
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Neural Regulatory Mechanisms that Link Metabolism and Behavior in Caenorhabditis 
elegans

Permalink
https://escholarship.org/uc/item/44q4r4jf

Author
Bouagnon, Aude

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/44q4r4jf
https://escholarship.org
http://www.cdlib.org/


 

 

 
 
 
by 
 
 
 
 
Submitted in partial satisfaction of the requirements for degree of 
 
 
in 
 
 
 
in the 
 
GRADUATE DIVISION 
of the 
UNIVERSITY OF CALIFORNIA, SAN FRANCISCO 
 
 
 
 
 
 
 
 
 
 
 
 
Approved: 
 
______________________________________________________________________________ 

       Chair 
 
 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 
Committee Members 

������������	�������

�%����!%�� ! 

�	�������	�



�%"������%��$!"'������ �#�#�$��$��� ����$��!��#��� ������&�!"�� ���� !"�����$�#�
����� #

��!������������ ��#

�!���
'#$%�


�&����#�"���

������
�!

�� ������



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 iii 

DEDICATION 
 
The good life is one inspired by love and guided by knowledge. Neither love without 
knowledge, nor knowledge without love can produce a good life.   
 -Bertrand Russell  

 
This thesis is dedicated to those who have supported, mentored, encouraged, 

challenged and nurtured me all of these years. This accomplishment is as much a 

testament to the love and good fortune I have received in life than my own merits. I’d 

specifically like to thank Kaveh, my advisor, for seeing and cultivating my potential and 

bearing witness to my development as a scientist. Thank you for your unwavering 

support, particularly during the times when I doubted myself the most time. I am so 

lucky to have been placed in your lab nine summers ago. My 6th Grade teacher May 

Remsing, who planted so many seeds in my young mind, many of which are just now 

starting to bloom. Thank you for teaching me that learning, at its finest, is a form of 

playing. My older brother Paul, who has been my best friend and rock from the very 

beginning. Thank you for always illuminating my blind spots and pushing me to be my 

very best. My baby brother, Joel, for teaching me the power of big dreams. Your 

determination, resilience and work ethic were inspirations to me throughout my PhD.  

Finally, my parents Valerie and Desire, whose sacrifice, generosity and endless 

encouragement are the reasons I am who I am. Thank you for teaching me to engage 

with the world with both curiosity and care. Most of all, thank you for being my biggest 

sources of support, celebration and love. Je vous aime de tout mon cœur ♥.  

 
 
 
 
 
 



 iv 

Contributions 

Chapter 1 was published as:  

Cunningham KA, Bouagnon AD, Barros AG, Lin L, Malard L, Romano-Silva MA, et 

al. Loss of a neural AMP-activated kinase mimics the effects of elevated serotonin 

on fat, movement, and hormonal secretions. PLoS Genet. 2014;10(6):e1004394. 

Epub 2014/06/13. pmid:24921650; PubMed Central PMCID: PMCPMC4055570. 

 

Portions of Chapter 2 were submitted as:  

Bouagnon A, Srivastava S, Panda O, Schroeder F, Srinivasan S, Ashrafi K. 

Intestinal peroxisomal fatty acid β-oxidation regulates neural serotonin signaling 

through a feedback mechanism. PLos Biology, submitted April 2019.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 v 

Neural Regulatory Mechanisms that Link Metabolism and Behavior in 
Caenorhabditis elegans 

Aude Bouagnon 
 

 
Abstract 
The neurotransmitter 5-hydroxytryptamine or serotonin, functions as an indicator of food 

availability and is an ancient mechanism by which invertebrate and vertebrate species 

translate sensory information about food availability and quality to distinct nutrient-

related behaviors and physiologies. Serotonin signaling is influenced by internal and 

environmental signals and coordinates a wide range of behaviors related to nutrient-

status including appetite, reproduction, growth, learning, memory and mood. Despite 

these fundamental roles, the precise mechanisms that link neural serotonin to  

physiologies occurring in distant peripheral tissues remain poorly understood.  

Moreover, little is known about the mechanisms that link internal metabolic signals from 

peripheral tissues to neural serotonin circuits to regulate behavior.  In this work, we 

leverage the experimental advantages of C. elegans to investigate these two distinct yet 

coordinated aspects of serotonin signaling. In chapter I, we examine how neuronal 

serotonin signaling communicates to distant tissues to regulate behaviors like 

movement, development and fat metabolism. In chapter II,III and IV, we identify the 

metabolic, molecular, and cellular components of a novel gut-to-brain regulatory axis 

that links peripheral metabolic signals to serotoninergic circuits that regulate behavior. 

Together, this work highlights the influence that peripheral metabolic signals exert on 

neuroendocrine signaling cascades and offers mechanistic insights into how nutrient 

cues modulate a neuromodulatory mechanism implicated in the control of mood, 

cognition and behavior.  
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Abstract 
 

AMP-activated protein kinase (AMPK) is an evolutionarily conserved master regulator of 

metabolism and a therapeutic target in type 2 diabetes. As an energy sensor, AMPK 

activity is responsive to both metabolic inputs, for instance the ratio of AMP to ATP, and 

numerous hormonal cues. As in mammals, each of two genes, aak-1 and aak-2, encode 

for the catalytic subunit of AMPK in C. elegans. Here we show that in C. elegans loss of 

aak-2 mimics the effects of elevated serotonin signaling on fat reduction, slowed 

movement, and promoting exit from dauer arrest. Reconstitution of aak-2 in only the 

nervous system restored wild type fat levels and movement rate to aak-2 mutants and 

reconstitution in only the ASI neurons was sufficient to significantly restore dauer 

maintenance to the mutant animals. As in elevated serotonin signaling, inactivation of 

AAK-2 in the ASI neurons caused enhanced secretion of dense core vesicles from 

these neurons. The ASI neurons are the site of production of the DAF-7 TGF-b ligand 

and the DAF-28 insulin, both of which are secreted by dense core vesicles and play 

critical roles in whether animals stay in dauer or undergo reproductive development. 

These findings show that elevated levels of serotonin promote enhanced secretions of 

systemic regulators of pro-growth and differentiation pathways through inactivation of 

AAK-2. As such, AMPK is not only a recipient of hormonal signals but can also be an 

upstream regulator. Our data suggest that some of the physiological phenotypes 

previously attributed to peripheral AAK-2 activity on metabolic targets may instead be 

due to the role of this kinase in neural serotonin signaling. 
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Introduction 

AMP-activated protein kinase (AMPK) is a sensor of energy status that is 

conserved from single celled yeasts to humans [1]. At the cellular level, it becomes 

activated in response to deficits in energy availability, such as a rise in the ratio of AMP 

to ATP, to inhibit energy utilizing pathways while activating energy generating pathways 

[1]. AMPK is also a recipient of many hormonal signals and links organism-wide signals 

of energy balance with myriad cellular mechanisms that are differentially regulated 

based on energy availability [2]. While many of the consequences of AMPK activity are 

due to its regulation of substrates in peripheral tissues, activity of hypothalamic AMPK in 

mammals is also thought to contribute to energy balance through modulation of feeding 

behavior [3]. Given its broad effects on energy balance, AMPK is a therapeutic target for 

type 2 diabetes as well as certain cancers [4,5]. Despite the key role of this kinase 

complex in energy balance and its therapeutic relevance, many of the physiological 

consequences of AMPK activity and its upstream inputs and downstream effectors still 

remain poorly understood.  

C. elegans provides a genetically tractable system for studying the physiological 

roles of AMPK in the context of whole animals. In C. elegans as in mammals, AMPK is 

a kinase complex with catalytic a and regulatory b and c subunits [1,6]. Similar to 

mammals, two genes, aak-1 and aak-2, separately encode AMPK’s catalytic a subunit 

[6]. Thus far, roles for aak-2 have been reported in several facets of C. elegans biology 

including the regulation of feeding [7], fat [1,8,9], L1 diapause and nutrient deprivation 

[1,10], dauer maintenance [2,9,11,12], and longevity [3,6,13,14]. In most of these 

processes, the requirement for aak-2 has been attributed to its roles in peripheral 

tissues.  
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As in mammals, 5- hydroxytryptamine (5-HT), serotonin, signaling in C. elegans 

serves as an indicator of food availability [4,5,15,16]. Animals deficient in 5-HT signaling 

due to inactivation of tryptophan hydroxylase, tph-1, the rate limiting enzyme in 

serotonin biosynthesis, exhibit many of the phenotypes seen when animals are 

removed from food [1,6,15]. In turn, treatment of animals with exogenous serotonin 

elicits many of the phenotypes seen when food deprived animals are re-exposed to food 

[6,17– 20]. Beyond simply an indication of food availability, serotonin signaling informs 

on a number of other inputs, including food quality [7,21,22], pathogenicity [22,23], and 

the experience of starvation prior to re-feeding [18,19,24]. For instance, when taken off 

food, C. elegans quickly reduce their feeding, as measured by the pharyngeal pumping 

rate [18], and once again elevate it as they are reintroduced to food. If animals 

experience a period of fasting, they display an even greater increase in feeding rate 

upon re-encountering food [18]. This increased feeding rate can also be induced if well-

fed animals, which already have elevated levels of serotonin signaling relative to food 

deprived animals, are treated with serotonin or fluoxetine, a serotonin uptake inhibitor 

[25]. In another example, as animals deplete their food stores, they move more rapidly, 

presumably to forage for new food resources, and slow their movement once they find 

such resources [17]. If animals are fooddeprived for a period of time before they re-

encounter food, they exhibit a more significant slowing of movement known as 

enhanced slowing. This enhanced slowing is dependent on serotonin signaling since 

animals deficient in serotonin production only partially exhibit the enhanced slowing 

response and addition of serotonin to well-fed animals reduces movement rate [17,26]. 

Thus, serotonin is not simply a binary, on/off indicator of food availability but levels of 
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serotonin signaling allow animals to tune their behavioral and physiological responses 

to food related cues and experiences.  

We previously found that 5-HT secreted from the ADF neurons, a pair of ciliated 

sensory neurons that are known to be responsive to the environment [27], acts on the 

SER-5 serotonergic receptor on the AVJ pair of interneurons to modulate food intake 

rate [7]. Our studies suggested that signaling through SER5, a Gas coupled receptor, 

leads to activation of protein kinase A (PKA) and subsequent PKA-mediated 

phosphorylation of AAK-2 at residue S244 causing inhibition of AAK-2 activity, likely 

through inhibition of phosphorylation at the adjacent T243 residue, equivalent of T172 in 

mammalian AMPK catalytic subunit [7,28]. Thus, loss of AAK-2 activity mimicked the 

very high levels of feeding seen food deprived animals encounter food or well-fed 

animals are treated with additional doses of serotonin.  

Here, we demonstrate that loss of aak-2 mimics the effects of elevated serotonin 

signaling on enhanced fat metabolism, reduced movement, and exit from the dauer 

state. In the context of dauer maintenance, we show that inactivation of aak-2 links 

serotonin signaling to the release of DAF-7, a TGF-b family ligand, and DAF-28, 

encoding an insulin family member, from the ciliated ASI neurons in a cell autonomous 

fashion. While AMPK is often considered a downstream effector of hormonal signaling, 

our results show that AAK-2 containing AMPK complexes are also upstream regulators. 

Importantly, by revealing that serotonin signaling exerts many of its effects on animal 

behavior and physiology by inactivation of AAK-2 containing AMPK complexes in the 

nervous system, our data suggest a need for reinterpretation of some of the findings in 
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which the requirement for aak-2 had only been attributed to its peripheral, metabolic 

roles.  

Results 
 
Loss of aak-2 mimics effects of elevated serotonin signaling on movement and fat 

 Given that serotonin exerted its effects on feeding in part through inactivation of 

AAK-2 containing AMPK complexes, we asked whether aak-2 mutants exhibit any other 

phenotypic consequences of elevated serotonin signaling. Consistent with the 

enhanced slowing response, aak-2 deficient animals had reduced movement rate off-

food (Figure 1A; [28]). The rate of movement of aak-2 mutant animals was similar to 

wild type animals exposed to the serotonin reuptake inhibitor, fluoxetine, and the 

already slowed off-food movement of aak-2 mutants was not further reduced by 

fluoxetine treatment (Figure 1A).  

To determine the relationship between exogenous serotonin treatment and the 

effects of endogenous serotonin increase by fluoxetine treatment, we conducted dose 

response studies. As previously reported [26], we noted that transient treatment of wild 

type animals off of food with increasing doses of exogenous 5-HT causes a progressive 

slowing of movement culminating in sickness and paralysis (Figure S1A-B). Based on 

the dose-response studies and consistent with previous similar studies [20,29,30], we 

chose the 5 mM exogenous 5-HT concentration as one that mimics the movement 

phenotypes of wild type animals treated with high doses of fluoxetine (Figure S1A). 

While both wild type and aak-2 deficient animals became paralyzed with increasing 

doses of exogenous serotonin, aak-2 mutants were more sensitive to paralyzing effects 

of high doses of serotonin, consistent with the notion that these mutants already 
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experience elevated serotonin signaling (Figure S1B). Using pharyngeal pumping rate 

as another read-out, we found that treatment of wild type animals with 5 mM 5-HT 

caused elevated feeding rate similar to fluoxetine treatment and increasing the dose of 

serotonin to 10 mM did not cause further feeding elevation (Figure S1C). The already 

elevated feeding rate of aak-2 deficient animals was unchanged with increasing doses 

of exogenous serotonin levels up 10 mM. However, as in the case of movement, aak-2 

mutants were more sensitive to deleterious effects of elevated 5-HT, such that elevating 

the dose of exogenous 5-HT beyond 10 mM had a feeding reducing effect accompanied 

by other signs of sickness (Figure S1C).  

As in mammals, enhanced serotonergic signaling in C. elegans causes fat 

reduction [19]. While in mammals, the fat reducing effects of serotonin have been 

attributed to its anorectic effects, in C. elegans serotonergic regulation of feeding 

behavior is through a cellular circuit that is distinct from serotonergic regulation of fat 

metabolism [7,19]. The fat reducing effects of elevated serotonin in C. elegans are due 

to enhancement of fat utilization in peripheral tissues. Recent studies have suggested 

that a complex regulatory loop between serotonin and octopamine signaling cascades 

in the nervous system ultimately leads to transcriptional upregulation of various 

components of fat mobilization and oxidation machineries in the periphery [19,31]. 

To determine whether loss of aak-2 mimics the effects of elevated serotonin on 

fat, we assessed fat content using the fluorescent BODIPY-labeled fatty acids and 

biochemical measurement of triacylglycerides, both of which indicated that aak-2 

mutants had reduced fat compared to wild type (Figure 1B-C). The reduced fat 

phenotype of aak-2 mutants was similar in magnitude to wild type animals subjected to 
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5 mM exogenous 5- HT and not further diminished upon 5-HT treatment (Figure 1CE; 

[19]). To verify these results, we used Coherent anti-Stokes Raman Scattering, CARS, 

a label free microscopic method for the assessment of fat levels [32–34]. The CARS 

results corroborated the noted fat reduction upon aak-2 inactivation and 5 mM serotonin 

treatment (Figure 1D-E; [19]). Moreover, the notion that aak-2 mutants have particularly 

low fat levels in their skin-like hypodermal tissues, a result readily suggested by 

treatment of these mutants with BODIPY-labeled fatty acids (Figure 1B), was 

corroborated by CARS (Figure 1E).  

Fat reducing effects of serotonin elevation are associated with increased total 

oxygen consumption [19]. Accordingly, aak-2 mutants exhibited elevated rates of 

oxygen consumption relative to wild type animals (Figure 1F). We next examined 

transcriptional expression patterns of nearly a hundred fat and sugar metabolic genes 

[35,36] by RT-PCR. Although the precise magnitude of changes were not identical and 

there were genes that were differentially regulated in aak-2 mutants and serotonin 

treated wild type animals (Figure S1D, Table S1), we noted a significant overlap 

between those that were upregulated, downregulated, or unchanged in aak-2 mutants 

and wild type animals treated with 5 mM 5-HT compared to untreated wild type animals 

(Figure S1D, Table S1). Genes that were significantly upregulated by both elevated 

serotonin and aak-2 inactivations included homologs of an acyl-CoA synthase, required 

for activation of fatty acids, a carnitine palmitoyl transferase, which can shuttle fatty 

acids across the mitochondrial membranes for fat oxidation, and a mitochondrial acyl-

CoA dehydrogenase, an enzymatic component of fat oxidation. The similarities in the 

patterns of transcriptional changes in various metabolic genes supported the notion that 
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elevated serotonin and loss of aak-2 affect fat metabolism through a common pathway. 

Finally, we examined the effects of inactivations of W01A11.5, encoding a putative 

carnitine palmitoyl transferase, cpt-1a, and F08A8.4, encoding a putative acyl-CoA 

oxidase, on fat content of aak-2 mutants. This is because we had previously shown that 

these gene inactivations partially block the fat reducing effects of elevated serotonin 

signaling [19]. These gene inactivations also partially blocked the fat reducing effects of 

aak-2 deficiency (Figure 1G-H, Figure S2A-C).  

These results combined with our previous findings suggested that loss of aak-2 

mimics the effects of elevated serotonin signaling on food intake behavior, fat, and 

movement.  

Effects of losses of aak-1 and tph-1 on aak-2 mutant phenotypes 

 As both aak-1 and aak-2 separately encode for the catalytic subunits of AMPK. 

We considered the possibility that the phenotypes caused by loss of aak-2 may in fact 

be due to aberrant activation of aak-1. However, none of the phenotypes of aak-2 

mutants were altered in aak-1; aak-2 double mutants (Figure 2A-C). Additionally, aak-1 

transcript levels were unchanged in aak-2 mutants (Figure S3). Thus, the phenotypes 

caused by loss of aak-2 were not simply compensatory responses of AAK-1 activation.  

To decipher the relationship between serotonin production and aak-2, we next 

examined tph-1; aak-2 double mutants. The feeding, fat, and movement phenotypes of 

the double mutants were either the same as those of aak-2 mutants or intermediate 

between those of tph-1 and aak-2 single mutants (Figure 2D-F). One interpretation of 

these results is that aak-2 functions, at least in part, upstream of tph-1. For instance, 

loss of aak-2 could promote production of serotonin by elevating tph-1 expression. 
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However, expression of tph-1 was unchanged in aak-2 mutants relative to wild type 

animals (Figure S3). A second interpretation is that aak-2 functions downstream of tph-1 

but only mediates some of the effects of serotonin on fat, feeding, and movement. Since 

we previously found that in the context of feeding regulation, elevated serotonin acts 

through the SER-5 receptor to cause inhibition of AAK-2 in interneurons that are not 

known to produce serotonin, we favor the second interpretation. This interpretation is 

consistent with the notion that loss of aak-2 mimics phenotypes seen when serotonin 

signaling is elevated beyond that of steady state well-fed animals.  

Reconstitution of aak-2 in the nervous system rescues the fat and movement 
defects of aak-2 mutants  

In C. elegans, aak-2 is broadly expressed in both neural and peripheral tissues 

[9,28]. To determine whether loss of aak-2 in specific tissues could account for its 

movement and fat phenotypes, we reconstituted wild type aak-2 in select tissues of the 

mutant animals. Reconstitution of aak-2 throughout the nervous system restored wild 

type movement rate (Figure 1A) and fat levels to aak2 mutants (Figure 1B) while 

reconstitutions within body wall muscle, intestine, pharyngeal muscle, and hypodermis 

failed to do so (Figure S4 and data not shown).  

We previously reported that normalized feeding rate is restored when aak-2 is 

reconstituted within only the AVJ pair of interneurons as well as the pharynx of aak-2 

mutants [7]. These transgenic animals, however, still exhibited reduced fat levels that 

were indistinguishable from those of aak-2 mutants (Figure S4). These data suggested 

that elevated serotonin signaling elicits feeding and fat phenotypes through inhibition of 

AAK-2 containing complexes in distinct regions of the nervous system.  



 11 

Loss of aak-2 causes fat reduction independent of the dauer state  

The observations that loss of neural aak-2 mimics the effects of serotonin signaling 

forced us to re-evaluate previously published claims where requirements for aak-2 in 

various physiological processes have been largely attributed to its peripheral, metabolic 

roles. One such example is the requirement for aak-2 in fat rationing during the dauer 

stage [9]. The dauer stage of C. elegans is an altered developmental state that is 

restricted to an early larval stage [37]. Entry into the dauer state is initiated by lack of 

nutrients or excessive population density, which lead to reductions in activities of pro-

growth and developmental pathways of insulin signaling and TGF-b signaling [37]. 

Relative to non-dauer early larval animals, dauers contain elevated lipid levels, which 

presumably acts as an energetic reservoir for these non-feeding animals [37]. 

A previous study suggested that aak-2 is required for proper fat rationing during the 

dauer state [9]. Animals deficient in daf-2, encoding an insulin receptor-like gene, or in 

daf-7, encoding a neurally expressed TGF-b family ligand that links environmental 

conditions to growth and development pathways, enter the dauer state constitutively 

[38,39]. It was previously reported that daf-2; aak-2 and daf-7; aak-2 double mutants 

enter the dauer state with the expected high levels of lipids but then suffer a rapid fat 

depletion during the dauer state, implicating a specific role for AAK-2 in lipid rationing 

during the dauer stage [9]. This contrasted with our finding that the low fat phenotype of 

aak-2 deficient animals was not restricted to the dauer stage. To explore this potential 

discrepancy, we re-examined fat contents of daf-7; aak-2 and daf-2; aak-2 double 

mutants [9]. Multiple independent methods of assessing fat levels — vital staining with 

BODIPYlabeled fatty acids, fixed staining with Sudan Black B, and total lipid extraction 

followed by thin layer chromatography — all showed significant reductions in lipid levels 
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in daf-7; aak-2 and daf2; aak-2 relative to daf-7 and daf-2 mutants, respectively, both 

prior to and at the time of dauer entry (Figure 3, S5). We also examined fat levels of daf-

2; aak-2 double mutants with CARS, and consistent with all of other results, noted that 

these double mutants had low fat levels (Figure S6). Moreover, the CARS experiments 

indicated that treatment of daf-2 animals with 5 mM exogenous serotonin causes fat 

reductions to the same extent as that seen in daf-2; aak-2 mutants and exogenous 

serotonin treatment did not further reduce the fat content of these double mutants 

(Figure S6). Thus, the role of aak-2 in fat regulation is not dauer stage-specific and the 

low fat phenotype of aak-2 deficient animals is not dependent on either intact insulin or 

TGF-b pathways. 

 
aak-2 deficient animals exit dauer even in the absence of food cues 

Under normal physiological circumstances, dauers must be able to sense the 

reappearance of food to resume growth. Serotonin, an indicator of food availability, is 

known to promote dauer exit [15]. Therefore, we considered the possibility that the 

noted requirement for aak-2 in dauer survival may reflect an increased tendency of 

animals to exit the dauer stage rather than a failure to maintain dauer survival due to 

rapid exhaustion of lipid stored during this state. 

 The claim that aak-2 dauers fail to maintain survival has been based on studies 

that rely on a ‘‘dauer trap’’ system, where dauers are kept suspended within a sterile 

water drop and their survival is periodically assessed within the drop [9,11,12]. We 

noted that at the time of dauer entry nearly 100% of daf-2; aak-2 and daf-7; aak-2 

double mutants as well as daf-2 or daf-7 single mutants survived 1% SDS treatment, a 

treatment traditionally used to distinguish dauers from non-dauers [40] (data not 



 13 

shown). Thus, at least by this criteria aak-2 deficient animals enter the dauer stage. 

After a few days in the dauer trap assay, aak-2 deficient animals exhibited features 

associated with animals that have exited dauer yet fail to grow due to lack of nutrients. 

These features included loss of radial constriction and growth of the germ-line as well 

as behaviors such as pumping that are never seen in dauers (data not shown). These 

findings suggested that rather than dying as dauers, aak-2 deficient animals appear to 

exit the dauer state but then starve to death under the conditions of the dauer trap.  

 To distinguish the possibility that aak-2 deficient animals expire as dauers or 

prematurely exit this stage, we examined daf-2; aak-2 and daf-7; aak-2 double mutants 

when maintained as dauers on plates with food (E. coli) or within the dauer trap assay 

also supplemented with food. In a timeframe coincident with previously reported loss of 

viability during the dauer state, the aak-2 deficient animals exited the dauer state and 

grew into reproductive adults (Figure 4A-B). We also rarely observed any aak-2 

deficient animals that died as dauers. These findings suggest that the reported 

requirements for aak-2 in proper dauer survival actually reflect increased tendency of 

these animals to exit this stage and are consistent with the notion that loss of aak-2 

elicits a set of phenotypes also seen upon enhanced serotonin signaling. 

 

Loss of aak-2 mimics 5-HT signaling in promoting neuroendocrine secretions 
from ASI neurons 

Serotonin is thought to promote enhanced signaling through the insulin and TGF-b 

signaling pathways in C. elegans [16]. Therefore, we asked whether inactivation of 

AAK-2 links serotonin signaling to these signaling cascades. The ciliated sensory 

neurons ASI secrete the DAF-7 TGF-b ligand as well as DAF-28, an insulin-like peptide, 
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both of which are packaged and secreted in dense-core vesicles [41,42]. To assess the 

effects of serotonin and aak-2 on dense-core vesicle secretion, we fused full-length 

DAF-28 to a fluorescent mCherry reporter and expressed the fusion in ASI neurons 

using the daf-7 promoter [43,44]. Such transgenes have been used to quantitatively 

assess dense-core vesicle mediated secretions from various C. elegans neurons 

including the ASI [41,45,46]. Secreted peptides accumulate within coelomocytes, 

scavenger cells that non-specifically endocytose molecules within the pseudocoelom. 

This reporter system has been validated by a variety of assays that have functionally 

probed the consequences of dense core vesicle secretions [45–47]. Treatment of wild 

type animals with exogenous 5-HT resulted in a ,30% increase of fluorescent signal 

accumulation in coelomocytes (Figure 5A). Similarly, loss of aak-2 increased 

accumulation of the DAF-28 reporter, which was not further enhanced by exogenous 

serotonin treatment (Figure 5A). Similar results were obtained when examining 

coelomocyte accumulation of a full length DAF-7 fused to mCherry and expressed in the 

ASI neurons (Figure S7A). 

We next set out to determine whether the enhanced coelomocyte accumulation 

of DAF-28 and DAF-7 fusion reporters in aak-2 mutants were due to increased 

transcriptional activity, enhanced secretion, or both. Transcriptional expression levels of 

daf-7 and daf-28 were indistinguishable in wild type and aak-2 mutants as assessed by 

RT-PCR assays (Figure S7B). To examine whether the enhanced accumulation of the 

reporter fusions in the coelomocytes depended on dense core vesicle secretions, we 

generated aak-2; unc31 double mutants expressing the DAF-28::mCherry transgenic 

secretion reporter. unc-31 is a neurally expressed gene that encodes for the C. elegans 
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homolog of Calcium Activated Protein for Secretion, CAPS, which is critical for fusion of 

dense core vesicles with plasma membranes [48]. Loss of unc-31 is known to block 

enhanced secretion of dense core vesicles in C. elegans [41]. Not only was the elevated 

coelomocyte accumulations of DAF28::mCherry of aak-2 mutants abrogated by loss of 

unc-31, the levels were below those seen in wild type animals and similar to the levels 

of unc-31 mutants (Figure S7C). These findings suggested that the enhanced 

secretions seen in aak-2 mutants require the canonical dense core vesicle release 

machinery.  

Within the context of feeding regulation, we previously found that 5-HT acts 

through the G protein-coupled receptor, SER-5, to ultimately cause inactivation of AAK-

2 in the AVJ pair of interneurons [7]. As ser-5 is expressed in the ASI neurons, we 

tested whether it links serotonin to enhanced secretions from these neurons. Indeed, 

loss of ser-5 abrogated enhanced accumulation of reporter fusions secreted from the 

ASI upon serotonin treatment (Figure 5B). In turn, selective reconstitution of ser-5 only 

in the ASI neurons of ser-5 mutants once again allowed for serotonin induced secretion 

from these neurons (Figure 5C). Additionally, selective ASI expression of gsa-

1(R182C), encoding a gain-of-function mutation in Gas [49], expected to mimic 

enhanced signaling through the Gas coupled SER-5 receptor [50] and causing 

inactivation of AAK-2 [7], led to increased dense-core vesicle secretion from the ASI 

neurons (Figure 5D). Finally, we showed that aak-2; ser-5 double mutants had 

increased ASI secretions similar to those seen in aak-2 mutants (Figure 5E) and that 

loss of aak-2 did not alter ser-5 gene expression (Figure S7B). 
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The epistasis and cell specific reconstitution studies presented above suggest 

that serotonin promotes enhanced secretions from the ASI neurons through activation 

of SER-5 and subsequent inactivation of AAK-2 in the ASI neurons to promote 

enhanced secretion of DAF-7 TGF-b and the DAF-28, which play critical roles in 

whether animals stay in dauer or undergo reproductive growth. 

 
Increased neuroendocrine signals contribute to dauer exit of aak-2 mutants 

Elevated secretions of TGF-b like ligand, DAF-7, and insulins, are known to 

counteract the dauer constitutive phenotypes of daf-2 and daf-7 mutants [38,39]. We 

reasoned that if enhanced DAF-7 secretion from the ASI neurons accounted, at least in 

part, for tendency of daf-2; aak-2 mutant animals to exit the dauer stage, then 

reconstitution of aak-2 in ASI neurons should promote maintenance of the dauer state. 

This was indeed the case. While daf-2 mutants stayed in dauer throughout the course of 

the experiment, by 8 days, virtually all daf-2; aak-2 had exited dauer. By contrast, after 8 

days, ,60% of transgenic animals in which aak-2 was only reconstituted in the ASI 

neurons, were still in the dauer state (Figure 6A). They retained viability as dauers since 

they remained responsive to a gentle touch (data not shown). All of these animals 

remained in the dauer state until the experiment was terminated on day 15. 

It was previously reported that loss of atgl-1, encoding a lipase required for 

mobilization of triglycerides [51], allowed dauer survival in aak-2 deficient animals by 

preventing fat loss of these mutants [9]. We therefore wondered whether the ability of 

the subset of daf-2; aak-2 deficient animals in which aak-2 was reconstituted in the ASI 

neurons could be due to restoration of fat levels. This was, however, not the case since 
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the fat levels of these animals were indistinguishable from that of daf-2; aak-2 mutants 

(Figure S4). 

Our dauer maintenance assays were done in the presence of food such that we 

could distinguish animals that exit the dauer stage from those that might expire as 

dauers. We re-assessed the role atgl-1 loss in preventing dauer exit using our assay 

conditions. Under these conditions, 100% of daf-2 or daf-7 mutants remained in the 

dauer state by day 10 post dauer entry, while nearly 100% of daf-7; aak-2 or daf-2; aak-

2 mutants had exited the dauer and resumed growth. Loss of atgl-1 delayed the rate of 

dauer exit especially during days 2–7, however, by day 10 still nearly 100% of animals 

had exited the dauer stage and resumed growth (Figure 6B). To further investigate the 

contribution of fat levels on dauer maintenance, we screened through a metabolic sub-

library of RNAi clones to identify additional genes that are important for fat reduction 

when aak-2 is lost. We identified several peroxisomal genes whose inactivation 

increased BODIPY-labeled fatty acid staining in daf-7; aak-2 animals: pmp-1, pmp-2, 

daf-22, and prx-5 (data not shown). Like atgl-1, loss of these peroxisomal genes caused 

a 2-3 day delay in the time frame of dauer exit but did not change the finding that nearly 

a 100% of animals existed the dauer stage by day 10 (data not shown). Finally, we 

examined dauer maintenance of daf-7; mgl-1; mgl-3 triple mutants. This is because 

losses of the neurally expressed metabotropic glutamate receptors encoded by mgl-1 

and mgl-3 significantly reduce fat levels of daf-7 mutants [52]. While daf-7 mutants have 

nearly 2.5 fold more lipid staining based on Sudan Black B compared daf-7; mgl-1; mgl-

3 triple mutants [52], the three triple mutants maintained dauer survival virtually similar 

to daf-7 mutants (Figure 6C). Thus, increasing lipid reserve causes a modest delay in 
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dauer exit but does not prevent it. Similarly, reduction of lipid reservoirs is insufficient to 

promote dauer exit in daf-7 mutants. 

 
Discussion 

In C. elegans, serotonin signaling modulates a series of food related behavioral, 

physiological, and metabolic responses. We previously showed that elevated serotonin 

signaling leads to an increase in feeding rate through inhibition of AAK-2 containing 

AMPK complexes in the nervous system. The data presented here demonstrate that 

inactivation of aak-2 also mimics the effects of elevated serotonin on fat reduction, 

reduced movement, and whether animals stay in dauer or undergo reproductive growth 

and development. In the context of dauer decision, our data are consistent with a model 

whereby serotonin signaling through the SER-5 receptor leads to inactivation of AAK-2 

in the ASI neurons, in turn, promoting enhanced release of the DAF-7 TGFb ligand and 

insulins from these neurons (Figure S8). 

Although reconstitution of aak-2 in only the nervous system of animals was 

sufficient to revert many of the phenotypes of aak-2 animals to nearly wild type levels, 

the requirement for aak-2 activity mapped to different regions of the nervous system for 

various phenotypes of aak-2 mutants. For instance, reconstitution of aak-2 in only the 

hlh-34 expression neurons plus the pharynx of C. elegans was sufficient to restore wild 

type feeding rates but did not alter the fat, movement, or dauer maintenance 

phenotypes of aak-2 mutants. In turn, restoration of aak-2 to the ASI neurons of C. 

elegans, the site of production of the TGF-b ligand DAF-7, was sufficient to restore 

normalized secretion of dense-core vesicles from these neurons and significantly 

restored dauer maintenance without restoration of wild type feeding, fat, or movement to 
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the aak-2 mutants. We do not yet know which subset of serotonin responsive neurons 

may specifically account for the fat and movement effects caused by loss of aak-2. The 

finding that serotonergic regulation of feeding, fat, movement, and dauer exit through 

inhibition of AAK-2 occur in different regions of the nervous system indicates that 

behavioral and physiological processes that broadly regulate energy balance, while 

coordinated by serotonin signaling, are not simply consequences of one another and 

can be differentially modulated by the nervous system. 

The recognition that loss of aak-2 mimics the effects of serotonin signaling forced 

us to re-evaluate some of the interpretations of the physiological roles attributed to AAK-

2. Specifically, it had been suggested that aak-2 deficient dauers fail to inhibit 

proliferation of their germ-lines and fail to maintain survival during this stage due to i) a 

failure in rationing of lipid reservoirs, ii) inappropriate osmotic regulation, and iii) lack of 

a hormesis-like effect caused by inappropriately high catalase activity [11]. In each of 

these cases, the dauer trap assay was used to monitor survival of dauers [9,11]. We 

found that this assay makes it difficult to distinguish between animals that exit dauer 

and succumb to early death due to factors such as starvation and animals that fail to 

maintain survival while remaining in the dauer stage. This distinction is important for 

appropriately understanding the role of aak-2 in dauer physiology. For instance, aak-2 

mutants that have been maintained in the dauer trap assay for several days exhibit 

lower fat levels, an outcome that has been interpreted as a failure by these animals to 

ration their lipid reserves during the dauer state [9,11]. However, lower lipid levels would 

also be expected if aak-2 deficient dauers exit this stage and resume growth but then 

starve due to lack of nutrient availability in the dauer trap assay. To differentiate early 
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dauer exit from death during the dauer state, we added E. coli to the dauer trap assay 

or kept the aak-2 dauers on plates with food. Under these circumstances, we did not 

see aak-2 mutants that expired as dauers. Rather, we found that virtually all aak-2 

deficient dauers exited this state and resumed normal patterns of growth. Moreover, we 

found that elevation of serotonin signaling or loss of aak-2 promoted enhanced release 

of the DAF-7 TGF-b and the DAF-28 insulin, systemic regulators of animal growth and 

development. Thus, our data suggest that the noted effects of loss of aak-2 on dauer 

survival are due its requirement for preventing early dauer exit. Our results, however, 

neither rule out a role for AAK-2 in modulating metabolism in the periphery including 

during periods of nutrient deprivation, nor challenge the notion that AAK-2 may regulate 

the activity of ATGL-1. In fact, a recent study indicated that fat reduction induced by 

elevated serotonin signaling in the nervous system, a condition that we suggest is 

mimicked by loss of aak-2 from the nervous system, depends on transcriptional 

upregulation of atgl-1 in the periphery [31]. 

Our analyses of fat staining in aak-2 mutants led to different conclusions than 

those previously reported for these mutants [9]. These discrepant results highlight some 

of the methodological challenges in assessing C. elegans fat levels. Fixed staining and 

biochemical methods were previously used to claim that aak-2 mutants enter dauer with 

wild type levels of fat [9]. Using the same methodologies, we instead found that aak-2 

mutants have lower levels of fat at all stages including at the time of dauer entry. The 

results of our fixed dye and biochemical fat measurements were corroborated by vital 

BODIPY-fatty acid labeling as well as label free CARS. Although fixed staining methods 

and biochemical methods have in the past few years been touted as the strategies by 
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which C. elegans fat should be assessed [53,54], in our experience both methods are 

prone to an enormous amount of variability and can be fairly insensitive when used to 

gauge total lipid contents of whole animals. Fixed staining methods rely on 

permeabilization of the cuticle to allow penetrance of dyes, a process that can be 

difficult to achieve uniformly. The fixed staining methods also rely on alcohol 

dehydration steps, which if not done properly can dissolve away triglycerides. Similarly, 

the biochemical measurements of extracted triglycerides are prone to a great deal of 

experimental variation since they rely on relatively large populations of animals and 

extraction procedures that can have vastly different efficiencies in different trials. Thus, 

while each of these methods can provide valid assessments of fat levels, it is important 

to recognize their limitations and susceptibility to a high level of operator error that can 

lead to reporting of erroneously high or low levels of C. elegans fat content. 

In C. elegans, as in mammals, activation of AMPK causes fat reduction [55]. 

Thus, it may seem paradoxical that loss of aak-2 could also result in fat reduction. In 

analogy to mammalian systems, energy deprivation is expected to lead to AMPK 

activation in C. elegans and subsequent mobilization of fat reservoirs as an energy 

generating strategy. In mammals, the fat reducing effects of AMPK are largely 

attributable to activation of this kinase complex in peripheral tissues [56]. While it has 

not been formally shown to be the case in C. elegans, we speculate that the noted fat 

reductions caused by activation of AMPK are similarly dependent on activity of this 

kinase complex in peripheral tissues. By contrast, our findings indicate that the reduced 

fat of aak-2 mutants is due to loss of AAK-2 activity from the nervous system. As in the 

case of elevated serotonin signaling, inactivation of neural AAK-2 is expected to occur 
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under conditions of plentiful food supplies. In mammals, actions of hormonal cues of 

food availability on the nervous system are similarly associated with enhanced rates of 

fat oxidation [57]. For example, increased T3 thyroid hormone, in cases of 

hyperthyroidism, inactivates hypothalamic AMPK leading to increased brown adipose 

tissue thermogenesis and weight loss without inducing changes in food intake [58]. 

Additionally, it has been suggested that hypothalamic inhibition of AMPK may stimulate 

the sympathetic nervous system that innervates peripheral tissues leading to activation 

of AMPK in these tissues and stimulation of peripheral fatty acid oxidation [58,59]. 

Finally, enhanced serotonin signaling in mammals also promotes enhanced fat 

oxidation, although it is unknown whether this enhancement is dependent on neural 

AMPK inhibition [60–63]. Thus, in both C. elegans and mammals, inhibition of neural 

AMPK is associated with enhanced peripheral fat oxidation. An area of divergence 

between C. elegans and mammals are the effects of elevated serotonin signaling or 

inactivation of hypothalamic AMPK on feeding behavior. While elevation of serotonin 

signaling causes feeding increase through inhibition of AAK-2 in specific neurons of C. 

elegans, elevated serotonin signaling or inhibition of hypothalamic AMPK are thought to 

cause satiety in mammals [3,57,59]. 

There is ample evidence to assume that rather than simply a binary on/off 

indicator of food availability, serotonin-signaling functions along a continuum of levels. 

The available data support the existence of at least three states: a level of serotonin 

signaling seen in well-fed animals, which is lowered as animals are removed from food, 

and a highly elevated level that drives transient behaviors such as the enhanced 

slowing response. One appealing aspect of the regulatory link between serotonin 
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signaling and AAK-2 containing AMPK complexes is that the known features of AMPK 

regulation could also account for a variety of regulatory states. For instance, AMPK can 

be in an activated state during periods of nutrient deprivation, in an intermediate state (a 

nonactivated, non-inhibited state) during a well-fed state, or in a fully inhibited state as 

that mimicked by loss of aak-2 or elevation of serotonin levels beyond those of well-fed 

animals. Under standard laboratory conditions, the behavioral phenotypes of aak-2 

mutants, highly elevated feeding rate and dramatically reduced movement rate, are 

seen transiently when food deprived wild type animals reencounter food. Therefore, we 

speculate that the burst of serotonin signaling upon re-encountering food leads to 

inhibition of neural AAK-2 containing complexes and subsequent behavioral and 

physiological outcomes seen under these conditions. As serotonin levels return to the 

level of well-fed animals, neural AAK-2 complexes are likely to be in an intermediate 

state, neither activated nor fully inhibited. 

In numerous organisms, AMPK has been extensively studied as a master 

regulator of energy balance. In most of these cases, AMPK is considered to function in 

the context of peripheral tissues and as a downstream effector of hormonal signals 

[1,2]. Our findings here demonstrate that the AAK-2 containing AMPK complexes can 

also act as an upstream regulator of hormonal pathways by modulating their neural 

secretions. The molecular mechanisms that promote enhanced DCV secretions from 

the ASI neurons upon AAK-2 inactivation remain to be identified. Whether promotion of 

DCV secretion is a general feature of AAK-2 inhibition or if it is dependent on particular 

neural contexts also remains to be seen. 
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Materials and Methods 
 
Strains 

Standard C. elegans methods were used for strain construction [64]. N2 Bristol was 

used as the wild type control and the following mutant alleles were analyzed: ser-

5(tm2654)I, aak-1(tm1944)III, tph1(mg280)III, daf-2(e1370)III, daf-7(e1372)III, unc-

31(ft1)IV, aak-2 (ok524)X, tph-1(mg280)III; aak-2(ok524), aak-1(tm1944); aak2(ok524), 

daf-2(e1370)III; aak-2(ok524), daf-7(e1372)III; aak2(ok524), unc-31(ft1)IV; aak-

2(ok524). Transgenic animals were generated by injecting plasmids and the unc-

122::gfp or myo-3::gfp co-injection marker at a concentration of 50 ng/ml. For secretion 

assays, animals carrying full length DAF-28::mCherry and DAF7::mCherry driven by a 

daf-7 promoter were used. Previously described [41] wild type animals carrying 

integrated copies of these transgenes were crossed into indicated mutant backgrounds 

to allow for direct comparisons. Dauer constitutive strains were maintained at 15uC, 

except when testing dauer entry and maintenance, which were conducted at 25uC. 

 
Plasmid construction  

Plasmids were constructed using Gateway Technology. pmyo-2 and pmyo-3 entry 

vectors were constructed as described [47]. punc119::aak-2a, punc-119::aak-2c, pgrl-

21::aak-2a, pgrl-21::aak-2c, pdaf7::aak-2a, pdaf-7::aak-2c were generated by Gateway 

cloning. For the unc-119 promoter, 2000 bp including the ATG was amplified by PCR 

from genomic DNA and sub-cloned into Gateway entry vector pDONR-P4-P1R. For the 

daf-7 promoter, 2800 bp including the ATG was amplified by PCR from genomic DNA 

and sub-cloned into Gateway entry vector pDONR-P4-P1R. For the grl-21 promoter, 

745 bp including the ATG was amplified by PCR from genomic DNA and sub-cloned 
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into Gateway entry vector pDONR-P4-P1R. Rescue constructs were generated using 

the pKA453 plasmid to obtain promoter::orf::intercistronic::GFP polycistronic fusions. 

This resulted in the expression of GFP from the same transcript as the ORF without 

modification. pdaf-7::daf-7::mCherry and pdaf-7::daf-28::mCherry, integrated lines were 

generated as described in [41]. To generate pdaf-7::ser-5::gfp, and pdaf7::gsa-

1(R182C)::gfp, ser-5 or gsa-1 cDNA, was amplified and cloned according to the 

procedure outlined in [7], and recombined using Gateway cloning methodology. The 

R182C mutation was inserted into the gsa-1 sequence by oligo-mediated sitedirected 

mutagenesis and the desired mutation was confirmed by sequencing the resulting 

plasmid. 

 
Lipid analysis 

Extended methods for BODIPY staining, triglyceride measurements, and Sudan 

Black B staining are provided in reference [65]. Sudan Black B assays were performed 

at room temperature (22uC) [38] with the following modification to minimize staining 

variability, which allowed for quantitative comparisons between various genotypes: 

animals from one genotype were labeled with fluorescein isothiocyanate (FITC) and 

then fixed and stained in the same tube as unlabeled animals from another genotype. 

For quantitation, Sudan Black images were collected on a Zeiss Axioplan 2 microscope 

fitted with a Hamamatsu ORCA-AG camera. Staining intensities were quantitated using 

Improvision Openlab software. Mean pixel intensity was calculated for staining in the 

region from the first intestinal cells adjacent to the pharynx midway through the animal 

to the vulva. Background was determined based on pixel intensity of nonspecific 

staining in the pharynx. Values are reported as mean pixel intensity minus background 
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for at least ten randomly selected animals per genotype. In each case, test and control 

animals were fixed and stained in the same tube. 

Biochemical determination of extracted triglycerides: synchronized nematodes 

from a liquid culture of approximately 5000 animals were washed three times by 

centrifugation and resuspension in 10 ml S-basal medium supplemented with 0.1% 

PEG8000. After the washes, the nematode population pellet was finally suspended in 

approximately 200 ml of S-basal +0.1% PEG-8000. 50 ml of this suspension was 

reserved for protein determination (see below) and 100 ml of suspension was diluted 

with 59 ml of water for lipid determination. To extract triglycerides, chloroform (0.2 ml) 

and methanol (0.4 ml) was added to the 0.159 ml aqueous suspension of nematodes 

and mixed by periodic vigorous vortexing over 20 min. An additional 0.2 ml of 

chloroform and 0.2 ml of 0.2 N HCl were then added. The mixture was mixed by 

vigorous vortexing over 20 min, then centrifuged at 2,500 g for 5 min to separate the 

phases. The lower phase was washed once with 0.75 ml of the aqueous phase derived 

from a mixture of chloroform, methanol, 0.1 N HCl (1:1:1), then concentrated by vacuum 

centrifugation. The residue was dissolved in 25 ml of chloroform:methanol (1:1), 10 ml 

of which was applied to a thin layer chromatography plate (Merck silica gel-60), along 

with triglyceride standards (0.5–10 mg). The samples and standards were eluted using 

a hexanes-ether-acetic acid mixture (70:30:1) and the plate was developed by spraying 

with phosphomolybdic acid stain (Sigma) and heating in a 125uC oven for 10 min. An 

image of the plate was acquired using a flat bed scanner (Epson) and the integrated 

density of the bands that exhibited the same elution profile as the triglyceride standards 

was quantified. The optical densities were then converted to TAG mass by comparison 
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to a TAG standard curve. The mass of lipids obtained from each extraction was 

normalized to the total protein extractable for 3-4 independent nematode cultures per 

experimental condition. To determine total protein levels for normalization, 250 ml of 

extraction buffer (7 M urea, 2 M thiourea, 4% CHAPS, 50 mM tris-HCl pH 7.4, 5 mM 

TCEP, 1 mM EDTA) was added to the 50 ml suspension of nematodes from the same 

suspension that was used for TAG extraction. The sample was rotated end-over-end 

and periodically vortexed for 1 hr at 37uC. The sample was centrifuged (10 min at 

16,500 g) and the amount of protein in the supernatant was determined by Bradford 

assay (Bio-Rad). 

For BODIPY staining a 1 mg/ml stock of C1-BODIPY 500/ 512 C12 (Invitrogen) 

was added to NGM plates seeded with OP50 at a final dilution of 1:50,000. 

Synchronized L1 animals were added to plates and imaged as Day-1 adults after 

growth at 20uC. Fluorescent images were acquired on a Zeiss Axioplan II microscope 

outfitted with a digital CCD camera using the same sub-saturating exposure settings. 

Using ImageJ, the area surrounding the head of the animal (starting just above the 

intestinal cells) was selected from which total integrated intensity was derived. At least 

10 animals were imaged for each treatment and experiments were repeated a minimum 

of 2 times. Significance was determined using a student’s t-test. 

For the coherent anti-stokes Raman scattering, CARS, imaging [32], a 

picosecond optical parametric oscillator (picoEmerald - APE) with the stokes tuned at 

1064 nm and pump at 817 nm in order to match the lipid CH2 stretching mode at 2845 

cm21 [33,34] was used. Both laser pulses are synchronized in time and space and 

directed to a galvanometric mirror imaging microscope (Nikon Ti-U inverted microscope 
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coupled to a TriM Scope II - LaVision BioTec system) and focused onto the sample by a 

60X Nikon objective. The backscattered signal is then directed to a set of dichroic and 

band pass filters in order to remove the pump and stokes lasers and to detect only the 

anti-stokes signal in a photomultiplier (Hamamatsu H7422-40). To quantitate the CARS 

signal for each animal, all of the Z-slices were combined, and background and maximal 

values were calculated from these combined slices. Regions of interest (head 

hypodermal region or intestinal areas) were selected and quantitated for each animal 

and integrated intensity densities are reported for each region. For each genotype 

and/or serotonin treatment, average data from at least five separate animals are 

reported. 

Dauer entry and dauer exit 

To assess dauer entry, we used 1% SDS treatment as previously describe [40]. 

Post treatment, animals were gently tapped to monitor movement to determine viability. 

At least 70 animals per conditions were tested. For dauer exit, 100 animals were plated 

on each of 5 plates—seeded with OP50 (or HT115 in the case of RNAi bacteria) and 

rimmed with 40% glycerol—and incubated at the restrictive temperature (25uC). After 

48 h, virtually all daf-c animals were in dauer. Plates were kept at 25uC and once per 

day, animals that had exited dauer were picked off the plates and counted. Graphed 

data reflects the averages of 5 plates of 100 animals. 

 
Movement 

Well-fed, synchronized young adult animals were washed twice with S-basal and 

plated on unseeded NGM plates. Movement was assayed 5 min after plating by 

counting the number of body bends per 20 s. Ten animals were counted per strain. 



 29 

 
Secretion 

Strains were synchronized by hypochlorite treatment and the synchronized L1s 

were plated onto 6 cm NGM plates seeded with OP50. Animals were grown at 20 uC for 

2 days until they reached L4 stage. Sub-saturating fluorescence images of the first pair 

of coelomocytes from 20–30 transgenic animals were recorded at 166magnification 

using a Zeiss Axioplan 2 microscope fitted with a Hamamatsu Orca II camera. 

Fluorescence intensities were quantified using ImageJ software. The outline of each 

coelomocyte was traced using the image from the punc-122::GFP coelomocyte marker. 

The fluorescence of DAF-28::mCherry or DAF7::mCherry within that area was then 

measured. The mean fluorescence for each cell was subtracted from the minimum 

fluorescence (background) within that cell. Fluorescence intensities were normalized to 

the wild type, sham treated control. 

 

RNAi  

HT115 bacteria containing each RNAi vector were tested as previously 

described. Briefly, bacteria were grown overnight. The following day, bacteria were 

pelleted and resuspended to 2x concentration prior to plating on NGM agar containing 6 

mM IPTG and 25 mg/ml ampicillin. Animals were added to plates (BODIPY staining) or 

liquid cultures (TLC) as L1s and grown until the L4 stage. Animals were imaged as L4 

(BODIPY) or subjected to total lipid extraction followed by thin layer chromatography 

(TLC). 
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Oxygen consumption  
Oxygen consumption was measured in synchronized L4 animals that were 

washed twice with S-basal. Per genotype, 200 animals were placed in a plate with 

biosensor film used to gauge oxygen consumption (BD Biosciences, Cat# 353830). We 

previously determined that a three-hour period allows for biosensor film to reach 

equilibrium. The data are end-point measurements, which reflect oxygen consumption 

rather than biosensor equilibrium. Per genotype, the measurements were done in 

quadruplicate, and each experiment repeated 3 times. Measurement of fluorescence 

was by a Molecular Devices FlexStation. 

 
 
Statistical analysis  

For pair-wise comparisons, student’s t-test was used. For multiple comparisons, 

one-way ANOVA with Bonferroni correction was used. Error bars represent +/-SEM. 

*represents statistical difference relative to wild type unless otherwise indicated. P-

values are indicated in figure legends. 
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 Figure 1.1 Loss of aak-2 mimics increase serotonin signaling 
A. aak-2 mutants and wild type animals (WT) treated with exogenous serotonin (5 mM) 
or fluoxetine (50 µg/mL) have fewer body bends when removed from food. Pan-
neuronal reconstitution of aak-2 (punc-119) restores wild type body bends to aak-2 
mutants. n=10, *p<0.05, one-way ANOVA with Bonferroni correction for multiple 
comparisons. B. aak-2 deficient animals have reduced hypodermal BODIPY 
fluorescence relative to WT. Wild type BODIPY staining is restored to aak-2 mutants 
when aak-2 is reconstituted in the nervous system (punc-119). n=10, ***p<0.001, one-
way ANOVA with Bonferroni correction for multiple comparisons. C. Wild type animals 
treated with 5mM 5-HT have significantly lower triglycerides per protein (TAG/protein) 
compared to sham treatment as determined by total lipid extraction followed by Thin 
Layer Chromatography. Sham treated aak-2 mutants already have significantly lower 
TAG/protein compared to WT and 5mM 5-HT treatment does not result in further 
reduction. TAG/protein levels of 5-HT treated WT are not significantly different than 
those of aak-2 +/- 5-HT. n=3, *p<0.05, Student’s t-test. D-E. Quantitation of signal 
intensities of Coherent anti-Stokes Raman Scattering, CARS, of WT and aak-2 mutants 
+/- 5mM 5-HT treatment. 5-HT treatment lowered the CARS signal intensities from the 
intestinal (D) and head hypodermal (E) regions of WT animals. aak-2 mutants had lower 
signal intensities relative to WT, which was not further reduced by 5 mM 5-HT 
treatment. Signal intensities of 5-HT treated WT were not significantly different than 
those of aak-2 +/- 5-HT. n=5, *p<0.01, Student’s t-test. F. Loss of aak-2 or 5mM 5-HT 
treatment caused elevated oxygen consumption. WT and aak-2 mutants (n=800 per 
genotype) were sham treated. Data are expressed as a percentage of WT. Error bars 
represented +/- SEM. **p < 0.01 versus sham treated WT, one-way ANOVA with 
Bonferroni correction for multiple comparisons G-H. Loss of cpt-1a via RNAi restores 
wild type BODIPY staining to hypodermis (white arrow) and intestine (yellow arrow) of 
aak-2 mutants. Representative BODIPY staining images (G) and corresponding 
quantitations (H) are shown. n=5, *p<0.05, Student’s t-test.  
 

 

 

 

 

 



 33 

 
 
 

 

 

 

 

 

 

 

 



 34 

Figure 2. Effects of losses of aak-1 and tph-1 on aak-2 mutant phenotypes 
A-C. Phenotypes of aak-2 loss of function are not dependent on aak-1. Feeding (A), 
movement (B), and hypodermal BODIPY staining levels (C) of aak-1; aak-2 double 
mutants are not significantly different than those of aak-2 mutants. For feeding, movement 
and BODIPY measurements, n=10, *p<0.05, Student’s t-test. Error bars represent +/-
SEM. D-F. Loss of aak-2 elicits feeding (D), movement (E), and fat phenotypes (F) even 
in serotonin deficient tph-1 mutants. The feeding rate of tph-1; aak-2 mutants was 
significantly different than both tph-1 and aak-2 single mutants (D). tph-1; aak-2 double 
mutants moved significantly more slowly than tph-1 or WT but statistically 
indistinguishable than aak-2 mutants off of food (E) For BODIPY staining in the 
hypodermal head region, loss aak-2 further reduced the already low hypodermal head 
staining of tph-1 mutants (F). For feeding, movement and BODIPY measurements, n=10, 
*p<0.05, Student’s t-test. Error bars represent +/-SEM. Please note that the BODIPY 
quantitations are of the head hypodermal region only. While tph-1 mutants have been 
reported to have elevated intestinal fat levels, their head hypodermal region actually has 
less staining relative to WT animals. To be consistent with our various other BODIPY 
measurements, we have concentrated on the same head hypodermal region when 
comparing tph-1 with tph-1; aak-2.  
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Figure 3. daf-7; aak-2 and daf-2; aak-2 have reduced fat relative to daf-7 and daf-2 
at all stages of development. A. daf-7; aak-2 dauers have significantly reduced BODIPY 
fluorescence relative to daf-7 on the first day after the dauer molt. Insets show entire 
animals and the bottom panel shows a zoomed-in selection, denoted by the yellow box, 
from the top panel. B. Quantification of anterior hypodermal BODIPY fluorescence for 
daf-7 and daf-7; aak-2 animals on the first day after the dauer molt. n=8. * p<0.05, 
Student’s t-test. C. Representative Sudan Black B staining of daf-7 (top) or daf-7; aak-2 
(bottom) animals on the first day after the dauer molt. D. Representative Sudan Black B 
staining of daf-2 (top) or daf-2; aak-2 (bottom) animals on the first day after the dauer 
molt. E. daf-7; aak-2 animals have significantly lower TAG/protein than daf-7 animals kept 
at the restrictive temperature (25 °C) on the first day after the dauer molt as determined 
by total lipid extraction followed by Thin Layer Chromatography. n=4, * p< 0.05, Student’s 
t-test. F. daf-2; aak-2 animals have significantly lower TAG/protein than daf-2 animals 
kept at the restrictive temperature (25 °C) on the first day after the dauer molt as 
determined by total lipid extraction followed by Thin Layer Chromatography. n=4, * p< 
0.05, Student’s t-test. G. L4 stage daf-7; aak-2 animals have significantly reduced 
BODIPY fluorescence intensity relative to daf-7 animals. Insets show the anterior portion 
of the animal and the bottom panel shows a zoomed-in selection from the top panel. H. 
Quantification of anterior hypodermal BODIPY fluorescence for daf-7 and daf-7; aak-2 
animals as L4 animals. n=10, * p<0.05, Student’s t-test. Error bars represent +/-SEM. 
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Figure 1.4. aak-2 deficiency causes dauer exit. A-B. 100% daf-2; aak-2 (A) and daf-7; 
aak-2 (B) animals exit dauer when kept on plates with food (E. coli OP50) at the restrictive 
temperature (25 °C) and resume reproductive, while 100% daf-2 (A) and daf-7(B) mutants 
animals maintain dauer under similar conditions. A representative comparison is shown. 
Similar rates of exit and growth were found in at least 5 independent experiments per 
comparison. 
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Figure 1.5. Elevated serotonin or loss of aak-2 cause increased dense-core vesicle 
secretion from ASI neurons. A-B. Quantitation of tagged DAF-28::mCherry (A) and 
DAF-7::mCherry (B) accumulation in coelomocytes. daf-28::mCherry and daf-7::mCherry 
were expressed in the ASI neurons using a daf-7 promoter. Error bars represent standard 
error. * p < 0.05 relative to WT, Student’s t-test C. Quantitation of tagged DAF-
28::mCherry accumulation in coelomocytes when ser-5 is reconstituted in ASI (pdaf-7) in 
otherwise ser-5 deficient animals. * p < 0.05 relative to WT, Student’s t-test. D. Secretion 
of DAF-28::mCherry from the ASI neurons is elevated upon ASI specific expression of 
gsa-1(R182C), encoding a gain-of-function version of Gαs, previously shown to cause 
inactivation of AAK-2. Error bars represent standard error. * p < 0.05, Student’s t-test, 
relative to WT E. Elevated secretion of DAF-28::mCherry form ASI in aak-2 mutants is 
not dependent on ser-5. Error bars represent standard error. * p < .05 relative to WT, 
Student’s t-test. In A-E, punc-122::GFP was used to mark coelomocytes. Each bar 
represents examination of 20–30 transgenic animals. For each comparison, the 
transgene of interest was introduced into indicated backgrounds by crossing. 
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Figure 1.6. Reconstitution of aak-2 in ASI partially rescues dauer exit. A. daf-2; aak-
2 animals exit dauer when kept on plates at the restrictive temperature (25 °C), while daf-
2 animals maintain dauer. Reconstitution of aak-2 in only the ASI neurons restores dauer 
maintenance to ~60% of daf-2; aak-2 double mutants. Non-transgenic siblings do not 
show any improved dauer maintenance. Animals exiting dauers grew to adulthood in each 
case. We did not examine these dauers beyond day 15 only because it became 
increasingly difficult to maintain these plates contamination free and prevent the dauers 
from escaping the plates. B-C. RNAi-mediate knockdown of atgl-1 delays dauer exit for 
daf-2; aak-2 (B) and daf-7; aak-2 (C) animals but does not allow for dauer maintenance 
beyond the time that a 100% of vector treated animals have exited the stage and resumed 
growth. While relative to daf-7 mutants, daf-7; mgl-1; mgl-3 triple mutants have low fat 
levels, they maintain dauer as well as daf-7 mutants (C). Each of the graphed data in A-
C reflects the averages of 5 plates of 100 animals per genotype. A representative result 
is shown. The indicated results were repeated in at least three independent trials. 
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Figure 1.S1, related to Figure 1.1 Feeding and movement responses of WT and aak-2 
mutants to increasing doses of exogenous 5-HT. A. Treatment of wild type animals with 
increasing doses of exogenous 5-HT causes a progressive reduction in movement and 
ultimately paralysis. The movement rates of animals treated with 5mM 5-HT were similar 
to those treated with high concentrations of fluoxetine, suggesting that this dose of 
exogenous 5-HT mimics the effects of elevating endogenously produced 5-HT. Well-fed 
animals were washed twice with S-Basal and transferred to assay plates without a 
bacterial lawn. Locomotion rate was recorded after 5 minutes for a minimum of 10 animals 
of each genotype per concentration. B. Relative to wild type animals, aak-2 mutants are 
more sensitive to paralysis caused by escalating doses of 5-HT. At least 30 animals of 
each genotype per concentration were tested. Movement was scored after a 5-minute 
exposure to 5-HT. C. Effects of various doses of 5-HT on feeding. Treatment of WT 
animals with increasing doses of 5-HT caused a progressive elevation of pumping rate 
that reached its maximal levels at 5mM and was not further increased at 10 or 20 mM 
concentrations of exogenous 5-HT. The already elevated feeding rates of aak-2 mutants 
were not further increased by up to 10mM exogenous 5-HT treatment. Consistent with 
the enhanced susceptibility of aak-2 mutants to deleterious effects of high exogenous 5-
HT, aak-2 mutants became sickly and displayed lower than wild type feeding at 20mM 
concentration of 5-HT. D. 5mM 5-HT treated wild type animals and untreated aak-2 
animals show significant overlap in transcription expression of indicated metabolic genes 
relative to untreated wild type animals. Transcript levels of nearly 100 fat and sugar 
metabolic genes were determined by real-time PCR (RT-PCR). List of the genes and their 
predicted functions are provided in Table S1. Genes found to be upregulated or 
downregulated in 5-HT treated wild type animals or in untreated aak-2 animals were 
validated using cDNA preparations from two independent nematode growths. Error Bars 
represent +/-SEM.  
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Figure 1.S2, related to Figure 1.1 A. RNAi inactivation of cpt-1a (W01A11.5) restored 
normalized triglycerides (TAG) per protein (TAG/protein) measurement. WT and aak-2 
mutants were grown either on vector RNAi control or on W01A11.5 RNAi. n=3, *p<0.05, 
Student’s t-test. Error bars represent +/-SEM. B. Loss of F08A8.4, encoding a putative 
acyl-CoA oxidase, via RNAi restores BODIPY staining to aak-2 mutants. Representative 
images of BODIPY staining. C. Quantitation of hypodermal BODIPY fluorescence 
intensity shown in B. n=5, *p<0.05, one-way ANOVA with Bonferroni correction for 
multiple comparisons.  
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Figure 1.S3, related to Figure 1.1. Transcript levels of tph-1 and aak-1 are unchanged 
in aak-2 mutants relative to WT as assessed by RT-PCR assay. In each case, data are 
normalized to average of the WT levels. n=3, error bars represent +/-SEM  
 

 

 

 

 

 

 

 

 

 

 



 46 

 

Figure 1.S4, related to Figure 1.1 Quantitation of BODIPY fluorescence intensity shows 
that reconstitution of aak-2 in various peripheral tissues or in neurons implicated in 
feeding or dauer exit does not rescue the low fat of aak-2 mutants. Data for reconstitution 
in the body wall muscle (pmyo-3::aak-2), hypodermis (pgrl-21::aak-2), hlh-34 neurons, 
likely AVJ, implicated in feeding elevation upon AAK-2 inactivation (phlh-34::aak-2), ASI 
neurons (pdaf-7::aak-2) are shown. n=10, *p<0.05, one-way ANOVA with Bonferroni 
correction for multiple comparisons. Asterisks indicate significance relative to WT. 
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Figure 1.S5, related to Figure 1.2 aak-2 deficient dauer animals have reduced fat at all 
stages. A-D. Sudan Black B staining of three representative daf-7 (A,C) and daf-7; aak-2 
(B,D) animals on day 1 (A,B) and day 4 (C,D) of dauer. E-H. Representative BODIPY-
labeled fatty acid staining of daf-7 (E,G) and daf-7; aak-2 (F,H) as L2 larvae (E,F) and L4 
larvae (G,H). I-J. Representative images of BODIPY-labeled fatty acid stained daf-2 (I) 
and daf-2; aak-2 (J) L4 larvae. K-N. Sudan Black B staining of representative daf-2 (K, 
M) and daf-7; aak-2 (L,N) animals on day 1 (K,L) and day 4 (M,N) of dauer.  
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Figure 1.S6, related to Figure 1.2. daf-2; aak-2 animals have reduced fat relative to daf-
2 animals. Quantitation of signal intensities of coherent anti-Stokes Raman Scattering, 
CARS, imaging of daf-2 and daf-2; aak-2 as L4 animals +/- 5mM 5-HT treatment. 5-HT 
treatment lowered the CARS signal intensities from head hypodermal regions of daf-2 
animals. daf-2; aak-2 mutants had lower signal intensities relative to daf-2, which was not 
further reduced by 5 mM 5-HT treatment. Signal intensities of 5-HT treated daf-2 were 
not significantly different than those of aak-2 +/- 5-HT. n=5, *p<0.05, Student’s t-test. 
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Figure 1.S7, related to Figure 1.4 A. As in DAF-28::mCherry (Figure 4), treatment with 
5mM 5-HT or loss of aak-2 promote enhanced secretions of DAF-7::mCherry expressed 
in the ASI neurons using a daf-7 promoter, as assessed by the coelomocyte accumulation 
assay. punc-122::GFP was used to mark coelomocytes. The daf-7::mCherry transgene 
was introduced into indicated backgrounds by crossing. WT and aak-2 mutants were 
sham treated. Data are shown relative to sham treated WT animals. Each bar represents 
examination of 20–30 transgenic animals. Error bars represent standard error. *p <0.05, 
one-way ANOVA with Bonferroni correction for multiple comparisons. B. Loss of aak-2 
does not significantly alter gene expressions of daf-7, daf-28, or ser-5 as measured by 
RT-PCR. In each case, data are normalized to average of the WT levels. n=3, error bars 
represent +/-SEM C. Loss of unc-31 abrogates the elevated coelomocyte accumulation 
of DAF-28::mCherry seen upon 5mM 5-HT treatment or loss of aak-2. Error bars 
represent standard error. Asterisks denotes significance relative to sham treated WT 
animals, *p<0.05, one-way ANOVA with Bonferroni correction for multiple comparisons. 
An average of 20-30 transgenic animals were examined for each bar. The daf-28 
neuropeptide was tagged with mCherry, while punc-122::GFP was used to mark 
coelomocytes. 
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Figure 1.S8 Model Inactivation of AAK-2 in the hlh-34 expressing AVJ neurons mediate 
the effects of elevated serotonin signaling on feeding while inactivation of AAK-2 in the 
ASI neurons mediates the effects of elevated serotonin signaling in enhanced release of 
the DAF-7 TGF-β ligand and the DAF-28 insulin. In both cases, serotonin signaling 
through the SER-5 receptor leads to activation of Protein Kinase A, which in turn, causes  
inhibition of AAK-2. 
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Table 1.S1 Effects of 5mM 5HT and aak-2 loss on expression of select metabolic 
genes. Effects of 5mM 5-HT and aak-2 loss on expression of select metabolic genes. 
Predicted annotations for each of the genes are indicated. RT-PCR assays were 
repeated at least twice for genes whose transcription was altered by addition of 5mM 
5-HT or loss of aak-2. Data are normalized to untreated WT for each gene. 
 
Gene ID Putative Function WT + 5mM 5HT aak-2 

FAT METABOLISM 
F46E10.1 Acyl-CoA Synthetase 1.18 0.93 ± 0.35 
T01B8.6 Acyl-CoA Synthetase 4.64 ± 2.94 1.80 ± 0.64 
Y65B4BL.5 Acyl-CoA Synthetase 0.59 0.88 ± 0.06 
Y76A2B.3 Acyl-CoA Synthetase 0.81 0.68 ± 0.10 
F38H4.8 Enoyl-CoA Hydratase 0.70 ± 0.30 0.38 ± 0.15 
F43H9.1 Enoyl-CoA Hydratase 1.12 0.71 ± 0.11 
R06F6.9 Enoyl-CoA Hydratase 0.92 0.85 ± 0.06 
F56B3.5 Enoyl-CoA Hydratase 1.48 0.93 ± 0.25 
T05G5.6 Enoyl-CoA Hydratase 1.20 1.64 ± 0.38 
Y105E8A.4 Enoyl-CoA Hydratase 0.76 0.87 ± 0.061 
F09E10.3 Short-chain Dehydrogenase 1.05 0.71 ± 0.14 
K05F1.3 Acyl-CoA Dehydrogenase 2.63 1.26 ± 0.77 
F01G4.2 3OH-Acyl CoA Dehydrogenase 0.89 1.01 ± 0.02 
B0272.3 3OH-Acyl CoA Dehydrogenase 1.7600 ± 1.24 1.71 ± 0.79 
F08A8.2 Acyl-CoA Oxidase-1 1.06 1.77 ± 0.33 
F08A8.3 Acyl-CoA Oxidase 0.49 1.05 ± 0.49 
F08A8.4 Acyl-CoA Oxidase 0.46 0.38 ± 0.24 
F25C8.1 Acyl-CoA Oxidase-1 0.83 0.71 ±0.08 
F59F4.1 Acyl-CoA Oxidase-1 0.93 ± 0.20 0.96 ±0.46 
T02G5.4 Acetyl-CoA Thiolase 0.92 1.11 ± 0.01 
B0303.3 KetoAcyl-CoA Thiolase 1.50 1.22 ± 0.02 
W08D2.4 Fat-3  ∆6 Desaturase 0.98 0.87 ± 0.10 
T13F2.1 Fat-4  ∆5 Desaturase 1.33 1.37 ± 0.03 
Y67H2A.8 Fat-1  ∆3 Desaturase 1.22 1.11 ± 0.12 
W02A2.1 Fat-2  ∆12 Desaturase 1.07 0.64 ± 0.39 
VZK822L.1 Fat-6 1.07 0.93 ± 0.18 
ZK742.5 lbp-6 0.69 ± 0.51 0.83 ± 0.29 
T22G5.2 lbp-7 1.12 1.13 ± 0.01 
T22G5.6 lbp-8 3.79 1.98 ± 1.23 
F40F4.3 lbp-1 0.94 1.06 ± 0.07 
EEED8.2 Fatty Acid Binding Protein 0.64 0.57 ± 0.06 
EEED8.3 Fatty Acid Binding Protein 1.83 ± 1.28 1.56 ± 0.48 
Y40B10A.1 Fatty Acid Binding Protein 0.96 1.20 ± 0.28 
C07E3.9 Phospholipase A2 0.86 1.03 ± 0.13 
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Gene ID Putative Function WT + 5mM 5HT aak-2 
C42D8.5 Angiotensin Conv Enzyme 1.09 0.68 ± 0.38 
C44B7.8 ATP Binding Protein 0.85 0.64 ± 0.01 
C25A1.5 Fatty-Acid Hydroxylase 0.50 ± 0.25 0.68 ± 0.18 
C44B7.9 Peroxisomal Membrane 2.12 0.82 ± 0.13 
Y56A3A.19 Acyl Carrier Protein 0.97 0.86 ± 0.10 
T02G5.7 Acetyl-CoA Acetyltransferase 0.84 0.88 ± 0.12 
T02G5.8 Acetyl-CoA Acetyltransferase 1.24 ± 0.12 1.07 ± 0.22 
C50D2.7 GlucoKinase 0.98 0.97 ± 0.22 
T08G2.3 Acyl-CoA Dehydrogenase 17.64 1.79 ± 1.31 
C55B7.4A Acyl-CoA Dehydrogenase 1.51 1.53 ± 0.19 
F28A10.6 Acyl-CoA Dehydrogenase 1.08 1.01 ± 0.11 
C02B10.1 Acyl-CoA Dehydrogenase 5.99 ± 4.55 1.86 ± 0.69 
E04F6.5 Acyl-CoA Dehydrogenase 1.39 1.79 ± 0.76 
C17C3.12A Acyl-CoA Dehydrogenase 1.27 1.10 ± 0.01 
F54D5.7 Acyl-CoA Dehydrogenase 0.70 0.40 ± 0.23 
F41C3.3 Acyl-CoA Synthase 0.93 0.82 ± 0.11 
T20B3.1 Carnitine Palmitoyl Transferase 3.32 ± 1.84 1.58 ± 0.46 
F09F3.9 Carnitine Palmitoyl Transferase 1.22 ± 0.25 0.55 ± 0.18 
K11D12.4 Carnitine Palmitoyl Transferase 10.98 1.74 ± 0.72 
Y48G9A.10 Carnitine Palmitoyl Transferase 1.30 0.95 ± 0.26 
W01A11.5 Carnitine Palmitoyl Transferase 0.74 0.46 ± 0.05 
F41E7.6 Carnitine Palmitoyl Transferase 1.28 ± 0.38 1.39 ± 0.50 

CARBOHYDRATE METABOLISM 
C05C10.3 Succinyl-CoA;3-ketoacid CoA 

Transferase 0.95 0.75 ± 0.11 
F25B4.6 HMG-CoA Synthase 0.98 0.78 ± 0.01 
Y71G12B.10 HMG-CoA Lyase 1.04 ± 0.26 0.75 ± 0.07 
F14B4.2 Hexokinase 0.69 ± 0.13 0.94 ± 0.07 
H25P06.1 Hexokinase 1.09 ± 0.39 0.93 ± 0.17 
Y71H10A.1 6-Phosphofructokinase (both 

spliceforms) 1.25 0.83 ± 0.41 
Y71H10A.1a 6-phosphofructokinase (a 

spliceform) 1.18 1.03 ± 0.14 
R11A5.4 PEPCK (all spliceforms) 1.06 0.89 ± 0.02 
W05G11.6 PEPCK (all spliceforms) 1.64 0.98 ± 0.19 
F25H5.3 Pyruvate Kinase (all 

spliceforms) 0.85 0.89 ± 0.03 
ZK593.1 Pyruvate Kinase 1.02 0.93 ± 0.09 
Y110A7A.6 Phosphofructokinase (both 

spliceforms) 0.65 0.77 ± 0.12 
K02B2.1 Phosphofructokinase 0.97 ± 0.34 0.83 ± 0.11 
T09F3.3 Glyceraldehyde-3 Phosphate 

Dehydroge 0.78 ± 0.32 2.0 ± 0.81 
F33H1.2 Glyceraldehyde-3 Phosphate 

Dehydroge 0.82 ± 0.35 0.59 ± 0.17 
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Gene ID Putative Function WT + 5mM 5HT aak-2 
R11A5.4a/b PEPCK (a and b spliceforms) 0.76 ± 0.19 0.69 ± 0.08 
R11A5.4a/c/d PEPCK (a, c and d isoforms) 0.96 0.94 ± 0.08 
W05G11.6a/d PEPCK (a and d spliceforms) 1.49 1.08 ± 0.33 
W05G11.6a/b/d PEPCK (a,b and d spliceforms) 1.15 0.87 ± 0.17 
W05G11.6a/b/c PEPCK (a,b and c spliceforms) 3.95 2.34 ± 1.29 
F25H5.3b Pyruvate Kinase (b spliceform) 4.31 ± 0.10 2.26 ± 1.07 
F25H5.3a/b Pyruvate Kinase (a and b 

spliceforms) 0.70 0.75 ± 0.04 
Y110A7A.6a Phosphofructokinase (a 

isoform) 0.88 1.19 ± 0.30 
H17B01.1b Sugar Transporter (b isoform) 4.24 ± 3.09 2.80 ± 2.25 
K07A3.1 fructose, 1,6 bisphosphatase 1.14 0.83 ± 0.20 
F54H12.1a/b aconitase (a and b spliceforms) 0.81 0.80 ± 0.07 
F54H12.1a/b/c aconitase (a, b and c 

spliceforms) 1.10 0.87 ± 0.01 
ZK455.1 aconitase 1.07 0.89 ± 0.17 
F20H11.3 malate dehydrogenase 1.06 0.98 ± 0.21 
F46E10.10a/c lactate/malate dehydrogenase 

(a and c) 0.73 0.99 ± 0.27 
F46E10.10a/b lactate/malate dehydrogenase 

(a and b) 0.77 0.86 ± 0.07 
C05E4.9.a Isocitrate lyase family/Malate 

synthase 1.53 1.09 ± 0.39 
C05E4.9.b Isocitrate lyase family/Malate 

synthase 1.23 1.18 ± 0.51 
C03G5.1 succinate dehydrogenase 1.11 ± 0.33 1.29 ± 0.38 
C34B2.7 succinate dehydrogenase 0.71 0.98 ± 0.27 
R11F4.1 glycerol kinase 0.93 ± 0.08 0.79 ± 0.10 
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Abstract 

The ability to coordinate behavioral responses with metabolic status is 

fundamental to the maintenance of energy homeostasis. In numerous species 

including C. elegans and mammals, neural serotonin signaling regulates a range of food-

related behaviors. However, the mechanisms that integrate metabolic information with 

serotonergic circuits are poorly characterized.   Here, we identify metabolic, molecular, 

and cellular components of a circuit that links peripheral metabolic state to serotonin-

regulated behaviors in C. elegans.  We find that blocking the entry of fatty acyl-CoAs into 

peroxisomal β-oxidation in the intestine results in blunting of the effects of neural 

serotonin signaling on feeding and egg-laying behaviors.  Comparative genomics and 

metabolomics revealed that interfering with intestinal peroxisomal β-oxidation results in a 

modest global transcriptional change but significant changes to the metabolome, 

including a large number of changes in ascaroside and phospholipid species, some of 

which affect feeding behavior.   We also identify body cavity neurons and an ether-a-go-

go related (EAG) potassium channel that functions in these neurons as key cellular 

components of the circuitry linking peripheral metabolic signals to regulation of neural 

serotonin signaling.  These data raise the possibility that the effects of serotonin on satiety 

may have their origins in feedback, homeostatic metabolic responses from the periphery. 

Introduction 

In both invertebrate and vertebrate species, behaviors such as feeding, movement, 

reproduction and learning are influenced by nutritional and metabolic signals [2–9].  In 

mammals, the nervous system actively monitors internal nutritional status by directly 

sensing specific metabolites like carbohydrates, amino acids and fatty acids, in addition 
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to sensing endocrine signals derived from peripheral tissues [10,11]. These internal 

nutrient cues are integrated with environmental stimuli and past experiences to 

orchestrate cohesive and context-appropriate behavioral and physiological responses. 

Defects in internal metabolic sensing processes contribute to the development of a 

number of disorders including diabetes, obesity, impaired immune function, 

neurodegeneration and accelerated aging [9,12–14]. Thus, elucidating the mechanisms 

by which nutrient status is sensed and communicated between tissues is of critical 

importance in understanding metabolic homeostasis as well as how metabolism 

influences myriad physiological and pathophysiological conditions.  

  Like mammals, C. elegans display a range of behavioral and physiological 

responses to changes in nutrient availability [2,15]. Moreover, as in vertebrate species, 

the neuromodulator serotonin, 5-hydroxytryptophan, is a key mechanism through which 

information about food availability is converted to behavioral, physiological, and metabolic 

responses in C. elegans [16–21].  For example, even in the presence of food, worms that 

lack serotonin display the feeding, egg laying, movement, and metabolic rates that are 

normally seen when wildtype animals are deprived of food [22]. In contrast, 

pharmacologic or genetic manipulations that elevate serotonin signaling elicit the range 

of responses seen when plentiful food supplies are present [20,23,24]. Importantly, 

serotonin signaling is not simply an on/off indicator of food availability but the extent of 

serotonin signaling allows for animals to fine tune their responses based on their 

nutritional status and past experiences [4,25,26].   One illustration of this is the effects of 

varying levels of serotonin signaling on pharyngeal pumping rate, the mechanism by 

which C. elegans ingest nutrients [27,28]. C. elegans that have been moved off of their 
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E. coli food source reduce their serotonin signaling as well as their pumping rates.  Both 

serotonin signaling and pumping rates are elevated as animals are returned to food  

[29,30].  However, if animals experience a period of fasting before they are returned to 

food, they exhibit an even further elevation in feeding rate compared to animals that have 

only been off of food for brief period of time. The hyper-elevated feeding behavior is 

accounted for by a correspondingly elevated secretion of serotonin from specific neurons 

[4]. The hyper-secretion of serotonin and the corresponding hyper-elevated feeding are 

transient and animals eventually resume the intermediate levels of serotonin signaling 

and feeding rates seen in well-fed animals [4,30].    Thus, the low, high, and intermediate 

levels of serotonin signaling correspond to the low, high, and intermediate pharyngeal 

pumping rates, respectively.  

 In addition to modulating of food intake behavior, serotonin signaling also affects 

energy metabolism [31]. C. elegans that have been returned to food after a period of 

fasting transition from a metabolic state that favors energy conservation to an active state 

of energy utilization.  This active metabolic state is driven by elevated serotonin signaling 

[19,32,33].  If elevated levels of serotonin are maintained by pharmacological or genetic 

interventions, C. elegans exhibit fat loss [34,35]. The effects of serotonin on body fat are 

not simply a byproduct of its effects on food intake as we and other groups have found 

that molecular and cellular circuits that link serotonin signaling to peripheral energy 

metabolism are largely independent from those that regulate feeding [19,23,24,32,33,36]. 

For example, serotonin secreted from the ADF sensory neurons signals through neurally 

expressed SER-5 serotonergic receptor to modulate feeding. Yet the SER-5 receptor is 

not required for the serotonergic regulation of peripheral fat metabolism [19,30]. Instead, 
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serotonin signals through the MOD-1 receptor on URX neurons to promote the release of 

a neuroendocrine signal that activates triglyceride lipolysis and distinct components of 

fatty acid oxidation pathways [19,32,33].    

  In a prior study, we discovered that specific components of lipid oxidation 

pathways can elicit regulatory effects on feeding behavior [19]. Here, we build upon that 

finding and describe a feedback mechanism that links peripheral energy metabolism to 

neuronal serotonin signaling.  We find that loss of ACOX-1, a peripheral acyl-CoA oxidase 

that catalyzes a key step in peroxisomal fat oxidation, affects feeding and egg-laying 

responses, two serotonin-regulated behaviors. Blunting the utilization of fatty acyl-CoA 

species, the metabolic substrates of ACOX-1, results in rewiring of peripheral metabolic 

pathways and ultimately affects the activity of body cavity neurons, which in turn, 

counteract neural serotonin signaling to influence nutrient-related behaviors.    

 

Results 

acox-1 mutants are unresponsive to the feeding stimulatory effects of serotonin 

While the serotonergic regulation of fat metabolism is largely distinct from the feeding 

regulatory pathway, we previously noted two exceptions.  RNAi-mediated inactivation of 

either acox-1, encoding a peroxisomal acyl-CoA oxidase, or cpt-6, encoding a 

mitochondrial carnitine palmityoltransferase, not only blocked the fat reducing effects of 

serotonin but also counteracted the effects of elevated serotonin on feeding [19].   

Interestingly, acox-1 and cpt-6 function as entry points in the peroxisomal and 

mitochondrial β-oxidation pathways, respectively [37]. To further investigate how 

metabolic pathways affect serotonin signaling, we focused on acox-1 given the 
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availability of a null mutant for this gene at the time that the study was undertaken.  

Recapitulating our prior RNAi findings, ad-libitum fed acox-1(ok2257) animals exhibit 

wildtype feeding rates, yet are unresponsive to the feeding stimulatory effects of 

exogenous serotonin (Figure 1A, Figure S1A). We previously demonstrated that 

elevated levels of serotonin signaling exert their effects on fat and feeding pathways by 

inactivating AMP-activated kinase (AMPK) complexes in distinct neurons [24,30].  As in 

mammals, the catalytic subunit of AMPK can be encoded by one of two distinct genes, 

aak-1 and aak-2, in C. elegans [38].  Elevated levels of serotonin signaling inactivate 

the AAK-2 subunit and the hyperactive pumping rate of serotonin-treated wildtype 

animals is recapitulated by aak-2 mutants [30].  Loss of acox-1 suppressed the elevated 

feeding rates of aak-2 mutants suggesting that the effects of acox-1 on feeding are not 

restricted to exogenously supplied serotonin (Figure 1B).  

Although the above findings suggested that acox-1 functions downstream or parallel to 

serotonin signaling, we sought to rule out the possibility that acox-1 affects serotonin 

biosynthesis.  Transcription of tph-1, the gene that encodes the rate-limiting enzyme of 

de novo serotonin synthesis, is highly dynamic and can be modulated by a range of 

external and internal cues including food availability, food quality, and stress [25,39–42]. 

We observed no changes in the transcriptional expression of tph-1 nor in direct 

quantifications of serotonin levels in acox-1 mutants (Figure S1B and S1C). In 

mammals, defects in peroxisomal fatty acid oxidation pathways are associated with 

neurodevelopmental disorders due to toxic accumulation of long and very-long chain 

fatty acids [43].  We had previously shown that elevation of serotonin signaling from the 

chemosensory, amphid ADF neurons is sufficient to cause elevated pharyngeal 
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pumping [30]. We therefore considered the possibility that the lack of response to 

serotonin in acox-1 mutants may be the indirect consequence of a defect in the ADF 

neurons or other sensory neurons. As one broad examination of neural morphology and 

development, we used DiI dye staining and found that acox-1 mutants had properly 

structured amphid sensory neurons (Figure S1D). Collectively, we found no evidence 

that deficiencies in serotonin biosynthesis or structural or developmental abnormalities 

in serotonergic sensory neurons account for the inability of serotonin to elevate feeding 

rate in acox-1 mutants.  

Based on homology to mammalian acyl-CoA oxidase 1, ACOX-1 is predicted to 

catalyze the first and rate-limiting step in peroxisomal β-oxidation [44,45].  We used 

fluorescence intensity of BODIPY labeled fatty acids as a measure of fat accumulation 

since we and others have previously demonstrated that BODIPY fluorescence 

corresponds to biochemical and label free methods, such as Coherent anti-Stokes 

Raman Scattering spectroscopy, measurements of fat content [46,47].  We found that 

animals lacking ACOX-1 accumulate significantly more fat in their hypodermis and 

intestines, the two major sites of fat storage, consistent with the notion that acox-1 

mutants have a reduced capacity to break down lipids (Figure 1C and 1D).  If the inability 

of acox-1 mutants to increase their feeding rate represented a homeostatic response to 

elevated internal energy stores, we predicted that a period of nutrient depletion should 

reverse acox-1 mutants’ feeding behavior. We fasted acox-1 mutants for 90 minutes, a 

period of time shown to elicit a coordinated shift in internal metabolic networks towards 

fat mobilization and energy production, and reintroduced fasted or ad-libitum fed animals 

to either vehicle or serotonin containing plates [48,49]. Fasting restored the ability of acox-
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1 mutants to increase their feeding rates in response to exogenous serotonin suggesting 

that acox-1 mutants do not simply have a generalized defect in pharyngeal pumping and 

that a period of starvation can reverse the feeding regulatory effect induced by loss of 

ACOX-1 activity (Figure 1E). Together, these findings suggest that loss of ACOX-1 

activity leads to the generation of a homeostatically regulated signal that can rapidly and 

reversibly modulate serotoninergic feeding circuits. 

 
Intestinal ACOX-1 regulates feeding behavior 

To elucidate the site of ACOX-1 activity in regulating feeding behavior, we 

performed tissue-specific rescue experiments. As previously reported, ACOX-1 is 

expressed in the hypodermis and the intestine, the primary sites of lipid metabolism in C. 

elegans [44] (Figure 2A). Expression of a full length wildtype acox-1 gDNA sequence in 

the intestine (via the vha-6 promoter) but not in the hypodermis (via the dpy-7 promoter) 

normalized fat levels in acox-1 mutants (Figure 2B and 2C). The intestine is the primary 

metabolic organ in C. elegans and carries out numerous metabolic functions including 

food digestion, nutrient absorption, packaging and secretion [50]. We found that the 

intestinal expression of wildtype acox-1 was sufficient to restore the capacity of acox-1 

mutants to elevate feeding rates in response to serotonin treatment (Figure 2D). Thus, 

intestinal ACOX-1 activity can affect neuronal serotonergic feeding circuits.  

 

Modulation of feeding by ACOX-1 requires fatty acyl-CoA synthesis  

Acyl-CoA oxidases regulate the rate of metabolic flux through peroxisomes as they 

govern the first and rate-limiting reaction in peroxisomal metabolic pathways, specifically 

catalyzing the desaturation of long and very-long chain fatty acyl-CoA esters to 2-trans-
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enoyl-CoAs [45,51–53].  The C. elegans genome encodes seven acyl-CoA oxidases that 

form homo and heterodimer complexes with distinct substrate specificities [51,54,55]. 

Structural and biochemical analyses suggest that ACOX-1 homodimers are capable of 

accommodating a wide-range of fatty acyl-CoA substrates and contribute to peroxisomal 

β-oxidation of ascaroside lipids [56,57]. Given the enzymatic function of ACOX-1, we 

hypothesized that its loss leads to an accumulation of fatty acyl-CoA species, which in 

turn, elicit the anorectic effect. Fatty acyl-CoAs are generated by acyl-CoA synthases 

(ACS), a family of enzymes that esterify free fatty acids with Co-enzyme A (CoA) [58,59]. 

To prevent the formation of acyl-CoA thioesters, we acutely exposed animals to Triacsin 

C, an inhibitor of acyl-CoA synthase activity [60]. This treatment restored the ability of 

serotonin to cause elevated feeding rate in acox-1 mutants suggesting that fatty acid 

esterification is required in order for ACOX-1 to regulate serotonergic feeding cascades 

(Figure 3A). There at least 20 known or predicted acyl-CoA synthases encoded in the C. 

elegans genome. As a strategy to validate the Triacsin C results and identify the specific 

synthases involved, we screened through 18 of 20 acs genes for which RNAi clones were 

available. RNAi treatment against multiple acs genes, most notably those of acs-18, acs-

20 or acs-22, suppressed the feeding defects of acox-1 mutants, suggesting that a degree 

of redundancy among C. elegans acyl-CoA synthases (Figure S3A).  As we did not 

validate the efficacy of each of the 18 RNAis we cannot rule out the possibility that other 

ACS enzymes also contribute to acyl-CoA pools used by ACOX-1.  To further test the 

notion that fatty acyl-CoAs modulate feeding, we treated animals with oleic acid, a dietary 

fatty acid, and noted a reduction in pharyngeal pumping rate (Figure 3B). The oleic acid-

induced feeding suppression was abrogated in animals that were pretreated with Triacsin 
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C, suggesting that the anorectic effect is induced by oleoyl-CoA or a downstream 

metabolic derivative.  

To directly evaluate whether loss of acox-1 causes accumulation of acyl-CoAs, we 

employed an HPLC-based extraction and detection method from whole animal extracts 

[61,62].   We found that acyl-CoAs levels were not grossly altered in acox-1 mutants 

(Figure 3C).   One possible explanation for the absence of elevated acyl-CoA species in 

acox-1 mutants is that only a small fraction of total acyl-CoAs in the animals are directed 

to peroxisomal β-oxidation such that a change in their abundance may not be detectable 

by our assay.  Moreover, acyl-CoA metabolism is known to be highly spatially regulated 

and acyl-CoA products are selectively synthesized or partitioned in specific tissues 

[63,64].  Yet another possibility is that acyl-CoAs are substrates for numerous metabolic 

processes and can be converted into a variety of signaling molecules like ceramides, 

ascarosides and eicosanoids [55,59,65].  Thus, blocking acyl-CoA utilization by 

inactivating ACOX-1 may shunt these intermediates into a variety of other metabolic 

derivatives that ultimately elicit anorectic effect. 

 
Loss of acox-1 results in modest transcriptional upregulation of compensatory fat 
oxidation pathways  

To better understand molecular responses to the loss of acox-1, we compared the 

transcriptome acox-1 mutants to that of wildtype animals using RNA-sequencing.  Loss 

of acox-1 had a surprisingly limited effect on global gene expression. Our analyses 

revealed that only 36 out of ~17,000 genes were differentially expressed in acox-1 

mutants, with only three genes significantly upregulated. Among the differentially 

expressed genes, the majority were expressed in the intestine, consistent with our finding 
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that this tissue is a major site of action for ACOX-1. Gene Ontology analysis revealed an 

enrichment for genes involved in “lipid metabolic” and “innate immune” related processes 

(Table 1). Among the differentially regulated genes, several are predicted to encode for 

components of peroxisomal β-oxidation including a homolog of acyl-CoA oxidase (ACOX-

2), an enoyl-CoA hydratase (ECH-1.1) and an ortholog of human bile acid-CoA:amino 

acid N-acyltransferase (K05B2.4).   Two lipases, LIPL-2 and K03H6.2, whose activities 

are predicted to promote lipid mobilization, were downregulated. Collectively, we interpret 

these results to mean that the transcriptional responses elicited upon loss of acox-1 likely 

compensate for peroxisomal dysfunction by limiting lipid mobilization and by upregulating 

alternative lipid utilization pathways. Using RNAi, we asked whether inactivation of any of 

the upregulated genes could counteract the resistance of acox-1 mutants to serotonin 

induced feeding elevation but the experiment yielded no such candidates.    

 
Loss of acox-1 perturbs fatty acid ethanolamine signaling 

Next, we sought to obtain a comprehensive overview of the impact of loss of acox-

1 on the C. elegans metabolome. For this purpose, we compared the acox-1 mutant and 

wildtype metabolomes via untargeted metabolomics using high-pressure liquid-

chromatography-high-resolution mass spectrometry (HPLC-HRMS) and the XCMS 

software platform [66,67]. These analyses revealed that knockout of acox-1 has a 

dramatic impact on the C. elegans metabolome. Of more than 10,000 significant features 

detected in the wildtype metabolome, over 500 were at least 3-fold downregulated in 

acox-1 mutants. Conversely, we detected more than 500 features that were at least 3-

fold upregulated in acox-1 mutants. To facilitate structural classification of the vast 

number of detected differential features, we employed molecular networking based on 
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analysis of MS/MS fragmentation patterns [68,69]. These analyses enabled 

characterization of several metabolite families up- or downregulated in acox-1 mutants. 

As expected from previous reports, we found that biosynthesis of most ascaroside 

pheromones with fatty acid side chains shorter than 9 carbons is abolished or strongly 

reduced in acox-1 mutants, whereas abundances of ascarosides with saturated side 

chains of 9 to 15 carbons are 10- to 50-fold increased [56,57]. In addition, a large number 

of diacylglycerophosphoethanolamines (DAGPEs), primarily derived from saturated and 

mono-unsaturated fatty acids with 14 to 18 carbons, were reduced 5- to 20-fold in acox-

1 mutants. Among the metabolites most strongly upregulated in acox-1 mutants, thiamine 

and several thiamine derivatives were most prominent, alongside ascr#18 and ascr#22, 

ascarosides with 11 and 13 carbon sidechains, respectively (Figure 4, Supplemental 

Table 1).   

 The very large number of metabolites affected by loss of acox-1 prevented a 

comprehensive examination of each of the metabolites.  Nevertheless, we used a 

combination of chemical, genetic, and metabolite add-back experiments to broadly 

investigate the noted metabolomics changes.   We began by considering the possibility 

that perturbations in ascaroside biosynthesis underlie the feeding defect observed in 

acox-1 mutants.  Originally identified as constituents of the dauer pheromone, 

ascarosides are large class of excreted small molecules that regulate development and 

behavior and whose synthesis can be influenced by metabolic status [70–72].   The acyl-

CoA thiolase, DAF-22, catalyzes the terminal step in peroxisomal β-oxidation and plays 

an essential role in shortening the fatty acid-like-side chains of ascarosides [73]. Though 

daf-22 mutants lack ascarosides they still exhibit wildtype feeding rates and are still 
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responsive the feeding increasing effects of serotonin, suggesting that ascaroside 

biosynthesis and serotonergic feeding regulation are independent of one another (Figure 

S4A). Though a number of ascaroside species were strongly reduced in acox-1 mutants, 

we detected a nearly 30-fold accumulation of ascaroside #18 (ascr#18). To determine if 

an accumulation of ascr #18 underlies the suppressed feeding response of acox-1 

mutants, we treated wildtype animals with ascr#18 and serotonin. Surprisingly, rather 

than suppressing feeding, ascr#18 dramatically increased pharyngeal pumping rates of 

wildtype animals in a manner that was additive with serotonin (Figure S4B).  Together, 

these results suggest that while certain ascarosides species can have feeding regulatory 

effects, they are unlikely to underlie the specific feeding responses elicited in acox-1 

mutants.  

Thiamine and thiamine derivatives were also significantly accumulated in acox-1 

mutants.  We next asked if thiamine supplementation was sufficient to block the feeding 

enhancing effects of serotonin, though did not find this to be the case (Figure S4C).  As 

in mammals, C. elegans does not produce thiamine and obtains this essential cofactor 

from its diet [74]. Given the pervasive changes to C. elegans metabolism upon loss of 

acox-1, we speculate that thiamine accumulation in these mutants reflects a general 

downregulation of enzyme activities that use thiamine derivatives as cofactors. 

 We next turned our attention to the finding that loss of acox-1 perturbs the 

biosynthesis of ethanolamine containing lipid species. Most prominently, we find that 

diacylglycerophosphoethanolamine (DAGPEs) synthesis is strongly reduced in acox-1 

mutants. DAGPEs likely represent intermediates in the biosynthesis of N-

acylethanolamines (NAEs), a diverse family of signaling molecules with range of 
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biological roles including in nutrient sensing and mammalian appetite regulation [75–79]. 

This family of lipids includes the mammalian orexigenic endocannabinoid arachidonoyl 

ethanolamine (AEA) and anorectic factor oleoyl ethanolamine (OEA) [80]. To test if a 

reduction in NAEs contributes to ACOX-1 mediated feeding regulation, we inactivated 

fatty acid amide hydrolase (faah-1), an enzyme involved in the hydrolytic degradation of 

NAEs. We found that inhibition of FAAH-1, which was shown to increase endogenous 

NAE abundance [81], stimulates pharyngeal pumping rates of both wildtype and acox-1 

mutants (Figure S4D). Thus, in C. elegans as in mammals, NAE signaling regulates 

feeding behavior.  As the feeding increasing effects of increasing NAEs were not 

restricted to acox-1 mutants, we cannot definitively know that reduced NAE synthesis 

accounts for the inability of acox-1 mutants to respond to serotonin.  Though this data is 

intriguing, it is also possible that an as of yet unidentified metabolite or a complex 

combination of metabolites blunt serotonergic modulation of feeding in acox-1 mutants.  

 
ACOX-1 mediated regulation of serotonergic feeding circuits requires EGL-2 
activity 

We next sought to identify the neural mechanisms that link changes elicited by loss 

of acox-1 to serotonergic mechanisms of feeding. The clue that guided us towards an 

answer emerged unexpectedly by following another phenotype that we had noted in acox-

1 mutants.  Relative to wildtype animals, acox-1 mutants hold more eggs in utero and lay 

embryos at a later developmental stage (Figure 5A, Figure S4A).  This was intriguing 

since serotonin is also a key modulator of egg-laying behavior [82]. Serotonin controls the 

excitability of the egg-laying neuromuscular circuit and governs the activity and timing of 

egg-laying in response to various sensory cues [16–18,83–88]. We found that acox-1 
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mutants were markedly less responsive to exogenous serotonin and resistant to the 

effects of fluoxetine, a serotonin reuptake inhibitor consistent with a reduced response to 

the excitatory effects of serotonin at the level of the neuromuscular junction (Figure 5C, 

Figure S4B). As in the context of feeding, reconstitution of acox-1 in the intestine but not 

the hypodermis also rescued egg-laying defects of these mutants (Figure 5D and 5E).   

The egg-laying neuromuscular circuit has been extensively studied in C. elegans 

and it is well established that egg-laying behavior is strongly influenced by potassium 

channel activity [89]. Potassium channels are a highly diverse and evolutionarily 

conserved family of proteins that modulate cellular excitability by regulating the flow of 

potassium ions (K+) across cellular membranes [90,91]. Gain-of-function mutations in 

distinct potassium channels have been shown to reduce the excitability of neurons or 

vulval muscles, and in turn causing egg-laying defects [92–95]. We therefore considered 

the possibility that aberrant potassium channel activity contributes to the egg-laying 

dysfunction in acox-1 mutants.  We conducted an RNAi screen of potassium channels 

with documented roles in egg-laying and assessed their capacity to rescue the egg-laying 

defect in acox-1 mutants.  RNAi knockdown of the EGL-2 potassium channel normalized 

egg-laying responses in acox-1 mutants without influencing baseline egg-laying rates 

(Figure S4C and S4D). To validate our RNAi results, we crossed acox-1 mutants with egl-

2(lf) mutants and found that double mutants resembled wildtype animals in their egg-

laying responses (FIGURE 5F and 5G).  egl-2 encodes an ether-a-go-go (EAG) voltage-

gated potassium channel that has been shown to modulate the excitability of 

neuromuscular circuits in response to starvation states, suggesting they may more 

generally serve as a link between internal nutrient status and neuronal activity [96–98].  



 71 

To determine if EGL-2 plays a role in ACOX-1 mediated feeding regulation, we 

took advantage of gain-of-function mutations in egl-2. These mutations cause a negative 

shift the voltage-dependence of these channels and cause pleotropic sensory and 

behavioral defects by reducing the excitatory capacity of cells in which they are expressed 

[99,100]. It has been previously reported that egl-2(gf) mutants are resistant to the egg-

laying inducing effects of serotonin [95,101]. We find that egl-2(gf) mutants are also 

resistant to the feeding enhancing effects of serotonin and thus mimic acox-1 mutants in 

their blunted responses to the excitatory effects of serotonin signaling in the context of 

both egg-laying and feeding (Figure 6A). Both the egg-laying and pharyngeal pumping 

phenotypes of egl-2(gf) mutants can be fully suppressed by egl-2 RNAi knockdown 

suggesting that the behavioral effects of aberrant EGL-2 activity can be normalized by 

inactivating the channel (Figure 6A, Figure S5A). Similarly, RNAi inactivation of egl-2 

restores the ability of acox-1 mutants to elevate their pumping rates upon exposure to 

serotonin signaling but without affecting the basal pumping rate in acox-1 mutants (Figure 

6B). Validating the RNAi results, we find that double acox-1;egl-2(lf) mutants exhibit 

wildtype feeding responses to exogenous serotonin (Figure 6C). Finally, we find that the 

feeding reducing effects of oleic acid also require EGL-2 (Figure 6D). Together, these 

results suggest that an EGL-2 containing circuit can serve as a regulatory link between 

metabolic status and feeding behavior.  

 
Loss of acox-1 suppresses URX body cavity neuron activity to limit feeding 
responses 

Our results with egl-2 provided us the opportunity to pinpoint neurons that may 

serve as a link between peripheral metabolic signals and processes regulated by 
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serotonin signaling.  In hermaphrodites, egl-2 is expressed in a limited subset of sensory 

neurons including AFD, ALN, AQR, ASE, AWC, BAG, IL2, PLN, PQR and URX [99]. We 

were intrigued by the expression of egl-2 channels in body cavity neurons (AQR ,PQR 

and URX), as these are the only neurons with dendritic projections within the 

pseudocoelom, the rudimentary circulatory fluid utilized by C. elegans (Figure 7A) [102]. 

Given their unique anatomic position, these neurons are hypothesized to mediate 

bidirectional communication between nervous system and peripheral tissues as they have 

the capacity to both release and detect circulating signals. Interestingly, neural serotonin 

signaling is thought to promote intestinal fat metabolism through the release of an 

neuroendocrine signal from URX neurons [32,33] and fluctuations in peripheral fat 

metabolism modulate the tonic activity of URX [103]. We find that targeted expression of 

egl-2(gf) in only the body cavity neurons is sufficient to block the feeding increasing effects 

of serotonin and mimic the effects of loss of acox-1 (Figure 7B).  

To our knowledge, body cavity neurons have not previously been implicated in the 

regulation of feeding behavior. To further study this role, we examined the effect of 

prolonged activation of body cavity neurons on pharyngeal pumping. Activation of PKC-

1 has been shown to promote synaptic transmission and neuropeptide release from 

expressing neurons [104]. We examined the feeding responses of wildtype and acox-1 

mutants expressing constitutively active protein kinase C [PKC-1(gf)] in body cavity 

neurons and found that this manipulation strongly stimulates pharyngeal pumping in both 

wildtype and acox-1 mutants. Importantly, this feeding enhancement could not be further 

elevated by addition of serotonin, suggesting a common regulatory circuit (Figure 7C).  
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As genetic inhibition of body cavity neurons by egl-2(gf) did not modulate baseline feeding 

rates, our data suggests that these neurons likely fine-tune feeding responses in distinct 

conditions rather than governing basal feeding behavior.  

To directly assess the effects of ACOX-1 activity on body cavity neuron function, 

we measured intracellular Ca2+ transients from the URX body cavity neurons using the 

genetically-encoded calcium reporter GCaMP5K [103,105]. We selected URX neurons 

as calcium dynamics from these cells have been well documented and intriguingly their 

activity has recently been shown to be modulated by internal metabolic cues and 

starvation [103,106–108]. URX neurons play a well-documented role in oxygen sensing 

and are robustly and rapidly activated under atmospheric conditions (21% oxygen) 

(Figure 8A and 8C) [106,109–111]. To determine if loss of ACOX-1 modulates URX 

activity, we imaged O2-evoked calcium transients in URX neurons in wildtype and acox-

1 mutants. We observed no significant difference in URX responses in wildtype and acox-

1 mutants at 10% oxygen, a concentration at which the tonic URX neurons are held in the 

“off” state [106]. This result suggests that ACOX-1 does not modulate basal activity of 

URX (Figure 8B and 8F). However, whereas URX neurons in wildtype animals robustly 

activate at 21% oxygen as previously documented, O2-evoked calcium transients were 

dramatically inhibited in acox-1 mutants (Figure 8D and 8D). This reduction in maximal 

activation (F∆/Fo) could not be attributed to altered promoter activity or drift in expression 

across the tested lines as the level of a co-expressed flp-8::mCherry reporter was not 

measurably different acox-1 mutants (Figure 8E and 8G). Together, this data suggest that 

loss of ACOX-1 decreases the sensitivity of URX neurons to excitatory stimuli, supporting 

the model that body cavity neuron activity is suppressed in acox-1 mutants  
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We previously showed that regulation of feeding responses by ACOX-1 requires 

the generation of fatty acyl-CoA species. We thus asked whether we could rescue the 

suppression of URX neuron activity by inhibiting the synthesis of fatty acyl-CoA species.  

To assess the effects of fatty acyl-CoA species on URX activity, we treated wildtype and 

acox-1 animals with the acyl-CoA synthase inhibitor, Triacsin C for 60 minutes prior to 

assessing URX responses. Paradoxically, reducing the synthesis of fatty acyl-CoAs 

suppresses the activity of URX neurons in wild-type animals but slightly enhances the 

activity of this neuron in acox-1 mutants though these trends are not statistically 

significant (Figure S6).  

These results are complicated to interpret. Though this experiment suggests that 

Triacsin C does not significantly rescue the defects in URX activity, we must consider the 

limitations of this experimental approach. GCaMPs are powerful tools, they offer indirect 

and oft-crude representations of neuronal activity that lack in spatial and temporal 

resolution. It possible that our particular methodology and experimental set up is not 

sensitive enough to resolve the small but perhaps biologically relevant increase in URX 

activity in acox-1 mutants treated with Triacsin C. Of particular relevance to this study, 

the electrophysical properties of neurons cannot easily be interpreted from GCaMP 

recordings. Our model suggest that ACOX-1 may influence body cavity neuron activity in 

a mechanism involving EGL-2 potassium channels. Potassium channels play significant 

roles in shaping the frequency, duration and firing pattern of action potentials and it is not 

entirely clear how these properties are reflected at the level of Ca2+ dynamics. To clarify 

the influence of fatty acyl-CoAs on URX neurons, it will be necessary to use alternative 

reporters of URX neuronal activity. Body cavity neurons are peptidergic neurons as it has 
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been reported that  activity of these neurons can be assessed by monitoring the secretion 

of fluorescently-tagged neuropeptides[107]. This read-out may offer a more 

physiologically representative and sensitive measure of URX activity.  

Our data supports a model in which loss of ACOX-1 leads to the generation of a 

metabolic signal derived from a fatty acyl-CoA that regulates the activity of the URX body 

cavity neuron in an EGL-2 dependent manner. In turn, this circuit modulates the 

excitability of serotonergic circuits to link internal metabolic information with behavioral 

responses.  

 
Discussion 

 Animals adopt distinct behavioral and physiological states in response to changes 

in internal metabolic status. In this study, we show that peripherally generated signals act 

to modulate neurally regulated processes in C. elegans.  Specifically, we found that loss 

of an intestinal peroxisomal acyl-CoA oxidase leads to the production of interoceptive 

signals of metabolic status that modulate serotonergic regulation of feeding and egg 

laying.  These signals are generated when acyl-CoAs that would normally be destined for 

peroxisomal β-oxidation via ACOX-1 are redirected into other pathways resulting in a vast 

change to the animal’s metabolome despite a very modest transcriptional effect.  

Moreover, we found that the metabolic changes in the periphery affect the activity of a 

specific neuron, URX, a ring neuron that is anatomically well positioned to sense 

peripheral signals.  A change in the activity of URX dampens the effects of elevated 

serotonin signaling on feeding and egg laying.  The precise mechanisms by which URX 

neurons intersect with serotonergic circuits of feeding and egg-laying remain to be 

determined. 
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Our genetic and pharmacological analyses suggest that the feeding regulatory 

response begins with an accumulation of a fatty acyl-CoA species. Physiological condition 

in which generation of acyl-CoAs exceeds their utilization predicted to occur during 

periods of nutrient excess, thus the feeding reducing effects of these signals are 

consistent with satiety-like signals. In mammals, pharmacologic or dietary manipulations 

that lead to elevated circulating fatty acyl-CoA levels inhibit food intake [112,113]. Fatty 

acyl-CoAs are short-lived species that are substrates for numerous enzymatic pathways 

and it is unclear in mammals whether the anorectic effect is mediated directly by specific 

fatty acyl-CoAs or  downstream metabolic derivatives [114]. While we could not measure 

an obvious increase in acyl-CoA pools extracted from acox-1 mutants, our metabolomic 

analyses revealed many hundreds of differentially expressed features in acox-1 mutants, 

the majority of which remain structurally unidentified. The enormous metabolomic change 

made it unrealistic for us to pinpoint the precise metabolic species that underlies the 

effects of loss of acox-1 on serotonergic signaling.   Nevertheless, our metabolomics 

analyses revealed several classes of compounds including a variety of phospholipid 

species that may underlie the noted behavioral changes. Several  N-acylethanolamines 

have well-known effects on mammalian feeding behavior and mood [79,115–118].  Their 

identification here highlighting the deep evolutionary origins of the links between 

metabolic state and neural mechanism that influence behavior.   

We found that body cavity neurons, most prominently URX, serve as key 

components of the sensory circuit linking peripheral metabolic information with feeding 

behavior. Body cavity neurons are known to regulate oxygen sensing and social 

aggregation behaviors though to our knowledge they have not been implicated in 
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regulation of pharyngeal pumping [109,111,119,120]. Given their unique anatomical 

placement, these neurons have long been hypothesized to facilitate bi-directional 

communication between the nervous system and peripheral tissues, particularly in the 

context of energy homeostasis. Several lines of evidence, in addition to our findings, offer 

experimental credence to this hypothesis. First, these neurons are in direct synaptic 

contact with environment sensing neurons like ADF and release modulatory signals to 

influence peripheral processes such as body growth, lifespan control and lipid metabolism 

[103,107,121,122]. Second, these neurons have the capacity to sense internal metabolic 

cues and integrate this information with external cues of nutrient availability to orchestrate 

cohesive and context-appropriate physiological responses [103]. Lastly, our data and a 

recent study suggest that internal nutrient sensing pathways modulate the activity of these 

neurons to regulate nutrient-dependent behavioral states [123]. Skora et al. suggest that 

prolonged nutrient deprivation increases the activity of URX neurons to control starvation-

induced quiescence behaviors in a mechanism that involves DAF-2/IGF signaling. This 

data complements our findings and suggests that states of nutrient excess and nutrient 

deprivation have inverse effects on URX activity.   

An important future challenge is to determine how the vast metabolic changes in 

the periphery are sensed by the body cavity neurons including URX.  In principle, it is 

possible that some of the peripheral metabolites leave their intestinal sites of generation 

to directly act on the URX neurons.  Alternatively, it is possible that an endocrine response 

originating in the intestinal cells communicates the metabolic status of the intestine to the 

URX neurons.   Regardless of which model may ultimately be valid, our findings point to 

egl-2 as a modulator of URX activity.  EGL-2 is a C. elegans potassium channel with close 
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homology to human ether-a-go-go related channels [99,124].  While mammalian EAG 

channels have not yet been implicated in the control of nutrient-dependent behavioral 

plasticity, numerous potassium channels have well-documented roles in metabolic 

sensing and energy homeostasis. For example, hypothalamic Kir6.2 KATP channels are 

responsive to circulating glucose levels and regulate appetite and glucose homeostasis 

[125–127]. Ketogenic diets, which increase circulating ketone body levels, have been 

shown to suppress the excitability of GABAergic neurons and reduce seizure 

susceptibility in a KATP channel dependent manner [128–130].  Numerous metabolites 

including phospholipids, polyunsaturated fatty acids, eicosanoids, fatty acyl-CoAs and 

oxygen can directly bind certain potassium channels to modulate channel activity [131–

133]. Alternatively, metabolic information can be coupled to potassium channels by 

indirect signaling events involving second messengers like Ca2+ and cAMP, 

neurotransmitters or post-transcriptional modifications [134,135].     

In both mammals and C. elegans, elevating serotonin signaling is associated with 

fat loss [19,34,35,136].  In mammals, this has been primarily attributed to the anorectic 

effects of serotonin.  By contrast, detailed analysis of serotonergic effects in C. elegans, 

revealed that distinct molecular mechanisms underlie the fat and feeding effects of 

serotonin and that serotonin induced fat reduction in C. elegans is primarily driven by 

upregulation of peripheral mechanisms of triglyceride lipolysis and β-oxidation [19,32,33].  

Although it is general overshadowed by the feeding behavioral data, the existing data 

indicate that serotonin also causes an increase in metabolic rate and increase fat 

oxidation in mammals [31,137–139].  In this study, we found that if β-oxidation pathways 

cannot utilize the influx of acyl-CoAs that are generated upon mobilizing stored 
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triglycerides, a homeostatic signal is generated to blunt serotonergic effects, including 

effects on feeding.  The complexity of the mammalian fat and feeding pathways has made 

it difficult to pinpoint the precise mechanisms through which serotonin levels act as satiety 

signals.  Our findings raise the possibility that in both worms and mammals, increasing 

serotonin signaling may result in peripheral metabolic changes that, in turn, feedback to 

the nervous system to modulate food intake.  

 
Materials and Methods 
 
Worm Strains and General Maintenance 

C. elegans strains were cultured under standard growth conditions [140]. The Bristol N2 

strain was used as wildtype in all experiments and the following mutant alleles and 

transgenic strains were analyzed: acox-1(ok2257), aak-2(ok524), egl-2(rg4), egl-

2(n2656), daf-22(m130),  CX10386 kyEx2491[gcy-36::pkc-1(gf)::SL2::GFP; ofm-

1::dsRed], SSR1070 flp-8::mCherry; flp-8::GCaMP5k. When generating double mutants, 

genotypes were confirmed by PCR or sequencing. Unless stated otherwise, animals were 

cultured on NGM agar plates with OP50 E. coli at 20oC. For all experiments, worms were 

plated as synchronized L1 populations after hypochlorite treatment of gravid adults.  

Plasmid construction and transgenesis 

Plasmids were constructed using Gateway Cloning Technology (Life Technologies). 

Promoter regions were amplified from wildtype genomic DNA using Phusion DNA 

polymerase (New England Biolabs) and sub-cloned into the pDONR-P4-P1R Gateway 

entry vector by BP recombination. Unless otherwise specified, primers pairs were 

designed based on Promoterome recommendations. For acox-1 tissue specific rescue 
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lines, full F08A8.1 genomic coding sequence was amplified from wildtype genomic DNA 

was subsequently sub-cloned into the P221 Gateway entry vector by BP recombination. 

Transgenic animals were generated by injecting purified plasmids into the gonads of 

wildtype or mutant animals. Transgenes and an unc-122::gfp co-injection marker were 

injected at a concentration of 50 ng/μl. At least two independent and stably expressing 

lines were maintained and analyzed.  

Serotonin, Fluoxetine, Oleic Acid and Triacsin C Treatments 

Stock solutions of serotonin hydrochloride (TCI America, S0370) and fluoxetine 

hydrochloride (Matrix Scientific, 047891) were prepared in water.  For feeding 

experiments, synchronized L1 animals were grown on OP50 plates containing 5mM 

serotonin and assayed at the day 1 adult stage. To determine egg-laying responses, 

animals were exposed to 0.5mg/mL fluoxetine in M9 buffer or 5mg/mL serotonin in M9 

buffer for 20 minutes prior to counting released eggs. Oleic acid and Triacsin C treatments 

were conducted as previously described [19]. Briefly, Oleic Acid (Sigma-Aldrich, O1383) 

was solubilized in 45% (w/v in dH2O) 2-hydroxypropyl-ß-cyclodextrin (Sigma-Aldrich, 

H5784) to 1M, and then added to OP50 plates to a final concentration of 1µM. Triacsin C 

(Enzo Life Sciences, BML-EI218) was solubilized in DMSO and used at 1µM on OP50 

plates. 

Pharyngeal Pumping  

Contractions of the posterior pharyngeal bulb were counted during a 10 second interval 

as previously described [19]. For measurements on fasted then refed animals, ad-libitum 

fed day 1 adults were washed 3 times in S-basal buffer to remove residual E. coli and 

subsequently placed on sterile NGM plates. Animals were fasted on plate for the indicated 
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time then transferred to either vehicle (OP50 E. coli) or treatment (5mM serotonin + OP50) 

containing plates for 90 minutes to assay post-fast feeding responses.  

RNAi Treatment 

Overnight cultures of HT115 E. coli containing RNAi plasmids were induced with 6mM 

IPTG for 4 hours at 37oC. Cultures were concentrated 2X and added to RNAi plates 

containing IPTG, carbenicillin, and tetracyclin. Synchronized L1 animals were added to 

plates and grown for 3 days at 20oC and assayed as day 1 adults.  

Microscopy 

Animals were mounted on 2% agarose pads, paralyzed with NaN3 and imaged using a 

Zeiss Axioplan 2 microscope with a 16X (0.55 NA) oil immersion objective. DIC images 

of eggs retained in utero were acquired from animals at the Day 1 adult stage.   

Acyl-CoA Quantification 

We adapted an HPLC-based acyl-CoA extraction, derivatization and quantification 

protocol from Larson et al., 2008 [62]. Briefly, 15,000 synchronized L1s were grown in 

liquid S-medium culture at 20°C on a rotary shaker. Animals were grown to the L4 stage 

and washed 3X in S-Basal then snap frozen in liquid nitrogen and stored at  -80°C until 

further processing. To prepare lysates, pellets were thawed on ice and resuspended in 

300µL of freshly prepared extraction buffer (2mL 2-propanol, 2mL pH 7.2 50mM KH2PO4, 

50µL glacial acetic acid, 80µL 50mg/ml BSA). ~500 mg of zirconium oxide beads 

(NextAdvance, 0.5 mm diameter, 5.5 g/ml) were added to each sample and animals were 

lysed using a bead beater (5 cycles - 30s ON, 1 min OFF) at 4 °C. Lysates were separated 

from beads by pipet and an aliquot was preserved for protein quantification (Bio-Rad, DC 
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Protein Assay). Lysates were then washed of lipids and pigments in 200µL petroleum 

ether (40-60°C) saturated 1:1 with 2 propanol:water. 5µL of saturated (NH4)2SO4 was 

added to samples before extracting acyl-CoAs with 600µL 2:1 methanol:chloroform. 

Samples were vortexed and incubated at room temperature for 30 minutes before 

centrifugation. Supernatants were transferred to glass tubes and dried at 40°C in a 

GeneVac (~2hrs). Once dry, samples were reconstituted in 55µL of chloroacetaldehyde 

derivatizing reagent (0.15 M sodium citrate, 0.5% SDS (w/v), 0.5 M chloroacetaldehyde, 

pH 4) and incubated in an 80°C water bath for 20 minutes. Samples were again clarified 

by centrifugation, before being transferred to HPLC sample tubes. 20µL of each sample 

was injected into an equilibrated C18 reversed-phase HPLC column (Phenomenex Luna, 

4.6 mm x 150 mm, 5 µm silica particle, 100 Å pore size). A linear gradient of 0.25% (v/v) 

triethylamine in water and 90% (v/v) acetonitrile in water at a 0.5mL/min flow rate was 

used to elute acyl-CoAs. Full elution protocol described in [62]. Derivatized acyl-CoAs 

were detected using a fluorimeter with flash rate 100Hz and with excitation wavelength at 

230nM, emission wavelength at 420nM and slid width at 20nM. Peak areas were 

integrated and quantified using Agilent ChemStation software. 

RNA-Seq Sample Preparation  

Total RNA was extracted from ~10,000 synchronized L4 animals using the standard 

Trizol, chloroform, isopropanol protocol with on-column DNAse digest. Sample quality 

and quantity were assessed on the Agilent Bioanalyzer using RNA 600 Nano chips and 

only samples with RIN score ≥9 were used for library construction. mRNA was enriched 

from 1µg of total RNA using NEXTflex™ Poly(A) Beads (Bioo Scientific, NOVA-512979) 

and strand-specific directional libraries were generated using the NEXTflex™ Rapid 
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Directional RNA-Seq Kit (Bioo Scientific). For each genotype, samples were prepared 

from 3 biological replicates and indexed with distinct barcodes. Quality and fragment size 

distribution of synthesized cDNA libraries were assessed on the Agilent Bioanalyzer using 

DNA 1000 chips. Library concentrations were quantified using the NEBNext Library Quant 

Kit (E7630S) and each library was normalized to 10nM in TE buffer prior to pooling. 

Multiplexed libraries were sequenced using 100bp pair-end reads on the Illumina HiSeq 

4000 platform at the UCSF Center for Advanced Technologies.  

RNA-Seq Analysis  

Transcriptomic analyses were performed on the Galaxy Platform [141]. Sequencing reads 

were filtered and trimmed to remove barcode sequence using fastx_trimmer 

(http://hannonlab.cshl.edu/fastx_toolkit/). Clipped paired-end sequences were aligned to 

the C. elegans ce11 reference genome using TopHat version 2.1.1 [142]. Read counts 

for each gene were quantified using htseq-count based on gene annotations from 

reference annotation WS235 [143]. Differential expression analysis was conducted using 

the DESeq2 package (3.8) in R(3.4.1) using size factor normalization [144]. P-values 

were adjusted for multiple comparisons using the Benjamini-Hochberg method and a 

permissive false discovery threshold of q ≤ 0.1 was applied to identify differentially 

expressed transcripts.   

Metabolomic sample preparation 

Mixed stage worms were grown in liquid and fed OP50 on days 1, 3 and 5 during the 7-

day culture period, while shaking at 22 °C and 220 rpm. The cultures were centrifuged at 

4 °C, and worm pellets and supernatant were frozen separately, lyophilized, and each 

extracted with 35 mL of 95% ethanol at room temperature for 12 h. The extracts were 
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dried in vacuo, resuspended in 200µL methanol, and analyzed by LC-HRMS. All cultures 

were grown in at least three biological replicates. 

Mass spectrometric analysis 

LC-MS analysis was performed on a Dionex 3000 UHPLC coupled with a 

ThermoFisher Q Exactive high-resolution mass spectrometer. Metabolites were 

separated using a water–acetonitrile gradient on Agilent Zorbax Eclipse XDB-C18 column 

(150 mm x 2.1 mm, particle size 1.8 µm) maintained at 40 °C. Solvent A: 0.1% formic acid 

in water; Solvent B: 0.1% formic acid in acetonitrile. The solvent gradient started at 5% B 

for 5 min after injection and increased linearly to 100% B at 12.5 min, and continued at 

100% B for 5 min. The gradient was rapidly brought down to 5% B (over 30s) and held 

for 2 min for re-equilibration. 

The UHPLC-MS data were collected in the profile MS mode, based on instrument 

specifications. Metabolites were detected as [M-H]- ions or [M+Cl]- adducts in the negative 

ionization mode (ESI+), or as [M+H]+ ions or [M+Na]+ adducts in the positive ionization 

mode (ESI+), using a spray voltage of 3 kV. Compound identities were confirmed based 

on their high-resolution masses (accuracy < 1 ppm), MS/MS fragmentation spectra, 

and/or comparison with authentic standards. Data analysis was carried out using the 

Bioconductor package XCMS [66,145]. The matched filter algorithm in XCMS for peak 

picking in the profile data was used. 

GCaMP Calcium Imaging 

Animals were exposed to different oxygen concentration (10% or 21%) using a 

microfluidic chamber constructed with the oxygen-permeable poly(dimethylsiloxane) 

(PDMS) as described [106]. A Valvebank II (AutoMate Scientific, Inc.) was used to control 
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input from two pressurized pre-mixtures of oxygen and nitrogen containing either 10% 

oxygen or 21% oxygen (Praxair, Inc.). The gas flow rate was measured by a VWRTM 

traceable pressure meter and set to 0.26 psi. At the time of experiment, an individual day 

1 adult animal was picked without using any food and consecutively transferred to two 

unseeded plates immediately before imaging. The transferred animal was immobilized in 

S basal containing 5 mM levamisole and transported into the microfluidic chamber via 

Tygon tubing (Norton). To avoid drying, the animal was constantly submerged in S-Basal 

buffer while inside the chamber and GCaMP5K fluorescence was visualized at 40x 

magnification using a spinning disk confocal microscope (Olympus) with MetaMorphTM 

software (version 6.3r7, Molecular Devices). As described earlier, worms were pre-

exposed to 10% oxygen for 5 min in the microfluidic chamber [106]. GCaMP5K 

fluorescence was recorded by stream acquisition for 2 min at a rate of 8.34 

frames/second, with an exposure time of 20ms using a 12-bit Hamamatsu ORCA-ER 

digital camera. Each animal was recorded once, and GCaMP5K-expressing neurons 

were marked by a region of interest (ROI). The change in fluorescent intensity as per 

neuronal excitation and position of the ROI was tracked using the “Track Objects” function 

in MetaMorphTM. To subtract background from the total integrated fluorescence intensity 

of the ROI, an adjacent ROI was selected in the same image. MATLAB (MathWorks,Inc.) 

was used to analyze the data. Fluorescence intensity is presented as the percent change 

in fluorescence relative to the baseline (ΔF/F0). F0 was measured in worms exposed to 

10% oxygen during the first 9-13 seconds for each recording and calculated as an 

average over that period. The number of animals used for each condition is denoted in 

the figures. 
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Statistics 

Graphpad Prism 8.0 software package was used to calculate all p-values unless 

otherwise specified. Where only 2 conditions were compared, a two-tailed students t-test 

was performed. ANOVAs with appropriate post-test corrections were used when 

comparing multiple conditions.  
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Figure 2.1. acox-1 mutants are insensitive to the feeding stimulatory effects of 
serotonin  
(A) acox-1(ok2257) mutants are resistant to pharyngeal pumping increasing effects of 5mM 
serotonin.  All feeding data is expressed as a percentage of vehicle treated wildtype 
animals.  (B) Loss of acox-1 suppresses the elevated feeding rates of aak-2 animals. In 
both (A) and (B) error bars indicate +/- SEM from mean, n = 50 animals per strain. *** p < 
0.0001 ANOVA (Tukey) (C - D) acox-1 mutants accumulate significantly more fat than 
wildtype animals as assessed by hypodermal (green arrows) and intestinal (orange 
arrows) BODIPY fluorescence levels. Representative images of BODIPY staining (C) 
and corresponding quantifications of hypodermal BODIPY fluorescence levels (D) *** 
p<0.001, students t-test. (E) Fasting acox-1 mutants for 90 minutes restores their ability 
to elevate feeding in response to 5mM serotonin. Day 1 adult animals were either fed ad-
libitum or fasted for 90 minutes than plated on vehicle or 5mM 5HT plates for 60 minutes 
before assessing pharyngeal pumping rates. Error bars indicate +/- SEM from mean, n = 15 
animals per condition. ** p < 0.01 , *** p < 0.001 ANOVA (Tukey).  
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Figure 2.2 Reconstitution of acox-1 in the intestine rescues fat and feeding 
phenotypes 
(A) acox-1 is expressed in hypodermal (white arrows) and intestinal (orange arrow) 
tissues. Merged DIC and green epifluorescent image of a transgenic animal expressing a 
acox-1p::gfp transcriptional reporter. (B-C) Reconstitution of acox-1 gDNA under its own 
promoter (Pacox-1) and under an intestine specific promoter (Pvha-6) but not under a 
hypodermal-specific promoter (Pdpy-7) normalizes BODIPY fat levels. Representative 
images of BODIPY staining (B) and corresponding quantifications (C) expressed as 
fluorescence intensity relative to wildtype animals. The yellow arrow in (B) indicates a 
coelomocyte co-injection marker used during transgenic strain generation. Error bars 
indicate +/- SEM from mean, n>20 per strain.   *p<0.05, ***p<0.001, ANOVA (Tukey) (D) 
Reconstitution of acox-1 gDNA under an intestine specific promoter (Pvha-6) restores 
serotonin responsiveness. Relative pharyngeal pumping rates of indicated strains. Error 
bars indicate +/- SEM from mean, n > 15 per strain.  ***p<0.001, ANOVA (Tukey).  
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Figure 2.3 Modulation of feeding by ACOX-1 requires fatty acyl-CoA synthesis  
 (A) Inhibiting acyl-CoA synthesis (ACS) in acox-1(ok2257) animals restores the ability 
to elevate feeding in response to 5mM serotonin. Day 1 adult animals were pre-treated 
with vehicle or 1µM ACS inhibitor Triacsin C for 90 minutes before being plated on 
vehicle or 5mM 5HT plates. Feeding was assayed after 60 minutes on assay plates. 
Error bars indicate +/- SEM from mean, n = 15 animals per condition. ** p < 0.01 , *** p 
< 0.001 ANOVA (Tukey). (B) Animals were treated with 1mM oleic acid (OA) or 1µM 
Triacsin C (TC) for one hour, or pre-treated with 1µM TC or one hour prior to OA 
treatment before feeding was assayed.  Error bars indicate +/- SEM from mean, n > 15 
per strain.  ***p<0.001, ANOVA (Tukey) (C) Acyl-CoA levels in acox-1 mutants are 
unchanged relative to WT. Acyl-CoA species were separated and quantified by HPLC 
and normalized to protein concentrations, n = 3 independent extractions.  
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Table 2.1: Loss of acox-1 results in modest transcriptional changes in intestinal and 
fatty acid metabolic pathways  

 
** indicates intestinally expressed gene products  

WormBase ID Gene Name log2(FC) Cellular Process Putative Function P-value Adjusted 
p-value

UPREGULATED
WBGene00008681 scrm-4** 2.50 membrane phospholipids phospholid scramblase 7.83E-11 1.48E-06

WBGene00019404 K05B2.4** 1.98
peroxisomal fatty acid 

metabolism  
ortholog of human bile acid-CoA: amino acid 

N-acyltransferase (BAAT)
1.18E-04 8.71E-02

WBGene00013540 Y75B8A.3 1.89 fatty acid metabolism carboxylic ester hydrolase type B 1.83E-04 1.15E-01
DOWNREGULATED

WBGene00011487 T05E12.6** -1.64 unknown unknown 5.88E-05 5.83E-02
WBGene00019619 asp-14** -1.97 innate immune response aspartic endopeptidase 3.93E-05 5.54E-02
WBGene00007875 dod-24** -2.09 innate immune response unknown 2.33E-05 3.98E-02
WBGene00009429 irg-5 -2.10 innate immune response unknown 4.51E-05 5.54E-02
WBGene00009773 lipl-2** -2.15 fatty acid metabolism ortholog of human triglyceride Lipase F 2.67E-04 1.36E-01
WBGene00012671 Y39B6A.9 -2.17 unknown unknown 2.24E-04 1.17E-01
WBGene00019368 K03H6.2** -2.18 fatty acid metabolism putative lipase 2.18E-04 1.17E-01

WBGene00001150 ech-1.1** -2.18 fatty acid metabolism
enoyl-CoA hydratase, 3-hydroxyacyl-CoA 

dehydrogenase activity 
9.90E-05 8.24E-02

WBGene00014562 Y17D7B.7 -2.24 unknown unknown 4.67E-05 5.54E-02

WBGene00019495 sdz-24 -2.28 larval development SKN-1 dependent zygotic transcript 1.96E-04 1.15E-01
WBGene00007331 pho-11 -2.29 metabolic process ortholog of human acid phosphatase 2 7.81E-06 1.47E-02
WBGene00020560 T19C3.2 -2.29 unknown unknown 1.25E-04 8.75E-02
WBGene00007916 C34C6.3 -2.30 unknown unknown, contains an EGF-like domain 1.90E-04 1.15E-01
WBGene00006636 tsp-10** -2.30 unknown putative tetraspanin 5.29E-05 5.54E-02
WBGene00194708 Y36E3A.2 -2.31 membrane biology unknown 1.20E-04 8.71E-02
WBGene00008584 irg-4 -2.32 innate immune response unknown 2.23E-06 7.00E-03
WBGene00000747 col-174 -2.43 structural protein/collagen collagen 1.04E-04 8.24E-02
WBGene00021337 Y34F4.2** -2.47 membrane biology putative tight-junction/claudin 7.44E-05 7.01E-02

WBGene00008565 acox-2** -2.48
peroxisomal fatty acid 

metabolism  
acyl-CoA oxidase 2.64E-06 7.11E-03

WBGene00009904 F49E12.12 -2.51 GPI anchor maturation PGAP2 ortholog 5.07E-05 5.54E-02
WBGene00022375 Y94H6A.2 -2.56 unknown unknown 2.22E-04 1.17E-01
WBGene00008905 F17B5.1 -2.61 redox biology putative thioredoxin 1.47E-04 9.53E-02
WBGene00022730 ZK402.3 -2.64 unknown unknown, contains a SPK domain 4.80E-05 5.54E-02
WBGene00020083 R57.2** -2.65 unknown unknown 1.44E-04 9.53E-02
WBGene00011665 T09F5.1 -2.66 protein glycosylation putative galactosyltransferase 9.29E-05 8.24E-02

WBGene00008564 acox-1** -2.74
peroxisomal fatty acid 

metabolism  
acyl-CoA oxidase 2.01E-09 1.26E-05

WBGene00008698 F11D11.3** -2.76 innate immune response putative transmembrane glycoprotein 2.03E-04 1.16E-01
WBGene00022731 ZK402.5 -2.86 unknown unknown, contains a SPK domain 1.05E-04 8.24E-02
WBGene00022156 Y71G12B.18** -2.92 unknown unknown 6.98E-06 1.46E-02
WBGene00015268 BE0003N10.3 -2.93 zinc ion binding unknown 2.78E-07 1.31E-03
WBGene00010102 F55C9.5** -3.05 unknown unknown 3.07E-05 4.82E-02
WBGene00017020 D1014.7 -3.26 unknown unknown 1.27E-06 4.79E-03

WBGene00017019 D1014.6 -4.17 protein glycosylation
unknown, putative galactosyltransferase 

activity 
2.57E-10 2.42E-06



 92 

 
 

 
Figure 2.4 Loss of acox-1 results large-scale changes to the global metabolome  
Venn diagrams showing total numbers of detected features (6408 and 3604) and 
numbers of metabolites more than three-fold upregulated (pink) or downregulated (blue) 
in LC-HRMS using positive-ion (ESI+) and negative-ion (ESI-) electrospray ionization in 
acox-1 mutants. Though most differentially detected features were unidentifiable, the 
chemical structures shown here represent examples of the most significantly up or 
down regulated compounds in identifiable metabolic classes.  See Supplemental Table 
1. 
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Figure 2.5 acox-1 mutants exhibit egg-laying defects 
(A-B) acox-1(ok2257) mutants accumulate significantly more eggs in utero than wildtype 
animals. Representative DIC images (A) and quantification (B) of eggs retained in utero. 
Error bars indicate +/- SEM from mean, n = 30 animals per genotype. *** p < 0.001 
unpaired student’s t-test. (C) acox-1 animals are less responsive to the egg-laying inducing 
effects of serotonin. Egg-laying response of wildtype and acox-1 in control buffer (M9) or 
5mg/mL serotonin in M9 buffer. Data represents the number of eggs released per animal 
after a 20-minute exposure to vehicle or drug. Error bars represent +/- SEM from mean. n = 
20 animals per condition,  *** p < 0.001 ANOVA (Sidak) (D-E) Reconstitution of acox-1 
gDNA under an intestine specific promoter (Pvha-6) but not a hypodermal specific promoter 
(Pdpy-7) restores egg-laying capacity to acox-1 mutants. Representative DIC images (D) 
and quantification (E) of eggs retained in utero. Error bars indicate +/- SEM from mean, n = 
30 animals per genotype, *** p < 0.001 unpaired student’s t-test, against a wildtype control. 
(F-G) Loss of egl-2 rescues acox-1 egg-laying defects. Representative DIC images of 
each genotype (F) and quantification (G) of eggs retained in utero. Error bars indicate +/- 
SEM from mean, n = 30 animals per genotype. *** p < 0.001 unpaired student’s t-test.  
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Figure 2.6. ACOX-1-mediated regulation of serotonergic feeding responses 
requires the EGL-2 K+ channels  
(A) Pharyngeal pumping rates of wildtype, egl-2(n698), and egl-2 RNAi treated egl-2(n698) 
mutants on vehicle or 5mM 5HT containing plates. (B) Pharyngeal pumping rates of 
wildtype and acox-1(ok2257) animals treated with vector RNAi or egl-2 RNAi and vehicle or 
5mM 5HT (C) Pharyngeal pumping rates of indicated strains treated with vehicle or 5mM 
5HT.   Error bars indicate +/- SEM from mean, n=20 animals per condition. *p<0.05, *** p < 
0.001,  ANOVA (Tukey) (D) EGL-2 is required for animals to reduce feeding in response to 
oleic acid. Animals were exposed to 1mM Oleic Acid for one hour before feeding was 
assayed.   n> 15 per strain, Error bars indicate +/- SEM from mean,   ***p<0.001, ANOVA 
(Tukey). All feeding data are expressed as a percentage of vehicle treated wildtype 
animals. 
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Figure 2.7. Body cavity neurons modulate feeding behavior  
(A) EGL-2 is expressed in a limited subset of sensory neurons. Epifluorescent image of a 
transgenic animal expressing egl-2p::gfp transcriptional reporter. Yellow and green arrows 
indicate the AQR and URX body cavity neurons, respectively. (B) Animals expressing egl-
2(gf) in body cavity neurons do not elevate feeding in response to 5mM 5HT. Pharyngeal 
pumping rates of wildtype and pgcy-32::egl-2(gf) expressing animals treated vehicle or 
5mM 5HT. (C) Constitutive activation of synaptic release from body cavity neurons 
stimulates feeding.  Pharyngeal pumping rates of wildtype, acox-1(ok2257), CX10386 
pgcy-32::pkc-1(gf) and acox-1; CX10386 pgcy-32::pkc-1(gf) animals on vehicle or 5mM 5-
HT. In (B) and (C) data are expressed as a percentage of vehicle treated wildtype animals. 
Error bars indicate +/- SEM from mean, n=15 animals per condition.  *** p < 0.001 two way 
ANOVA (Tukey). 
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Figure 2.8 Loss of acox-1 suppresses URX body cavity neuron activity  
(A-D) Activity of URX neurons in each indicated genotype using Ca2+ imaging by 
GCaMP5K under the control of the URX specific flp-8 promoter. Oxygen concentrations 
in the microfluidic chamber were 10% and 21% as indicated. (A-B) For each genotype, 
black traces show the average percent change of GCaMP5k fluorescence (F∆/F0) and 
gray shading indicates SEM. The number of animals used for each condition is shown 
in the figure.  (C-D) Individual URX responses are shown for each genotype; each row 
represents one animal. (E) Maximal (F∆/F0) values are shown for individual animals in 
wildtype and acox-1 animals. Bars indicate the average value within each genotype. 
***p<0.001 by students t-test. (F) Individual baseline fluorescence (F0) values at 10% 
oxygen are shown for individual animals in wildtype and acox-1 mutants. Bars indicate 
the median value within each genotype; n.s., not significant by students t-test (G) We 
imaged mCherry fluorescence in wildtype and acox-1 mutant animals expressing both 
GCaMP5K and mCherry under the control of the flp-8 promoter. Images were taken in 
animals exposed to 10% oxygen. For each genotype, the fluorescence intensity was 
imaged at the same exposure, determined to be within the linear range. Fluorescence 
intensity was quantified and is expressed as the mean +/- SEM (n = 23). n.s., not 
significant by students t-test.  
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Figure 2.S1, related to Figure 2.1 
(A) Knocking down acox-1(F08A8.1) by RNAi suppresses the feeding elevating effects 
of exogenous serotonin (5mM 5HT).  Animals were treated with RNAi from L1 stage and 
feeding was assayed at day 1 adult stage.  Feeding data is expressed as a percentage 
of vehicle treated wildtype animals. Error bars indicate +/- SEM from mean, n = 20 
animals per strain. *** p < 0.001 ANOVA (Tukey)  (B) Loss of acox-1 does not influence 
the transcriptional expression of tryptophan hydroxylase (tph-1) as measured by qPCR. 
Error bars indicate +/- SEM from mean n = 3 independent assays (C) Relative 
abundance of 5-HT in wildtype and acox-1 mutants, as determined by LC-HRMS. Error 
bars indicate +/- SEM from mean, n = 4 independent experiments. (D) Loss of acox-1 
does not grossly alter amphid neuron morphology. DiI staining of amphid chemosensory 
neurons in wildtype and acox-1 mutants. Images acquired at day 1 adult stage.  
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Figure 2.S2, related to Figure 2.3  
(A) RNAi-mediated inactivation of distinct acyl-CoA synthases suppress feeding defects 
in acox-1(ok2257) animals. Animals were treated with respective RNAi clones from L1 
stage and feeding was assayed at day 1 adult stage. Feeding data is expressed as a 
percentage of vehicle treated wildtype animals. Error bars indicate +/- SEM from mean, 
n = 15 animals per strain. *<0.05, *** p < 0.001 two way ANOVA (Tukey).  
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Figure 2.S3, related to Figure 2.4  
(A) daf-22(ok693) animals are still responsive to the feeding elevating effects of 5mM 
serotonin. n=10 animals per condition (B) Feeding responses of wildtype animals to 
ascaroside #18 (ascr #18). Animals were exposed to 1µM and 5µM ascr#18 from L1 
stage and pharyngeal pumping rates were determined at day 1 adult stage. n = 15 
animals per condition (C) Feeding responses of wildtype animals to thiamine. Animals 
were exposed to 0.5 µg/µL thiamine and 1.0 µg/µL thiamine from L1 stage and 
pharyngeal pumping rates were determined at day 1 adult stage. n = 15 animals per 
condition (D) RNAi-mediated inactivation of fatty acid amide hydrolase (faah-1) elevates 
feeding responses of wildtype and acox-1 mutants. Animals were grown on faah-1 RNAi 
from L1 stage and feeding was assayed at day 1 adult stage. n = 10 animals per 
condition.  All feeding data is expressed as a percentage of vehicle or vector treated 
wildtype animals. Error bars indicate +/- SEM from mean, *** p < 0.001 two way ANOVA 
(Tukey).  
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Figure 2.S4, related to Figure 2.5  
(A) acox-1(ok2257) mutants lay eggs at a later developmental stage that wildtype 
animals, suggesting that in utero retention time is increased.  Histograms indicate the 
distribution of embryos at each developmental stage. (B) acox-1 mutants are less 
responsive to the egg-laying inducing effects of serotonin. Egg-laying response of 
wildtype and acox-1 mutants in control buffer (M9) or 0.5mg/mL fluoxetine. Data 
represents the number of eggs released per animal after a 20-minute exposure to 
vehicle or drug. Error bars represent +/- SEM from mean. n = 15 animals per condition,  
*** p < 0.001 ANOVA (Sidak) (C-D) Inactivation of egl-2 via RNAi rescues acox-1 egg-
laying defects. Representative DIC images of day 1 adults of each genotype (C) and 
quantification (D) of eggs retained in utero. Error bars indicate +/- SEM from mean, n = 
15 animals per genotype. *** p < 0.001 unpaired student’s t-test. 
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Figure 2.S5, related to Figure 2.6(A) RNAi-mediated knockdown of egl-2 rescues egg-
laying defects associated with aberrant channel activity egl-2(n698) mutants. 
Representative DIC images acquired from day 1 adults.  
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Figure 2.S6.  Effects of Triacsin C on URX body cavity neuron activity  
(A-H) Activity of URX neurons in each indicated genotype and treatment using Ca2+ 
imaging by GCaMP5K under the control of the URX specific flp-8 promoter. Oxygen 
concentrations in the microfluidic chamber were 10% and 21% as indicated. (A-D) For 
each genotype and treatment group, black traces show the average percent change of 
GCaMP5k fluorescence (F∆/F0) and gray shading indicates SEM. The number of 
animals used for each condition is shown in the figure.  (C-D) Individual URX responses 
are shown for each genotype and treatment; each row represents one animal. (I) 
Maximal (F∆/F0) values are shown for individual animals in wildtype and acox-1 animals 
+/- Triacsin C. Bars indicate the average value within each genotype. ***p<0.001 by 
students t-test. (J) Individual baseline fluorescence (F0) values at 10% oxygen are 
shown for individual animals in wildtype and acox-1 mutants. Bars indicate the median 
value within each genotype; n.s., not significant by students t-test (K) We imaged 
mCherry fluorescence in wildtype and acox-1 mutant animals expressing both 
GCaMP5K and mCherry under the control of the flp-8 promoter. Images were taken in 
animals exposed to 10% oxygen. For each genotype, the fluorescence intensity was 
imaged at the same exposure, determined to be within the linear range. Fluorescence 
intensity was quantified and is expressed as the mean. (L) The background-subtracted 
maximum fluorescence (max FL) at 21% (high) oxygen is shown for each genotype and 
treatment group. Bars indicate the median value within each genotype or treatment 
group. +/- SEM (n = 23). n.s., not significant by students t-test.   
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Chapter III: CPT-6 is expressed in the nervous system and 
regulates social feeding behavior 
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Introduction 

We previously reported that RNAi inhibition of either F08A8.1/acox-1 and 

W01A11.5/cpt-6 suppress the feeding increasing effects of serotonin. cpt-6 encodes an 

orthlogue of mammalian carnitine palmitoyl transferase I (CPT1), an enzyme that 

catalyzes the conversion of long chain fatty acyl-CoAs to fatty acyl-carnitines for 

translocation across the outer mitochondrial membrane. Like ACOX-1 in peroxisomal fatty 

acid oxidation, CPT-6 is hypothesized to control the rate of flux of cytosolic fatty acyl-

CoAs into the mitochondrial matrix and thus function as a gate-keeper of mitochondrial 

fatty acid oxidation [37]. As loss of either CPT-6 and ACOX-1 abrogates the increased 

feeding rate of serotonin treated animals, we hypothesized that an accumulation of fatty 

acyl-CoAs, the metabolic substrates of these enzymes initiates an anorexigenic 

response. In mammals, pharmacologic manipulations that increase levels of 

hypothalamic fatty acyl-CoAs also inhibit feeding suggesting these moieties may play a 

conserved role in feeding regulatory circuits[112].  

Though ACOX-1 has not previously been implicated in mammalian feeding 

regulation, a growing body of literature implicates mammalian carnitine palmitoyl 

transferase in the hypothalamic control of feeding. In particular, CPT1c, a brain specific 

isoform of the enzyme has emerged as key regulator of organismal energy 

homeostasis[146]. Mice lacking CPT1c have reduced food intake and body fat than their 

wildtype counterparts yet paradoxically, these animals are more susceptible to obesity 

when fed a high-fat diet[146]. This is hypothesized to be due in part due to disruption of 

hypothalamic leptin and ghrelin signaling pathways. Specifically, CPT1c KO animals are 

resistant to the anorectic effects of leptin and ghrelin [147,148]. In addition, a recent study 
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suggests that CPT1c activity in the mediobasal hypothalamus is required for the induction 

of brown adipose tissue thermogenesis by leptin [149].  

CPT1c has a shares a high degree of homology with CPT1a and CPT1b, the liver 

and muscle specific isoforms of the enzyme. Though all three isoforms share the capacity 

to bind fatty acyl-CoAs, CPT1c curiously lacks capacity to transfer fatty acyls to carnitine 

and is expressed uniquely in the endoplasmic reticulum (ER) suggesting it may play a 

non-canonical role in lipid metabolism [146] [150]. Metabolomic profiling of CPT1c KO 

mice confirms the notion that this isoform plays a limited role in mitochondrial fatty acid 

oxidation as no changes in metabolites associated with fatty acid oxidation were detected. 

Loss of CPT1c does significantly reduce the levels of certain fatty acyl ethanolamines and 

increase ceramide production [151]. These two lipid families have well established roles 

in the regulation of feeding and have been proposed as potential downstream effectors 

of CPT1c [147].  

Despite a clear role for CPT1 in the regulation of feeding, the precise role of this 

enzyme in the nervous system remains unclear. Moreover, though this enzyme has been 

shown to mediate the effects of peripherally derived endocrine signals (i.e ghrelin, leptin), 

no studies have examined the influence of CPT1 on neuroendocrine circuits that regulate 

feeding behavior. Our data suggests that CPT1 enzymes may exert their effects on 

feeding by modulating serotonergic signaling circuits.  

Here, we describe the generation and preliminary phenotypic analysis of a novel 

allele of cpt-6, an ortholog of mammalian CPT-1. We find that CPT-6 is expressed broadly 

within the C. elegans nervous system and may play a role regulating pharyngeal pumping 

and social feeding behaviors.   
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Results 

We previously reported that RNAi inhibition of W01A11.5/cpt-6 suppress both the 

fat reducing and feeding increasing effects of serotonin. To investigate how loss of cpt-6 

influences serotonin signaling, we utilized CRISPR/Cas9-directed genome editing to 

generate cpt-6 mutants as no genetic mutants for this gene currently exist. Using a dual 

sgRNA-directed strategy with non-homologous end joining dependent repair, we generated 

a novel deletion allele of cpt-6 [152]. Guide RNAs were designed to target PAM sites that 

flank the first exon and a portion of the second exon resulting in a ~397bp deletion (Figure 

1A-D).   

The developmental timing, size and health of the resulting cpt-6 mutants appear 

grossly wildtype. cpt-6 mutants however have reduced rates of pharyngeal pumping and are 

partially unresponsive to the feeding increasing effects of serotonin (Figure 2A). In addition 

to the noted feeding defects, cpt-6 mutants exhibit a preference for low oxygen regions at the 

border of bacterial lawns and demonstrate a social feeding behavior. To examine the 

expression pattern of CPT-6, we generated a translation reporter consisting of a full length 

cpt-6 cDNA fused to a C-terminal GFP under the control of the endogenous cpt-6 promoter. 

CPT-6 is expressed broadly within the nervous system with notable expression in the ventral 

cord motor neurons and over 50 distinct head neurons. Slight expression was also noted in 

the intestine and vulva. Closer examination, particularly with co-injection markers illuminating 

known neurons, will be required to more specifically identify the neurons in which CPT-6 is 

expressed.  
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Discussion 

 We have generated a novel deletion allele of W01A11.5/cpt-6 using CRISPR/Cas9 

editing. This deletion removes ~400bp region of the gene that represents the first 

exononic region and the beginning portion the second.  This mutation is presumed a null 

given the large deletion, however we cannot entirely rule out the possibility that a 

downstream ORF gives rise to a partially functional gene product. The feeding phenotype 

of this novel mutant recapitulated the result attained with RNAi knockdown against CPT-

6 supporting the notion that this mutation results in a loss of CPT-6 function.  

 CPT-6 is predominantly expressed in the C. elegans nervous system though the 

specific neurons or neuronal subtypes remain unknown. This result was unexpected 

given the previously held notion that this protein was uniquely expressed in peripheral 

tissues. In mammals, it is the neuronal function of CPT-1c that is largely thought to 

contribute to the regulation of whole energy homeostasis. It is possible that CPT-6 plays 

a similar enzymatic and mechanistic function in C. elegans neurons. To further explore 

this possibility it will be interesting to examine the localization patterns of the remaining 5 

CPT-1 orthologs to determine if any CPTs are expressed within the nervous system.  

Importantly, it will be important to determine the subcellular localization of CPT-6 as the 

feeding regulatory effects of CPT-1c stem from its function in the endoplasmic reticulum 

rather than the canonical mitochondrial role. Preliminary metabolomic analyses suggest 

that numerous metabolic and lipidomic species including phospholipids, ascarosides and 

short polypeptides are altered in cpt-6 mutants (Schroeder Data). Further biochemical 

analyses will be required to more specifically determine the nature of the metabolic 

changes arising in cpt-6 mutants.  
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It is intriguing that loss of CPT-1c in mammals results in altered fatty acid 

ethanolamine synthesis as these species were also among the most differentially 

expressed in acox-1 null animals. Fatty acid ethanolamines may represent a common 

regulatory node in through which ACOX-1 and CPT-6 influence feeding behavior.  Closer 

examination of the role of fatty acid ethanolamines in regulating serotonergic circuits and 

feeding behavior should be prioritized.  

 The most notable phenotype exhibited by cpt-6 mutants is the bordering 

phenotypes. These mutants exhibit a preference for low oxygen environments,  a well-

studied behavior known to be under the control of the URX-RMG hub-and-spoke circuit 

[33,103,120,123]. This is particularly intriguing considering the purported role for URX 

body cavity in energy homeostasis and metabolic sensing as shown by our recent study 

and other groups [103,107,121,122].  It will be important to determine whether CPT-6 is 

expressed in URX, RMG or other body cavity neurons. Follow-up experiments could 

probe the role of URX or RMG neurons in regulating oxygen preferences in cpt-6 mutants 

by determining whether activation or ablation of these neurons rescues the bordering 

phenotype.  

cpt-6  and acox-1 were originally identified as suppressors of the feeding 

increasing effects of serotonin from the same experiment[19]. Interestingly, these two 

proteins are expressed in distinct tissues, acox-1 is only expressed with peripheral tissues 

whereas cpt-6 is predominantly expressed in the nervous system. In mammals, changes 

in lipid metabolism either in peripheral tissues or directly within feeding regulatory regions 

within the hypothalamus can influence feeding behavior and changes in hypothalamic 

lipid metabolism can influence distant peripheral metabolic circuits [10,12,112,146,153].  
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We have demonstrated that URX and oxygen sensing neurons play a key role in 

mediating the effects acox-1 on feeding behavior. It is therefore highly intriguing that loss 

of cpt-6 modulates social feeding behavior and normoxia avoidance as it suggests that 

URX neurons and oxygen sensing circuits may represent a common mechanism through 

which peripherally and neuronally derived lipid metabolic species influence the behaviors 

and physiologies that underlie energy homoeostasis.  
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W01A11.5
gRNA #1 gRNA #2

del

A

C
Primer ID Sequence Target Sequence Source
cpt-6 guide RNA PAM #1 cctcctattgcgagatgtcttgCGACATCTGAAATTATGGTAgtttaagagctatgctgg Targets: CGACATCTGAAATTATGGTA(AGG) in antisense From ChopChop
cpt-6 guide RNA PAM#3 cctcctattgcgagatgtcttgTGGGTATTTGTAGTGTAGGGgtttaagagctatgctgg Targets TGGGTATTTGTAGTGTAGGG (TGG) in antisense From crispr.mit.edu
genotyping forward cgctcattcaacaacacgga
genotyping reverse gaatgtttccagcttggcga

D

B
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 Figure 3.1 Generation of a novel allele of W01A11.5/cpt-6  
We have generated a novel allele of cpt-6 using CRiSPR/Cas9 (A) Map of the exonic and 
intronic regions of W01A11.5/cpt-6 with the location of the ~ 397bp deletion indicated in red 
brackets. (B) Alignment of DNA sequence of wild-type and the novel cpt-6 allele.  (C) Guide 
RNAs and sequencing primer sequences. Guide RNAs designed was aided with 
ChopChop or crispr.mit.edu software as indicated. (D) PCR confirmation of resulting 
deletion event. Expected wildtype product = 1695bp and mutant product = ~1300bp.  
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Figure 3.2 CPT-6 is expressed in the nervous system and plays a role in regulating 
feeding behavior and oxygen preference  
 (A) cpt-6 mutants have reduced feeding rates and are partially insensitive to the feeding 
increasing effects of serotonin. Feeding data is preliminary in nature and represents an 
n=10 animals. (B) Expression of a cpt-6p::cpt-6cDNA::GFP suggest that CPT-6 primarily 
functions in the nervous system (C) cpt-6 mutants exhibit social feeding behavior and a 
preference for low oxygen regions on the border E. coli source.  
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Chapter IV: Reflections and Future Directions 
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In this study, we uncover the architecture of a novel gut-to-brain regulatory axis 

that links peripheral metabolic information with neuroendocrine signaling circuits that 

regulate nutrient-related behaviors. This work offers mechanistic insight into how 

nutrient cues can modulate neuromodulatory circuits implicated in the control of mood, 

cognition and behaviors. Two areas of investigation should be prioritized in follow-up 

studies.  

1. Investigating the influence of body cavity neurons on serotonergic circuits 

We identified the body cavity neurons as a key link between peripheral metabolic 

cues and serotonergic signaling. We hypothesize that these neurons are capable of 

sensing numerous metabolic cues from the coelomic fluid and serve as an entry point 

into a circuit that links peripheral metabolic information with neuroendocrine circuits. 

However, it is still currently unclear what signals are released by URX neurons to 

regulate feeding (and potentially egg-laying) nor which cells are downstream recipient of 

these signals. Constitutive activation of synaptic vesicle and dense-core vesicle release 

from these neurons strongly stimulates feeding though intriguingly and somewhat 

perplexingly, genetic ablation of these neurons restore serotonin sensitivity to acox-1 

mutants (Figure 1). Taken together, these results paint a complicated role for body 

cavity neurons in this circuit as it seems that their activity is required to both suppress 

and activate feeding responses. Further investigation is required to more specifically 

determine the specific role and influence of body cavity neurons in the regulation of 

feeding behavior as it is possible that multiple signals are released from these neurons 

to control feeding. One area of investigation should focus on more specifically defining 
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contributions of AQR, PQR and URX neurons to feeding behavior. Given our GCaMP 

results, examining the contribution of URX neurons should be prioritized. Such an 

experiment would consist generating transgenic animals in which  egl-2(gf) and pkc-

1(gf) are expressed the URX specific flp-8 promoter and determining the effects of 

inhibition and activation of URX neurons on feeding behavior. We hypothesize that 

inhibition of URX neurons will suppress serotonergic responses while activation of these 

neurons will stimulate feeding.  

Next, it will be important to determine the nature of the signal(s) released from 

URX/body cavity neurons in the control of pharyngeal pumping. URX neurons are both 

cholinergic and peptidegic and specifically secrete a number FMRFamide-like peptides 

(flp), a family of neuropeptides involved in the control of most complex behaviors 

including feeding and egg-laying [83,154–156]. We showed that activation synaptic 

vesicle and dense core vesicle release stimulates feeding behavior suggesting that 

either a cholinergic or peptidergic signal from these neurons functions to enhance 

feeding responses. To resolve the role of neuropeptides specifically, an important 

experiment will be to selectively suppress dense-core vesicle release from URX 

neurons. RAB-5 is a Rab GTPase that is required for dense-core vesicle release but 

plays no role in synaptic vesicle release. It’s been previously shown that expression of a 

constitutively active version of this protein, rab-5(Q78L) blocks neuropeptide release in 

a cell-autonomous manner [157]. If neuropeptide release from URX neurons is required 

to stimulate feeding responses, we would expect an animal expressing the rab-5(Q78L) 

transgene under a flp-8 promoter to have blunted responses to exogenous serotonin in 

a manner that phenotypically recapitulates the responses of acox-1 mutants. If this is 
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the case, a screen for specific neuropeptides should be carried out perhaps utilizing a 

strain with RNAi sensitivity specifically in URX neurons.  If animals lacking peptidergic 

signaling from URX neurons still retain full responsiveness to serotonin, it could suggest 

that a cholinergic tone rather than a peptidergic signal from these neurons regulates 

feeding.  

There is some preliminary evidence that acetylcholine signaling is altered in 

acox-1 mutants.  Acetylcholine plays a key role in mediating excitatory neuromuscular 

responses and stimulates pharyngeal pumping [158–161]. Animals defective in 

acetylcholine synthesis or release have reduced feeding rates of pharyngeal pumping 

[162,163].  It has also been proposed that the experience of starvation modulates 

pharyngeal muscle excitability in turn influencing feeding behavior in a mechanism that 

involves the GAR-3 muscarinic cholinergic receptor [29]. A few pieces of data that 

suggest that altered acetylcholine signaling may contribute to the feeding and egg-

laying defects noted in acox-1 mutants. Both acox-1 and acox-1;aak-2 mutants are 

partially resistant to the paralyzing effects of the acetycholinerase inhibitor, aldicarb 

suggesting that acetylcholine release or transmission is reduced in these animals 

(Figure 2). Preliminary data from direct biochemical measurements of acetetylcholine 

and choline, the rate-limiting substrate in the synthesis of acetylcholine suggests that 

levels of this neurotransmitter in whole animal lysates are indeed reduced in acox-1 and 

cpt-6 mutants (Figure 3, Yan Yue, Schroeder Lab – communicated findings). As choline 

levels are unchanged in these animals, it remains possible that either the synthesis of 

acetylcholine is slowed by reduced levels or activity of choline acetyltransferase (ChAT) 

or the breakdown of acetylcholine is increased by higher levels or activity of 



 120 

acetylcholine esterase, the enzyme involved in breakdown of acetylcholine. 

Reexamination of our RNAseq data suggest that a putative acetylcholine esterase 

(Y75B8A.3) is indeed 2.5 fold higher in acox-1 and aak-2;acox-1 mutants. This gene 

was not included in our screen of RNAseq hits, and it will be interesting to determine if 

contributes to the behavioral responses of acox-1 mutants. If reduced cholinergic 

signaling leads to reduced excitability of serotonergic responses, inactivation or knock-

down of acetylcholine esterase levels would be hypothesized to rescue the noted 

behavioral phenotypes of acox-1 mutants.  

Acetylcholine signals through two broad families of receptors, the 

metabotropic/G-protein coupled muscarinic receptors (mAChRs) and the ionotropic 

nicotinic receptors (nAChRs) [164]. To begin exploring the influence of cholinergic 

signaling on feeding, we first explored the influence of muscarinic acetylcholine 

signaling on feeding responses. Transient treatment with atropine, a muscarinic 

receptor antagonist suppresses the pharyngeal pumping rates of both wildtype and aak-

2 mutants (Figure 3A). Conversely, treatment with arecoline, a muscarinic receptor 

agonist did not restore high feeding rates to aak-2;acox-1 (Figure 3B). These 

preliminary experiments suggest that muscarinic signaling is required for serotonin-

mediated feeding increases, but not sufficient to stimulate feeding or to rescue the 

suppression induced by loss of ACOX-1. As both muscarinic and nicotinic acetylcholine 

signaling have been shown to regulate serotonin responses in both the pharyngeal and 

vulval neuromuscular,  a follow-up set of experiments could explore the role of nicotinic 

cholinergic signaling [165–167]. It is well established that animals lacking EAT-2, a 

nicotinic cholinergic receptor, have reduced feeding responses [159,167]. The roles of 
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nicotine or other nicotinic cholinergic receptor agonists on C. elegans behaviors are less 

well defined. Transient exposure to nicotine has been shown to stimulate egg-laying 

behavior and excite dissected pharyngeal muscles [167,168]. If reduced nicotinic 

signaling contributes to the suppression of serotonergic feeding responses in acox-1 

mutants, nicotine supplementation may rescue feeding and egg-laying defects. If this is 

the case, the role and site of action of specific nicotinic acetylcholine receptors 

(nACrRs) should be probed. Such experiments could help elucidate mechanistic and 

cellular components that lie downstream of URX and body cavity neurons in the 

regulation of feeding and egg-laying behavior.  

2. Characterizing the role of N-acylethanolamines in regulating feeding behavior  

Our metabolomic analyses suggest that the synthesis of fatty acyl ethanolamine 

synthesis may be altered in acox-1 mutants. Metabolic intermediates in the biosynthesis 

of N-acylethanolamines were among the most significantly altered. N-

acylethanolamines, endogenous ligands of cannabinoid receptors, are potent 

neuromodulators and regulate numerous behaviors and physiologies including appetite, 

lifespan, mood and cognition [79,115–118].  We find that inactivation of fatty acid amide 

hydrolase (faah-1), an enzyme involved in the hydrolytic degradation of NAEs, 

stimulates both feeding and egg-laying responses in wildtype, acox-1, aak-2;acox-1 

mutants (Figure S4D-1, Figure 4A). To place FAAH-1 within an existing feeding 

regulatory framework, we performed an epistasis analysis with known components of 

serotonergic feeding circuits. Animals deficient in serotonin due to a mutation in tph-1 

fail to increase pharyngeal pumping rates on faah-1 RNAi (Figure 4B). This suggest that 

the effects of NAEs on feeding behavior require serotonin signaling.  
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NAEs are synthesized by N-acyl phosphatidylethanolamine phospholipase D (nape-

1), an enzyme that hydrolyses N-acylphosphatidyethanolamines to produce N-

acylethanolamines and phosphatidic acid. RNAi inactivation of nape-1 generates an 

“anxiety-like” phenotype where animals exhibit extremely rapid bouts of feeding after 

mechano-stimulation (ex. movement of plates) before eventually stabilizing back to 

wildtype levels (data not shown). This curious phenotype merits closer investigation and 

may suggest that NAPE-1 and NAE products play roles in gating the excitability of 

sensory circuits.   

How might NAEs regulate feeding and egg-laying behavior and sensory 

responsiveness? Endocannabinoids are potent neuromodulators and play a key role in 

regulating neuronal excitability in part due to their actions on serotonergic systems 

[169]. Indeed, there is high degree of overlap in the behaviors and physiologies 

regulated by endocannabinoid and serotonergic signaling and cannabinoid-driven 

effects often require the involvement of serotonergic signals [79,118,169]. 

Endocannabinoids have been shown to modulate the release of serotonin, alter the 

expression and activity of serotonin and influence the excitability of serotonergic 

neurons [170,171]. In mammals, most of these effects require the activity of the 

canonical Gαo- coupled cannabinoid receptors, CB1 and CB2 [172].   

Though C. elegans synthesize endocannabinoids, they were long thought to lack 

clear orthologs for mammalian CB1 and CB2 receptors [173–175]. However, a recent 

report suggests that the neuropeptide receptor npr-19 binds at least two major 

endocannabinoids 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamide 

(AEA) and functions as a cannabinoid receptor [176]. Intriguingly, npr-19 is expressed in 
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a limited subset of neurons including the URX body cavity neuron and the M3 

pharyngeal motoneuron where it mediates the effect of 2-AG and AEA on numerous 

behaviors, including feeding, nociception and locomotion. It is highly intriguing that npr-

19 is expressed in the URX body cavity neurons as it suggests that it may play a role in 

mediating the effects of loss of ACOX-1 on feeding. Cannabinoids are known to have 

state-dependent and counterbalancing effects. If cannabinoid signaling through NPR-19 

is required to block feeding increasing effects of serotonin, we would expect an acox-

1;npr-19 animals to have wildtype feeding responses. Alternatively, certain cannabinoid 

species may stimulate feeding through NPR-19 in which case, it is possible that npr-19 

mutants resemble acox-1 mutants and fail to respond to serotonin.  It will also be 

important to determine if npr-19 is required for the feeding increasing effects of faah-1 

RNAi or the regulation of URX neuron activity. 

 NPR-19 long evaded BLAST searches for cannabinoid receptors as it only shares 

23% homology with human CB1. There are still numerous orphaned neuropeptide 

receptors that may play a role in mediating the effects of cannabinoids in C. elegans. It 

is also possible that npr-19 or other NPR/CB-like receptors play no role in mediating the 

effects of ACOX-1 or FAAH-1 on feeding. Indeed it has been established in mammalian 

systems that not all not  fatty acylethanolamines bind or activate cannabinoid receptors 

though the mechanisms of action for the receptor-inactive acylethanolamines remain 

poorly understood [177]. Given the lack of clear CB homologs, C. elegans are likely an 

excellent model to identify novel and perhaps more evolutionarily ancient mechanisms 

that underlie the influence of cannabinoids and fatty acylethanolamines on behavior and 

physiology.  
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Lastly, the contribution of individual N-acylethanolamines and their precursors in 

the regulation of feeding should be examined. We conducted a preliminary 

supplementation analysis and found that addition of docosahexaenoic acid (DHA), 

docosahexaenoylehanolamine (DHEA) and arachidonic acid (AA)  stimulate feeding in 

wildtype animals while DHA, DHEA and the eicosapentaenoic acid (EPA) derivative  

eicosapentaenoic ethanolamine (EPEA) elevate feeding rates in acox-1 mutants (Figure 

6). DHA, AA and EPA  are major components of neuronal phospholipids and play 

significant and conserved roles in the development and function of the nervous system. 

Though our screen was limited, it is notable that the only fatty acid “hits” (AA, EPEA, DHA 

and DHEA) belong or are derived to the omega-3 and omega-6 family of fatty acids. There 

is an overwhelming amount of literature highlighting the protective role of these lipids on 

the incidence and severity of wide range of psychiatric, neurological and 

neurodegenerative conditions through their precise contribution to neuronal and cognitive 

health remain unclear. Some of these protective influences of omega-3/6 fatty acids are 

hypothesized to require the conversion of these lipids to their cognate N-acyl 

ethanolamines [178–180].   

Despite the physiologically essential role of omega 3 fatty acids, virtually all 

vertebrate species are incapable of catalyzing the sequential desaturation reactions 

required to synthesize these lipids de novo. Instead, these lipids must be acquired from 

dietary sources or synthesized from the essential fatty acid precursor, α-linoleic acid 

(ALA, 18:3n-3). In vertebrates, ALA is progressively desaturated and elongated to 

tetracosapentaenoic acid (24:6n-3) in the endoplasmic reticulum. Tetracosahexaenoic 

acid is subsequently translocated to the peroxisomal matrix where it is shortened to DHA 



 125 

in part through the action of ACOX-1 [181].  Unlike mammals, C. elegans and other 

nematodes seem to have the capacity to generate DHA de novo though it is unclear how 

much is generated via a de novo pathway versus the ACOX-1 and ALA dependent circuit 

[182,183]. It will be important to re-mine the metabolomics data to determine if acox-1 

mutants have altered levels of DHA, EPA and other related polyunsaturated fatty acid 

derivatives (i.e fatty acyl ethanolamines). It is hypothesized that the ratio of omega-3 to 

omega-6 fatty acids contributes to pathogenic or dysfunctional states so it will be 

important to access both absolute and relative levels of these lipids in acox-1 mutants 

[184]. As polyunsaturated fatty acids are major structural components of cellular 

membranes and functional modulators of cellular function these preliminary data are 

highly intriguing. Long chain poly/unsaturated fatty acids like DHA and EPA have been 

shown to be essential for efficient serotonergic and cholinergic neurotransmission. For 

example, animals deficient in fat-3, the Δ6-desaturase that mediates the first step in the 

conversion of ⍺-linolenic acid (ALA) to EPA and DHA show behavioral defects consistent 

with inefficient serotonin and acetylcholine transmission. Like acox-1 mutants, fat-3 

mutants exhibit egg-laying defects and aldicarb resistance, phenotypes that can be 

rescued with exogenous supplementation of arachidonic acid and docosahexaenoic acid 

[185]. Though the precise mechanisms remain unclear, modulation of neuronal PUFA 

composition seems to influence synaptic vesicle formation and fusion at synaptic 

terminals in turn altering neurotransmission.  It is possible that loss of ACOX-1 alters the 

composition of neuronal PUFAs in turn, causing behavioral phenotypes due to altered  

serotonergic and cholinergic release. The role of PUFAs in mediating the behavioral 

deficits of acox-1 mutants should be more carefully assessed. Dose response 
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experiments with each PUFA should be conducted to understand the ability of each PUFA 

to rescue the phenotypes of acox-1 mutants. As PUFAs serve as essential precursors to 

numerous signaling molecules including NAEs, sphingolipids and eicosanoids, 

experiments with unmetabolizable variants of each PUFA could be a starting place to 

disentangle the contributions of the PUFAs themselves from their derivatives. 
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Figure 4.1 ACOX-1-mediated regulation of serotonergic feeding responses 
requires the EGL-2 K+ channels 
(A) Body Cavity Neurons are required for ACOX-1 to modulate serotonergic feeding 
responses. AQR, PQR and URX neurons were genetically ablated using a gain-of-function 
allele of the EGL-1 caspase. Pharyngeal pumping rates of CX7102 (URX dead) and acox-
1(ok2257); CX7102 animals treated with vehicle or 5mM 5HT. Error bars indicate +/- SEM 
from mean, n=10 animals per condition. *p<0.05, *** p < 0.001,  ANOVA (Tukey)  
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Figure 4.2 ACOX-1, CPT-6 and Body Cavity Neurons regulate acetylcholine 
signaling 
(A, B) Aldicarb induced paralysis assay suggests that acetylcholine signaling may be 
reduced in acox-1, aak-2;acox-1, cpt-6 and URX dead animals (CX7102) Animals were 
placed on plates containing 1mM of the acetylcholinesterase inhibitor Aldicarb. Animals 
were observed and scored as moving or paralyzed every 30 minutes.    
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Figure 4.3 Loss of acox-1 and cpt-6 reduces acetylcholine but not choline levels 
 (A) Pharyngeal pumping rates of wildtype and aak-2 animals treated with vehicle or 1mM 
atropine for one hour. . Error bars indicate +/- SEM from mean, n=10 animals per 
condition. (B) Pharyngeal pumping rates of wildtype and acox-1;aak-2 animals treated with 
vehicle or 1mM arecoline for one hour. Error bars indicate +/- SEM from mean, n=10 
animals per condition  
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Figure 4.4 Inhibition of muscarinic acetylcholine signaling suppresses elevated 
feeding responses of aak-2 mutants  
 (A) Pharyngeal pumping rates of wildtype and aak-2 animals treated with vehicle or 1mM 
atropine for one hour. . Error bars indicate +/- SEM from mean, n=10 animals per 
condition. (B) Pharyngeal pumping rates of wildtype and acox-1;aak-2 animals treated with 
vehicle or 1mM arecoline for one hour. Error bars indicate +/- SEM from mean, n=10 
animals per condition  
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Figure 4.5 RNAi inactivation of fatty acid amide hydrolase (faah-1) stimulates 
feeding responses in a serotonin dependent manner 
 (A) Pharyngeal pumping rates of wildtype and aak-2;acox-1 animals treated with vector or 
faah-1 RNAi. Error bars indicate +/- SEM from mean, n=8 animals per condition. (B) 
Pharyngeal pumping rates of wildtype, acox-1 and tph-1 animals treated with vector or 
faah-1 RNAi. Error bars indicate +/- SEM from mean, n=10 animals per condition. *** p < 
0.001, ANOVA (Tukey).  
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Figure 4.6 Exogenous omega-3 fatty acid derivatives elevate feeding rates of 
wildtype and acox-1 mutants 
 (A) Animals were grown from L1s on plates containing 200µM of each fatty acid before 
assessing pharyngeal pumping rates of day 1 adults. Error bars indicate +/- SEM from 
mean, n=5 animals per condition. Oleoylethanolamine (OEA), palmitoylethanolamine 
(PEA), arachidonoyl ethanolamine (AEA), docosahexaenoyl ethanolamine (DHEA), 
linoleoyl ethanolamine (LEA), arachidonic acid (AA), docosahexaenoic acid (DHA), 
eicosapentaenoyl ethanolamine (EPEA).  
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