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Preemption in Singular Causation Judgments: A Computational Model
Simon Stephan (simon.stephan@psych.uni-goettingen.de)

Michael R. Waldmann (michael.waldmann@bio.uni-goettingen.de)
Department of Psychology, University of Göttingen,

Gosslerstr. 14, 37073 Göttingen, Germany

Abstract

Causal queries about singular cases are ubiquitous, yet the
question of how we assess whether a particular outcome was
actually caused by a specific potential cause turns out to be
difficult to answer. Relying on the causal power approach,
Cheng and Novick (2005) proposed a model of causal attribu-
tion intended to help answering this question. We challenge
this model, both conceptually and empirically. The central
problem of this model is that it treats the presence of sufficient
causes as necessarily causal in singular causation, and thus ne-
glects that causes can be preempted in their efficacy. Also, the
model does not take into account that reasoners incorporate
uncertainty about the underlying causal structure and strength
of causes when making causal inferences. We propose a new
measure of causal attribution and embed it into our structure in-
duction model of singular causation (SISC). Two experiments
support the model.

Keywords: singular causation; causal attribution; preemption;
causal reasoning; Bayesian modeling; computational modeling

Introduction
Most people hold the belief that smoking causes lung can-

cer. Now, imagine that you learn that Peter, a passionate
smoker, has contracted lung cancer. How strongly would you
be willing to say that it was Peter’s smoking that was causally
responsible for his disease?

This example illustrates a scenario in which we seek an an-
swer to a causal query about a singular case. Queries about
singular causation are prevalent in everyday life and profes-
sional contexts, such as the law or medicine. How do peo-
ple derive causal judgments about singular cases? Of course,
the mere fact that two factors C and E are generally causally
connected (e.g., smoking often causing lung cancer) does not
necessarily imply that a singular or token co-occurrence of
these events (e.g., Peter’s smoking and his lung cancer) man-
ifests a causal relationship – a singular co-occurrence might
be a mere coincidence. On the other hand, as causality is not
directly observable in the world, to what else than our general
causal knowledge could we turn to obtain answers?

We are going to present a theory that builds on the idea, first
formalized by Cheng and Novick (2005), that the notion of
unobservable causal powers (Cheng, 1997) plays an essential
role in singular causation judgments. Yet, we will demon-
strate that Cheng and Novick’s (2005) power PC model of
causal attribution (CN model) makes assumptions that are
not always plausible. Generally, the CN model is intended
to provide a normative answer to the question how we can
determine whether an observed outcome was actually caused
by a potential cause factor. For example, for cases like the one
above about Peter in which a potential cause c and an effect
e have been observed, the CN model delivers the probability

P(c→ e|c,e) with the arrow denoting a causal relation. We
argue that the key problem of the model is that it treats target
causes as singular causes whenever they are sufficient for the
effect in a specific situation. This appears to be at first sight
a reasonable assumption, yet it ignores that the exact points
in time at which different causes exert their powers play an
important role in singular causation judgments (see Danks,
2017): crucially, sufficient causal powers can be preempted
by others, and in such cases they should not be held causally
responsible for the occurrence of the outcome. We will argue
that preemption of causes by background factors frequently
occurs in singular causation scenarios, and therefore presents
a problem for the CN model.

Another problem of the CN model is that it does not take
into account uncertainty about both the underlying causal
structure and the causal parameters (e.g., the size of the causal
powers). To incorporate uncertainty about the causal parame-
ters, Holyoak, Lee, and Lu (2010) have proposed a Bayesian
version of the CN model that uses probability distributions
over the parameters instead of point estimates. However, their
model also neglects uncertainty about the underlying causal
structure. Both sources of uncertainty have been demon-
strated to influence causal learning and reasoning (Griffiths &
Tenenbaum, 2005; Meder, Mayrhofer, & Waldmann, 2014).
For this reason, Stephan and Waldmann (2016) proposed the
structure induction model of singular causation (SISC) that
incorporates both types of uncertainty. Although three exper-
iments (Stephan & Waldmann, 2016) showed that SISC better
accounted for the results than the standard power PC model
of causal attribution, one shortcoming of the initial version
of SISC was that it used the CN conceptualization of causal
attribution that we are going to criticize in the present paper.

We will start with a theoretical section in which we defend
a new measure of causal attribution as a component of SISC
that is sensitive to preemption. We then present the results
of two experiments. Experiment 1a confirmed that singular
causation judgments deviate systematically from the predic-
tions of the CN model in line with our revised causal attribu-
tion equation. Experiment 1b assessed participants’ notion of
preemption. In Experiment 2 we used a larger set of contin-
gencies to compare the revised SISC with the CN and other
models. The results of this experiment showed that both a re-
vision of the causal attribution equation and the consideration
of statistical uncertainty are crucial to explain the findings.

The Power PC Model of Causal Attribution
According to Cheng’s (1997) power PC theory, causal

power (or causal strength) is a hypothetical, unobservable en-
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tity that represents the strength of causes. Mathematically,
causal power is (in the generative case) expressed as the prob-
ability with which a target cause brings about its effect in a
hypothetical world in which all alternative observed and un-
observed causes of the effect are absent. Because of the pos-
sibility of unobserved alternative causes, causal power can-
not be assessed directly but must be inferred based on the
observed covariation and background assumptions. For gen-
erative causes, the following equation can be used to estimate
the causal power wc of a target cause C:

wc =
P(e|c)−P(e|¬c)

1−P(e|¬c)
=

∆P
1−wa

(1)

In this equation, wa represents the aggregate causal power
of all alternative causes A of the effect, which are assumed to
exert their influence independently of C.

Under the causal Bayes net framework, the causal power of
C, wc, corresponds to the probabilistic weight of the causal ar-
row that connects C with its effect E in a common effect struc-
ture in which the target cause C and the alternative causes A
combine in a noisy-OR gate (see S1 in Figure 2). Likewise,
wa corresponds to the weight of node A.

The CN Measure of Causal Attribution
Cheng and Novick (2005) proposed several measures of

causal attribution that apply to different cases. The mea-
sure of causal attribution for cases in which both c and e are
present, as in the example above about Peter, utilizes the con-
cept of causal power in the following way to deliver the con-
ditional probability P(c → e|c,e):

P(c→ e|c,e) = wc

P(e|c)
=

wc

wc +wa−wc ·wa
. (2)

Equation 2 shows that the CN model defines the probabil-
ity with which c is causally responsible for e given that both
have co-occurred by the fraction of the causal power of C
and the conditional probability of the effect in the presence
of C. Since the power PC theory assumes that C and A exert
their causal powers independently of each other, P(e|c) can
be rewritten as the sum of both causal powers minus their in-
tersection (see second step of Equation 2). Hence, what the
CN model delivers is an estimation of the relative frequency
of cases among all co-occurrences of C and E in which C’s
causal power is sufficient for the production of the effect. Our
key criticism is that this relative frequency, because it neglects
the possibility of preemption, frequently overestimates the
true proportion of cases in which we should actually causally
attribute E’s occurrence to C.

To illustrate the problem, let us consider the results of the
fictitious experiment shown in Figure 1 in which the influ-
ence of a chemical substance on the expression of a gene
was investigated. As it is the case that all mice in the test
group (P[e|c] = 1) but only one half in the control group
(P[e|¬c] = .5, the base rate) exhibit the gene, the results pro-
vide strong evidence for the existence of a strong effect of the
chemical. In fact, by applying Equation 1 one can see that

Control group: not treated with chemical Test group: treated with chemical 

= Gene 
expressed

= Gene not 
expressed

Figure 1: Illustration of a hypothetical study testing the effect of a
chemical on the expression of a gene. The control group is shown
on the left and the test group treated with the chemical substance on
the right. Mice having the gene expressed are depicted in blue.

the causal power of the substance equals 1. Crucially, so does
P(c → e|c,e). What the CN model therefore prescribes is
that we should attribute causal responsibility to the chemical
whenever the chemical and the gene are both present. But
should we really be maximally confident that the expression
of the gene in, for instance, Mouse # 25 must be causally at-
tributed to the causal power of the chemical? If you have
doubts, you were probably led by a prior assumption about
the point in space and time at which the causal background
factors A produced the observed base rate of fifty percent: in
the given scenario it seems likely that these factors (e.g., tran-
scription factors) already produced their effects prior to the
introduction of the chemical. Under this assumption, how-
ever, it seems likely that not only fifty percent of the mice
in the control condition but also in the test group already pos-
sessed the gene prior to the study. Consequently, in those fifty
percent of the mice it cannot be the chemical that is causally
responsible for the effect because its causal efficacy has been
preempted by the background factors.

A New Measure of Causal Attribution
In the example it seems appropriate to say that the expres-

sion of the gene is caused by the chemical in only about half
of the observed cases in which C and E have co-occurred.
This conclusion is based on the assumption that in roughly
half of the cases the causal power of the chemical has been
preempted by the causal power of the background factors A.
We propose a new measure of causal attribution that captures
this intuition by refining Equation 2 so that all cases among
the joint occurrences of C and E for which the effect of C is
assumed to be preempted by A are partialed out. This refined
measure is given by:

P(c
singular−−−−→ e|c,e) = wc · (1−α ·wa)

wc +wa−wc ·wa
, (3)

in which we introduce α as a discounting parameter that rep-
resents the assumed probability with which A is a preemptive
cause of the effect. For illustration, if we assume that A has
caused the observed base rate of 0.5 prior to the application of
the chemical, and if we assume further that A’s causal power
has produced roughly equal proportions of the effect in both
groups, α takes on a value of 1. In this case, the point estimate

for P(c
sing.−−→ e|c,e) is about .5 instead of 1.0 that is predicted
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Figure 2: The two causal structures considered by the structure in-
duction model of singular causation as mutually exclusive explana-
tions for observed patterns of covariation. C is a general cause of
E under S1 whereas all co-occurrences of C and E are coinciden-
tal under S0. The parameters wc and wa denote the causal powers
of the observed cause C and the unobserved background causes A,
respectively; bc denotes the base rate of C.

by Equation 2. The difference between the two measures is
that under the CN model the presence of two sufficient causal
powers (wc and wa) is invariably conceptualized as a case of
“symmetric overdetermination”, whereas the possibility that
causes can preempt each other is neglected. Equation 3 takes
into account the possibility of preemption and thus delivers
an estimation of the relative frequency of singular cases in
which the target cause has actually been successful in gen-
erating the effect. In our view, preemption of C by a previ-
ously present background factor A seems to be prevalent in
the cover stories typically reported in the literature (see e.g.,
Griffiths & Tenenbaum, 2005). However, the discounting pa-
rameter α can be set to capture other cases. For example,
cases of overdetermination or cases in which A is preempted
by C could be modeled by setting α to 0. In these cases, our
model and the CN model make identical predictions because
Equation 3 reduces to Equation 2.

SISC: The Structure Induction Model of
Singular Causation

Apart from the fact that the CN model does not take into
account the possibility that preempted causes should not be
classified as singular causes, a further problem of the CN
model is that it is insensitive to statistical uncertainty about
both the underlying causal structure and the size of the causal
parameters. SISC (Stephan & Waldmann, 2016) is sensitive
to both types of uncertainty.

SISC was developed in the framework of causal Bayesian
inference models; it takes observed data as evidence to update
prior probabilities of mutually exclusive hypotheses. Under
SISC, these competing hypotheses represent two causal struc-
tures that can account for a particular observed pattern of co-
variation. The two causal structures, S0 and S1, are depicted
graphically in Figure 2. While there exists a causal arrow
from C to E in S1, which indicates that C is a general cause
of E, there is no causal arrow between C and E in S0. Both
models assume a background cause A.

The core principle of SISC can be illustrated with Figure 1.
Assume someone suggests that S0 is the causal structure that
underlies the results. Under this hypothesis all observed co-
occurrences of C and E would be mere coincidences. Yet,
since the observed distribution of the events appears very
unlikely to be coincidental, S0 is weakened as an explana-
tion while the alternative hypothesis, S1, is proportionally
strengthened. In fact, the probability computed by SISC for

S1 for the data shown in Figure 1 (i.e., the posterior probabil-
ity of S1) is almost 1. Now, imagine the same study had been
conducted with a sample of merely eight mice but that P(e|c)
and P(e|¬c) remain the same. In this case, it seems less
certain that S1 underlies these results. Smaller samples not
only increase uncertainty about the underlying causal struc-
ture, they also impede the reliable estimation of the size of
parameters. SISC is sensitive to both types of uncertainty

when estimating P(c
sing.−−→ e|c,e).

SISC implements different steps. First, it derives the pos-
terior probabilities for each causal structure illustrated in Fig-
ure 2. Applying Bayes’ rule, the posterior probability for a
causal structure is proportional to the likelihood of the data
given the causal structure, weighted by the structure’s prior
probability:

P(Si|D) ∝ P(D|Si) ·P(Si). (4)

P(D|Si) is the likelihood of the data given a particular
structure, which is the integral over the likelihood function
of the parameter values under the particular structure. P(Si)
represents a structure’s prior probability. The model initially
assumes that both structures are equally likely, that is, P(Si)
= 1/2. When data become available, the posterior for each
causal structure varies systematically with the observed con-
tingency: the higher the contingency, the more likely S1 be-
comes.

Next, the model estimates the parameters bc, wc, and wa,
for each causal structure. To express parameter uncertainty,
distributions rather than point estimates are inferred. The pos-
terior probability distributions for the parameters, P(w|D),
are proportional to the likelihood of the data given the set of
parameters w, weighted by the prior probability distributions
of the parameters:

P(w|D) ∝ P(D|w) ·P(w). (5)

P(D|w) is the likelihood of the data given the parameter val-
ues for bc, wc, and wa. P(w) is the prior joint probability
of the parameters. The prior distributions of the parameters
are independently set to flat, uninformative beta(1,1) distri-
butions. Since C does not cause E under S0, wc is held fixed
at 0 for this causal structure.

In the last step, SISC computes P(c
sing.−−→ e|c,e) for each

parameterized structure. The new discounting parameter al-
pha is set based on background assumptions about the target
scenario. For the scenarios we used in the present experi-
ments it is set to 1 because preemption seems to be highly
probable. As all co-occurrences of c and e are coincidences

under S0, P(c
sing.−−→ e|c,e) is set to 0 for S0. For S1, Equation 3

is applied. The final output of SISC is a single estimate for

P(c
sing.−−→ e|c,e), which is obtained through integrating out the

two causal structures by summing over the derived values of

P(c
sing.−−→ e|c,e) for each structure weighted by its posterior

probability:

P(c
sing.−−→ e|c,e;D) = ∑

i
P(c

sing.−−→ e|c,e;Si) ·P(Si|D). (6)
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Experiment 1a
The goal of Experiment 1a was to test SISC against the

CN model of causal attribution for data sets with a suffi-
cient cause, i.e., P(e|c) = wc = 1, but varying base rates
of the effect. Whereas the CN model predicts maximal con-
fidence in singular causation assessments for any observed
co-occurrence of C and E in this case, SISC predicts an inter-
action with the base rate under the assumption that A’s causal
power generally preempts the effect of C. The goal of Ex-
periment 1a was to demonstrate that this predicted deviation
from the CN model is expected for the conceptual reasons
discussed above. To rule out uncertainty as an explanation,
we used sample sizes in our data sets for which the posterior
probabilities of S1 computed by SISC are close to 1. The pre-
dictions of the models are shown in Figure 3. We set α in
Equation 3 to 1, which represents complete preemption of C
by A. We also considered a Bayesian variant of the CN model
that has been proposed by Holyoak et al. (2010). This model
is sensitive to parameter uncertainty; it uses probability dis-
tributions over the parameters instead of point estimates. As
Figure 3 shows, the predictions of both variants of the CN
model converge for large sample sizes because the influence
of parameter uncertainty decreases.

Methods
Participants 90 participants (Mage = 33.24, SDage = 12.50,
35 female) were recruited via Prolific Academic (www
.prolific.ac) and received a monetary compensation of
£ 0.60.
Design, Materials, and Procedure Three contingencies (see
Figure 3) were manipulated between subjects with each par-
ticipant responding to two causal test queries (general causa-
tion vs. singular causation). We included the general causa-
tion query to establish that uncertainty cannot account for the
predicted pattern of singular causation ratings. The task was
a standard elemental causal induction task. As cover story
we used the gene expression scenario (cf. Griffiths & Tenen-
baum, 2005) mentioned above: subjects were asked to as-
sume that they were biologists who are interested in whether a
particular chemical causes the expression of a particular gene
in mice. Subjects read that they will be asked to conduct an
experiment on the computer screen in which they will treat
a random sample of mice with the substance while a control
sample will remain untreated. It was mentioned that the con-
trol sample is important as some individuals may show the
gene expression for other reasons.

Participants were presented with an interactive animation
showing the two samples arranged as in Figure 1, and a
pipette containing a reddish chemical substance. All mice
had gray color in this animation. Participants then dropped
the substance into the test group area, whereupon the back-
ground color changed to a light red. On the next screen, sub-
jects checked the results of the experimental manipulation by
dragging a small magnifying glass over all the mice. Mice
with the gene then became blue and those without became
yellow. The final state of the animation looked like Figure 1.

P(e|c)
P(e|¬c)

Figure 3: Model predictions and results of Experiments 1a and b.
The results show mean ratings and 95% bootstrapped CIs. Dark bars
show general causation judgments; light bars singular judgments.

Subsequently, participants responded to two test questions.
The general causation query referred to the causal structure.
Participants were asked to indicate on a slider how confident
they were that the chemical has an effect on the expression of
the gene (from “very certain that the chemical has no effect”
to “very certain that the chemical has an effect”). The singular
causation query asked subjects about Mouse #25 from the test
group. Participants were asked to indicate on a slider how
confident they were that it was the chemical substance that
caused the expression of the gene in this single case (from
“very certain that it was not the chemical” to “very certain
that it was the chemical”).

Results and Discussion
Figure 3 shows the results. The prediction for general

causation responses corresponds to the posterior probabil-
ity of S1 computed by SISC. As predicted by the posterior
probability of S1, all general causation ratings were high,
indicating very little uncertainty about the general causal
structure. The singular causation ratings, by contrast, de-
creased with an increasing base rate of the effect, as pre-
dicted by SISC but not by the two CN models. The results
of a multilevel model analysis revealed significant main ef-
fects for type of causal query, χ2(1)= 32.45, p < .001, as
well as contingency, χ2(1)= 12.63, p < .01. General cau-
sation ratings were, on average, higher than singular cau-
sation ratings. Figure 3 shows that the main effect of con-
tingency is driven by the decrease in singular causation rat-
ings. Planned contrasts revealed that the general causation
ratings neither differed between the first and second contin-
gency, t(80) = 0.60, nor between the second and third con-
tingency, t(80) = 0.13. Consequently, the interaction effect
of query × contingency was also significant χ2(1)= 13.10,
p < .01. Planned contrasts breaking down this interaction ef-
fect showed that the difference between general and singular
causation ratings was higher for the second than for the first
contingency, t(80)= 2.10, p < .05, r = .23, and also higher for
the third compared to the second contingency, t(80)= 3.70,
p < .001, r = .38. In sum, both the trends for general as well
as for singular causation ratings are captured well by SISC.
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The observed trend for the singular causation judgments is,
however, neither predicted by the CN model using point esti-
mates nor by the Bayesian extension incorporating parameter
uncertainty.

Experiment 1b
The goal of Experiment 1b was to assess how likely par-

ticipants think it is that a particular individual from the test
group already exhibited the effect caused by the background
factors prior to the occurrence of the cause. Thus, instead of
singular causation judgments for a particular individual, we
asked subjects to provide a probability judgment. Crucially,
responses to this query provide us with an estimate of the α

value in Equation 3 that participants assumed.

Methods
Participants 88 participants (Mage = 31.22, SDage = 10.84,
42 female) participated in this only study and received a mon-
etary compensation of £ 0.60.
Design, Materials, and Procedure The study design and the
materials were the same as in Experiment 1a. The only dif-
ference was that, instead of a singular causation judgment for
Mouse #25, we asked participants how likely they think it is
that this individual already had the gene expressed prior to the
experiment. The general causation query remained the same.

Results and Discussion
Figure 3 shows that we replicated the pattern for general

causation judgments found in Experiment 1a. Planned con-
trasts revealed that these ratings did not differ (all t values
< 1). However, the probability judgments about the presence
of the effect prior to the application of the chemical in the sin-
gle case showed the opposite trend as the singular causation
judgments in Experiment 1a. This finding supports our hy-
pothesis that assumptions about preemption influence singu-
lar causation judgments, as predicted by Equation 3. Planned
contrasts confirmed that ratings increased from the first to the
second, t(71) = 2.67, p < .01, r = .30, and also from the sec-
ond to the third contingency, t(71) = 3.16, p < .01, r = .35.
Furthermore, the results indicate that participants indeed as-
sumed high α values.

Experiment 2
Experiment 1a showed that singular causation ratings for

sufficient causes deviate systematically from the predictions
of the CN models. This deviation is predicted as a conse-
quence of assumptions about preemption relations between
C and A. Experiment 2 pursued two main goals: first, we
aimed to test SISC using a larger set of contingencies with a
combination of different levels of P(e|c) and P(e|¬c). Sec-
ond, we wanted to demonstrate that parameter and structure
uncertainty indeed influence general and singular cause judg-
ments. We used the set of contingencies studied in Buehner,
Cheng, and Clifford (2003) but excluded the one contingency
from the set in which the effect never occurs. It does not make
sense to ask for singular causation if the effect is absent. The
data sets and model predictions are shown in Figure 4. We set

(a)

(b)

(c)

(d)

(e)

(f)

(g)

P(e|c)
P(e|¬c)

(h)

Figure 4: Predictions of different models and results (means and
within-subjects adjusted 95% CIs) of Experiment 2. Graphs (a) and
(b) refer to general causation assessments. All other graphs refer to
singular causation assessments.

the discount parameter α to 1 again.

Methods
Participants 82 participants (Mage = 34.41, SDage = 10.42,
31 female) participated in this online study and were paid
£ 1.00 for their participation.
Design, Materials, and Procedure The causal query (gen-
eral causation vs. singular causation) was manipulated be-
tween subjects, whereas contingency was varied within sub-
ject. The fourteen contingency data sets were presented in
random order. We used the same cover story as in Experi-
ment 1, except that subjects read that they will investigate the
effects of fourteen different chemicals on fourteen different
genes in fourteen different samples. We pointed out that the
results of the studies are independent of each other. The as-
signment of mice to the cells of the contingency tables was
randomly determined. Also the test mouse for the singular
query showing both c and e was randomly chosen prior to the
experiment.

Results and Discussion
Figure 4 shows the results and the predictions of the differ-

ent models: (a) and (b) display the predictions of SISC for
general causation and the mean general causation responses.
Panels (c) and (d) show the predictions of SISC and the re-
sults regarding the singular causation queries. Predictions of
the standard CN model and its Bayesian variant are displayed
in (e) and (f). Graph (g) shows predictions of SISC when α

is set to zero but both structure and parameter uncertainty are
incorporated. Finally, (h) shows point estimates of Equation 3
while neglecting statistical uncertainty.

Table 1: Model comparisons for singular causation judgments in
Experiment 2. ∆P refers to the different contingency levels (.00,
.25, .75, 1.00) within the whole data set; r∆P expresses the model
fits for these levels. N/A represents undefined values.

Fit measure SISC CN Model Bayesian CN Model SISC CN Model Point Est. Eq. 3

r∆P=.00 .72 N/A -.78 -.68 N/A
r∆P=.25 1.00 .21 .38 -.61 .98
r∆P=.50 .88 .68 .79 .44 .85
r∆P=.75 1.00 N/A 1.00 -1.00 1.00
Mr ∆P .90 .44 .35 -.46 .94
roverall .94 .88 .93 .90 .90

R2 .88 .77 .87 .82 .82
RMSE .11 .27 .09 .14 .22
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The overall pattern for both general and singular causation
ratings was captured best by the revised version of SISC. As
in our previous research, the results show that participants dif-
ferentiated between general and singular queries. Moreover,
the responses to the general causation query replicate those
found in Griffiths and Tenenbaum (2005). Most importantly,
the singular causation assessments were captured best by the
revised SISC. The other models, by contrast, struggled to ac-
count for the local trends observed within the subsections of
the contingency set in which ∆P is constant. The difference
between the singular causation ratings and the point estimates
for the revised causal attribution measure (Equation 3) im-
plies that participants were sensitive to structure and parame-
ter uncertainty.

A multilevel model analysis confirmed the main effect
of contingency, χ2(13)= 1010.04, p < .001, as well as the
interaction between contingency × query, χ2(13)= 49.39,
p < .001, that is shown in Figure 4. To test the different mod-
els, we computed different fit measures shown in Table 1. As
can be seen there, SISC achieved a good fit in the overall fit
measures (bottom part of the table). It explained most vari-
ance, with R2 = .88, and yielded the second smallest RMSE
of .11. Yet, all models obtained relatively high values on the
global measures. Even the CN model with the lowest overall
fit accounted for 77 percent of the variance. The similarity
between the models is not unexpected, however, as all mod-
els are sensitive to ∆P. More interesting are the fit measures
for the subsections of the contingency set in which ∆P is kept
constant. The upper part of Table 1 shows that SISC yielded
high fit values there, too, and hence accounted well for these
local trends, whereas the Bayesian CN model, which yielded
the smallest RSME, even showed negative correlations here.

General Discussion
We addressed two different problems that the power PC

framework of causal attribution (Cheng & Novick, 2005)
faces: first, the CN model attributes causal responsibility for
the occurrence of a particular effect e to a present singular
event c whenever its causal power is sufficient to bring about
the effect. We have argued that this conceptualization fails
to take into account that people make assumptions about the
point in time at which different causal powers exert their in-
fluences. Not every manifestation of a sufficient cause c needs
to be causally responsible for an observed outcome; it might
be the case that a competing cause (e.g., a) preempts it. This
problem of redundant causation, which occurs whenever two
causes are individually sufficient for the effect, is widely ac-
knowledged in the philosophical literature as a challenge for
models of causation (see, e.g., Paul & Hall, 2013). To account
for the possibility of preemption we have modified the equa-
tion developed by Cheng and Novick (2005) as an account
of causal attribution. The revised equation includes the dis-
count parameter α that can be set to express domain-related
assumptions about the temporal relations between the alter-
native causal factors. A second shortcoming of the standard
causal attribution model (Cheng & Novick, 2005) is that it

does not take into account statistical uncertainty about struc-
ture and causal parameters (cf. Griffiths & Tenenbaum, 2005;
Meder et al., 2014). Our model SISC remedies both short-
comings. It is sensitive to both the temporal relations between
the alternative causes and to statistical uncertainty. Our ex-
periments showed that both aspects are important to account
for subjects’ judgments about singular causation.

We have set the discount parameter α to 1 in Equation 3
which implies a complete preemption relation between A and
C whenever A’s causal power is sufficient in a situation. Bet-
ter fits might be possible by estimating the size of α for
each individual subject separately. We avoided this strat-
egy to demonstrate that model improvements can already be
achieved with very general assumptions. The goal of future
experiments will be to manipulate the size of α by manipu-
lating domain assumptions about the temporal relations be-
tween C and A. Cases in which α is 1 are situations in which
A always preempts C. The cover stories used in the present
experiments are an example in which it is plausible to assume
that A represents a temporally stable factor that has already
been efficacious prior to the manipulation of C. Although
preemption seems to be the default situation in most singular
causation scenarios, there might be rare cases in which other
assumptions need to be made. Consider cases of symmetric
overdetermination that have also been discussed in the litera-
ture (see Paul & Hall, 2013): in the famous firing squad sce-
nario, for example, in which each shooter is a sufficient cause
for the death of the target, a possible intuition is that each
shooter should be counted as a singular cause of the death of
the victim. In this case, alpha would have to be set to zero.
Similarly, alpha would have to be set to zero if C preempts A
so that A cannot manifest its potential causal power. Cases of
temporal variability between C and A might also be an inter-
esting topic for future studies.
Acknowledgments We thank Jonas Nagel and Ralf Mayrhofer for
helpful discussions.
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