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Abstract 
 

Methods and Measures for Analyzing Complex Street Networks and Urban Form 
 

by 
 

Geoffrey D. Boeing 
 

Doctor of Philosophy in City and Regional Planning 
 

University of California, Berkeley 
 

Professor Paul Waddell, Chair 
 
 

Recent years have witnessed an explosion in the science of networks.  Much of this 
research has been stimulated by advances in statistical physics and the study of complex 
systems – that is, systems that comprise many interrelated components whose 
interactions produce unpredictable large-scale emergent behavior. Cities are complex 
systems formed both through decentralized, bottom-up, self-organizing processes as well 
as through top-down planning interventions. Humans shape their urban ecosystems (the 
built environment, institutions, cultures, etc.) and are in turn shaped by them. Cities 
comprise numerous interdependent components that interact through networks – social, 
virtual, and physical – such as street networks. 

This dissertation examines urban street networks, their structural complexity 
(emphasizing density, connectedness, and resilience), and how planning eras and design 
paradigms shape them. Interventions into a complex system often have unpredictable 
outcomes, even if the intervention is minor, as effects compound or dampen nonlinearly 
over time. Such systems’ capacity for novelty, through emergent features that arise from 
their components’ interactions, also makes them unpredictable. These interactions and 
the structure of connections within a system are the subject of network science. In cities, 
the structural characteristics of circulation networks influence how a city’s physical links 
organize its human dynamics. Urban morphologists have long studied the built form’s 
complexity and, following from scholars such as Jane Jacobs and Christopher Alexander, 
various urban design paradigms today speak both directly and indirectly to the value of 
complexity in the built environment. However, these claims are often made loosely, 
without formally connecting with theory, implications, or evaluation frameworks. 



     

 2 

This dissertation develops an interdisciplinary typology of measures for assessing the 
complexity of urban form and design, particularly emphasizing street network analytic 
measures. Street network analysis has held a prominent place in network science ever 
since Leonhard Euler presented his famous Seven Bridges of Königsberg problem in 1736. 
The past 15 years have been no exception as the growth of interdisciplinary network 
science has included numerous applications to cities and their street networks. These 
studies have yielded new understandings of urban form and design, transportation flows 
and access, and the topology and resilience of urban street networks. However, current 
limitations of data availability, consistency, and technology have resulted in four 
substantial shortcomings: small sample sizes, excessive network simplification, difficult 
reproducibility, and the lack of consistent, easy-to-use research tools. While these 
shortcomings are by no means fatal, their presence can limit the scalability, 
generalizability, and interpretability of empirical street network research. 

To address these challenges, this dissertation presents OSMnx, a new tool to download 
and analyze street networks and other geospatial data from OpenStreetMap for any study 
site in the world. OSMnx contributes five capabilities for researchers and practitioners: 
first, the downloading of political boundaries, building footprints, and elevation data; 
second, the scalable retrieval and construction of street networks from OpenStreetMap; 
third, the algorithmic correction of network topology; fourth, the ability to save street 
networks as shapefiles, GraphML, or SVG files; and fifth, the ability to analyze street 
networks, including projecting and visualizing networks, routing, and calculating metric 
and topological measures. These measures include those common in urban design and 
transportation studies, as well as measures of the structure and topology of the network. 
This study illustrates the use of OSMnx and OpenStreetMap to consistently conduct 
street network analysis with extremely large sample sizes, with clearly defined network 
definitions and extents for reproducibility, and using non-planar, directed graphs. 

This study collects and analyzes 27,000 U.S. street networks from OpenStreetMap at 
metropolitan, municipal, and neighborhood scales – namely, every U.S. city and town, 
census urbanized area, and Zillow-defined neighborhood. It presents wide-ranging 
empirical findings on U.S. urban form and street network characteristics, emphasizing 
measures relevant to graph theory, urban design, and morphology such as structural 
complexity, connectedness, density, centrality, and resilience. We find that the typical 
American urban area has approximately 26 intersections/km2, 2.8 streets connected to the 
average node, 160m average street segment lengths, and a network that is 7.4% more 
circuitous than straight-line streets would be. The typical city has approximately 25 
intersections/km2, 2.9 streets connected to the average node, 145m average street segment 
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lengths, and a network that is 5.5% more circuitous than straight-line streets would be. 
The typical Zillow neighborhood has approximately 46 intersections/km2, 2.9 streets 
connected to the average node, 135m average street segment lengths, and a network that 
is 4.4% more circuitous than straight-line streets would be. At all three scales, 3-way 
intersections are by far the most prevalent intersection type across the U.S. 

We find a strong linear relationship, invariant across scales, between total street length 
and the number of nodes in a network. This contradicts some previous findings in the 
literature that relied on smaller sample sizes and different geographic contexts. We also 
find that most networks demonstrate a lognormal distribution of street segment lengths. 
However, an obvious exception to lognormal distribution lies in those networks that 
exhibit substantial uniformity network-wide. At the neighborhood scale, examples 
include downtown neighborhoods with consistent orthogonal grids, such as that of 
Portland, Oregon. At the municipal scale, examples include towns in the Great Plains that 
have orthogonal grids with consistent block sizes, platted at one time, and never subjected 
to sprawl. These spatial signatures of the Homestead Act, successive land use regulations, 
urban design paradigms, and planning instruments remain etched into these cities’ urban 
forms and street networks today. Nebraska’s cities have the lowest circuity, the highest 
average number of streets per node, the second shortest average street segment length, 
and the second highest intersection density. These findings illustrate how street networks 
across the Great Plains developed all at once and grew little afterwards – unlike, for 
instance, cities in California that were settled in the same era but were later subjected to 
substantial sprawl. 

The characteristics of a city street network fundamentally depend on what “city” means: 
municipal boundaries, urbanized areas, or certain core neighborhoods? The first is a 
political/legal definition, but it captures the scope of city planning jurisdiction and 
decision-making for top-down interventions into a street network. The second captures 
the wider self-organized human system and its emergent built form, but tends to 
aggregate multiple heterogeneous built forms together into a single unit of analysis. The 
third captures the nature of the local built environment and lived experience, but at the 
expense of a broader view of the urban system and metropolitan-scale trip-taking. In 
short, multiple scales in concert provide planners a clearer view of the urban form and the 
topological and metric complexity of the street network than any single scale can. 

The emerging methods of computational data science, visualization, network science, and 
big data analysis have broadened the scope of urban design’s traditional toolbox. Such 
methods may yield new insights and rigor in urban form/design research, but they may 
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also promulgate the weaknesses of reductionism and scientism by ignoring the theory, 
complexity, and qualitative nuance of human experience crucial to urbanism. The tools 
we use shape the kinds of questions we can even ask about cities. Today, the 
dissemination of quantitative network science into the social sciences offers an exciting 
opportunity to study the dynamics and structure of cities and urban form, but paths 
forward must consider cities as uniquely human complex systems, inextricably bound up 
with politics, privilege, power relations, and planning decisions. 

This dissertation comprises six substantive chapters bookended by introductory and 
concluding chapters. As a whole, the dissertation is divided into two primary parts. The 
first comprises chapters 2 and 3 and develops the theoretical framework. Chapter 2 
introduces the background of the nonlinear paradigm by discussing systems, dynamics, 
self-similarity, and the nature of prediction in the presence of nonlinearity. These 
foundations set up the complexity theories of cities and the study of networks presented 
in chapter 3. This first part of the dissertation emphasizes the dynamics of complex urban 
systems before we turn our attention to their structure in the second part. Urban 
circulation networks serve as a physical substrate that underlies and organizes the city’s 
complex human interactions. Chapter 4 collates various indicators of complexity from 
multiple research literatures into a typology of measures of the complexity of urban form, 
emphasizing the scale of urban design practice. In particular, it presents several measures 
of network complexity and structure that we then operationalize in chapters 5, 6, and 7. 
Methodologically, chapter 5 introduces OSMnx, a new tool to acquire, construct, correct, 
visualize, and analyze complex urban street networks. Chapter 6 applies OSMnx 
empirically in a small case study of street networks in Portland, Oregon. Chapter 7 then 
expands the empirical application of OSMnx to a large study of 27,000 urban street 
networks at various scales across the U.S. These street networks and measures data sets 
have been shared in a public repository for other researchers to re-purpose. 
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For Tracy and Alden: 
forsan et haec olim meminisse iuvabit   
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Uneducated people who have no experience of true reality will 
never adequately govern a city, and neither will people who 
have been allowed to spend their whole lives in education. The 
former fail because they do not have a single goal in life at 
which all their actions, public and private, inevitably aim; the 
latter because they would refuse to act, thinking they had 
emigrated, while still alive, to the Isles of the Blessed. 

—Plato, Republic 
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Chapter 1:  Introduction 
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1.1. Abstract 

This chapter introduces the context of and motivation for the study presented in this 
dissertation. It then summarizes the organization and contribution of each of the 
subsequent chapters. Complex systems have been widely studied by social and natural 
scientists in terms of their dynamics and their structure. Scholars of cities and urban 
planning have incorporated complexity theories from qualitative and quantitative 
perspectives. From a structural standpoint, the urban form may be characterized by the 
morphological complexity of its circulation networks – particularly their density, 
resilience, centrality, and connectedness. This dissertation unpacks theories of 
nonlinearity and complex systems, then develops a framework for assessing the 
complexity of urban form and street networks. It introduces a new tool, OSMnx, to 
collect street network and other urban form data for anywhere in the world, then analyze 
and visualize it. Finally, it presents a large empirical study of 27,000 street networks, 
examining their metric and topological complexity relevant to urban design, 
transportation research, and the human experience of the built environment. 

1.2. Introduction 

In his twelfth epistle, published in 20 BC, the ancient Roman poet Horace asked: quid 
uelit et possit rerum concordia discors? His question – which wonders at the purpose and 
power of the world’s “discordant harmony” – hints at the doctrine of the Greek 
philosophers Pythagoras, Heraclitus, and Empedocles (Gordon 2007). The philosophy 
underlying concordia discors held that the cosmos was shaped by an endless struggle 
between nature’s elements, and that out of this ongoing dissonance arose the 
comprehensible order of the perceivable world (Scholtz 2008). Horace’s turn of phrase 
lives on, borrowed throughout history to refer to large-scale harmony, structure, and 
function emerging unpredictably from smaller-scale disordered interactions (Stegenga 
2012). Today, in the scientific study of large interacting systems and their rich emergent 
behavior, concordia discors goes by another name: complexity. 

Complexity is perhaps most simply expressed by the familiar phrase, “the whole is greater 
than the sum of its parts.” Complex systems comprise many interrelated parts and – 
through nonlinear interactions and feedback – can adapt, become resilient to 
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perturbations and system shocks, and evolve large-scale, emergent phenomena that could 
not have been predicted or understood simply by examining the system’s interdependent 
subcomponents. There is no single, unified complexity theory but rather a wide array of 
theoretical concepts and tools that can be applied to the study of complex systems across 
numerous disciplines (Manson and O’Sullivan 2006; Haken 2012).  

Scholars argue that complexity’s comprehensive framework can help link quantitative 
space studies with qualitative place studies and thus has significant implications for city 
planning (Portugali 1999; 2006). It problematizes prediction and situates uncertainty – of 
knowledge, interventions, and forecasts – at the center of studying systems. Complexity 
calls for a reset of positivism and a new world view that embraces uncertainty and 
unpredictability (de Roo 2010a; 2010b; Silva 2010). The urban complexity literature 
argues that cities are shaped through bottom-up, self-organizing processes as well as top-
down planning interventions that are analogous to perturbations of the complex urban 
system (e.g., Bretagnolle et al. 2009; Barthélemy et al. 2013; Mansury 2015). However, the 
relationships between top-down and bottom-up – and complexity and simplicity – are 
not simply binary but rather a spectrum on which arguments and practices may be 
situated. 

With regards to city planning, complexity has implications for rationality, predictability, 
uncertainty, optimization, and collaboration. It offers another way to understand and 
examine the processes and patterns of urban form and social systems. It also presents a 
role for planning through debates around bounded rationality, externalities, and social 
justice. Complexity theorists argue that self-organized emergence does not necessarily 
lead to desirable features – planning can be thought of as a top-down perturbation of the 
complex system, guiding it toward desirable system attractors (Portugali 1999; Webster 
2010; Allen 2012; Marshall 2012a; Uitermark 2015). Complex systems tend to exhibit 
leverage points that offer targeted intervention opportunities, though their existence is 
not always apparent (Meadows 2008).  

As discussed in the upcoming chapters, many concepts from complexity studies have 
been applied to cities and planning – some metaphorically, others more deeply – 
including bifurcation, basins of attraction and alternative stable states, self-organization, 
emergence, equifinality, feedback, limit cycles and attractors, fractals and spatial pattern 
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formation, resilience, path dependence, self-organized criticality, and complex networks 
(Sengupta et al. 2016; Batty 2017). The next section introduces this conceptual context. 

1.3. Context of the Study 

Perhaps the most effective instances of complexity percolating into urban planning 
scholarship have focused on understanding processes and patterns and informing 
practice. Unfortunately, the flip side of this has too often been an emphasis on simply 
demonstrating how predictions and planning itself may be ill-suited to accomplishing 
their goals, without providing practical, politically-feasible guidelines for how society 
should proceed. Thus, this dissertation proposes that the most important elements of 
complexity theory for informing planning scholarship are those that blend the pragmatic 
with the theoretical – that is, elements that offer 1) a useful toolkit for empirical research 
to inform and aid practicing planners and 2) a theoretical lens to re-conceptualize 
oversimplifications of cities. 

Complex network analysis is one such example. For instance, Barthélemy’s work (2011; 
Barthélemy et al. 2013) provides straightforward ties to planning practice by examining 
historical road networks and using novel methods to analyze their topology over time. In 
turn, complexity’s lessons for urban design are important for informing planning 
scholarship. Complexity is commonly invoked in terms of livability, but the ends and the 
means do not always conform to a robust understanding of the implications of complex 
systems. Marshall (2012a) points out that the desirable complexity of traditional cities 
may not be best served by attempts to mimic it through the large-scale, top-down master 
planning sometimes embraced by movements like the New Urbanism (see also Ellis 2002; 
Rodriguez et al. 2006; Banai and Rapino 2009). Complexity theory may assist in the 
ongoing reconciliation of the aims of such design with their means. 

Complexity theory can also inform future planning scholarship through its critique of 
certainty. The perceived infallibility of planners and their latest ideas resulted in countless 
urban planning disasters during the twentieth century (Hall 1982; Scott 1998). 
Complexity calls instead for flexibility, small steps, collaboration, and a planning 
philosophy aimed at creating organic urban ecosystems for the way humans actually live. 
This is a critical connection between complexity and planning scholarship as it provides a 
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useful grounding framework for safe, pleasant, equitable, and enjoyable urban 
environments. Scholarly discussions of urban form and street networks have long used 
the vocabulary of complexity, with theorists such as Jane Jacobs (1961) – who famously 
argued for urban “organized complexity” – and Christopher Alexander (1965; cf. Harary 
and Rockey 1976; Levinson and Huang 2012; Marshall 2012b) – who famously argued 
that “a city is not a tree” – serving as intellectual forerunners to today’s urban complexity 
theorists.  

Urban design theorists have long considered the neighborhood in the context of 
complexity, bottom-up organicism, and top-down intervention. Since the earliest days of 
cities, neighborhoods would form organically around important points like temples (for 
discussions of the “organic” analogy, see Herbert 1963 and Marshall 2008). These 
landmarks were often situated by central authorities but neighborhoods would self-
organize around them later (Mumford 1961; cf. Braun and Hogenberg 2011). Following 
Weaver (1948), Jacobs (1961) suggested that cities are problems of organized complexity 
and embraced the organic agglomeration, diversity, and proximity of such traditional 
neighborhoods. Rather than designing monolithic single-use zones, she contended that 
planners should provide what is lacking in a neighborhood to maximize diversity. 
Likewise, Alexander’s pattern language presented flexible frameworks for diversity, 
opportunities for social mixing, and other complexity-flavored principles (Alexander et 
al. 1977; 2002; 2008; Vitins and Axhausen 2014; Park 2015). His patterns’ descendants, 
such as form-based codes, attempt to regulate urban form by balancing bottom-up 
flexibility (i.e., emergence and self-organization) with top-down predictability (Talen 
2011). 

Related to these theories of design and complexity, researchers have long probed the 
complex nature of the transportation-land use connection, one of the most studied 
relationships in the planning literature (Ewing and Cervero 2010). Transportation 
options and investments influence land use/urban form (and vice versa) through a 
complex set of feedback loops, individual agents’ ever-shifting preferences, hysteresis, 
path dependence, and nonlinear dynamics. Major top-down planning interventions into 
the transportation-land use connection include neighborhood supply controls (Levine 
2006), parking policy and feedback loops for automobility (Shoup 2002), and the decision 
to price congestion and/or build more roads (Downs 2004; Cervero 2013). 
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Marshall (2012a) claims that such interventions can be conceptualized as an artificial 
selection used for the public good to overrule the natural selection of the market which 
may prioritize individual utility at the expense of public utility. Market distortions and 
externalities indicate a role for planners (Dahlman 1979; Adams and Tiesdell 2010; 
Holcombe 2013). In effect, these interventions seek to perturb an urban ecosystem that 
has emerged out of some combination of decentralized bottom-up organization and top-
down decision-making. Boarnet (2011) suggests that researchers have not thoroughly 
studied how these different types of policy might interact nonlinearly to produce 
amplified or diminished effects – a key trait of complex systems. 

At the intersection (no pun intended) of the study of transportation and urban form and 
design lies our cities’ circulation networks. This dissertation presents new methods for 
assessing the complexity of the urban built form, particularly through its street networks. 
Urban street networks are complex spatial networks that evolve through planning 
decisions and self-organization, and in turn shape human connections and interactions 
within the city. This study is situated between urban form and design, street network 
analysis, and complexity studies. It presents new techniques and measures for collecting 
and analyzing street networks through the lens of complexity – particularly focusing on 
density, connectedness, and resilience. These structural attributes of the urban form 
influence the human interactions and dynamics that play out through space along the 
network.  

1.4. Motivation 

Street network analysis has become prevalent in the past few years in the urban planning 
and transportation literature. Some studies have focused on the urban form, others on 
transportation and flow, and others on the topology, complexity, and resilience of street 
networks. However, the current literature suffers from some shortcomings, discussed in 
detail in chapter 5 but summarized briefly here.  

First, the sample sizes in cross-sectional studies tend to be quite small, typically around 5 
to 50 networks, yet these studies often make claims of generalizability to cities at large. 
Second, studies usually simplify the representation of the street network to a planar or 
undirected primal graph for tractability. This may be both unnecessary and undesirable, 
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as we shall discuss. Third, the dozens of decisions that go into analysis – such as spatial 
extents, topological simplification and correction, definitions of nodes and edges, etc. – 
are often ad hoc or only partly reported, make reproducibility challenging. Fourth, the 
current landscape of tools and methods offers no ideal technique that balances usability, 
customizability, reproducibility, and scalability in acquiring, constructing, and analyzing 
network data. 

To address these challenges, this study’s primary methodological contribution is OSMnx, 
a new research platform developed by this author to download political boundary 
geometries and street network data from OpenStreetMap, then construct, project, 
analyze, map, and visualize the networks. This functionality is discussed in section 1.5.5 
and in detail in chapter 5. This new research tool offers scholars, designers, and engineers 
the ability to analyze street networks, calculate routes, project and visualize the networks, 
and calculate network metrics and statistics. These metrics and statistics include both 
those common in urban design and transportation studies, as well as complexity 
measures of the structure and topology of the network. In particular, this dissertation 
situates these methods in the context of complexity. It aims to democratize and 
disseminate the application of advanced complex network theoretic measures to social 
scientists and urban designers through a simple intuitive tool. It also seeks to make these 
studies reproducible by formalizing and simplifying the many ad hoc decisions that went 
into network acquisition and analysis in the past. Finally, it addresses the longstanding 
sample size limitation by conducting a preliminary empirical study that explores trends in 
the structure of 27,000 U.S. street networks at multiple scales. 

1.5. Organization and Contribution by Chapter 

This dissertation begins and ends with introductory and concluding chapters that book-
end its six central substantive chapters. These six chapters unpack the foundations of the 
nonlinear paradigm, contextualize urban street network analysis within theories of 
complexity, create a typology for measuring the complexity of urban form, present a new 
method for acquiring, constructing, analyzing and visualizing street networks, and 
conduct a multi-scale analysis of urban street networks across the United States. These 
chapters constitute the two primary parts of the dissertation. The first is a deep dive into 
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nonlinearity, complex systems, network analysis, and complexity theories of cities. It 
focuses on dynamics and process, but suggests a bridge to structure. The second builds on 
this foundation to explore applications of street network analysis methodologically and 
empirically. 

1.5.1. Chapter 1 – Introduction 

This chapter has thus far introduced the motivation for and context of the study 
presented in this dissertation. The remainder of this chapter summarizes the organization 
and contribution of each of the subsequent chapters in this dissertation. 

1.5.2. Chapter 2 – Foundations of the Nonlinear Paradigm 

Chapter 2 provides a background for the rest of the dissertation and has two primary 
aims. First it lays the foundation underlying the complexity theories of cities presented in 
chapter 3 by introducing the fundamentals of nonlinear dynamics, chaos, fractals, self-
similarity, and the limits of prediction. It does so in an interdisciplinary way through 
several visualization methods to analyze and understand system behavior. Second it 
presents Pynamical, a new tool developed by this author to visualize and explore 
nonlinear dynamical systems’ behavior. Nearly all nontrivial real-world systems are 
nonlinear dynamical systems. The modern study of complexity partly evolved from initial 
explorations of the surprising behavior of such systems. Although the social sciences are 
increasingly studying society and cities through this lens, seminal concepts remain murky 
or loosely adopted in the literature.  

This chapter introduces systems, dynamics, self-similarity, and prediction to set up the 
discussion in chapter 3 of complexity, cities, and the study of networks. It makes two 
primary contributions: one theoretical, one methodological. First, it reviews the 
qualitative analysis of nonlinear dynamical systems’ behavior for an interdisciplinary 
body of urban scholars and planners. Most formal treatments of chaos and nonlinear 
dynamics in the scholarly literature are densely technical and geared toward an audience 
of mathematicians and physicists. For this chapter, rather, readers require only a 
familiarity with algebra. Second, this chapter makes a methodological contribution by 
presenting Pynamical, a new tool developed by this author as part of this study, to 
visualize and explore nonlinear dynamical systems’ behavior. Comparable tools usually 
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must be developed from scratch or rely on expensive commercial software such as 
MATLAB. Developing tools for exploring, understanding, and visualizing dynamical 
systems in Python makes them available to a wider audience of systems analysts, 
researchers, and students. Pynamical provides a fast, simple, reusable, extensible, free, 
and open-source new means for exploring system behavior – particularly for the 
qualitative analysis of such systems in research and pedagogy. 

1.5.3. Chapter 3 – Complexity and Cities 

Building on the background of chapter 2, chapter 3 presents the theoretical framework of 
complex systems and cities, culminating in network theory and analysis – the primary 
lens this study uses in all subsequent chapters. Discussions of complexity and complex 
systems have appeared throughout the planning literature for years. These principles have 
been applied everywhere from the communicative turn and collaborative rationality, to 
cellular automata and agent-based urban models, to the design of resilient, livable 
neighborhoods. However, the interdisciplinary appeal and trendiness of complexity in the 
social sciences has resulted in a morass of ambiguous terminology, internal 
inconsistencies, and overloaded concepts open to multiple interpretations. 

Unlike the other substantive chapters in this dissertation, this chapter makes neither an 
empirical nor a methodological contribution. However, it offers a theoretical 
contribution to the urban planning literature by unpacking the key foundational concepts 
of complex systems and network science in a straightforward manner. It provides 
explanatory examples of these concepts familiar to scholars and practitioners not already 
versed in the technical science of complexity. Most relevant to this present study, this 
chapter presents the theory of networks and the methods of network analysis that form 
the foundation of the remaining chapters. In doing so, it addresses the transition from 
focusing on dynamics to focusing on structure, and suggests a bridge between the two. 

1.5.4. Chapter 4 – Measuring the Complexity of Urban Form and Design 

Building on the theories of complexity and networks presented in chapter 3, chapter 4 
develops a typology of measures for assessing the complexity of the urban built form. In 
particular, it extends quantitative methods from network science, ecosystems studies, 
fractal geometry, information theory, and urban planning to the practice of 
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neighborhood-scale urban design and the analysis of its qualitative human experience. 
Metrics at multiple scales are scattered throughout these bodies of literature and have 
useful applications in analyzing the built form that results from local planning and design 
processes. Rich linkages between complexity theory and urban design have been 
underexplored by researchers at the neighborhood and street scales – the scales of daily 
human experience. The urban design literature frequently cites the value of complexity in 
neighborhood design, but these arguments often lack the formalism found in complex 
systems science. If neighborhood complexity is considered important, how might we 
interpret it and how might it be assessed?  

This chapter unpacks the connections between neighborhood-scale built form and 
measures of its complexity. It contributes a new typology of tools and metrics from 
different scientific disciplines to assess measures of complexity that apply to urban form 
and particularly at urban design’s scale of intervention. In particular, the measures of 
network structure characterize the complexity of the circulation network in terms of 
density, resilience, and connectedness. These attributes influence the way an urban 
system’s physical links can structure complex interactions and dynamics. The analytical 
framework developed here is generalizable to empirical research of multiple 
neighborhood types and design standards. In particular, network-analytic measures in 
this typology are operationalized in the next chapter, and applied empirically in the 
subsequent two empirical chapters. 

1.5.5. Chapter 5 – Acquiring, Analyzing, and Visualizing Street Networks 

Scholars have studied street networks in various ways. However, there are some 
limitations to the current urban planning/street network analysis literature. To address 
these challenges, this study presents a new tool developed by this author as part of this 
study, to make the collection of data and creation and analysis of street networks simple, 
consistent, and automatable. OSMnx is a new Python package that downloads political 
boundary geometries, street networks, and building footprints from OpenStreetMap.  

OSMnx contributes five significant new capabilities for researchers and city planners: 
first, the automatic downloading of place boundaries and building footprints; second, the 
tailored and automated downloading and construction of street networks from 
OpenStreetMap; third, the automated correction and simplification of network topology; 
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fourth, the ability to save street networks to disk as shapefiles, GraphML, or SVG files; 
and fifth, the ability to analyze street networks, calculate routes, project and visualize the 
networks, and calculate network metrics and statistics. These metrics and statistics 
include both those common in urban design and transportation studies, and metrics that 
measure the structure and topology of the network.  

This chapter makes two primary methodological contributions. First, it presents new 
methods and tools for acquiring, constructing, correcting, projecting, analyzing, and 
visualizing street networks. Second, it adapts measures from traditional network analysis 
to make them better-suited to accurately describing the physical form of street 
intersections and network connectivity.  

1.5.6. Chapter 6 – Case Study: Portland, Oregon 

This short chapter presents a small case study to simply but plainly demonstrate the use 
of OSMnx for research. It collects three small half-kilometer sections of the street network 
in different neighborhoods in Portland, Oregon to perform a cross-sectional analysis. The 
scale of analysis and sample size are small, but they provide simple, comprehensible 
examples to illustrate the network concepts presented in chapter 3, the network measures 
presented in chapter 4, and the methodological tool presented in chapter 5. This chapter 
thus serves to tie these preceding threads together empirically.  

Accordingly, this chapter has two aims. First, as discussed, it demonstrates the 
functionality of OSMnx with a simple case study. Second, it presents empirical findings of 
three street networks in Portland, Oregon and uses the quantitative measures to compare 
and contrast these network sections. It introduces these neighborhoods first from a brief 
qualitative and historical perspective, then explores their comparative quantitative 
measures of network complexity and structure. Then it discusses these empirical findings 
and insights that may be drawn from them. It identifies significant chokepoints in the 
suburban network and demonstrates how there could be substantial gains in network 
resilience if one-way streets in the dense, orthogonal downtown were converted to two-
way streets. This small case study demonstrates OSMnx simply before embarking on the 
large multi-scale analysis of 27,000 street networks in the next chapter. 
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1.5.7. Chapter 7 – A Multi-Scale Analysis of Urban Street Networks 

Following on the small case study in chapter 6, chapter 7 presents a large multi-scale 
analysis of 27,000 street networks. The empirical literature on street network analysis is 
growing ever richer, but suffers from some limitations. First, sample sizes tend to be fairly 
small due to data availability, gathering, and processing constraints. Second, 
reproducibility is difficult when the dozens of decisions that go into analysis – such as 
spatial extents, topological simplification and correction, definitions of nodes and edges, 
etc. – are ad hoc or only partly reported. Third, and related to the first two, studies 
frequently oversimplify to planar or undirected primal graphs for tractability, or use dual 
graphs despite the loss of geographic and metric information. Fourth, the current 
landscape of tools and methods offers no ideal technique that balances usability, 
customizability, reproducibility, and scalability in acquiring, constructing, and analyzing 
network data. 

This fourth limitation above was addressed by introducing OSMnx and demonstrating its 
use in a small case study of Portland, Oregon in chapters 5 and 6. Chapter 7 addresses the 
first three limitations by conducting an analysis of street networks at multiple scales, with 
large sample sizes, with clearly defined network definitions and extents for 
reproducibility, and using non-planar, directed graphs. In particular, it examines urban 
street networks – represented as primal, non-planar, weighted multidigraphs with 
possible self-loops – through the framework of complexity developed in chapters 3 and 4, 
focusing on structure, density, connectedness, centrality, and resilience.  

Most studies in the street network literature that conduct topological and/or metric 
analysis tend to have sample sizes ranging around 5 to 50 networks. This chapter instead 
conducts a large analysis of 27,000 urban street networks at multiple overlapping scales 
across the United States. Namely, it examines the street networks of every U.S. 
incorporated city and town, urbanized area, and Zillow-defined neighborhood. In total, 
we use OSMnx to download, construct, and analyze 497 urbanized areas’ street networks, 
19,655 cities’ and towns’ street networks, and 6,857 neighborhoods’ street networks. It 
uses these street networks to conduct four analyses: at the metropolitan scale, at the 
municipal scale, at the neighborhood scale, and a case study looking deeper at the 
neighborhood-scale street networks in the city of San Francisco, California. 
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This chapter presents preliminary empirical findings that emphasize street network 
complexity in terms of density, resilience, and connectedness. The orthogonal grid we see 
in the downtowns of Portland and San Francisco have high density (i.e., intersection and 
street densities), connectedness (i.e., average number of streets per node), and order 
(based on circuity and statistical dispersion of node types), but low resilience in the 
presence of one-way streets, measured by maximum betweenness centralities and average 
node connectivity increases when switching from one-way to bi-directional edges. 
Sprawling, disconnected suburban neighborhoods rank low on all measures of 
complexity, with the exception that their high circuity can lend itself to disorder. This 
discussion argues that street networks can be complex either inherently because of their 
form, or indirectly through how that form structures human dynamics. This shaping of 
human interactions and connections by the urban form links the theory of dynamical 
complexity in the early chapters with the empirical analysis of form and structural 
complexity in the latter chapters. 

We also find that scale is critically important in analyses of street networks. However, 
invariant to scale, we find a strong linear relationship between total street length and the 
number of nodes in a network. This provides new evidence that contradicts some 
previous findings in the literature that relied on purely theoretical models or small sample 
sizes. We also find that most networks empirically demonstrate a lognormal distribution 
of street segment lengths. An obvious exception to lognormal distribution lies in those 
networks that exhibit substantial uniformity across the entire network, such as the 
consistent orthogonal grid of downtown Portland, Oregon. At the municipal scale, towns 
in the Great Plains typically have orthogonal grids with consistent block sizes, platted at 
one time, and never subjected to sprawl. Similarly, comparing median street networks of 
each state, Nebraska has the lowest circuity, the highest average number of streets per 
node, the second shortest average street segment length, and the second highest 
intersection density for similar reasons. Various spatial signatures of bygone planning 
instruments and design paradigms remain etched into the urban form and street 
networks of cities across the United States through path dependence – a hallmark of 
complex systems.  

Finally, this study has made these network datasets and their attribute datasets available 
in a public online repository for other researchers to study and re-purpose (see 
Appendix). 
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1.5.8. Chapter 8 – Conclusion 

The dissertation concludes with a brief synopsis of the study, a summary of its key 
findings, a discussion of their contribution to the academic literature and to planning 
practice, and potential trajectories for future research. In particular, future work remains 
in exploring the links between structural complexity and the complexity of human 
dynamics. OSMnx provides opportunities to do so by providing a rich new basket of built 
form variables to model individual and collective human behavior through urban 
circulation networks. 
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Chapter 2:  Foundations of the Nonlinear 
Paradigm 
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2.1. Abstract 

Nearly all nontrivial real-world systems are nonlinear dynamical systems. Chaos 
describes certain nonlinear dynamical systems that have a sensitive dependence on initial 
conditions. Chaotic systems are always deterministic and may be very simple, yet produce 
completely unpredictable and divergent behavior. The modern study of complex systems 
evolved from these initial explorations, and although the social sciences are increasingly 
studying these types of systems, seminal concepts remain murky or loosely adopted. This 
chapter has two primary aims. First it introduces the foundations of nonlinear dynamics, 
chaos, fractals, self-similarity, and the limits of prediction through several visualization 
methods to analyze and understand system behavior. Second it presents Pynamical, a new 
tool that created by this author as part of this study, to visualize and explore nonlinear 
dynamical systems’ behavior. 

2.2. Introduction 

Chaos theory is a branch of mathematics that deals with nonlinear dynamical systems. A 
system is a set of interacting components that form a larger whole. Nonlinear means that 
this system’s outputs are disproportional to its inputs: due to feedback or multiplicative 
effects between the components, the whole becomes something greater than the mere 
sum of its individual parts. Lastly, dynamical means the system changes over time based 
on its current state. Nearly every nontrivial real-world system is a nonlinear dynamical 
system. Chaotic systems are a type of nonlinear dynamical systems that may contain very 
few interacting parts and may follow simple rules, but all have a sensitive dependence on 
their initial conditions (Hastings et al. 1993; Rickles et al. 2007).  

One might expect that any simple deterministic system would produce easily predictable 
behavior. Yet despite their deterministic simplicity, over time these systems can produce 
wildly unpredictable, divergent, and fractal (i.e., infinitely detailed and self-similar 
without ever actually repeating) behavior due to that sensitivity. Forecasting such 
systems’ futures thus requires an impossible precision of measurement and computation. 
Chaos fundamentally indicates that there are limits to knowledge and prediction because 
some futures may be unknowable with any precision. Further, interventions into a system 
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may have unpredictable outcomes even if the intervention is minor, as tiny effects can 
compound (or be damped) nonlinearly over time. 

Real-world chaotic and fractal systems span the spectrum from leaky faucets (Suetani et 
al. 2012), to plants (Singh et al. 2012; Walker 2012), to heart rates (Glass 2009; Hoshi et al. 
2013; Babbs 2014), to cryptography (Hong and Dong 2010; Makris and Antoniou 2012). 
Many scholars have studied the implications of nonlinearity, chaos, and fractals for the 
social sciences, including sociology (Richards 1996; Guastello 2013), urban studies (Batty 
1991; 2008b; Batty and Longley 1994; Batty and Xie 1999; Benguigui et al. 2000; Shen 
2002; Chen and Zhou 2008), economics (Rosser 1996; Oxley and George 2007; Chen 
2008; Guégan 2009; Puu 2013), architecture (Hamouche 2009; Ostwald 2013), and city 
planning (Cartwright 1991; Innes and Booher 2010; Batty and Marshall 2012; Batty 
2013c; Chettiparamb 2014; Narh et al. 2016). 

One constant throughout the interdisciplinary history of nonlinear dynamical systems 
study is that nonlinear systems are extremely difficult to solve analytically because they 
cannot be broken down into constituent parts, solved individually, then recombined as a 
solution (Hofstadter 1985). Scientists have instead relied heavily on visual and qualitative 
approaches – a perspective first developed by Henri Poincaré in the late 1800s – to 
discover and analyze the dynamics of nonlinearity (Alpigini 2004; Layek 2015). 
Information visualization helps analysts detect and examine hidden structure in complex 
data sets (Chen 2006). In particular, few fields have drawn as heavily from visualization as 
nonlinear dynamics and chaos have for their pivotal discoveries, from Lorenz’s first 
visualization of strange attractors (Lorenz 1963), to May’s groundbreaking bifurcation 
diagrams (May 1976), to phase diagrams for discerning higher-dimensional hidden 
structures in data (Packard et al. 1980). Such nonlinear analysis is particularly useful, yet 
underutilized, for exploring time series (Bradley 2003; Bradley and Kantz 2015). These 
methods in turn have broad applicability to visual information analysis and the 
interdisciplinary study of nonlinear and complex systems.  

This chapter introduces nonlinearity through the methods of data visualization, using a 
logistic model to dissect the terminology, illustrate pertinent features of chaos and 
fractals, and discuss wide-ranging implications for knowledge and prediction. It has two 
primary aims. First, it introduces the foundations of nonlinear dynamics, chaos, fractals, 
self-similarity, and the limits of prediction. Although the social sciences are increasingly 
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studying these types of systems, some of the seminal concepts remain murky or loosely 
adopted in the theoretical literature (Chettiparamb 2006). Most formal treatments of 
chaos and nonlinear dynamics in the scholarly literature are densely technical and geared 
toward an audience of mathematicians and natural scientists. For this chapter, rather, 
readers require only a familiarity with algebra. We thus do not cover the rigorous 
mathematical underpinnings of chaos and nonlinear dynamics, but the references 
throughout cite both the original foundational publications in this field as well as recent 
scholarly developments. Second, this chapter presents Pynamical, a new tool created by 
this author to visualize and explore nonlinear dynamical systems’ behavior. Comparable 
tools usually must be developed from scratch or rely on expensive commercial software 
such as MATLAB (Tomida 2008). Pynamical provides a fast, simple, reusable, extensible, 
free, and open-source new means for exploring system behavior – particularly for the 
qualitative analysis of such systems in research and pedagogy. 

The following section provides a background to the logistic map and the concepts of 
system dynamics and attractors. Then we introduce several information visualization 
techniques to explore qualitative system behavior, bifurcations, the path to chaos, fractals, 
and strange attractors. We investigate the difference between chaos and randomness. 
Finally, we visualize the famous butterfly effect and conclude with a discussion of its 
implications for scientific prediction and complexity. All of these models and 
visualizations are developed in Python using Pynamical; for readability, we reserve the 
technical details of its functionality for the discussion section and appendix. 

2.3. Background and Model 

The meteorologist Edward Lorenz is widely considered the father of chaos theory 
(Stewart 2000). Danforth (2013) relates an anecdote in which Lorenz describes chaos as 
“when the present determines the future, but the approximate present does not 
approximately determine the future.” Lorenz first discovered chaos by accident while 
developing a simple mathematical model of atmospheric convection, using three ordinary 
differential equations (Lorenz 1963). He found that nearly indistinguishable initial 
conditions could produce completely divergent outcomes, rendering weather prediction 
impossible beyond a time horizon of about a fortnight (Gleick 1991). 
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How can this possibly happen with a simple deterministic system? We will explore an 
example using the logistic map, a model based on the common s-curve logistic function 
that shows how a population grows slowly, then rapidly, before tapering off as it reaches 
its environment’s carrying capacity (May 1974; Li et al. 2011). The logistic function uses a 
differential equation that treats time as continuous. The logistic map instead uses a 
difference equation to look at discrete time steps (Pastijn 2006; Strogatz 2014). It is called 
the logistic map because it maps the population value at any time step to its value at the 
next time step: xt+1 = r xt (1–xt). This nonlinear equation defines the rules, or dynamics, of 
our system: x represents the population at some time t, and r represents the growth rate. 
Thus, the population level at any given time is a function of the growth rate parameter 
value and the previous time step’s population level. If the growth rate is set too low, the 
population will die out and go extinct. Higher growth rates might settle toward a stable 
value or fluctuate across a series of population booms and busts. 

 

Generation r = 0.5 r = 1.0 r = 1.5 r = 2.0 r = 2.5 r = 3.0 r = 3.5 
1 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
2 0.125 0.250 0.375 0.500 0.625 0.750 0.875 
3 0.055 0.188 0.352 0.500 0.586 0.562 0.383 
4 0.026 0.152 0.342 0.500 0.607 0.738 0.827 
5 0.013 0.129 0.338 0.500 0.597 0.580 0.501 
6 0.006 0.112 0.335 0.500 0.602 0.731 0.875 
7 0.003 0.100 0.334 0.500 0.599 0.590 0.383 
8 0.002 0.090 0.334 0.500 0.600 0.726 0.827 
9 0.001 0.082 0.334 0.500 0.600 0.597 0.501 

10 0.000 0.075 0.333 0.500 0.600 0.722 0.875 
11 0.000 0.069 0.333 0.500 0.600 0.603 0.383 
12 0.000 0.065 0.333 0.500 0.600 0.718 0.827 
13 0.000 0.060 0.333 0.500 0.600 0.607 0.501 
14 0.000 0.057 0.333 0.500 0.600 0.716 0.875 
15 0.000 0.054 0.333 0.500 0.600 0.610 0.383 
16 0.000 0.051 0.333 0.500 0.600 0.713 0.827 
17 0.000 0.048 0.333 0.500 0.600 0.613 0.501 
18 0.000 0.046 0.333 0.500 0.600 0.711 0.875 
19 0.000 0.044 0.333 0.500 0.600 0.616 0.383 
20 0.000 0.042 0.333 0.500 0.600 0.710 0.827 

Table 2.1. Population values produced by the logistic map over 20 generations with 7 different values of the 
growth rate parameter r. 
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Figure 2.1. Time series graph of the logistic map with 7 growth rate parameter values over 20 generations. 

Chaos can manifest itself in both continuous (i.e., with dynamics defined by differential 
equations) and discrete (i.e., with dynamics defined by an iterated map) nonlinear 
dynamical systems. The logistic map is a simple, one-dimensional, discrete equation that 
produces chaos at certain growth rates. We will explore this in depth momentarily, but 
first, we use Pynamical to run the logistic model for 20 time steps (we will henceforth call 
these recursive iterations of the equation generations) for growth rate parameter values of 
0.5, 1, 1.5, 2, 2.5, 3, and 3.5. Table 2.1 presents the results: the columns represent growth 
rates and the rows represent generations. The model always starts with a population level 
of 0.5 and represents population as a ratio between 0 (extinction) and 1 (the maximum 
carrying capacity of our system). If we trace down the column in Table 2.1 under growth 
rate 1.5, we see that the population level eventually settles toward a final value of 0.333 
after several generations. In the column for growth rate 2, we see an unchanging 
population level of 0.5 across every generation. This makes sense in the real world – if two 
parents produce two children, the overall population will neither grow nor shrink. Thus, 
a growth rate parameter value of 2 represents the replacement rate. 

Figure 2.1 visualizes the time series in Table 2.1 as a chart with time on the x-axis and the 
system state (i.e., population) on the y-axis. This graph illustrates how the population 
changes over time at different growth rates. For instance, the violet line for growth rate 
0.5 quickly drops to zero: the population dies out. The teal line that represents a growth 
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rate of 2 (the replacement rate) stays steady at a population level of 0.5. The growth rates 
of 3 and 3.5 are more interesting. While the green line for growth rate 3 seems to slowly 
converge toward a stable value, the yellow line for growth rate 3.5 just seems to repeatedly 
bounce around four different values. 

An attractor is the value, or set of values, that a system settles toward over time. When the 
growth rate parameter is set to 0.5, the system has a fixed-point attractor at population 
level 0, as depicted by the violet line dropping to 0. In other words, the population value is 
drawn toward a stable equilibrium of 0 over time as the model iterates: the logistic 
equation maps the value of a fixed-point attractor to itself. When the growth rate 
parameter is set to 3.5, the system oscillates between four values as depicted by the yellow 
line. This oscillating attractor is called a limit cycle. But when we adjust the growth rate 
parameter in this model beyond 3.57, we witness the onset of chaos. A chaotic system has 
a strange attractor, around which the system oscillates forever without ever repeating 
itself or settling into a steady state of behavior (Ruelle and Takens 1971; Shilnikov 2002). 
It never produces the same value twice and its structure is fractal, meaning the same 
patterns exist at every scale no matter how much we zoom into it (Grebogi et al. 1987). 

2.4. System Bifurcations 

To show this more clearly, we run the logistic model again, this time for 200 generations 
across 1,000 growth rate values between 0 and 4. When we produced the plot in Figure 
2.1, we had only 7 growth rates. This time we have 1,000 so we need to visualize the 
results in a different way to make them comprehensible, using a bifurcation diagram that 
visualizes a system’s attractors as a function of some parameter (May 1976; Gershenson 
2004; Wu and Baleanu 2014). The bifurcation diagram in Figure 2.2 represents 1,000 
discrete vertical slices, each corresponding to one of 1,000 growth rate parameter values 
evenly spaced between 0 and 4. To produce each of these visual slices, Pynamical ran the 
model 200 times then threw away the first 100 results, leaving just the final 100 
generations for each growth rate. Each vertical slice thus visualizes the population values 
that the logistic map settles toward over time (i.e., the attractor) for that parameter value. 

In Figure 2.2 we can see that for growth rates less than 1, the system always eventually 
collapses to zero (extinction). For growth rates between 1 and 3, the system always settles 
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into an exact, stable population level. For instance, in the vertical slice above growth rate 
2.5, there is only one population value represented (0.6) and it corresponds precisely to 
where the line for growth rate 2.5 settles in Figure 2.1’s time series graph. At this 
parameter value, the system’s attractor is a fixed point at 0.6. But for some growth rates, 
such as 3.9, the plot in Figure 2.2 shows 100 different values – in other words, a different 
value for each of its 100 generations. Here the system never settles into a fixed point or a 
limit cycle. 

Why is this visualization called a bifurcation diagram? If we zoom into the growth rates 
between 2.8 and 4 to see what is happening at a finer scale (Figure 2.3), the possible 
population values fork into two discrete paths at the vertical slice above growth rate 3. At 
growth rate 3.2, the system oscillates exclusively between two population values: one 
around 0.5 and the other around 0.8. Thus, at that growth rate, applying the logistic map 
to one of these two population values yields the other. Just beyond growth rate 3.4, the 
diagram bifurcates again into four paths. This corresponds to the yellow line in Figure 2.1: 
when the growth rate parameter is set to 3.5, the system oscillates over four population 
values. 

 
Figure 2.2. Bifurcation diagram of 100 generations of the logistic map for 1,000 growth rate parameter 
values between 0 and 4. The vertical slice above each growth rate depicts the system’s attractor at that rate. 
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Figure 2.3. Bifurcation diagram of 100 generations of the logistic map for 1,000 growth rate parameter 
values between 2.8 and 4. The vertical slice above each growth rate depicts the system’s attractor at that rate. 

These are periods, just like the period of a pendulum. At growth rate 3.2, the system has a 
period-2 attractor. At growth rate 3.5, the system has a period-4 attractor. Just beyond 
growth rate 3.5, it bifurcates again into eight paths as the system oscillates over eight 
population values. These consecutive bifurcations are phase transitions from one behavior 
– such as a fixed-point attractor, to a qualitatively different type of behavior, such as a 
period-2 limit cycle attractor – as we vary this parameter value. Beyond a growth rate of 
3.57, however, the bifurcations ramp up until the system is capable of eventually landing 
on any population value. This is known as the period-doubling path to chaos. As we adjust 
the growth rate parameter upwards, the logistic map will oscillate between two, then four, 
then eight, then 16, then 32 (and on and on to infinity) population values. 

By the time we reach growth rate 3.99, it has bifurcated so many times that the system 
now jumps, seemingly randomly, between all population values. We only say seemingly 
randomly because it is definitely not truly random. Rather, this model follows simple 
deterministic rules yet produces apparent randomness due to its attractor having a period 
of infinite length. This is chaos: deterministic and aperiodic. If we zoom in again, to the 
narrow slice of growth rates between 3.7 and 3.9 (Figure 2.4), we begin to see the beauty 
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of chaos. Out of the noise emerge swirling patterns and thresholds, on either side of 
which the system behaves very differently. For example, between the growth rates of 3.82 
and 3.84, the system moves from chaos back into order, oscillating between just three 
population values: approximately 0.15, 0.55, and 0.95. But then at growth rates beyond 
3.86 it bifurcates again and returns to chaos. Indeed, any one-dimensional system with a 
period-3 cycle such as this at some parameter value is capable of chaotic behavior at other 
parameter values (Li and Yorke 1975). 

Universality refers to the phenomenon that very different systems can exhibit very similar 
behavior regardless of their underlying dynamics. It is commonly associated with 
Feigenbaum’s discovery that all systems that undergo this period-doubling path to chaos 
obey a mathematical constant (Feigenbaum 1978; 1983). The distance between 
consecutive bifurcations along the horizontal axis shrinks by a factor that asymptotically 
approaches 4.669, now known as Feigenbaum’s constant (Hofstadter 1985; Strogatz 2014). 
Regardless of the system’s specific dynamics, the ratio of the bifurcations on its road to 
chaos always obeys this constant. 

 
Figure 2.4. Bifurcation diagram of 100 generations of the logistic map for 1,000 growth rate parameter 
values between 3.7 and 3.9. The system moves from order to chaos and back again as the growth rate is 
adjusted. 
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2.5. Fractals and Strange Attractors 

There is also a deep and universal connection between chaos and fractals (Tomida 2008). 
In Figure 2.4, the bifurcations around growth rate 3.85 may look familiar. If we zoom in 
on the center one (Figure 2.5), we see the same structure that we saw earlier at the macro-
level. In fact, if we keep zooming infinitely in to this visualization, we will continue seeing 
the same structures and patterns at finer and finer scales, forever. How can this possibly 
be? We mentioned earlier that chaotic systems have strange attractors and that their 
structure can be characterized as fractal (Hénon 1976; Farmer 1983; Grassberger and 
Procaccia 1983). Fractals are shapes that are self-similar, meaning they have the same 
structure at every scale (Mandelbrot 1967; 1983; 1999). As we zoom in on them, we find 
smaller copies of the larger macro-structure. The bifurcation diagram (and thus the 
attractor) of the logistic map is a fractal: at the fine scale in Figure 2.5, we see a tiny 
reiteration of the same bifurcations, chaos, and limit cycles we saw in Figure 2.1’s 
visualization of the full range of growth rates. 

 
Figure 2.5. Bifurcation diagram of 100 generations of the logistic map for 1,000 growth rate parameter 
values between 3.84 and 3.856. This is the same structure that we saw earlier at the macro-level in Figure 
2.3, because chaotic systems’ strange attractors are fractal. 
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Figure 2.6. Phase diagrams of the logistic map over 200 generations for growth rate parameter values of 2.9 
(A), 3.5 (B), 3.56 (C), and 3.57 (D). When the parameter is set to 2.9, the model converges at a single fixed-
point. When the parameter is set to 3.5 or higher, the model oscillates over four points, then eight, and on 
and on as it bifurcates. 

Another way to visualize this nonlinear time series is with a phase diagram, using a 
method called state-space reconstruction through delay-coordinate embedding (Bradley 
and Kantz 2015). Simply put, this plots the system’s value at generation t+1 on the y-axis 
versus its value at t on the x-axis (Huikuri et al. 2000), giving us another visual window 
into the qualitative behavior of the system. The clever insight of this phase diagram is that 
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it embeds one-dimensional time series data from our logistic map into two-dimensional 
state space: an imaginary space that uses system variables as its dimensions (Packard et al. 
1980; Takens 1981; Theiler 1990). Each point in state space is a system state, or in other 
words, a set of variable values. While traditional systems analysis tends to focus on 
visualizing time series as in Figure 2.1, nonlinear dynamics tends to focus on visualizing 
these state spaces. Few real-world systems are fully observable, yet the dynamics in a 
properly reconstructed state space are identical to the true dynamics of the entire system 
(Bradley 2003). 

In our case, the two variables are 1) the population value at generation t, and 2) the value 
at t+1. For example, with a growth rate of 3.5, the population value at generation 1 is 0.5, 
the value at generation 2 is 0.875, the value at generation 3 is 0.383, and so forth (see 
Table 2.1). Therefore, our two-dimensional phase diagram will have (x, y) points at (0.5, 
0.875) and (0.875, 0.383) and so on (Figure 2.6b). Remember that our model follows a 
simple deterministic rule, so if we know a certain generation’s population value, we can 
easily determine the next generation’s value. Like earlier, to produce these phase diagrams 
Pynamical runs the logistic model for 200 generations and then discards the first 100 
rows, to visualize only those values that the system settles toward over time. 

In Figure 2.6a, the phase diagram shows that the logistic map homes in on a fixed-point 
attractor at 0.655 (on both axes) when the growth rate parameter is set to 2.9. This 
corresponds to the vertical slice above the x-axis value of 2.9 in the bifurcation diagram in 
Figure 2.2. Figure 2.6b depicts a period-4 limit cycle attractor: when the growth rate is set 
to 3.5, the logistic map oscillates over four points, as shown in this phase diagram (and in 
Figures 2.1 and 2.2). If we adjust the growth rate parameter up to 3.56, we witness a 
period-doubling bifurcation: Figure 2.6c shows the system now oscillating over eight 
points. As we approach the chaotic regime – the range of parameter values in which our 
system behaves chaotically – the period-doubling bifurcations start to come more 
quickly. Figure 2.6d shows that several additional bifurcations occurred between the 
growth rates of 3.56 and 3.57. 

A kind of structure is slowly being revealed across Figure 2.6, but we can see it much 
more clearly as we push the growth rate parameter value deep into the chaotic regime. 
The phase diagram in Figure 2.7a reveals the system’s attractor at a growth rate of 3.9. 
Figure 2.7b visualizes 50 different growth rate parameter values between 3.6 and 4, each 
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with its own color. Those rates that exhibit chaos form parabolas due to the quadratic 
form of the logistic map’s equation, but some gaps exist where the system occasionally 
settles down into periodic behavior (e.g., in the teal band when the growth rate is set to 
3.83 – compare this band of periodicity with Figure 2.4). 

 
Figure 2.7. Cropped phase diagrams of the logistic map over 200 generations for (A) a growth rate 
parameter value of 3.9 and (B) 50 growth rate parameter values between 3.6 and 4 (the chaotic regime), 
each with its own colored line. 

Strange attractors are revealed by these shapes as the system is somehow oddly 
constrained, yet never settles into a fixed point or limit cycle like it did in Figure 2.6. 
Instead it just bounces around different population values (i.e., points on the parabola) 
forever without ever repeating the same value twice. It is impossible to predict if any two 
consecutive observations appear near each other or far apart on the parabola. Further, the 
parabolas in Figure 2.7b never overlap due to their fractal geometry and the deterministic 
nature of the logistic map. Consider: if two different parameter values could ever land on 
the exact same point, their systems would have to evolve identically over time because the 
logistic map is deterministic.  

We can see in these visualizations that this indeed never happens. While the dynamics of 
a chaotic system appear to have no pattern whatsoever, in reality they conform to a 
remarkable fractal pattern – a strange attractor – which confines the system to a limited 
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slice of state space and ensures that no state will ever repeat (Kekre et al. 2014). Rather 
than having a whole-number dimension such as two or three, they are characterized by a 
fractional (hence, fractal) dimension (Grassberger and Procaccia 1983; Clarke 1986; 
Theiler 1990). The fractal dimension refers to the space-filling characteristics of a curve 
that, through self-similarity, becomes a bit more than a one-dimensional line yet a bit less 
than a two-dimensional plane. 

 
Figure 2.8. Cobweb plots of the logistic map for growth rate parameter values of (A) 1, (B) 2.7, (C) 3.5, (D) 
3.9. The diagonal gray identity line represents y=x, the red curve represents the logistic map as y=f(x) for 
each of the four parameter values, and the blue line represents the system’s trajectory over 100 generations. 
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These visualizations have all plotted quantitative data to better explain and understand 
the qualitative behavior of a nonlinear dynamical system. A cobweb plot is a visualization 
technique well-suited to revealing the qualitative behavior of one-dimensional maps, 
allowing us to analyze the long-term evolution of such systems under recursive iteration 
(Hofstadter 1985; Tomida 2008). The cobweb plots drawn by Pynamical in Figure 2.8 
consist of three lines: a diagonal gray identity line representing y=x, a red curve 
representing the logistic map as y=f(x) for a given parameter value, and a blue line tracing 
the path of the cobweb. 

The blue lines intersect the red curve at those values our system lands on as it iterates 
from an initial population value of 0.5. In Figure 2.8a and b, the cobweb shows the system 
homing in on fixed-point attractors of 0 and 0.65, respectively. At a growth rate of 3.5 
(Figure 2.8c) the system oscillates over four points in its limit cycle attractor, denoted by 
rectangular closed loops. The points where the blue lines intersect the red curve are the 
same as those revealed by the attractor in Figure 2.6b for the same parameter value. 
Finally, Figure 2.8d visualizes our system’s behavior in the chaotic regime at a growth rate 
of 3.9. The chaotic orbit fills the plot with rectangles – an eventually infinite number of 
never-repeating trajectories that form a fractal cobweb throughout the diagram. 

2.6. Determinism and Randomness 

Phase diagrams are useful for visually revealing strange attractors in time series data, like 
that produced by the logistic map, because they embed this one-dimensional data into a 
two- or even three-dimensional state space. It can be difficult to ascertain if certain time 
series are deterministic or stochastic if we do not fully understand their underlying 
dynamics (Sander and Yorke 2015). Take the two series plotted by Pynamical in Figure 
2.9 as an example. Both of the lines seem to jump around randomly. The red line does 
depict random data, but the blue line comes from our logistic model when the growth 
rate is set to 3.99. This is deterministic chaos, but it is difficult to differentiate from 
randomness. Instead in Figure 2.10 we visualize these same two data sets with phase 
diagrams rather than time graphs, giving us a clear window into the qualitative behavior 
of our systems. Now we can clearly see our chaotic system constrained by its strange 
attractor. By contrast, the random data set looks like the noise that it actually is. 
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Figure 2.9. Plot of two time series, one deterministic/chaotic from the logistic map (blue), and one random 
(red). 

 
Figure 2.10. Phase diagrams of the time series in Figure 2.9. 10B is a three-dimensional state space version 
of the two-dimensional 10A. 

This is particularly revealing in a three-dimensional phase diagram from Pynamical 
(Figure 2.10b) that embeds our time series into a three-dimensional state space by 
plotting the population value at generation t+2 versus the value at t+1 versus the value at 
t. This plot essentially extrudes our two-dimensional plot (Figure 2.10a), then pans and 
rotates the viewpoint. In fact, if we looked straight down at the x-y plane of the three-
dimensional plot in Figure 2.10b, it would look identical to the two-dimensional plot in 
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Figure 2.10a. Strange attractors stretch and fold state space in higher dimensions, 
allowing their fractal forms to fill space without ever producing the same value twice. 

To press this further, we can use Pynamical to visualize the rest of the logistic map’s 
chaotic regime in three dimensions: the phase diagram in Figure 2.11 is a three-
dimensional version of the two-dimensional state space we saw in Figure 2.7b. The color 
coding exposes the dynamical system’s behavior across the chaotic regime – information 
virtually impenetrable without visualization. The structure of the strange attractor is 
revealed as it twists and curls around its three-dimensional state space. This structure 
again demonstrates that our apparently random time series data from the logistic model 
is not truly random at all. Instead, it is aperiodic deterministic chaos, constrained by a 
strange attractor. No matter how much we zoom in, the parabolas never overlap and no 
point ever repeats itself. 

 
Figure 2.11. Two different viewing perspectives of a single three-dimensional phase diagram of the logistic 
map over 200 generations for 50 growth rate parameter values between 3.6 and 4, each with its own colored 
line. 

2.7. The Limits of Prediction 

Attractors have a basin of attraction: a set of points that the system’s dynamics will pull 
into this attractor over time (Sprott and Xiong 2015). This is easily seen with a cobweb 
plot. Figure 2.12 shows how the logistic map’s basin of attraction (when the growth rate is 
2.7) pulls three different initial population values into the same fixed-point attractor. The 
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initial state of the system will eventually become unknowable, because any one of many 
different possible points in the basin of attraction could have been the one pulled into the 
attractor.  

By contrast, chaotic systems are characterized by their sensitive dependence on initial 
conditions (Zhang et al. 2016). Their strange attractors are globally stable yet locally 
unstable: they have basins of attraction, yet within a strange attractor infinitesimally close 
points diverge over time without ever leaving the attractor’s confines. This divergence can 
be measured by Lyapunov exponents (Brown 1996), the calculation of which is described 
by Wolf et al. (1985). If the Lyapunov exponent’s value is positive, then the two points 
move apart over time at an exponential rate. If the Lyapunov exponent is negative, then 
these points converge exponentially quickly, such as toward a fixed point or limit cycle. 
Finally, the Lyapunov exponent is zero when there is a bifurcation (Dingwell 2006).  

For example, with our logistic model, the Lyapunov exponent is zero when the growth 
rate is set to 1 or 3 because they are bifurcation points; it is negative for most growth 
rates, such as 0 ≤ r < 1 and 1 < r < 3, because they have fixed-point or limit cycle 
attractors; and it is positive for the chaotic regime (exclusive of those occasional windows 
when the system resumes brief periodicity, such as when the growth rate is 3.83). A 
positive Lyapunov exponent indicates that the system has a highly sensitive dependence 
on initial conditions, and is a common signature of chaos (Chan and Tong 2013; Kantz et 
al. 2013; Hunt and Ott 2015). 

This nonlinear divergence of very similar values makes real-world modeling and 
prediction difficult, because we must measure the parameters and system state with 
infinite precision. Otherwise, tiny errors in measurement or rounding are compounded 
over time until the system eventually diverges drastically from the prediction. In the real 
world, infinite precision is impossible. It was through one such rounding error that 
Lorenz first discovered chaos. Recall his words at the beginning of this chapter: “the 
present determines the future, but the approximate present does not approximately 
determine the future.” 

As a demonstration of this, we run the logistic model with two very similar initial 
population values, shown in Figure 2.13. Both have the same growth rate parameter value 
of 3.9. The blue line represents an initial population value of 0.5 and the red line 
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represents an initial population of 0.50001. These two initial conditions are extremely 
close to one another and accordingly their trajectories look essentially identical for the 
first 30 generations. After that, however, the minuscule difference in initial conditions 
compounds to the point that by the 40th generation the two lines show little in common. 
What began as nearly indistinguishable initial conditions produces completely different 
outcomes over time due to nonlinearity and exponential divergence. 

 
Figure 2.12. Cobweb plots of the logistic map pulling initial population values of 0.1 (A), 0.5 (B), and 0.9 
(C) into the same fixed-point attractor over time. At this growth rate parameter value of 2.7, the Lyapunov 
exponent is negative. 

 
Figure 2.13. Plot of two time series with identical dynamics, one starting at an initial population value of 0.5 
(blue) and the other starting at 0.50001 (red). At this growth rate parameter value of 3.9, the Lyapunov 
exponent is positive – thus the system is chaotic and we can see the nearby points diverge over time. 
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If our knowledge of these two systems began at generation 50, we would have no way of 
guessing that they were nearly identical in the beginning. With chaos, history is thus lost 
to time and prediction of the future is only as accurate as our measurements. Human 
measurements are never infinitely precise, so in real-world chaotic systems, errors 
compound and the future becomes entirely unknowable given long enough time 
horizons. This phenomenon is popularly known as the butterfly effect: a butterfly flaps its 
wings in China and sets off a tornado in Texas. Small events compound and irreversibly 
alter the future of the universe. In Figure 2.13, a tiny fluctuation of 0.00001 makes an 
enormous difference in the behavior and state of the system 40 generations later. 
Although this system’s future cannot be predicted, we can characterize its dynamics 
geometrically with phase diagrams, bifurcation plots, and cobweb plots – and statistically 
with Lyapunov exponents and fractal dimensions. 

2.8. Discussion 

Pynamical and all the code used to develop these models and produce these visualizations 
are available in a public repository (see Appendix). Pynamical is built on top of Python’s 
pandas, numpy, and matplotlib code libraries:  

 numpy is a numerical library that handles the underlying numerical vectors 
 pandas handles the higher-level data structures and analysis 
 matplotlib is the engine used to produce the visualizations and graphics 

Pynamical defines extensible functions to express the discrete map’s equation and 
encapsulate the model that runs the equation iteratively. The logistic map, the Singer 
map, and the cubic map are built-in by default but any other iterated map can be defined 
and added. Pynamical also defines a function to convert model output into x-y points, as 
well as functions to plot these points as a bifurcation diagram, a cobweb plot, an animated 
cobweb plot, a two-dimensional phase diagram, a three-dimensional phase diagram, and 
an animated three-dimensional phase diagram. Animated cobweb plots of the entire 
parameter space and animated three-dimensional phase diagrams, extending those 
presented in this study, are also available in the repository. They shed particular light on 
the fractal nature of strange attractors as they stretch and fold state space, thus serving as 
a tool for pedagogy and visual information presentation. 
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Pynamical is easy to use and serves as a tool for introducing nonlinear dynamics and 
chaos. Sample code to produce some of the visualizations in the chapter demonstrates 
this simplicity. One merely imports Pynamical into the Python environment then runs 
the following code to produce the visualization: 

Figure 2.2: bifurcation_plot(simulate(num_rates=1000))  

Figure 2.4: bifurcation_plot(simulate(min=3.7, max=3.9, num_rates=1000))  

Figure 2.6d: phase_diagram(simulate(num_gens=100, min=3.57)) 

Figure 2.8d: cobweb_plot(r=3.9, x0=0.5) 

Figure 2.11: phase_diagram_3d(simulate(num_gens=4000, min=3.6, num_rates=50)) 

This chapter had two primary aims. First, it introduced the foundational concepts of 
nonlinear dynamics, chaos, fractals, self-similarity, and the limits of prediction through 
several visualization methods to analyze and understand the behavior of nonlinear 
dynamical systems. Second, it presented Pynamical, a software package for visualizing the 
behavior of discrete nonlinear dynamical systems. This package provides a free, fast, 
simple, extensible tool to introduce and analyze nonlinear dynamical systems’ behavior 
visually – useful for research and pedagogy. Nonlinear systems are extremely difficult to 
solve analytically because they cannot be broken down into constituent parts. Instead, we 
used Pynamical to reveal hidden structure and patterns in time series whose underlying 
dynamics may not be well known. In particular, it revealed the qualitative behavior of 
nonlinear dynamical systems over time and in response to parameter variations. 

This chapter used the logistic map to define such a set of nonlinear dynamics. As simple 
as this model was, at different growth rate parameter values it produced stability, periodic 
oscillations, or chaos. We used Pynamical to create bifurcation diagrams and cobweb 
plots to visualize this behavior across different parameter values. In the chaotic regime, 
the system jumped seemingly randomly between all population values. Accordingly, we 
used Pynamical to embed the data into higher-dimensional state space to create phase 
diagrams to visualize the system’s strange attractor and understand its constrained, 
deterministic dynamics. Finally, we explored the butterfly effect’s implications of 
nonlinearity on system sensitivity, as infinitesimal differences in initial conditions 
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compounded over time until nearly identical systems had diverged drastically. Thus, in 
many nonlinear systems, there are fundamental limits to knowledge and prediction. 

The modern study of complex systems evolved in the second half of the twentieth century 
from explorations in nonlinear dynamical systems, cybernetics, computation theory, 
systems theory, biology, and ecosystems study (Manson 2001; Manson and O’Sullivan 
2006; Gershenson et al. 2016; Krivỳ 2016). During the 1990s, complexity theories largely 
supplanted chaos as an analytical frame for social systems. Although complexity draws on 
similar nonlinear principles, it emerges as a different beast. Instead of looking at simple, 
closed, deterministic systems, complexity examines large open systems made of many 
interacting parts. Unlike chaotic systems, complex systems retain some trace of their 
initial conditions and previous states, through path dependence. They are unpredictable, 
but in a different way than chaos is: complex systems have the ability to surprise through 
novelty and emergence.  

The following chapter builds on this foundation of nonlinearity to unpack the theory of 
complex systems, examine how it applies to the study of cities, and introduce complex 
spatial network analysis. 
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Chapter 3:  Complexity and Cities 
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3.1. Abstract 

This chapter presents the theoretical framework of complex systems and cities, 
culminating in network theory and analysis. A complex system is one characterized by 
the many nonlinear interactions among its component parts, resulting in unpredictable 
self-organization and emergent phenomena at different scales. Discussions of complexity 
and complex systems have appeared throughout the planning literature for years. These 
principles have been applied everywhere from the communicative turn and collaborative 
rationality, to cellular automata and agent-based urban models, to the design of resilient, 
livable neighborhoods. However, the interdisciplinary appeal and trendiness of 
complexity in the social sciences has resulted in a morass of ambiguous terminology, 
internal inconsistencies, and overloaded concepts open to multiple interpretations. This 
chapter unpacks the key foundational concepts of complex systems and network science 
in a brief, straightforward manner. In particular, it builds on the concepts presented in 
chapter 2 to introduce complexity in terms of systems and nonlinear dynamics before 
turning its attention to different types and measures of complexity. Next it discusses some 
of the key features of complex systems and how they apply to cities: equilibrium, stability, 
emergence, self-organization, and resilience. Finally, it presents complex networks – the 
primary lens this study uses in all subsequent chapters.  

3.2. Introduction 

Complexity theories have become a popular frame for conceptualizing and analyzing 
cities. There is no single complexity theory but rather a wide array of concepts and tools 
that can be applied to the study of complex systems across numerous disciplines (Manson 
and O’Sullivan 2006; Haken 2012). The term complexity theory generally refers to a 
nebulous union of these theories (see also Phelan [2001], Byrne [2001] and O’Sullivan 
[2004] for how this compares with complexity science). Such theories propose that certain 
large systems are characterized by the decentralized, nonlinear, dynamic interactions of 
their many constituent parts. These systems then behave in novel and unpredictable ways 
that cannot be divined by simply examining the components of the system, because the 
components’ collective behavior is not a simple linear combination of their individual 
behaviors (Newman 2003; Yerra and Levinson 2005). Complexity problematizes 
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traditional reductionist, linear methods of scientifically analyzing and predicting 
nonlinear systems like cities (Anderson 1972; Waldrop 1992; Cilliers 1998). It also opens 
up a new world of scholarship to researchers keen to formulate new kinds of sciences that 
take complexity into account (e.g., Wolfram 1994; 2002; see also recent pushes for and 
critiques of “urban science,” e.g., Batty 2013c; Solecki et al. 2013; Alberti 2017; Kitchin 
2017; Mattern 2017). These attempts usually follow Kuhn’s (1962) theory of paradigm 
shifts: new evidence and modes of thinking undermine an established science, and a new 
science emerges to replace it. 

Complexity theories have become a popular framework for scholarly enquiries into 
planning and urban studies over the past 30 years (McAdams 2008). Although it entails a 
fundamental shift away from the belief that predictive certainty is possible with complex 
systems, it can serve as a useful new lens for explaining urban phenomena, studying city 
form, and considering planning interventions. Further, complexity provides a 
comprehensive framework for assessing system behavior that could build stronger 
connections between quantitative and qualitative urban disciplines (Portugali 2006). 
However, complexity theories have sometimes been adopted into the social science 
literature in obscure or contradictory ways.  

In particular, complexity theory in the planning literature has suffered from three notable 
problems. First, physical scientists often apply it atheoretically, either unconstructively 
problematizing planning methods, or naïvely (but mathematically) “proving” long-
recognized urban phenomena (O’Sullivan and Manson 2015; cf. Stauffer 2004). Second, 
planning scholars sometimes cherry-pick concepts from complexity then use them 
abstractly or vaguely. For example, Portugali (2012) criticizes planning theorists like 
Manuel Castells and Patsy Healey for borrowing from complexity theory, then using the 
idea of complexity merely vernacularly – thereby losing all of its formalism and 
implications. Chettiparamb (2006) critiques Byrne (1997) for relying on undefined jargon 
and decontextualized assertions that render complexity theory vague, mystical, and New 
Age-y (see also Thrift [1999] and Auerbach [2016]). The mainstream and cross-
disciplinary appeal of complexity has resulted in ambiguous terminology and overloaded 
concepts in the social sciences. Third, because of these first two problems, some urban 
scholars have dismissed “complexity” as merely fashionable nonsense.  
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This chapter wades into this morass to unpack the essential shared, foundational concepts 
of complexity theories – particularly as they might apply to cities – in a brief, 
straightforward manner. It is organized as follows. First, it draws the nonlinear 
foundations from chapter 2 out of the realm of simple closed systems and into the world 
of complex open systems. Then it discusses measures of complexity, providing a 
framework that will be fleshed out in applied detail in chapter 4. Next it reviews the 
concepts and ramifications of equilibrium, stability, emergence, self-organization, and 
resilience, drawing these concepts from the natural sciences into the study of cities, 
particularly urban form. This leads to the chapter’s final section, which presents the 
science of networks and network analysis. Street network analysis has been central to 
network science since its nascence: its mathematical foundation, graph theory, was born 
in the eighteenth century when Leonhard Euler presented his famous Seven Bridges of 
Königsberg problem (Devlin 2000; Bonchev and Buck 2005; Derrible and Kennedy 2009). 
This discussion of networks lays the theoretical foundation for the empirical second half 
of this dissertation in chapters 5, 6, and 7. 

3.3. Systems and Dynamics 

A system is a set of interacting components that together form a whole. In the context of 
complexity theory, to say that a system is complex is to say that we cannot understand its 
behavior simply by examining its constituent parts (Newman 2003; Mitchell 2009). 
Complex systems comprise many interacting, hierarchical subcomponents whose 
recurrent interactions cause nonlinear feedback, collective behavior, and unpredictable 
emergent phenomena at multiple spatial and temporal scales (Simon 1962; Rickles et al. 
2007). In contrast, complicated refers merely to being made up of many interrelated parts.  

Examples are useful to disambiguate these types of systems. A wind-up clock is an 
example of a simple system with few interrelated parts. An automobile is an example of a 
complicated system with many interrelated parts. In contrast, stock markets, the climate, 
and cities are examples of complex systems. Complex systems are defined more by their 
internal relationships than they are by their constituent parts and it is argued that it is this 
networked structure and organization that makes them interesting (Manson 2001; Wilson 
2006). The term complexity itself refers to the rich, dynamic system behavior arising from 
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individual interactions between many heterogeneous subcomponents (Cilliers 1998). In 
particular, a complex adaptive system is one whose collective behavior exhibits adaptation 
and learning aimed at perpetuating itself in the face of a changing environment or 
conditions (Holland 2006; Miller and Page 2007). 

As discussed in chapter 2, a dynamical system changes over time as its state evolves 
according to its initial conditions and the processes that describe its subcomponents’ 
behavior. A system’s state is the essential information about the system for an observer 
and is defined by the values of the relevant variables. A variable could be a system feature 
or a calculated indicator that an observer has decided to use to describe the system. 
Process is more difficult to define, but generally refers to some sequence of actions that 
changes the system state (O’Sullivan and Perry 2013). Related to process, dynamics can be 
interchangeably thought of as the system’s “rules” or, thus, the paths the system state 
traces through time (for discussion in an urban context, see Albeverio [2008]). These 
paths of the variables through time are visualized with phase space diagrams, as discussed 
in chapter 2. Phase space is an abstract space that contains all possible system states, with 
each possible state represented by a single point (Figure 3.1). 

 
Figure 3.1. An example phase space diagram of the evolution of the Lorenz system over time. 
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Real-world complex systems are sensitive to outside influences because they are open 
systems. An open system is one that cannot be screened off from its environment, so 
researchers cannot safely ignore outside influences – or in other words, exogenous 
variables. Most real-world systems are open and pose problems for modeling because 
these exogenous influences must be taken into account (Batty and Marshall 2012; see also 
Schuster 2015). A model is simply an abstract representation of something, and could 
refer to conceptual models, mathematical models, statistical models, or even physical 
models (O’Sullivan and Perry 2013). Although real world systems tend to be open, all 
models are closed, to be tractable. 

Complex systems and chaotic systems are both subtypes of nonlinear dynamical systems. 
Complexity theory deals with complex open systems that self-organize into emergent 
forms that could not have been predicted simply by understanding the constituent parts 
(Mitchell 2009). Chaos theory deals with simple, deterministic, nonlinear, closed systems 
resulting in a chaotic response to different initial conditions or perturbations (Reitsma 
2003). As discussed in chapter 2, chaotic systems are unpredictable beyond limited time 
horizons because of their sensitivity to initial conditions, and these initial conditions may 
become unknowable later. Complex systems, in contrast, are unpredictable because of 
their capacity for novelty via emergence, discussed in detail below. They are sensitive to 
initial conditions in the sense that early historical accidents create path dependence that 
maintains their legacy over long time horizons. Chaos theory examines apparent disorder 
arising from simple order, while complexity theory examines large-scale order emerging 
from disorder at the local scale (ibid.). 

3.4. Types and Measures of Complexity 

Complexity lacks a single definition and measure, and often relies on what makes a 
phenomenon, behavior, or pattern complex in context. Shiner et al. (1999) provide an 
overview of three such formulations, discussed in detail in chapter 4. The first, based on 
entropy, is highest when objects are scrambled up with the greatest variety and diversity. 
The second balances variety and structure, and conforms to traditional definitions of 
complex adaptive systems. The third preferences order, self-organization, and emergence 
in which structure emerges from previous disorder. There are in turn several measures of 
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complexity. Mitchell (2009) points out that no one measure is ideal (or could possibly 
capture the myriad denotations and connotations of complexity), but highlights several 
prominent ones: information entropy from information theory; statistical complexity, or 
the degree of structure and pattern in a system; the Lyapunov exponent, which 
mathematically defines a system’s sensitivity to initial conditions; and the fractal 
dimension, which defines the irregularity of an object’s form. 

The former two are discussed in detail with regards to urban form and street networks in 
chapter 4. The latter two were already explored in chapter 2 with regards to simple 
nonlinear systems, but their implications for complex systems are worth considering 
briefly here. Sensitivity to initial conditions makes prediction of a nonlinear system 
difficult, as the initial state must be described with perfect accuracy (Rickles et al. 2007). 
Unfortunately, measurement of the real world always requires some amount of rounding 
and thus entails some amount of uncertainty. These tiny inaccuracies compound over 
time as the system evolves, making prediction difficult or even impossible. Theorists from 
Friedrich Hayek (1944; 1974) to Ilya Prigogine (1997) have thus questioned whether it is 
even possible to make accurate predictions of complex systems, given the requirements of 
data-gathering and precision and because of such systems’ capability to surprise via 
emergence, a concept discussed in section 3.6. 

Complex systems such as cities are sensitive to initial conditions in the sense of historical 
accidents, but their path dependence continues to reveal these conditions over long time 
horizons (Arthur 1988). Path dependence simply refers to the idea that history matters: 
complex systems’ past states are remembered and play a role in future states – i.e., they 
are non-Markovian systems (Arthur 1989; Liebowitz and Margolis 1995). Further, it is 
possible for single events to alter a complex system in a way that persists for a long time 
(Allen and Sanglier 1981). In cities, historical accidents/natural subsidies (i.e., sensitivity 
to initial conditions) or exogenous perturbations (e.g., wars, new technology, or 
economic shocks) may significantly affect long-term system behavior. Some echo of a 
complex system’s initial conditions remains apparent far into the future, whereas a simple 
chaotic system’s initial conditions are eventually lost to time and become unknowable. 

Finally, as introduced in chapter 2, the fractal dimension refers to the non-integer 
dimension of an object with an irregular form – e.g., a line so kinked that it can be 
characterized as something between a one-dimensional line and a two-dimensional plane. 
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Complex systems such as cities produce fractal self-similar forms that can be seen in 
urban peripheries and street networks (White and Engelen 1993; Batty and Longley 1994; 
Benguigui et al. 2000; Shen 2002) – and at the scale of urban design, as will be explored in 
chapter 4. 

3.5. Equilibrium and Stability 

Equilibrium is used in different ways in the social sciences literature. In urban economics, 
it typically refers to a point at which supply and demand are balanced, resulting in – to 
use location choice as an example – no incentive for anyone to move (Ogawa and Fujita 
1980; Waddell 2000; Waddell et al. 2003; O’Sullivan 2008; Batty 2013c). However, 
complexity scholars typically borrow from physics instead to define equilibrium as a 
steady state of constant, maximum entropy in which a system does not change, adapt to 
its environment, or evolve structure (Holling 1973; Barthélemy 2017). 

A common illustrative example is a gas diffusing into a vacuum until it is evenly 
dispersed. In the 1970s, Ilya Prigogine discovered that certain far-from-equilibrium open 
systems can evolve structures that locally contradict the second law of thermodynamics, 
which states that systems move toward maximum entropy (Nicolis and Prigogine 1977). 
Allen and Sanglier (1981; cf. Berry 1964) extended Prigogine’s findings to the urban 
studies literature through their reformulation of central place theory in terms of these 
dissipative structures and bifurcation.  

Given these different definitions, there is some vagueness in how the term “equilibrium” 
is used, often unqualified, in the urban complexity literature. Sometimes it refers to 
thermodynamic equilibrium, as scholars invoke it to argue that cities are far-from-
equilibrium complex systems in the Prigogine sense (e.g., Batty 2013c; 2017). This stream 
of literature argues that cities are open systems and thus matter and energy – such as 
food, electricity, immigrants, building materials, etc. – flow into them, while entropy 
(namely, negentropy) is exported out of the system (Butera 1998). Structure and order 
evolve, locally violating the second law of thermodynamics. In this sense, cities do not 
move toward equilibrium; rather they are far from it, ever evolving and structuring their 
matter (White and Engelen 1993).  



  BOEING   

46 

 
Figure 3.2. Three balls at rest on a slope, representing stable (ball 1), unstable (ball 2), and metastable (ball 
3) states. Ball 1 will return to its current state after a large perturbation. Ball 2 will move away from its 
current state after even a slight perturbation. Ball 3 will remain in its current state after a small 
perturbation, but a large one can push it into a preferred stable state. Its semi-stable state is near a critical 
point of transition. 

Other times, equilibrium is used to refer to an equilibrium of dynamics, where the system 
becomes limited and its state settles into an unchanging value or a set of values that it 
oscillates over (Phillips 2004). This is known as a stable equilibrium, or for 
disambiguation’s sake, a stable state. Equilibrium in this context means that a system is in 
balance despite multiple forces acting on it, dominated by negative feedback that damps 
perturbations and pushes the system back toward the equilibrium. At a macro-level, a 
real-world complex system might appear to be in stable state based on its system-level 
state variables, but at a micro-level components may be dynamic and in flux (Batty 2013c; 
2017). Thus, time and spatial scales are essential for considering equilibrium and 
disequilibrium (Barthélemy 2017). Consider residents settling into locations in a city. 
Over time, stable and consistent patterns may emerge city-wide, but at the human scale, 
residents are always moving in, around, and out of the city. Stable states make for 
tractable models of complex systems: Schelling (1971) famously demonstrated a simple 
simulation in which fairly tolerant residents relocate based on their subtle preferences for 
similar neighbors, resulting in a surprisingly segregated static equilibrium. 

Complex systems can settle for periods of time into stable, metastable, or unstable states – 
or even shift between alternative stable states via phase transitions (May 1972; 1974; 
Holling 1973; Folke et al. 2004). These are depicted by the ball-and-cup diagram in Figure 
3.2. A stable state (ball 1) is one in which the system is resilient to perturbation and its 
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dynamics return it to this state after being perturbed. Stable states may include steady 
states – in which the system state remains at some fixed value – or limit cycles – in which 
the system oscillates over a consistent set of values. An unstable state (ball 2) is one which 
the system moves away from after even a slight perturbation: the system is precariously 
perched at a critical point between two possible states that it could settle into. A 
metastable state (ball 3) is one the system returns to after small but not large 
perturbations. The system may spend extended time in this semi-stable state, but a 
sufficient perturbation can push it into a preferred state. 

Alternative stable states are also possible: ecosystems can exist in different stable states 
over long periods of time (Beisner et al. 2003). After a certain perturbation, they may 
transition from one to another via a phase transition, also known as a regime shift (Folke 
et al. 2004).  Such behavior suggests a system with possible states that are separated by 
discontinuous thresholds rather than a smooth gradient, a common outcome of 
nonlinearity (May 1977). Hysteresis – the dependence of a system’s behavior on both its 
present state and its past states – allows a system to exist in different states at different 
times but under the same conditions (Franz 1990; Beisner et al. 2003). This path 
dependence helps keep the system in the current state and suppresses transitions to other 
states it could otherwise be in. 

Metastability, mentioned earlier, refers to a semi-stable state near a critical point. A 
critical point is the (typically unstable) point where transitions from one state to another 
occur (Downey 2012; Keane 2013). But unlike shifting from one fairly stable state to 
another, criticality itself connotes a system poised on the edge of catastrophe (Bak and 
Paczuski 1995). A system is critical if its behavior changes dramatically – for instance, 
transitioning from an ordered regime to a chaotic one – given some small input (Bak et 
al. 1988; Batty and Xie 1999). This critical state was popularly referred to in the past as the 
“edge of chaos” (Waldrop 1992; Oxley and George 2007).  

When a parameter is adjusted to the critical point, the system undergoes a quick, radical 
change in its qualitative features, such as water freezing at 0° Celsius. A parameter is a 
factor that defines the system. Examples include the temperature of the water in the 
preceding example, the growth rate r in the logistic map in chapter 2, and the angle and 
depth of the slopes in Figure 3.2. A model parameter is similar to a variable, but either 
represents some universal value, or is directly controlled by the researcher rather than 
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simply being observed. For the latter, consider the phase change of water at certain 
temperatures, from gas to liquid to solid. Here, temperature is the parameter being 
adjusted by the researcher to the critical point of phase transition. Alternatively, consider 
parameters such as the CO2 carrying capacity of the Amazon rain forest, which may be 
some constant at any given time, but could change through global warming or pollution. 

Finally, as discussed in chapter 2, bifurcation is the tendency for a system or one of its 
variables to jump suddenly from one attractor or stable state to another (Puu 2013). 
When this happens, a drastically different aspect of the system appears. Allen (2012) 
argues that bifurcation in complex human systems – such as cities – can be interpreted as 
an important historical juncture where the system could go one direction or another, with 
multiple possible future trajectories. With a sufficient understanding of the system and its 
dynamics, urban planners may adjust some parameter to steer the trajectory toward 
socially desirable outcomes (cf. Batty 2017; Kitchin 2017). 

3.6. Emergence, Self-Organization, and Resilience 

An emergent system property arises from interactions between subcomponents of a 
complex system (Miller and Page 2007). These subcomponents, however, do not 
themselves display this new system property and the property could not have been 
deduced merely by examining the subcomponents and their interactions (Aziz-Allaoui 
and Bertelle 2009). As Anderson (1972, p. 395) puts it, “the whole becomes not only more 
than but very different from the sum of its parts.” Nonlinearity is the source of macro-
scale (and often unpredictable) emergent system characteristics, as they result from many 
repeated (and possibly extremely simple) micro-scale interactions among subcomponents 
(Manson 2001). In other words, the researcher cannot just take the system apart, inspect 
the components to understand what the system does, and them put them back together 
again. Emergent phenomena are nonlinear characteristics of a system, such as 
catastrophes, thresholds, and self-organization.  

Self-organization is an emergent phenomenon that occurs when a system orders itself into 
a “better” or more stable state without external control or a central overseer (Kauffman 
1996; Cilliers 1998; Portugali 1999; Strogatz 2004). For instance, “tactical urbanism” 
initiatives have been theorized in terms of complexity and self-organization (Silva 2016). 
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Self-organization tends to be a bottom-up process by which one hierarchical level 
generates the features of the level above it (Allen 1998). The distinction between top-
down and bottom-up processes should not be taken to be binary (for discussions of this 
in a planning context, see Adams and Tiesdell [2010]; Holcombe [2013]; Krivỳ [2016]). 
Rather, each simply refers to the general directionality of a process in terms of the 
system’s hierarchy. 

Feedback occurs when an output of the system “feeds back” into the system as an input 
(Hofstadter 1979). Negative feedback damps a variable’s rate of change and pushes it 
toward a stable state. Positive feedback increases a variable’s rate of change, as self-
reinforcement. Furthermore, large-scale structures can emerge from small-scale 
subcomponent behavior and then influence future subcomponent behavior via cross-scale 
feedback (Allen 2012). Through co-evolution, subcomponents create their environment 
and are then in turn influenced by it. Culture, religion, and social norms – created by 
humans and in turn influencing humans – are examples of such emergent properties and 
their cross-scale feedback within cities and societies. 

Resilience and robustness are complex adaptive system traits related to self-organization, 
feedback, and nonlinearity (Holling 1973; Miller and Page 2007). Walker et al. (2004, p. 
6) define resilience as “the capacity of a system to absorb disturbance and reorganize while 
undergoing change so as to still retain essentially the same function, structure, identity, 
and feedbacks – in other words, stay in the same basin of attraction.” Thus, a resilient 
system is able to return to its original stable state after a perturbation. Robustness, in 
contrast, tends to refer to the stability of a specific variable or system characteristic 
despite instability among some system components (Aligica 2014). In other words, 
resilience refers to returning to an original state after a perturbation, while robustness 
refers to perturbations having only a minimal effect in the first place. 

Self-organized criticality describes a system that has a critical point as its attractor and 
continually evolves all by itself to this point of phase transition and catastrophe (Bak et al. 
1987). At the critical point, system subcomponents are extremely connected and strongly 
influence one another. Here, even a small change to a single subcomponent is capable of 
producing vast effects that ripple through the entire system. The classic example is the 
sand pile model described by Bak et al. (1988). In this model, a sand pile has additional 
grains of sand continuously dropped on top of it. The pile evolves to a certain angle of 
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repose – the critical point – despite frequent trivially small avalanches. At this point, a 
single additional grain can suddenly cause a massive avalanche. After an avalanche, the 
system slowly evolves back to that critical angle and repeats. Batty and Xie (1999) argue 
that cities exhibit self-organized criticality as their urban forms evolve over time through 
discrete transitions. Forest fires serve as another example. Frequent small fires tend to 
prevent fuel build-up, but huge fires occasionally occur when no small fires have cleared 
the underbrush in a long time (Malamud et al. 1998). 

Such systems accumulate energy over time and dissipate it through many small, and a few 
large, events. Thus, systems that exhibit self-organized criticality produce events – such as 
sand pile avalanches, forest fires, and earthquakes – that range from tiny to enormous 
(Turcotte 1999). In other words, these systems are scale-free – they have no characteristic 
size. Human beings, on the other hand, have a characteristic size since they tend to range 
between five and seven feet tall, with few outliers. Self-similarity, scale invariance, scale-
free, and fractal geometry are equivalent concepts that indicate a lack of this characteristic 
scale (Rickles et al. 2007). Scale free systems follow a scaling law such as a power law with 
the form p=b-a. Gaussian distributions result from processes that tend to sum to the 
center of the range, but with a power law distribution, the probability p of an event is 
inversely proportional to its size b. Thus, there are very few massive events, some 
medium-sized ones, and lots of small ones.  

Similar characteristics can be seen in numerous systems despite their different underlying 
dynamics. This phenomenon is called universality (cf. chapter 2, section 2.4). 
Accordingly, in the 1990s power laws became something of a popular signature for an 
underlying complex system. However, an over-reliance on power laws and universality 
has met controversy and criticism in recent years (Stumpf and Porter 2012; O’Sullivan 
and Manson 2015; Auerbach 2016). It can be challenging to differentiate between a power 
law distribution and other candidate distributions, particularly lognormal when it is 
difficult to observe tiny events to the left of the mode peak. Rarely does a real-world 
phenomenon follow a power law for all values of the independent variable, and spatial 
boundary definitions can further affect the phenomenon’s distribution (Clauset et al. 
2009; Veneri 2016). Moreover, there are innumerable ways to generate a power law 
distribution, so it alone cannot be an unambiguous indicator that a complex system 
underlies the observed phenomena (Mitzenmacher 2004). 
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This plays into a classic challenge of complex systems study: the equifinality problem is 
that different processes and models can result in the same outcome or pattern (Beven and 
Freer 2001). Many urban processes can be shown to produce similar patterns across 
spatial scales, but this does not help us understand what exactly is happening in each 
instance. For example, urban form may have a fractal spatial pattern, but this finding has 
yet to be connected convincingly to underlying social and economic processes (Manson 
and O’Sullivan 2006). Although much of the purpose of complexity studies lies in linking 
patterns to processes, there is risk in conflating pattern with process. 

3.7. Networks 

This chapter has thus far discussed complex systems theory, drawn from the foundations 
of nonlinear systems presented in chapter 2, including dynamics, stability, emergence, 
and self-organization. These characteristics appear in a system as a result of the many 
interactions between its connected, constituent parts. The interactions, connections, 
dynamics, and processes within a system are the subject of network science. The past 15 
years have witnessed an explosion in the science of networks. Much of this research has 
been stimulated by recent advances in statistical physics and the study of complex systems 
(Blumenfeld-Lieberthal and Portugali 2010). In an urban context, the structural attributes 
of city networks can influence the way an urban system’s physical links organize and 
influence complex human interactions, connections, and dynamics (Baynes 2009; 
Comunian 2011). As Glaeser (2011), among various others, argues, cities exist to connect 
people. 

Network science is built upon the foundation of graph theory, a branch of discrete 
mathematics. A graph is an abstract representation of a set of elements and the 
connections between them (Tinkler 1979; Trudeau 1994). The elements are 
interchangeably called vertices or nodes, and the connections between them are called 
links or edges (Downey 2012). For consistency, we use the terms nodes and edges 
throughout this study. The following definitions are fundamental to graph theory and can 
be found in detail in e.g., Harary et al. (1965), Trudeau (1994), Albert and Barabási 
(2002), Dorogovtsev and Mendes (2002), Brandes and Erlebach (2005), Costa et al. 
(2007), Newman (2003; 2010), Barthélemy (2011), and Cranmer et al. (2017).  
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The number of nodes in the graph (i.e., the degree of the graph) is commonly represented 
as n and the number of edges as m. Two nodes are adjacent if an edge connects them, two 
edges are adjacent if they share the same node, and a node and an edge are incident if the 
edge connects the node to another node. A node’s degree is the number of edges incident 
to the node, and its neighbors are all those nodes to which the node is connected by edges. 

An undirected graph has undirected edges (i.e., each edge points mutually in both 
directions) but a directed graph, or digraph, has directed edges (i.e., edge uv points from 
node u to node v, but there is not necessarily an edge vu). A self-loop is an edge that 
connects a single node to itself. Graphs can also have parallel (i.e., multiple) edges 
between the same two nodes. Such graphs are called multigraphs, or multidigraphs if they 
are directed. An undirected graph is connected if each of its nodes can be reached from 
any other node. A directed graph is weakly connected if the undirected representation of 
the graph is connected, and strongly connected if each of its nodes can be reached from 
any other node. A path is an ordered sequence of edges that connects some ordered 
sequence of nodes. Two paths are internally node-disjoint if they have no nodes in 
common, besides end points. A weighted graph’s edges have a weight attribute to quantify 
some value, such as importance or impedance, between connected nodes. The distance 
between two nodes is the number of edges in the path between them, while the weighted 
distance is the sum of the weights of the path’s edges. 

Network science is the study of typically real-world graphs – thus, networks inherit the 
terminology of graph theory. For a historical overview of the relationship between graph 
theory and network analysis, see Barnes and Harary (1983). Familiar networks include 
social networks (where the nodes are humans and the edges are their interpersonal 
relationships), the Internet (where the nodes are computers and the edges are the physical 
TCP/IP-based links that connect them), and the World Wide Web (where the nodes are 
web pages and the edges are hyperlinks that point from one page to another). A complex 
network is one with a nontrivial topology. Its topology is the configuration and structure 
of its nodes and edges, and by nontrivial we mean that this is neither fully regular nor 
fully random (Stewart 1995; Newman 2010). Compare this definition with category II 
complexity in the framework presented in chapter 4, section 4.4.1. Most large real-world 
networks are complex. Of particular interest to this study are complex spatial networks – 
that is, complex networks with nodes and/or edges embedded in space (Gastner and 
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Newman 2006; O’Sullivan 2014). A street network is an example of a complex spatial 
network with both nodes and edges embedded in space, as are railways, power grids, and 
water and sewage networks (Barthélemy 2011).  

A spatial network is planar if it can be represented in two dimensions with its edges 
intersecting only at nodes (Viana et al. 2013). A street network, for instance, may be 
planar (particularly at certain small scales), but most street networks are non-planar due 
to grade-separated expressways, overpasses, bridges, and tunnels. Despite this, most 
quantitative studies of urban street networks represent them as planar graphs (e.g., Strano 
et al. 2013) for tractability because bridges and tunnels are (in some places) reasonably 
uncommon, and thus the networks are approximately planar. However, this over-
simplification to planarity for analytical tractability may be unnecessary and can cause 
analytical problems, as we shall discuss in chapter 5. 

Complex networks have been studied extensively by urban scholars and planning 
researchers. From a qualitative perspective, Castells (e.g., 2009) argues that understanding 
flows and networks, rather than locations themselves, is critical for understanding cities. 
From a quantitative perspective, Batty (e.g., 2013b, 2013c) places urban modeling in the 
context of network evolution and flow. Law (2017) uses topological street network 
analysis for community detection to discover neighborhood boundaries. Most relevant to 
this study, however, is the rich body of transportation and urban form studies that use 
complex street networks for routing and characterizing the structure of cities. In 
particular, a typology of measures of the complexity of urban form – and particularly 
street networks – is developed in chapter 4, operationalized in chapter 5, and applied 
empirically in chapters 6 and 7. 

3.8. Discussion 

Complex systems are systems of interacting components that, through nonlinearity, can 
produce emergent phenomena and self-organized structure. The Polish mathematician 
Stanisław Ulam, an early pioneer of nonlinear studies, once observed that talking about 
“nonlinear science” is akin to “calling the bulk of zoology the study of non-elephants” 
(Campbell 2004, p. 455). Indeed, nearly all real-world systems are inherently nonlinear, 
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and the emergent phenomena arising from complexity pervade the natural and human 
worlds. Human societies and cities are examples of large, complex systems. 

Principles of complexity have been applied in urban planning from the communicative 
turn and collaborative rationality, to cellular automata and agent-based urban models, to 
the design of livable neighborhoods (Batty 1997; Innes and Booher 1999; 2000; 2004; 
2010; O’Sullivan and Haklay 2000; Flyvbjerg and Richardson 2002; Healey 2003; 2007; 
White et al. 2015; Boeing 2015; 2017d). Complexity problematizes rationality and 
certainty in planning, as behavioral economics has similarly done in the wider social 
sciences in recent years (e.g., Tversky and Kahneman 1974; Kahneman and Tversky 1979; 
Johnson and Goldstein 2003; Thaler and Sunstein 2003; Glaeser 2005; Botti and Iyengar 
2006; Bouchaud 2008; Kahneman 2011; Marsden et al. 2012; Chatman et al. 2013; Hoch 
et al. 2015). Complexity may be a lens through which planners can conceptualize and 
approach “wicked problems” and incrementalism (Lindblom 1959; Cartwright 1973; 
Rittel and Webber 1973; Christensen 1985; Salet et al. 2013; Altrock 2015; Yamu et al. 
2016; for context see also Friedmann 1987; Flyvbjerg 2007; Acey 2016). The emergent 
features of stability, resilience, robustness, and connectivity are of particular interest to 
urban scholars. These form a bridge between qualitative theories of cities, such as Castells’ 
spaces of flows, and quantitative studies of the cities – broadly, the study of urban form, 
design, and transportation.  

The next chapter explores these theories of complexity within the discipline of urban 
design and builds a typology of measures of its complexity outcomes, emphasizing those 
relevant to street network analysis. It is worth noting that chapters 2 and 3 have 
emphasized the process and dynamics of complexity, before turning their attention to the 
(essentially static) structure of networks. The following chapters continue this shift in 
focus, but this transition from process to structure is not without its thorns. After all, we 
somewhat disregard the processual complexity of collective human behavior, self-
organization, and emergence when we concentrate on the patterns, topology, and 
structure of networks rather than on the temporal dynamics that operate along them (cf. 
Barrat et al. 2012; Simmonds et al. 2013; Zhong et al. 2014; Gates and Rocha 2016; 
Barthélemy 2017).  

However, the following chapters – particularly culminating in the discussion in chapter 7 
– argue that street networks might be complex either directly through their form and 
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topology (a complexity of pattern), or indirectly as that topology and its attributes 
influence how an urban system’s physical links structure and sustain human interactions, 
connections, and behavior (a complexity of dynamics). In other words, this physical 
structure underlies the concordia discors of complex human interactions, returning us to 
the argument of Jacobs (1961), Alexander (1965), Glaeser (2011), and various others that 
cities exist to connect people. Urban design itself similarly intervenes in the density, 
connectedness, pattern, texture, façades, configuration, and grain of cities to likewise 
influence human dynamics and behavior (Whyte 1980; Willis et al. 2004; Rodriguez et al. 
2006; Baran et al. 2008; Handy 2015). Moreover, through recursive co-evolution, physical 
structure influences dynamics, and dynamics in turn produce structure (Cilliers 1998). 
While such system dynamics are not the focus of this dissertation’s empirics, this 
conceptual bridge links the theory of dynamics discussed in the early chapters with the 
empirical analysis of urban form and network structure presented in the following 
chapters.  
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Chapter 4:  Measuring the Complexity of 
Urban Form and Design 
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4.1. Abstract 

This chapter develops a typology of methods and measures for assessing the complexity 
of the built form at the scale of urban design. In particular, it extends quantitative 
methods from network science, ecosystems studies, fractal geometry, and information 
theory to the outcomes of urban design and the analysis of its qualitative human 
experience. Metrics at multiple scales are scattered throughout these bodies of literature 
and have useful applications in analyzing the built form that results from local planning 
and design processes. This chapter unpacks the connections between neighborhood-scale 
built form and measures of its complexity, and the typology developed here applies to 
empirical research of multiple neighborhood types and design standards. Finally, the 
typology includes several street network-analytic measures of urban form – emphasizing 
complexity in terms of density, resilience, and connectedness – applied in the subsequent 
empirical chapters. 

4.2. Introduction 

This chapter examines measures of the complexity of urban form and design. Rich 
linkages between complexity theory and urban design have been underexplored by 
researchers at the neighborhood and street scales – the scales of daily human experience 
and of the practice of urban design. The urban design literature frequently cites the value 
of “complexity” in neighborhood design, but these arguments often lack the theoretical 
formalism found in complex systems science. Nevertheless, following from Jane Jacobs 
(1961) and Christopher Alexander (1964; 1965), this body of scholarship argues that 
neighborhood complexity is essential to the life of the city and the function of its 
neighborhoods. Prominent design paradigms today, such as Smart Growth and the New 
Urbanism, frequently speak both directly and indirectly to complexity and notions of 
complex systems (Duany, Plater-Zyberk & Co. 2001; Talen 2003; Sanders 2008; Congress 
for the New Urbanism 2015). 

If complexity is important in the urban form, planners and designers require better tools 
to assess design outcomes and understand the built form. This chapter unpacks the 
connections between neighborhood-scale built form and measures of its complexity. The 
typology developed here applies to empirical research of multiple neighborhood types 
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and design standards. Finally, this typology includes several street network-analytic 
measures of urban form, applied in the subsequent empirical chapters. This chapter is 
organized as follows. First, it briefly reviews the lineage and meaning of “complexity” in 
urban design theory. Then it explores potential measures of the complexity of urban form 
at the scale of urban design projects, in four categories: temporal, visual, spatial, and 
structural. The structural measures are sub-divided into fractal and network measures. 
Finally, this chapter organizes these various measures into a coherent typology. 

4.3. Background: Complexity in Urban Design 

Urban designers often discuss physical urban form and design projects in terms of 
“complexity” (e.g., Congress for the New Urbanism 2015). These discussions frequently 
borrow from the salient concepts of complex systems theory, but as discussed in chapter 
3, they often do so loosely, making it difficult to assess claims and project outcomes. 
Nevertheless, various formulations of complexity have long been regarded as important 
in urban design, for several reasons. It can contribute to more lively, enjoyable, walkable, 
healthy, and vital neighborhoods (Jacobs 1961; Calthorpe et al. 1991; Congress for the 
New Urbanism 1996; Putnam 2001; Macdonald 2002; Carlson et al. 2012; Hamblin 2014; 
Marshall et al. 2015; Sung et al. 2015; McGreevy and Wilson 2016). It implies urban 
resilience, robustness, connectivity, and access, playing into wider debates about 
sustainability and resource efficiency (Peter and Swilling 2014; Pugh 2014; Wells 2014; cf. 
Deppisch and Schaerffer 2011). Complexity can be emancipatory (Byrne 2003) – 
improving social equity, spatial distributional justice, adaptiveness, and social contact and 
exchange (cf. Sennett 1992; Sandercock 2000; Pettigrew and Tropp 2006). This section 
summarizes this lineage of ideas about urban design and complexity – particularly 
through the notion that urban design influences the complexity of human habitats at the 
neighborhood scale and is closely tied to theories of livability. Then, in the subsequent 
section, we draw on complexity contextually and discuss several potential methods for 
measuring it. 

Urban design is the physical shaping of the public realm and borrows from both 
architecture and city planning (Moudon 1992; Biddulph 2012). It includes deliberate top-
down acts, informal bottom-up acts, and everything in between. The history of urban 
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design reflects normative stances that have shifted through eras of classical formalism, 
romantic organicism, modernist simplifications, and post-Jane Jacobs gestures toward 
“organized complexity” (Barnett 2011). Jacobs’s notions of complexity and bottom-up 
urbanism have been embraced by complex systems scholars studying cities – particularly 
scholars from the physical sciences (Batty 2005a; 2005b; 2008a; Bettencourt and West 
2010; Lehrer 2010; Bettencourt 2013a; Bettencourt 2013b; Batty and Marshall 2016; 
Pollock 2016; cf. O’Sullivan and Manson 2015). However, urban scholars have also 
criticized her dichotomous theories as overly simplistic, given the role of capital and real 
estate markets underpinning her famous “sidewalk ballet” (Zukin 2011; Krivỳ 2016). 

Urban design primarily interfaces with complexity through notions of diversity, 
connectivity, resilience, and livability. Livability has been defined in numerous ways and 
its meaning has evolved over time, but there is some common ground in the literature 
(Appleyard and Lintell 1972; Jacobs and Appleyard 1987; Bosselmann et al. 1999). 
Bosselmann (2008, p. 142) points out that “the original meaning of livability described 
conditions in neighborhoods where residents live relatively free from intrusions” but that 
the term has been progressively broadened to include sustainability, safety, comfort, 
available services, walkability, and transit. Macdonald (2005, p. 14) cites a modern vision 
of livable neighborhoods that create “lively, safe, and attractive streets, and [provide] 
public amenities such as parks, community centers, and schools.” 

Livability is in turn nested within broader debates around urban sustainability and 
justice, as it is inextricably dependent on the city’s ability to meet its residents’ ongoing 
needs into the future (Boeing et al. 2014; Boeing 2016b). Several planning models – some 
competing, some complimentary – have taken up the mantle of livability in the U.S. 
today, including smart growth, the new urbanism, traditional neighborhood 
development, and transit-oriented development. Each promotes a compact urban form, 
walkability, and improved access to transit. Finally, issues of social justice cannot be 
ignored in the theorization of livability, as uneven distributions of power, capital, and 
privilege inevitably cloud the question of livability for whom and at the expense of whom 
(Evans 2002; Harvey 2010; Boeing 2016a; Barajas et al. 2017). 

These definitions imply the importance of physical form and design for various aspects of 
livability. Indeed, livability is perhaps the key way in which planners engage with 
neighborhood form to address complexity. Three subcomponents of livability that 
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particularly rely on complexity emerge from the literature. The first is visual complexity: 
an interrelation of qualities related to perceptible variety that makes public space lively, 
attractive, and enjoyable. The second is neighborhood completeness: a diverse mixture of 
amenities in close proximity. The third is connectivity of the circulation network. This 
body of literature argues that walkability and, in turn, livability rely on completeness and 
connectivity to be feasible and on visual complexity to be desirable. This has become a 
key goal of modern urban design. 

Urban design’s interventions operate primarily at the scales of neighborhoods and blocks 
– usually with no more than a half mile radius (Boarnet and Crane 2001; Mehaffy et al. 
2010; Porta et al. 2014). Metrics for measuring the outcomes of urban design thus must 
consider the neighborhood scale. Neighborhoods are related to the concept of 
community, but also have a specific geographic, spatial nature (Larice and Macdonald 
2007; Drinan 2015; Talen et al. 2015; Law 2017). They are ubiquitous around the world 
and play an important role in complex urban systems. Clarence Perry (2007, p. 55) said 
“an urban neighborhood should be regarded both as a unit of a larger whole and as a 
distinct entity in itself.” The concept of neighborhood has also been theorized by 
complexity scholars. For example, Portugali (2006; Portugali and Stolk 2014) argues that 
cognitive conceptions of neighborhoods arise out of complex human systems via 
information compression, an idea based on the reduction of information in synergetics 
(Haken 2012). 

According to Smith (2010, p. 137), “The spatial division of cities into districts or 
neighborhoods is one of the few universals of urban life from the earliest cities to the 
present” (cf. Silver 1985; Peterman 2000; O’Sullivan 2009; Rohe 2009; Vanderbilt 2013; 
Madden 2014). Likewise, Mumford (1961) points out that since the earliest days of cities, 
natural neighborhoods would form organically around important points like temples. 
Most pre-twentieth century neighborhoods were “complete” because walking was the 
most common mode of travel (for modern formulations of the complete neighborhoods 
paradigm, see San Francisco Planning Department 2008; District of Columbia 2010; City 
of Portland 2012). Jackson (1985) describes such walking cities as dense and congested, 
with clear city/countryside distinctions and respectable locations nearest to the center of 
town, where accessibility was highest. Furthermore, “there were no neighborhoods 
exclusively given over to commercial, office, or residential functions… public buildings, 
hotels, churches, warehouses, shops, and homes were interspersed, or often located in the 
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same structure” (ibid., p. 15). Jackson’s vignette draws together themes of completeness, 
connectedness, and accessibility. From the days of the Greek agora to the birth of the 
automobile, much of urban life was spatially and socially centered on the public street 
and the public square – spaces symbolic of access, exchange, difference, and challenge 
(Holston 1989; Carmona 2015; Kimmelman 2016). 

Before the revolution in transportation technologies that culminated in the automobile, 
proximity was paramount and people necessarily lived near employment and retail 
(Fishman 1987). However, Jacobs (1995) suggests that in response to the dreadful living 
conditions of industrial-era cities and new enabling technologies, two major manifestos 
emerged to dominate twentieth century neighborhood planning: Howard’s garden cities 
and modernism’s Charter of Athens. While the garden city movement largely respected 
the neighborhood, its legacy – suburban sprawl – did not (Mumford 1961; 2007). Nor did 
Le Corbusier and the modernist planners, setting the stage for twentieth century auto-
dependency and single-use functional zoning (Hall 1996; Fishman 2003). This effectively 
became the age of sterile anti-complexity in urban design and land use. Its principles were 
embodied in utopian plans of urban dispersal, such as Frank Lloyd Wright’s Broadacre 
City (Wright 1932; 1935; Grabow 1977; Nelson 1995; Meis 2014), the functionalist 
automobile-dominated urban designs of Corbusier (2007a; 2007b), and Robert Moses’s 
“meat ax” carving its way through the disorderly urban fabric of mid-century New York 
(Caro 1974; cf. Kaufmann 1974; Boeing 2017e). 

Scott (1998) critiques the modernist urban designs of cities like Chandigarh and Brasília 
by contrasting Corbusier’s top-down simplified, rational, polished, utopian cities with 
bottom-up, organically built, messy everyday urbanisms dependent on localized tacit 
knowledge (cf. Jacobs 1961; Hayek 1974; Holston 1989). These modernist planners and 
architects confused geometric visual order for well-functioning sustainable social order in 
the built environment (Roy 2005; Sussman and Hollander 2015). In fact, informality itself 
may be a defining sine qua non of cities and urbanism (Sennett 1992; Sassen 2012; 
Greenfield 2013; cf. Krivỳ 2016). Scholars following in the wake of Jane Jacobs have 
argued that simplified single-purpose urban design destroys functional capacity and 
synergy. Rather, it is diversity, mixed uses, and complexity – grown naturally over time – 
that make a community livable. Over-simplified plans and interventions can cut into the 
living tissue of complex city systems, killing vital social processes. While healthy complex 
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adaptive systems are resilient to perturbation, their resilience and adaptability may be 
destroyed through too many simplifying interventions (Marshall 2012a). 

Yet every built environment has some deliberate design – especially in the public realm. 
Building façades are architected, roads are engineered, sidewalk widths are selected, and 
parks are laid out. Moroni (2010, p. 147) calls for rules that are simple, abstract, general, 
and purpose-independent to move away from a “flexible system of land-use planning” 
and toward “rules that enable society itself to be highly flexible.” To this end, Moroni 
(2015) suggests urban codes based on principles rather than details, contain few simple 
rules that remain for long periods of time, give minimal discretion to public officials, and 
leave flexibility for individual creativity and experimentation. Such codes already exist to 
some extent in urban design as form-based codes that aim to balance bottom-up 
flexibility with top-down predictability (Talen 2009; 2011; 2016).  

Generative design is a popular framework for conceptualizing such systems in action 
(Marshall 2004; 2005; Luca 2007; Alexander et al. 2008; Mehaffy 2008; Rakha and 
Reinhart 2012). Marshall (2012a, p. 203) similarly calls for a “system of planning” in 
which design and codes work together as a generative system that can give rise to a kind 
of emergent urbanism, with no guarantee that it will be optimal (cf. Eikelbloom et al. 
2015). However, development control can then be exercised to nudge what emerges 
toward the public interest (ibid; cf. Allen 2012). This is a middle ground between 
attempts to plan everything and attempts to plan nothing. Marshall suggests such a 
system would enable urban design and planning to deliver true functional complexity for 
neighborhoods. Jane Jacobs (1961) similarly argued that the role of planners is to generate 
diversity and supply what is lacking in a neighborhood.  

According to this mainstream of scholarship, urban design and planning can foster 
diversity, connectedness, complexity, resilience, and robustness – elements of a healthy 
complex adaptive system. Yet an open question remains. Beyond these qualitative 
formulations of complexity in urban form and design, how might it be defined 
quantitatively – especially at the neighborhood and block scale? A stream of planning 
literature has considered quantitative measures of the urban form, but without explicitly 
engaging with complexity (e.g., Cervero and Kockelman 1997; Song and Knaap 2004; Tsai 
2005; Clifton et al. 2008; Ewing and Cervero 2010; Schwarz 2010; Song et al. 2013b). The 
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next section defines complexity contextually and explores several potential methods for 
measuring it directly. 

4.4. Measures of Complexity in Urban Form and Design 

4.4.1. Overview 

Various complexity metrics at multiple scales, from metropolitan to neighborhood to 
building, are scattered throughout different bodies of literature. Lloyd (2001) surveyed 
and categorized measures of complexity across numerous fields of inquiry. Bourdic et al. 
(2012) provide an overview of cross-scale spatial indicators and briefly touch on the 
neighborhood design assessment criteria of LEED-ND. Additional surveys and analyses 
of complexity indicators for ecosystems and cities have been produced by Parrott (2010) 
and Salat et al. (2010), mostly focusing on urban processes. 

To take a step back, at a higher level, Shiner et al. (1999) characterize complexity from the 
perspective of order and disorder. They present three broad categories of complexity, 
depicted in Figure 4.1. Category I is positively correlated with disorder and includes 
algorithmic complexity and most measures of entropy. Here, complexity is highest when 
objects are scrambled-up with the greatest variety and diversity. Category II is a convex 
function of disorder, peaking at some midpoint between order and disorder. This 
balances between variety and structure and conforms to traditional definitions of 
complex adaptive systems (e.g., Gershenson and Fernández 2012). Category III takes 
complexity to be related more purely to order or structure alone, and includes notions of 
self-organization and emergence in which structure emerges from previous disorder.  

This dissertation uses this framework of categories to consider measures of complexity in 
the built environment. While these categories are mutually incompatible (e.g., complexity 
cannot be simultaneously high and low when disorder is high), they do reflect different 
aspects of complexity that planners must consider and assess. The remainder of this study 
touches on all three categories as measures of complexity in urban design, depending on 
the context and character, but focuses on the second: the balance between structure and 
variety/messiness. We return to this framework again in the discussion that concludes 
this chapter, after presenting a typology of complexity measures for the urban form. 
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Figure 4.1. Three different categories of complexity. Category I increases monotonically with disorder. 
Category II is convex, peaking at a midpoint between order and disorder. Category III decreases 
monotonically as disorder increases. Adapted from Shiner et al. (1999). 

The anthropologist Claude Lévi-Strauss called cities “the most complex of human 
inventions… at the confluence of nature and artifact” (1992, p. 137). If cities are complex 
systems, then indicators of their complexity – in all its many, varying facets – would be 
useful for grounding conversations and evaluating patterns and processes. Such an 
indicator of complexity could be a system-level state variable. However, just how to 
measure the complexity of a city system remains an open question. Further, how does this 
sense – or preference – vary from person to person and culture to culture? We may have 
some intuitive sense of the complexity of a place simply by observing it or moving 
through it, but how can this be formalized?  

On one hand, a neighborhood can be examined as an urban ecosystem – a human habitat 
– that is a dynamical complex system. Thus, state variables such as population, density, 
employment, wealth, traffic volume, etc. can be (potentially) identified and (potentially) 
calculated at various scales to describe the state of the system as it changes over time. The 
system’s dynamics can be explored and modeled with mathematical equations, statistical 
regressions, machine learning algorithms, cellular automata, or agent-based models to 
describe the processes occurring in the system. Forrester (1969) was an early pioneer of 
applying systems dynamics to cities, studying their stocks and flows. His use of 
differential equations and stock/flow modeling has been extended to cycles of 
urbanization and suburbanization (Orishimo 1987) and to the dynamics of parking (Cao 
and Menendez 2015). Such dynamic measures are less useful for the characterization and 
analysis of urban form. 
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On the other hand, a neighborhood can be examined as an output or product of human 
behavior and production. This focuses on the physical form of the neighborhood rather 
than its dynamical processes. Through co-evolution, as discussed in chapter 3, humans 
both shape their neighborhoods and are in turn shaped by them (Lynch 1954; Lynch and 
Rodwin 1958). The physical patterns that result constitute the urban form and can be 
examined in terms of network analyses, fractal structure, diversity (of various sorts), and 
information entropy. At a higher level of abstraction, neighborhood complex systems can 
be analyzed in terms of their resilience, robustness, and adaptiveness. How might the 
system’s dynamics respond to perturbation given its spatial patterns, structure, 
connectedness, and efficiency? 

The following framework borrows, adapts, and reformulates relevant metrics to measure 
complexity at the neighborhood scale, touching on temporal measures but focusing on 
spatial and structural measures such as those of urban morphology (Talen 2003; Marshall 
and Caliskan 2011). In particular, it provides a quantitative framework that accounts for 
both traditional urban planning/design measures as well as more abstract measures 
arising from the complexity sciences. It is worth noting that this framework is not aimed 
at quantifying all aspects of “good” neighborhood design. Rather it intends to formalize 
and measure the indistinct notion of complexity as it applies to urban design. Qualities 
related to vitality, sustainability, sense of place, and other prominent qualities may 
overlap in some ways with the complexity metrics in this typology, but they are otherwise 
not the focus of this work. 

4.4.2. Temporal Measures of Urban Form 

The first group of measures in this framework is temporal measures. Temporal measures 
describe time series data and in turn system dynamics. Such techniques include 
embedding the time series in state space, uncovering underlying attractors, estimating 
Lyapunov exponents (as discussed in chapter 2), and analyzing the system from an 
information theoretic perspective, such as Shannon entropy.  

Nonlinear analysis techniques from the physical sciences, such as reconstructing 
attractors or estimating Lyapunov exponents, have not been found to be particularly 
effective in the ecology literature (Parrott 2010). Information theory, however, provides 
some measures of complexity that may be applied to urban design at the neighborhood 
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scale. Shannon’s (1948) original theory of information entropy concerns the average 
amount of information contained in the revelation of a message or event. Shannon 
entropy indicates that the more types of things there are and the more equal each type’s 
proportional abundance is, the less predictable the type of any single object will be. This 
can be applied to abstract messages, time series, or spatial diversity, as discussed below. 
Entropy is lowest when the system is highly ordered and thus completely predictable. It is 
highest when the system’s disorder is highest. Such a category I measure thus emphasizes 
disorder rather than peaking at some point between order and disorder (Batty 2005a, Yeh 
and Li 2001). 

Derived from Shannon entropy, mean information gain assesses how much new 
information is gained from each subsequent datum in a time series (Proulx and Parrott 
2008) and fluctuation complexity measures the amount of structure within a time series by 
evaluating the order of and relationship between values in the series. In other words, how 
likely is it we will observe some value a proximately after some other value b. Shannon 
entropy, mean information gain, and fluctuation complexity can be used to assess time 
series data arising from urban systems. However, more usefully, they might be abstracted 
and re-appropriated to evaluate the human experience of moving through the physical 
space that results from urban design (Kuper 2017). 

4.4.3. Visual Complexity of Urban Form 

In a simplified, low-information urban landscape, little new information is gained by a 
pedestrian through the visual revelations of each passing step. In a highly complex urban 
environment (in terms of a category I measure), however, an individual will be 
bombarded with enormous amounts of new information as he or she moves through 
space. In these cases, space is the medium and the unfolding visual tableau is the message. 
This message could be discretized into arbitrary units such as meters, or into units 
relative to the specific urban landscape, such as street blocks or land parcels.  

Much of the research on human perceptions of the built environment follows in the wake 
of Gibson’s (1979) ecological framework and Appleton’s (1975; 1984) prospect-refuge 
theory (e.g., Tveit et al. 2006; Ode et al. 2010; Sang et al. 2015; Dosen and Ostwald 2016). 
Clifton et al. (2008) discuss qualities of the urban form and human perceptions at 
multiple scales. For neighborhood and street scale urban design, perceptions of human 
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scale are related to building heights and signage, perceptions of coherence are related to 
consistency of building heights, and sense of enclosure is related to building/element 
spacing and tree canopy. “Good” visual complexity tends to reach an optimum at some 
balance point between order and disorder, with “unity in variety”, implying a category II 
convex measure of complexity (Elsheshtawy 1997; Gunawardena et al. 2015). 

Ewing and Clemente (2013) performed a literature review that yielded 51 perceptual 
qualities of urban environments, eight of which were selected for further study because of 
their importance across the literature: imageability, enclosure, human scale, transparency, 
coherence, legibility, linkage, and visual complexity (see also Ewing and Handy 2009). 
These researchers related visual complexity to the number of perceptible differences a 
person is exposed to while moving through the city. They found that humans prefer to 
experience information at a comfortable rate – too little deprives the senses and too much 
overloads them. Ewing and Clemente also found that good visual complexity depends on 
variety: types of buildings, design details, street furniture, signage, human activity, 
sunlight patterns, and the rich textural details of street trees and the urban forest (see also 
Schwab 2009; Pham et al. 2017). Complexity is lost when design becomes too top-down, 
controlled, and predictable in modern large-scale master plans. Poor complexity exists 
when urban design elements are too few, are too similar and predictable, or are too 
disordered to be comprehensible (ibid.). In this formulation, complexity follows a 
category II convex function with a maximum value at some midpoint between order and 
disorder. 

Based on their literature review, the researchers develop a field manual for measuring 
visual complexity. It is operationalized in five steps. First, count the number of buildings 
within the study area. Second, count basic and accent building colors. Third, record the 
presence of outdoor dining on each block as a binary value, present/not. Fourth, count 
the individual number of pieces of public art within the study area. Fifth, count the 
number of pedestrians in the study area. These measures of complexity are part of a larger 
toolkit for measuring urban design according to the eight perceptual qualities cited earlier 
(ibid.). Cavalcante et al. (2014) provide an alternate, statistical image processing measure 
of urban visual complexity. 

Fishman (2011) proposes that there exists a significant conflict between the two primary 
paradigms of modern urban design. The first paradigm, spearheaded by the modernists, 
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seeks to open up the dense and messy urban fabric with towers-in-the-park, spacing, 
highways, and technology. The second, espoused by traditionalists and neotraditionalists, 
seeks instead to enclose space through human-scale architecture, walkability, and a dense, 
complex, organic urban fabric. Jacobs and Appleyard (1987) argue that buildings in 
varied arrangements (i.e., in accordance with Fishman’s second paradigm) enhance visual 
complexity, but interminable wide buildings – a hallmark of modernist design – detract 
from it (see also Sussman and Hollander 2015). Jacobs (1995) argues that buildings need 
multiple varied surfaces for light to move constantly over to generate visual complexity. 
Macdonald (2005; see also Punter 2003) explores how Vancouver generates visual 
complexity to put proverbial eyes on the street, with many entryways and interesting 
ground-level design.  

Slow-moving pedestrians need a high level of complexity to hold their interest, but fast-
moving motorists find that same environment chaotic. Dumbaugh and Li (2011) find that 
urban designs that balance vehicle speeds, visual complexity, and traffic conflicts can 
increase motorist awareness, decrease collisions, and improve pedestrian safety. While 
streets obviously provide circulation functions, they also provide essential social and 
economic functions that must be considered in their design (Jones et al. 2008). Marshall 
(2012a) contends that urban environments with perceptual richness are more interesting 
and enjoyable for humans, possibly because our species evolved in natural environments 
with a high degree of visual complexity. Thus, appropriate visual complexity serves as a 
key component of livability because it creates rich, enjoyable, safe environments for 
humans. 

4.4.4. Spatial Measures of Urban Form 

The urban form that emerges from urban design is spatially embedded and can be 
characterized by various spatial measures of complexity. These measures assess the 
character of spatial patterns of the system at snapshots in time rather than looking at 
dynamics over time. Shannon entropy has been used to measure urban complexity (Batty 
2005b) and mean information gain has been used to measure ecosystem spatial 
complexity (Proulx and Parrott 2008). Yeh and Li (2001) used entropy to monitor and 
measure urban sprawl. Applying these information theoretic metrics to space usually 
entails assessing raster data for predictability. 
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Diversity, however, is the most common spatial measure of complexity in the urban 
design and planning literature. Diversity is important for several reasons. Social diversity 
may enhance learning, adaptation, and unexpected social mixing. Jane Jacobs (1961) 
praised diverse land uses for their ability to create synergies from complementary 
functions. Boarnet and Crane’s (2001) behavioral framework of the demand for travel 
fundamentally argues that urban design influences the (time) cost of travel by placing 
origins and destinations in closer or further proximity to one another (see also Cervero 
and Landis 1995; Giuliano 1995; Crane 2000; Stead and Marshall 2001; Handy et al. 2005; 
Cao et al. 2007; Glaeser et al. 2008; Chatman 2009; Greene et al. 2011). Cervero and 
Kockelman (1997) also argue for land use diversity as a key feature shaping human travel 
behavior in urban environments. 

Salat et al. (2010) identify three types of urban spatial diversity related to complexity: 
diversity among similar objects, diversity in spatial distribution, and diversity of scale. 
Diversity among similar objects refers to different characteristics of the same type of thing 
– for example, the “thing” might be humans and the characteristics might be income, 
race, employment, education, and so forth. It does however imply that even distributions 
are optimal in that they score the highest. This is a questionable reflection of complexity 
and a risky goal for central planning. Measures of dispersion and physical shape are also 
useful in characterizing the uniformity, randomness, or spatial complexity of ecosystems 
and could be applied to the built environment as well. 

Wissen Hayek et al. (2015) use UrbanSim (Waddell 2002; Krizek and Waddell 2002) and 
measures of land use mix and density to evaluate the quality of the neighborhood-scale 
urban environment. The Simpson diversity index measures the diversity of objects in 
total across space, and is a common measure of land use entropy (i.e., land use mix) in the 
urban planning literature. This index is often called the Herfindahl-Hirschmann index in 
economics and the Probability of Interspecies Encounter in the ecology literature. It is an 
integral measure that considers land use in a district as a whole, ignoring microscale 
structure and pattern (Song et al. 2013a). 

In contrast, a divisional measure is sensitive to patterns within a district. This is a superior 
type of measure when considering questions of scale. The dissimilarity index measures 
how the land use mix within a district relates to the mix across the area as a whole – for 
two land use types, and for multiple (ibid.; cf. Decraene et al. 2013). Other measures of 



  BOEING   

70 

dissimilarity are explored by Bordoloi et al. (2013). These spatial distributions of objects 
concern how equitably some set of desirable or undesirable objects is spread across the 
city. For example, are all schools clustered in wealthy neighborhoods rather than being 
distributed evenly among all neighborhoods? Are waste treatment facilities clustered in 
poor neighborhoods rather than being distributed evenly among all neighborhoods? On 
the other hand, in a complex system, centers and clusters may form for inevitable or even 
“good” reasons. Agglomeration economies can cause job centers to cluster in certain areas 
(Jacobs 1969; Glaeser 2011; Sevtsuk 2014). Ecosystem services of urban forests are highest 
when green spaces are concentrated and clustered rather than evenly distributed 
throughout urban development (Krasny et al. 2014; Stott et al. 2015).  

Diversity of scale addresses this specific issue further. Certain distributions within a 
complex system may be more efficient when they follow a power law (or more realistically 
– as we shall discuss in chapter 7 – a lognormal distribution) rather than an even 
distribution. For example, it is not likely ideal for a neighborhood to have the same 
number of arterial roads, collector streets, and local streets. Rather, there might be a small 
number of large arterial roads, a medium number of mid-sized collector streets, and a 
large number of capillary local streets. Murcio et al. (2015) similarly use urban transfer 
entropy to examine multi-scale urban patterns and flows.  

4.4.5. Structural Measures of Urban Form: Fractal 

Related to diversity, questions of scale and topological structure are addressed in this 
subsection. Measures of structure assess the internal physical configuration of a system. 
They have been applied to cities and are perhaps the most useful measures of the 
complexity outcomes of urban design because they characterize that which is most 
dependent upon the urban design process: physical structure and arrangement. Density 
itself might be a simple proxy for complexity as a greater number of things operating in 
the same area imply structure and connectivity. At the scale of urban design, these 
structural measures fall primarily into two categories: measures of fractal structure and 
network analysis. 

Fractal structure refers to the “roughness” and self-similarity of some object, and how its 
detail relates to the scale at which it is observed. As discussed in chapter 2, fractals have a 
similar structure at every scale (Frame et al. 2015). But in the real world, fractals are not 
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perfect and do not exist at all spatial scales – from the infinitesimal to the infinite – as 
abstract mathematical fractals do. However, self-similarity of patterns and structure over 
multiple scales exist throughout nature. Batty (e.g., 2005) has long demonstrated how city 
structure and urban peripheries are fractal. 

Fractal structures tend to be distributed according to a power law. As mentioned earlier, 
in a power law distribution, there are few large items, a medium number of medium-sized 
items, and many small items. Consider the earlier example of an urban street network. At 
the largest scale, the city has a few major arterial roads and boulevards that serve as the 
key arteries for system-wide traffic circulation. But if we zoom into this picture, a larger 
number of mid-sized collector roads appear, branching off from these few large arteries. 
As we zoom in further to a fine scale, a denser mesh of local streets appears, branching off 
from these collector roads. Similar fractal analyses have been applied to the distribution 
and scale of other urban structures such as buildings as well as land uses. The fractal 
dimension, D, is a statistical measure of how a form’s complexity changes with regard to 
the scale at which it is measured:  

N ∝ ε –D 

logε N = –D = (log N)/(log ε) 

In these formulae, N represents the number of new objects generated as scale transitions 
and ε is the scaling factor. This log-log ratio is similar to elasticities in economics. The 
fractal dimension of an object with one topological dimension refers to its space-filling 
characteristics that, through self-similarity, become a bit more than a one-dimensional 
line yet a bit less than a two-dimensional plane. Measures of fractal dimension include the 
Hausdorff dimension and the box-counting dimension (Shen 2002). For example, a Koch 
curve has a Hausdorff fractal dimension D = -log(4)/log(1/3) = 1.26. 

The concept of fractal dimensions can also be applied to two dimensional surfaces, such 
as the surface of a city, the surface of a building, or the surface of elements of urban 
design (Cooper et al. 2013). The fractal dimension is closely related to the qualities of 
visual complexity in urban design and public architecture, discussed earlier. While 
modernist architecture sought to erase complexity with simplified, segregated, sterile 
forms, both traditional architecture and today’s ideal tend to emphasize organic forms 
with rich detail at multiple scales (Marshall 2008). For instance, Salingaros (1998; 2000a; 
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2000b; 2001), argues (albeit somewhat abstrusely) that architecture and urban design 
must utilize fractal design to embrace the structure and organization of organic forms. 
The Eiffel Tower is an example of a built form that exhibits fractal structure. As 
Mandelbrot (1983, p. 131) puts it, “(well before Koch, Peano, and Sierpinski), the tower 
that Gustave Eiffel built in Paris deliberately incorporates the idea of a fractal curve full of 
branch points.” 

4.4.6. Structural Measures of Urban Form: Network 

Beyond fractals, network science provides a second crucial lens with which to examine 
structure. Accessibility is a useful measure of urban design and is related to network 
analysis (Hansen 1959; Samaniego and Moses 2008; Levinson 2012). It concerns 
proximity, transportation mobility, and social interaction within the public sphere 
(Levine et al. 2012). Popular “walkability” tools – such as WalkScore and Walkonomics – 
and urban modeling tools such as pandana use street networks to determine accessibility 
(Foti 2014). Urban networks – considered here as primal, non-planar, weighted 
multidigraphs with self-loops – can be measured for their category II complexity based on 
their structure, particularly in terms of density, resilience, and connectedness. Such 
measures extend the toolkit commonly used by urban morphologists (Talen 2003). 
Extended definitions of and algorithms for the following measures can be found in 
Newman (2010) and Barthélemy (2011). The measures here are divided into metric 
measures and topological measures, but it is worth noting that in a planar graph, 
topological and metric properties are interrelated (Masucci et al. 2009). 

Metric structure can be measured in terms of lengths (i.e., edge weights) and area and 
represents common transportation-design variables (e.g., Cervero and Kockelman 1997; 
Ewing and Cervero 2010). The average street length, the mean edge length in the 
undirected representation of the graph, serves as a linear proxy for block size and 
indicates how fine-grained or coarse-grained the network is (see Sevtsuk et al. [2016] for a 
discussion of block size). The node density is the number of nodes divided by the area 
covered by the network, and the intersection density is the node density of the set of nodes 
with more than one street emanating from them (thus excluding dead-ends). The edge 
density is the linear sum of all edge lengths divided by the area, and the street density is 
the linear sum of all edges in the undirected representation of the graph divided by the 
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area. These four density measures all provide further indication of how fine-grained the 
network is. Finally, the average circuity divides the sum of all edge lengths by the sum of 
the great-circle distances between the nodes incident to each edge (cf. Levinson and El-
Geneidy 2009; Barthélemy 2011; Strano et al. 2012; Giacomin and Levinson 2015). This 
circuity measure is the average ratio between an edge length and the straight-line distance 
between the two nodes it links.  

Street connectivity metrics can behave inconsistently based on how study areas are drawn 
(Knight and Marshall 2015). Alternative topological measures of street network structure 
may more robustly indicate the connectedness and resilience of the network, and how 
these values are distributed. The average node degree, or mean number of edges incident 
to each node, quantifies how well the nodes are connected, are average (cf. Kansky’s 
[1963] β index). Similarly, but more concretely, the average streets per node measures the 
mean number of streets (i.e., edges in the undirected representation of the graph) that 
emanate from each node (i.e., intersections and dead-ends). This adapts the average node 
degree for physical form rather than circulation and flow. The distribution and 
proportion of number of streets per node characterizes the type, prevalence, and spatial 
distribution of intersection connectedness and dead-ends in the network. 

The eccentricity of a node is the maximum of the shortest-path distances (weighted by 
length) between it and each other node in the network, and represents how far the node is 
from the node that is furthest from it (Urban and Keitt 2001). The diameter of a network 
is the maximum eccentricity of any node in the network and the radius of a network is the 
minimum eccentricity of any node in the network (Hage and Harary 1995). The center of 
a network is the node or set of nodes whose eccentricity equals the radius and the 
periphery of a network is the node or set of nodes whose eccentricity equals the diameter. 
These distances measure network complexity in terms of size, structure, and shape. 

Connectivity measures the minimum number of nodes or edges that must be removed 
from a connected graph to disconnect the network (Urban and Keitt 2001; cf. Dill [2004] 
for a discussion of street connectivity in a less formal sense). This is a measure of 
resilience as complex networks with high connectivity provide more routing choices to 
agents and are more robust against failure. However, node and edge connectivity is less 
useful for approximately planar networks like street networks: most street networks will 
have a connectivity value of 1, because the presence of a single dead-end indicates that the 
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removal of just one node or edge will disconnect the network. Instead, the average node 
connectivity of a network – the mean number of internally node-disjoint paths between 
each pair of nodes – more usefully represents the expected number of nodes that must be 
removed to disconnect a randomly selected pair of non-adjacent nodes (Beineke et al. 
2002; Dankelmann and Oellermann 2003). This is a useful indicator of resilience. 

Other measures of connectedness – such as intersection density, node degree distribution, 
and centrality/clustering (discussed below) – may capture the nature of a street network’s 
resilience and connectedness better than standard node or edge connectivity can. 
Networks with low connectivity may have multiple single points of failure, leaving the 
system particularly vulnerable. This can be seen in urban design through permeability 
and choke points: if circulation is forced through single points of failure, traffic jams 
ensue and circulation networks can fail. Connectivity has also been linked to street 
network pedestrian volume (Hajrashouliha and Yin 2015; see also Jiang 2009; Jiang et al. 
2009). 

Network distances, degrees, and connectivity are significantly constrained by spatial 
embeddedness and approximate planarity (O’Sullivan 2014), so measures of clustering 
and centrality may better reveal topological structure and its distribution. The clustering 
coefficient of a node is the ratio of the number of edges between its neighbors to the 
maximum possible number of edges that could exist between these neighbors (Opsahl 
and Panzarasa 2009). The weighted clustering coefficient weights this ratio by edge length 
and the average clustering coefficient is the mean of the clustering coefficients of all the 
nodes in the network. These measure connectedness and complexity by how thoroughly 
the neighbors of some node are linked to each other. Jiang and Claramunt (2004) extend 
this coefficient to neighborhoods within an arbitrary distance, rather than just proximate, 
to make it more applicable to urban street networks. 

Measures of centrality indicate the most important nodes in a network (Huang et al. 2016; 
Zhong et al. 2017). Betweenness centrality assesses the importance of a node by evaluating 
the number of shortest paths that pass through it (Freeman 1977; Barthélemy 2004; 
Ermagun and Levinson 2017). The average betweenness centrality is the mean of 
betweenness centralities of all the nodes in the network (Barthélemy 2011). In particular, 
the maximum betweenness centrality in a network specifies the proportion of shortest 
paths that pass through the most important node. This is an indicator of resilience: 
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networks with a high maximum betweenness centrality are more prone to failure or 
inefficiency should this single choke point fail. Betweenness centrality can also be 
calculated for weighted networks (Barrat et al. 2004). Barthélemy et al. (2013) uses 
betweenness centrality to identify top-down interventions versus bottom-up self-
organization and evolution of the urban fabric in Paris.  

Closeness centrality represents, for each node, the reciprocal of the sum of the distance 
from this node to all others in the network (optionally weighted by length): that is, nodes 
rank as more central if they are on average closer to all other nodes (Wang et al. 2011). 
The average closeness centrality is the mean of the closeness centralities of all the nodes in 
the network. PageRank – the algorithm Google uses to rank web pages – is a variant of 
network centrality, namely eigenvector centrality (Brin and Page 1998). PageRank ranks 
nodes based on the structure of incoming links and the rank of the source node, and may 
also be applied to street networks (Jiang 2008; Agryzkov et al. 2012; 2013; Chin and Wen 
2015; Gleich 2015). Measures of centrality are typically used in combination to assess 
street networks. Porta et al. (2006a; 2006b; 2010) demonstrate a multiple centrality 
assessment methodology for analyzing urban street networks and identify signatures and 
differences between planned and self-organized cities. Crucitti et al. (2006a; 2006b) 
examine closeness, betweenness, and information as measures of urban network 
centrality. The Urban Network Analysis Toolbox (Sevtsuk and Mekonnen 2012) analyzes 
betweenness, closeness, and accessibility in urban street networks. 

Finally, it is worth mentioning space syntax theory and dual graphs. The street networks 
discussed so far are primal: the graphs represent intersections as nodes and street 
segments as edges. In contrast, a dual graph inverts this network topology: a city’s streets 
are represented as nodes and the intersections are represented as edges. Such a 
representation seems a bit odd, but provides certain advantages in analyzing the network 
topology (Crucitti et al. 2006a; 2006b). Dual graphs form the foundation of space syntax, 
another method of analyzing urban networks and configuration. Space syntax analyzes 
axial street lines and measures the depth from some network edge to others (Hillier et al. 
1976; cf. Ratti 2004). Marcus and Legeby (2012) use space syntax to measure social capital 
in neighborhoods, through an explicit urban complexity lens. Jiang and Claramunt 
(2002) integrate an adapted space syntax – compensating for difficulties with axial lines – 
into computational GIS. Space syntax has formed the basis of many other adapted 
approaches to analytical urban design (e.g., Karimi 2012). This present study, however, 
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focuses almost entirely on primal graphs because they retain all the geographic, spatial, 
metric information essential to urban form and design that space syntax disregards in its 
dual graphs (Ratti 2004; Ravulaparthy and Goulias 2014). 

4.5. Typology of Complexity Measures 

All of these methods of assessing the complexity of urban design, primarily at the 
neighborhood scale, can be fit together into a preliminary typology. Here the measures 
are grouped into five types: temporal, spatial, visual, fractal, and network. While temporal 
measures are ideal for assessing the complexity of dynamics and process, the spatial, 
visual, and structural (i.e., fractal and network) measures seem most promising for 
measuring physical complexity at the scale of urban design. In particular, the following 
three chapters explore the network measures in depth. 

Category Measure of complexity Description 
Temporal Embedding time series Examine variables in state space to reveal 

possible deep structure and patterns in data 
Temporal, Spatial Shannon entropy How unpredictable a sequence is, based on 

number of types and proportional abundance 
Temporal, Spatial Mean information gain How much new information is gained from 

each subsequent datum 
Temporal Fluctuation complexity Amount of structure within a time series 

 
Temporal, Spatial Urban Transfer Entropy Analytic tool for examining multi-scale urban 

patterns and flows 
Visual Ewing and Clemente field 

guide 
Set of methods for assessing the physical, visual 
complexity of the streetscape 

Visual Cavalcante streetscape 
measure 

Image processing method to assess visual 
complexity on contrast and spatial frequency 

Spatial Simpson diversity index Assesses land use mix: how homogeneous or 
heterogeneous is the area of analysis? 

Spatial Dissimilarity index How does the land use mix within a subarea 
relate to the mix across the entire area? 

Fractal Hausdorff fractal dimension How a form’s complexity changes with regard 
to the scale at which it is measured 

Fractal Box-counting fractal 
dimension 

How a form’s complexity changes with regard 
to the scale at which it is measured 

Spatial,  
Network 

Destination accessibility A function of land use entropy, amenity 
distribution, and network structure 
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Network Average streets per node How well connected and permeable the 
physical form of the street network is, on avg 

Network Proportion of streets per 
node 

Characterizes the type, prevalence, and spatial 
distribution of intersection connectedness 

Network Average street length How long the average block is between 
intersections; proxy for block size 

Network Node/intersection, 
edge/street density 

How fine- or coarse-grained the street network 
is 

Network  Average circuity How similar network distances are to straight-
line distances 

Network Diameter/periphery, 
radius/center 

Measure network complexity in terms of 
max/min size, structure, and shape 

Network Node/edge connectivity What is the minimum number of nodes/edges 
that must be removed to disconnect network? 

Network Average node connectivity Average nodes that must be removed to 
disconnect some pair of non-adjacent nodes 

Network Clustering coefficient Extent to which the neighbors of some node are 
linked to each other 

Network Average clustering 
coefficient 

Mean of the clustering coefficients for all nodes 

Network Betweenness centrality The importance of a node in in terms of how 
many shortest paths use that node 

Network Average betweenness 
centrality 

Mean of the betweenness centralities for all 
nodes 

Network Closeness centrality Nodes rank as more central if they are on 
average closer to all other nodes 

Network Average closeness centrality Mean of the closeness centralities for all nodes 
 

Network PageRank Ranking of node importance based on structure 
of incoming links 

Network Multiple centrality 
assessment 

Uses primal, metric graphs to examine multiple 
indices of centrality 

Network Space syntax Uses dual, topological graphs to examine 
closeness centrality of a named street 

Table 4.1. Typology of measures of the complexity of urban form/design drawn from the discussion in 
section 4.4. 

4.6. Discussion 

Practitioners and theorists have expounded on complexity’s value long before and long 
after the days of Jane Jacobs. Complexity underlies urban resilience and sustainability 
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planning (Jabareen 2013; Peter and Swilling 2014; Wells 2014; Mattsson and Jenelius 
2015). Path dependence, hysteresis, and historical accidents all arise from complex 
systems and drastically affect the trajectory of urban form (Siodla 2015). These features 
are both products of urban design and constraints on urban design. More complex urban 
environments are more resilient, robust, and provide greater opportunities for social 
encounter, mixing, and adaptation through social learning. Complexity entails greater 
connectivity, diversity, variety, and sustainability. Today, prominent urban design 
movements such as the new urbanism and smart growth openly embrace the notion of 
complexity (Duany, Plater-Zyberk & Co. 2001; Talen 2003; Sanders 2008; Congress for 
the New Urbanism 2015). 

This chapter sought to refine what “complexity” means in this context and in turn 
provide ways to measure it. Of the three categories of complexity in the framework 
presented in section 4.4.1, category I seems most appropriate for conceptualizing the 
complexity of difference: how scrambled-up land uses and socioeconomic traits are. In 
other words, planners must consider and track this category of complexity when assessing 
variety, be it land use entropy, amenity accessibility, or social mixing and encounter. 
Category II encapsulates the notion of organized complexity, where a balance between 
chaos and order is desirable, such as in visual complexity and structural complexity 
(Montgomery 1998). 

Take the example of visual complexity discussed in section 4.4.3: too much disorder 
(overstimulation and bewilderment) is as undesirable as too much order (sterility and 
monotony). Category III is most useful for considering ordered elements of urban design, 
including when some have self-organized from an original disordered state. The gridded 
downtowns of Portland, New York, and other similar cities are high in category III 
complexity – as discussed in the following chapters. However, it was a similar lust for 
orderliness above all else that obsessed the modernist planners in their quest for perfect 
organization and rational geometric logic (Boyer 1983) – that is, a quest to erase the city’s 
categories I and II complexity. This raises a question we return to later in this 
dissertation: is maximum order not the antithesis of complexity?  

The typology of complexity measures presented in section 4.5 draws from different 
scientific disciplines to offer various measures of complexity that apply to urban form and 
particularly to urban design’s scale of intervention. In particular, the measures of network 
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structure characterize the complexity of the circulation network in terms of density, 
resilience, and connectedness – concepts leveraged throughout the second half of this 
dissertation. These attributes are rooted in urban planning and impact how an urban 
system’s physical form influences and structures complex human interactions and 
connections – thus linking structure and dynamics.  

Density refers to the concentration of elements per unit area, and in this study specifically 
refers to node, intersection, edge, and street density as discussed in Table 4.1 and section 
4.4.6. Connectedness comprises a basket of attributes related to permeability, path routing, 
and node degrees. The average number of streets per node and its related proportion 
(Table 4.1) characterize the type, prevalence, and spatial distribution of intersection 
connectedness. Similarly, clustering coefficients, node connectivity, edge connectivity, 
and most usefully average node connectivity – i.e., the average number of nodes that must 
be removed to disconnect a randomly selected pair of non-adjacent nodes – can 
characterize how thoroughly linked and permeable a network is. In turn, as discussed in 
chapter 3, network resilience refers to the ability to recover or maintain similar 
functionality after a perturbation. Connectedness, along with centralities and measures of 
flow, can indicate how a street network can be resilient against floods, earthquakes, traffic 
collisions, or congestion and disruptions of other sorts (Batty 2013; Mariusz and Piotr 
2014; Wang 2015). 

The analytical framework developed here is generalizable to empirical research of 
multiple neighborhood types and design standards. In particular, network-analytic 
measures in this typology are applied empirically in the next two chapters. Chapter 5 
presents a new toolkit for acquiring, constructing, analyzing, and visualizing urban street 
networks and demonstrates it with a case study. Chapters 6 and 7 conduct empirical 
studies of street networks at multiple scales using the metrics introduced here in chapter 4 
and operationalized in the toolkit presented in chapter 5.  
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Chapter 5:  Acquiring, Analyzing, and 
Visualizing Street Networks 
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5.1. Abstract 

Urban scholars have studied street networks in various ways, but there are data 
availability and consistency limitations to the current urban planning/street network 
analysis literature. To address these challenges, this chapter presents OSMnx, a new tool 
to make the collection of data and analysis of street networks simple, consistent, 
automatable and sound from the perspectives of graph theory, transportation, and urban 
design. OSMnx contributes five significant capabilities for researchers and practitioners: 
first, the automated downloading of political boundaries and building footprints; second, 
the tailored and automated downloading and construction of street network data from 
OpenStreetMap; third, the algorithmic correction of network topology; fourth, the ability 
to save street networks to disk as shapefiles, GraphML, or SVG files; and fifth, the ability 
to analyze street networks, including calculating routes, projecting and visualizing 
networks, and calculating metric and topological measures. These measures include those 
common in urban design and transportation studies, as well as advanced measures of the 
structure and topology of the network. 

5.2. Introduction 

As discussed in chapters 3 and 4, we can study the structure and interactions of complex 
systems through their networks. While physicists tend to look for simple models with few 
parameters to study complex systems (Barthélemy 2017), Cilliers proposes that “models 
of complex systems will have to be as complex as the systems themselves” (1998, p. 58). 
What might this mean for modeling complex systems like cities, using geospatial data? In 
his 1946 short story On Exactitude in Science, Jorge Luis Borges (1998, p. 325) wrote: 

…In that Empire, the Art of Cartography attained such Perfection that the map of 
a single Province occupied the entirety of a City, and the map of the Empire, the 
entirety of a Province. In time, those Unconscionable Maps no longer satisfied, 
and the Cartographers Guilds struck a Map of the Empire whose size was that of 
the Empire, and which coincided point for point with it. 

In spite of – or possibly because of – its implausibility, Borges’s 1:1 map of the empire has 
become a popular reference point among scientists and philosophers. Eco (1995) 
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facetiously deconstructs its logistics and semiotics, before concluding that “every 1:1 map 
of the empire decrees the end of the empire as such and therefore is the map of a territory 
that is not an empire” (p. 106). McConchie (2016) similarly evokes Borges to consider 
possible futures of OpenStreetMap, a collaborative world mapping project that 
conceptually lies somewhere between Google Maps and Wikipedia. In one possible 
future, OpenStreetMap receives so many user contributions of trivial and unnotable 
geospatial objects (such as individual curbs, bushes, or paint markings on streets) that it 
becomes burdened with obsolete and unmaintainable data. It is eventually abandoned, 
mimicking the fate of Borges’s map. But in another fanciful possibility, OpenStreetMap 
achieves some critical mass of users such that someday in the far future it approaches a 
well-maintained 1:1 representation of the world. Futuristic technological and 
geographical utopianism aside, OpenStreetMap today provides researchers with a 
massive geospatial data repository with overall good coverage and quality. This chapter 
examines this data source and presents new methods to study city form and urban street 
networks with it. 

Street network analysis has held a prominent place in network science ever since Euler 
presented his famous Seven Bridges of Königsberg problem in 1736 (Devlin 2000; 
Bonchev and Buck 2005; Derrible and Kennedy 2009). Modern urban scholars and 
planners have studied street networks in numerous ways. Some studies have focused on 
the urban form (e.g., Southworth and Ben-Joseph 1997; Fecht 2012; Strano et al. 2013), 
others on transportation (e.g., Garrick and Marshall 2009; Marshall and Garrick 2010; 
Parthasarathi 2011; Parthasarathi et al. 2012; 2013; 2015), and others on the topology, 
complexity, and resilience of street networks (e.g., Jiang and Claramunt 2004; Porta et al. 
2006a; Xie and Levinson 2007; Hu et al. 2008; Omer and Jiang 2010; Jiang et al. 2014; 
Brelsford et al. 2015; Barrington-Leigh and Millard-Ball 2015). 

This chapter argues that current limitations of data availability, consistency, and 
technology have made researchers’ work gratuitously difficult. In turn, the empirical 
literature often suffers from four shortcomings which this chapter examines: small sample 
sizes, excessive network simplification, difficult reproducibility, and the lack of 
consistent, easy-to-use research tools. These shortcomings are by no means fatal, but their 
presence limits the scalability, generalizability, and interpretability of empirical street 
network research. 
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To address these challenges, this study presents OSMnx, a new Python package developed 
by this author that downloads political boundary geometries and street networks from 
OpenStreetMap. OSMnx contributes five significant new capabilities for researchers and 
city planners: first, the automatic downloading of place boundaries and shapefiles; 
second, the tailored and automated downloading and construction of street networks 
from OpenStreetMap; third, the automated correction and simplification of network 
topology; fourth, the ability to save street networks to disk as shapefiles, GraphML, or 
SVG files; and fifth, the ability to analyze street networks, calculate routes, project and 
visualize the networks, and calculate network metrics and statistics. These metrics and 
statistics include both those common in urban design and transportation studies, as well 
as metrics that measure the structure and topology of the network. 

This chapter is organized as follows. First it discusses the background of networks, street 
network analysis and representation, data sources such as census products and 
OpenStreetMap, and the current landscape of tools for this type of research – including 
their shortcomings. Next it presents OSMnx and discusses its functionality. Finally, it 
concludes with a discussion of this tool and its implications. 

5.3. Background 

5.3.1. Representation of Street Networks 

Chapter 3 discussed the characteristics and analysis of street networks, including 
planarity – i.e., whether or not the network can be represented in two dimensions with its 
edges intersecting only at nodes. Most quantitative studies of urban street networks 
represent them as planar (e.g., Buhl et al. 2006; Cardillo et al. 2006; Barthélemy and 
Flammini 2008; Masucci et al. 2009; Strano et al. 2013) for tractability because bridges 
and tunnels are reasonably uncommon (in certain places) – thus the networks are 
approximately planar. However, this over-simplification to planarity for tractability may 
be unnecessary and can cause analytical problems, which we explore shortly. 

The street networks discussed so far are primal: the graphs represent intersections as 
nodes and street segments as edges. In contrast, a dual graph (namely, the edge-to-node 
dual graph, also called the line graph) inverts this topology: it represents a city’s streets as 
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nodes and intersections as edges (Porta et al. 2006b). Such a representation seems a bit 
odd, but provides certain advantages in analyzing the network topology based on named 
streets (Crucitti et al. 2006a; 2006b). Dual graphs form the foundation of space syntax, a 
method of analyzing urban networks and configuration via axial street lines and the depth 
from one edge to others (Hillier et al. 1976; Hillier 1989; cf. Ratti 2004). Space syntax has 
formed the basis of many adapted approaches to analytical urban design (e.g., Karimi 
2012).  

This present study, however, focuses on primal graphs because they retain all the 
geographic, spatial, metric information essential to urban form and design that dual 
representations discard: all the geographic, experiential traits of the street (such as its 
length, shape, circuity, width, etc.) are lost in a dual graph. A primal graph, by contrast, 
can faithfully represent all the spatial characteristics of a street. Primal may be a better 
approach for analyzing spatial networks when geography matters, because the physical 
space underlying the network contains relevant information that cannot exist in the 
network’s topology alone (Ratti 2004; Batty 2005c). 

5.3.2. Current Tool Landscape 

Several tools exist to study street networks. ESRI provides an ArcGIS Network Analyst 
extension, for which Sevtsuk and Mekonnen (2012) developed the Urban Network 
Analysis Toolkit plug-in. QGIS, an open-source alternative, also provides limited 
capabilities through built-in plug-ins. GIS tools generally provide very few network 
analysis capabilities, such as shortest path calculations (Fischer et al. 2004; Longley et al. 
2005; Maantay and Ziegler 2006). In contrast, network analysis software – such as Gephi, 
igraph, and graph-tool – does not provide the GIS functionality essential to study spatial 
networks. Pandana is a Python package that does enable accessibility queries over a 
spatial network, but does not support other graph-theoretic network analyses (Foti 2014). 
NetworkX is a Python package for general network analysis, developed by researchers at 
Los Alamos National Laboratory. It is free, open-source, and able to analyze networks 
with millions of nodes and edges (Hagberg et al. 2008; Hagberg and Conway 2010). 

Street network data come from many sources, including city, state, and national data 
repositories, and typically in shapefile format. In the U.S., the census bureau provides free 
TIGER/Line (Topologically Integrated Geographic Encoding and Referencing) shapefiles 
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of geographic data such as cities, census tracts, roads, buildings, and certain natural 
features. However, TIGER/Line roads shapefiles suffer from inaccuracies (Wu et al. 2005; 
Frizzelle et al. 2009), contain quite coarse-grained classifiers (e.g., classifying parking lots 
as alleys), and topologically depict bollarded intersections as through-streets, which 
problematizes routing. Furthermore, there is no central repository of worldwide street 
network data, which can be inconsistent, difficult, or impossible to obtain in many 
countries. 

OpenStreetMap – a collaborative mapping project that provides a free and publicly 
editable map of the world – has emerged in recent years as a major player both for 
mapping and for acquiring spatial data (Corcoran et al. 2013; Jokar Arsanjani 2015). 
OpenStreetMap data represent a type of Volunteered Geographic Information (VGI) – 
data that is both user-generated and geolocated. VGI is one of the most important and 
fastest-growing sources of geospatial big data (Goodchild 2007; Elwood et al. 2012; Jiang 
and Thill 2015; Dunkel 2015; Boeing and Waddell 2016). “Big data,” though it varies in 
interpretation – and is often leaned on as a platitude – is a type of data that is 
meaningfully different from traditional and necessarily smaller-scale data (Mayer-
Schönberger and Cukier 2013; Kitchin and McArdle 2016). These massive datasets can 
represent very large samples at incredibly fine spatial and temporal scales, and have 
significant implications for urban planning and research (Zook et al. 2010; Townsend 
2013; Ching and Ferreira 2015).  

However, others have critiqued the glorification of big data – and the smart cities and 
“urban science” paradigms it empowers – as a reformulation of unsophisticated positivist 
urban cybernetics and control (Sassen 2012; Sennett 2012; Greenfield 2013; Barnes and 
Wilson 2014; Wyly 2014a; 2014b; Goodspeed 2015; Kitchin 2016; Krivỳ 2016; Mattern 
2017; Schweitzer and Afzalan 2017; cf. less-critical perspectives in Lazer et al. 2009; Liu et 
al. 2011; Argote-Cabanero et al. 2015). According to Kitchin (2017, p. 6), “scientific 
approaches to cities have been critiqued as being rather naïve and narrow in perspective, 
producing overly-simplified explanations and models, and a limited and limiting 
understanding of how cities work (foreclosing what kinds of questions can be asked and 
how they can be answered) and how urban issues can be tackled.” 

Nevertheless, VGI such as OpenStreetMap data provides a new lens with which to 
examine cities and human systems. Inspired by Wikipedia’s mass-collaboration model, 
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the OpenStreetMap project started in 2004 and has grown to over two million users 
today. Its data quality is generally quite high (Haklay 2010; Over et al. 2010; Zielstra and 
Hochmair 2011) – for example, Garmin GPS devices can now use OpenStreetMap data 
for navigation. Although data coverage varies worldwide, it is generally good when 
compared to corresponding estimates from the CIA World Factbook (Maron 2015). In 
the U.S., OpenStreetMap imported the 2005 TIGER/Line roads in 2007 as a foundational 
data source (Willis 2008). Since then, numerous corrections and improvements have been 
made. But more importantly, many additions have been made beyond what TIGER/Line 
captures, including pedestrian paths through parks, passageways between buildings, bike 
lanes and routes, and richer attribute data describing the characteristics of features, such 
as finer-grained codes for classifying arterial roads, collector streets, residential streets, 
alleys, parking lots, etc. 

Several imperfect methods currently exist to acquire street network data from 
OpenStreetMap. First, OpenStreetMap provides an API, called Overpass, which can be 
queried programmatically to retrieve data from its database: streets or otherwise. 
However, its usage and syntax are notoriously challenging and several services have 
sprung up to simplify the process. Mapzen extracts chunks of OpenStreetMap data 
constrained to bounding boxes around 200 metropolitan areas worldwide. They also 
provide custom extracts, which can take up to an hour to run. Mapzen works well for 
simple bounding boxes around popular cities, but otherwise does not provide an easily 
scalable or customizable solution. Geofabrik similarly provides data extracts, generally at 
national or sub-national scales, but provides shapefiles as a paid service.  

Finally, GISF2E is a tool (compatible with ArcGIS and an outdated version of Python) 
that can convert shapefiles such as Mapzen or Geofabrik extracts into graph-theoretic 
network data sets (Karduni et al. 2016). Its creators provide processed shapefiles for 
several cities online, but with some limitations. While GISF2E shapefiles’ roads have a 
flag denoting one-way streets, it discards to and from nodes, thus making it unclear in 
which direction the one-way goes. It also treats nodes inconsistently due to arbitrary 
break points between OpenStreetMap IDs or line digitization. OpenStreetMap IDs 
sometimes map 1-to-1 with a named street, but other times a named street might 
comprise multiple OpenStreetMap IDs. Further, some streets have arbitrary “nodes” in 
the middle of a segment because the OpenStreetMap ID is different on either side.  
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5.3.3. Current Shortcomings 

Due to the aforementioned limitations of street network data availability, consistency, 
and technology, the empirical literature often suffers from four shortcomings. First, the 
sample sizes in cross-sectional studies tend to be quite small due to the challenges of 
acquiring large data sets. Most cross-sectional studies tend to analyze somewhere between 
10 and 50 or so networks for tractability at the city or neighborhood scale (e.g., Buhl et al. 
2006; Cardillo et al. 2006; Jiang 2007; Marshall and Garrick 2010; Strano et al. 2013; 
Giacomin and Levinson 2015). Acquiring and assembling large numbers of street 
networks consistently from data sources spread across various governmental entities can 
be extremely difficult and time-consuming. However, small sample sizes can limit the 
representativeness and reliability of findings. 

Second, studies usually simplify the representation of the street network to a planar or 
undirected graph for tractability (e.g., Buhl et al. 2006; Cardillo et al. 2006; Barthélemy 
and Flammini 2008; Masucci et al. 2009). Typically, researchers assemble street networks 
into some sort of graph-theoretic object from GIS data, for instance by splitting the 
centerlines of all the streets in a study area wherever they cross in two dimensions. These 
split lines become edges and the splitting points become nodes. However, this method 
presumes a planar graph: bridges and tunnels become splitting points (and thus nodes) 
even if the streets do not actually intersect in three dimensions. Unless the street network 
is truly planar, planar simplification produces a less-than-ideal representation that could 
yield inaccurate metrics, underestimate the lengths of edges, and overestimate the 
number of nodes. It may reasonably model a street network in a European medieval city 
center, but poorly models the street network in a city like Los Angeles with numerous 
grade-separated expressways, bridges, and tunnels in a truly non-planar network. 
Karduni et al. (2016) suggest the importance of using GIS attribute data to identify such 
non-planar features to create a correct topology (cf. Mandloi and Thill 2010). 

The third problem is replicability. The dozens of decisions that go into analysis – such as 
spatial extents, topological simplification and correction, definitions of nodes and edges, 
etc. – are often ad hoc or only partially reported, making reproducibility challenging. 
Some studies gloss over the precise details of how their street networks were constructed 
(perhaps due to some combination of methodological complexity and journal word 
limits), yet numerous unreported decisions had to be made in the process. For example, 
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various studies examine cities out to the urban fringe, but do not explain precisely how 
and where this periphery was defined (e.g., Strano et al. 2013). Some studies do not report 
if their networks are directed or undirected (e.g., Porta et al. 2006a; Strano et al. 2013). 
Directedness may matter little for pedestrian studies, but it substantially impacts the 
interpretation and values of various measures when directedness does matter.  

Further, what are edges in the street network? Drivable streets? Pedestrian paths? What is 
a node in the street network? Is it where at least two different named streets come 
together? Does it denote any junction of routes? What about dead-ends? Different studies 
make different but perfectly valid decisions with these various questions (e.g., Frizzelle et 
al. 2009; Marshall and Garrick 2010; Sevtsuk and Mekonnen 2012; Foti 2014). Their 
definitions impact how we interpret various calculated features like degrees or 
intersection densities, and any research design decisions that go unreported can 
problematize replicability, interpretation, and generalizability. 

Fourth, as discussed, the current landscape of tools and methods offers no ideal technique 
that balances usability, customizability, reproducibility, and scalability in acquiring, 
constructing, and analyzing network data. Taken together, these limitations make street 
network researchers’ work difficult and can circumscribe the conclusions that may be 
drawn from the effort. 

5.4. OSMnx: Methodology and Functionality 

To address these challenges, the primary methodological contribution of this dissertation 
is the creation of a new tool to make the collection of data and creation and analysis of 
street networks simple, consistent, automatable, and sound from the perspectives of 
graph theory, transportation, and urban design. OSMnx is a free, open-source Python 
package developed by this author that downloads political boundaries and street 
networks from OpenStreetMap. It allows users to easily construct, project, visualize, and 
analyze non-planar complex street networks consistently. Users can construct a city’s or 
neighborhood’s walking, driving, or biking network with a single line of Python code – 
including node elevations and street grades. OSMnx is built on top of Python’s 
NetworkX, matplotlib, and geopandas libraries for rich network analytic capabilities, 
beautiful and simple visualizations, and fast spatial queries with R-tree indexing. 
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OSMnx contributes five significant new capabilities for urban researchers and 
practitioners, which the following subsections discuss in order. First, OSMnx allows 
automated and on-demand downloading of political boundary geometries, building 
footprints, and elevations. Second, it can automate and customize the downloading of 
street networks from OpenStreetMap, and construct them into NetworkX multidigraphs. 
Third, it can correct and simplify network topology. Fourth, it can save street networks to 
disk in various file formats. Fifth and finally, OSMnx has built-in functions to analyze 
street networks, calculate routes, project and visualize networks, and quickly and 
consistently calculate various metric and topological measures. 

5.4.1. Political Boundaries and Building Footprints 

To acquire political boundary GIS data, one typically must track down shapefiles online 
and download them. However, bulk or automated acquisition and analysis (such as that 
required to analyze hundreds or thousands of separate geographies) requires clicking 
through numerous web pages to download shapefiles one at a time. With OSMnx, one 
can download place shapes from OpenStreetMap in a single line of Python code, and 
project them to UTM in one more line of code (all of the built-in projection in OSMnx 
calculates UTM zones automatically based on the centroid of the geometry). 

 
Figure 5.1. Political boundary vector geometries retrieved by OSMnx for A) the city of Berkeley, California, 
and B) the nations of Zambia, Zimbabwe, and Botswana. 
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One can just as easily acquire polygons for other place types, such as neighborhoods, 
boroughs, counties, states, or nations – any place geometry available in OpenStreetMap. 
Or, one can pass multiple places into a single query to construct a single shapefile with 
multiple features from their geometries. This can also be done with cities, states, countries 
or any other geographic entities, and the results can be saved as a shapefile to a hard drive 
(Figure 5.1). Similarly, building footprints can be retrieved for anywhere that 
OpenStreetMap has such data (Speranza 2016), as discussed further in section 5.4.6. 

5.4.2. Download and Construct Street Networks 

The primary contribution of OSMnx is the downloading and construction of street 
networks. To acquire street network GIS data, one must typically track down TIGER/Line 
roads from the U.S. census bureau, or individual data sets from other countries or their 
cities. However, this becomes preventively burdensome for large numbers of separate 
street networks as it does not entail bulk, automated analysis. Further, it ignores informal 
paths and pedestrian circulation routes that TIGER/Line lacks. Finally, TIGER/Line 
provides no street network data for outside the United States. In contrast, OSMnx 
handles all of these use cases. 

OSMnx lets one download street network data and build topologically-corrected street 
networks, project and plot the networks, and save the street network as SVGs, GraphML 
files, or shapefiles for later use. The street networks are represented as multidigraphs and 
preserve one-way directionality. Moreover, once the network has been downloaded, 
OSMnx provides built-in functions to download the elevation of each node (from the 
Google Maps Elevation API) and calculate street grades. One can download a street 
network by providing OSMnx any of the following queries: 

 a bounding box 
 a latitude-longitude point plus a distance in meters (either a distance along the 

network or a distance in each cardinal direction from the point) 
 an address plus a distance in meters (either a distance along the network or a 

distance in each cardinal direction from the point) 
 a polygon of the desired street network’s boundaries 
 a place name or list of place names 
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Figure 5.2. Three street networks at the same scale, created by address and network distance (left), 
bounding box (center), and neighborhood polygon (right). 

One can also specify several different network types: 

 drive - all drivable public streets (but not service roads) 
 drive_service - all drivable public streets plus service roads 
 walk - all streets and paths that pedestrians can use (this network type ignores 

one-way directionality by building reciprocal links in both directions between 
each pair of connected nodes) 

 bike - all streets and paths that cyclists can use 
 all - all (non-private) OpenStreetMap streets and paths 
 all_private - all OpenStreetMap streets and paths, including those that are private-

access only 

The functionality to acquire street networks by place name or by polygon is particularly 
useful for researchers and planners. When passed a place name, OSMnx geocodes the 
name using OpenStreetMap’s Nominatim API and constructs a polygon from its borders. 
It then buffers this polygon by 500 meters and downloads the street network data within 
its geometry from OpenStreetMap’s Overpass API. Next it constructs a street network 
from this data, corrects the topology, calculates accurate degrees and intersection types 
per intersection (this ensures that intersections are not considered dead-ends simply 
because an incident edge connects to a node outside the desired polygon), then truncates 
the network to the original, desired polygon. One can just as easily request a street 
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network within a borough, county, state, or other geographic entity. One can also pass a 
list of places (such as several neighboring cities) to create a unified street network within 
the union of their geometries. 

 
Figure 5.3. The drivable street network for municipal Los Angeles, created by simply passing the query 
phrase “Los Angeles, CA, USA” into OSMnx. 
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Figure 5.4. Street networks for A) Modena, Italy, B) Belgrade, Serbia, C) central Maputo, Mozambique, and 
D) central Tunis, Tunisia. 

These geospatial operations take advantage of an R-tree spatial index to quickly identify 
nodes that lay within or outside of the polygons (Guttman 1984). An R-tree represents 
individual objects and their bounding boxes as the lowest level of the spatial index (the 
“R” is for “rectangle”). It then aggregates nearby objects and represents them with their 
aggregate bounding box in the next higher level of the index. At yet higher levels, the R-
tree aggregates bounding boxes and represents them by their bounding box, iteratively, 
until everything is nested into one top-level bounding box. To search, the R-tree takes a 
query box and, starting at the top level, identifies which (if any) bounding boxes intersect 
it. It then expands each intersecting bounding box and sees which of the child bounding 
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boxes inside it intersect the query box. This proceeds recursively until all intersecting 
boxes are searched down to the lowest level. Finally, it returns the matching objects from 
the lowest level. 

However, an R-tree provides no speed-up when the features’ bounding boxes are 
(approximately) identical, because it identifies (approximately) every point as a possible 
match: the bounding box of the polygon intersects every nested rectangle inside the 
index. This is a limitation of R-trees themselves. To work around this, OSMnx subdivides 
the polygons into smaller sub-polygons with concomitantly smaller minimum bounding 
boxes. It then iterates through these small sub-polygons to quickly identify which points 
lie within each, taking full advantage of the R-tree index’s speed. This reduces the 
processing time of, for instance, metropolitan Los Angeles’s street network (Figure 5.3) 
from approximately an hour to approximately a few seconds. 

Of particular relevance to planning scholars and practitioners, OSMnx enables the 
acquisition of street networks around the world. In general, U.S. street network data sets 
are fairly easy to come by thanks to TIGER/Line shapefiles. OSMnx makes it easier by 
making them available with a single line of code, and better by supplementing them with 
all the additional data (both attributes and non-road routes) from OpenStreetMap. 
However, with OSMnx, one can just as easily acquire street networks from anywhere else 
in the world – places where such data might otherwise be inconsistent or difficult to come 
by (Figure 5.4). 

5.4.3. Correct and Simplify Network Topology 

Topological correction and simplification is performed by OSMnx automatically under 
the hood, but it is illuminating to break it out to see how it works. Simplification is 
essential for a correct topology because OpenStreetMap nodes can be inconsistent: they 
include intersections, but they also include all the points along a single street segment 
where the street curves. The latter are not nodes in the graph-theoretic sense, so we 
remove them algorithmically and consolidate the set of edges between “true” network 
nodes (i.e., intersections and dead-ends) into a single unified edge. These unified edges 
between intersections retain the full spatial geometry of the consolidated sub-edges and 
their relevant attributes, such as the full length of the street segment. OSMnx provides 
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different simplification modes to provide researchers fine-grained control to define nodes 
rigorously. In strict simplification mode, a node is either:  

1. where an edge dead-ends (i.e., the endpoint of a cul-de-sac), or 
2. the endpoint from which an edge self-loops, or  
3. the intersection between multiple streets where at least one of the streets continues 

through the intersection (i.e., if two streets dead-end at the same point, creating 
an elbow, the point is not considered a node) 

 
Figure 5.5. A) the original graph, B) non-graph-theoretic nodes highlighted in red and true intersections 
and dead-ends in blue, C) strictly simplified network, with self-loops noted in magenta, D) non-strictly 
simplified network. 
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In non-strict mode, conditions 1 and 2 remain the same, but 3 is relaxed to permit nodes 
at the intersection of two-streets, even if both streets dead-end there, as long as the streets 
have different OpenStreetMap IDs. In either mode, a node is always retained where there 
is a point at which a single street changes from one-way to two-way. The process of 
simplification is illustrated in Figure 5.5. When we first download and assemble the street 
network from OpenStreetMap, it appears as depicted in Figure 5.5a. For one-way streets, 
directed edges are added from the origin node to the destination node. For two-way 
streets, directed edges are added in both directions between nodes. 

We want to simplify this network to only retain those nodes that represent dead-ends and 
the true junction of multiple streets. OSMnx does this automatically in strict mode, unless 
told to do otherwise. First, it identifies all non-intersection and non-dead-end nodes (i.e., 
all those that simplify form an expansion graph), as depicted in Figure 5.5b. Then it 
removes them, but faithfully maintains the spatial geometry and attributes of the street 
segment between the true intersection nodes. In Figure 5.5c, all the non-intersection 
nodes have been removed, all the true intersections and dead-ends remain in blue, and 
self-loop nodes are in purple. In strict mode, OSMnx considered two-way intersections to 
be topologically identical to a single street that bends around a curve. Conversely, if we 
wish to retain these intersections when the incident edges have different OpenStreetMap 
IDs, we may use non-strict mode, as depicted in Figure 5.5d. 

5.4.4. Save Street Networks to Disk 

OSMnx can save the street network to disk as a GraphML file (an open, standard file 
format for representing graphs on disk) to work with later in network analysis software 
like Gephi or NetworkX. Or, it can save the network as ESRI shapefiles of nodes and 
edges to work with later in any standard GIS software. When saving the street network as 
shapefiles, the graph is simplified to an undirected representation. However, one-way 
directionality and origin/destination nodes are preserved and saved as edge attributes for 
GIS routing applications. These shapefiles and GraphML files can be loaded back into 
OSMnx later for processing, analysis, or visualization. OSMnx can also save street 
networks as scalable vector graphics (SVG) files for design work in Adobe Illustrator 
(Figure 5.6). 
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Figure 5.6. The street network for metropolitan New York from OSMnx saved as an ESRI shapefile and 
loaded in QGIS (above) and in Adobe Illustrator as SVG (below). 

5.4.5. Analyze Street Networks 

OSMnx easily analyzes networks and calculates network statistics, including spatial 
metrics based on geographic area or weighted by distance (Table 5.1). With a single 
command, OSMnx calculates the nodes’ average neighborhood degrees (weighted and 
unweighted), betweenness centralities, closeness centralities, degree centralities, 
clustering coefficients (weighted and unweighted), PageRanks and the network’s, 
intersection count, intersection density, average betweenness centrality, average closeness 
centrality, average degree centrality, eccentricity, diameter, radius, center, periphery, 
node connectivity, average node connectivity, edge connectivity, average circuity, linear 
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edge density per square kilometer, total edge length, average edge length, average degree, 
number of edges, number of nodes, node density per square kilometer, maximum and 
minimum PageRank values and corresponding nodes, the proportion of edges that self-
loop, linear street density per square kilometer, total street length, average street length, 
number of street segments, average number of street segments emanating from each 
intersection, and the counts and proportions of node types. 

The counts and proportions of streets per node improves on metrics used in other 
studies. Most studies simply use the node degree (either directed or undirected) to count 
how many edges are incident to the node. This has a couple of problems. First, it ignores 
the fact that nodes only have incident edges that connect to other nodes within the spatial 
boundaries requested. Thus, a 4-way intersection near the periphery may only have 3 
incident edges in the network, because the fourth links a node outside the bounds and 
was therefore truncated. Second, bi-directional self-loops in a directed graph would count 
as four physical street segments connected to the intersection. This study instead created a 
new algorithm to correctly count physical streets per node, taking into account one-way 
and two-way streets, parallel edges, self-loops, and intersections with streets that do not 
appear in the graph because they link to a node outside the bounds. 

Measure Definition 
n number of nodes in the graph 
m number of edges in the graph 
average node degree mean number of edges incident to the nodes 
intersection count number of intersections (non-dead-end nodes) in the graph 
average streets per node mean number of streets (edges in undirected representation of the 

graph) that emanate from each node (intersections and dead-ends) 
counts of streets per node a dictionary with keys = the number of streets emanating from the 

node, and values = the number of nodes with this number 
proportions of streets per node a dictionary, same as above, but represents a proportion of the total, 

rather than raw counts 
total edge length sum of all edge lengths in the graph, in meters 
average edge length mean edge length in the graph, in meters 
total street length sum of all edges in the undirected representation of the graph 
average street length mean edge length in undirected representation of the graph, meters 
count of street segments number of edges in the undirected representation of the graph 
node density n divided by area in square kilometers 
edge density total edge length divided by area in square kilometers 
street density total street length divided by area in square kilometers 
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average circuity total edge length divided by the sum of the great circle distances 
between the nodes incident to each edge 

self-loop proportion proportion of edges that have a single incident node (i.e., the edge 
links nodes u and v, and u=v) 

average neighborhood degree mean degree of the nodes in the neighborhood of each node 
average of the average 
neighborhood degree 

mean of all the average neighborhood degrees in the graph 

average weighted neighborhood 
degree 

mean degree of the nodes in the neighborhood of each node, 
weighted by edge length 

average of the average weighted 
neighborhood degree 

mean of all the weighted average neighborhood degrees in the graph 

degree centrality the fraction of nodes that each node is connected to 
average degree centrality mean of all the degree centralities in the graph 
clustering coefficient extent to which node’s neighborhood forms a complete graph 
weighted clustering coefficient extent to which node’s neighborhood forms a complete graph, 

weighted by edge length 
average weighted clustering 
coefficient 

mean of the weighted clustering coefficients of all the nodes in the 
graph 

PageRank ranking of nodes based on structure of incoming edges (link 
analysis) 

maximum PageRank the highest PageRank value of any node in the graph 
maximum PageRank node the node with the maximum PageRank 
minimum PageRank the lowest PageRank value of any node in the graph 
minimum PageRank node the node with the minimum PageRank 
node connectivity the minimum number of nodes that must be removed to disconnect 

the graph 
average node connectivity the expected number of nodes that must be removed to disconnect a 

randomly selected pair of non-adjacent nodes 
edge connectivity the minimum number of edges that must be removed to disconnect 

the graph 
eccentricity for each node, the maximum distance from it to all other nodes, 

weighted by length 
diameter the maximum eccentricity of any node in the graph 
radius the minimum eccentricity of any node in the graph 
center the set of all nodes whose eccentricity equals the radius 
periphery the set of all nodes whose eccentricity equals the diameter 
closeness centrality for each node, the reciprocal of the sum of the distance from the 

node to all other nodes in the graph, weighted by length 
average closeness centrality mean of all the closeness centralities of all the nodes in the graph 
betweenness centrality for each node, the fraction of all shortest paths that pass through the 

node 
average betweenness centrality mean of all the betweenness centralities of all the nodes in the graph 
Table 5.1. Network measures calculated automatically by OSMnx. 
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Figure 5.7. OSMnx calculates the shortest network path between two points in Los Angeles, accounting for 
one-way streets, and plots the route. 

As demonstrated in Figure 5.7, we can also calculate and plot shortest-path routes 
between points – taking one-way streets into account – using Dijkstra’s algorithm 
(Dijkstra 1959; Misa 2010). These shortest paths can be weighted by distance, travel time 
(assuming the availability of speed data), or any other impedance. For example, since 
OSMnx can automatically attach elevation data to each node and calculate street grades, a 
shortest path can be calculated that minimizes elevation change rather than trip distance. 

5.4.6. Visualize Street Networks and Urban Form 

OSMnx can visualize street networks and their metric and topological attributes in 
various ways. A few quick examples particularly relevant to planners, designers, and 
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urban scholars help sketch this usage. For instance, planners can visualize a network’s 
street segments by length to provide a sense of where a city’s shortest and longest blocks 
are distributed. Planners can similarly visualize one-way versus two-way edges to provide 
a sense of where certain types of street circulation patterns are concentrated. Planners can 
also quickly visualize the spatial distribution of dead-ends (or, in fact, intersections of any 
type) in a city to analyze and visually communicate these points of low network 
connectivity (cf. Badger 2011; Barrington-Leigh and Millard-Ball 2015), as demonstrated 
in Figure 5.8. 

OSMnx also produces figure-ground diagrams of street networks and building footprints, 
for urban design and the communication of planning decisions. The heart of Jacobs’s 
(1995) classic book on street-level urban form and design, Great Streets, features dozens 
of hand-drawn figure-ground diagrams in the style of Nolli maps (cf. Hwang and Koile 
2005; Verstegen and Ceen 2013). Each depicts one square mile of a city’s street network. 
Drawing these cities at the same scale provides a revealing spatial objectivity in visually 
comparing their street networks and urban forms. We can re-create this visualization 
technique automatically and computationally with OSMnx, as shown in Figure 5.9. These 
Jacobsesque figure-ground diagrams are created completely with OSMnx and its figure-
ground street network plotting function. 

 
Figure 5.8. OSMnx visualizes the spatial distribution of dead-ends in the city of Piedmont, California. 
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Figure 5.9. One square mile of each city’s street network, created and plotted automatically by OSMnx. The 
consistent spatial scale allows us to easily compare different kinds of street networks and urban forms in 
different kinds of places. 

At the top-left, Portland, Oregon and San Francisco, California typify the late nineteenth 
century orthogonal grid (Southworth and Ben-Joseph 1995; 1997; Cole 2014; Marshall et 
al. 2015). Portland’s famously compact, walkable, 200-foot × 200-foot blocks are clearly 
visible but its grid is interrupted by the Interstate 405 freeway which tore through the 
central city in the 1960s (Speck 2012; Mesh 2014). In the middle-left, the business park in 
suburban Irvine, California demonstrates the coarse-grained, modernist, auto-centric 
form that characterized American urbanization in the latter half of the twentieth century 
(Jackson 1985; Jacobs 1995; Hayden 2004). In stark contrast, Rome has a fine-grained, 
complex, organic form evolved over millennia of self-organization and urban planning 
(Taylor et al. 2016). Because we represent all of these street networks here at the same 
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scale – one square mile – it is easy to compare the block sizes and intersection density in, 
say, Portland to those in Irvine. Contrast the order of the orthogonal grid in San 
Francisco and the functionalist simplifications of Irvine to the messy, complex mesh of 
pedestrian paths, passageways, and alleys constituting the circulation network in central 
Rome. 

At the top- and middle-right, we see New York, Paris, Tunis, and Atlanta. Midtown 
Manhattan’s rectangular grid originates from the New York Commissioners’ Plan of 
1811, which laid out its iconic 800-foot × 200-foot blocks (Ballon 2012; Koeppel 2015; 
Sevtsuk et al. 2016). Broadway weaves diagonally across it, revealing the path dependence 
of the old Wickquasgeck Trail’s vestiges, which Native American residents used to 
traverse the length of the island long before the first Dutch settlers arrived (Shorto 2004; 
Holloway 2013). At the center of the Paris square mile lies the Arc de Triomphe, from 
which Baron Haussmann’s streets radiate outward as remnants of his massive demolition 
and renovation of nineteenth century Paris (Hall 1996). The quantitative spatial 
signatures of Haussmann’s project can clearly be seen via network analysis through the 
redistribution of betweenness centralities and block sizes (Barthélemy et al. 2013). At the 
center of the Tunis square mile lies its Medina, with a complex urban fabric that evolved 
over the middle ages (Micaud 1978; Kostof 1991). Finally, Atlanta is typical of many 
American downtowns: fairly coarse-grained, disconnected, and surrounded by freeways 
(Grable 1979; Jackson 1985; Allen 1996; Rose 2001; Kruse 2007). 

The bottom row of Figure 5.9 shows square miles of Boston, Dubai, Sacramento, and 
Osaka. The central Boston square mile includes the city’s old North End – beloved by 
Jane Jacobs (1961) for its lively streets, but previously cut-off from the rest of the city by 
the Interstate 93 freeway. This freeway has since been undergrounded as part of the “Big 
Dig” megaproject to alleviate traffic and re-knit the urban fabric (Flyvbjerg 2007; 
Robinson 2008). The Dubai square mile shows Jumeirah Village Circle, a master-planned 
residential suburb designed in the late 2000s by the Nakheel corporation, a major Dubai 
real estate developer (Boleat 2005; Kubat et al. 2009; Haine 2013). Its street network 
demonstrates a hybrid of the whimsical curvilinearity of the garden cities movement and 
the ordered geometry of modernism (cf. Kostof 1991). The Sacramento square mile 
depicts its northeastern residential suburb of Arden-Arcade and demonstrates 
Southworth and Ben-Joseph’s (1997) “warped parallel” and “loops and lollipops” design 
patterns of late twentieth century American urban form.  
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Finally, the Osaka square mile portrays Fukushima-ku, a mixed-use but primarily 
residential neighborhood first urbanized during the late nineteenth century. Today, the 
freeway we see in the upper-right of this square mile infamously passes through the 
center of the high-rise Gate Tower Building’s fifth through seventh floors (Yakunicheva 
2014). This peculiar intermingling of street network and edifice arose when 
transportation planners were forced to compromise with private landowners seeking to 
redevelop their property, despite the prior designation of the freeway’s alignment (Isaac 
2014). 

To compare urban form in different kinds of places, these visualizations have depicted 
modern central business districts, ancient historic quarters, twentieth century business 
parks, and suburban residential neighborhoods. The cities they represent are drawn from 
across the United States, Europe, North Africa, the Arabian Peninsula, and East Asia. Yet 
street network patterns also vary greatly within cities: Portland’s suburban east and west 
sides look different than its downtown (as we will discuss in chapter 6), and Sacramento’s 
compact, grid-like downtown looks different than its residential suburbs – a finding true 
of many American cities (as we will discuss in chapter 7). A single square mile diagram 
thus cannot be taken to be representative of broader scales or other locations within the 
municipality. These visualizations, rather, show us how different urbanization patterns 
and paradigms compare at the same scale. This can serve both as a tool for 
comprehending the physical outcomes of planning and informal urbanization, as well as a 
tool for communicating urban planning and design in a clear and immediate manner to 
laymen.  

These uses can be seen perhaps even more clearly when we use OSMnx to visualize street 
networks along with building footprints, as shown in Figure 5.10. At the top-left, we see 
the densely-built form of midtown Manhattan, with large buildings filling most of the 
available space between streets. Within this square mile, there are 2,237 building 
footprints with a median area of 241 square meters (see Table 5.2).  At the top-right, we 
see the medium-density perimeter blocks of San Francisco’s Richmond district, just south 
of the Presidio. Here the building footprints line the streets while leaving the centers of 
each block as open space for residents. Within this square mile, there are 5,054 building 
footprints with a median area of 142 square meters. The bottom two images in Figure 
5.10 reveal an entirely different mode of urbanization by visualizing the slums of 
Monrovia, Liberia and Port-au-Prince, Haiti. These informal settlements are much finer-
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grained, and are not structured according to the orderly logic of the American street grids 
in the top row. Monrovia’s square mile contains 2,543 building footprints with a median 
area of 127 square meters. Port-au-Prince’s square mile contains 14,037 building 
footprints with a median area of just 34 square meters. 

 
Figure 5.10. One square mile of each city’s street network and building footprints, created and plotted 
automatically by OSMnx. The consistent spatial scale allows us to easily compare the urban form in 
different kinds of places, particularly the scale and pattern with which the street network interfaces with the 
rest of the built environment. 
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Square mile n Total area (m2) Mean area (m2) Median area (m2) Coverage 
New York 2,237 1,551,235 693 241 60% 
San Francisco 5,054 806,057 159 142 31% 
Monrovia 2,543 398,637 157 127 15% 
Port-au-Prince 14,037 680,962 49 34 26% 

Table 5.2. Summary statistics for the building footprints in Figure 5.10: n represents the number of 
footprints and coverage represents the percentage of the square mile covered by these footprints. Note that 
these coverage figures are gross, not net, and some of these square miles include parks and undeveloped 
peripheral areas. 

To contrast this, the typical building footprint in the San Francisco square mile is 4.2 
times larger than that in Port-au-Prince. In New York versus Port-au-Prince, the factor is 
7.1 (and if we look at the means instead, it is 14.1). These visualizations provide 
researchers directly comparable illustrations of the pattern, texture, and grain of the 
urban form. In this way, OSMnx also provides planning practitioners an easy-to-use tool 
to visualize and examine street networks and building footprints as a planning and 
communication tool. Figure 5.10, for instance, could help planners and residents in 
Monrovia and Port-au-Prince collaboratively study how to percolate formal circulation 
networks into these informal settlements with minimal disruption to the existing urban 
fabric, homes, and livelihoods (Brelsford et al. 2015; cf. Zook et al. 2010; Gudmundsson 
and Mohajeri 2013; Masucci et al. 2013). 

Holston (1989) suggests that built form figure-ground diagrams can reveal modernism’s 
inversion of traditional urban spatial order. In pre-industrial cities, the figure dominates 
the ground as the diagram displays scattered open space between buildings, as seen in 
Figure 5.11. But in modernist cities, the ground dominates the figure as only a few 
scattered buildings are positioned as sculptural elements across the landscape’s void. 
Recall Fishman’s (2011) argument that we discussed in chapter 4, section 4.4.3: the 
modernist paradigm sought to open up the dense and messy urban fabric with towers-in-
the-park, spacing, and highways. This phenomenon is clearly seen in Brasília, the 
modernist capital of Brazil, designed as a planned city in the 1950s by Lúcio Costa, Oscar 
Niemeyer, and Roberto Burle Marx (Figure 5.11). The structural order of the city also 
suggests “an ordering of social relations and practices in the city,” as discussed in chapter 
4 (Holston 1989, p. 125; see also Moudon 1997). These figure-ground diagrams provide a 
preliminary way to evoke and study the urban morphology and circulation networks that 
structure human activities and social relations. 
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Figure 5.11. One square mile figure-ground diagrams of building footprints in the city centers of Venice, 
London, Paris, and Brasília reveal the modernist inversion of traditional urban spatial order. Downloaded 
and plotted automatically with OSMnx. 

5.4.7. Summary 

To briefly summarize this section’s discussion of methods and functionality, OSMnx is a 
new research tool that simplifies and democratizes the process of collecting, constructing, 
correcting, analyzing, projecting, mapping, and visualizing complex urban street 
networks. It is built on top of NetworkX, matplotlib, and geopandas for rich network 
analytic capabilities, beautiful and simple visualizations, and fast spatial queries with R-
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tree indexing. This empowers research into urban form, street design and evolution, 
transportation, and resilience at multiple scales for any geography anywhere in the world. 

5.5. Discussion 

Street network analysis currently suffers from challenges of usability, planarity, 
reproducibility, and sample sizes. This chapter presented a new tool, OSMnx, to make the 
collection of data and creation and analysis of street networks easy, consistent, scalable, 
and automatable for any study site in the world. It contributes five capabilities for 
researchers and practitioners: downloading place boundaries, building footprints, and 
elevation data; downloading and constructing street networks from OpenStreetMap; 
correcting network topology; saving street networks to disk as ESRI shapefiles, GraphML, 
or SVG files; and analyzing street networks, including calculating routes, visualizing 
networks, and calculating metric and topological measures of the network. In turn, it 
enables researchers and planners to ask new questions about network resilience, 
connectedness and sociodemographic segregation, accessibility, walkability, housing 
market responses to built form characteristics, neighborhood retrofitting (e.g., Dunham-
Jones and Williamson 2011), and the comparative performance of alternative street 
layouts. 

While these data describe various features of the built environment, they alone cannot tell 
us about the quality of the streetscape or pedestrian environment. OpenStreetMap is 
increasingly addressing this with richer attribute data about street width, lanes, speed 
limits, sidewalk presence, and street trees, but a general limitation of OSMnx is that it is 
dependent on what data exists in OpenStreetMap. While coverage is good across the 
United States and Western Europe, developing countries have less thorough, but still 
quite adequate (especially in cities), street network coverage. Moreover, any researcher or 
organization can digitize and add streets, building footprints, or other spatial data to 
OpenStreetMap at any time to serve as a public data repository for their own study, as 
well as anyone else’s. In turn, OSMnx makes the acquisition, construction, and analysis of 
urban street networks easy, consistent, and reproducible while opening up a new world of 
public data to researchers and practitioners. OSMnx is open source and freely available to 
download from a public repository (see Appendix). 
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The following two chapters use this tool to conduct empirical studies of urban street 
networks at multiple scales. Chapter 6 presents a small case study of networks at the 
neighborhood scale in Portland, Oregon. Chapter 7 examines street networks at the 
metropolitan, municipal, and neighborhood scales across the United States. 
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Chapter 6:  Case Study: Portland, Oregon 
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6.1. Abstract 

This chapter presents a small case study to demonstrate the usage of OSMnx for research. 
It collects the street networks for three small areas of Portland, Oregon to perform a 
cross-sectional analysis. First, it introduces these neighborhoods from a brief qualitative 
and historical perspective. Then it explores their comparative quantitative measures of 
network complexity and structure. Finally, it discusses these empirical findings and what 
planning and design insights may be drawn from them. 

6.2. Introduction 

Portland, Oregon is widely regarded as a model city for American urban planning, with 
compact blocks, a sustainable urban form, good walkability, and a robust transit network 
(e.g., Duany et al. 2010; Speck 2012). However, it was not always this way. In 1943, the 
city of Portland hired Robert Moses to design a loop-and-spoke freeway system to push 
the city into the era of the automobile – the “loop” remains to this day as the Interstate 
405 (Mesh 2014). In the 1960s, the city planned to further expand this system with a 
network of several new freeways running throughout its neighborhoods, but was 
eventually defeated in a 1974 freeway revolt (ibid.). Furthermore, during the high 
modernist era of the late 1940s and early 1950s, Portland converted 40 miles of its streets 
to one-way in the name of improving traffic flow (Pryce 1950). As we shall see, unlike the 
freeway revolt, this massive conversion proceeded successfully and the city’s downtown is 
presently composed almost entirely of one-way streets, despite a growing recognition 
today of the livability and economic benefits of two-way streets (e.g., Riggs and 
Gilderbloom 2015; Riggs and Appleyard 2016).  

This chapter examines sections of Portland’s street network to compare different urban 
designs from metric and topological perspectives. While this study does not model or 
optimize for traffic flow per se, it does consider the topological characteristics of these 
one-way street configurations. This is useful for planners given the aforementioned 
livability and economic benefits, as well as the substantial impacts on network resilience 
from a graph connectivity perspective. As discussed in chapter 5, this dissertation 
developed a new tool, OSMnx, for downloading, constructing, correcting, analyzing, 
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projecting, and visualizing street networks from OpenStreetMap data. OSMnx can work 
with driving, walking, and biking circulation networks.  

This chapter presents a small case study to demonstrate the functionality of OSMnx. It 
examines three small half-kilometer sections of the street network in different 
neighborhoods in Portland, Oregon. This scale of analysis and sample size are small, but 
they provide simple, comprehensible examples to illustrate the complex network concepts 
presented in chapter 3, the network complexity (metric and topological) measures 
presented in chapter 4, and the methodological tool presented in chapter 5. This chapter 
serves to tie these threads together empirically and present a visual demonstration before 
embarking on the large multi-scale analysis of 27,000 street networks in chapter 7.  

This present chapter has three aims. First, as discussed, it demonstrates the functionality 
of OSMnx with a simple case study. Second, it presents empirical findings of three street 
network sections in Portland, Oregon and uses the quantitative measures to compare and 
contrast these network sections. Third, it offers some insights and suggestions arising 
from these findings. This chapter is organized as follows. First it lays out the methods by 
which it uses OSMnx to acquire and analyze these networks. Then it presents the findings 
from this analysis. Finally, it concludes with a discussion of these findings and their 
insights for urban planning and design. 

6.3. Methods 

To demonstrate OSMnx, we analyze three neighborhoods in Portland, Oregon. First, we 
define three square bounding boxes of half-a-square-kilometer each in the city’s 
downtown, Laurelhurst, and Northwest Heights neighborhoods. The downtown study 
site is centered on the latitude-longitude coordinates (45.519, -122.68), the Laurelhurst 
study site is centered on the latitude-longitude coordinates (45.527, -122.625), and the 
Northwest Heights study site is centered on the latitude-longitude coordinates (45.54, -
122.771). These half-a-square-kilometer study areas are small and do not conform to 
human definitions of the full local neighborhood extents, but instead are useful for 
consistent comparison across sites at a small spatial scale.  
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These three study sites were selected for their different urban forms and histories. 
Downtown Portland is geographically constrained between the Willamette River and the 
West Hills. Its street network, laid out in the late 1800s, is well-known for its dense, 200-
foot, consistent, orthogonal blocks (Grammenos and Pollard 2009). This fine-grained, 
walkable network of streets has been heralded by many urban designers as something of 
an ideal American urban form (e.g., Duany et al. 2010; Speck 2012). Laurelhurst, in 
contrast, is a residential streetcar suburb in East Portland, developed primarily during the 
1910s and 1920s (Snyder 1979). The neighborhood was originally platted by John Charles 
Olmstead – a nephew of Frederick Law Olmstead – and its homes and meandering streets 
exhibit the character of the American craftsman and garden suburb movements 
(Guzowski 1990; Works 2016). Finally, Northwest Heights is a sprawling neighborhood 
nestled in the rolling hills west of downtown and north of Beaverton, Oregon. Developed 
toward the end of the twentieth century, it features large, single-family homes and a 
winding, disconnected street network. 

This study uses OSMnx to visualize these street networks then measure them 
quantitatively to assess their complexity, particularly through the lens of connectedness 
and resilience. OSMnx downloads the drivable street networks for each square study site, 
constructs the network, corrects the topology (as discussed in chapter 5, section 5.4.3), 
and then calculates full network measures (as described in chapter 5, section 5.4.5). 

6.4. Findings 

If we project these networks to UTM (zone 10 calculated automatically), and plot them as 
seen in Figure 6.1, we can get an initial qualitative sense of these sections of Portland’s 
street network and how they compare to their disparate histories. OSMnx calculates the 
correct numbers of streets emanating from each intersection and dead-end (as discussed 
in section 5.4.5), even for peripheral intersections whose streets were cut off by the 
bounding box. Also notice in the network of Northwest Heights in Figure 6.1, at the far-
right of the panel, that there are two nodes that appear to exist in the middle of a street 
segment, and thus should have been removed during simplification. However, these are 
actually multi-way intersections that OSMnx properly retained: they simply have a street 
that connects to a node outside the right edge of the bounding box. 
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Figure 6.1. Three 0.5 km2 sections (each centered on the coordinates presented in section 6.3) of the street 
network in Portland, Oregon projected and plotted automatically by OSMnx. 

The different histories and designs of these street networks are reflected in Figure 6.1. 
They represent different historical eras, planning regimes, design paradigms, 
transportation technologies, and topographies (Snyder 1979; Guzowski 1990; 
Grammenos and Pollard 2009; Semuels 2016; Works 2016). Several quantitative measures 
can describe these differences as well (Table 6.1). In terms of density metrics, downtown 
has 164 intersections/km2, Laurelhurst has 110, and Northwest Heights has 28. Given 
their respective histories, it is unsurprising that downtown has approximately 6 times the 
intersection density of Northwest Heights. Similarly, downtown has 21 linear km of 
physical street/km2, Laurelhurst has 16, and Northwest Heights has 5. In the downtown 
network, the total street length equals the total edge length, because every edge is one-
way. These values differ somewhat in the other two networks because of the presence of 
two-way streets. As a linear proxy for block size, the average street segment length is 76 
meters in downtown, 92 meters in Laurelhurst, and 117 meters in Northwest Heights. 
These metric measures tell us quantitatively what we can see by visually inspecting the 
street networks: downtown’s is fine-grained and dense, Northwest Heights’s is coarse-
grained and sparse, and Laurelhurst’s is somewhere in between. 

Topological measures can tell us more about complexity, connectivity, and resilience. On 
average, intersections in the downtown section have 3.9 streets connected to them, in 
Laurelhurst they have 3.6, and in Northwest Heights they have 2.4 (Table 6.1). Beyond the 
average, the statistical distribution of the number of streets per node reveals more about 
the type of network. Compare Figure 6.1 to Figure 6.2: the majority of the intersections 
downtown are 4-way intersections, whereas Laurelhurst features a fairly even mix of 3-
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way and 4-way intersections, and Northwest Heights has mostly 3-way intersections and 
dead-ends. In fact, one-third of its nodes are the latter. 

 

Downtown Laurelhurst NW Heights 
Area (km2) 0.50 0.50 0.50 
Avg of the avg neighborhood degree 1.64 2.98 2.75 
Avg of the avg weighted n’hood degree 0.02 0.06 0.03 
Avg betweenness centrality 0.07 0.08 0.14 
Avg circuity 1.001 1.007 1.090 
Avg closeness centrality 0.002 0.002 0.002 
Avg clustering coefficient <0.001 0.108 <0.001 
Avg weighted clustering coefficient <0.001 0.023 <0.001 
Intersection count 82 55 14 
Avg degree centrality 0.04 0.10 0.22 
Diameter (km) 1.28 1.02 0.90 
Edge connectivity 1 1 1 
Edge density (km/km2) 21.3 29.6 10.7 
Avg edge length (m) 76.3 97.4 116.6 
Total edge length (km) 10.7 14.8 5.4 
Intersection density (per km2) 163.7 109.8 28.0 
Average node degree 3.42 5.53 4.38 
m  140 152 46 
n  82 55 21 
Node connectivity 1 1 1 
Avg node connectivity 1.33 2.11 1.44 
Avg node connectivity (undirected) 2.87 2.50 1.44 
Node density (per km2) 163.7 109.8 41.9 
Max PageRank value 0.030 0.029 0.106 
Min PageRank value 0.002 0.004 0.017 
Radius (m) 742.9 537.1 561.8 
Self-loop proportion <0.001 <0.001 <0.001 
Street density (km/km2) 21.32 15.58 5.35 
Average street segment length (m) 76.2 91.8 116.6 
Total street length (m) 10.68 7.80 2.68 
Street segment count 140 85 23 
Average streets per node 3.93 3.58 2.38 
Table 6.1. Descriptive statistics for three street network sections in the city of Portland, Oregon. For 
definitions and interpretation of these measures, see Table 5.1 in chapter 5 and section 4.4 in chapter 4. 
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Figure 6.2. Distributions of node types in each street network: x-axis is the number of streets at the node 
and y-axis is the proportion of nodes (i.e., intersections and dead-ends) with that number of streets. 

Unsurprisingly – for the reasons discussed in chapter 4 – the node and edge connectivity 
of each network is 1. More useful is the average node connectivity. Recall that this 
measure represents the average number of nodes that must be removed to disconnect a 
randomly selected pair of non-adjacent nodes. In other words, this is how many non-
overlapping paths exist, on average, between two randomly selected nodes. Thus, on 
average 1.3 nodes must fail for two nodes to be disconnected in downtown, 2.1 in 
Laurelhurst, and 1.4 in Northwest Heights (Table 6.1). These values may initially seem 
surprising: by this measure, downtown has the least resilient network despite its density 
and fine grain. However, this is explained by the fact that every street in this downtown 
section is one-way, greatly circumscribing the number of paths between nodes. If we 
instead examine the undirected average node connectivity, it is 2.9 in downtown, 2.5 in 
Laurelhurst, and 1.4 in Northwest Heights. Thus, were all the edges in all three networks 
made bidirectional (i.e., two-way streets), downtown’s average node connectivity would 
more than double and it would now have the most resilient network by this measure. This 
finding suggests that there could be considerable complexity, connectivity, and resilience 
gains in converting downtown’s streets from one-way to two-way. 

Finally, Figure 6.3 depicts the average betweenness centrality of the nodes. Note, however, 
that these neighborhood-scale analyses also show peripheral edge effects (Gil 2016) 
because they only consider flows originating from and traveling to nodes within the 
subset; that is, they ignore cross-city flows. In Table 6.1, we see that 7% of all shortest 
paths pass through an average node in downtown, 8% in Laurelhurst, and 14% in 
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Northwest Heights. The spatial distribution of betweenness centralities in these three 
networks indicates the relative importance of each node (Figure 6.3): the lightest nodes 
have the most shortest-paths passing through them, and darkest nodes the fewest. In 
downtown, important nodes are concentrated at the center of the network due to its 
orthogonality (but due to the aforementioned edge effects and bounding box, the center 
is not inherently meaningful).  

In Northwest Heights, the two most important nodes are also critical chokepoints 
connecting the west side of the network to the east. The most important node in 
Northwest Heights has 43% of all shortest paths running through it. In contrast, the most 
important node in downtown has only 15%. The street network in this section of 
Northwest Heights is thus more prone to disruption if its most important node fails (e.g., 
due to a traffic jam, flood, or earthquake) than downtown’s is if its most important node 
fails. 

 
Figure 6.3. Three half-square-kilometer sections of the street network in Portland, Oregon. Nodes colored 
by betweenness centrality from lowest (dark) to highest (light) for flows originating from and traveling to 
nodes within the subset. 

6.5. Discussion 

This chapter presented a short case study demonstrating the abilities of OSMnx to 
download street network data from OpenStreetMap’s APIs, construct the data into a 
graph-theoretic network object with NetworkX, analyze the network with various metric 
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and topological measures of its complexity, and project and plot the network to visualize 
its characteristics and structure. 

In this simple case study of Portland, Oregon, we saw how to assess the street network 
from both metric and topological perspectives using OSMnx. The quantitative analysis 
findings corresponded well with a qualitative assessment of the networks’ visualizations. 
In particular, we found these networks differed substantially in density, connectedness, 
betweenness centrality, and resilience. Although it does not model traffic flow, this case 
study demonstrated how there could be substantial gains in network resilience from a 
graph connectivity perspective if one-way streets in the dense, orthogonal downtown 
were converted to two-way streets. It is important to note that this measure of average 
node connectivity examines directed flows. Therefore, its analysis of resilience gains is 
biased toward modes of travel that are constrained by graph directedness, such as 
automobility or bicycling, rather than toward those that are not, such as walking. 
However, pedestrian network resilience is strongly impacted by these other measures of 
connectivity, centrality, clustering, grain, permeability, and density. Overall, the measures 
of network structure in this case study characterized the complexity of the circulation 
network in terms of density, resilience, and connectedness – physical attributes that 
influence how an urban system structures its interactions, connections, and dynamics – as 
discussed in chapter 4. 

As it is limited by its sample size, this small case study primarily serves illustrative 
purposes. Nevertheless, it demonstrates how to nearly instantaneously acquire, analyze, 
and visualize networks in just two or three lines of code with OSMnx. The small spatial 
scale of the analysis provides a succinct opportunity for clear visualization of the 
phenomena under discussion, as well as a neighborhood-scale interpretation of street 
network measures and their implications. However, these network subsets demonstrate 
peripheral edge effects as they only consider flows within the subset, ignoring the rest of 
the city. The next chapter addresses these limitations by applying OSMnx empirically in 
an urban form analysis of 27,000 street networks across the United States at multiple 
scales.  
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Chapter 7:  A Multi-Scale Analysis of 
Urban Street Networks 
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7.1. Abstract 

This chapter presents wide-ranging empirical findings on U.S. urban form and street 
network characteristics, using OSMnx. It also demonstrates the scalability and flexibility 
of OSMnx as a new research tool. This chapter addresses the limitations identified in 
chapter 5 by conducting an analysis of street networks with large sample sizes, with 
clearly defined network definitions and extents for reproducibility, and using non-planar, 
directed graphs. In particular, it examines urban street networks through the framework 
of complexity developed in this dissertation, focusing on structure, connectedness, 
centrality, and resilience. In total it cross-sectionally analyzes 497 urbanized areas’ street 
networks, 19,655 cities’ and towns’ street networks, and 6,857 neighborhoods’ street 
networks. These sample sizes are larger than those in similar previous studies, and the 
preliminary empirical findings illustrate the use of OSMnx as a new research platform. 

7.2. Introduction 

On May 20, 1862, Abraham Lincoln signed the Homestead Act into law, making land 
across the United States Midwest and Great Plains available for free to all citizen 
applicants (Porterfield 2005). Under its auspices over the next 70 years, the federal 
government distributed 270 million acres of public land (10% of the entire U.S. landmass) 
to private owners in the form of 1.6 million homesteads (Lee 1979; Sherraden 2005). 
Towns with gridiron street networks sprang up rapidly across the Great Plains and 
Midwest, due to both the prevailing urban design paradigm of the day and the 
standardized rectilinear town plats used repeatedly to lay out instant new cities 
(Southworth and Ben-Joseph 1997). Through path dependence, the spatial signatures of 
these land use laws, design paradigms, and planning instruments can still be seen today in 
these cities’ urban forms and street networks. A cross-sectional analysis of American 
urban form through its street networks at metropolitan, municipal, and neighborhood 
scales can reveal similar artifacts and histories across the nation. 

Network analysis is a natural approach to the study of cities as growing, complex systems 
that self-organize to fill space with a capillary circulation network (Masucci et al. 2009). 
As discussed in chapter 5, the empirical literature on street network analysis is growing 
ever richer, but suffers from some limitations. First, sample sizes tend to be fairly small 
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due to data availability, gathering, and processing constraints. Second, reproducibility is 
difficult when the dozens of decisions that go into analysis – such as spatial extents, 
topological simplification and correction, definitions of nodes and edges, etc. – are ad hoc 
or only partly reported. Third, and related to the first two, studies frequently oversimplify 
to planar or undirected primal graphs for tractability, or use dual graphs despite the loss 
of geographic and metric information. Fourth, the current landscape of tools and 
methods offers no ideal technique that balances usability, customizability, reproducibility, 
and scalability in acquiring, constructing, and analyzing network data. 

The previous two chapters in this dissertation specifically addressed the fourth limitation 
above by introducing OSMnx and demonstrating its use in a small case study of Portland, 
Oregon. This chapter aims to address the first three limitations by conducting an analysis 
of street networks at multiple scales, with large sample sizes, with clearly defined network 
definitions and extents for reproducibility, and using non-planar, directed graphs. In 
particular, it examines urban street networks – represented here as primal, non-planar, 
weighted multidigraphs with possible self-loops – through the framework of complexity 
developed in this dissertation, focusing on structure, connectedness, centrality, and 
resilience. 

Most studies in the street network literature that conduct topological and/or metric 
analysis tend to have sample sizes ranging around 5 to 50 networks. This chapter instead 
conducts a large analysis of 27,000 urban street networks at multiple overlapping scales 
across the United States. Namely, it examines the street networks of every U.S. 
incorporated city and town, urbanized area, and Zillow-defined neighborhood. In total, 
the study presented in this chapter uses OSMnx to download, construct, and analyze 497 
urbanized areas’ street networks, 19,655 cities’ and towns’ street networks, and 6,857 
neighborhoods’ street networks. It uses these street networks to conduct four analyses: at 
the metropolitan scale, at the municipal scale, at the neighborhood scale, and with a case 
study looking deeper at the neighborhood-scale street networks in the city of San 
Francisco. 

This chapter is organized as follows. In the next section, it presents the data sources, tools, 
and methods used to collect, construct, and analyze these street networks. Then it 
presents findings of the analyses at three spatial scales: metropolitan, municipal, and 
neighborhood. Next it presents a case study at the neighborhood scale in San Francisco. 
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Finally, it concludes with a discussion of these findings and their implications for street 
network analysis, urban form, and city planning. 

7.3. Methods 

This study uses OSMnx – discussed in chapters 5 and 6 – to download, construct, correct, 
analyze, and visualize street networks at metropolitan, municipal, and neighborhood 
scales. To define the study sites and their spatial boundaries, this study uses three sets of 
geometries. The first set defines the metropolitan-scale study sites using the 2016 national 
TIGER/Line shapefile of U.S. census bureau urban areas, released 19 August 2016. 
Census-defined urban areas comprise a set of census tracts that meet a minimum density 
threshold (U.S. Census Bureau 2010). In particular, we retain only the urbanized areas 
subset in this data set (i.e., areas with greater than 50,000 population), discarding the 
smaller urban clusters subset. The second set of geometries defines the municipal-scale 
study sites using 51 TIGER/Line shapefiles (again, 2016) of U.S. census bureau places for 
all 50 states plus the District of Columbia. In particular, we discard the subset of census-
designated places in this data set, instead retaining every incorporated city and town in 
the United States.  

The third and final set of geometries defines the neighborhood-scale study sites using the 
2016 Zillow neighborhood boundary shapefiles. These 42 shapefiles contain the 
geometries of neighborhoods in major cities in 41 states plus the District of Columbia. 
This is a fairly new data set comprising nearly 7,000 neighborhoods in large U.S. cities, 
but as Schernthanner et al. (2016) point out, Zillow does not publish the methodology it 
uses to construct these geometries. However, despite being new, it already has a track 
record in the academic literature. For instance, Besbris et al. (2015) used Zillow 
neighborhood boundaries to examine neighborhood stigma, and Albrecht and 
Abramowitz (2014) used these data to study neighborhood-level poverty in New York. 

For all of these geometries, we use OSMnx’s graph_from_polygon function to download 
the (drivable, public) street network contained within the geometry. First it buffers each 
geometry by 0.5 km, then downloads the street network within this buffered geometry. 
Next it constructs a street network from this data, corrects the topology, calculates street 
counts per node (this ensures that intersections are not considered dead-ends simply 
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because an incident edge connects to a node outside the desired polygon), then truncates 
the network to the original, desired polygon – as discussed in chapter 5. OSMnx saves 
each of these networks to disk as GraphML and shapefiles. Finally, it automatically 
calculates metric and topological measures for each, as discussed in chapter 4. However, 
in a planar graph, topological and metric properties are somewhat interrelated (Masucci 
et al. 2009). For reference, these measures are recapitulated (briefly, to avoid excess 
repetition) in the following paragraphs, but they are discussed in detail in chapters 4 and 
5 and summarized in Table 5.1. 

Average street length, the mean edge length in the undirected representation of the graph, 
serves as a linear proxy for block size and indicates how fine-grained or coarse-grained 
the network is. Node density is the number of nodes divided by the area covered by the 
network. Intersection density is the node density of the set of nodes with more than one 
street emanating from them (thus excluding dead-ends). The edge density is the sum of all 
edge lengths divided by the area, and the physical street density is the sum of all edges in 
the undirected representation of the graph divided by the area. These density measures all 
provide an indication of how fine-grained the network is. Finally, the average circuity 
represents the average ratio between an edge length and the straight-line distance 
between the two nodes it links. 

The average node degree, or mean number of edges incident to each node, quantifies how 
well the nodes are connected, on average. Similarly, but more concretely, the average 
streets per node measures the mean number of physical streets (i.e., edges in the 
undirected representation of the graph) that emanate from each intersection and dead-
end. This adapts the average node degree for physical form rather than directed 
circulation. The statistical and spatial distributions of number of streets per node 
characterize the type, prevalence, and dispersion of intersection connectedness in the 
network. Connectivity measures the minimum number of nodes or edges that must be 
removed from a connected graph to disconnect it. The average node connectivity of a 
network – the mean number of internally node-disjoint paths between each pair of nodes 
in the graph – represents the expected number of nodes that must be removed to 
disconnect a randomly selected pair of non-adjacent nodes (Beineke et al. 2002).  

The clustering coefficient of a node is the ratio of the number of edges between its 
neighbors to the maximum possible number of edges that could exist between these 
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neighbors. The weighted clustering coefficient weights this ratio by edge length and the 
average clustering coefficient is the mean of the clustering coefficients of all the nodes in 
the network. Centrality indicates the importance of nodes in a network. Betweenness 
centrality evaluates the number of shortest paths that pass through each node 
(Barthélemy 2004). The maximum betweenness centrality in a network specifies the 
proportion of shortest paths that pass through the most important node. This is an 
indicator of resilience: networks with a high maximum betweenness centrality are more 
prone to failure or inefficiency should this single choke point fail. Closeness centrality 
ranks nodes as more central if they are on average closer to all other nodes. Finally, 
PageRank ranks nodes based on the structure of incoming links and the rank of the 
source node. 

In total, this study cross-sectionally analyzes 27,009 places: 497 urbanized areas, 19,655 
cities and towns, and 6,857 neighborhoods (note that places with no streets within their 
boundaries are not analyzed). These sample sizes are larger than those in any previous 
study. In the following sections, we present the findings of these analyses at the 
metropolitan scale, the municipal scale, the neighborhood scale, and through a case study 
looking deeper at the neighborhood-scale street networks in the city of San Francisco, 
California. 

7.4. Analysis of Metropolitan-Scale Street Networks 

There is substantial variation in street network characteristics across the entire data set of 
497 urbanized areas (Table 7.1). This is unsurprising: the nation’s urbanized areas span a 
wide spectrum of sizes, from the Delano, CA Urbanized Area’s 26 km2 to the New York--
Newark, NY--NJ--CT Urbanized Area’s 8,937 km2 – thus, density and count-based 
measures demonstrate substantial variance. Further, these urbanized areas span a wide 
spectrum of terrains, development eras and paradigms, and cultures. 

Nevertheless, looking across the data set provides a sense of the breadth of American 
metropolitan street networks. New York’s urbanized area – America’s largest – has 
373,309 nodes and 79 million meters of linear street (or 417,570 and 83.4 million if we 
include service roads). Delano, California’s urbanized area – America’s smallest – has 874 
nodes and 222,328 meters of linear street (or 964 and 231,000 meters if we include service 
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roads). The typical (Table 7.1, median) American urbanized area is approximately 185 
km2 in land area, has 5,830 nodes, and 1.3 million linear meters of street. Its street 
network is about 7.4% more circuitous than straight-line, as-the-crow-flies edges between 
nodes would be. The most circuitous network is 14% more circuitous than straight-line 
would be, and least is only 2%.  
 
 

mean σ min median max 
Area (km2) 460.657 858.125 25.685 184.898 8937.429 
Avg of the avg neighborhood degree 2.886 0.109 2.626 2.875 3.228 
Avg of the avg weighted n’hood degree 0.032 0.018 0.021 0.03 0.321 
Avg circuity 1.076 0.019 1.023 1.074 1.14 
Avg clustering coefficient 0.042 0.009 0.015 0.042 0.071 
Avg weighted clustering coefficient 0.002 0.001 <0.001 0.001 0.006 
Intersection count 12582 26054 751 4593 307848 
Avg degree centrality 0.001 0.001 <0.001 0.001 0.007 
Edge density (km/km2) 13.455 2.137 7.961 13.352 21.233 
Avg edge length (m) 158.588 17.653 117.341 157.332 223.08 
Total edge length (km) 6353 12625 427 2393 1.42e8 
Proportion of dead-ends 0.213 0.055 0.077 0.207 0.416 
Proportion of 3-way intersections 0.593 0.046 0.444 0.591 0.778 
Proportion of 4-way intersections 0.187 0.063 0.054 0.178 0.422 
Intersection density (per km2) 26.469 6.256 12.469 26.029 49.423 
Average node degree 5.153 0.302 4.307 5.143 6.056 
m  40890 83678 2516 14955 981646 
n  16032 32585 874 5830 373309 
Node density (per km2) 33.628 7.641 17.675 33.071 61.655 
Max PageRank value 0.001 0.001 <0.001 0.001 0.003 
Min PageRank value <0.001 <0.001 <0.001 <0.001 <0.001 
Self-loop proportion 0.008 0.008 <0.001 0.006 0.071 
Street density (km/km2) 7.262 1.221 4.217 7.171 11.797 
Average street segment length (m) 161.33 17.77 119.57 160.29 225.92 
Total street length (km) 3480 7026 222 1269 79046 
Street segment count 22011 45725 1281 7868 533757 
Average streets per node 2.764 0.162 2.223 2.770 3.217 
Table 7.1. Measures of central tendency and dispersion for selected measures of the 497 urbanized area 
street networks. For definitions and interpretation of these measures, see Table 5.1 in chapter 5 and section 
4.4 in chapter 4. 
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Figure 7.1. Intersection density per urbanized area, from lowest (pale yellow) to highest (dark red), in the 
contiguous U.S. 

Looking at network complexity in terms of density and connectivity, in the typical 
urbanized area, the average street segment length (a proxy for block size) is 160 meters. 
The longest average street segment is the 226-meter average of urbanized Danbury, 
Connecticut. Puerto Rican cities hold the top four positions for shortest average street 
segment length, but among the 50 states plus Washington DC, the shortest average street 
segment is the 125.3-meter average of urbanized Tracy, California, indicating a much 
finer street network. The urbanized area of Portland, Oregon, with its famously compact 
walkable blocks, ranks second at 125.5 meters on average. 

The typical urbanized area has 26 intersections per km2. Both the densest and the sparsest 
are in the deep south: the sparsest is 12.5 (Gainesville, Georgia’s urbanized area) and the 
densest is 49.4 (New Orleans, Louisiana’s urbanized area). However, New Orleans is an 
anomaly in the deep south. Figure 7.1 depicts the intersection density in each American 
urbanized area, from lowest density in dark red to highest density in light yellow. The 
map makes clear how the highest intersection densities are concentrated to the west of the 
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Mississippi River. The lowest intersection densities are concentrated in a belt running 
from Louisiana, up through the Carolinas and Appalachians, and into New England. In 
general, only the largest cities on the east coast (e.g., Boston, New York, Philadelphia, 
Washington) and Florida escape this trend. 

 
Figure 7.2. Average streets per node per urbanized area, from fewest (pale yellow) to most (dark red), in the 
contiguous U.S. 

The distribution of node types (i.e., intersections and dead-ends) provides a clear 
indicator of network connectedness. The typical urbanized area has 2.8 streets per node 
on average: lots of 3-way intersections, fewer dead-ends, and even fewer 4-way 
intersections. The grid-like San Angelo, Texas urbanized area has the most streets per 
node (3.2) on average, and (outside of Puerto Rico, which contains the seven lowest 
urbanized areas) the sprawling, disconnected Lexington Park, Maryland urbanized area 
has the fewest (2.2). These two urban areas fit the trend seen in the spatial distribution 
across the U.S. in Figure 7.2: urbanized areas in the great plains and Midwest have 
particularly high numbers of streets per node on average, indicating more grid-like, 
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connected networks. Cities in the southern and western U.S. tend to have fewer streets 
per node, reflecting more dead-ends and a disconnected network. This finding is 
discussed in more detail in the upcoming section. 

 
Figure 7.3. Distribution of node types in 9 urbanized areas, with number of streets emanating from the 
node on the x-axis and proportion of nodes of this type on the y-axis (cf. Figure 6.2). 

In the typical urbanized area, 18% of nodes are 4-way intersections, 59% are 3-way 
intersections, and 21% are dead-ends. However, this distribution varies somewhat 
between urbanized areas. Examining a small sample of 9 urbanized areas, chosen to 
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maximize variance, reveals this in clearer detail. In Figure 7.3, urban Atlanta and 
Chattanooga have high proportions of dead-ends, each over 30% of all nodes, and few 4-
way intersections, indicating a disconnected street pattern. The urban areas of Phoenix, 
Boston, Detroit, and Chattanooga have particularly high proportions of 3-way 
intersections, each over 60%, indicating a prevalence of T-intersections. Conversely, 
Chicago, New Orleans, Duluth, and Lubbock have high proportions of 4-way 
intersections, indicating more grid-like connected networks. But what is perhaps most 
notable about Figure 7.3 is that these nine urbanized areas, despite being chosen to 
maximize variance, are overwhelmingly similar to each other. At the metropolitan scale, 
every large American urban agglomeration is characterized by a preponderance of 3-way 
intersections. 

The relationship between fine-grained networks and connectedness/grid-ness is, 
however, not clear-cut. Intersection density has only a weak, positive linear relationship 
with the proportion of 4-way intersections in the urbanized area (r2=0.17), as seen in 
Figure 7.4. But the relationship between network circuity and grid-ness is somewhat 
clearer. Average circuity has a negative linear relationship with the proportion of 4-way 
intersections in the urbanized area (r2=0.43). 

 

 
Figure 7.4. Scatterplots of intersection density versus 4-way intersection proportion (left) and average 
circuity versus 4-way intersection proportion (right), with simple regression lines to indicate the trend. 
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Urban area  
core city 

Land  
area  
km2 

Avg 
circ- 
uity 

Avg 
cluster 

coeff. 

Dead- 
end 

ratio 

3- 
way 

ratio 

4- 
way 

ratio 

Intersect 
density 
(/km2) 

Street 
density 

(km/km2) 

Avg 
street 

len (m) 

Avg 
str/ 

node 
New York 8937 1.06 0.04 0.18 0.62 0.20 34.44 8.84 148 2.86 
Atlanta 6850 1.10 0.04 0.32 0.58 0.09 18.39 6.16 186 2.45 
Chicago 6325 1.07 0.04 0.17 0.57 0.25 27.05 7.77 163 2.92 
Philadelphia 5132 1.08 0.05 0.17 0.63 0.20 26.65 7.30 159 2.87 
Boston 4852 1.09 0.05 0.20 0.68 0.11 24.23 6.44 154 2.71 
Dallas 4612 1.07 0.05 0.15 0.61 0.23 34.16 9.16 156 2.95 
Los Angeles 4497 1.06 0.03 0.21 0.56 0.22 39.45 10.59 151 2.82 
Houston 4303 1.08 0.04 0.20 0.57 0.22 33.49 8.62 145 2.83 
Detroit 3461 1.07 0.04 0.15 0.63 0.22 31.10 8.56 159 2.93 
Washington 3424 1.09 0.04 0.26 0.56 0.17 31.22 8.26 146 2.66 
Miami 3204 1.10 0.05 0.17 0.59 0.23 40.54 10.61 149 2.89 
Phoenix 2968 1.09 0.05 0.20 0.62 0.17 35.31 9.10 150 2.77 
Minneapolis 2647 1.08 0.05 0.19 0.57 0.23 29.54 8.68 167 2.84 
Seattle 2617 1.07 0.03 0.30 0.54 0.16 31.57 8.20 143 2.57 
Tampa 2479 1.10 0.05 0.20 0.58 0.21 31.35 8.46 153 2.83 
St. Louis 2392 1.10 0.04 0.22 0.62 0.15 29.68 8.16 154 2.73 
Pittsburgh 2345 1.09 0.04 0.23 0.60 0.16 23.57 6.71 165 2.72 
San Juan 2245 1.11 0.02 0.36 0.56 0.08 26.57 6.43 131 2.36 
Cincinnati 2040 1.07 0.03 0.31 0.54 0.14 17.96 6.10 186 2.51 
Cleveland 2004 1.07 0.04 0.19 0.66 0.14 19.13 6.51 198 2.76 
Charlotte 1920 1.08 0.04 0.30 0.57 0.11 21.00 6.43 170 2.51 
San Diego 1897 1.08 0.03 0.28 0.54 0.17 28.89 8.32 159 2.62 
Baltimore 1857 1.09 0.04 0.23 0.59 0.17 27.72 7.56 152 2.72 
Indianapolis 1828 1.08 0.05 0.23 0.59 0.17 27.62 7.63 157 2.70 
Kansas City 1756 1.06 0.04 0.21 0.58 0.20 32.09 8.57 152 2.79 
Denver 1729 1.07 0.05 0.20 0.57 0.22 40.60 9.84 138 2.84 
Orlando 1548 1.11 0.06 0.20 0.61 0.18 26.30 7.44 163 2.79 
San Antonio 1547 1.07 0.05 0.17 0.60 0.21 28.33 7.91 162 2.87 
Nashville 1460 1.08 0.03 0.27 0.59 0.14 19.08 6.10 181 2.60 
Milwaukee 1413 1.06 0.06 0.14 0.55 0.30 28.27 7.81 157 3.03 
Table 7.2. Selected street network stats for the 30 largest urbanized areas (by land area). For definitions and 
interpretation of these measures, see Table 5.1 in chapter 5 and section 4.4 in chapter 4. 

Due to the substantial variation in urbanized area size, from 25 to 9,000 km2, the 
preceding analysis covers a wide swath of metropolitan place types. To better compare 
apples-to-apples, we can focus on the 30 largest urban areas cross-sectionally to examine 
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how their metric and topological measures compare (Table 7.2). This provides more 
consistent spatial scales and extents, while offering a window into the similarities and 
differences in the built forms of America’s largest urban agglomerations.  

Among these urban areas, Milwaukee has the least circuitous network (6% more 
circuitous than straight-line edges would be), and Orlando has the most (12%). San Juan 
and Atlanta have the fewest streets per node on average (2.36 and 2.45, respectively), 
while Milwaukee has the most (3.03). Cincinnati has both the lowest intersection density 
(18/km2) and street density (6.1 km/km2) while Denver has the highest intersection 
density (40.6/km2) and Miami and Los Angeles have the highest street density (10.6 
km/km2, apiece). In other words, Cincinnati has a particularly coarse-grained network 
with few connections and paths. This can also be seen in the average street segment 
length, a proxy for block size: Cincinnati has the second highest (186 m), bested only by 
Cleveland (198 m). In contrast, the two lowest are Denver’s 138-meter average and San 
Juan’s 131-meter average.  

These metropolitan-scale analyses consider trends in the built form at the scale of broad 
self-organized human systems and urbanized regions. However, they aggregate multiple 
heterogeneous neighborhoods and municipalities – the scales of human life, urban design 
projects, and planning jurisdiction – into single units of analysis. To disaggregate and 
analyze finer characteristics, the following sections examine municipal- and 
neighborhood-scale street networks across the United States. 

7.5. Analysis of Municipal-Scale Street Networks 

There is similarly great variation in street network characteristics across the entire data 
set of 19,655 cities and towns (Table 7.3). Again, this data set comprises the street 
networks of every incorporated city and town in the United States. Following the recent 
work by Barthélemy and Flammini (2008) and Strano et al. (2013), we examine the 
relationship between the total street length L and the number of nodes n. Barthélemy and 
Flammini proposed a model of cities in which L and n scale as n1/2, and Strano et al. 
confirmed this finding empirically with a small sample of ten European cities’ street 
networks. However, their small sample size may limit the generalizability and 
interpretability of their finding. To investigate this empirically, we examine the 
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relationship between the total street length L and the number of nodes n for 19,655 U.S. 
cities and towns and find a strong linear relationship (r2=0.98), contradicting Strano et al., 
as depicted in Figure 7.5. A nearly identical linear relationship is found at the 
metropolitan and neighborhood scales. 

 

mean σ min median max 
Area (km2) 16.703 107.499 0.039 3.918 7434.258 
Avg of the avg neighborhood degree 2.940 0.297 0.400 2.953 3.735 
Avg of the avg weighted n’hood degree 0.033 0.141 <0.001 0.029 9.357 
Avg circuity 1.067 0.159 1.000 1.055 20.452 
Avg clustering coefficient 0.048 0.041 <0.001 0.040 1.000 
Avg weighted clustering coefficient 0.010 0.018 <0.001 0.005 0.524 
Intersection count 324 1266 0 83 62996 
Avg degree centrality 0.093 0.136 <0.001 0.052 2.667 
Edge density (km/km2) 12.654 6.705 0.006 11.814 58.603 
Avg edge length (m) 161.184 80.769 25.822 144.447 3036.957 
Total edge length (km) 159.067 578.521 0.052 40.986 24728.326 
Proportion of dead-ends 0.192 0.093 <0.001 0.184 1.000 
Proportion of 3-way intersections 0.572 0.110 <0.001 0.579 1.000 
Proportion of 4-way intersections 0.237 0.129 <0.001 0.217 1.000 
Intersection density (per km2) 29.363 21.607 <0.001 24.719 259.647 
Average node degree 5.251 0.668 0.800 5.268 7.166 
m  1046 3924 2 275 176161 
n  401 1516 2 103 71993 
Node density (per km2) 35.449 24.409 0.047 30.718 296.740 
Max PageRank value 0.034 0.046 <0.001 0.021 0.870 
Min PageRank value 0.005 0.018 <0.001 0.002 0.500 
Self-loop proportion 0.005 0.015 <0.001 <0.001 1.000 
Street density (km/km2) 6.528 3.435 0.003 6.109 29.302 
Average street segment length (m) 162.41 81.04 25.82 145.48 3036.96 
Total street length (km) 86.096 331.048 0.026 21.005 15348.01 
Street segment count 558 2208 1 140 107393 
Average streets per node 2.851 0.282 1.000 2.852 4.000 
Table 7.3. Selected summary stats for every incorporated city and town in the United States. For definitions 
and interpretation of these measures, see Table 5.1 in chapter 5 and section 4.4 in chapter 4. 
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Figure 7.5. The linear relationship between total street length and number of nodes for 19,655 U.S. cities 
and towns. 

 
Figure 7.6. The town of Orleans, Nebraska exhibits a compact grid-like street network archetypal of towns 
across the Great Plains. Municipal extents are shown in gray. 
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Moreover, previous findings (e.g., Masucci et al. 2009) suggest the distribution of street 
segment lengths in an urban street network follows a power-law distribution. However, 
we find that these networks typically follow a lognormal distribution instead (see 
theoretical discussion in chapter 3). This finding makes sense: most street networks are 
not truly scale-free. While there are very few very long street segments (say, 1 km), more 
medium-length segments (say, 250 m), and many short segments (say, 80 m), there are 
very few very short segments (say, 10 m). This theoretical illustration suggests the 
lognormal distribution this analysis typically finds across municipal U.S. street networks. 
One exception, of course, lies in consistently sized, orthogonal grids filling a city’s 
incorporated spatial extents. Such distributions are extremely peaked around a single 
value: the linear length of a grid block. 

This analysis finds that such cities are not uncommon, particularly between the 
Mississippi River and the Rocky Mountains. These Great Plains states are characterized 
by a unique street network form that is both orthogonal and reasonably dense. The 
former is partly the result of topography (flat, plains terrain that allows idealized grids) 
and design history (platting and development during the late nineteenth century) that 
favor orthogonal grids, as discussed earlier. The latter seems to result from the fact that 
most towns across the Great Plains exhibit minimal suburban sprawl. Thus, the 
municipal boundaries snugly embrace the grid-like street network (e.g., Figure 7.6), 
without extending to accommodate the vast peripheral belt of twentieth century sprawl, 
circuity, and loops and lollipops that characterizes many cities in California that were 
settled in the same era but later subjected to substantial sprawl.  

For example, if we measure connectedness in terms of average number of streets per node 
at the city-scale and then aggregate these cities by state (Table 7.4), we find that Nebraska, 
Kansas, South Dakota, Montana, North Dakota, Oklahoma, and Iowa have, in order, the 
highest medians (Figure 7.7). This indicates the most grid-like networks. If we measure 
density and connectedness in terms of intersection density at the city-scale and then 
aggregate these cities by state, we find that Rhode Island, Nebraska, New Jersey, Kansas, 
and Montana have, in order, the highest medians. We again see three Great Plains states 
near the top, alongside densely populated East Coast states. Nebraska also has the smallest 
block sizes (measured via the proxy of average street segment length) while the largest are 
concentrated in the deep South, upper New England, and Utah (Figure 7.8). 
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Figure 7.7. Contiguous U.S. states by median average number of streets per node in city and town street 
networks, colored from lowest/least-connected (pale yellow) to highest/most-connected (dark red). 

 
Figure 7.8. Contiguous U.S. states by median average street segment length in city and town street 
networks, colored from longest/coarsest-grain (pale yellow) to shortest/finest-grain (dark red). 
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Municipal boundaries vary greatly in their extents around the built-up area. For example, 
while Rhode Island averages 56 intersections/km2 in its cities and towns, Alaska averages 
only 1.3. This is an artifact of Alaska’s municipal boundaries often extending thousands 
of square kilometers beyond the actual built-up area. In fact, Alaska has four cities 
(Anchorage, Juneau, Sitka, and Wrangell) with such large municipal extents that their 
land areas exceed that of the state of Rhode Island. These state-level aggregations of 
municipal-scale street network characteristics show clear variation across the country that 
reflect topography, economies, culture, planning paradigms, and settlement eras. But they 
also aggregate and thus obfuscate the variation within each state and within each city. To 
explore these smaller-scale differences, the following section examines street networks at 
the neighborhood scale. 

State 

Intersect 
density 

(per km2) 
Avg streets 

per node 
Avg 

circuity 

Avg street 
segment 

length (m) 
AK 1.28 2.43 1.10 223.50 
AL 9.70 2.64 1.07 190.81 
AR 15.75 2.78 1.06 166.32 
AZ 12.45 2.77 1.08 171.80 
CA 32.58 2.74 1.07 143.79 
CO 29.26 2.88 1.06 136.68 
CT 28.05 2.70 1.07 165.87 
DC 58.91 3.26 1.04 122.23 
DE 25.30 2.80 1.06 127.80 
FL 26.26 2.87 1.07 150.75 
GA 15.25 2.78 1.07 177.50 
HI 8.00 2.42 1.07 177.93 
IA 24.08 3.02 1.04 129.36 
ID 33.85 2.91 1.06 132.08 
IL 29.02 2.93 1.05 137.77 
IN 35.25 2.93 1.05 125.72 
KS 43.94 3.14 1.04 124.39 
KY 25.12 2.68 1.07 151.28 
LA 17.14 2.79 1.06 162.62 
MA 32.33 2.76 1.07 135.98 
MD 28.67 2.79 1.07 133.69 
ME 7.69 2.67 1.07 198.93 
MI 20.93 2.90 1.05 153.50 
MN 18.96 2.87 1.06 152.92 
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MO 29.87 2.89 1.06 138.29 
MS 14.76 2.75 1.06 174.86 
MT 38.94 3.11 1.04 126.89 
NC 19.28 2.65 1.06 166.69 
ND 34.28 3.07 1.04 123.93 
NE 45.89 3.16 1.04 119.79 
NH 12.22 2.69 1.10 175.88 
NJ 44.98 2.88 1.04 130.79 
NM 18.50 2.93 1.05 152.02 
NV 13.86 2.77 1.07 147.35 
NY 21.89 2.75 1.06 156.88 
OH 25.23 2.80 1.05 142.08 
OK 28.22 3.03 1.05 139.50 
OR 35.08 2.69 1.06 121.18 
PA 35.69 2.87 1.05 128.34 
RI 56.23 2.86 1.05 110.35 
SC 18.76 2.81 1.06 169.21 
SD 32.01 3.12 1.04 130.75 
TN 13.62 2.71 1.07 192.83 
TX 23.85 2.92 1.05 160.44 
UT 12.58 2.71 1.06 191.04 
VA 25.18 2.63 1.08 145.65 
VT 18.91 2.55 1.08 145.18 
WA 28.71 2.75 1.06 134.02 
WI 17.87 2.81 1.06 156.19 
WV 28.45 2.67 1.08 136.57 
WY 23.48 2.92 1.06 143.63 

Table 7.4. Median values, aggregated by state plus DC, of selected measures of the municipal-scale street 
networks for every city and town in the U.S. For definitions and interpretation of these measures, see Table 
5.1 in chapter 5 and section 4.4 in chapter 4. 

7.6. Analysis of Neighborhood-Scale Street Networks 

Thus far, we have examined every urban street network in the United States at the 
metropolitan and municipal scales. This analysis has focused on the complexity of the 
network in terms of density, resilience, and connectedness. While the metropolitan scale 
captures the emergent character of the wider region’s complex system, and the municipal 
scale captures planning decisions made by a single city government, the neighborhood 
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scale best represents the scale of individual urban design interventions into the urban 
form. Further, this scale more commonly reflects individual designs, eras, and paradigms 
in street network development than the “many hands, many eras” evolution of form at 
larger scales. 

mean σ min median max 
Area (km2) 5.322 15.463 0.008 1.738 323.306 
Avg of the avg neighborhood degree 2.598 0.436 <0.001 2.670 3.632 
Avg of the avg weighted n’hood degree 0.031 0.041 <0.001 0.029 2.991 
Avg circuity 1.080 0.411 1.000 1.044 24.29 
Avg clustering coefficient 0.044 0.055 <0.001 0.034 1.000 
Avg weighted clustering coefficient 0.010 0.027 <0.001 0.005 0.799 
Intersection count 173 379 0 76 8371 
Avg degree centrality 0.130 0.270 0.001 0.054 4.000 
Edge density (km/km2) 17.569 7.095 0.025 18.152 59.939 
Avg edge length (m) 142.279 59.182 8.447 133.848 2231.331 
Total edge length (km) 71.369 166.566 0.017 29.880 3563.409 
Proportion of dead-ends 0.170 0.131 <0.001 0.145 1.000 
Proportion of 3-way intersections 0.559 0.146 <0.001 0.574 1.000 
Proportion of 4-way intersections 0.275 0.176 <0.001 0.234 1.000 
Intersection density (per km2) 49.497 28.330 <0.001 46.430 444.355 
Average node degree 4.675 0.836 0.545 4.736 7.283 
m  5201 1185 1 217 27289 
n  208 459 2 90 9327 
Node density (per km2) 58.677 31.802 0.063 55.626 499.900 
Max PageRank value 0.055 0.086 <0.001 0.026 0.889 
Min PageRank value 0.010 0.041 <0.001 0.002 0.500 
Self-loop proportion 0.007 0.034 <0.001 <0.001 1.000 
Street density (km/km2) 9.744 4.085 0.013 9.882 33.737 
Average street segment length (m) 143.66 60.02 7.38 134.88 2231.33 
Total street length (km) 40.049 93.987 0.009 16.248 1960.643 
Street segment count 288 656 1 119 14754 
Average streets per node 2.925 0.408 1.000 2.944 4.026 

Table 7.5. Selected summary stats for all the neighborhood-scale street networks. For definitions and 
interpretation of these measures, see Table 5.1 in chapter 5 and section 4.4 in chapter 4. 

Table 7.5 presents summary statistics for this data set. Compared to the summary 
statistics presented at the metropolitan scale (Table 7.1) and the municipal scale (Table 
7.3), here we see much greater variance. This is expected, given the smaller network sizes 



  BOEING   

139 

at the neighborhood scale. A few neighborhoods have no intersections within their 
Zillow-defined boundaries, resulting in a minimum intersection density of 0 across the 
data set. Meanwhile, the small neighborhood of Cottages North in Davis, California has 
the highest intersection density in the country, 444/km2, largely as an artifact of its small 
area as the denominator. 

Nationwide, the typical neighborhood averages 2.9 streets per node, reflecting the 
prevalence of 3-way intersections in the U.S., discussed earlier. The median proportions 
of each node type are 14.5% for dead-ends, 57.4% for 3-way intersections, and 23.4% for 
4-way intersections. The typical neighborhood averages 135-meter street segment lengths 
and 46.4 intersections per km2. At the neighborhood scale (sample size of 6,857 in this 
analysis) we again find the same strong linear relationship between total street length and 
the number of nodes in a network (r2=0.98), as seen in Figure 7.9, contradicting the small-
sample findings of Strano et al. (2013). 

 

 
Figure 7.9. Relationship between total street length and number of nodes in neighborhood-scale street 
networks. 
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Due to the extreme values seen – resulting from the large variance in neighborhood size – 
we can filter the data set to examine only large neighborhoods (i.e., neighborhoods with 
area greater than the median value across the data set). In this filtered set, the five 
neighborhoods with the highest intersection density are all in central Philadelphia. 
Central neighborhoods are common at the top of this list, including Point Breeze, 
Philadelphia; Central Boston; Central City, New Orleans; Downtown Tampa; and 
Downtown Portland. The three neighborhoods with the lowest intersection density are 
on the outskirts of Anchorage, Alaska. In this filtered set, the neighborhoods with the 
greatest average number of streets per node tend to be older neighborhoods with 
orthogonal grids, such as Virginia Park, Tampa; Outer Sunset, San Francisco; and New 
Orleans’ French Quarter. The neighborhoods with the lowest tend to be sprawling and 
often hilly suburbs far from the urban core, such as Scholl Canyon in Glendale, California 
or Sonoma Ranch in San Antonio, Texas.  

 

Figure 7.10. Square-mile comparisons of central cities and their suburbs. A: top, central Philadelphia; 
bottom, suburban King of Prussia. B: top, central Portland; bottom, suburban Beaverton. C: top, central 
San Francisco; bottom, suburban Concord. 
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For comparison, Figure 7.10 compares one square mile of the centers of Philadelphia, 
Portland, and San Francisco with one square mile of each of their suburbs. The 
connectedness and density of the central cities is clear, as is the disconnectivity of their 
suburbs. In fact, the suburbs have more in common with one another – despite being 
hundreds or thousands of miles apart – than they do with their central city neighbors, 
suggesting that land use and an era’s prevailing design paradigm is paramount to 
geographical localism and regional context. The top row of Figure 7.10 represents an era 
of urban planning and development that preceded the automobile, while the bottom row 
reflects the exclusionary zoning and mid-late twentieth century era of automobility in 
residential suburb design – namely the “loops and lollipops” and the “lollipops on a stick” 
design patterns identified by Southworth and Ben-Joseph (1997).  

7.7. Neighborhood-Scale Analysis of San Francisco 

For clearer cross-sectional analysis, we single out the neighborhoods of San Francisco, 
California. This provides a more easily presented set of study sites as well as a more 
consistent geography to look across planning eras and design paradigms. Figure 7.11 
shows these neighborhoods and underlying street networks. The Seacliff neighborhood, 
at the upper-left, features large parks, large lots, and large, expensive homes. It is one of 
San Francisco’s master-planned residence parks developed in the aftermath of the 1906 
earthquake. Inspired by the Garden Cities movement, Seacliff was designed to provide 
wealthy residents – through large lots, lush landscaping, and racially-restrictive covenants 
– a sense of suburban living while still being within the core city and in easy proximity to 
its downtown (Brandi 2014). Toward the upper-right, the central neighborhoods of San 
Francisco feature some of its oldest and densest development. Despite their hilly 
topography, planners draped an orthogonal grid street network across these 
neighborhoods, irrespective of terrain (Cole 2014).  

In contrast, modern Diamond Heights was re-platted in the 1950s in harmony with its 
topography – under the auspices of the California Redevelopment Act – and has a street 
network that curves along its hillsides (Board of Supervisors 1955; see also Hu 2013; 
Siodla 2015). West of these hills, in the early twentieth century, urban planners opened 
the Twin Peaks Tunnel, the Sunset Tunnel, and the N-Judah line to expose large swaths of 
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western San Francisco to development (Nolte 2009). Some of these new neighborhoods, 
such as the working-class Sunset District, were designed with a simple orthogonal grid 
and consistent, small lot sizes. Others, such as the wealthy St. Francis Wood (at the west 
end of West Twin Peaks) were designed as wealthy Garden Cities-inspired residence 
parks, in the mold of Seacliff. These histories, economic drivers, planning decisions, and 
design paradigms can still be seen inscribed in the urban form and its street network in 
Figure 7.11. 

 

 

 

Figure 7.11. The neighborhoods and street network of San Francisco, California. Note that the Presidio and 
Golden Gate Park are excluded from any neighborhood’s boundary, and thus from the quantitative analysis 
in this section. 
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Area 
(km2) 

Avg 
circuity 

Avg 
clustering 

coefficient 

Intersect 
density 

(per km2) 

Street 
density 

(km/km2) 

Avg 
street 

length (m) 

Streets 
per 

node 
Bayview 12.86 1.05 0.05 50.63 10.6 118.37 3.08 
Bernal Heights 2.99 1.03 0.05 126.02 18.7 90.55 2.98 
Castro-Upper Market 2.28 1.02 0.05 101.50 17.5 102.93 3.31 
Chinatown 0.36 1.00 0.04 115.23 15.7 88.84 3.67 
Crocker Amazon 1.20 1.02 0.05 90.27 13.4 97.93 3.05 
Diamond Heights 0.89 1.19 0.16 48.11 8.5 130.97 3.08 
Downtown 1.67 1.00 0.06 93.39 16.3 102.32 3.68 
Excelsior 4.38 1.01 0.03 73.05 15.2 118.45 3.38 
Financial District 1.81 1.01 0.07 66.80 11.9 104.73 3.64 
Glen Park 0.96 1.03 0.01 109.85 16.7 102.27 3.15 
Haight-Ashbury 2.00 1.02 0.04 75.95 14.3 116.50 3.54 
Inner Richmond 3.57 1.01 0.02 72.76 14.7 114.51 3.54 
Inner Sunset 3.49 1.07 0.06 62.16 13.9 133.73 3.33 
Lakeshore 9.39 1.07 0.09 51.85 8.9 107.30 3.22 
Marina 2.80 1.01 0.08 99.97 16.2 92.85 3.53 
Mission 4.38 1.01 0.03 90.87 17.8 112.82 3.55 
Nob Hill 0.95 1.00 0.01 81.71 17.2 119.93 3.73 
Noe Valley 2.31 1.01 0.03 79.40 15.8 113.19 3.46 
North Beach 1.76 1.04 0.05 61.28 12.1 112.24 3.21 
Ocean View 3.42 1.03 0.04 76.65 15.6 121.03 3.22 
Outer Mission 3.52 1.02 0.05 102.93 17.1 100.47 3.16 
Outer Richmond 3.65 1.00 0.02 63.57 14.2 123.86 3.74 
Outer Sunset 6.36 1.00 0.02 52.80 13.7 142.44 3.89 
Pacific Heights 1.79 1.00 0.01 74.98 15.1 114.10 3.71 
Parkside 4.03 1.00 0.02 56.86 13.3 132.24 3.66 
Potrero Hill 3.73 1.02 0.03 64.17 14.5 128.20 3.25 
Presidio Heights 1.26 1.02 0.07 78.64 14.6 114.17 3.38 
Russian Hill 1.28 1.01 0.06 96.79 15.3 90.00 3.21 
Seacliff 1.87 1.07 0.09 22.98 3.8 111.94 3.06 
South of Market 5.68 1.03 0.05 67.42 14.9 133.00 3.20 
Twin Peaks 1.76 1.17 0.10 61.52 13.3 143.77 2.80 
Visitacion Valley 3.53 1.04 0.04 62.00 11.5 106.87 3.04 
West of Twin Peaks 4.87 1.06 0.08 99.21 17.0 105.20 3.18 
Western Addition 3.90 1.01 0.04 102.75 17.6 97.74 3.59 
Table 7.6. Summary statistics for all San Francisco neighborhoods. For definitions and interpretation of 
these measures, see Table 5.1 in chapter 5 and section 4.4 in chapter 4. 
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Figure 7.12. San Francisco neighborhoods colored by average number of streets per node (an indicator of 
connectedness), colored from lowest/least-connected (light yellow) to highest/most-connected (dark red). 
Compare with the street network detail in Figure 7.11. 

We can use OSMnx to further examine the characteristics of these street networks. 
Looking at the summary stats for all San Francisco neighborhoods (Table 7.6), we see the 
orthogonal gridiron street networks of neighborhoods like Chinatown and Outer Sunset 
have average circuities of 1.0, indicating their street segments are no more circuitous than 
straight-line paths. Even the hilly street network of Nob Hill has an average circuity of 
1.0, as its grid was laid out irrespective of the underlying terrain. However, the hilly 
neighborhoods of Twin Peaks and Diamond Heights have street networks that conform 
to the terrain, reflected in their circuity being 17% and 19%, respectively, greater than 
straight-line paths.  



  BOEING   

145 

Diamond Heights and Seacliff have the lowest intersection densities (per km2) and the 
lowest street densities (linear km per km2), in part due to their circuitous, disconnected 
street networks, but also due to the fact that these small neighborhoods include large 
parks (Glen Canyon Park and Lands End, respectively) within their boundaries. 
Working-class Bernal Heights – with a street network designed by U.S. Army engineers in 
the 1860s (Mullins 2017) – has a dense mesh of streets and the highest intersection and 
street densities. Chinatown has the second highest intersection density and the Mission 
District has the second highest street density. This fine grain can be seen in the average 
street segment length: Chinatown, Bernal Heights, and Russian Hill have the shortest 
average street segment length, each approximately 90 meters. Twin Peaks has the longest 
(144 meters) due to its winding hilltop streets, followed by the Inner and Outer Sunset 
Districts due to their coarse-grain long blocks.  

We can also examine these networks’ complexity in terms of intersection types and 
connectedness. Figure 7.12 presents a map of San Francisco’s neighborhoods by average 
number of streets per node (an indicator of connectedness), colored from lowest/least-
connected to highest/most-connected (cf. Figure 7.11). Less connected neighborhoods 
such as Seacliff (3.1 streets per node, top left) and Twin Peaks (2.8 streets per node, 
center) immediately stand out. Similarly, the most connected neighborhoods by this 
measure, Outer Richmond (3.7 streets per node) and Outer Sunset (3.9 streets per node) 
lie directly south of Seacliff. These two neighborhoods are characterized by their typical 
4-way intersections, as we saw in Figure 7.11. 

A node’s betweenness centrality represents the number of shortest paths in the network 
that pass through the node. The maximum betweenness centrality of any node in the 
network serves as a proxy for resilience: if a large number of shortest paths rely on a single 
node, the network is more prone to failure or inefficiency given a single point of failure. 
The Outer Sunset District has the lowest maximum betweenness centrality of any 
neighborhood – only 9.6% of all shortest paths pass through its most important node. By 
contrast, in Chinatown, 36% of shortest paths pass through its most important node, and 
in Twin Peaks it is 37%. 

In Chinatown, this finding is the result of the small neighborhood comprising only a few 
streets and the fact that these streets are one-way, forcing paths through few routing 
options. In Twin Peaks, this is the result of the terrain and the disconnected network 
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forcing paths through a small set of chokepoints that connect various sections of the 
network. In Ocean View, the neighborhood center has low betweenness centrality due to 
its disconnectedness: few shortest paths run through the center (Figure 7.13). However, in 
the Mission District, the neighborhood center has high betweenness centrality due to its 
orthogonal grid-like connectedness: many shortest paths run through the center. Note 
that as discussed in chapter 6, betweenness-centrality analyses for neighborhood-scale 
network subsets come with an important caveat: they only consider flows within the 
subset and thus demonstrate peripheral edge effects and artificially imposed centers (Gil 
2016). Despite this caveat, these analyses do show the structure of the network within the 
encapsulated whole of a single neighborhood. Further, their limitations are ameliorated 
by the analyses presented earlier at broader scales, as well as by the average node 
connectivity analysis. 

The average node connectivity is another proxy for network resilience. It represents the 
mean number of internally node-disjoint paths between each pair of nodes in the 
network. In other words, it indicates the expected number of nodes that must be removed 
to disconnect any randomly selected pair of non-adjacent nodes. Thus, a network with a 
higher average node connectivity is more resilient because more nodes must fail, on 
average, to disconnect a randomly selected pair of nodes. In San Francisco, the networks 
for Diamond Heights and Seacliff are not fully connected. Among neighborhoods with 
connected networks, Twin Peaks has the lowest average node connectivity: on average, 
only 1.05 nodes must be removed to disconnect a randomly selected pair of nodes (Table 
7.7).  

Conversely, Outer Richmond and Outer Sunset have the highest average node 
connectivity: on average, 2.8 and 3.2 nodes, respectively, must be removed to disconnect a 
randomly selected pair of nodes in these neighborhoods. This finding conforms to a 
qualitative assessment of the networks. As mentioned earlier, Twin Peaks has choke 
points – due to its terrain and disconnectivity – that separate sections of the network rely 
on to interface with each other. Outer Richmond and Outer Sunset, in contrast, are 
characterized by orthogonal grids with high connectedness and numerous fallback 
options should any single node fail. 

Of note though, certain central orthogonal grid-like networks with many 4-way 
intersections such as Downtown, Chinatown, and the Financial District have surprisingly 
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low average node connectivity: only 1.5, 1.3, and 1.6 nodes, respectively, must be removed 
to disconnect a randomly selected pair of nodes in these neighborhoods. This reflects the 
fact that these neighborhoods comprise primarily one-way streets. Although they have 
dense, highly connected networks, they are relatively un-resilient as they can be easily 
disconnected given that traffic cannot flow bi-directionally. These three neighborhoods 
also experience the greatest increase in average node connectivity if all the edges were 
converted to undirected: Chinatown’s increases 87%, Downtown’s increases 80%, and the 
Financial District’s increases 75%. By contrast, the street network of Outer Sunset sees 
only a 6% increase due to it already comprising primarily bi-directional streets. This 
indicates that there are substantial possible resilience benefits in targeted conversion of 
one-way streets to bi-directional in Downtown, the Financial District, and Chinatown. 

 

 
Figure 7.13. Relative node betweenness centralities for Ocean View (left) and the Mission District (right), 
colored from lowest (dark violet) to highest (light yellow) for flows originating from and traveling to nodes 
within the subset. 
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Neighborhood 
Max betweenness 

centrality 
Avg node 

connectivity 
Avg undirected 

node connectivity 
Bayview 0.161 1.740 2.076 
Bernal Heights 0.199 1.609 1.942 
Castro-Upper Market 0.241 1.978 2.447 
Chinatown 0.362 1.349 2.526 
Crocker Amazon 0.301 1.118 1.421 
Diamond Heights 0.113 0.507 0.639 
Downtown 0.207 1.533 2.755 
Excelsior 0.206 2.315 2.482 
Financial District 0.216 1.558 2.730 
Glen Park 0.209 1.685 2.000 
Haight-Ashbury 0.286 2.201 2.543 
Inner Richmond 0.174 2.400 2.708 
Inner Sunset 0.271 1.890 2.153 
Lakeshore 0.194 1.461 2.329 
Marina 0.186 2.231 2.719 
Mission 0.146 2.158 2.775 
Nob Hill 0.165 2.014 2.716 
Noe Valley 0.218 2.187 2.392 
North Beach 0.317 1.534 1.966 
Ocean View 0.285 1.721 2.000 
Outer Mission 0.279 1.625 1.941 
Outer Richmond 0.204 2.771 3.073 
Outer Sunset 0.096 3.167 3.360 
Pacific Heights 0.150 2.502 2.895 
Parkside 0.193 2.527 2.800 
Potrero Hill 0.261 1.926 2.334 
Presidio Heights 0.292 1.785 2.175 
Russian Hill 0.254 1.838 1.982 
Seacliff 0.150 0.949 0.987 
South of Market 0.310 1.383 2.090 
Twin Peaks 0.371 1.049 1.267 
Visitacion Valley 0.262 1.498 1.830 
West of Twin Peaks 0.232 1.915 2.311 
Western Addition 0.213 1.996 2.848 
Table 7.7. San Francisco neighborhoods, by indicators of resilience: maximum node betweenness centrality 
and average node connectivity (directed and undirected). For definitions and interpretation of these 
measures, see Table 5.1 in chapter 5 and section 4.4 in chapter 4. 
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7.8. Discussion 

The pattern, texture, and grain of a street network is influenced by its development era, 
design paradigm, underlying topography, culture, and local economic conditions. The 
orthogonal grid is often traced back to Hippodamus of Miletus – whom Aristotle 
identified as the father of urban planning for his work in designing Piraeus, a port city 
outside of ancient Athens – but archaeologists have found its vestiges in earlier 
settlements around the world (Stanislawski 1946; Burns 1976; Cahill 2000; Paden 2001). 
In 1573, King Phillip II of Spain issued the Law of the Indies, systematizing how his 
colonists were to site new settlements and design street networks as rectilinear grids 
around a central plaza (Rodriguez 2005). In the United States, many east coast American 
cities planned their expansions around gridded street networks, including Philadelphia in 
1682, Savannah in 1733, Washington in 1791, and New York in 1811 (Jackson 1985). 
During the Age of Enlightenment, Thomas Jefferson and associates drafted the Northwest 
Ordinances of 1784, 1785, and 1787 to divide the frontier into a regular grid of townships 
and parcels that guided urban development over the next 80 years (Jacobson 2002). The 
Jeffersonian ideal culminated in the Homestead Act of 1862, which divided the Midwest 
and Great Plains into square miles subdivided into 160-acre quarters for easy settlement, 
parceling, standardization, transportation, and a sense of urbane orderliness imposed on 
the frontier (Jackson 1985). The resulting street patterns guided by these doctrines, 
planning instruments, and land use policies can be examined through network analysis. 

As defined in chapter 3, a complex spatial network is a network, embedded in space, that 
has a nontrivial topology. In other words, its structure and organization is neither fully 
regular nor fully random. Returning to the three categories of complexity discussed in 
chapter 4 (section 4.4.1), category I maximizes disorder and entropy, II maximizes a 
balance between structure and diversity, and III maximizes order. From this discussion, 
we developed a typology of measures for complexity in the context of urban design 
(section 4.5). Of the network measures, this empirical study has presented preliminary 
findings that particularly emphasize street network complexity in terms of density, 
resilience, and connectedness. Older, denser, and more self-organized networks, such as 
those at the heart of Boston or lower Manhattan are complex in terms of category I 
complexity. Sprawling, disconnected suburban neighborhoods rank low on all measures 
of complexity, with the exception that their high circuity can lend itself to disorder (i.e., 
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category I). The orthogonal grid we see in the downtowns of Portland and San Francisco 
have high density (i.e., intersection and street densities), connectedness (i.e., average 
number of streets per node), and order (based on circuity and statistical dispersion of 
node types), but low resilience in the presence of one-way streets, measured by maximum 
betweenness centralities and average node connectivity increases when switching from 
one-way to bi-directional edges.  

These latter neighborhoods are complex in terms of category II and category III 
complexity. Their connectedness, density, and orderliness balances at the midpoint 
embraced by category II. However, their extreme regularity of block sizes, streets per 
node, and orthogonality best represents category III. Recall from the discussion in 
chapter 3 (section 3.7) that a complex network is one with a topology that is neither fully 
regular nor fully random. Thus, the definition of a complex network stands in 
contradiction to the character of category III complexity, and raises an interesting 
question briefly introduced earlier: is maximum order not the antithesis of complexity? 
Are uniform, gridded street networks complex because of their topology, in spite of it, or 
not at all?  

This is a broad question in the study of complexity, but one for which the urban planning 
literature may provide some insight. I propose that such orthogonal grid street networks 
are complex – not inherently because of their topology, but because of how that topology 
serves as a substrate that structures human dynamics. The orthogonal grid lends itself to 
platting and speculation (Hoyt 1933), navigation (Lynch 1960; Gell 1985; Sadalla and 
Montello 1989), the organization of symbolic, important, and memorable places (Lynch 
1984; Kostof 1991; 1992), efficient human circulation (Institute of Transportation 
Engineers 2010), and resilience to decades of rapid technological change (Jackson 1985; 
Grant 2001). Taken in conjunction with density, streetscape, grain, and land use entropy, 
the connectedness of a grid supports route choice, convenience, and walkability – and in 
turn, the human dynamics of social mixing, activity, and encounter (Moudon and 
Untermann 1991; Jacobs 1995; Southworth and Ben-Joseph 1997; Guo 2009; Speck 2012; 
cf. Thisse 2014; Jabareen and Zilberman 2017). The complexity of the network, in all its 
various facets, influences and structures the concordia discors of complex human 
interactions and urban processes that run on it. This proposed link between structure and 
process forms a bridge between the discussion of dynamics in the first half of this 
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dissertation and the analysis of form in the second, as contended in the discussion in 
chapter 3.  

Another critical takeaway of this analysis is that scale matters. The median average 
circuity is lower across the neighborhoods data set than across the municipal set, which in 
turn is lower than across the urbanized areas set. Conversely, the median average number 
of streets per node is higher across the neighborhoods data set than across the municipal 
set, which in turn is higher than across the urbanized areas set. The median intersection 
density per km2 is about 83% higher in the neighborhoods data set than in the municipal 
or urbanized areas sets. These findings make sense: the Zillow neighborhood boundaries 
focus on large, core cities with older and denser street networks. The municipal 
boundaries only include incorporated cities and towns – discarding small census-
designated places and unincorporated communities. The urbanized area boundaries 
include far-flung sprawling suburbs. 

The characteristics of an urban network for a city fundamentally depend on what city 
means: municipal boundaries, urbanized areas, or just certain neighborhoods? The first is 
a merely legal definition, but also captures the scope of city planning authority and 
decision-making for top-down interventions into a street network. The second captures a 
wider self-organized human system and its emergent built form, but tends to aggregate 
multiple non-homogeneous built forms together into a single unit of analysis. The third 
captures the nature of the local built form and lived experience, but at the expense of a 
broader view of the urban system and metropolitan-scale trip-taking. In short, multiple 
scales in concert provide planners and scholars a clearer view of the urban form and the 
topological and metric complexity of the street network than any single scale can. 

We find a strong linear relationship, invariant across scales, between total street length, L, 
and the number of nodes, n, in a network that contradicts some previous findings in the 
literature that relied on small sample sizes and different geographic contexts. We also find 
that most networks empirically demonstrate a lognormal distribution of street segment 
lengths, contradicting some previous findings in the literature, as discussed earlier. 
However, we believe our empirical finding makes more sense theoretically and is 
supported by the large-sample data at multiple scales. An obvious exception to lognormal 
distribution lies in those networks that exhibit substantial uniformity across the entire 
network. At the neighborhood scale, examples include downtown neighborhoods with 
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similarly consistent orthogonal grids, such as that of Portland, Oregon. At the municipal 
scale, examples include towns in the Great Plains that have orthogonal grids with 
consistent block sizes, platted at one time, and never subjected to sprawl.  

These findings help to tell a story about the practice and history of planning. The spatial 
signatures of the Homestead Act, successive land use regulations, urban design 
paradigms, and planning instruments remain clearly visible today in these cities’ urban 
forms and street networks due to path dependence. When comparing the median 
municipal street networks of each state, Nebraska has the lowest circuity, the highest 
average number of streets per node, the second shortest average street segment length, 
and the second highest intersection density for similar reasons. These preliminary 
findings point to how street networks across the Great Plains developed all at once but 
grew minimally afterwards – unlike, for instance, cities in California that were settled in a 
similar era but later subjected to sprawl.  

This finding suggests future research could incorporate a temporal analysis that this 
present study does not do with its cross-sectional data. Returning to the typology of 
complexity measures in chapter 4 (section 4.5), this empirical analysis emphasized 
network structure. Expanding the study of complex urban form by examining the other 
types of complexity – and further linking structural complexity to the temporal 
complexity of dynamics and processes – lies ahead as critical future work.  

In total, this chapter analyzed 497 urbanized areas’ street networks, 19,655 cities’ and 
towns’ street networks, and 6,857 neighborhoods’ street networks. These sample sizes 
were larger than those in any previous similar study. It looked at both metric and 
topological measures of the structure and complexity of these networks – particularly 
focusing on density, connectedness, and resilience. These preliminary empirical findings 
demonstrate the use of OSMnx as a new research tool. They suggest to urban planners 
new methods for acquiring and analyzing street network data, including new methods for 
evaluating network resilience and resilience gains with betweenness centralities and 
average node connectivities. Finally, this study has made all of these network datasets – 
for 497 urbanized areas, 19,655 cities and towns, and 6,857 neighborhoods – along with 
all of their attribute data and complexity measures available in an online public repository 
for other researchers to study and re-purpose (see Appendix).  
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Chapter 8:  Conclusion 
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8.1. Synopsis of the Dissertation 

Cities are complex systems shaped through decentralized, bottom-up, self-organizing 
processes and top-down planning interventions. Humans both shape their environments 
(i.e., institutions, cultures, physical built form), and are in turn shaped by them. Cities – 
human ecosystems – comprise many interdependent and interacting components. Urban 
complexity is manifested through the self-organization of these components and the 
emergence of large-scale structure and characteristics. In particular, these components 
interact through networks – both virtual (Internet and telecommunication, flows of 
capital, etc.) and physical (street networks, rail networks, etc.).  

This dissertation focused on street networks and their complexity, emphasizing density, 
resilience, and connectedness. These attributes influence the way an urban system’s 
physical links can structure complex interactions, connections, and dynamics. This 
dissertation developed its theoretical framing over chapters 2 and 3. Chapter 2 introduced 
the background of the nonlinear paradigm by discussing systems, dynamics, self-
similarity, and the nature of prediction in the presence of nonlinearity. These foundations 
set up the theoretical framework of complexity, cities, and the study of networks 
presented in chapter 3. Chapter 4 collated various measures of complexity from multiple 
research literatures into a typology of measures of the complexity of urban form, 
emphasizing the scale of urban design interventions. In particular, it presented several 
measures of network complexity and structure that were operationalized in chapters 5, 6, 
and 7.  

Chapter 5 introduced OSMnx, a new tool to acquire, construct, correct, visualize, and 
analyze complex urban street networks. The current tool landscape does not offer a 
straightforward method of collecting street network data and conducting analysis 
consistently for any study site in the world. OSMnx fills this gap, allowing researchers to 
download and analyze street networks, building footprints, and elevation data. Chapter 6 
applied OSMnx empirically in a small case study of street networks in Portland, Oregon 
to demonstrate the tool’s usage. Chapter 7 then expanded the empirical application of 
OSMnx to a large study of 27,000 urban street networks at various scales across the 
United States. This analysis addressed current shortcomings in the research literature by 
using large sample sizes, clearly defined extents and topologies, and non-planar directed 
graphs. It presented wide-ranging empirical findings on U.S. urban form. 
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8.2. Summary of Key Contributions 

8.2.1. Contribution to the Literature 

Across its six substantive chapters, this dissertation makes various theoretical, 
methodological, and empirical contributions to the urban planning research literature 
including new software tools, typologies of measures, and empirical findings. This 
subsection addresses them in order. 

Chapter 2 makes one methodological and one theoretical contribution to the literature. 
The former contribution is methodological as this chapter presents Pynamical, a new tool 
developed by this author to visualize and explore nonlinear dynamical systems’ behavior. 
Comparable tools usually must be developed from scratch or rely on expensive 
commercial software such as MATLAB. Developing tools for exploring, understanding, 
and visualizing dynamical systems in Python makes them available to a much wider 
audience of systems analysts, researchers, and students. Pynamical provides a fast, simple, 
reusable, extensible, free, and open-source new means for exploring system behavior – 
particularly for the qualitative analysis of such systems in research and pedagogy. The 
latter contribution reviews the theory of nonlinearity and the qualitative analysis of 
nonlinear dynamical systems’ behavior for an interdisciplinary body of urban scholars 
and planners. Most formal treatments of chaos and nonlinear dynamics in the scholarly 
literature are densely technical and geared toward an audience of mathematicians and 
physicists. Instead, chapter 2 offers a step-by-step introduction to dynamical systems, for 
a broad social science audience, to provide a strong and unambiguous footing for forays 
into complexity studies.  

Similarly, chapter 3 offers a theoretical contribution to the planning literature by 
unpacking the key foundational concepts of complex systems and network science in a 
brief, straightforward manner targeted at planners. It argues that the interdisciplinary 
appeal of complexity in the social sciences has resulted in ambiguous terminology, 
internal inconsistencies, and overloaded concepts. This chapter provides explanatory 
examples of these ideas that are familiar to scholars and practitioners not already versed 
in the technical science of complexity. Complexity suggests how systems might self-
organize structure, stability, and resilience. Through nonlinearity it problematizes 
certainty, prediction, and optimization. Finally, and most relevant to the present study, 
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this chapter expounds the theory of networks and the methods of network analysis that 
form the foundation of the remaining chapters. 

Chapter 4 unpacks the connections between the built form and the types and measures of 
its complexity. It primarily contributes a new typology of tools and metrics from different 
scientific disciplines to assess measures of complexity that apply to urban form and 
particularly to urban design’s scale of intervention. In particular, the measures of network 
structure characterize the complexity of the circulation network in terms of density, 
resilience, and connectedness. Bridging between the earlier chapters and those that 
follow, these attributes influence the way an urban system’s physical connections 
structure complex human interactions and dynamics. The analytical framework 
developed here is generalizable to empirical research of multiple neighborhood types and 
design standards. 

Chapter 5 offers the primary methodological contribution of this dissertation – OSMnx, a 
new tool developed by this author to download, construct, correct, analyze, and visualize 
urban street networks using OpenStreetMap data (Boeing 2017h). Street network analysis 
in the urban planning literature suffers from challenges of usability, planarity, 
reproducibility, and sample sizes. To address these challenges, the primary 
methodological thrust of this study developed OSMnx to make the collection of data and 
creation and analysis of street networks simple, consistent, and automatable. OSMnx 
contributes five significant new capabilities for researchers: first, the automatic 
downloading of place boundaries and building footprints; second, the tailored and 
automated downloading and constructing of street networks from OpenStreetMap; third, 
the automatic correction and simplification of network topology; fourth, the ability to 
save street networks to disk as shapefiles, GraphML, or SVG files; and fifth, the ability to 
analyze street networks, calculate routes, visualize the networks, and calculate network 
metrics and statistics. These metrics and statistics include both those common in urban 
design and transportation studies, and metrics that measure the complexity of the 
network. Moreover, OSMnx allows street network data collection for anywhere in the 
world that OpenStreetMap has data. One can thus easily acquire street networks for 
places where such data might otherwise be inconsistent or prohibitively difficult to come 
by. 
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OSMnx enables researchers to download spatial data such as political boundaries, 
building footprints, elevation data, and complex street networks. It makes the acquisition, 
construction, and analysis of urban street networks easy, consistent, and reproducible for 
powerful and consistent research, transportation engineering, and urban planning and 
design. In turn, it allows researchers to ask new questions about network resilience, 
accessibility, connectedness and segregation, walkability, market responses to built form 
variables, and the performance of alternative street layouts. OSMnx is built on top of 
NetworkX, matplotlib, and geopandas for rich network analysis capabilities, easy and 
beautiful visualizations, and accelerated spatial queries with R-tree spatial indexing.  

This chapter presents several street network and urban form figure-ground visualizations 
and discusses how they reveal various planning histories, processes, and instruments – 
including modernism’s inversion of traditional urban spatial order. Finally, chapter 5 
adapts measures from traditional network analysis to make them better-suited to 
accurately describing the physical form of street intersections and network connectivity. 
Namely, it adapts abstract nodes and directed edges into faithful representations of 
intersections, dead-ends, and physical streets. However, work remains to be done with 
accurately representing divided roads, as will be discussed in section 8.3.  

In turn, chapter 6 presents a small case study to simply but plainly demonstrate the usage 
of OSMnx for research. It collects three small half-kilometer sections of the street network 
in different neighborhoods in Portland, Oregon to perform a cross-sectional analysis. 
This scale of analysis and sample size are small, but they provide straightforward 
examples to tie together the network concepts presented in chapter 3, the network 
measures presented in chapter 4, and the methodological tool presented in chapter 5. This 
chapter thus serves to knit these preceding threads together. 

This chapter also presents empirical findings of these three street network sections in 
Portland, Oregon and uses these quantitative measures to compare and contrast these 
network sections. It first introduces these neighborhoods from a qualitative and historical 
perspective, then explores their comparative quantitative measures of network complexity 
and structure. During the high modernist era of the mid-twentieth century, Portland’s 
planners converted over 40 miles of streets to one-way, including nearly the entirety of 
Downtown Portland. This chapter’s findings identify significant chokepoints in the 
suburban network and demonstrates how there could be substantial gains in network 
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resilience if one-way streets in the dense, orthogonal downtown were converted to two-
way streets.  

Following up from this small case study, chapter 7 presents the primary empirical 
contribution of this dissertation: a large multi-scale analysis of 27,000 street networks. 
The empirical literature on street network analysis is growing ever richer, but suffers from 
some limitations. First, sample sizes tend to be fairly small due to data availability, 
gathering, and processing constraints. Second, reproducibility is difficult when the dozens 
of decisions that go into analysis – such as spatial extents, topological simplification and 
correction, definitions of nodes and edges, etc. – are ad hoc or only partly reported. 
Third, and related to the first two, studies frequently oversimplify to planar or undirected 
primal graphs for tractability, or use dual graphs despite the loss of geographic and metric 
information. Fourth, the current landscape of tools and methods offers no ideal technique 
that balances usability, customizability, reproducibility, and scalability in acquiring, 
constructing, and analyzing network data. 

This fourth limitation was addressed by introducing OSMnx and then demonstrating its 
use in a small case study of Portland, Oregon in chapters 5 and 6. Chapter 7 in turn 
addressed the first three limitations by conducting an analysis of street networks at 
multiple scales, with large sample sizes, with clearly defined network definitions and 
extents for reproducibility, and using non-planar, directed graphs. In particular, it 
examined urban street networks – represented as primal, non-planar, weighted 
multidigraphs with possible self-loops – through the framework of complexity developed 
in this dissertation, focusing on structure, density, connectedness, centrality, and 
resilience. 

Most studies in the street network literature that conduct topological and/or metric 
analysis tend to have sample sizes ranging around 5 to 50 networks. This chapter instead 
conducted a large analysis of 27,000 urban street networks at multiple overlapping scales 
across the United States. Namely, it examined the street networks of every U.S. 
incorporated city and town, urbanized area, and Zillow-defined neighborhood. In total, 
the study presented in this chapter uses OSMnx to download, construct, and analyze 497 
urbanized areas’ street networks, 19,655 cities’ and towns’ street networks, and 6,857 
neighborhoods’ street networks. It uses these street networks to conduct four analyses: at 
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the metropolitan scale, at the municipal scale, at the neighborhood scale, and a case study 
looking deeper at the neighborhood-scale street networks in the city of San Francisco. 

Chapter 7 presented preliminary empirical findings that examine street network 
complexity through the lens of density, resilience, and connectedness. We find that the 
typical American urban area has approximately 26 intersections/km2, 2.8 streets 
connected to the average node, 160m average street segment lengths, and a network that 
is 7.4% more circuitous than straight-line streets would be. The typical city has 
approximately 25 intersections/km2, 2.9 streets connected to the average node, 145m 
average street segment lengths, and a network that is 5.5% more circuitous than straight-
line streets would be. The typical Zillow neighborhood has approximately 46 
intersections/km2, 2.9 streets connected to the average node, 135m average street segment 
lengths, and a network that is 4.4% more circuitous than straight-line streets would be. At 
all three scales, 3-way intersections are by far the most prevalent intersection type across 
the U.S. 

Downtown Portland’s and San Francisco’s orthogonal grids exhibit high intersection and 
street densities, high connectedness in terms of the average number of streets per node, 
and high order. However, they also exhibit low resilience (for traffic that must obey edge 
directedness) due to the significant presence of one-way streets. This resilience was 
characterized by the maximum betweenness centralities and the average node 
connectivity increases when switching from one-way to reciprocal edges in both 
directions. Returning once again to the categories of complexity discussed in chapter 4 
(defined in the framework presented in section 4.4.1), these downtowns are complex in 
terms of category II and category III complexity.  

However, older and more self-organized networks, such as those in lower Manhattan or 
central Boston, are more complex in terms of category I complexity – and possibly 
category II complexity in that their messiness is structured into a mesh of physical 
connections. However, with the exception of high circuity lending itself to category I 
disorder, the sprawling and disconnected suburban neighborhoods rank low on all 
categories of complexity. This discussion argued that street networks can be complex 
either inherently because of their form and topology, or indirectly through how that 
topology structures human dynamics. This bridge serves as a preliminary link between 
the theory of dynamics in the early chapters with the empirical analysis of form and 
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structure in the latter chapters. However, some gaps remain for future research, as we will 
discuss shortly. 

In chapter 7 we also find that scale is critically important in analyses of street networks. 
However, invariant to scale, we find a strong linear relationship between total street 
length and the number of nodes in a network. This provides new evidence that 
contradicts some previous findings in the literature that relied on purely theoretical 
models or small sample sizes. We also find that most networks empirically demonstrate a 
lognormal distribution of street segment lengths. An obvious exception to lognormal 
distribution lies in those networks that exhibit substantial uniformity across the entire 
network, such as the consistent orthogonal grid of downtown Portland, Oregon. At the 
municipal scale, towns in the Great Plains typically have orthogonal grids with consistent 
block sizes, platted at one time, and never subjected to sprawl. Comparing median street 
networks of each state, Nebraska has the lowest circuity, the highest average number of 
streets per node, the second shortest average street segment length, and the second 
highest intersection density, for similar reasons. Through path dependence – a hallmark 
of complex systems – the spatial signature of urban design paradigms and planning 
instruments remains etched into the urban form across the United States. Street networks 
and other structural and configurational aspects of the urban form possess the potential 
to help knit cities and people together – or segregate them into enclaves (cf. Holston 1989; 
Caldeira 1996a; 1996b; Chapple 2006).  

In conclusion, an adaptation of chapter 2 is currently in press to be published as a journal 
article (Boeing 2016c). Chapters 5 and 6 have recently been conflated and submitted as a 
journal article, now under review (Boeing 2017c). Chapters 4 and 7 are each in various 
stages of the article manuscript preparation process (Boeing 2017a; 2017b). According to 
its repository statistics as of this writing, OSMnx has been downloaded over 10,000 times 
since its release (Continuum Analytics 2017). Finally, this study has made these network 
datasets (Boeing 2017f) and their attribute datasets (Boeing 2017g) available in a public 
online repository for other researchers to study and re-purpose (see Appendix). 

8.2.2. Contribution to Planning Practice 

This dissertation makes methodological and empirical contributions to urban planning 
practice. This subsection addresses them in order. 
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The first, and primary, contribution is OSMnx. This software can be easily used by 
planning practitioners and transportation engineers to collect and analyze urban street 
networks. The current tool landscape does not provide a simple, consistent, flexible, and 
scalable option for this type of work. Some existing tools, such as the Urban Network 
Analysis Toolkit discussed in chapter 5, require extremely expensive ArcGIS licenses and 
pre-existing local data sets. OSMnx is free, open-source, and can collect street network 
data from anywhere in the world via various flexible methods – particularly useful for 
planners working in the Global South. Furthermore, as OpenStreetMap data is publicly 
editable, local planners may add local data directly to OpenStreetMap, then use OSMnx 
to immediately construct the data into a graph-theoretic object for network analysis. This 
software makes it much easier to conduct common planning analyses such as intersection 
density, the spatial distribution of intersection types, average (linear) block length, 
connectedness, resilience, shortest-path routing, and accessibility. Street networks can be 
saved as ESRI shapefiles, GraphML files, or SVG files for urban design work with tools 
like Adobe Illustrator. 

Additionally, the preliminary empirical findings in this dissertation suggest to planning 
practitioners several methods for making qualitative assessments of urban resilience more 
concrete from a quantitative perspective. In particular, we found that maximum 
betweenness centralities indicate brittle choke points in urban networks at various scales, 
particularly in the discussion of Portland in chapter 6 and the discussion of San Francisco 
in chapter 7. We also saw how the increase in average node connectivity when switching 
from a directed graph to an undirected graph representation of the street network can 
serve as an indicator of which areas would gain the greatest efficiency and resilience 
benefits from making one-way streets bi-directional. 

Finally, this dissertation has drawn from the complexity sciences to embed the study of 
complex networks in the practice of urban planning and design. It has demonstrated 
various facets and measures of complexity relevant to the planning discipline. With the 
introduction and demonstration of OSMnx, it also has made these analytics readily 
available to planners without requiring technical and computational expertise. Instead, 
with just two or three lines of simple code, planners can download street networks 
anywhere in the world, analyze, and visualize them. For example, the figure-ground 
visualizations presented in chapter 5 help planners examine the physical outcomes of 
planning and informal urbanization. They also serve as a simple tool for communicating 



  BOEING   

162 

planned and emergent phenomena – such as density, connectedness, pattern, texture, 
scale, and grain – in a clear and immediate manner to laymen. Moreover, planners can 
use the complexity measures here as a rubric for more resilient and efficient circulation 
networks and better street investment decisions.  

8.3. Future Research 

8.3.1. Prospects and Challenges 

The emerging methods of computational data science, visualization, network science, and 
“big data” analysis are drastically broadening the scope of urban design’s traditional 
toolbox. Such methods may yield new insights and rigor in urban form/design research, 
but they may also promulgate the weaknesses of reductionism and scientism by ignoring 
the theory, complexity, and qualitative nuance of human experience crucial to urbanism. 
The tools we use shape the kinds of questions we can even ask about cities. A critical – but 
certainly not new – question remains in how such methods might stake out a nuanced 
place in research and practice. Over 60 years ago, Lévi-Strauss argued that “the 
confidence now shown by so many social scientists in mathematical models is due not so 
much to the results they themselves have secured by those methods as to the enormous 
assistance that mathematics has provided in other fields, and particularly physics” (1954, 
p. 583). Today, the dissemination of quantitative network science into the social sciences 
offers an exciting opportunity to study the dynamics and structure of cities and urban 
form. But paths forward must consider cities as uniquely human complex systems, 
inextricably bound up with politics, privilege, power relations, and planning decisions. 
Quantitative scholars and practitioners cannot assume a purely objective, dispassionate, 
technocratic stance without resorting to naïveté or disingenuity. 

This dissertation developed measures and methods for analyzing the complexity of the 
urban form. Future work can use OSMnx to continue collecting and analyzing massive 
street network data sets, particularly to examine housing costs and accessibility, 
transportation and streetscape policy, one-way versus two-way conversions, public 
investments in bicycling infrastructure, and the connectivity and resilience of new 
neighborhoods developed according to the LEED-ND standards (U.S. Green Building 
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Council 2012; Boeing et al. 2014). Given the worldwide coverage of OpenStreetMap data 
and its use as a digital repository by NGOs and humanitarian organizations, OSMnx 
could be used to study cities in the Global South to examine urbanization, slums, and 
percolation of circulation networks into informal settlements. Ultimately, such studies 
could improve our understanding of the structure and character of cities through 
infrastructure – including roads, housing, and water – around the world to evaluate 
accessibility, connectivity, resilience, and spatial justice. 

8.3.2. Future Methodological Research 

Future methodological research includes developing a decision-tree algorithm to infer 
street width from various attributes of the network edge. Figure 5.9 utilized 
OpenStreetMap’s roadway type attribute data, in conjunction with an ad hoc 
approximation of local street widths in each geography, to map from roadway type to an 
inferred width in meters to a width in pixels given the dimensions of the image raster. 
OpenStreetMap also has attributes for street width (though this is frequently null) and 
number of lanes (though lane widths vary from place to place). A better future algorithm 
might first check street width; if it is not present it would estimate the width from the 
number of lanes; if this too is not present, it would fall back on some default value for the 
roadway type. 

OpenStreetMap represents divided roads as two side-by-side one-way edges (with 
different spatial locations and unique IDs) running in opposite directions – as does 
TIGER/Line and essentially every other set of GIS streets. This does, however, cause some 
inconsistencies with counts, measures, and visual representation. For example, the 
intersection of a divided road and another street essentially becomes two intersections –  
i.e., two separate one-way edges intersecting with the street. Collapsing divided roads into 
a single spatial entity is a nontrivial computational task. One might draw a new centerline 
in the middle of the two reciprocal edges, but this could 1) be difficult if the road curves 
and 2) disrupt the topology of its connections to other streets. It might be simpler to 
collapse divided roads into a single non-spatial entity. In other words, allow it to remain 
two separate spatial entities for visual representation, but de-duplicate counts for 
intersection densities, total street length, etc. by street name.  
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This method, however, will run into difficulties if the same two roads intersect multiple 
times (e.g., due to curvature) or if multiple roads with the same name exist in a network. 
For instance, there could be multiple towns in an urban area’s street network with a road 
called “Main Street.” Further, data quality becomes paramount in such an approach. Any 
inconsistencies in naming, spelling, or abbreviation (e.g., “Avenue” versus “Ave” versus 
“Av”) could cause mismatches that require natural language processing or machine 
learning for better matching. Thus, to guarantee the best results of any such collapsing of 
divided roads, the researcher may be best suited by performing the task manually, 
comparing each edge to satellite photography, and ground-truthing the results against 
street-level imagery such as Google StreetView or an in-person site visit. However, due to 
the enormous workload required for such a process, we believe OSMnx presents the best 
balance of accuracy, flexibility, universality, scalability, and reproducibility currently 
available to computational street network researchers, even given these caveats. Finally, 
future work can enable the downloading of additional geospatial objects other than 
streets and buildings – for instance, trees (to support streetscape studies) and water 
sources (to support informal settlement studies).  

8.3.3. Future Empirical Research 

Future empirical research includes comparing multiple network types across multiple 
scales. How do the measures of network complexity vary when examining driving 
networks versus walking networks versus bikeable networks at different spatial scales? 
This could also help clarify the nature of network resilience and connectedness for 
driving versus walking by further examining a place such as San Francisco, where 
connectivity was designed to favor pedestrians over cars. This study has provided some 
simple preliminary findings on identifying the benefits of one-way to two-way 
conversions by examining betweenness centralities and average node connectivities. 
Future research can expand this into a more thorough study of conversions to target 
specific areas for policy purposes.  

Additionally, cluster analyses can be performed across network variables to develop a 
taxonomy of physical types along with city vintage and urban development, in terms of 
changes to population and spatial extents (see also Louf and Barthélemy 2014). Such 
clustering could explain the physical form resulting from certain histories, policies, and 
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local conditions – furthering the findings visualized in Figure 7.10. Another approach 
might take advantage of classification algorithms from machine learning, such as random 
forests, support vector machines, naïve Bayes, k-nearest neighbors, and neural networks 
(Wu et al. 2008; Kelleher et al. 2015; Hastie et al. 2016).  This approach would require 
manually labeling some subset of the data set to serve as training data, using it to fit the 
model, then making predictions with the remaining test data. Manually labeling 
observations in a large data set is a nontrivial task, but could leverage distributed 
microtask workforces, such as Amazon’s Mechanical Turk. The same approach could be 
used to add additional qualitative nuance from Google StreetView imagery. Furthermore, 
OSMnx can easily output built form variables to use in hedonic studies of housing costs 
or analyses of travel behavior and VMT. It can quickly and automatically produce useful 
transportation-design variables such as intersection densities, street grades and 
elevations, node types, and (proxies of) block sizes, but also more advanced measures of 
centrality, clustering, resilience, and node importance.  

For instance, future work can further probe the link between the network’s structure and 
its dynamics by investigating human behavior in terms of measures of network 
complexity. OSMnx provides a rich basket of urban forms variables to model human 
dynamics. In general, the difficult linkages between dynamical complexity and structural 
complexity often beguile urban researchers and are ripe for exploration. The empirical 
analysis in chapter 7 emphasized network structure, but examining the other types of 
complexity discussed in chapter 4 – and further linking structural complexity of the 
urban form to the temporal complexity of human dynamics and processes – lies ahead as 
critical future work.  
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Appendix: Software and Data 
 

This appendix provides information on where to find this dissertation’s software, data, 
and technical documentation. The software tools developed as part of this project are 
open-source and freely available online to download and install. Likewise, the various 
street network datasets and their morphological measures are available in a public online 
repository. 

Chapter 2 introduced a new software tool, Pynamical, to explore nonlinear dynamical 
systems’ behavior. Pynamical is a Python package for modeling, simulating, visualizing, 
and animating discrete nonlinear dynamical systems and chaos. It uses pandas, numpy, 
and numba for numerical simulation, and matplotlib for visualization and animation to 
explore system behavior. This study used version 0.1.1 to produce the models, 
simulations, and visualizations in chapter 2. Pynamical is free, open source software. This 
software and all the code used to develop these models and visualizations are available in 
a public repository on GitHub at https://github.com/gboeing/pynamical and its 
documentation is available online at https://pynamical.readthedocs.io/. 

Chapter 5 introduced a new software tool, OSMnx, to download, analyze, and visualize 
street network and building footprint data from OpenStreetMap. OSMnx makes the 
collection of data and creation and analysis of street networks easy, consistent, scalable, 
and automatable for any study site in the world. It allows researchers and practitioners to 
download place boundaries and building footprints, download and construct street 
networks from OpenStreetMap, correct network topology, save street networks to disk in 
various file formats, and analyze and visualize street networks, including calculating 
routes and metric and topological measures. This study used version 0.1 to conduct its 



  BOEING   

216 

street network data collection and analyses. OSMnx is free, open source software. It is 
available in a public repository on GitHub at https://github.com/gboeing/osmnx and its 
documentation is available online at https://osmnx.readthedocs.io/. 

The street network datasets compiled and analyzed in chapters 6 and 7, as well as the 
datasets of their various measures, have been made available in a public online repository 
for other researchers to study and re-purpose. This includes the street network shapefiles 
and GraphML files for every urbanized area, every city and town, and every Zillow 
neighborhood, as well as data tables collating the networks’ various topological and 
metric measures that were calculated with OSMnx. They are all available from the 
Harvard Dataverse at: https://dataverse.harvard.edu/dataverse/osmnx-street-networks. 

 




