraphs we propose to focus on the Earth’s moon purely for pedagogical

reasons to clarify some astronomical aspects of the problem and distinguish between the

different types of librations. In Figure 1 we illustrate the origin of the gravitational

torques producing the librations in the case of the Earth-Moon system considering only

the principal harmonic at the orbital period. Over geological time scales, the Lunar

mantle has been tidally deformed into a triaxial ellipsoid, resulting in a mass anomaly.

Due to the eccentricity of its orbit, the Moon orbital period varies along the orbit

according to the third Kepler’s law. As illustrated on Figure 1a), the induced phase lag

between the Earth-Moon direction and the orientation of the equatorial bulge, the so-

called optical longitudinal libration, produces a restoring torque along the spin axis of the

Lunar mantle. This time periodic torque forces the Moon to physically oscillate axially

about its state of mean rotation. This small oscillation is referred to as the physical

longitudinal libration. Note that the optical libration is typically of the order of 0.1− 1

rad whereas the physical libration is only of order 10−4 rad due to the large inertia of

the Lunar mantle.

In addition, the Moon is in a Cassini state, i.e. the relative orientations of the normal

to the ecliptic plane, the spin vector of the Moon and the normal to the orbital plane
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of the Moon are fixed. As illustrated in Figure 1b), it yields a gravitational torque,

fixed in the frame rotating with the moon, that tends to align the equator of the Lunar

mantle with the orbital plane of the Moon. The spin axis of the Moon being fixed

relative to the normal to the orbital plane, the mantle oscillates about an equatorial axis

perpendicular to the Earth-Moon direction resulting in the so called physical latitudinal

libration. As with longitudinal libration, the physical latitudinal libration is several orders

of magnitude smaller than the optical latitudinal libration.

In contrast with precession or nutation that are well represented by gyroscopic mo-

tions of the solid shell, it is important to note that librations both in longitude and

latitude do not result in changes of the orientation of the spin axis of the planet on

diurnal time scales. The combination of optical librations both in longitude and latitude

can be observed in an sequence of NASA images of the Moon taken from the Earth along

its orbit (http://en.wikipedia.org/wiki/Libration).

The mechanical forcing produced by the two components of libration that drive the

flow in the liquid layer of a planet can be illustrated by two concept laboratory exper-

iments, as illustrated in Figure 2. A turntable mimics the mean rotation of the planet

while the oscillation of the planet’s solid shell is achieved by a mechanical system attached

to the rotating table. Longitudinal libration, a time periodic oscillation of the body’s fig-

ure axis about its mean rotation axis, can be simulated by oscillating the container about

the vertical axis (Figure 2a). Latitudinal libration, a time periodic oscillation of the fig-

ure axis about an equatorial axis that is fixed in the rotating frame (the turntable), is

illustrated in Figure 2b. In the present paper we only consider the flow driven by physical

longitudinal libration, herein referred to as longitudinal libration.

Several of experimental, numerical and theoretical studies have been devoted to

libration-driven flows in axisymmetric containers to investigate the role of the viscous

coupling in librating planets. It has been shown that longitudinal libration in an axisym-

metric container can drive inertial modes in the bulk of the fluid as well as boundary

layer centrifugal instabilities in the form of Taylor-Görtler rolls (Aldridge, 1967; Aldridge

and Toomre, 1969; Aldridge, 1975; Tilgner, 1999; Noir et al., 2009; Calkins et al., 2010;

Noir et al., 2010; Sauret et al., 2012a). In addition, laboratory and numerical studies

(Aldridge, 1967; Wang, 1970; Calkins et al., 2010; Noir et al., 2010; Sauret et al., 2010,
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2012a) have confirmed that non-linear interactions within the Ekman boundary layers

generate a steady, axisymmetric flow, called zonal flow. Analytical derivations of the

zonal flow driven by longitudinal libration have been carried out in cylindrical cavity for

an arbitrary libration frequency (Wang, 1970), in spherical geometry at low libration fre-

quency (Busse, 2010) and more recently in spherical geometry at an arbitrary frequency

(Sauret and Le Dizès, 2012b).

Although practical to isolate the effect of viscous coupling, the spherical approxima-

tion of the core-mantle or ice shell-subsurface ocean boundaries, herein generically called

the CMB, is not physical from a planetary point of view and very restrictive from a fluid

dynamics standpoint. Indeed, due to the rotation of the planet, to the gravitational inter-

actions with companion bodies and to the low order spin-orbit resonance of the librating

planets we are considering, the general figure of the CMB must be ellipsoidal with a polar

flattening and a tidal bulge pointing on average toward the main gravitational partner

(cf. Goldreich and Mitchell, 2010). This assumes that the libration period is far shorter

than a typical deformation time scale of the CMB.

In contrast with the spherical or cylindrical geometry, it has been demonstrated

analytically that longitudinal libration in a non-axisymmetric spheroid can not produce

resonance through direct forcing of a single inertial mode when ε2 >> E1/2, where ε is

the ellipticity (Zhang et al., 2011). This can be recast as 2β/(β + 1) >> E1/2 using our

notation presented in the next section, which is satisfied for the two non-axisymmetric

containers considered in the present study.

Recent analytical and numerical work by Cébron et al. (2012) demonstrates, however,

that triadic resonances are possible between two inertial modes and the elliptically de-

formed basic flow, leading to the so-called Libration Driven Elliptical Instability (LDEI).

The elliptical instability can stably saturate in a narrow range of libration amplitude in

the immediate vicinity of instability threshold (Kerswell and Malkus, 1998; Herreman

et al., 2009; Cebron et al., 2012). Outside of this limited window, a transition occurs

that lead to the development of space-filling turbulence (Malkus, 1989). This turbulence,

which acts to disrupt the elliptically unstable base state, decays and the flow ‘relami-

narizes’. The relaminarization phase ends when the base state re-establishes itself. The

elliptical instability will then give way again to turbulence. In planetary liquid cores,
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such an instability could be responsible for an increased viscous dissipation (Le Bars

et al., 2010), for the induction of a magnetic field (Kerswell and Malkus, 1998; Herreman

et al., 2009), or the presence of a dynamo (Le Bars et al., 2011).

Finally, longitudinal libration in a non-axisymmetric ellipsoid can excite instabilities,

which develop as the shell rotation is slowing down during the libration cycle (Chan et al.,

2011), at sufficiently low frequency and large amplitude. In contrast with the side wall

centrifugal instability observed in axisymmetric container, the unstable region extends

further inside the fluid interior. The underlying mechanism as well as the scaling of the

threshold of these instabilities have yet to be investigated via a systematic exploration

of the parameter space.

This paper aims at describing the zonal flow driven by longitudinal librations in non-

axisymmetric ellipsoidal containers, for which we expect the topographic coupling to be

dominant. Spherical and hemispherical containers have been included for comparison to

emphasize the effect of the topography.

In section 2 we present the theoretical frame work for libration driven flow, the

experimental method is described in section 3, section 4 presents the experimental results.

Finally, implications for planets and moons are considered in section 5.

2. Mathematical background and control parameters

Let us consider a homogeneous, electrically non-conductive and incompressible fluid

enclosed in a librating triaxial ellipsoidal cavity. The equation of the ellipsoidal boundary

can be written (Figure 3)
x2

a2
+
y2

b2
+
z2

c2
= 1, (1)

where (x, y, z) is a cartesian coordinate system with its origin at the center of the

ellipsoid, x̂ is along the long equatorial axis a, ŷ is along the short equatorial axis b, and

ẑ along the rotation axis c. We define the ellipticity β as

β =
a2 − b2
a2 + b2

, (2)

and the aspect ratio

c∗ =
c

R
, (3)
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where R stands for the mean equatorial radius R =
√

(a2 + b2)/2. In the inertial frame,

the longitudinal librating motion of the container can be modeled by a time dependence

of its axial rotation rate:

Ω(t) = Ω0 + ∆φωl sin(ωlt). (4)

Here, Ω0 represents the mean rotation rate, ∆φ is the amplitude of libration in radians

and ωl is the angular frequency of libration.

To allow for an easy comparison with previous analytical work, we present the mass

conservation and the momentum equations in the frame of reference attached to the

librating container. Using a as the length scale and Ω−1
0 as the time scale, these equations

are written

∂u

∂t
− u× (∇× u) + 2(1 + ε sin ft)ẑ× u =

−∇π + E∇2u− εf cos ft(ẑ× r) , (5)

∇ · u = 0. (6)

The first two terms on the left hand side of (5) are the standard material derivative of

the velocity field; the third term is the Coriolis acceleration. The right hand terms are,

respectively, the pressure force, the viscous force and the Poincaré force. In (5), π is the

reduced pressure, which includes the time-variable centrifugal acceleration. The Ekman

number E is defined by

E =
ν

Ω0a2
, (7)

where ν is the kinematic visosity. The dimensionless libration frequency f is defined as

f =
ωl
Ω0
. (8)

Lastly, ε is the libration forcing parameter defined by

ε = ∆φf. (9)

Typical values of the dimensionless parameters for planets of our solar system are

presented in table 2 (courtesy of Noir et al. (2009)). The viscous solution to (5) must

satisfy the no-slip boundary condition on the CMB

u = 0 at x2 +
1 + β

1− β y
2 +

1 + β

c2
z2 = 1. (10)
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In the limit of small Ekman number, the flow can be decomposed into an inviscid

component U in the volume and a boundary layer flow ũ. Introducing this separation,

Kerswell and Malkus (1998) proposed the following solution to the inviscid equations of

motion subject to the non-penetration condition at the CMB:

U = −ε sin ft (ẑ× r− β∇xy) , (11)

π = −εfβxy cos ft+ ε sin ft (1 + sin ft)
(
|ẑ× r|2 + β

(
x2 − y2

))
. (12)

The base flow U is the sum of a time dependent uniform vorticity flow and a gradient

component. It follows that the Reynolds stresses resulting from (11) are balanced by the

pressure gradient. Therefore, no net zonal flow can result from the non-linear interactions

in the quasi-inviscid interior (Busse, 2010). However, the no-slip boundary condition (10)

is not entirely fulfilled by this inviscid solution. Hence, viscous corrections in the Ekman

boundary layer must also be considered. Their non-linear interactions can generate zonal

flow in the bulk (Wang, 1970; Busse, 2011, 2010), as already observed in spherical and

cylindrical (i.e., axisymmetric) geometries (Aldridge, 1967; Wang, 1970; Calkins et al.,

2010; Noir et al., 2010; Sauret et al., 2010, 2012a). In the present paper we use the

analytical derivation of the zonal flow from Sauret and Le Dizès (2012b), an outline of

the method is presented in the Appendix.

3. Experimental method.

Figure 4 represents a schematic view of the experimental device used in the present

study. Except for the containers, the laboratory apparatus is the same as in Noir et al.

(2009) (see section 3.1 for a detailed description). The generic set-up consists of a

turntable rotating at a constant angular velocity Ω0 and an oscillating acrylic tank cen-

tered on the turntable activated by a brushless direct drive motor. Both rotations are

controlled using a motion control system that allows for high accuracy, better than 0.1%

on the mean rotation and 0.25% on the angular displacement. The container consists of

two “hemispheres” CNC machined from cast acrylic cylindrical blocks that are polished

optically clear. To characterize the effect of the topographic coupling resulting from the

non axisymmetry of the librating body, we use three different containers: i) a sphere

of radius a = 127 mm, ii) a prolate spheroid of long axis a = 127 mm and short axis
7



b = c = 119 mm and iii) a prolate spheroid of long axis a = 127 mm and short axis

b = c = 89 mm. These containers correspond to an ellipticity in the equatorial cross

section β equal to 0, 0.06 and 0.34 respectively. In all three configurations the rotation

axis is along c.

We perform direct visualizations of the interior flows using a diluted solution of rheo-

logical fluid (Kalliroscope), and a horizontal or vertical laser light sheet. A CCD camera

located above the container records movies and still images to characterize the time evo-

lution of the shear structures in the interior. In addition, we use a remotely controlled

syringe pump to inject dye (fluorescein or non-diluted Kalliroscope) at a cylindrical ra-

dius si ∼ 0.38 along the short axis of the mean elliptical equator, i.e. the time averaged

figure axis of the equatorial cross-section (see Figure 5c). We then manually track the

dye over a full revolution (until it passes by the injection point again) or a fraction of

a revolution when the patch spatial coherence is lost due to turbulent mixing. These

observations are used to derived the mean angular velocity along the elliptical path fol-

lowed by the dye as illustrated in Figure 5c. Error bars are obtained by repeating the

dye injection several time during the same experiment. Although straightforward, this

technique is not suitable when the azimuthal velocity varies on time scale less than a

period of revolution of the dye patch.

To address the time dependency of the azimuthal velocity in the system, we performed

LDA measurements using the ultraLDA system employed in Noir et al. (2010). The

point of measurement as been choose as to coincide with the dye inlet position at times

t = 0 + N/2f . For detailed description of LDA principles and measurement techniques

we refer the reader to the appendix A of Noir et al. (2010). In principle an LDA device

works as follows: a laser beam is split to produce two beams that are collimated at a

point inside the liquid where it forms a linear pattern of interference fringes. Particles in

suspension in the fluid act as reflectors when passing through the fringe pattern resulting

in back scattered light that is focussed on a photodetector. A spectral analysis of the

received signal leads to a measurement of the velocity in the direction perpendicular to

fringes.

Due to the difference of index of refraction of water, acrylic and air, the laser beams

traveling through the system experience two optical distortions at the air-acrylic and
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water-acrylic interface. The laser beams will be deflected both in longitude and latitude

independently of one-another depending on their orientation with the local normal to

the surface. In some situations, the two beams may no longer be coplanar, precluding

any measurements. This is indeed the case in all possible configurations with the current

experimental setup. In order to overcome this limitation, we perform LDA measurement

with the northern half of the container replaced with a flat plate of acrylic. The LDA

device is located above the tank and oriented to perform measurements of the azimuthal

component of velocity (Figure 4). Such geometry retains the non axisymmetry of the

equatorial cross section and the latitudinal variation of the wall curvature. As it will

be shown in the next section, the mean zonal flows generated by the libration of the

full and half containers are in quantitative agreement over a broad range of parameters.

However, it must be noted that only resonant modes where the vertical velocity at the

equator is zero can be excited in the hemispherical configurations. One may envisage

further implications when substituting the upper hemi-sphere/ellipsoid with a flat lid

such as viscous drag, equatorial edges driven flows or reduced effects of curvature. As

we we shall see in the following of this paper, quantities like the zonal flow does not

significantly differs between full and hal container. This is indeed supported by the

similar analytical prediction obtained in spherical and cylindrical geometries by Busse

(2011) and Sauret and Le Dizès (2012b).

In order to get the best signal-to-noise ratio, we use a fresh suspension of titanium

micro-particles, TiO2, every day. The data rate of LDA measurements varies typically

between 25Hz and 500Hz. In order to perform spectral analysis and proper time averag-

ing, each time series is resampled at 10Hz using the non-linear interpolation routine of

Matlab to provide an equally spaced dataset. The mean zonal flow is obtained by block

averaging the data, each block is 20 libration periods wide, each record is 200 periods

long in the steady state (i.e. after several spinup times). The error bars represent the

variability of the zonal flow from block to block. We obtain error bars of the order of

2− 5% at moderate forcing (ε < 1.5) and 15− 20% for ε > 1.5. Finally, when laminar-

turbulence intermittency is observed, we perform moving average over a window of 10

periods of libration with an overlap of 90% to characterize the zonal flow in each phase

of the system.
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Parameter Definition Experiment

a long axis 127 mm

b short axis 89 mm, 119 mm and 127 mm

c short axis 89 mm, 119 mm and 127 mm

Si Injection point radius 48mm

Ω0/2π Mean rotation frequency 0.5 Hz

ωL/2π Libration frequency 0.25 - 1 Hz ±0.1%

∆φ Angular displacement 0 - π/2

ν Kinematic viscosity 10−6 m2s−1

E ν/(Ω0 a
2) 2.0× 10−5

f ωL/Ω0 0.5 - 2

β a2−b2
a2+b2 0.34, 0.06 and 0

c∗ c√
(a2+b2)/2

0.812, 0.967 and 1

ε (∆φ) f 0 - 1.6

si Si/a 0.38

Table 1: Physical and dimensionless parameters definitions and their typical values in the laboratory

experiment, with the rotation axis c = b.

Each experiment follows a common protocol. First, we start the rotation of the

turntable, once the fluid is in solid body rotation we turn on the oscillation of the

container. When performing dye tracking, we wait 15 min before injecting the dye and

recording from the CCD. When performing LDA measurement, we start the acquisition

as we turn on the libration to follow the development of the dynamics until it reaches a

steady state.

The physical and dimensionless parameters accessible with the present device are

summarized in table 1. In contrast with the previous studies using this device, we fix

here the mean angular velocity to Ω0 = 30 rpm, corresponding to an Ekman number

E = 2× 10−5, and we explore the parameter space (f,∆φ).
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4. Results

In Figure 6, we present the time averaged zonal flow from direct visualization and

LDA measurements together for a fixed Ekman number, E = 2× 10−5, a fixed libration

frequency, f = 1, and a libration amplitude ∆φ that varies from 0.05 to 1.6 rad. In

all cases, the mean zonal flow is retrograde at the point of measurement. In the range

of studied parameters and at the measurement location si = 0.38, we do not observe

significant variations of the zonal flow amplitude with the ellipticity, nor with the half or

full tank configurations. Hence, we expect the same mechanism, weakly dependent on

the geometry, to produce the zonal flow in all 6 configurations (full tank, β = 0, 0.06, 0.34;

half tank β = 0, 0.06, 0.34). Busse (2010, 2011); Calkins et al. (2010); Noir et al. (2010);

Sauret et al. (2010); Sauret and Le Dizès (2012b) have proposed that the geostrophic

zonal flow in librating axisymmetric containers results from boundary layer non-linear

interactions, which yields a zonal flow independent of the Ekman number at the first

order, scaling as 〈Uφ〉 ∝ ε2. Sauret and Le Dizès (2012b) recover the pre-factor and

the radial dependency of the geostrophic flow by deriving the boundary layer flow at

the order O(ε2E1/2) in a full sphere (see Appendix). For a probe volume located at

si = 0.38, same as dye injection location, and a frequency f = 1, the authors predicts

a zonal flow, 〈Uφ〉 = αε2, with α = −0.166. We observe a good agreement between

their analytical spherical model represented by the dashed line in Figure 6 and our LDA

measurements in all 6 configurations up to ∆φ = 1.6 rad. The theoretical zonal flow in

a non-axisymmetric container has yet to be derived. Nevertheless, our results suggest

that the full sphere model remains a good approximation at first order even for finite

ellipticity, highlighting the minor role of the curvature in the source mechanism.

Significant deviations only appear for the largest value of ∆Φ studied here, where

we observe a larger zonal flow than predicted by the non-linear analysis valid only for

ε << 1. It is likely that for ε & 1, the boundary layer flow derivation of Sauret and

Le Dizès (2012b) is not valid anymore and finite amplitude effects should be introduced.

In Figure 7, we present LDA measurements of the time average zonal velocity as

a function of the libration frequency at E = 2 × 10−5 and a fixed libration amplitude

∆φ = 0.7 rad. All measurements are performed only in the half container geometry using

LDA to diagnose the flow. We also plot the analytical geostrophic zonal velocity for a
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probe volume located at si = 0.38 derived from Sauret and Le Dizès (2012b) for a full

sphere (see Appendix).

For β = 0 and β = 0.06, we observe only marginal differences between the different

half containers up to f ∼ 1.6: the flow remains laminar and the experimental results

are consistent with the retrograde geostrophic zonal flow predicted from the non-linear

boundary layer mechanism. At higher frequencies, the theoretical analysis of Sauret and

Le Dizès (2012b) predicts a geostrophic discontinuity in the zonal flow associated with

the so-called critical latitude. As we scan in frequency, the geostrophic shear structure

passes by the measurement point when sc = si = 0.38, i.e. f = 1.85. In Figure 7, our

LDA measurements do not show a sharp transition in this frequency range and we note a

significant discrepancy between the predicted zonal flow and the time averaged velocity

measurements. Several effects can account for this disagreement. First, in the theoretical

analysis, the Ekman boundary layer becomes singular at the critical latitude resulting

in a local infinite geostrophic shear. This discontinuity can be resolved by taking into

account higher order terms. Doing so, the geostrophic shear has a finite amplitude and

occurs in a E1/5 width layer centered on the critical cylindrical radius sc (e.g. Noir et al.,

2001; Kida, 2011). Thus, we do not expect the analytical zonal flow derived by Sauret

and Le Dizès (2012b) to be valid when sc − E1/5 < si < sc + E1/5. As we scan in

frequencies, the region of influence of the geostrophic shear stucture passes by the point

of measurement located at a cylindrical radius si when 1.73 < f < 1.92 (Figure 7).

Second, in this range of parameters ε becomes significantly larger than unity. Thus, we

expect finite amplitude perturbations, not taken into account in the analytical model, to

contribute to the local mean zonal velocity.

The case β = 0.34 is more complex. Indeed, for f ∈ [1.43; 1.66], we observe intermit-

tency of lower and higher amplitude zonal flows represented by open diamonds and red

full diamonds, respectivey. This intermittency is illustrated in Figure 8, which represents

the time evolution of the norm of the azimuthal velocity averaged over 10 oscillations for

a particular experiment at ∆φ = 0.7 rad (ε ∼ 1), f = 1.46, β = 0.34 (red) and β = 0.06

(blue). At β = 0.34, the zonal flow averaged over 10 oscillations evolves in time between

a low amplitude | < Uφ1 > | ∼ 0.09 and a large amplitude | < Uφ1 > | ∼ 0.14. Using

a diluted Kalliroscope suspension and a camera at the top with a horizontal laser light
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sheet 1cm below the flat top lid we visualize the shear structures in the interior. Periods

of large amplitude mean zonal flow are systematically correlated with small scale shear

structures, corresponding to the bright filaments in the second snapshot, whereas periods

of low amplitude mean zonal flow are associated with laminar flows, which are charac-

terized by little contrast variation as on the first and last snapshots. The duration of

each laminar and turbulent period varies over the experiment but is always of the order

of a fraction of the spinup time (Each black and white rectangle at the top of Figure 8a

represents a spinup time (∼ 70s) ). The transition from low amplitude to large amplitude

mean zonal flow occurs over a typical timescale τ ∼ 25s (∼ 10 rotations) that remains

consistent over the whole experiment. This particular dataset is representative of all

experiments where intermittent turbulence is observed. The typical time scales of the

herein reported intermittent turbulence are not consistent with the centrifugal instability

observed in the spherical shell (Noir et al., 2009) or in previous numerical simulations

in non-axisymmetric ellipsoids at low libration frequencies by Chan et al. (2011), which

both occur once per libration period.

In the band of frequency f ∈ [1.43; 1.66], the zonal flow predicted by Sauret and

Le Dizès (2012b) is significantly different from our observations, in particular it fails at

reproducing the intermittent low and large amplitude zonal flow.

5. Discussion and concluding remarks

In the present study we explore the zonal flow regimes driven by longitudinal libra-

tion in the (f, ∆φ)-parameter space at E = 2×10−5 for spherical and non-axisymmetric

containers. At fixed frequency f = 1 the flow in the bulk remains laminar for all ac-

cessible amplitudes of libration ∆Φ regardless of the tank geometry. In this laminar

regime, we measure a net zonal flow that is independent of the geometry at first order

and well explained by non-linearities in the Ekman boundary layer. In contrast, at a

fixed amplitude of libration ∆Φ = 0.7 rad, we observe space-filling turbulence correlated

with an enhanced zonal flow in specific bands of frequency and for the container with the

largest equatorial ellipticity. Using two containers with different equatorial ellipticities

and a spherical cavity, we unambiguously demonstrate that the observed instability re-

sults from the topographic coupling and not from viscously-driven dynamics. Although
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the range of accessible parameters in our device does not allow us to study in great details

the mechanism underlying the onset of the turbulent regimes, some possible routes can

be investigated.

Comparing Figure 6 and Figure 7 for ε > 1, our results suggest that the onset of

instability is not characterized by a critical Rossby number, εc. For f = 1 no turbulence

is observed in any of our containers even at the largest libration amplitude accessible

in this experiment, which corresponds to a Rossby number ε ∼ 1.6. In contrast, the

intermittent turbulence is observed in the container of large ellipticity in a band of

frequency f ∈ [1.43; 1.66], corresponding to ε ∈ [1; 1.16]. This highlights the peculiar

role of the ellipticity and frequency in the destabilization mechanism in the system.

In rapidly rotating non-axisymmetric container, intermittency of turbulent flows fol-

lowed by a re-laminarization in particular bands of frequency are often typical of the

growth and collapse of an elliptical instability (Malkus, 1989). Furthermore, recent nu-

merical and theoretical work by Cébron et al. (2012) has demonstrated that longitudinal

libration can drive elliptical instability in triaxial and biaxial ellipsoids. In order to test if

such a mechanism could explain our observations we calculate the growth rate predicted

by the geometry-independent WKB analysis (Cébron et al., 2012):

σ =
√
σ2
inviscid − (fres − f)2 −KE1/2, (13)

with

σinviscid =
16 + f2res

64
βε, (14)

where fres is resonant frequency and K is a viscous dissipation factor typically in the

range [1 − 10]. Assuming the base flow (12) is realized in the experiment and a perfect

triadic resonance at f = fres = 1.5, we obtain a negative growth rate for β = 0.06 and a

positive growth rate for β = 0.34. In Figure 8 we superimposed the theoretical growth of

the azimuthal velocity for β = 0.34 and the two extreme values of the dissipation factor,

K = 1 (dotted black) and K = 10 (dashed black) to the time series of LDA azimuthal

flow in the half spheroid configuration. The good agreement for K = 10, the most

dissipative case, suggests that an LDEI mechanism may explain our observations. Note

that the WKB approach is based on a local plane waves decomposition of the velocity

field independent of the geometry of the container. It is therefore applicable to both
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the half and full container providing the same base flow is excited. The WKB analysis

provides an upper bound of the growth rate. A more accurate prediction can be obtain

via a global modes analysis, which is out of the scope of the present paper. In the present

experiment, the limited quantitative diagnostics in this complex geometry do not allow

us to draw a hard conclusion. Further numerical and experimental investigations at lower

Ekman numbers will be necessary to characterize in details the mechanism underlying the

intermittent turbulence and how this turbulence modifies the mean zonal flow. Exploring

the parameter space using 3D numerical simulations in non-axisymmetric containers will

remain limited to E ≥ 10−5. We are currently developing a new experimental setup to

overcome this limitation.

At planetary settings two scenarios may be drawn. In the first scenario, the conditions

required to drive intermittent turbulence are not met and the topographic coupling does

not significantly alter the dynamics driven by viscous interactions in the boundary layer.

In that case we expect the flow in the interior to remain laminar with a time averaged

zonal component independent of the Ekman number following a quadratic scaling in the

amplitude of libration. This would lead insignificant zonal flows in the range 10−9m/day

. U . 10−5m/day for the celestial objects presented in table 2. As proposed by Calkins

et al. (2010) such dynamics will not result in significant energy dissipation nor magnetic

field generation. In the second scenario, topographically driven space-filling turbulence

develop in the liquid layer of the planet. In that case one may expect significant en-

ergy dissipation and maybe magnetic field induction depending on the strength of the

turbulence.

Understanding the underlying mechanism for the instability reported in the present

study is therefore fundamental for planetary applications. In this study, we suggest

that an LDEI mechanism, identified numerically by Cébron et al. (2012) in biaxial and

triaxial librating ellipsoids, may be responsible for the observed space-filling turbulence

at moderate Rossby numbers in our experiment.

Appendix: Analytical determination of the mean zonal flow

In this section, we present the main steps of the analytical derivation of the mean

zonal flow induced by longitudinal libration in spherical geometry and we refer the reader
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to Sauret and Le Dizès (2012b) for a more complete and generic description.

In the limit of small Ekman number E � 1, the flow can be classically separated

in two components: an inviscid component in the bulk and a viscous component in

the Ekman boundary layer of size E1/2 attached to the mantle. Using a perturbative

approach in the limit of small libration amplitude ∆φ � 1, the flow can be written in

the bulk:

U = U0 + (∆φ f) U1 + (∆φ f)2 U2 + o((∆φ f)3), (15)

and in the boundary layer

u = u0 + (∆φ f) u1 + (∆φ f)2 u2 + o((∆φ f)3). (16)

In the absence of librational forcing, the fluid is in solid-body rotation U0 = sΩ0 eφ.

Then, as long as the libration period 1/f remains small compare to the spin-up time,
√
E � f , no spinup takes place in the bulk at each libration cycle (Busse, 2010) and the

first order correction of the bulk flow is null: U1 = 0. However, to adjust the velocity field

between the bulk and the librating mantle, a flow u1 oscillating at frequency f develops

in the thin Ekman layer. The nonlinear self-interactions of this oscillating flow lead to a

nonlinear steady flow in the boundary layer at order (∆φ f)2, u2. The continuity of the

velocity at the interface between the inviscid interior and the boundary layer implies a

correction in the bulk flow at order (∆φ f)2, which generically writes U2 = sΩ2(s) eφ.

The expression of Ω2(s) depends on the libration frequency f and the specific shape

of the container. The solution differs when considering a flat top boundary as in the

cylindrical geometry (Wang, 1970) and a curved boundary as in the spherical geometry

(Sauret and Le Dizès, 2012b).

In figure 9, we show the resulting mean zonal flow < Uφ >= sΩ2(s) as a function

of the cylindrical radius for two libration frequencies f = 1 and f = 1.85, in the case of

a sphere and a cylinder. In all cases, we predict a scaling of the mean zonal flow with

(∆φ f)2 but the radial profiles are different in each geometry.

In the case of the sphere the asymptotic derivation predicts a divergent zonal flow

at a critical cylindrical radius sc, which corresponds to the so-called critical latitude θc

defined as (Bondi and Lyttleton, 1953):

θc = acos

(
f

2

)
. (17)
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sc =

√
1− f2

4
. (18)

This critical latitude is associated with a breakdown of the Ekman boundary layer

due to the total absorption of the inertial waves at this location. In the analysis of Sauret

and Le Dizès (2012b) this breakdown appears as a singularity,. However, including terms

of order O(E1/5) leads to a finite amplitude shear scaling as E1/5 over a radial and

latitudinal extension scaling as E2/5 and E1/5, respectively (Stewartson and Roberts,

1963; Kida, 2011). Using these scalings in the context of a precessional forcing, Noir

et al. (2001); Kida (2011) have proposed that the geostrophic cylinder spawn by the

critical latitude scales as E1/5 in width and E−3/10 in amplitude. The breakdown of the

Ekman boundary layer at the critical latitude and the subsequent scalings are generic to

any oscillatory mechanical forcing through the boundary and remains therefore valid in

the case of longitudinal libration (Calkins et al., 2010). The complete derivation of the

zonal flow including the higher order terms near the critical latitude is very fastidious

and was beyond the scope of the analysis of Sauret and Le Dizès (2012b). Hence, we

do not expect the theoretical profile derived from their analysis to apply in the range

sc − E1/5 < si < sc + E1/5. At a fixed measurement point si = 0.38, when scanning in

frequencies, the geostrophic shear alters the zonal flow measurements in a range 1.73 <

f < 1.92 (see Figure 7 in section 4).
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Figure 1: Schematic representation of the Earth-Moon system illustrating the origin of the torque

producing a) libration in longitude, b) libration in latitude. All angles have been exaggerated for clarity

purposes. E and W represent two fixed point of the lunar mantle.
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Figure 2: Schematic representation of the librations in latitude (yellow) and longitude (red). The left

panel represents the two librations for the Earth Moon, the right panel represents two simple schematics

of experimental setups that mimic libration in longitude (a) and latitude (b). Note that in both cases

the driving mechanism is installed on the rotating table.
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Figure 3: Schematic view of the triaxial ellipsoid.
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Figure 4: Schematic view of the laboratory experiment, set up to acquire LDV measurements in a

hemisphere or hemispheroid.
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Figure 5: Schematic view of the container. a) Side view of the full container geometry. b) Side view of

the half container geometry. c) Top view for both the full and half container geometries. The dashed

ellipsoid represents the mean path of the dye initially injected along the short axis of the container. The

picture in the interior shows the mean path using a continuous injection of dye. The dark zone on the

left results from the tilt of the laser light sheet due to the meridional curvature of the container.
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Figure 6: Mean zonal flow as a function of the libration amplitude in radians for six geometries; hemi-

sphere (open blue circle), full sphere (filled blue circle), 1/2 spheroid with β = 0.06 (open red triangle

up), full spheroid with β = 0.06 (filled red triangle up), 1/2 spheroid with β = 0.34 (open black dia-

monds), full spheroid with β = 0.34 (filled black diamonds). The mean zonal flows are estimated using

manual dye tracking for the full tanks and LDA measurements for the 1/2 tanks. The dashed line

represents the analytical solution in a sphere derived by Sauret and Le Dizès (2012b)
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Figure 7: Mean zonal flow from LDA measurements as a function of the dimensionless libration frequency

for three different geometries; hemisphere (blue circle), 1/2 spheroid with β = 0.06 (red triangle up)

and 1/2 spheroid with β = 0.34 (black diamonds). The light gray rectangle represents the frequency

band f ∈ [1.43; 1.66] for which we observe laminar-turbulence intermittency at β = 0.34. In such cases,

we distinguish between the zonal flow during the turbulent phases (red filled diamond) and the zonal

flow during the laminar phases (open diamonds). The dashed line represents the analytical solution in

a sphere derived by Sauret and Le Dizès (2012b). The green rectangle represents the frequency range

where the E1/5 wide geostrophic shear structure influences the zonal flow measurements. In this region

the analytical model represented by the dashed line is not expected to be valid.
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Figure 8: a) Time evolution of the norm of the azimuthal velocity averaged over 10 oscillations for

∆φ = 0.7rad (ε ∼ 1) in the 1/2 spheroid with f = 1.46, β = 0.34 (red) and β = 0.06 (blue). The

measurements are performed at a cylindrical radius Si = 48mm along the short axis of the mean

equatorial ellipse, 1cm below the top flat surface. We perform a sliding window averaging over 10

oscillations with an overlap of 90%. In addition we represent the WKB exponential growth for two

extreme values of the dissipation factor, K = 1 (dotted black) and K = 10 (dashed black) as predicted

by Cébron et al. (2012). The letters L and T stand for Laminar and Turbulent. The periods of turbulence,

as observed in direct visualizations, are qualitatively represented by the yellow bands. Each top black

and white rectangle represents a spinup time (∼ 70s). b) Top views of the shear structures in a plane

parallel to the equator. The time stamp of each snapshot is indicated by circle in a). The first and last

pictures show little structures, which is characteristic of a laminar flow. In contrast, the second snapshot

exhibits numerous small scale structures, typical of turbulent flows.
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Figure 9: Mean zonal flow < Uφ > as a function of the cylindrical radius s. The dashed black lines

represent the analytical solution in the sphere from Sauret and Le Dizès (2012b) and the red dashed-

dotted line represents the analytical solution in a cylinder from Wang (1970). (a) for f = 1, (b) for

f=1.85. The two shaded rectangles indicate the cylindrico-radial extension of the geostrophic cylinder

spawn by the critical latitude in the sphere.
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Sauret, A., Cébron, D., Le Bars, M., Le Dizès, S., 2012a. Fluid flows in librating cylinder. Physics of

Fluids 24, 1–23.

Sauret, A., Cebron, D., Morize, C., Le Bars, M., 2010. Experimental and numerical study of mean zonal

flows generated by librations of a rotating spherical cavity. Journal of Fluid Mechanics 662, 260–268.

Sauret, A., Le Dizès, S., 2012b. Steady flow induced by longitudinal libration in a spherical shell. Journal

of Fluid Mechanics, submitted.

Sohl, F., Spohn, T., Breuer, D., Nagel, K., 2002. Implications from galileo observations on the interior

structure and chemistry of the galilean satellites. Icarus 157, 104–119.

Spohn, T., Schubert, G., 2003. Oceans in the icy galilean satellites of Jupiter? Icarus 161 (2), 456–467.

Stewartson, K., Roberts, P. H., 1963. On the motion of a liquid in a spheroidal cavity of a precessing

rigid body. Journal of Fluid Mechanics 17, 1–20.

Tilgner, A., 1999. Driven inertial oscillations in spherical shells. Physical Review E 59 (2), 1789–1794.

Tobie, G., Grasset, O., Lunine, J. I., Mocquet, A., Sotin, C., 2005. Titan’s internal structure inferred

from a coupled thermal-orbital model. Icarus 175, 496–502.

Van Hoolst, T. V., Rambaux, N., Karatekin, O., Dehant, V., Rivoldini, A., 2008. The librations, shape

and icy shell of Europa. Icarus 195 (1), 386–399.

29



Wang, C., 1970. Cylindrical tank of fluid oscillating about a state of steady rotation. Journal of Fluid

Mechanics 41, 581–592.

Williams, J. G., Boggs, D. H., Yoder, C. F., Ratcliff, J. T., Dickey, J. O., 2001. Lunar rotational

dissipation in solid body and molten core. Journal of Geophysical Research-Planets 106 (E11), 27933–

27968.

Williams, J. G., Dickey, J. O., 2002. Lunar geophysics, geodesy, and dynamics. In: 13th International

Workshop on Laser Ranging. Washington, D. C.

Williams, J. P., Aharonson, O., Nimmo, F., 2007. Powering Mercury’s dynamo. Geophysical Research

Letters 34 (21).

Yoder, C. F., 1995. Venus’ free obliquity. Icarus 117 (2), 250–286.

Zhang, K., Chan, K., Liao, X., 2011. On fluid motion in librating ellipsoids with moderate equatorial

eccentricity. Journal of fluid mechanics 673, 468–479.

30


	1 Introduction
	2 Mathematical background and control parameters
	3 Experimental method.
	4 Results
	5 Discussion and concluding remarks



