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Abstract

Background: Determining usefulness of biomedical text mining systems requires realistic task definition and data
selection criteria without artificial constraints, measuring performance aspects that go beyond traditional metrics.
The BioCreative Il Protein-Protein Interaction (PPI) tasks were motivated by such considerations, trying to address
aspects including how the end user would oversee the generated output, for instance by providing ranked results,
textual evidence for human interpretation or measuring time savings by using automated systems. Detecting
articles describing complex biological events like PPIs was addressed in the Article Classification Task (ACT), where
participants were asked to implement tools for detecting PPI-describing abstracts. Therefore the BCIII-ACT corpus
was provided, which includes a training, development and test set of over 12,000 PPI relevant and non-relevant
PubMed abstracts labeled manually by domain experts and recording also the human classification times. The
Interaction Method Task (IMT) went beyond abstracts and required mining for associations between more than
3,500 full text articles and interaction detection method ontology concepts that had been applied to detect the
PPIs reported in them.

Results: A total of 11 teams participated in at least one of the two PPI tasks (10 in ACT and 8 in the IMT) and a
total of 62 persons were involved either as participants or in preparing data sets/evaluating these tasks. Per task,
each team was allowed to submit five runs offline and another five online via the BioCreative Meta-Server. From
the 52 runs submitted for the ACT, the highest Matthew's Correlation Coefficient (MCC) score measured was 0.55
at an accuracy of 89% and the best AUC iP/R was 68%. Most ACT teams explored machine learning methods,
some of them also used lexical resources like MeSH terms, PSI-MI concepts or particular lists of verbs and nouns,
some integrated NER approaches. For the IMT, a total of 42 runs were evaluated by comparing systems against
manually generated annotations done by curators from the BioGRID and MINT databases. The highest AUC iP/R
achieved by any run was 53%, the best MCC score 0.55. In case of competitive systems with an acceptable recall
(above 35%) the macro-averaged precision ranged between 50% and 80%, with a maximum F-Score of 55%.
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Conclusions: The results of the ACT task of BioCreative Il indicate that classification of large unbalanced article
collections reflecting the real class imbalance is still challenging. Nevertheless, text-mining tools that report ranked
lists of relevant articles for manual selection can potentially reduce the time needed to identify half of the relevant
articles to less than 1/4 of the time when compared to unranked results. Detecting associations between full text
articles and interaction detection method PSI-MI terms (IMT) is more difficult than might be anticipated. This is due
to the variability of method term mentions, errors resulting from pre-processing of articles provided as PDF files,
and the heterogeneity and different granularity of method term concepts encountered in the ontology. However,
combining the sophisticated techniques developed by the participants with supporting evidence strings derived
from the articles for human interpretation could result in practical modules for biological annotation workflows.

Background

Providing access to information relevant to protein
interaction characterizations is of great importance both
in the field of experimental biology as well as from the
perspective of systems biology and bioinformatics analy-
sis. In case of experimental biology, a range of different
methodologies have been developed to detect protein
interactions, showing different degrees of reliability or
underlying properties of the interactions. To enable sys-
tematic analysis of interaction networks, the construc-
tion of interaction databases such as BioGRID [1],
MINT [2], or IntAct [3] - which store interaction anno-
tations in form of well structured database records using
standard formats - is essential. These databases rely on
specifically trained human curators who manually
extract protein interactions from scientific articles, mak-
ing use of controlled vocabulary terms (covering interac-
tion detection experiments) from the PSI-MI ontology
to qualify each interaction [4]. Through such a struc-
tured vocabulary, users are able to understand the gen-
eral conditions underlying a particular interaction
annotation, which can be used for selecting customized
interaction networks based on experimental qualifiers.
Manually generating literature annotations is very time
consuming and there are increasing concerns that such
approaches are only able to cope with a small fraction
of the relevant information published in the growing
amount of articles [5,6]. This has motivated a significant
amount of research in the biomedical text mining com-
munity devoted to the systematic extraction of protein-
protein interaction (PPI) information from scientific
articles, mainly focusing on the detection of binary asso-
ciations [7-13]. The detection of interacting protein
pairs using information extraction and literature mining
techniques has already been addressed carefully in both
the BioCreative II and II.5 challenges [14,15]. In order
to determine current bottlenecks in literature curation
and understand where text mining can actually be of
practical use, it is important to formalize the curation
using annotation workflows [16]. In case of protein
interaction annotation two important steps consist of
the initial selection of relevant articles and the

association of these to experimental interaction meth-
ods. When associations between proteins are retrieved
automatically from the literature, determining the corre-
sponding experimental qualifier is crucial in order to
characterize whether it actually corresponds to an
experimentally validated physical interaction or constitu-
tes general background knowledge or even some other
sort of relation (e.g. genetic/gene regulation interaction,
indirect association or phenotypic relationship).

Classification/ranking of articles: Article Classification Task
- ACT

Classification and ranking of articles according to a par-
ticular topic of interest, such as protein-protein interac-
tion (PPI) is not only useful to improve subsequent bio-
entity recognition and relation extraction approaches,
but is labeled in itself important for more general pur-
poses [17]. It has been used for prioritizing articles for
manual literature curation and can improve the selec-
tion of interaction characterizations described in articles
mentioning a particular protein or term of interest [18].
This motivated the construction of automated systems
able to classify and rank large sets of potentially relevant
abstracts for subsequent manual inspection [19-22].
Choosing relevant articles for manual examination in
order to derive biological annotations is a general step
across almost all biological annotation databases [23].
Potentially relevant collections of articles are often
represented by lists of PubMed entries resulting from
keyword searches or in lists of recent articles from jour-
nals of interest. For complex biological events like PPIs,
simple keyword queries are often inefficient in detecting
relevant articles. For instance the following evidence
sentence for an interaction event does not contain com-
monly used interaction terms like bind or interact: ‘A
complex containing Mus81p and Rad54p was identified
in immunoprecipitation experiments’ (PMID:10905349).
Using the term ‘complex’ as a query for interaction arti-
cles would retrieve over 700 thousand PubMed hits,
most of them not relevant for interactions. On the other
hand, detecting patterns used to express protein interac-
tions like: ‘complex containing PROTEIN and PROTEIN’
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together with a machine learning system that detects
that immunoprecipitation’ is a feature of PPI articles
would be able to score such a record as protein interac-
tion relevant.

The evaluation of article retrieval algorithms for anno-
tation databases has been studied in detail in the context
of the former TREC Genomics tracks [24-27], and sev-
eral BioCreative challenges, namely BioCreative II [14]
and II.5 [15]. In case of Biocreative III, the purpose of
the (Interaction) Article Classification Task was to pro-
mote the development of automated systems that are
able to classify articles as relevant for protein-protein
interaction (PPI) database curation efforts. The resulting
text mining tools should be able to simplify the identifi-
cation of relevant articles for a range of journals known
to publish protein interaction reports.

These modifications included the use of PubMed
abstracts as opposed to full text articles as used in the
previous BioCreative II.5, as they do not have restric-
tions in terms of availability. A large range of journals
considered as relevant by biological databases have been
utilized, avoiding inclusion of those not being used for
curation. For this task, large manually classified training,
development and test data sets have been prepared to
facilitate the implementation of supervised learning
methods and to carry out a statistical sound evaluation.
Additionally, we considered a publication time range
selection criteria to focus on recent articles and provide
a more coherent data collection. Finally the sampling
used for articles in the development and test sets
reflects a more realistic class imbalance (proportion of
relevant and non-relevant articles) encountered for these
journals. The Gold Standard annotations were generated
by domain experts through inspection of a randomly
sampled set of abstracts following classification guide-
lines which were refined during several rounds of classi-
fication based on the feedback of the BioGRID and
MINT database curators (see additional file 1 for anno-
tation guidelines). Preparing these guidelines required
examining a substantial collection of initial example
records in order to specifically describe aspects for con-
sidering a particular record as PPI relevant. To support
this, a set of interaction evidence passages was analyzed,
and criteria for non-relevant articles were formalized.
Additional example cases for both relevant and non-
relevant records had to be discussed with domain
experts and feedback from PPI database curators was
requested.

Linking bio-ontology concepts to full text: Interaction
Method Task - IMT

In the domain of biomedical sciences, the experimental
context is crucial for the interpretation of biological
assertions as well as to determine the reliability of a
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given biological finding [28]. An important aspect for
the annotation of protein interactions is to identify the
experimental techniques (interaction detection meth-
ods’) described in an article to support the interactions
[29]. Annotation of experimental techniques or ‘evi-
dence’ is also common with other annotation efforts,
such as the Gene Ontology Annotations (GOA; in the
form of evidence codes) [30]. Knowing the experimental
method that provided the evidence for an interaction
serves as ‘credibility’ or likelihood indicator that the
reported interaction actually occurs in a living organism
(in vivo) or cell culture (in vitro). These types of text
classification tasks are based on associating standardized
terms from a controlled vocabulary to the text in ques-
tion. In the case of protein-protein interaction annota-
tions, efforts have been made to develop a controlled
vocabulary (‘ontology’) about interaction detection
methods in order to standardize the terminology serving
as experimental evidence support. Database curators
spend a considerable amount of time determining which
experimental evidence supports interaction pairs
described in articles [31]. A relevant work in this respect
was the implementation of a system for detecting
experimental techniques in biomedical articles by
Oberoi and colleagues [32]. Also the construction of a
text mining system with a particular focus on interac-
tion detection methods using statistical inference techni-
ques has been explored recently [33], motivated by the
Interaction Method Task of the BioCreative II challenge
[14], where two different teams provided results [34,35].
Even the use of a particular list of affixes corresponding
to experimental tags used for labeling interactor proteins
(PPI affix dictionary - PPIAD) has been analyzed [36].
For instance the affixes ‘GST-’" and “TAP-’ show an asso-
ciation to the interaction detection methods ‘pull down’
and ‘tandem affinity purification’ respectively. For Bio-
Creative III, participants were asked to provide a list of
interaction detection method identifiers for a set of full-
text articles, ordered by their likelihood of having been
used to detect the PPIs described in each article. These
identifiers belong to the set of standardized experimen-
tal interaction detection method terms provided by the
PSI-MI ontology. The aim of the evaluation was to esti-
mate the facilitation of database curation efforts by pro-
viding a list of the most likely PSI-MI identifiers and
possibly increase a curator’s performance.

Methods and data

Data preparation

One important aspect of the Biocreative efforts is to
provide Gold Standard data collections that can be used
by system developers to implement and evaluate their
methods during the challenges as well as afterwards.
Preparing large enough and representative data samples
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is often difficult for the text mining community as it
requires the availability of dedicated domain experts to
carry out the annotation process. In order to offer prac-
tically relevant task data sets, we have collaborated with
experienced open access database curators from the Bio-
GRID and MINT databases as well as domain experts
from commercial database developers (Reverse Infor-
matics) especially trained for this task (see supplemen-
tary material section, additional file 1). All data
collections used for the PPI task are available at: http://
www.biocreative.org/resources/corpora/biocreative-iii-
corpus/.

ACT data

Three data collections have been prepared for ACT
participants; an overview of the main characteristics of
these data collections is illustrated in table 1. The
training set (TR) consists of a balanced collection of
2,280 recent articles classified through manual inspec-
tion using the MyMiner interface ([37] -http://mymi-
ner.armi.monash.edu.au), divided into PPI relevant and
non-relevant articles. The annotation guidelines for
this task were refined iteratively based on the feedback
from both annotation databases and specially trained
domain experts. A subset of the PPI relevant records
in the training set were selected articles already anno-
tated by PPI databases. In order to improve the practi-
cal relevance of the ACT task setting, we prepared the
development (DE) and test (TE) set taking into
account PPI annotation relevant journals based on the
current content of collaborating PPI databases. Ran-
dom samples of abstracts from these journals were
taken to generate a development set of 4,000 abstracts
in total and a test set of 6,000 abstracts, i.e., these two
disjoint sets were drawn from the same sample collec-
tion. Records from these data collections were manu-
ally revised, providing a class label for each record
along with the manual classification time. For this pur-
pose the MyMiner tool ‘File Labeling’ system was used.
This system improves manual classification time and
allows visualization of positive and negative highlighted
areas. Highlights permit users to spot words - or parts
of words - related to their topics of interest. Annota-
tors can stop the curation process at any moment by
saving the classified document. The time spent to
decide if a document is related or not to a topic is

Table 1 ACT data overview
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recorded. Using this MyMiner file labeling tool - as
compared to simple unassisted baseline classification -
can reduce classification time by a factor of 10, with-
out altering the classification quality. This reduction
had been determined using a pilot study based on 3
annotators using 400 article abstracts. For labeling pur-
poses, the segregation into short notepads of 100
records each was carried out, and annotators were
requested to have enough pauses during the process to
avoid mislabeling due to fatigue.

IMT data

In order to associate interaction detection methods to
articles, full text papers need to be considered, as
detailed experimental characterizations are usually not
summarized in abstracts. We provided participants with
three basic data collections for this task (see table 2 for
a general overview). General data requirements included:
(1) The article should be annotated with valid interac-
tion detection methods by a trained PPI database cura-
tor following the PSI-MI standards. (2) Only articles
from journals belonging to publishers that granted the
necessary permissions to the organizers of this challenge
could be included.

During an initial analysis, we identified candidate jour-
nals that were the source of curated PPI annotations. (3)
Articles should be available as PDF files that can be
converted to plain text. Participants were supplied with
2,003 articles as training set and received an additional
587 articles as development set shortly before the test
phase. The annotations of these two collections were
derived from annotations of PSI-MI compliant data-
bases. Obsolete annotations were remapped and a set of
overly general terms that are not considered as useful
by annotation databases were filtered out. The final col-
lection of allowed interaction detection method terms
contained 115 terms. Team predictions were evaluated
using a test of 305 unseen publications, 223 of which
were annotation-relevant articles. Both the training and
test sets had a highly distorted representation of the 115
possible method detection terms, with only 4 methods
representing roughly half of all annotations made on the
articles. These 4 high-frequency terms are (from most
to least frequent): ‘anti bait coimmunoprecipitation’,
‘anti tag coimmunoprecipitation’ (these two represent 1/
3 of all annotations), ‘pull down’, and ‘two hybrid’.

Data set Tot. articles PPI not PPI Perc. PPI Years Journals
Training 2,280 1,140 1,140 50% 2007-2010 118
Development 4,000 682 3318 17.05% 2009-2010 113
Test 6,000 910 5,090 15.00% 2009-2010 112
Total 12,280 2,732 9,548 - 2007-2010 121

Overview of the data collections provided for ACT
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Table 2 IMT data overview

Data set Tot. articles Annotations PSI-MI IDs IDs/article Years Journals
Training 2,003 4,348 86 217 2006-2010 87

Development 587 1,316 71 224 2006-2010 17

Test 223 528 46 236 2008-2010 9

Overview of the data collections provided for IMT

Figure 1 shows the distribution of interaction methods
in the different data collections.

Evaluation metrics and result structure

The general evaluation setting of the PPI task was to
provide successively labeled data collections (first train-
ing and then development sets) to participating systems
(see table 3 for an overview on participant teams)
together with the corresponding evaluation software
which is available at: http://www.biocreative.org/media/
store/files/2010/bc_evaluation-2.3.1.tar.gz. During this
initial phase, teams could implement their systems and

improve them using the data sets provided. In case
some difficulties or unclear aspects were encountered,
registered participants could obtain feedback either by
directly contacting the organizers or through a special
BioCreative mailing list. During the test phase, teams
retrieved a data set for which the labels were held back.
They had to provide predictions in a specific format.
These predictions were evaluated by comparing them to
manual annotations. The actual evaluation scores used
are similar to metrics applied during BC II.5, and
included Accuracy, Sensitivity (Recall), Specificity, F-
Score, Matthews Correlation Coefficient (MCC; the

simple PubMed search for ar full content of
species/genes/proteins selected journals

author-annotated
structured abstracts

text mining search
on relevant terms

e

non-ranked list of abstracts

s

l

ranked list of abstracts

%
curator reads abstracts, gene/protein identifiers,
selects full text for curation

interactions, other data types

v

automated checks on
| gene/protein identifiers |

' interactions/evidence

extracted

database entry and
open public access

Figure 1 IMT data set class distribution. Pie charts illustrating the most frequent methods encountered in the three IMT data collections.
Classes are ordered by their frequency in the test set. The most frequent training and development set classes are shown in shades of brown
that in total contribute more than 50% of all class assignments in those two sets. In blue is class MI:0114 (x-ray crystallography) that is not
frequent in the test set. In green are classes that are significantly more frequent in the test set than the others. MI:0018 (two hybrid) and MI:0114
are frequent in the training and development set, while MI:0416 (fluorescence microscopy) and MI:0019 (coimmunoprecipitation) are frequent in
the test set.
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Table 3 PPI task participating teams

Teamld Leader Institution Country ACT IMT URL
65 Fabio Rinaldi University of Zurich Switzerland 5 5 [75]
69 Robert Leaman Arizona State University USA 0 5 [76]
70 Sergio Matos Universidade de Aveiro, IEETA Portugal 5 5 -

73 W John Wilbur NCBI USA 5 0 [77]
81 Luis Rocha Indiana University USA 10 5 -

88 Ashish Tendulkar IIT Madras India 2 2 [78,79]
89 Shashank Agarwal University of Wisconsin-Milwaukee USA 10 10 [80,81]
90 Xinglong Wang National Centre for Text Mining UK 5 5 -

92 Keith Noto Tufts University USA 1 0 [66]
100 Zhiyong Lu NCBI USA 4 5 -

104 Jean-Fred Fontaine Max Delbrtick Center Germany 5 0 [82]

Overview of teams that participated in the PPI tasks and availability of resulting systems. The numbers in the column ACT and IMT correspond to the number of

submitted runs by that team.

most stable of these evaluation function on unbalanced
sets) and the area under the (interpolated) Precision/
Recall curve (AUC iP/R). A detailed description of these
scores is provided in the BC IL5 overview paper [15].

In case of the ACT, for each article, participants had
to return a Boolean value (true/false) regarding its rele-
vance for PPI curation, together with a confidence score
for this classification (in the range (0,1]), and the overall
(unique) rank of the article in the whole set of articles
with respect to its PPI relevance. The main utility mea-
sure of a system - i.e., the primary evaluation score for
this tasks - is based on measuring a system’s ability to
provide the best possible ranked list of relevant
abstracts, sorted from the most relevant (i.e., highest
ranked article that is classified as true) to the most irre-
levant article (i.e., highest ranked article classified as
false). To this end, the area under the (interpolated) Pre-
cision/Recall curve is measured (AUC iP/R score) by
using the results’ ranking. We also added the F-Scores
for comparison to the BioCreative II results.

In case of the IMT, for each article, participants had
to return zero or more PSI-MI detection method term
identifiers, and for each term annotation they had to
provide a confidence score (in the range (0,1]), and an
overall (unique) rank for each term annotated on an
article, from the most to the least relevant. In addition,
participants were asked to return the most decisive evi-
dence text passage that gave rise to their annotation -
data useful for human interpretation. The primary
metric used for the IMT was based on the average per-
article annotation performance (macro-averaging) given
its ranking: The area under the (interpolated) Precision/
Recall curve was measured (AUC iP/R) by averaging the
AUC from the individual scores on each article. (For
more general information evaluation metric calculations
please refer to the additional materials section).

Results

ACT

ACT inter-annotator and manual classification time analysis
A set of 649 articles has been annotated by contracted
domain experts as well as MINT curators (development
set, DE: 360; test set, TE: 289 articles), or by curators
from BioGrid (DE: 365; TE: 284 articles), and 200 of
these double-annotated articles were annotated by one
representative of all three groups - domain expert,
MINT, and BioGrid. Four annotations with curation
times significantly over 10 minutes were discarded as
outliers in the following analysis (PMIDs: 19517012,
19515822, 19718269, and 19774229) - the most extreme
outlier had a recorded annotation time of more than six
hours.

Over the entire set, the average curation time was 43
sec/article (median = 31; s.d. = 42). Splitting this com-
bined set into positive and negative labels made by the
annotators uncovers a large difference in the mean: 75
sec for articles that curators tagged as positive, and 37
sec for the negative case, a ratio of roughly 2:1 for cur-
ating negative articles (see Figure 2). The difference is
significant using Wilcoxon rank-sum test [38] for non-
normal distributions (p = 2.2e - 16). Additionally, a non-
parametric confidence interval (at 95%) for the differ-
ences in locations was computed [39], at 38.42 + 1.85
sec (and matches the difference in means). This might
be an indicator that annotation time of positive articles
is significantly longer (double) than for negative articles,
even though it is only based on the curation time data
of ten individual curators (see Figure 3). To ensure this
ratio is persistent across all curators, the median time
spent curating positive articles was divided by the med-
ian time spent by the curator to label negative articles
(the median time was used to reduce the effect of out-
liers). The ratios were found as follows: IA = 1.7, IB =
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4.1,IC = 2.8, ID = 3.1, BG = 3.9, MA = 1.0, MB = 0.9,
MC = 1.0, MD = 1.7, CO = 1.6. Overall, curation time
for positive articles tended to be about twice as long as
for negative articles, but this ratio was quite curator-
dependent. The expert curators are ordered by experi-
ence (IA: domain expert specially trained for this task,
IC and IB: domain experts with a previous experience of
6 months on similar tasks and ID: domain expert with
over 3 years experience on similar tasks). Expert curator
IA took more time in reading the complete abstract
whereas the more experienced curators (IB, IC, ID)
could read faster and it was easy for them to identify
the most irrelevant abstracts (e.g from other fields like
chemistry, ecosystem studies or database descriptions).
The MINT and BioGrid curators are all professional PPI
database annotators with a higher level of experience.
The CNIO annotator (CO) has a degree of training
equivalent to the expert curators IB and IC. Thus, there
seems to be a correlation between curator experience
and this proportion. More generally, an overall tendency
towards more curation time needed for positive articles
by less experienced curators can be observed, although

the exact property of this behavior will be hard to cap-
ture numerically.

Second, we investigated the correlation of article cura-
tion time and article word (token) length. A Pearson’s
correlation test was carried out for each curator. For the
expert curators and the CNIO annotator (CO), there
was a high correlation between the two variables (IA: t
= 14.5, df = 2594, p-value < 2.2e-16; IB: t = 7.4, df =
1392, p-value = 2.6e-13; IC: t = 8.9, df = 2977, p-value <
2.2e-16; ID: t = 9.8, df = 3001, p-value < 2.2e-16; CO: t
= 8.3, df = 997, p-value = 2.2e-16; df: degrees of free-
dom). Conversely, for the highly experienced curators
from MINT and BioGrid, this correlation was much
weaker (BG: t = 1.75, df = 248, p-value = 0.08; MA: t =
1.6, df = 46, p-value = 0.12; MB: t = 3.2, df = 45, p-
value = 0.0026; MC: t = 0.7, df = 51, p-value = 0.48;
MD: t = 0.17, df = 22, p-value = 0.86). This is likely due
to the fact that these curators are far more adept at
recognizing relevant keywords and passages in the
MEDLINE abstracts, as can also be seen by the very
strong agreement on labels between the two databases
(overlap 96%, Cohen’s Kappa = 0.85).
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+— H cosedimentation
+— B cross-linking study

® +— B enzymatic study
+— H footprinting

+— H polymerization
+— H biophysical
+— H genetic interference
+— H imaging technique

MINT curators (MA-MD).

E «+— B experimental interaction detection

B +— A affinity chromatography technology
[ +— B coimmunoprecipitation
+— H luminescence based mammalian interactome mapping

+— B tandem affinity purification

+— B competition binding
[ «+— A display technology
+— M protein folding/unfolding
+— H proximity enzyme linked immunosorbent assay

+— B systematic evolution of ligands by exponential enrichment
+— H chromatography technology

+— H electrophoretic mobility-based method

+— H gdp/gtp exchange assay
+— H nucleotide exchange assay

+— B post transcriptional interference
+— B protein complementation assay

Figure 3 ACT manual classification time per curator. Box plot of manual classification time spent by each individual curator. The labels
correspond to: four expert curators, ordered by experience (lowest = IA, highest = ID), a CNIO annotator (CO), a BioGRID curator (BG), and four

Agreement with the expert curators was lower, as
expected, but within acceptable ranges (for MINT vs.
expert, 92% overlap, Kappa = 0.69; for BioGrid vs. expert,
91%, Kappa = 0.69). There was an overall agreement on
labels (true, false) between all three groups (MINT, Bio-
Grid, and expert) of 85.5% of all abstracts. This overlap
should be compared to the highest accuracy (TP + TN/
number of all articles) measured in the ACT, 89%.
Furthermore, BioGrid and MINT follow (similar) in-
house protocols for labeling the abstracts, while the
expert annotations were done using a special protocol
designed just for the challenge. This fact is likely to
explain the better agreement between database curators
than between the expert annotators and the curators.

ACT team results

In total, ten teams participated in this task. The indivi-
dual results of each run are shown in Table 4, the team
ID associations are show in table 3. For each of these
participation methods, teams could submit five runs for
a total of ten if they participated both offline and online.
The highest AUC iP/R achieved by any run was 68%,
the best MCC score measured was 0.55. The iP/R curve
of the best team (73, S. Kim and W. J. Wilbur) in the
ACT task is available in the supplementary material sec-
tion (additional file 2). By using the BioCreative Meta-
Server (BCMS) framework for participating online, we
were able to measure the time it took the systems to
report a classification.
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Table 4 ACT participant results

Team Run/Srvr Accuracy Specificity Sensitivity F-Score MCC AUC iP/R Time_half
C RUN_1 89.03 93.87 61.98 63.16 0.56733 68.98 30.13
T65 RUN_1 88.68 97.64 3857 50.83 048297 63.85 40.19
T65 RUN_2 8793 93.07 59.23 59.82 0.52727 63.89 40.19
T65 RUN_3 67.05 64.19 83.08 4334 0.34244 41.74 55.95
T65 RUN_4 73.68 7413 71.21 45.08 0.34650 41.74 55.95
T65 RUN_S5 88.00 94.40 52.20 56.89 0.50255 62.39 40.83
T70 RUN_T 56.45 49.70 94.18 39.62 0.31789 56.76 42.12
170 RUN_2 8741 96.11 38.79 4832 043346 56.76 4213
170 RUN_3 81.92 83.61 72.53 5491 046563 56.76 4212
170 RUN_4 47.77 39.04 96.59 35.95 0.27060 56.76 4212
170 RUN_S 86.84 98.62 20.99 32.62 0.34488 56.76 4213
173 RUN_1 87.55 91.81 63.74 60.83 0.53524 65.91 38.33
173 RUN_2 89.15 94.95 56.70 6132 0.55306 67.96 37.10
173 RUN_3 87.78 9261 60.77 60.14 052932 65.89 38.19
173 RUN_4 88.88 94.34 5835 61.42 0.55054 67.98 37.15
T73 RUN_5 87.62 92.18 62.09 60.33 053031 65.37 3840
T81 RUN_T 59.03 58.76 60.55 30.96 0.13949 19.93 8227
T81 RUN_2 5847 57.86 61.87 31.12 0.14219 19.69 82.76
T81 RUN_3 25.37 14.72 84.95 25.66 -0.00344 15.66 10273
T81 RUN_4 63.45 69.16 31.54 20.74 0.00538 16.20 104.95
T81 RUN_S 69.17 77.35 2341 18.72 0.00645 1563 98.72
T81 SRVR_9 84.88 99.98 044 0.88 0.05220 44.19 50.11
T81 SRVR_10 85.38 99.61 5.82 10.78 0.17771 50.25 4511
T81 SRVR_11 84.73 99.86 0.1 0.22 -0.00272 46.02 4823
T81 SRVR_12 84.30 98.36 286 523 0.05244 32.11 56.89
T81 SRVR_13 84.88 99.92 0.77 1.52 0.05791 18.59 113.11
T88 RUN_T 4263 3511 84.73 30.94 0.15238 2197 84.90
788 RUN_2 56.92 53.73 74.73 3447 020417 2604 7533
T89 RUN_T 80.02 80.90 75.06 53.26 044911 61.29 4131
T89 RUN_2 81.00 81.75 76.81 55.08 047242 62.13 40.99
T89 RUN_3 8240 83.85 74.29 56.15 048180 60.48 4172
T89 RUN_4 87.73 94.79 4824 5440 047967 43.76 43.09
T89 RUN_5 87.27 91.81 61.87 59.58 052082 4847 4457
189 SRVR_4 77.80 77.84 77.58 5146 043152 5744 4463
189 SRVR_5 78.05 78.15 7747 51.71 043424 57.56 45.20
T89 SRVR_6 79.90 81.00 73.74 52.67 044073 54.97 4593
T89 SRVR_7 86.25 92.06 53.74 54.24 046156 4158 45.94
T89 SRVR_8 86.87 90.39 67.14 60.80 053336 4740 4555
T90 RUN_T 88.73 95.15 52.86 58.73 052736 51.14 39.02
T90 RUN_2 88.70 94.97 53.63 59.01 0.52890 51.65 39.14
T90 RUN_3 8832 93.93 56.92 59.64 052914 65.24 39.29
T90 RUN_4 8893 96.03 49.23 57.44 052237 49.26 70.68
T90 RUN_5 88.60 95.05 52.53 5829 0.52204 50.83 39.27
192 RUN_1 86.22 90.77 60.77 57.22 049155 50.99 4240
T100 RUN_1 88.77 96.82 43.74 54.15 0.50005 61.62 4257
T100 RUN_2 88.27 93.839 56.81 59.49 052732 61.86 39.05

T100 RUN_3 81.13 82.69 7242 53.80 045256 60.25 41.60
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Table 4 ACT participant results (Continued)

T100 RUN_4 81.85 82.85 76.26 56.04 048270 63.75 3841
T104 RUN_1 80.12 80.69 7692 53.99 045999 5367 4821
T104 RUN_2 80.07 8047 77.80 5421 046370 5367 4821
T104 RUN_3 64.93 59.86 93.3049 44.66 0.38161 5367 4821
T104 RUN_4 69.78 66.25 89.56 47.34 040530 53.67 4821
T104 RUN_5 86.27 98.47 18.02 2847 0.30064 53.67 142.95

Evaluation results based on the unrefined Gold Standard, in terms of Accuracy, MCC Score and AUC iP/R. The highest score for each evaluation column is show
in bold typeface. Run/Srvr (RUN = offline run/SRVR = online run via the BCMS), MCC (Matthew’s Correlation Coefficient), AUC iP/R (Area under the interpolated
Precion/Recall curve). Time_half is the fraction of time needed to classify half of the positive abstracts using the output of that run when compared to unranked
results. Note that some runs submitted by mistake the opposite ranking as requested for the negative records, which explains higher classification time (e.g.
Team 104, RUN 5 with Time_half of 142.95), inverting in these cases the order of negative articles resulted in comparable time savings to the other systems.

A simple consensus prediction was generated using  will be higher at the start of the process, which leads to
majority voting (see results in table 4), generating a a much greater manual curation yield when compared
ranking based on the percentage agreement derived to unsorted revision.
from the different runs. This combined system returned We have used the consensus predictions for the ACT
the best MCC score (0.57), obtained a better AUC iP/R  task to illustrate this idea on Figure 4A. To classify half
result than the best single run (68.98) and reached the of the 910 relevant articles by examining randomly (i.e.
best f-score (63.16). unranked) records from the 6000 abstract test set would

The consensus prediction generates a ranking where require reading 3000 abstracts, whereas when read in
the top of the list is enriched in positive articles while the order suggested by the consensus prediction, it
the end of the list has mostly negative articles. This  would only require reading the top 7% (around 728, a
means that the proportion of articles confirmed to be  reduction to 24.27% when compared to the 3000 articles
positive through manual curation following this ranking that need to be read when not using ranking).
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Figure 4 ACT consensus analysis. (A) The two black lines represent the number of relevant articles found while traversing the dataset. The
diagonal line represents a random traversal, the parabolic line above represents a traversal following the ranking proposed by the consensus
predictions. The green lines are bootstrap estimates for standard deviation. The horizontal red line represents half of the 910 articles. (B) Instead
of showing the traversal in articles read, this shows the time spent reading them. The diagonal line represents a random traversal, the parabolic
line above represents a traversal following the ranking proposed by the consensus predictions. The green lines represent traversals using the
scores provided by the systems. Note that some runs seen below the random traversal seemed to have provided the opposite ranking for the
negative documents than required, based on the submission format. TC: Team consensus prediction.
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Consider T (d) the time required to classify a docu-
ment d into relevant or non-relevant. This time will in
fact depend on many features, including the curator per-
forming the classification, length of the document and
the underlying annotation guidelines (see the discussion
section for an analysis on curation times for different
curation). In our case, the manual classification timings
suggest that determining if an article is non-PPI relevant
can be significantly faster than determining that it is
relevant. This indicates that, although there is a great
time saving obtained by using ranked system outputs,
this is affected by both the proportion of relevant cases
as well as the difference in classification time between
relevant and non-relevant articles. Using the consensus
system predictions would require only 30.13% of the
time for finding half of the relevant documents in the
test set collection when compared to random ranking of
abstracts (no ordering/ranking). Figure 4B illustrates this
idea, showing the number of articles against the time
spent in classifying them (using the T .(d) from the real
curators). This also shows the advantages over baseline
selection based for instance on the use of a set of expert
defined keywords for article selection, which moreover
obviously does not generate a proper relevance ranking
of the resulting hits. Using the presence a set of key-
words provided by MINT curators as a way of selecting
relevant articles resulted in a recall of 17.36%, a preci-
sion of 61.96% with F-score of 27.12%. Although the
precision of this keyword-based selection is relatively
acceptable, the overall performance is significantly lower
than the one obtained by participating teams in general.
Participant technologies used for ACT
Participants were asked to fill in a short questionnaire
after the test phase. Interestingly, four teams (73, 81, 92,
100) used other sources of training data than what was
provided through the challenge itself (e.g., data from
former BioCreative challenges or random likely-negative
articles). We also asked teams to evaluate the difficulty
of the task (easy, medium, hard); no team thought the
ACT task was easy, four (73, 81, 100, 104) said it was
hard, while the others classified it as ‘medium’. All
teams did some amount of lexical analysis of the text
(sentence splitting, tokenization and/or lemmatization/
stemming was done by all teams), and many included
Part-of-Speech-tagging (POS) (teams 65, 73, 89, 90, 104)
or even Named Entity Recognition (teams 65, 70, 73, 81,
and 90). Teams 65 and 73 used dependency parsing on
the abstracts. For generating their predictions all teams
relied on the title and abstract, half used the MeSH
terms, too, and one team was even also able to explore
full text information for some of the articles. For feature
selection or weighting purposes, approaches used by
participating teams include statistical methods like Chi-
Square, mutual information, frequency cut-off and
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Bayesian weights as well as other selection criteria such
as the restriction to particular Part-of-Speech types.
Teams 81, 89, 100 and 104 also used dimensionality
reduction techniques on their features. A common char-
acteristic of most of the participating teams was the use
of machine learning techniques in general. Half of them
used Support Vector Machines (SVM) for the classifica-
tion (teams 81, 89, 90, 92, 100), and most of those com-
bined the SVM with other supervised methods (81:
(their own) Variable Trigonometric Threshold linear
classifier, 89: Naive Bayes, 90: Logistic Regression, 100:
Nearest Neighbour). Team 70 used Nearest Neighbour,
104 Naive Bayes, 73 Large Margin class with Huber loss
function, and team 65 used a Maximum Entropy classi-
fier. For ACT, Team 90 devised two independent sys-
tems one using SVM and the other using Logistic
Regression.

IMT

IMT annotation data

The annotations provided for the IMT task test set had
been produced by the BioGRID and MINT database
curators. Both follow a slightly different article selection
criteria. In case of MINT, they carry out an exhaustive
journal curation, examining each article for a specified
time period given a selected journal, while BioGRID is
primarily interested in curation of articles for a particu-
lar organism of interest. For this task, both databases
agreed to use the same curation standards. Due to the
considerable workload associated with producing the
requested interaction detection method annotations for
full text articles, the test set size was limited to 223 arti-
cles (see table 2). Nevertheless, for implementing their
systems we were able to compile a large collection of
training and development set articles with annotations,
enough to build supervised learning methods that basi-
cally consider this task as a multi-class classification sce-
nario. As only a small set of journals were used as test
set, there were some differences in the distribution of
methods across the three data collections provided, as
shown in Figure 1.

IMT team results

In total, eight teams participated in this task. The official
evaluation results of each run are shown in table 5,
measuring the performance on the documents for which
the system provided results (results averaged over the
per-document scores are called “macro-averaged”
results). The evaluation of the overall performance of
the systems on the whole test set is shown in table 6 (i.
e., calculated from the summed up true/false positive
and true/false negative counts over 4/l documents -
“micro-averaged” results), while the corresponding team
information details can be obtained from Table 3. As
with the ACT, teams could participate offline, sending
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Table 5 IMT macro-averaged participant results

Team Run/Srvr Docs Precision Recall F-Score AUC iP/R
Base_Top4 RUN_T 222 28.60 47.75 33.78 032771
Base_Regex RUN_1 153 33.88 2231 24.73 -

T65 RUN_1 222 9.35 83.21 16.32 047884
T65 RUN_2 222 245 100.00 4.75 044034
T65 RUN_3 222 9.99 79.38 17.16 047650
T65 RUN_4 222 3348 42.88 3540 030927
T65 RUN_5 222 244 100.00 4.74 050111
T69 RUN_1 214 54.87 5791 52.39 052112
T69 RUN_2 211 57.01 57.35 5342 051844
T69 RUN_3 203 60.24 56.41 5445 051470
T69 RUN_4 199 6246 55.17 55.06 051013
T69 RUN_5 190 64.24 5244 5435 049390
T70 RUN_1 143 51.78 35.01 37.84 031402
T70 RUN_2 72 71.76 36.81 4561 036215
T70 RUN_3 30 80.00 4150 51.51 041500
T70 RUN_4 205 31.65 3872 31.75 0.32295
T70 RUN_5 159 36.36 21.26 2475 0.18976
T81 RUN_1 222 444 63.91 8.19 022022
T81 RUN_2 221 9.39 4192 14.12 0.19766
T81 RUN_3 222 1351 2835 1741 0.17010
T81 RUN_4 222 13.21 29.57 1734 0.20388
81 RUN_5 209 21.93 24.64 21.34 0.18733
T88 RUN_1 219 29.10 45.04 33.60 0.38590
T88 RUN_2 220 2867 4553 3335 0.38373
T89 RUN_1 200 54.78 53.37 5091 046061
T89 RUN_2 200 54.95 5323 50.76 046423
T89 RUN_3 201 54.05 5325 50.23 045330
T89 RUN_4 199 5448 54.18 5125 047211
T89 RUN_5 201 5530 56.12 5238 047807
T89 SRVR_4 200 5533 55.61 52,11 047636
T89 SRVR_5 199 54.09 54.00 50.96 047650
T89 SRVR_6 201 55.14 56.12 52.35 048047
T89 SRVR_7 203 5046 55.66 50.06 047392
T89 SRVR_8 199 54.04 54.05 50.84 047534
T90 RUN_T1 200 56.11 5159 50.72 044687
T90 RUN_2 203 56.37 53.19 5120 047159
T90 RUN_3 217 5529 59.90 54.62 0.52974
T90 RUN_4 177 63.98 46.89 5136 044118
T90 RUN_5 164 66.26 46.78 5202 044458
T100 RUN_1 213 47.26 54.97 47.06 043312
T100 RUN_2 222 41.19 54.61 44.18 043238
T100 RUN_3 222 3529 4553 37.50 0.32459
T100 RUN_4 222 3529 4553 37.50 0.32459
T100 RUN_5 125 5640 30.65 37.01 0.29387

Macro-averaged results when evaluating only documents for which the system reported results (i.e., measuring the average per-document performance only on
the documents each run produced annotations for). The highest score for each evaluation column is show in bold typeface, the lowest in italics. Run/Srvr: RUN =
offline run, SRVR = online server run via BCMS; Docs: number of documents annotated; AUC iP/R: Area under the interpolated precision/recall curve. Base Top4:
baseline system that assigns the four most frequent classes ordered by their frequencies in the training/development set. Base Regex: simple matching strategy
based on regular expressions.
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Table 6 IMT micro-averaged participant results

Team Run/Srvr Precision Recall F-Score MCC AUC iP/R
Base_Top4 RUN_T 28.60 4820 35.90 - 0.15924
Base_ Regex RUN_1 3245 22.34 26.46 - -

T65 RUN_1 877 84.82 15.89 0.23552 027588
T65 RUN_2 245 100.00 4.78 0.06259 0.24484
T65 RUN_3 942 81.78 16.89 024172 027727
T65 RUN_4 3348 42.32 37.39 036166 0.14169
T65 RUN_5 244 100.00 4.76 0.06193 0.29016
T69 RUN_1 5207 55.03 53.51 052519 0.34302
T69 RUN_2 5434 5351 5392 0.52958 0.33824
T69 RUN_3 57.36 50.29 53.59 052796 032539
T69 RUN_4 59.25 4801 53.04 0.52456 031711
T69 RUN_5 6133 43.64 51.00 0.50896 0.29373
T70 RUN_1 4861 2315 31.36 032617 0.12949
170 RUN_2 70.00 11.95 2042 0.28419 0.08731
T70 RUN_3 80.65 4.74 8.96 0.19270 0.03826
T70 RUN_4 3122 3643 3363 032216 0.15688
T70 RUN_5 32.69 15.94 2143 021717 0.05734
T81 RUN_1 454 66.03 850 0.11406 0.07716
T81 RUN_2 8.71 42.13 1443 0.15560 0.06239
T81 RUN_3 1351 2846 18.33 0.17168 0.04657
T81 RUN_4 13.20 27.70 17.88 0.16667 0.05601
T81 RUN_5 2135 2220 2177 0.20090 0.05283
T88 RUN_1 2844 45.16 34.90 0.34146 0.20244
T88 RUN_2 28.17 4592 34.92 034263 0.20069
T89 RUN_T 52.52 4953 50.98 049997 0.28202
T89 RUN_2 52.02 48.96 5044 049451 0.28589
T89 RUN_3 50.78 4934 50.05 049016 027238
T89 RUN_4 52.50 4991 51.17 0.50181 0.29220
T89 RUN_5 52.58 5218 52.38 051382 0.29980
T89 SRVR_4 52.71 51.61 52.16 051163 0.29926
T89 SRVR_5 5228 50.10 51.16 050168 0.30046
T89 SRVR_6 5228 5218 5223 051226 030049
T89 SRVR_7 49.55 52.56 51.01 049972 0.29303
T89 SRVR_8 51.76 50.29 51.01 049999 029766
T90 RUN_T1 5333 47.06 50.00 049113 0.26805
T90 RUN_2 5256 4877 50.59 049625 0.28386
T90 RUN_3 5230 5825 0.5512 0.54201 0.35423
T90 RUN_4 61.09 38.14 46.96 047436 0.25209
190 RUN_5 64.24 35.10 4540 046707 0.24270
T100 RUN_1 44.59 5161 47.85 046794 0.26055
T100 RUN_2 39.86 54.84 46.17 045448 0.26982
T100 RUN_3 3529 4459 3940 0.38240 0.15734
T100 RUN_4 35.34 44.59 3943 0.38271 0.15758
T100 RUN_5 54.86 1822 27.35 0.30847 0.11109

Micro-averaged results when evaluating all documents (i.e.,, measuring the overall performance of each run on the whole document set). The highest score for
each evaluation column is show in bold typeface, the lowest in italics. Run/Srvr: RUN = offline run, SRVR = online server run via BCMS; MCC: Matthew’s
Correlation Coefficient; AUC iP/R: Area under the interpolated precision/recall curve (micro- averaged by iterating over the precision/recall values of the highest
ranked annotation of all articles, then all second ranked annotations, etc.). Base_Top4: baseline system that assigns the four most frequent classes ordered by
their frequencies in the training/development set. Base_Regex: simple matching strategy based on regular expressions.
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the results via e-mail, as well as online via the BioCrea-
tive Meta-Server (BCMS) [40]. In case of the macro-
averaged results the highest AUC iP/R achieved by any
submission was 52.974%, obtained by run 3 of team 90
(with an F-score of 54.616). Run 3 of team 70 reached
the overall best precision of 80.00% at a recall of 41.50%
(F-score of 51.508, but predictions are only available for
30 documents). Run 5 of Team 65 was the only one to
achieve full recall (100%) while at the same time man-
taining an AUC of 50.11%, just marginally lower than
the best one. The most competitive F-score was of 55.06
(62.46% precision, 55.17% recall, based on 199 docu-
ments), obtained by Team 69 run 4. With respect to the
micro-averaged results, the best prediction corresponded
to run 3 of team 90. It obtained a precision of 52.30%,
recall of 58.25%, F-score of 55.117, MCC of 0.5420, and
AUC iP/R of 0.3542. By using the BCMS framework for
participating online, we were able to measure the time it
took the systems to report interaction method identifiers
for full-text articles. However, there was only one team
(89) participating online in this task, albeit with 5 ser-
vers and quite competitive results. This team annotated
a full-text article on average in 3.7 seconds (sd: +0.35
sec), and achieved a maximum F-Score score of 52%
with an AUC iP/R of 48%.

In order to interpret the performance scores it is
important to put them into context. As already men-
tioned, some of the interaction methods appear more fre-
quently in the training and development sets. This might
lead to the assumption that such a distribution can be
used to derive a sort of statistical baseline prediction,
using the most frequent classes in the test/development
set (brown colored classes in Figure 1) to establish a
baseline qualifier. A simple statistical baseline was gener-
ated by assigning the four most frequent classes, consti-
tuting more than 50% of all assignments in the training/
development set, to every test set articles, ranked/ordered
by their frequency in the training/development set. The
resulting scores are shown in tables 5 and 6. The
improvement over this distribution baseline when con-
sidering submitted runs is +0.21283 (163%, from 0.33777
to 0.55060) in case of F-score and +0.20203 (162%) in
case of AUC iP/R (from 0.32771 to 0.52974) from macro-
averaged scores. As for micro-averaged scores, evaluated
team runs improve the F-score by +0.1922 (154%, from
0.35901 to 0.55117) and AUC iP/R by +0.1950 (222%,
from 0.15924 to 0.35423). However, the statistical base-
line is not associated to any evidence text passages; The
annotations cannot be interpreted by human curators,
and thus have only limited practical value.

A very common approach to link lexical entries to free
text is by using term-lookup strategies, often by using
either string matching or more competitive matching stra-
tegies (e.g., regular expressions). To compare the value of
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the resulting tools to such a baseline regular expression
method, an additional comparative analysis has been car-
ried out. For the Regex baseline system, a regular expres-
sion is formed for each of the method names (concept
name, not synonyms). The text is matched against each of
the regular expressions, and if there is a successful match,
the association to the corresponding method is reported.
This baseline system was included in the distribution files
on the BioCreative web page. The improvement of the
best run over the Regex baseline in terms of macro-aver-
aged f-score was +0.2128 and for the micro-averaged f-
score even +0.2865. Aspects related to the method ranking
(AUC iP/R) were not examined, as this system does not
produce a proper ranking.

Participant technologies used for IMT

The participants were asked to fill in a short question-
naire, and all participants responded. Only one team
(81) used other sources of training data than what was
provided through the challenge itself, one team made
use of the UMLS (69) and two of MeSH terms (90,
100). Most teams relied on the provided text we
extracted using the UNIX tool ‘pdftotext’, while Team
100 made use of the PDFs directly. Most teams incorpo-
rated lexical analysis of the text (sentence splitting, toke-
nization and/or lemmatization/stemming), quite a few
looked at n-gram tokens (teams 81, 89, 90, 100), but
only one also included Part-of-Speech-tagging (team
90), and, interestingly, some teams omitted a specialized
Named Entity Recognition approach (NER; teams 81,
89, 100; instead using regex matching). Team 90 even
made use of shallow parsing techniques. All teams
except 81 relied on Bag-of-Word vectors, and teams 70
and 88 did not use any supervised classifiers. Teams 90
and 69 were the only teams to use a Logistic Regression
classifier trained on each term, team 90 also applied a
Support Vector Machine, and team 69 used MALLET
for NER. Other than that, no team reported use of exist-
ing BioNLP libraries, instead relying mainly on in-house
tools. Only teams 90 and 65 applied gene/protein men-
tion detection. In order to weight unigrams and bigrams
features, team 89 calculated mutual information and chi
square values. This team reported that these features
were ranked the highest for them after feature selection,
and that an additional feature for node popularity was
very useful for this task. Chi square statistics were also
used to score collocations and bigrams in case of team
65. We also asked teams to evaluate the difficulty of the
task (easy, medium, hard); No team thought the task
was easy, half (70, 89, 90, 100) said is was hard, while
the other four (65, 69, 81, 88) classified it as ‘medium’.

Online participation
In addition to offline participation (sending the system
results by email), the BioCreative Meta-Server (BCMS)
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[40] framework was provided to participants, using
exactly the same setup as for BC IL.5 [15]. This enabled
online participation, submitting results via web service
calls. This online submission allows measuring the time
it takes systems to report results for the articles they
annotate. However, there was only one team (89) parti-
cipating online in the method sub-task (IMT) and only
two (81 and 89) in the article classification sub-task
(ACT). Team 89 annotated full-text articles (IMT) on
average in a surprisingly short period of time - 3.7 sec-
onds (sd: £0.35 sec) - achieving a maximum F-Score
score of 52% with an AUC iP/R of 48%. Team 81 anno-
tated ACT Medline abstracts on average in 20 seconds
(sd: £12 sec) and although the maximum MCC score
was only 0.11, their best AUC iP/R was 50% (Server 10).
The second team, 89, did even better in the online ACT
with an average of 1.9 seconds (sd: +0.57 sec) per
abstract, achieving a maximum MCC score of 0.61 (Ser-
ver 8); their best AUC iP/R score was 58% (Server 5).
The timing results match fairly well with the results
found during BC II.5, although the combined time and
performance of team 89 is an slight advancement over
BC IL.5 (best online ACT team in BC II.5, by MCC
score: Team 9, Server 29, with MCC 0.583, average time
22 seconds/article). However, the results are not neces-
sarily comparable, as the BC 1.5 ACT was carried out
on full-text articles, while for BC III Medline abstracts
were used. Moreover, in BC IL5, a single journal with a
different class imbalance was used as opposed to the
range of curation relevant journals utilized in BC III. On
the other hand, timing of annotating full-text IMT arti-
cles compared to the interacting protein normalization
task (INT) of BC IL5 - also on full-text - can be seen as
comparable on the basis of article sizes if one disregards
the fact that the namespace of proteins (INT, IL.5) is
probably much larger than that of method names (IMT,
III). The fastest server in BC IL.5 (T42, S20), performed
at 14 sec/article - compared to 3.7 sec/article by T89
(see above), a nearly 4-fold improvement.

Individual system descriptions

All participating teams were requested to provide a
short technical summary on the strategy used for parti-
cipation in the PPI task. Team summaries are ordered
based on the team identifier.

Team 65: Gerold Schneider and Fabio Rinaldi (ACT, IMT)
Team 65 (OntoGene) included the following members:
Fabio Rinaldi, Gerold Schneider, Simon Clematide, Mar-
tin Romacker, Therese Vachon. The OntoGene research
group at the University of Zurich has developed compe-
titive tools for the extraction of mentions of protein-
protein interactions (PPI) from the scientific literature
through participation in previous BioCreative editions
[11,41]. While Team 65 had previously obtained good
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results in the task of extracting supporting information
about the interactions, such as experimental methods
[42], this team never considered before participation to
the ACT task, which appears at first sight a pure docu-
ment classification task where an NLP-rich approach
would not be able to provide a significant contribution.

The participation to the ACT task of BioCreative III
was motivated by the desire to dispel this negative
assumption through enrichment of a traditional machine
learning (ML) approach with features derived from their
PPI pipeline. Three of the Team 65 runs apply Maxi-
mum Entropy optimization (using the MEGAM tool
[43]). Features include lexical items, MeSH annotations,
plus crucially a score delivered by their PPI detection
pipeline. Two runs used only results of their protein-
protein interaction detection pipeline (as developed for
BC IL5), for comparison.

The feature weights used for the test set were drawn
from the development set only. Including the balanced
(but therefore biased) training set degraded the results
on the development set. To keep training efficient and
prevent over-training, Team 65 used frequency thresh-
olding and feature selection to cut the set of features to
20,000. The submitted runs optimize for different eva-
luation metrics. The results proved to be competitive,
reaching 3rd or 4th rank for each of the measures
selected by the organizers.

It is interesting to notice that the best system used a
similar approach, based on a dependency parser. How-
ever, that team made a richer use of the features deliv-
ered by the parser. These results prove that an NLP-
based pipeline for PPI extraction definitely provides a
positive contribution towards the solution of the ACT
task.

For the PPI-IMT task, the OntoGene group developed
two statistical systems (called system A and system B
here). Both are based on a Naive Bayes approach but
use different optimizations and heuristics. System B is a
very generic Naive Bayes multiclass classifier, whereas
system A was optimized for IMT, taking into account
terminological information obtained from the PSI-MI
ontology.

For each of the two systems, two runs aiming at maxi-
mizing AUC and F-score were submitted. Additionally, a
fifth run combining the max AUC runs of both systems
was submitted. Best precision can always be obtained by
taking only the best ranked method for each article, so
no specific run aiming at optimizing precision was
submitted.

Nearly all of the runs have very high recall, two of
them even reaching 100% (no other participant system
could reach full recall, the next best result was 66.03%).
Run 5 is particularly remarkable as it combines full
recall with high AUC iP/R (0.501), which is only
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marginally less than the best results in the competition -
0.5297, which however has much lower recall. For a
semi-automated curation application, the configuration
of near-total recall with good ranking is probably opti-
mal. More details of this approach can be found in
Schneider et al, same volume.

Team 69: Robert Leaman and Graciela Gonzalez (IMT)
Team 69 included the following members: Robert Lea-
man, Ryan Sullivan, Graciela Gonzalez. The system of
team 69 modeled the detection of interaction methods
in a document as a set of document-level classification
problems. For each interaction detection method Team
69 trained one machine learning classifier to detect
whether the method was mentioned at least once in an
entire document. Each interaction detection method was
classified independently, without regard for any subtypes
or supertypes of the method. System input consisted of
the pdftotext version of each article, and system output
consisted primarily of the probability that each interac-
tion detection method was mentioned somewhere in the
document according to the classifier for that interaction
method. This system also found support statements by
applying the classifiers trained at the document level to
each sentence in the document, then taking the sen-
tence from the document with the highest probability
output by the classifier as the support for the corre-
sponding interaction detection method.

Preprocessing steps performed by this system include
sentence-breaking, tokenization, normalizing case and
Unicode characters, stop word removal [44] and stem-
ming [45]. All classifiers used the same feature set, con-
sisting of term and lexicon membership features. Term
features are binary-valued and indicate the presence or
absence of a single stemmed token within the document.
Strict lexicon membership features are also binary-valued
and indicate whether there was a sentence within the
document that contained all of the tokens from any of
the names of the detection method being located. Fuzzy
lexicon membership features are similar to strict lexicon
membership except that they are real-valued, represent-
ing the proportion of the tokens of the interaction detec-
tion method name that the sentence contains. Their
lexicon of interaction detection method names was com-
piled primarily from the name, synonyms and unique
identifiers (e.g. ‘MI:0006’) from the PSI-MI ontology [46].
Team 69 added approximately 40 additional synonyms
by locating concepts in the UMLS Metathesaurus [47]
from semantic types such as ‘Laboratory Procedure’
which share a name with a concept in the PSI-MI ontol-
ogy. All names in the lexicon were preprocessed in the
same manner as the document text.

Logistic regression, as implemented by MALLET [48],
was used for all classifiers. Documents from the training
data annotated with a given interaction detection
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method were taken as positive instances of that method,
and all other documents were considered negative
instances of the method. No data was used for training
other than the data provided for the task. The classifiers
were trained using L; regularization, via the orthant-
wise limited memory quasi-Newton algorithm (OWL-
QT) [49]. L; regularization typically creates a sparse
model, meaning that the weight of most parameters is
set to zero. This is in contrast to L, regularization,
which usually learns many weights that approach zero
asymptotically. L, regularization therefore has many of
the same advantages as feature selection, such as
increased interpretability and allowing faster inference.
In addition, L; regularized models have been shown to
be more robust to irrelevant features than L, regularized
models, since the amount of training data needed rises
only logarithmically in the number of irrelevant features
present [50]. Team 69 found in their experiments that
training with L; regularization resulted in approximately
3.3% higher F-measure and 4.9% AUC iP/R than train-
ing with L, regularization.

Team 70: Sérgio Matos (ACT, IMT)

Team 70 included the following members: Sérgio Matos,
David Campos, José L. Olivera. The proposed method of
Team 70 for the ACT subtask makes use of the domain
terminology in a vector-space classification approach
[51]. Basically, the documents in the training set are
represented as vectors of biologically relevant words, to
which the unclassified documents are compared. The
underlying lexicon includes a list of interaction methods
from the Interaction Method Ontology (PSI-MI) [46],
distributed by the organizers for the PPI-IMT task, and
biologically relevant words, extracted from the BioLexi-
con resource [52]. Document vectors are stored as a
Lucene [53] index with the following structure: the
document identifier, for referencing purposes, the docu-
ment classification (1 for relevant; 0 for non-relevant),
and two text fields, one for the textual occurrences of
the lexicon terms and the other for the corresponding
lemmas. The use of lemmas allows normalizing related
terms to a single lexical entry. In this case, the BioLexi-
con terms are normalized to the infinitive form of the
verb (for example, ‘interacts’, ‘interacting’ and ‘interac-
tion” are all normalized to ‘interact’).

During the classification of a new document, each
occurrence of a lexicon term (or the corresponding
lemma) is added to the query string, which is then used
to search the index. From this search, the top M docu-
ments are retrieved, together with the corresponding
classifications and Lucene similarity scores. The class
probability for the new document is then calculated as
the sum of the similarity scores for each class, normal-
ized by the sum of the scores for the M documents. A
threshold, corresponding to the operating point of the
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classifier, is then used by Team 70 to select the class for
that document. Term normalization, by using lemmas,
allowed improvements in AUC iP/R between 3% (for M
= 50) and 6% (for M = 500), compared to the use of the
textual occurrence of the lexicon terms.

For the IMT subtask the approach followed by Team
70 was to find mentions of methods names and syno-
nyms in the texts and apply a very simple heuristic to
validate and rank the classifications. To facilitate
approximate string searches, all documents in the test
set were added to a Lucene index. This index is then
searched for each entry in the dictionary of methods
names - provided by the task organizers - and the top
100 documents for each search are retrieved. For syno-
nyms of the same method (same PSI-MI identifier), the
document scores are added together. Finally, a method
ID is assigned to a document if that document/method
score is above a preset threshold.

The use of domain terminologies and vector-space
models for classification of PPI relevant documents pro-
vided encouraging results. The use of other lexical and
ontological resources (e.g. Gene Ontology terms) may
help improve the results obtained. Comparing to the use
of classification models, such as SVMs, the proposed
approach has the advantage that adding more classified
documents as new information to the classifier only
involves adding those documents, with the correspond-
ing classification, to the index.

Team 73: Sun Kim and W. John Wilbur (ACT)

Team 73 included the following members: Sun Kim, W.
John Wilbur. Protein-protein interactions (PPIs) in bio-
medical literature can be interpreted as a series of
dependency relationships between words. Hence, captur-
ing this information is key in detecting PPI information
at both the article and sentence level. The main focus of
Team 73 in the ACT task was to explore the usefulness
of the syntactic information in addition to conventional
approaches. The system proposed by Team 73 has three
different modules, gene mention detection, feature
extraction, and classifiers. The feature extraction module
consists of two parts, word-based and relation-based fea-
ture extraction. Word-based features include the com-
mon feature sets such as n-grams and strings. Relation-
based features are basically a set of dependency relation-
ships between words at the sentence level.

As the first step of the filtering process, gene and pro-
tein names are tagged using the Priority model [54].
This step is essential because, in PPI events, protein
names are the most important words triggering PPI
descriptions. The Priority model was developed in the
group of Team 73 to overcome the pitfall of other sta-
tistical approaches by emphasizing the right-most words
in a candidate phrase. Next, gene-tagged articles are
further processed to obtain features for a data-driven
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classifier. The highlighted feature in word-based extrac-
tion is MeSH terms. MeSH is a thesaurus for indexing
and searching biomedical literature, hence this con-
trolled vocabulary is a good indicator of an article’s
topic. Relation-based features investigate the dependency
relationships between words. By using a dependency
parser [55], a head word and a dependent word are
determined as a two-word combination. Furthermore,
gene names are alternatively anonymized by replacing a
specific gene name with a common tag, e.g., PROTEIN’,
which reduces the total number of features while leaving
dependency information intact. Another aspect of fea-
tures considered by Team 73 is to extract higher-order
patterns by evaluating a set of feature combinations.
This process adds combination features that are
detected as useful for the classifier. The last step of PPI
article filtering is to learn to classify articles based on
the extracted features. The constraint here is to mini-
mize computational cost and processing time with rea-
sonable classification performance. To achieve this
purpose, a large margin classifier with Huber loss func-
tion [56] was adopted by Team 73. The Huber classifier
is a linear predictor using a simple gradient descent
learning algorithm, which results in excellent perfor-
mance competitive with support vector machine
classifiers.

Although the current approach has room for improve-
ment, it produced the top-ranked performance in the
BioCreative III ACT task by achieving 89.15% accuracy,
0.55306 MCC, 61.42% E-score, and 67.98% AUC in dif-
ferent data/feature combinations. As a result, Team 73
found that syntactic patterns along with word features
can effectively help distinguish between PPI and non-
PPI articles, in particular, with a limited training corpus.
More details of this approach can be found in [57].
Team 81: Luis Rocha (ACT, IMT)

Team 81 included the following members: Luis M.
Rocha, Andlia Lourenc¢o, Michael Conover, Azadeh
Nematzadeh, Fengxia Pan, Andrew Wong, Hagit Shat-
kay. For the ACT Team 81 participated in both the
online submission via the BioCreative MetaServer plat-
form, as well as the offline component of the Challenge.
Team 81 used three distinct classifiers: (1) the pre-
viously developed Variable Trigonometric Threshold
(VTT) linear classifier [58,59] which employs word-pair
textual features and protein counts extracted using the
ABNER tool [60], (2) a novel version of VTT that
includes various NER features as well as various sources
of textual features [61], and (3) a Support Vector
Machine that takes as features various entity count fea-
tures from the NER tools team 81 tested. In addition to
testing the power of available NER tools for classifica-
tion of documents relevant for Protein-Protein Interac-
tion, members of Team 81 were interested in
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investigating the advantages of using full-text data on
the classification. Team 81 utilized the following NER
tools and dictionaries: ABNER, NLProt, Oscar 3, ChEBI
(Chemical names), PSI-MI, MeSH terms, and BRENDA
enzyme names. Team 81 also used the output of their
Interaction Methods Task pipeline as an additional
annotation tool. While their submitted results suffered
from many errors due to NER pipeline integration,
Team 81 has since fixed the errors and obtained excel-
lent classification results on training data, even when
using simply feature counts (e.g. number of methods
identified by PSI-MI in a document) from a few NER
tools [61]. To address the IMT, Team 81 employed a
statistical approach. Unlike most teams, which used
NLP and/or classification of documents into the many
different possible classes - corresponding to the many
candidate methods - team 81 looked directly within the
text for experimental evidence. That is, Team 81 looked
within the text for candidate short passages likely to
indicate experimental methods, used simple pattern
matching to identify the method within the passage, and
ranked candidate matches according to statistical con-
siderations. To find candidate passages in text, Team 81
used classifiers they have developed independently [62],
which were trained on a corpus of 10,000 sentences
from full-text biomedical articles, tagged along five
dimensions: focus (methodological, scientific or generic),
type of evidence (experimental, reference, and a few
other types), level of confidence (from 0 - no confi-
dence, to 3 - absolute certainty), polarity (affirmative or
negative statement), and direction (e.g. up-regulation vs.
down-regulation). This corpus is available at: http://
www.ncbi.nlm.nih.gov/pmc/articles/PMC2678295/bin/
pcbi.1000391.5002.zip. While this corpus was not con-
cerned with protein-protein interactions, the classifier
trained on the Focus dimension showed high sensitivity
and specificity in identifying Methods sentences. Using
the text files provided by the BioCreative organizers,
Team 81 broke the corpus into sentences (modifying
the Lingua-EN-Sentence Perl module [63]), and elimi-
nated bibliographic references using simple rules. The
remaining sentences were represented as term vectors
and classified according to their Focus, utilizing an SVM
classifier [62], thus identifying candidate sentences that
may discuss methods. Method Identifiers were then
associated with the latter sentences by simple pattern-
matching to PSI-MI ontology terms. The matches were
then scored using a strategy described later in this
volume, and high-scoring methods were reported along
with the sentences as evidence.

Team 88: Ashish V Tendulkar (ACT, IMT)

Team 88 included the following members: Ashish V
Tendulkar, Aniket Rangrej, Vishal Raut. Team 88 devel-
oped a maximum entropy classifier for PPI abstract
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classification task. The goal was to develop a classifier
that takes biologically relevant clues as features while
classifying the abstract. Team 88 used PSI-MI ontology
for extracting features from the abstract and the title.
They developed a dictionary based tagger for tagging
mentions of PSI-MI concepts from different levels. In
addition to these features, Team 88 used MESH terms
provided along with the abstract. On training data,
Team 88 obtained 35% precision and 55% recall. They
believe that this is an interesting direction of classifying
abstracts by constructing biologically relevant features.
The ACT classification system will be available at the
following URL: http://www.cse.iitm.ac.in/~ashish/
research/ACT/

Team 88 developed dictionary based NER for detec-
tion of interaction method mentions from text con-
verted PDF files as provided by the organizers. The
system has the following components: (i) Dictionary
construction; (ii) Pre-processing of scientific article,
which includes sentence splitting and division into var-
ious sections; (iii) Interaction method NER; (iv) Post-
processing. The dictionary was constructed by extending
PSI-MI ontology to incorporate common variations of
interaction methods used in scientific literature. The
common variations include lower case lexicons, repla-
cing space with hyphen, etc. The analysis of training
data revealed that the interaction methods are definitely
mentioned in the experimental method section and at
times in the abstract and title of the research papers.
Team 88 further observed that the extraction from title
and abstract gives the best precision partly due to their
original availability in text form and hence does not
contain noisy characters as introduced in other parts
due to PDF to text conversion. Thus, detecting these
mentions reduces the number of false positives that
would have been obtained from other sections of the
paper. Further, Team 88 also observed that detecting all
mentions in experimental methods section is sufficient
to ensure high recall of the system. In order to take
advantage of these observations, Team 88 first divided
the article into different parts along the section bound-
aries. The standard division included abstract, introduc-
tion, results, discussion and experimental method. The
main challenge here is to detect section headings from
the article in text format obtained via PDF to text
(pdftotext) conversion. Team 88 used several clues for
detecting them: (i) The section header is usually in
upper case or capitalized; (ii) they have standard names,
which vary from journal to journal. Ideally, Team 88
would like to detect these names independent of jour-
nals, but in this implementation, Team 88 relied on a
manually constructed dictionary of journal-specific sec-
tion headers. They first obtain the journal in which the
paper has appeared and use the appropriate section
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headers. Team 88 ignored the list of references and
other sections like acknowledgements, but notes that
the acknowledgement section contains strong clues
about interaction detection method, since it contains
references to certain facilities used for conducting the
protein-protein interaction detection experiments. Team
88, however, has not exploited these clues in their cur-
rent implementation. Team 88 then divided each article
into sentences and each sentence is assigned a tag
denoting the section in which it is appearing. Team 88
implemented a dictionary based NER system for detect-
ing interaction method mentions. They first detected
the mentions from the section describing experimental
procedure, then title and abstract, and then from the
remaining sections. The mentions from abstract and
experimental procedure section were assigned highest
confidence score. During the post-processing step,
Team 88 disambiguated between the interaction meth-
ods with overlapping tokens. They chose the interaction
method with longest match and discarded the mention
subsumed in the larger entity. The IMT extraction sys-
tem will be made available at the following URL: http://
www.cse.iitm.ac.in/~ashish/research/IMT/

Team 89: Shashank Agarwal and Feifan Liu (ACT, IMT)
Team 89 included the following members: Shashank
Agarwal, Feifan Liu, Hong Yu. Team 89 participated in
both PPI tasks. For the article classification task (ACT),
supervised machine learning algorithms Support Vector
Machines (SVMs) and multinomial Naive Bayes (NB)
algorithms were trained on the training data. Unigrams
(individual words) and bigrams (two consecutive words)
were used as features for the classifier. The mutual
information between each feature and the class label
was used to rank those features and either the top 400
or top 1000 features were selected. For training, the
training corpus of 2280 articles was combined with the
development corpus of the 4000 articles. As the distri-
bution of articles in the development corpus was the
same as the distribution expected in the test data, for
some runs, only the development corpus was used for
training. The classifiers were trained using the freely-
available Simple Classifier program https://sourceforge.
net/projects/simpleclassify/ that was also developed by
Team 89, which is based on the Wekal framework.

The interaction methods task (IMT) was also
approached as a binary classification task. Each node in
the PSI-MI sub-ontology was considered to be indepen-
dent of other nodes in the ontology, and an article-node
pair was considered as positive if the corresponding
interaction method was detected in that article, and
negative otherwise. The nodes were preprocessed; for
some nodes, synonyms were added manually, for exam-
ple, ‘anti bait immunoprecipitation’ for ‘anti bait coim-
munoprecipitation’. The concept name of a node and all
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synonyms of the node were normalized (lowercased and
lemmatized) and used separately. From each node’s con-
cept name and synonym names, unigrams and bigrams
were extracted. For each unigram and bigram, the
mutual information score and chi-square score were cal-
culated. Machine learning classifiers were trained for
IMT using 21 features. The features included checking
if the node’s concept or synonym name appears in the
article, checking if the node’s concept or synonym
names’ unigrams or bigrams appear in the article, and
the sum of the mutual information score and chi-square
score of the unigrams and bigrams that appear in the
article. The frequency with which a node appears in the
training data was also used as a feature. Using these fea-
tures, the OntoNorm framework https://sourceforge.net/
projects/ontonorm/ was developed for this task, where
machine learning algorithms Random Forest, Random
Committee, Naive Bayes Tree and J48 were explored.
OntoNorm is based on the Weka [64] framework as
well.

Team 90: Xinglong Wang and Rafal Rak (ACT, IMT)

Team 90 included the following members: Xinglong
Wang, Rafal Rak, Angelo Restificar, Chikashi Nobata, C.
J. Rupp, Riza Theresa B. Batista-Navarro, Raheel Nawaz,
Sophia Ananiadou. Pre-processing: Both IMT and ACT
documents in plain-text format were pre-processed
using a number of linguistic processors, including toke-
nisation, lemmatisation, part-of-speech tagging and
chunking. The documents enriched by the linguistic fea-
tures were then processed with a named entity recogni-
ser, the same as used in our semantic search engine
Kleio [65], which exploits dictionaries and machine
learning methods to tag the following types of entities:
genes, proteins, metabolites, organs, drugs, bacteria, dis-
eases, symptoms, diagnostic/therapeutic procedures and
phenomena.

Additionally, for each IMT and ACT document, Team
90 retrieved its MeSH headings. The information of
interest included descriptor names and identifiers, in
both their atomic and hierarchical form, with the latter
more closely representing the underlying structure of
MeSH. For IMT, Team 90 also manually constructed a
mapping from the 10 most frequent MI IDs (Molecular
Interaction Ontology concept identifiers) as found in the
training data to their corresponding MeSH descriptors.

IMT: Team 90 approached IMT from two different
angles. One was based on a commonly used multi-class,
multi-label document classification framework. The
other one involved translating the multi-class, multi-
label classification to a binary classification problem by
classifying an exhaustive set of pairs of PSI-MI syno-
nyms and text phrases (chunks) found in the docu-
ments. Team 90 experimented with Logistic Regression
(LR) and SVMs as underlying machine-learning methods
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for the former and SVM only for the latter, which we
refer to hereafter as m-LR, m-SVM, and b-SVM, respec-
tively. For m-LR and m-SVM they trained a series of
binary classifiers, each corresponding to a single interac-
tion method, using the one-vs-all strategy. For each
model the positive instances constitute the documents
that are assigned the interaction method for which the
model is being built. The feature set used in training
included the type and text of named entities, words sur-
rounding the entities and the title of the section in
which the entities occurred, as well as information
about whether word unigrams and character n-grams
from the MI definition and synonyms match those in
the surrounding context of the entities.

During classification, a document is scored by all the
models and the decision whether it should be assigned
an interaction method is based on a thresholding strat-
egy. Team 90 primarily experimented with two thresh-
olding strategies, the local (class-specific) score-based
optimisation strategy, as well as its more commonly
used variant, the global (one for all classes) strategy.
Both strategies assign a class to a document based
purely on the score between the two and a given (local
or global) threshold. Team 90 observed that the perfor-
mance of their systems was improved considerably using
the thresholding strategies when compared to applying
the nominal threshold (probability equal to 0.5 in the
case of LR, and distance to a hyperplane equal to 0.0 in
the case of SVM).

The b-SVM approach first explores noun phrases (NP)
and verb phrases (VP) in a document and collects those
that are approximately similar to an interaction method
name in the PSI-MI ontology. The strength of similarity
is determined by a string similarity measure. An
instance - a pair chunk-method - is considered positive
if the document the chunk is coming from is assigned
the interaction method in the pair. Team 90 trained an
SVM model by extracting a rich set of features from
each pair in the training data.

The features included the string similarity score, the
chunk’s adjacent words and named entities, information
about whether the named entities occur in the definition
of the method, the title of the section where the text
chunk occurs, and information whether the document’s
MeSH headings match the interaction method based on
the manually created mapping. The analysis showed that
the most valuable features were named entities.

Team 90 also created simple ensemble systems by tak-
ing combinations of unions and intersections of classifi-
cation outcomes produced by the above-mentioned
systems. As tested in a cross-validation setup, the three
highest performing ensemble systems were the union of
m-SVM and b-SVM, the intersection of m-LR and b-
SVM, and the intersection of all the three systems.
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ACT: To get a better understanding of the task at
hand, Team 90 analysed a few randomly chosen positive
and negative sample abstracts from the training dataset,
in terms of whether the presence of certain attributes in
an abstract correlates with the assigned class (either
positive or negative). The attributes included protein
names, verbs or nominalised verbs around protein
names that signify protein interaction (involving more
than one participant), verbs or nominalised verbs near
protein names signifying protein modification (involving
only one participant), as well as protein-related and bio-
chemical-process-related MeSH headings.

The features used in machine learning included the
bag of words, named entities, protein context words (in
sentences that contain at least one protein) with posi-
tion information, and MeSH headings associated with
the document. Similarly to IMT, Team 90 adapted LR
and SVM classifiers. The analysis showed that the most
discriminative features were the bags of words followed
closely by protein contextual features and MeSH head-
ings, especially their hierarchical representation.

Team 92: Keith Noto and Charles Elkan (ACT)

Team 92 included the following members: Keith Noto,
Charles Elkan. The submission for the ACT of team
92 was the output from a system named PMAC
(PubMed Article Classifier) [66] that classifies and
ranks biomedical articles based on features extracted
from PubMed, and based only on positive training
examples. Because the submission was the result of a
fully automated system that needs no tuning of para-
meters, only one run was submitted. The PMAC sys-
tem is currently available free for public use at http://
www.cs.tufts.edu/~noto/pmac. It is based on a tool
developed with NIH funding to help maintain and
expand TCDB, the Transporter Classification Database
http://www.tcdb.org[67].

The PMAC system has wide utility because in many
article classification tasks, the only available labeled
examples are positive. Biomedical databases typically do
not provide examples of articles that are not representa-
tive of their domains of interest. PMAC uses a super-
vised classification algorithm to distinguish between
positive and unlabeled articles. The system then adjusts
the trained model mathematically to account for the
fact that a small fraction of unlabeled articles are actu-
ally positive; for details see Elkan and Noto, KDD 2008
[68]. The features that PMAC extracts from PubMed are

+ Words in an article’s abstract,

« Words in its title,

« Author names and affiliations,

+ Journal name and publication type,

+ Chemical substances mentioned in the paper, and
+ MeSH descriptor and qualifier names.
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http://www.tcdb.org
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Users may select some of these feature groups to
exclude if desired, and they may select a subset of
journals from which to present articles. For each arti-
cle, the output of the classifier is the probability that
the article is relevant. For classification, one may
choose a threshold probability. Or, if the class imbal-
ance is known, PMAC returns the appropriate percen-
tage of test set articles (this is what Team 92 did for
BioCreative III, ACT). Currently, PMAC uses an SVM
classifier with a linear kernel function, strength of reg-
ularization selected using cross-validation on training
data, and Platt scaling to estimate probabilities if
necessary. Feature weighting and feature selection are
not used. However, PMAC is compatible with any
supervised classifier that is capable of ranking articles.
The classification and ranking time of PMAC is custo-
mizable to a degree, because it depends on the size of
the training set and in particular on how many unla-
beled articles are included; the user may choose to
limit this number. In the BioCreative III article classifi-
cation task, Team 92 used approximately 10,000 unla-
beled articles and the classification and ranking was
done in about 17 minutes (not including article down-
load and feature extraction time, which may take
about 1-2 seconds per article, but need only be exe-
cuted once per article, and can be done separately
beforehand). The process of retraining and reclassify-
ing articles can take place periodically (e.g., overnight),
so that PMAC users can look for relevant articles
instantly as needed. Team 92 discusses the running
time further and show the superior accuracy of this
approach, in terms of precision and recall, compared
to hand-crafted rules in Sehgal et al., 2011 [69].

The PMAC system automatically extracts article fea-
tures from PubMed, so the only input needed is a set of
PubMed ID numbers. Users of PMAC do not need to
provide any features, nor do they need to understand
the features used by PMAC. Compared to other submis-
sions, there were two significant differences in the way
Team 92 used the training data provided for the Bio-
creative III article classification task. First, they did not
use the provided negative training instances (although
they did note the class imbalance). Second, they ignored
all the given training features, and used only features
extracted from PubMed by PMAC.

These differences presumably put the PMAC system
at a disadvantage, since it ignored a large amount of
relevant information. However, PMAC performed better
than the majority of participating systems, and achieved
F-score within a few percent of the F-score of the best
submitted run. Therefore Team 92 can recommend
with confidence that biomedical researchers looking for
an easy-to-use solution for classifying and ranking arti-
cles should try PMAC.
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Team 100: Zhiyong Lu and Rezarta Islamaj Dogan (ACT,
IMT)

Team 100 included the following members: Zhiyong Lu,
Rezarta Islamaj Dogan, Aurelie Neveol, Minlie Huang,
Yi Yang. This team used machine learning for predicting
whether or not an article is about PPI in the ACT task.
In addition to the training and development data sets of
BioCreative III, Team 100 used similar data sets from
BioCreative II and II.5. A noticeable aspect of their
work is that in response to the class imbalance issue
(ratio of positive/negative instances was roughly 1 to 5
in the BioCreative III development set), they recruited
additional negative instances by including MEDLINE
articles that are similar to the existing negatives using
PubMed related articles [70,71]. Their principle learner
for machine learning is an SVM like classifier that uses
modified Huber loss function for handling large-scale
data [56]. In terms of features Team 100 experimented
with various kinds, ranging from words to neighborhood
documents. They first learned separate models for each
feature type and then merged the results of different
features when making final predictions. Team 100 sub-
mitted a total of four offline runs. They investigated
three types of word-based features with or without fea-
ture selection. In addition to the traditional bag-of-
words and bigrams (two consecutive words), this team
extended bigrams to any two co-occurring words in the
same sentence (co-occurring words). The 4th feature
type is a set of character strings of length 8 generated
by shifting an 8-character window from the beginning
of a sentence to the end. For all these feature types,
stop words were retained. In particular, stop words were
found useful in bigram features (e.g. interacting with).
When feature selection was applied, Team 100 itera-
tively evaluated the importance of each individual fea-
ture through examination of their weights and
subsequently removed 1,000 features with the lowest
weights (i.e. closest to zero). In the 1st run, only the
bag-of-words feature was used along with feature selec-
tion. In their 2nd and 3rd runs, the bigrams, co-occur-
ring words and strings-of-length-8 features were used
individually to yield three separate prediction results. In
making the final prediction, a test article was predicted
to be PPI relevant if and only if all three individual pre-
dicted classes were positive. Feature selection was used
in the 3rd run, but not in the 2nd. In the 4th run, Team
100 combined 4 scores, two of which were produced by
the machine learner using the bag-of-words and bigrams
features. Two additional scores were computed: One is
based on the similarity scores of a test document to its
10 closest neighbors. Specifically, the 10 scores were
separated into two groups, indicating either a positive or
negative relation to PPI among those neighboring docu-
ments. This team summed the scores of each group and
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used their difference as a score in the 4th run. The
other score is based on the pattern matching method
previously developed for detecting PPI methods (e.g.
pull down) in the IMT task. Pattern matching was
applied to an article’s title and abstract and the number
of PPI methods retrieved was used as a feature score.
All four scores were fed to a log-linear model in produ-
cing a final prediction in the 4th run. Their results on
the official test set show that they achieved the highest
F-score of 59.49% and MCC of 0.527 in Run 2 while the
best AUC iP/R of 63.75% was achived in Run 4.

Team 100 used two separate approaches (knowledge-
and learning-based) for the IMT task. They designed
and conducted their experiments mainly on the Bio-
Creative III data. This group also used BioCreative II
data and additional annotations from the MINT data-
base, resulting in a total of 3,764 additional articles with
PSI-MI codes. For all these articles, title and abstract
text were extracted. Furthermore, when full text was
freely available from PubMed Central, figure captions
and text from material and methods sections were also
extracted. In the knowledge-based approach, Team 100
investigated three individual methods and their perfor-
mance on different text sections when applicable. The
three methods are respectively based on directly match-
ing PSI-MI terms and synonyms (Pattern Matching), on
retrieving similar PSI-MI codes from neighboring docu-
ments (Nearest Neighbors), and on inferring PSI-MI
codes from corresponding Medical Subject Headings
(MeSH) indexing terms (MeSH to PSI-MI). Based on
the results on the BioCreative III training data, Team
100 observed that prediction performance varied signifi-
cantly from method to method for a given PSI-MI code.
Therefore, their knowledge-based approach is code-spe-
cific: for each code Team 100 selected the best-perform-
ing method. For instance, the pattern matching method
was selected for molecular sieving (MI:0071) while near-
est neighbors method for two hybrid (MI1:0018). Their
novel learning-based approach formulates the prediction
of PSI-MI task as a ranking problem such that the rele-
vant codes should be ranked higher than those irrele-
vant ones. In the IMT task, for a target document Team
100 first obtained a pool of candidate codes from its
similar neighboring documents. Next, for ranking, each
code was represented by a vector of features, which ran-
ged from word features (e.g. name feature indicating if a
code name can be found in an article) to neighborhood
features (e.g. how many neighboring documents are
assigned a particular code). The ranking algorithm they
applied is a listwise learning-to-rank algorithm named
ListNet [71] because it naturally fits the problem in that
each article typically contains a list of relevant codes (as
opposed to one per document). Team 100 optimized the
learning function by conducting cross validation
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experiments on the BioCreative III training and develop-
ment sets. Finally, the ListNet algorithm produced a
score for each candidate code and they empirically
determined the top K ranked codes to be the answers of
the target document. This team submitted five offline
runs. The first run was based on the knowledge-based
approach. In the second run, they combined the pattern
matching and nearest neighbor methods by selecting
PSI-MI codes from neighboring documents if the PSI-
MI codes were also retrieved by pattern matching. The
third and fourth runs were both based on the learning
approach with the minor difference in K (K is always 3
for run 3; K varied depending on a score threshold in
run 4). Run 5 of this group was optimized for precision
by combining the results of Runs 2 and 3. Official
results on the test set show that their first run yielded
the best performance from all submissions of Team 100
(0.478 in Fl-score when evaluated on the whole docu-
ment set), indicating that it is somewhat helpful to
choose methods based on individual PSI-MI codes.
Team 104: Jean-Fred Fontaine and Miguel A. Andrade-
Navarro (ACT)

Team 104 included the following members: Jean-Fred
Fontaine, Miguel A. Andrade-Navarro. Medline Ranker,
implemented by Team 104, is a fast document retrieval
tool that classifies the biomedical scientific bibliography
in the MEDLINE database according to any selected
topic. It applies a linear Naive Bayesian classifier
(LNBC) on scientific abstracts with a high processing
speed (approximately 18000 abstracts per second) and a
high precision [72]. The Medline Ranker web server
http://cbdm.mdc-berlin.de/tools/medlineranker offers
alternative query mechanisms through PubMed queries,
MeSH terms or custom PubMed identifier (PMID) lists.
In particular, it allows the selection of a training set, a
background set, and a test set represented as PMIDs,
which Team 104 used for the PPI abstracts classification
task (ACT) of the BioCreative III challenge. To favour
the speed and flexibility of the Medline Ranker system
Team 104 focused its implementation on data pre pro-
cessing and storage [72]. The complete XML version of
MEDLINE is stored locally and weekly updated. English
abstracts are stored in a MySQL database after part-of-
speech processing used to define an abstract’s profile as
its set of nouns. A stop word list is used to remove
common and non meaningful terms. Multiple occur-
rences of nouns in a single abstract are not taken into
account [72,73]. A user’s request for classification of a
query set of abstracts requires the definition of a train-
ing set of abstracts and to choose a background set of
abstracts. Upon a query, first, a LNBC is trained on the
training set of abstracts by comparing their profiles to
those of the background set of abstracts. Secondly, the
abstracts in the query set are scored with the trained
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LNBC and P-values (based on a simulation on 10 000
randomly chosen abstracts) are associated to abstracts
representing the confidence in classification. For the
BioCreative III challenge, P-values were transformed in
scores by subtracting the P-value to 1, after truncation
of the P-value to ]0,1[. Medline Ranker uses for abstract
classification only words from abstracts and therefore it
does not depend on the quality or comprehensiveness of
external data or annotations (i.e. MeSH or Gene Ontol-
ogy terms). To produce fair results, Medline Ranker was
used to process BioCreative III PPI ACT task data by
training its algorithm and tuning the parameters only on
the provided training set. Even if not as accurate as
SVM classifiers, training a LNBC is significantly faster
and it allows the tool to process millions of abstracts
with comparable performance in a practical time [73].
For the PPI ACT task, the mean Medline Ranker run
total duration was 1.29 seconds to process 8280
abstracts. Notably, the running time also depends on
the MySQL search engine used for data access. Even if
not specialised in the topic of PPI (e.g. using specific
information extraction methods), the tool may be of
interest in this task because it is freely available on the
Internet and it can scan the ever growing scientific lit-
erature in a few minutes.

Discussion

ACT

Given the performance of systems, for example high-
AUC-iP/R servers, it is likely that humans could make
use of the results to quickly identify the most relevant
articles in a set. Therefore, the time spent by the text
mining pipelines should be put in contrast to the time a
human would need to select relevant articles. This exact
time will be established in future work with the annota-
tors and curators who provided the Gold Standard. We
have shown reasonable indications that online, auto-
mated systems could have a strong impact on reducing
the time required to locate relevant articles. This aspect
of quantifying automated versus manual classification
effort constitutes a complementary approach to mea-
sures of performance explored in the popular TREC
Genomics tracks, such as the mean average precision
(MAP), which measures precision after each relevant
document is retrieved for a given query [24].

As described in the data preparation section, during
the manual classification of abstracts, the MyMiner sys-
tem allowed the use of positive and negative keyword
highlighting to improve text visualization. These terms
were generated through inspection of instances during
the training set construction and contained 374 negative
and 73 positive terms. In order to determine whether
they are actually present in the test set, we used all
words in the test set collection, stemmed them, removed
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stopwords and generated unigrams and bigrams. Then
the occurrences of each term (both unigrams and
bigrams) were computed and their their frequencies
using the Kullback-Leibler (KL) divergence were com-
pared (smoothing 0 to 0.000001 and 1 to 0.999999). The
corresponding formula is calculated by: pos - log(pos/
neg) + neg - log(neg/pos); where pos and neg are the fre-
quencies of documents containing the term in the nega-
tive and positive sets. When analyzing the 3,000 most
significant terms resulting from this computation and
comparing them to the set of terms used for manual
highlighting, only 17.0% (361) of the manually defined
negative terms were encountered in the top 3,000 terms
as opposed to 61.5% (52) of positive terms. This illus-
trates that in general there is a greater textual diversity
within the non-PPI relevant articles and that finding
positive keywords and features that could be used for
highlighting to improve manual inspection is of greater
practical value.

Additionally, we examined articles that were difficult
to classify correctly by automated systems. This analysis
was based on the number of runs predicting incorrect
labels on an article and shows how the agreement
between automatic runs could actually be useful to
detect wrong manual classifications. A total of 99
records had been predicted by more than 80% of the
runs incorrectly, out of which 74 records corresponded
to false negative records (labeled true by the annotators)
and 26 corresponded to false positive cases (labeled
false). Examining the latter showed that 16 of these 26
cases were incorrectly labelled by the annotators, and
were in fact true PPI articles as indicated by the run
agreements. Some of these wrongly labeled cases corre-
sponded to abstracts describing oligomerization of DNA
binding proteins and other cases where it was difficult
to distinguish between an actual macromolecular struc-
ture (e.g. some channel) and an individual protein form-
ing this structure. Also, cases of very specific subtypes
of interactions (phosphorylation, acetylation and ubiqui-
tination) were more difficult for manual labeling. In case
the predictions were real false positives (i.e., correctly
labeled), they could be assigned to some general exam-
ple cases: (1) interactions between proteins and RNA, e.
g. PMID:19447915, (2) between proteins and cellular
structures  (especially cell ~membrane, e.g.
PMID:19690048), (3) complexes of proteins with inhibi-
tor molecule compounds, e.g. PMID:19458048, (4) pro-
tein-DNA binding, e.g. PMID:19605346, (5) protein-
compound binding (e.g. lipopolysaccharide), (6) men-
tions of components of a complex but without detailing
PPIs, (7) genetic interactions and transcriptional activa-
tion, e.g. PMID:19596907, (8) interaction of a particular
residue with some ion, (9) regulatory relations (phos-
phorylation dependent on certain protein) where it is
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not clear if an actual direct PPI is described and (10)
relations between a pathway or signaling process and a
phosphorylation event. Sometimes, several of these
topics were found in a single abstract. In addition,
among the false positives were abstracts dealing with
descriptions of the spliceosome and general ubiquitina-
tion events. Interestingly, a number of these types of
false positives were precisely the cases that had to be
refined when preparing the annotation guidelines and
had been specifically added as criteria for classifying
abstracts as non-relevant for manual annotation during
the initial rounds of annotation refinement. Looking at
the records classified as false negatives (by at least 80%
of the runs) it became clear that many of these records
corresponded to abstracts discussing aspects related to
host-pathogen interactions, inflammation and immune
mechanisms. Unclear cases, even for humans, included
associations of proteins with lipoproteins, certain types
of breakdown or cleavage of proteins, descriptions of
chimeric proteins and experimentally tagged fusion pro-
teins. Commonly missed records included cases of a
receptor protein binding to a ligand protein. This parti-
cular topic was also added during the annotation guide-
line refinement upon a request made by the expert
curator, where a specific question was whether the men-
tion of ‘insulin receptor’ corresponds to an implicit
interaction of insulin with the insulin receptor. Among
the false negative set are ambiguous cases that mention
a heterodimer but where it was not very clear who the
binding partner is, or records with very limited context
information requiring domain expert knowledge to
determine that a given protein pair mentioned is
involved in a complex.

Overall participating teams used a variety of different
features, many of them for training machine learning
approaches. Among the explored features one can point
out:

1) Word token features: unigrams (Bag-of-words),
multi-word n-grams (mainly bigrams and trigrams), col-
locations/co-occurring words (word-to-word
relationships).

2) Lexical features: exploiting the presence of particu-
lar term lists such as MeSH, PSI-MI, UMLS, BioLexi-
con, or in house term lists, or filtering a set of words
using stop word lists.

3) Textual pattern features: use of particular patterns
for expressing protein interactions, some of which had
been also applied for finding protein interaction pairs in
BioCreative II and IL.5 (e.g. ‘interacts with’, ‘binds to’).

4) String features: using character strings of particular
length like strings-of-length-8 tokens used by team 100.

5) Syntactic features: using dependency parser output,
grammatical patterns or shallow parsing derived phrases
as features.
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6) POS tags as features: selecting words with a particu-
lar POS tag as features for a classifier (as done by team
104).

7) Article metadata features: metadata provided for
each PubMed record (journal, MeSH annotation, author
name or affiliation fields).

8) Semantic features (NER): Named entity recognition
has been used to identify mentions of genes and pro-
teins, which can be used as features or serve as con-
straints for grammatical patterns. This feature seemed
to be particularly important for specificity.

IMT

In case of the interaction method task, considerable
complexity lies in differentiating between cases where a
particular method supports a protein interaction event,
as opposed to some other experimental setting where
that method is being used, and therefore goes far
beyond simple term look-up. Providing more detailed
training data in form of representative collections of tex-
tual evidence passages or marked method mentions
would be important to facilitate further the improve-
ment of performance of text mining tools for associating
correctly full text article to interaction detection method
terms from a list of 115 potential candidate terms.
Under this scenario the overall performance of the best
result on the entire set of articles (F-Score 55%, AUC
iP/R 35%, MCC 0.54) is quite promising, but also points
out that totally automated annotation of interaction
methods is not yet solved, and that the resulting strate-
gies would be more appropriate as systems aiding in the
manual curation process by suggesting method terms
based on highlighting of potential evidence passages.
The short time needed by the servers makes it seem
reasonable that online, automated systems could be
used for this task.

A considerable fraction of the allowed method terms
appear with low frequency in all three data sets. This
makes it particularly difficult to detect such methods by
supervised methods due to the lack of sufficiently large,
representative training data. On the other hand, some
methods are more relevant for the curation process and
account for a considerable amount of annotations. We
therefore carried out a more granular analysis, examin-
ing the performance of each run with respect to indivi-
dual methods, determining those runs (systems) that are
most competitive for each of the relevant interaction
detection methods (see Figure 5, a more detailed plot
on the method distributions is provided in the supple-
mentary material section - additional file 3). When look-
ing at the average F-scores obtained for each method
across all runs, it becomes clear that the identification
of some methods is more difficult than others. Among
the ‘easier’ methods terms across all runs are MI1:0107
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Figure 5 IMT predictions for relevant method terms. This figure shows the average F-score (blue) across all runs obtained for test set
predictions using PSI-MI interaction detection method terms with at least 5 annotations. Also the best F-score (red) obtained by an individual
run is provided.

(surface plasmon resonance, average F-score of 61.6%),
MI:0055 (fluorescent resonance energy transfer, average
F-score of 54.2%) and MI:0018 (two hybrid, average F-
score of 50.7%). In case of the maximum F-score
obtained by participants, the most competitive results
were obtained also for MI:0107 (maximum F-score
90.0% by team 89, run 1), followed also by MI:0055
(maximum F-score of 87.0% by team team 70 run 2)
and MI:0676 (tandem affinity purification, maximum F-
score of 80.0% by team 70, run 1). On the other side,
some of the method terms seemed to be especially diffi-
cult to detect, including MI1:0029 (cosedimentation
through density gradient, average F-score of 0.780% and
maximum F-score of 14.0%), MI:0405 (competition
binding, average F-score of 3.10%, maximum F-score of
23.1%) and MI:0004 (affinity chromatography technol-
ogy, average F-score of 3.93%, maximum F-score of
40.0%). For all of these three methods, the best runs

obtained results that are considerably better than the
average. Note that all of these methods are actually
types of experiments that can be also mentioned in
other contexts not related to PPI characterizations. This
implies that they are only supporting PPI experiments
under special contextual circumstances. Improvements
of predictions for some of the methods are still neces-
sary, but notably for 9 out of the 19 most relevant
method terms there was at least one run with an F-
score over 70%.

Examining in more detail those strategies used by runs
that outperformed other predictions (see Figure 5), we
can see that their success heavily depended on the
actual (a) interaction method type, (b) the specificity of
the method for characterizing PPI versus other experi-
mental settings, and (c) how representative the lexical
resources provided by the PSI-MI ontology were for
referring to the method in the articles. It is possible to
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summarize these approaches into the following
strategies:

1. Dictionary expansion strategies

1.1 Lexical enrichment by integrating additional ter-
minology based on manual inspection of the training
data This approach was used in case of the best predic-
tion for method MI:0416, where in addition to the offi-
cial PSI-MI concept ‘fluorescence microscopy’ and the
synonym ‘fluorescence imaging’ commonly known syno-
nyms were included in the PSI-MI dictionary, such as
the term ‘immunofluorescence staining’. Some teams
also relied on domain experts to add manually addi-
tional synonyms based on their background knowledge.
1.2 Lexical enrichment by cross ontology mappings In
order to generate a lexical expansion of the original
interaction method ontology, one strategy was manually
mapping between PSI-MI terms and MeSH identifiers,
using the resulting relations as features to train super-
vised classifiers. Another approach consisted of first
selecting a particular subset of UMLS concept types,
and then finding those concepts that shared a name
with a term in the PSI-MI ontology and adding the
resulting UMLS concept synonyms to the interaction
method term dictionary.

1.3 Rule based lexical expansion independent of
training data A range of teams tried to improve the
recall of their methods by automatically adding typogra-
phical and lexical variants to the original set of method
terms, considering alternative use of hyphenation, capi-
talization, uppercase/lowercase usage, alternative equiva-
lent numeric expressions (arabic, roman and word
numerals), substitution by synonymous words, and con-
sideration of acronym and expanded long forms.

2. Feature generation, extraction and selection strategies
2.1 Detection of words, bigrams and collocations asso-
ciated to ontology terms derived from training data
Another approach to increase the recall of detecting
associations between documents and MI ontology terms
was based on the initial extraction of n-grams and collo-
cations from the collection of training documents, fol-
lowed by the calculation of the probability of a method
given a particular n-gram or collocation. This strategy
seemed to help boosting the results obtained by team 65
in case of the terms MI:0405 (competition binding) and
MI:0029 (cosedimentation through density gradient).
2.2 Exploitation of exact and partial word tokens
found in the method terms For many methods there is
only a relatively poor association between the exact or
partial name of the interaction detection method and
whether the name indicates that the detection method
was used in a PPI context. Nevertheless in some cases,
exact, partial or merged tokens building the method
term can be used by machine learning algorithms as fea-
tures for scoring method-document associations. For
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instance in case of MI:0006 (anti bait coimmunoprecipi-
tation) and MI:0096 (pull down), team 69 could detect
several features with a strong positive correlation to
these methods corresponding to both the exact and par-
tial name of the method. In case of MI:0006 positive
features included the partial stemmed tokens ‘precipit’
and ‘immunoprecipit’ while for MI:0096 the merged
token ‘pulldown’ and the exact token ‘pull’ show a rela-
tively strong positive association. Team 90 on the other
hand exploited the usage of matches between word uni-
grams and character n-grams (n={2,3,4}) from the PSI-
MI definition and synonyms.
2.3 Use of machine learning approaches exploiting
features with strong positive or negative correlation
with respect to a particular method Machine learning
systems are not only able to exploit tokens forming
method terms, but also tokens derived from documents
provided as training data in order to predict ontology
terms for a given input article. Considering the predic-
tion of team 69 for MI:0424 (protein kinase assay), the
strongest notable positive features are the stemmed
tokens ‘vitro’, ‘phosphoryl’, ‘kinase’ and ‘juxtamembrane’.
The token ‘kinase’ is the only feature that relates to the
name of the detection method, and all but ‘juxtamem-
brane’ are relatively common terms. The only notable
negative features for this interaction method are the
stemmed tokens ‘monom’ and ‘migrat’, which are also
relatively common terms. These results also show that
sometimes the significance of some features is not parti-
cularly transparent in terms of human interpretation.
3. Pattern matching and rule based approaches
Capturing variations of interaction method expressions
can be addressed by using regular expression matches
and heuristics. In case of team 100, their prediction for
MI:0004 (affinity chromatography technology) required
that both their pattern-matching and kNN method gen-
erated a positive hit. In case of the pattern-based
approach a set of additional tokens were required to be
not co-mentioned in order to distinguish this term from
MI:0676 (tandem affinity purification). Their pattern for
extracting MI:0004: was:
IF sentence contains “affinity”

“chromatography” AND “purification”

IF sentence contains “tandem”

AND

OR
“tap”
assignMI: 0676 ELSE
MI:0004
Our database curator collaborators have suggested
that it could be meaningful to carry out a grouping of
equivalent methods that are experimentally related. For
instance the terms MI:0006 (anti bait coimmunoprecipi-
tation), MI:0007 (anti tag coimmunoprecipitation),
MI:0019 (coimmunoprecipitation), M1:0858 (immunode-
pleted coimmunoprecipitation) and MI:0676 (tandem

assign
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affinity purification) could be grouped under the term
MI:0004 (affinity chromatography technology) for analy-
sis purposes, or MI:0028 (cosedimentation in solution)
and MI:0029 (cosedimentation through density gradient)
could be grouped under MI:0027 (cosedimentation).
Unfortunately, the ontological structure of PSI-MI itself
does not directly provide sensible groupings and it
would require extensive manual classification and dis-
cussions among different curators to generate a proper
consensus on accurate method groupings.

Conclusions

The PPI tasks of BioCreative III tried to address relevant
aspects for both database curators as well as general
biologists interested in improving the retrieval of inter-
action relevant articles and association of ontology
terms and experimental techniques to full text papers.
Large training, development and test set collections
were provided to participating teams and these publicly
available corpora should represent a valuable resource
for future implementations and evaluations of biomedi-
cal text mining. From the results obtained, it seems that
classification of PPI relevant abstracts using participating
systems is able to improve the selection of relevant arti-
cles for database curators and biologists, both in terms
of number of items that need to be reviewed as well as
in terms of time saving. In order to derive practically
useful applications from this task, the systems need to
be at least accessible online. Combining the different
runs for the ACT resulted in a consensus system with
better performance than the best individual run, an
aspect that already motivated the implementation of the
BioCreative Meta-Server infrastructure [40]. We pre-
sented a detailed analysis of curator classification times
and agreement between human annotators for the arti-
cle classification task, which allows to estimate better
the theoretical performance limit of text mining systems.
It remains for the future to carry out this type of analy-
sis in more complex scenarios, for instance, based on
the individual steps followed in biological annotation
workflows like the one used by interaction databases,
and quantify the effect of integrating text mining mod-
ules in terms of curation efficiency measured in time
units or annotation records over some baseline manual
annotation. To focus in the future on particular types of
interactions such as phosphorylation relations, or parti-
cular protein functional types (kinases or phosphatases)
could be interesting for data consumers.

In summary, current state-of-the-art systems are likely
to have a significant impact on simplifying (but not
completely automating) the manual process of article
selection and could potentially be adapted not only to
score individual articles, but also to determine the most
relevant journals for each biocuration type. The initial

Page 27 of 31

setting of this task had to be slightly modified to make
resulting systems more practically relevant. Analyzing
records from one month of PubMed abstracts with links
to free full text articles (which can be considered the
first level approach) resulted in a collection that only
covered a minor fraction of PPI relevant journals. Far
less than 5% of the records were PPI relevant in general,
and even a smaller set was PPI annotation relevant, as
most articles are related to the clinical domain.

In case of the IMT, participating systems did signifi-
cantly better than a baseline term-lookup approach. The
main difficulties for this second task arise from the
many different ways of describing a given experimental
method, handling PDF articles, and the heterogeneous
journal composition. From the analysis of strategies
used for the IMT and the performance obtained for
individual methods, it seemed that certain techniques
were more efficient for certain terms, which makes
sense under the assumptions that some of the terms can
be better identified using pattern based approaches,
while others can be better detected using machine learn-
ing or using some sort of expanded lexical resources.
Moreover, some method terms are very general and can
be used in other contexts that are not PPI relevant.
Note that a number of method terms/acronyms are also
highly ambiguous (e.g. 2H” or ‘CD’). Providing more
complete lexical resources of method terms by the PSI-
MI ontology developers could also have a positive
impact on automated systems. Another challenging
aspect, even for database curators, is the complexity in
mapping annotations to the right granularity of terms in
the ontology. The distances in the ontological structure
can not be used to produce meaningful scores for calcu-
lating semantic similarities between terms in the PSI-MI
ontology. A proposal to overcome this issue is based on
grouping method concepts together that are equivalent
in terms of annotation purposes. This interesting strat-
egy of a more coarse-level annotation nonetheless
requires a considerable manual effort in deriving such
method groupings, which illustrates that having evidence
passages derived from the text for the annotations
would aid the human interpretation of the assigned
experimental qualifiers for PPIs. Additional file 4 pro-
vides an overview of external tools used by participating
teams.

Performance will certainly increase with the amount of
readily available training data and as more interest in
this particular area of entity types is raised. Further
improvements of the task data settings would require to
provide participating teams with data at the level of
large representative collections of support textual state-
ments (e.g. individual evidence sentences) and true
negative statements, in addition to a better set of syno-
nyms for the concepts, both of which could in principle
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Table 7

Name Type URL Summary

MALLET ML [48] Framework for feature extraction, logistic regression models and inference

SVMPerf ML [83] Support Vector Machine software for optimizing multivariate performance measures

Weka ML [64] Collection of machine learning algorithms for data mining, useful for feature selection

LIBSYM ML [84] Software for support vector classification

Matlab ML [85] Data analysis, and numeric computation software

Liblinear ML [86] Linear classifier software

MEGAM ML [87] Software for maximum entropy model implementation

C&C CCG NLP [55] Parser and taggers are written in C++

parser

TreeTagger NLP [88] Part-of-speech tagger (trained on PENN treebank)

SNOWBALL NLP [89] Stemming program

NooJ NLP [90] Corpus processing and dictionary matching

Lucene NLP [53] Full-featured text search engine library

LingPipe NLP [91] Tool kit for processing text using computational linguistics

PSI-MI Lexical [46] Molecular Interaction Ontology used by PPI databases

UMLS Lexical [47] Unified Medical Language System which contains a large vocabulary database about biomedical and health-related
concepts

MeSH Lexical [92] Vocabulary thesaurus used for indexing PubMed

ChEBI Lexical [93] Chemical Entities of Biological Interest

BioLexicon Lexical [52] Terminological resources integrating data from various bioinformatics collections

Stop words Lexical [44] Collection of words that are filtered out prior to processing of natural language data

NLProt BioNLP [94] SVM-based tool for recognition of protein-names in text

OSCAR3 BioNLP [95] Tool for recognition of chemical name mentions in text

ABNER BioNLP [60] Bio-Named entity recognition (proteins, genes, DNA, etc.)

be provided as byproduct of the biocuration process.
Another option for future settings would be to distin-
guish between closed and open predictions, i.e. those
that only use the provided training data and those that
make use of external resources for generating their pre-
dictions respectively, something that had been consid-
ered in BioCreative I [74]. Carrying out the article
classification task on the same collection of abstracts vs.
full text articles could illustrate the advantage of using
one document type versus the other.

On the positive side, the relatively good performance
(with respect to the global results) of the online team
(89) combined with their very competitive server anno-
tation times (3.7 sec/article) clearly demonstrates that
online, high-quality BioNLP can be implemented in
ways where processing times are acceptable to serve
end-users on demand. Other systems were also able to
provide predictions in a competitive time frame, for
instance for the ACT, team 104 completed the predic-
tions in 1.29 seconds, while team 89 required only 2
seconds per article. In case of the IMT, predictions took
on average 120 seconds per full text article for team 69,
but their system is designed to allow batch processing
on a multi-CPU server which would improve their

efficiency. Team 89 needed approximately 4 seconds per
article for the same task.

The PPI databases BioGRID and MINT contributed to
the data preparation of BCIII with the aim of promoting
the development of more efficient text-mining tools
that, taking advantage of ad hoc curated datasets and
databases, would in return result in systems that could
assist their biocuration workflows. The development of
such tools will be critical for the future of biological
databases to keep up the pace with information pub-
lished in the literature. Text-mining tools should thus
be able to help in the selection of the relevant literature
and in the annotation process itself. It is also clear that
successful integration of such systems into database
annotation pipelines can be achieved only by close colla-
boration with biological databases, tuning the systems
towards particular specifications demanded by curators,
ultimately serving the general biological community in
terms of improved information access. In case of the
PPI tasks of BioCreative III, it would be valuable for
biologist end users to have a customizable e-mail alert
system of PPI relevant abstracts for user specified
queries or journals as well as a system that allows
uploading PDF full text articles, returning a ranked list
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of interaction detection methods together with evidence
passages. A closer examination of the evidence sen-
tences provided by participating teams for the IMT
would be interesting in the future, in combination with
some highlighting within the article context to make
human interpretation easier.

Additional material

Additional file 1: ACT annotation guidelines. Basic classification
criteria for PPl abstracts.

Additional file 2: ACT example run. iP/R curve of the best team (73, S.
Kim and W. J. Wilbur) in the Article Classification Task. Circle 1: Of the top
2% (130) of all results, approx. 90% (120) are relevant abstracts. Circle 2:
To find half (295) of all relevant abstracts (Recall around 50%), a human
going over the ranked list only has to look at the first 7% (421) of all
results; and approx. 2/3 (Precision around 70%) of those abstracts will be
relevant.

Additional file 3: IMT method distribution. Distribution of interaction
detection methods across the different IMT data sets.

Additional file 4: Overview of tools and resources. Collection of
external tools and resources used for the PPI tasks by participating
teams.
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