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Abstract

The Generalized Likelihood Uncertainty Estimation (GLUE) methodology is used for model calibration, testing and predictive

uncertainty estimation in the application of the MIKE SHE hydrologic model for estimating monthly streamflow in a semi-arid

shrubland (chaparral) catchment in central California. Monte Carlo simulation is used to randomly generate one thousand parameter

sets for a 20-year calibration period encompassing variable climatic and wildfire conditions, from which behavioural (acceptable)

MIKE SHE parameter sets are identified and 5% and 95% uncertainty bounds for monthly streamflow are calculated. This group of

behavioural parameter sets is subsequently used to predict streamflow and to construct uncertainty bounds for a 12-year test period

with climatic and fire characteristics different from those of the calibration period. More than two-thirds of the observations in each

period fell within the corresponding uncertainty bounds, suggesting a similar level of model performance in the calibration and test

periods. Prediction errors (i.e. observations falling outside the uncertainty bounds) were generally associated with large rainfall and

wildfire events and are indicative of deficiencies in model structure, uncertainty in input data, and/or errors in observed streamflow.

The effect of uncertainty in remote sensing-based LAI model inputs on the uncertainty associated with MIKE SHE streamflow

predictions receives special attention in this work due to the fire-prone nature of the study area and the increasing use of remotely

sensed LAI estimates in distributed hydrological modelling applications. Results from MIKE SHE simulations for seven LAI input

scenarios (including the baseline LAI sequence used in the model calibration and testing phase of this study) indicate that differences

in predictive uncertainty between scenarios are usually less than G10%. This is evidence that the baseline LAI trajectory is generally

appropriate for distributed hydrological modelling of chaparral catchments.
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1. Introduction and research objectives

Wildfires in California semi-arid shrublands (i.e.

chaparral) dramatically alter catchment land cover

and initiate a complex sequence of vegetation

recovery events spanning several decades. Future

climate- and anthropogenic-induced changes may
Journal of Hydrology 317 (2006) 307–324
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modify the current wildfire regime in this region

(Ryan, 1991; Davis and Michaelsen, 1995; Lenihan et

al., 2003) and, consequently, post-fire vegetation

recovery patterns and related streamflow dynamics.

Catchment experiments have provided insights into

the effects of fire on streamflow in semi-arid shrub-

lands (Hoyt and Troxell, 1932; Scott, 1993; Lavabre

et al., 1993; Loaiciga et al., 2001), however

extrapolation of these results is constrained by the

limited spatial and/or temporal scales examined. It is

not feasible to conduct the field experiments required

to improve our understanding of the hydrological

impacts of fire at the spatial (tens to hundreds of

square kilometres) and temporal (seasonal and

annual) scales most relevant to California water

resource managers. Rather, a distributed hydrological

modelling approach is required, one capable of

representing changes in vegetation patterns following

fire and the concomitant effects on catchment

hydrological processes.

The generalised likelihood uncertainty estimation

(GLUE, Binley and Beven, 1991; Beven and Binley,

1992) methodology is used in this paper to character-

ise the uncertainty and error associated with using the

distributed MIKE SHE hydrological model to make

monthly streamflow predictions for a medium-size

chaparral catchment located in central California,

USA (see Refsgaard and Storm (1995) for a detailed

description of the MIKE SHE model; see Section 2.1

of this paper for a summary description). Specifically,

the goal is to investigate the annual and seasonal

variation in uncertainty and error associated with

streamflow predictions for a range of rainfall and fire

conditions in model calibration and test periods.

Information on the spatio-temporal patterns of

green leaf area is often required in distributed

hydrological models to simulate the impacts of land

cover change (e.g. due to fire) on catchment

processes. The variable most widely used to represent

changes in canopy leaf area in distributed modelling

studies is the leaf area index (LAI), the total (one-

sided) leaf area per unit ground area. Remote sensing-

based techniques have been used to characterise LAI

dynamics over large space and time scales for

hydrological modelling studies in a variety of

environments (e.g. Mackay and Band, 1997; Sandholt

et al., 1999; Watson et al., 1999; Anderson et al.,

2002). There are advantages in using such techniques.
Yet, validation of these values is difficult and not often

performed-leading to unknown errors in estimated

LAI values. For example, uncertainty in LAI

estimates may arise from errors in image processing

procedures and/or uncertainties in calibrating LAI

models developed using spectral vegetation indices

(e.g. the normalised difference vegetation index,

NDVI). Despite the widespread use of remote

sensing-derived LAI inputs in distributed hydrologi-

cal models, we have little understanding of how

uncertainty in these estimates translates into uncer-

tainty in model predictions (i.e. predictive uncer-

tainty). As will be shown in this paper, sizeable model

prediction errors occurred following a very large

wildfire in the study catchment. Consequently,

following the model calibration and testing phases

of this study, the effects of uncertainty in remote

sensing-based LAI inputs on model streamflow

predictions were examined. The second goal of this

paper is to present these results and discuss their

implications for distributed hydrological modelling in

this environment.
2. Methods

2.1. MIKE SHE modelling system

MIKE SHE is a derivative of the Système

Hydrologique Européen, SHE, (Abbott et al., 1986a,

b) and is a physically-based, spatially distributed

hydrological model that has been widely used to study

a variety of water resource and environmental

problems under diverse climatological and hydro-

logical regimes (Refsgaard and Storm, 1995). A

modified version of MIKE SHE (after Andersen et

al., 2001) was used in this study, a decision

necessitated by the lack of detailed knowledge and

limited data regarding the groundwater environment

in the study catchment. The major differences

between the original (MIKE SHE) and modified

(MSHE_m) versions of the model occur in the

representations of flow in the unsaturated and

saturated zones. In MIKE SHE vertical flow in the

unsaturated zone is modelled using the full Richards

equation, whereas in MSHE_m it is calculated using a

simplified Richards equation. The soil column within

each grid cell is divided into a number of layers, each
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with associated parameters based on soil type.

Groundwater flow in MIKE SHE is represented by a

three-dimensional saturated zone module that is

dynamically coupled to the unsaturated zone module.

A net vertical drainage from the unsaturated zone is

accumulated in a series of linear interflow reservoirs

in MSHE_m. The interflow reservoirs model lateral

subsurface throughflow using a reservoir threshold

parameter and a set of horizontal time constants. A

vertical time constant is used to compute drainage

from each interflow reservoir to the catchment’s

groundwater reservoir. Finally, baseflow from this

groundwater reservoir is modelled as a function of

current storage and a horizontal time constant.

Interception of rainfall in MSHE_m (and MIKE

SHE) is computed as a function of the canopy

interception storage capacity and the leaf area index

(LAI)-a key variable in the study area, where greater

than 70% of rainfall is returned to the atmosphere via

evapotranspiration (Poole et al., 1981). Evaporation

from canopy storage is governed by the potential

evapotranspiration rate (PE, a model input; see

Section 2.4.1); stem flow occurs once the storage is

filled. Three separate, non-linear, functions (f1, f2, f3)

control plant transpiration (T): (1) f1(LAI), (2) f2(soil

volumetric moisture content, q), and (3) f3(rooting

depth and density); each function can take on a value

between zero and one. These functions express the

dependence of plant transpiration on the abundance of

green leaves, the amount of water available in the root

zone, and the distribution of roots with depth,

respectively. Transpiration is calculated by succes-

sively multiplying PE by the value of each function

(after Kristensen and Jensen, 1975). Soil evaporation

is calculated as a function of soil moisture in the upper

layer of the soil column and is added to T in order to

compute actual evapotranspiration (AE) (Refsgaard

and Storm, 1995). The reader is referred to Refsgaard

and Storm (1995); DHI Water and Environment

(2000), and Andersen et al. (2001) for a complete

description of the model structure and set up.

2.2. GLUE methodology

Many studies have demonstrated the difficulties

that arise in identifying, calibrating and validating

physically-based hydrological models. Such difficul-

ties stem from uncertainties in model structure,
boundary conditions, and catchment parameterisation,

as well as errors in input and observed variables (Freer

and Beven, 1996; Zak and Beven, 1999; Brazier et al.,

2000; Beven and Freer, 2001; Loaiciga, 2003). Hence,

the search for a globally optimal parameter set is

neither realistic nor practical in most hydrological

modelling applications. The advent of population-

based search algorithms (e.g. genetic algorithms and

the shuffled complex evolution) has certainly

increased the efficiency of model optimization efforts,

yet the existence of a single optimal parameter set for

a particular model application remains questionable.

Even groundwater models with well-defined govern-

ing equations that involve physically meaningful

parameters (e.g. Loaiciga and Marino, 1987) may

utilize measured values as initial parameter estimates

which are then refined using methods such as GLUE.

The GLUE methodology (Binley and Beven, 1991;

Beven and Binley, 1992) explicitly recognizes the co-

existence of alternative parameter sets and models

(i.e. equifinality) and provides a suitable framework

for model calibration and uncertainty estimation

under non-uniqueness. Implementing GLUE requires

making Monte Carlo simulations using a large

number of parameter sets, assessing the relative

performance of each set by comparing model

estimates with observed data, and retaining only

those parameter sets that provide behavioural (accep-

table) predictions. The relative performance of each

parameter set is evaluated on the basis of a likelihood

measure (or measures) calculated by comparing

model predictions with observed data. It should be

noted that, in the context of GLUE, the meaning of

‘likelihood’ is broader than that found in classical

statistics (Beven and Binley, 1992). A parameter set is

classified as behavioural if the corresponding

likelihood value is equal to or greater than a specified

threshold value. Parameter sets that do not meet this

criterion are rejected as non-behavioural.

The final step in the GLUE procedure is to

establish predictive uncertainty bounds for compari-

son with observed values. First, the set of behavioral

likelihood values is rescaled to achieve a cumulative

sum of unity by dividing each value by the sum of the

likelihood values. Next, behavioural model predic-

tions for each time step are ranked in ascending order

and each prediction is assigned to a user-specified bin.

The rescaled likelihood values associated with the
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ranked predictions in each bin are summed to

calculate the height of the corresponding bar in the

density plot. A cumulative density plot is constructed

by graphing the cumulative sum of the likelihood

values versus the ranked model predictions. Typi-

cally, the 5th and 95th percentiles calculated at each

time step are used to generate the predictive

uncertainty bounds over the period of observations

(Binley and Beven, 1991; Beven and Binley, 1992;

Zak and Beven, 1999; Ratto et al., 2001), although

other percentiles may be used (Brazier et al., 2000). It

should be stressed that these predictive uncertainty

bounds simply define the upper and lower prediction

limits associated with the behavioural parameter sets,

and do not represent probabilistic uncertainty inter-

vals or objective probabilities.

The GLUE-based prediction limits capture the

uncertainty in model output associated with uncer-

tainty in model parameterization. Observations falling

outside the uncertainty bounds are likely the result of

errors in input data, model structure and/or observed

variables (Beven and Freer, 2001). The reader is

referred to Beven and Binley (1992), Freer and Beven

(1996), and Beven and Freer (2001) for additional

details on the GLUE procedure.

2.3. Study site

The Jameson catchment (34 km2), located in the

San Rafael Mountains north of Santa Barbara,

California, USA (Fig. 1), is one of the few remaining

non-urbanised catchments in this region. There is a

comprehensive geospatial dataset available for the

study site including digital maps of fire history,

vegetation type, soil type and elevation. The

Mediterranean-type climate of this region is charac-

terised by cool, wet winters and warm, dry summers.

Annual average precipitation and streamflow in the

Jameson catchment are 780 mm and 233 mm,

respectively. Elevation ranges from 677 m at the

catchment outlet to 1771 m at the highest point along

the ridge. Sandy-loam soils are typically found on the

steep, rugged hillslopes (average slopew43%), while

somewhat deeper sandy-loam and loam soils are

found on gentler slopes. The combination of stands in

different stages of post-fire succession with spatial

variability in physical site characteristics (e.g. terrain

and soils) produces a complex vegetation mosaic
dominated by evergreen shrubs (chaparral) inter-

mixed with oak woodlands, summer deciduous sub-

shrubs (coastal sage scrub), conifer forest, and

grassland (Stephenson and Calcarone, 1999).

2.4. Input data

Model grid cell size for the Jameson catchment

was fixed at 270 m!270 m. This spatial scale was

selected to allow for the most accurate representation

of catchment attributes without placing excessive

demands on computer run time required for Monte

Carlo simulations. Model predictions of streamflow

were made at a daily time step and aggregated to

monthly values for comparison with observed stream-

flow data. Observed values of monthly streamflow

were obtained from the United States Geological

Survey gage (#11121010) located at the catchment

outlet (daily values were not available). Input time

series and spatially distributed datasets are described

below.

2.4.1. Time series data

Daily temperature and precipitation data from

water years (October-September) 1961 to 1993 were

obtained from National Climate Data Center (NCDC)

gages in and around the Jameson catchment. The

spatial distribution of individual precipitation events

across the catchment was assumed to correspond to

the spatial pattern of mean annual precipitation

(MAP). Five distinct precipitation zones were

identified in the study catchment based on a digital

MAP map of Santa Barbara County. The ratio

between MAP at the NCDC stations (located in

Zone 1) and the MAP for each of the remaining four

zones was calculated and used as the basis for

redistributing observed (point) daily values of

precipitation to each zone. A time series of daily

rainfall values was generated for each zone using this

approach.

The lack of measured wind speed, net radiation and

relative humidity data precluded the use of the

Penman equation (Penman, 1956) for calculating

daily inputs of potential evapotranspiration (PE) for

the study catchment. Instead, PE was estimated using

the Hargreaves and Samani (1985) model (calibrated

to regional conditions using potential evaporation data

obtained from a nearby California Irrigation and
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Management Information System (CIMIS) station)

with observed (lapse-rate adjusted) daily temperature

data and daily estimates of slope-aspect adjusted

extraterrestrial radiation (Dingman, 1994). Spatial

variation in PE across the Jameson catchment was

characterised using 12 different zones, defined using

three slope (low, moderate and high) and four aspect

(North, East, South and West) classes. A daily time

series of PE was calculated separately for each zone

using the calibrated Hargreaves-Samani model.
2.4.2. Spatially distributed data

A time sequence of LAI maps was used to

represent chaparral growth and recovery in

MSHE_m. These maps were derived using the

integrated remote sensing-chronosequence approach

of McMichael et al. (2004). The basis of this approach

was to convert values of the NDVI into LAI values

using the generalised model of Baret et al. (1989). In

this model LAI is calculated as a function of the

maximum NDVI, the minimum NDVI and k, a



Table 1

The initial parameter ranges used in the MSHE_m Monte Carlo

simulations and the final ranges associated with the behavioural

parameter sets.

Parameter Initial

Minimum

Value

Initial

Maximum

Value

Final

Minimum

Value

Final

Maximum

Value

Interflow and Groundwater Reservoirs

IFt (m) 0.0001 0.3 0.0006 0.1901

IFh (days) 0.0001 3 0.0121 3

IFv (days) 0.0001 80 0.2085 80

GWh

(days)

0.05 100 0.08 96

Soil

Ks_Sandy

Loam (m

sK1)

1.0!10K6 5.0!10K4 1.0!10K6 5.0!10K4

n_Sandy

Loam

1 30 1 30

Ks_Loam

(m sK1)

1.0!10K6 5.0!10K4 1.0!10K6 5.0!10K4

n_Loam 1 30 1 30

Vegetation

C1 0.01 1 0.13 1

C2 0.01 1 0.01 1

C3 (mm

dayK1)

1 60 1 60
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coefficient representing the extinction of solar

radiation through the canopy. McMichael et al.

(2004) used an annual time series of 10 autumn

Landsat 5 Thematic Mapper (TM) and Landsat 7

Enhanced Thematic Mapper (ETMC) satellite

images to derive LAI from the NDVI. Mean LAI

values were recorded for a series of fires and used to

derive a relationship between LAI and chaparral stand

age for each image date. An average LAI-Stand Age

trajectory was computed from the 10 individual

relationships and used as the basis for developing

input sequences of chaparral LAI for MSHE_m.

While inter-annual variability in chaparral LAI was

captured using this approach, intra-annual variability

was not represented in the hydrological model due to:

(1) the exclusive use of autumn imagery to develop

the LAI-Stand Age relationships in McMichael et al.

(2004), and (2) the lack of information on seasonal

LAI in the chaparral literature. However, adjustments

(small increases) were made to input LAI values in

each of the first four years following fire (successively

smaller increases each year) in order to account for the

presence of herbaceous vegetation that normally

occurs on post-burn chaparral sites during this period

(Keeley et al., 1981; Keeley and Keeley, 1981). Input

LAI sequences for non-chaparral vegetation types

were derived using information from the literature

(Gray and Schlesinger, 1981; Gamon et al., 1995).

Vegetation rooting depths were estimated using

information from the chaparral literature (Kummerow

et al., 1977; Hellmers et al., 1985) and results from a

previous application of MSHE_m (using manual

calibration) in the Jameson catchment (Tague et al.,

2004). Existing digital vegetation, soils and elevation

maps were used to delineate vegetation, soil and

topographic units within the catchment. Vegetation

stand age was determined by intersecting the

vegetation type map (Franklin et al., 2000) with the

digital fire history map. A soil profile (texture and

depth of each horizon) was specified for each model

grid cell using available soil survey data (3rd Order)

for the study catchment (O’Hare and Hallock, 1988).

2.5. Calibration parameters

The actual number of parameters in MSHE_m

depends on which modules are included in the model

setup and how the catchment is discretized
(horizontally and vertically). Eleven parameters

were used for model calibration and uncertainty

estimation in this study (see Table 1) based on

previous applications of MIKE SHE (Xevi et al.,

1997; Christiaens and Feyen, 2002; Vásquez et al.,

2002; Vázquez and Feyen, 2003) and MSHE_m

(Andersen et al., 2001; Tague et al., 2004), and the

MIKE SHE user’s manual (DHI Water and Environ-

ment, 2000). The range for each parameter varied in

model calibration was set using previous studies and/

or physical reasoning.

The parameters C1 and C2 control the distribution

of actual evapotranspiration between transpiration

and soil evaporation, while C3 influences the value of

the moisture content function (f2). The saturated

hydraulic conductivity (Ks) and exponent (n) par-

ameters are used to compute the hydraulic conduc-

tivity as a function of effective saturation for the sandy

loam (Ks_SandyLoam and n_SandyLoam) and loam

(Ks_Loam and n_Loam) soil types. The remaining

four parameters (IFt, IFh, IFv, and GWh) control

interflow (IF) and groundwater (GW) dynamics in

MSHE_m. The interflow reservoir threshold (IFt) sets
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the storage capacity of the reservoir. The horizontal

time constant (IFh) regulates interflow between

reservoirs, or between a reservoir and the river, and

the vertical time constant (IFv) controls interflow

contribution to groundwater. The groundwater reser-

voir time constant (GWh) governs the rate of baseflow

contribution to streamflow

The following assumptions were made in order to

minimize the number of parameters used in model

calibration. First, only the values of C1, C2, and C3 for

shrubland vegetation types (chaparral and coastal sage

scrub) were used in calibration since more than 85%

of the catchment area was classified as shrubland and

it was the only vegetation type impacted by fire.

Parameter values for other vegetation types were held

constant. In addition, we assigned the same values of

IFt, IFh, and IFv to each interflow reservoir (after

Andersen et al., 2001) since no information was

available to guide a separate parameterisation for each

reservoir.

2.6. Model calibration, testing, and uncertainty

estimation

The number of Monte Carlo runs implemented in a

particular GLUE-based application is a function of the

interactions between catchment size, model structure

(including grid cell size), the number of parameters,

and the available computer resources. Tens of

thousands (Zak and Beven, 1999) to millions (Brazier

et al., 2000) of runs can be made when model codes

are less complex, grid cell size is large, extensive

computing power is available, and/or for smaller

catchments. The physically-based, distributed

MSHE_m model code is complex and, therefore,

computer intensive. This fact, coupled with the

relatively large number of grid cells required for this

medium-size catchment, constrained the number of

Monte Carlo simulations used in this work to 1000.

Ideally more than 1000 simulations would be used in a

real-world application of this model, however we felt

that this number was appropriate for demonstrating

our methodology for coupling MSHE_m with the

GLUE procedure in the study catchment.

One thousand parameter sets, whose values were

randomly selected from uniform distributions across

the defined range for each parameter (see Table 1 for

these ‘initial’ parameter ranges), were used to make
Monte Carlo simulations for a 20 year calibration

period (water years 1962–1981) encompassing a wide

range of climatic conditions and containing one small

wildfire (one percent of the catchment area, October

1971) and one medium size wildfire (20% of the

catchment area, September 1964). A standard per-

formance metric, the Nash and Sutcliffe (1970)

coefficient of efficiency, E (1), was used to evaluate

model performance following each run:

E Z 1 K

Pn
jZ1ðO KPÞ2

Pn
jZ1ðO K �OÞ2

(1)

in which O is the observed flow, �O is the mean

observed flow, and P is the predicted flow. EZ1 when

all the predictions equal their corresponding obser-

vations; EZ0 when model predictions estimate the

mean observed streamflow. The coefficient of

efficiency was chosen as the likelihood measure to

evaluate the accuracy of both the magnitude and

timing of predicted flows (e.g. Andersen et al., 2001;

Beven, 2001; Vásquez et al., 2002; Tague et al.,

2004). The ‘behavioural’ threshold value of E used in

this application of MSHE_m followed Andersen et al.

(2001), where good model runs were those with

ER0.80. [Note: the first two water years in each

simulation run in this study were excluded from the

calculation of E and from the computation of

uncertainty bounds.] With a few exceptions, the

final minimum and maximum parameter values for

the set of behavioural model runs were similar to the

initial values defined for each parameter (see Table 1

for the ‘final’ parameter ranges), indicating that the

1000 Monte Carlo simulations used in this study

effectively sampled across the entire range of each

parameter’s initial distribution.

The group of behavioural parameter sets identified

in the calibration period were subsequently used to

make simulations for a second (test) period in order to

evaluate the robustness of these behavioural sets

under a range of hydrological conditions in the study

catchment. The test period (water years 1982–1993)

contained one very large wildfire (78% of the

catchment area, July 1985) and experienced highly

variable climatic conditions. Model predictions made

using the behavioural parameter sets in the calibration

and test periods were used to calculate the 5th and

95th percentiles (i.e. uncertainty bounds) for each
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period using the GLUEWIN software package (Ratto

and Saltelli, 2001); observed streamflow values from

each period were compared with the corresponding

uncertainty bounds.
2.7. Uncertainty in LAI inputs-effects on MSHE_m

predictive uncertainty

The effects of uncertainty in LAI inputs on the

uncertainty associated with MSHE_m streamflow

predictions (i.e. predictive uncertainty) for the

Jameson catchment were examined following model

calibration and testing for the second (test) period-

when inter-annual changes in canopy leaf area were

most rapid due to the very large fire in 1985. Seven

different model scenarios were implemented for this

period, one using the baseline LAI sequence (i.e. the

sequence used in the GLUE-based model calibration

and testing phase of this study) and six others

generated by increasing and decreasing this baseline

sequence by 10, 20, and 40%. These percentage

increments were selected to cover the potential range

of (unknown) error levels associated with remote

sensing-based estimates of LAI. Model simulations

were run for each scenario using the suite of

behavioural parameter sets identified during model

calibration. The 90% uncertainty interval (i.e. the

range of acceptable model predictions) was computed
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for each scenario as the range defined by the 5% and

95% uncertainty bounds. The effect of uncertainty in

LAI inputs on MSHE_m predictive uncertainty was

examined by comparing uncertainty intervals between

each of the six scenarios and the baseline case, as well

as among scenarios.
3. Results and discussion

3.1. Model calibration and testing

3.1.1. Model calibration

One hundred and nine of the 1000 Monte Carlo-

based runs in the calibration period were classified as

behavioural, with values of E ranging from 0.80 to 0.

92. This proportion of behavioural parameter sets is

comparable to that found in other GLUE-based

modelling studies (e.g. Brazier et al., 2000; Beven

and Freer, 2001). Predicted monthly streamflow

values for each of the 109 behavioural parameter

sets (excluding the first two water years) were used to

compute the 5% and 95% uncertainty bounds.

Approximately 68% of the observed streamflow

values fell within these bounds (Fig. 2); the remaining

32% produced just over six percent of the observed

streamflow total. This level of flow prediction error

(i.e. !10%) was considered acceptable for the
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calibration period as a whole (after Andersen et al.,

2001).

Observed streamflow values in four of the 18 water

years evaluated in this period were completely

contained within the uncertainty bounds (Fig. 2).

[Recall that model predictions from the first two years

in the 20 year calibration period, and in the 12 year

test period, were not considered in the calculation of

E, nor in any analysis of model results.] Considering

the large variability in rainfall totals for these years,

ranging from low (1968 and 1981) to moderate (1979)

to very high (1969), it is apparent that the group of 109

behavioural parameters sets was capable of accurately

representing integrated catchment behaviour (stream-

flow) under different rainfall conditions in this period.

However, catchment behaviour was not always so

well modelled and some level of prediction error (i.e.

under- and/or over-estimation) occurred in each of the

remaining 14 water years in this period (results not

shown).
3.1.2. Model testing

Each of the 109 behavioural parameter sets

identified using data from the calibration period was

used to make daily streamflow predictions for the test

period in order to evaluate their robustness under

different fire and rainfall regimes; daily predictions

were aggregated to monthly values and used to
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calculate the test period uncertainty bounds. Approxi-

mately 67% of the observed streamflow values fell

within the 5% and 95% uncertainty bounds (Fig. 3);

the remaining 33% of observed values produced

approximately nine percent of the observed stream-

flow total (considered acceptable for the test period as

a whole).

The average range between the upper and lower

uncertainty bounds (Ravg) was largest in wet season

months (November-April, Fig. 4a), with values

decreasing steadily through the transition (May-

June) and dry (July-October) seasons. That is, greater

predictive uncertainty was associated with high flows

than with low flows. On the other hand, values of the

normalized average range (NRavg) (computed by

dividing the uncertainty range for each time step by

the observed flow depth and re-calculating Ravg) were

largest (i.e. uncertainty was greatest) in transition and

dry season months (Fig. 4b). Variability about Ravg

and NRavg was highest in wet season and dry season

months, respectively, resulting from year to year

differences in predictive uncertainty. Overall, these

trends were very similar to those seen in the

calibration period (results not shown).

In contrast to the calibration period, prediction

errors were found in every year in the test period. As

with predictions in the calibration period, the largest

under-estimation errors (observed values above the
served
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95% bound) and over-estimation errors (observed

values below the 5% bound) occurred in wet season

months (Fig. 5). Under- and over-estimation errors in

this period, as in the calibration period, were

associated primarily with large events (e.g. 390 mm

of rainfall over six days in 1993) in high rainfall years.

In addition, a large portion of the total under-

estimation error in the test period occurred in the

water year following the 1985 wildfire.
3.1.3. Discussion-model calibration and testing

Virtually the same proportion of observed monthly

streamflow values was captured by the 5% and 95%

uncertainty bounds in the calibration and testing

periods, despite different rainfall patterns and wildfire

conditions. The total prediction error (i.e. the sum of

over- and under-estimation errors) for each period as a

whole was considered acceptable as it represented less

than 10% of the observed flow. Even so, the fact that



0

20

40

60

80

O
C

T

N
O

V

D
E

C

JA
N

F
E

B

M
A

R

A
P

R

M
A

Y

JU
N

JU
L

A
U

G

S
E

P

Month

A
bs

ol
ut

e 
E

rr
or

 (
m

m
)

Above 95% bound Below 5% bound

Fig. 5. The test period ‘absolute error’ was calculated, for each observation not contained by the uncertainty bounds, as the absolute difference

between the observed value and the nearest uncertainty bound. Under-estimation occurred when observed values fell above the 95% bound;

over-estimation occurred when observations fell below the 5% bound.

C.E. McMichael et al. / Journal of Hydrology 317 (2006) 307–324 317
just over 30% of the observed streamflow values in

each period fell outside of the 90% uncertainty bounds

suggests an overall bias in the model’s ability to

estimate observed flows in the Jameson catchment,

especially low flows (Fig. 6).

Seasonal trends in Ravg and NRavg in the test period

were very similar to those found in the calibration

period, demonstrating a level of consistency in

modelled high, moderate, and low flows across

periods. Differences in the magnitude and variability

of Ravg and NRavg between the calibration and testing
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periods were generally small, however their respect-

ive non-Gaussian distributions further suggest a level

of model bias in matching observed flows for the

study catchment. Overall, average predictive uncer-

tainty (Ravg) was greatest, and most variable, in wet

season months, declining through the transition and

dry seasons. However, the opposite pattern was seen

once Ravg was normalized for observed flow (NRavg),

indicating that the mean relative predictive uncer-

tainty was greatest in dry season months. That is,

model predictions were most uncertain, relative to
APR MAY JUN JUL AUG SEP

ear 1964
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te the model’s difficulty in estimating low flows (see Fig. 2 for results
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observed values, in months when streamflow was low

to non-existent; the relative variability in predictive

uncertainty was also greatest in the dry season. In wet

season months NRavg was generally less than 5% of

the observed flow and the relative variability in

predictive uncertainty was small. The fact that NRavg

was less than 10% of observed flow in all seasons

suggests that (on average) MSHE_m predictions of

monthly streamflow in this catchment were relatively

certain for both evaluation periods. Even so, the wide

absolute uncertainty bounds observed in many wet

season months, and following the large wildfire in

1985, indicate that the group of behavioural parameter

sets used in this application of MSHE_m does not

represent the full range of hydrological processes in

the Jameson catchment.

Over-estimation errors in dry months (July-

October) represented less than 1.5% of the total

prediction error in each evaluation period. Monthly

streamflow was not under-estimated during the dry

season in either the calibration or test period. Absolute

over- and under-estimation errors in transition months

(May-June) were also very small, comprising just 1%

and 2.5% of the total error in the calibration and test

period, respectively. Overall, total streamflow in both

transition and dry months was modelled with

acceptable errors by MSHE_m using the group of

109 behavioural parameter sets, indicating that the

moderate and low flow conditions were generally well

characterised by the model structure.

Estimation errors (over and under) were largest in

wet season months (November-April), comprising

98% of the total estimation error in each evaluation

period. In contrast to findings for the transition and

dry seasons, catchment processes in the wet season

were not always characterised adequately by

MSHE_m, particularly in relation to large storms

and extensive wildfire. The patterns of over- and

under-estimation were notably different between wet

season months in the calibration and test periods.

Over- and under-estimation errors generally increased

from November through April in the calibration

period, while nearly the opposite pattern was seen in

the test period. This phenomenon is somewhat

difficult to explain given that errors in both periods

were associated with large rainfall events.

Differences in under- and over-estimation errors

following fire in September 1964 (20%), October
1971 (1%), and July 1985 (78%) are most likely a

function of the variability in fire size. The lack of

appreciable estimation error in water years 1965

(597 mm of rainfall) and 1972 (417 mm of rainfall)

indicates that the GLUE-based calibration of

MSHE_m successfully captured post-fire catchment

behaviour over a range of fire size (1–20%) and

rainfall conditions (including large storm events). On

the other hand, nearly half of the total test period

under-estimation error occurred in water year 1986

(830 mm of rainfall) following the massive fire in July

1985. Errors that year were largely associated with

sizable rainfall events (e.g. 196 mm in three days in

February 1986) in wet season months. While these

errors represent only 3% of the total observed flow in

the test period, they highlight deficiencies in the

ability of the model structure and/or input data to fully

characterise successional dynamics in this catchment

following very large fires.

3.2. Effects of uncertainty in LAI inputs on MSHE_m

predictive uncertainty

For ease of discussion the six LAI scenarios are

labelled using either a ‘C’ or ‘K’, depending upon

whether simulated uncertainty of 10, 20 and 40% was

added to (C10,C20 and C40) or subtracted from

(K10, K20 and K40) the baseline LAI sequence.

The 90% uncertainty interval (UI) was calculated

using predicted monthly streamflow values for each of

the seven LAI sequences as the difference between the

5% and 95% uncertainty bounds (i.e. the total distance

between the bounds). The relative change in the UI

(UIrc) between each of the six scenarios and the

baseline case was calculated as:

UIrc Z ðUIscenarioKUIbaselineÞ=UIbaseline. Positive

(negative) values of UIrc indicated an increase

(decrease) in predictive uncertainty resulting from

uncertainty in the LAI inputs.

The relative change in MSHE_m predictive

uncertainty (UIrc) associated with each uncertainty

scenario is shown in Fig. 7. Overall, the amount of

uncertainty associated with monthly streamflow

predictions increased when input LAI was lowered

below the baseline (K10, K20 and K40 scenarios),

while predictive uncertainty decreased for LAI inputs

above the baseline sequence (C10, C20 and C40

scenarios). Values of UIrc generally followed the
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expected directional trends, with values becoming

progressively larger as input errors progressed from

G10 to 40%. The largest values of UIrc over the

post-fire recovery period (1986–1993) occurred for

LAI inputs below the baseline, especially with the

K40 uncertainty scenario. Values of UIrc were less

than 10% for the K10, K20,C10 and C20

uncertainty scenarios over this period, with the

exception of the K20 scenario in 1987 and 1990

(two very dry years).

Values of UIrc associated with the C10,C20 and

C40 uncertainty scenarios were much smaller than

values related to the K10, K20 and K40 scenarios in

the first year following fire (1986, Fig. 7). LAI inputs

above the baseline had little effect on values of UIrc in

1986, suggesting that the baseline sequence may

represent an ‘LAI asymptote’ for this catchment

condition (i.e. first post-fire year). However, this

finding could also be the result of over-estimating the

baseline LAI input immediately following fire, in

which case further additions to input LAI would not

substantially alter model streamflow predictions. In

contrast, lowering input LAI below the baseline

resulted in higher predicted flows and larger values

of UIrc.

Modified LAI inputs in the second post-fire year

(1987) produced proportional changes in predictive

uncertainty for the G10, 20 and 40% scenarios
(Fig. 7). Moreover, UIrc values for this year were

generally much larger than in 1986, possibly due to

the extremely dry conditions in 1987 (272 mm). This

result implies that streamflow dynamics may be very

sensitive to canopy leaf area in dry years. Raising LAI

above the baseline in 1987 reduced predicted stream-

flow values and narrowed the uncertainty bounds (i.e.

reduced predictive uncertainty). In contrast, predic-

tive uncertainty increased when input LAI was below

the baseline sequence by even a small percentage.

Raising LAI inputs above the baseline had an

increasingly smaller effect on UIrc values in the

third through eighth post-fire years (Fig. 7). This may

be explained, at least in part, by the formulation of the

transpiration function f1(LAI) in MSHE_m which

tends to limit the effect of increasing LAI after a

threshold value determined by the C1 and C2

parameters. The effects of reducing LAI inputs

below the baseline during this period varied with

rainfall conditions and were generally largest in drier

years.

Values of UIrc were highest in wet season months

(November-April), decreasing into the transition

(May-June) and dry (July-October) season months

(Fig. 8). UIrc values associated with the G10 and 20%

uncertainty scenarios were less than 10% in all

months, as were values corresponding to the C40

scenario. However, values UIrc for the K40 scenario
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were greater than 10% in six of twelve months,

including all wet season months except April. Overall,

uncertainty in LAI inputs had the greatest impact on

catchment water balance in wet season months as

canopy leaf area directly affects the partitioning of

rainfall into evapotranspiration and streamflow in

MSHE_m. The potential under-estimation of input

LAI values in the growing season (due to the

exclusive use of autumn imagery by McMichael et

al., 2004) may also have contributed to greater

relative predictive uncertainty in these months.
3.3. Additional sources of uncertainty and error
3.3.1. Model structure

The general lack of information and data for

subsurface conditions in the study catchment pre-

cluded the use of the 3-D groundwater module

available in the full version of MIKE SHE. Instead,

we implemented the semi-distributed Linear Reservoir

groundwater module with three interflow reservoirs

and one ground water reservoir (MSHE_m). The

Linear Reservoir module does not allow interactions

and feedback between the saturated and unsaturated

zones and, consequently, may not adequately represent

subsurface flow dynamics under all conditions. More-

over, MSHE_m is not capable of representing time-

varying soil properties. This may be an important
limitation of the model as fire has been shown to alter

soil physical properties in California chaparral eco-

systems (DeBano and Conrad, 1978), potentially

modifying soil water-holding capacity.

The grid cell size used in this study (270 m!
270 m) may be considered somewhat coarse given the

rugged nature of the terrain in the study area.

However, results from previous studies using MIKE

SHE and MSHE_m demonstrate that overall model

performance is marginally sensitive to changes in grid

cell size for small (1 km2, MIKE SHE, Xevi et al.,

1997), medium (34 km2, MSHE_m, Tague et al.,

2004), and large catchments (568 km2, MIKE SHE,

Vásquez et al., 2002). For example, Vásquez et al.

(2002) found little change in a number of model

performance measures when MIKE SHE was applied

over a range of grid cell sizes (300–1200 m) in a large

catchment. The manual calibration and application of

MSHE_m at 30 m and 270 m grid cell resolutions in

the Jameson catchment resulted in very similar values

of E, 0.96 and 0.93 respectively, when comparing

monthly streamflow predictions with observed data

(Tague et al., 2004).

Previous work has demonstrated that the identifi-

cation of behavioural parameter sets is directly

influenced by the choice of likelihood measure and/or

the corresponding threshold value (Beven and Binley,

1992; Freer and Beven, 1996). In this study 109



Table 2

The relationships between likelihood measures, behavioural threshold values, and the number of behavioural parameter sets

Likelihood Measure ThresholdZ0.50 ThresholdZ0.60 ThresholdZ0.70 ThresholdZ0.80

Ea 609b 440 238 109

lnEc 189 122 74 16

a E is the coefficient of efficiency (see Section 2.6 for calculation).
b The number of behavioural parameter sets resulting from a specific likelihood measure-behavioural threshold combination.
c lnE was calculated by taking the natural log of observed and predicted streamflow values prior to computing the coefficient of efficiency, E.
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parameter sets out of 1000 were classified as

behavioural based on a 0.80 threshold of the coefficient

of efficiency. As stated earlier this proportion of

behavioural parameter sets is similar to that reported

in other GLUE-based studies, however the absolute

number of behavioural sets identified in this study is

much smaller. A larger number of Monte Carlo

simulations (e.g. 10,000) would likely yield additional

behavioural parameter sets and provide a more thorough

sampling of the parameter space. However, a substantial

increase in computing resources would be required to

make this number of runs for such a complex model.

The number of behavioural parameter sets used to

calculate the 5% and 95% predictive uncertainty

bounds might also be increased by selecting a

different likelihood measure and/or threshold value

during the GLUE procedure. For instance, reducing

the selected threshold value for the coefficient of

efficiency (E) would have increased the number of

behavioural parameter sets utilized in this study

(Table 2). Moreover, using a different likelihood

measure and/or behavioural threshold would have

altered not only the number of behavioural parameter

sets selected (Table 2), but the particular parameter

sets selected from the group of 1000 Monte Carlo

simulations. From these results it could be expected

that the proportion of observations falling within the

90% uncertainty interval would continue to grow as

the number of behavioural parameter sets increased

and the range between the 5% and 95% uncertainty

bounds widened. However, Hope et al. (2004)

demonstrated that this expectation may not always

be correct via a GLUE-based application of the HSPF

(Hydrologic Simulation Program Fortran) model in

the same study catchment (Jameson). Specifically,

they found that the number of observations falling

within the 90% uncertainty interval remained fairly

constant as the E threshold was lowered from 0.80 to

0.60, even though a much larger number of
behavioural parameter sets was identified using the

0.60 threshold value. Further reductions in the E

threshold from 0.60 to 0.40 actually resulted in a

decrease in the number of observations captured

between the 5% and 95% uncertainty bounds.

3.3.2. Model inputs and observed data

Errors and uncertainty associated with model

inputs (in addition to LAI) and observed data may

also have contributed to predictive uncertainty and

prediction errors in this study. For example, given the

generally rugged nature of the study catchment, there

is uncertainty associated with the assumption that the

spatial distribution of rainfall for individual events in

Jameson followed the mapped pattern of mean annual

precipitation for this area. Consequently, it is possible

that the number of precipitation zones used in this

study (five) did not adequately prescribe input rainfall

values for Jameson. In addition, uncertainty in input

PE values may have resulted from calibrating the

Hargreave-Samani PE model using data from a

neighbouring area, as well as from subdividing the

study catchment into twelve PE zones by classifying

continuous surfaces (slope and aspect) into discrete

units. Finally, it is expected that errors associated with

observed data used in developing and characterising

model inputs (e.g. daily rainfall and temperature data,

and soil survey data) and outputs (monthly streamflow

data) were propagated through the current model

application.
4. Conclusions

Results from the GLUE-based calibration and testing

of MSHE_m provide insights into both the strengths and

weaknesses of the combined model structure, para-

meters and input data as a tool for predicting integrated

catchment behaviour in the Jameson catchment.
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Overall, model performance in the calibration period

was somewhat better than in the test period. Approxi-

mately two-thirds of the observations (comprising over

90% of the total observed flow) in each period were

contained within the uncertainty bounds, an acceptable

level of model performance relative to total period flow.

However, the fact that the greatest prediction errors

were associated with critical catchment events, i.e. large

storms and large wildfires, suggests that refinements are

needed to improve MSHE_m performance and reduce

predictive uncertainty at the monthly/seasonal time

scales.

Examination of the effects of uncertainty in LAI

inputs on MSHE_m predictive uncertainty revealed

little difference (generally less than 10%) between the

‘baseline’ LAI sequence and the six ‘LAI uncertainty

scenarios’ for the test period. This finding indicates

that the remote sensing-based LAI estimates used in

this study are generally appropriate for distributed

hydrological modelling in this environment. Never-

theless, given that some of the largest differences in

predictive uncertainty were observed in the first few

years following fire, particularly in wet season

months, future work will focus on refining both

inter- and intra-annual LAI estimates for this initial

recovery period. Additional sources of uncertainty

and error discussed above will be investigated in

future work (e.g. spatially distributed rainfall inputs).

GLUE provides a useful modelling approach for

advancing beyond globally optimised, unique, par-

ameter sets. Working within a framework of Monte

Carlo-generated parameter sets allows modellers to

explicitly recognize and quantify the effects of

uncertainties on model predictions. Future versions of

commercially available hydrological modelling

systems should incorporate the flexibility to conduct

GLUE-based modelling and uncertainty estimation-

particularly given the use of distributed model

predictions as a basis for environmental decision-

making.
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