UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Knowing What Counts for Counting

Permalink

https://escholarship.org/uc/item/44x1j3cq

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors

Perez, Karla E Siegel, Max Coates, Nicole et al.

Publication Date

2024

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Knowing What Counts for Counting

Karla Perez

MIT, Cambridge, Massachusetts, United States

Max Siegel

MIT, Cambridge, Massachusetts, United States

Nicole Coates

Massachusetts Institute of Technology, Cambridge, Massachusetts, United States

Josh Tenenbaum

MIT, Cambridge, Massachusetts, United States

Laura Schulz

Massachusetts Institute of Technology, Cambridge, Massachusetts, United States

Abstract

Children know a lot about counting, even before they can count; for instance, even toddlers know that the counting routine involves establishing one-to-one correspondence between number words and items counted. Here we varied the size, numerosity, density, and layout of elements of sets, and asked children which set was easier to count in pairwise comparisons across twelve trials. We also asked children themselves to count 5 to 15 items arranged in straight lines. Even children who could not count to 15 recognized that it was easier to count fewer than more dots and recognized that structured sets were easier than random arrays; however, they failed to recognize that some layouts made tracking easier than others. This suggests that children's meta-knowledge about counting precedes their ability to count for some but not all properties of sets.