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Abstract—Linear computations over quantum many-to-one
communication networks offer opportunities for communication
cost improvements through schemes that exploit quantum en-
tanglement among transmitters to achieve superdense coding
gains, combined with classical techniques such as interference
alignment. The problem becomes much more broadly accessible
if suitable abstractions can be found for the underlying quantum
functionality via classical black box models. This work formalizes
such an abstraction in the form of an “N -sum box”, a black
box generalization of a two-sum protocol of Song et al. with
recent applications to N -servers private information retrieval.
The N -sum box has communication cost of N qudits and classical
output of a vector of N q-ary digits linearly dependent (via
an N × 2N transfer matrix) on 2N classical inputs distributed
among N transmitters. We characterize which transfer matrices
are feasible by our construction, both with and without the
possibility of additional locally invertible classical operations at
the transmitters and receivers.

I. INTRODUCTION

Distributed computation networks are often limited by their
communication costs. Improving the efficiency of distributed
computation by reducing communication costs is an active
area of research. Reductions in communication cost may be
achieved by coding techniques that are specialized for the
type of distributed computation task (e.g., aggregation [1],
MapReduce [2], matrix multiplication [3]) as well as the nature
of the communication network (wireless [1], cable [4], optical
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Fig. 1. Quantum circuit and black box representation for two-sum transmission protocol with |β00⟩ = 1√
2
(|00⟩ + |11⟩).

fiber [5], quantum networks [6]). For instance, coding for over-
the-air computation reduces the communication cost of linear
computation over many-to-one wireless networks, by taking
advantage of the natural superposition property of the wireless
medium [1].

Our focus in this work is on linear computations over
quantum many-to-one communication networks. The potential
for reduced communication costs in this setting comes from
quantum-entanglement among the transmitters, which creates
opportunities for superdense coding gains [7]–[10] as well as
classical techniques such as interference alignment. However,
unlike wireless networks for which there exists an abundance
of simplified channel models and abstractions to facilitate anal-
ysis from coding, information-theoretic and signal-processing
perspectives [11]–[13], similarly convenient abstractions of
quantum communication networks are not readily available,
which limits the study of quantum communication networks
largely to quantum-experts. Our work is motivated by the
observation that a convenient abstraction for linear computa-
tion over quantum many-to-one networks is indeed available,
although somewhat implicitly, in the works of Song et al.,
in the form of a quantum two-sum protocol [14], and its
subsequent generalizations as applied to QPIR [14]–[20]. The
main contribution of our work is to crystallize this abstraction
and explore its scope and limitations. What we present is a
black box generalization of the two-sum protocol, involving
N qudits instead of 2 qubits, in short, an “N -sum box”.

The two-sum protocol [14] is shown in Fig. 1, both as a
quantum circuit and as a black box. In the quantum circuit, we
see two transmitters (Tx1 and Tx2), each in possession of one
qubit of an entangled pair. The entangled state in this case is



the Bell state |β00⟩. As classical 2-bit inputs become available
to the two transmitters ((x1, x3) to Tx1, (x2, x4) to Tx2), they
perform conditional quantum operations (X,Z gates) on their
respective qubits and then send them to the receiver, for a
total communication cost of 2 qubits. The receiver performs a
Bell measurement and obtains (y1, y2) = (x1 + x2, x3 + x4).
The two-sum protocol can be abstracted into a black box,
also shown in Fig. 1, with inputs (x1, x3), (x2, x4) controlled
by Tx1 and Tx2, respectively, and output y = Mx, where
M = ( 1 1 0 0

0 0 1 1 ) is the transfer matrix of this 2-sum box
and x⊤ =

(
x1, x2, x3, x4

)
. The black box representation

hides the details of the quantum circuit and specifies only the
functionality (transfer matrix M) and the communication cost
(2 qubits), which makes it possible for non-quantum-experts to
design low-communication-cost coding schemes for quantum
communication networks using this black box, e.g., to take
advantage of super-dense coding. Note that in the two-sum
protocol, if Tx1 uses only zeros for its data (x1 = x3 = 0),
then the protocol allows Tx2 to send both its classical input
bits (x2, x4) to the receiver, even though it sends only one
qubit, provided Tx1 sends its qubit to the receiver as well.
This is an example of superdense coding, made possible by
the entanglement between the two qubits. Indeed, without the
entanglement, qubits are worth no more than classical bits by
the Holevo bound [21].

The generalization of the 2-sum box to the N -sum box is
based on the stabilizer formalism [22], and similarly allows
designs of classical coding schemes at larger scales that take
advantage of the quantum entanglement implied by the N -
sum box without the need to deal directly with the underlying
quantum-circuits. Feasible N -sum box transfer functions turn
out to be precisely those transfer matrices M ∈ FN×2N

q that
are either strongly self-orthogonal themselves (cf. Def. 3),
or can be made strongly self-orthogonal by locally invertible
transformations (cf. Def. 1) at various transmitters and/or the
receiver. Existing results on the capacity of QPIR become
much more accessible when seen through the lens of the N -
sum box. The simplicity of the N -sum box will facilitate
coding schemes employing interference alignment/cancelation
for computation over quantum communication networks, e.g.,
various forms of quantum private information retrieval, quan-
tum secure distributed matrix multiplication, and quantum lin-
ear computation multiple-access, without the need for concern
about the details of quantum computation.

The N -sum box presented in this work is based on the
stabilizer formalism that originates in quantum error correction
coding literature [22]–[25]. As a caveat, we cannot rule out
that there may exist other constructions different from ours,
that are capable of producing N -sum boxes with transfer
functions that are not feasible with our construction and locally
invertible transformations (cf. Sec. IV). On the other hand, we
are not aware of any such (implicit or explicit) constructions in
the existing literature on quantum linear error correcting codes.
We are cautiously optimistic that the stabilizer-based construc-
tion exhausts the scope of the N -sum box functionality, which
would make it an object of fundamental interest to study the

information-theoretic limits of transmitter-side entanglement-
assisted distributed linear computation over quantum many-to-
one communication networks.

Notation. We denote by [N ] the set {1, . . . , N}, n ∈ N,
and by Fq the finite field with q elements. We use bold lower-
case letters and bold upper-case letters to denote vectors and
matrices, respectively. Given a matrix A, ⟨A⟩row and ⟨A⟩col
denote the spaces spanned by the rows and columns of A,
respectively, while A⊤ and A† represent its transpose and its
conjugate transpose, respectively.

II. STABILIZER FORMALISM OVER FINITE FIELDS

Stabilizer formalism [22] is a compact framework for quan-
tum computation that provides a useful bridge to classical
computation. Recently, this framework has been leveraged
to boost several classical protocols. We first describe the
stabilizer formalism over a finite field, for the details of which
we refer the reader to [23], [24]. Throughout, we will use the
same notation as in [19].

Let q = pr with a prime number p and a positive in-
teger r. Let H be a q-dimensional Hilbert space spanned
by orthonormal states {|j⟩ | j ∈ Fq}. For x ∈ Fq ,
we define Tx on Fr

p as the linear map y 7→ xy ∈ Fq ,
y ∈ Fq , by identifying the finite field Fq with the vector
space Fr

p. Let trx := TrTx ∈ Fp for x ∈ Fq . Let
ω := exp(2πi/p). For a, b ∈ Fq , we define unitary matrices
X(a) :=

∑
j∈Fq
|j + a⟩⟨j| and Z(b) :=

∑
j∈Fq

ωtr bj |j⟩⟨j| on
H. For s = (s1, . . . , s2N ) ∈ F2N

q , we define a unitary matrix
W̃(s) := X(s1)Z(sN+1)⊗ · · · ⊗ X(sN )Z(s2N ) on H⊗N .

For x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ FN
q , we define

the tracial bilinear form ⟨x,y⟩ := tr
∑N

i=1 xiyi ∈ Fp and the
trace-symplectic bilinear form ⟨x,y⟩S := ⟨x,Jy⟩, where J is
a 2N × 2N matrix J =

(
0 −I
I 0

)
. The dual of a subspace V of

F2N
q with respect to this form is V⊥S := {s ∈ F2N

q | ⟨v, s⟩S =
0 for any v ∈ V}.

A matrix F ∈ F2N×2N
q is called symplectic if F⊤ JF = J.

Symplectic matrices are precisely those matrices that preserve
⟨·, ·⟩S, and its columns form a symplectic basis for F2N

q . If
we write F = (A C

B D ), then F is symplectic if and only if
B⊤A,D⊤C are symmetric and A⊤D−B⊤C = I. Thus,

F−1 = J⊤F⊤J =

(
D⊤ −C⊤

−B⊤ A⊤

)
. (1)

The Heisenberg-Weyl group is defined as HWN
q :={

cW̃(s) | s ∈ F2N
q , c ∈ C \ {0}

}
. There is a surjective ho-

momorphism cW̃(s) ∈ HWN
q 7→ s ∈ F2N

q with kernel
{cIqN | c ∈ C \ {0}}. Two matrices c1W̃(s1), c2W̃(s2)
commute if and only if ⟨s1, s2⟩S = 0, and thus commutativity
in HWN

q is equivalent to orthogonality in F2N
q .

A commutative subgroup of HWN
q not containing cIqN

for any c ̸= 1 is called a stabilizer group. Such groups
are precisely those groups for which the aforementioned
homomorphism is actually an isomorphism. Thus, a stabilizer
group defines a self-orthogonal subspace, that is V ⊆ V⊥S , in



F2N
q . Conversely, given a self-orthogonal subspace V of F2N

q ,
there exist complex numbers cv so that

S(V) := {W(v) := cvW̃(v) | v ∈ V} ⊆ HWN
q (2)

forms a stabilizer group. Thus, there is a one-to-one correspon-
dence between stabilizer groups in HWN

q and self-orthogonal
subspaces in F2N

q .
Throughout this paper, we will consider only maximal

stabilizers, since we expect that they exhaust the scope of
all possible stabilizer-based N -sum boxes (cf. Remark 6).
Maximal stabilizers are in one-to-one correspondence with
strongly self-orthogonal (SSO) subspaces, i.e., V = V⊥S , so
dim(V) = N .

While V defines the stabilizer S(V), the quotient space
F2N
q /V⊥S defines orthogonal projectors

PV := {PV
s | s ∈ F2N

q /V⊥S} (3)

which we use as a projective-value measurement (PVM). We
will denote |s⟩ the state which PV

s projects onto.
Measuring with PV would yield a coset. The next proposi-

tion aims to clarify the notation of [19, Prop. 2.2] (cf. App. A)
by giving a unique representative of the outputted equivalence
class.

Proposition 1: Let G ∈ F2N×N
q be such that

1) G⊤JG = 0,
2) there exists H ∈ F2N×N

q such that
(
G H

)
is full rank.

Let V = ⟨G⟩col and (·)h : F2N
q → FN

q be such that

(x)h :=
(
0 I

)(
G H

)−1
x.

Then performing the PVM {PV
s | s ∈ F2N

q /V⊥S} on the state
|x⟩ gives the outcome (x)h.

Proof: Since by condition 1 we have ⟨vi,vj⟩S = 0
for any pair of column vectors vi,vj of G, i, j ∈ [N ],
it follows that the symplectic inner product of any pair of
linear combinations of column vectors of G is zero. This
implies that V ⊆ V⊥S , and since G has rank N , we have that
dim(V) = N . It follows that dim(V⊥S) = N and V = V⊥S .
Then the subgroup S(V) as in Eq. (2) is a stabilizer, and since
V has dimension N , it is maximal. Furthermore, H⊗N = W
[19, Eq. (5)], where W is the qN -dimensional Hilbert space
spanned by {|s⟩ | s ∈ F2N

q /V⊥S}.
Let x ∈ F2N

q . By condition 2, we can uniquely decompose x
as x = Gxg+Hxh, xh,xg ∈ FN

q . Notice now that (x)h = xh

and (x + g)h = xh for any g ∈ V . Since s = s + V⊥S =
s+ V = {s+ g | g ∈ V}, it follows that every x ∈ s maps to
a unique element sh ∈ FN

q . Thus, we can identify each coset
s with the element sh. Then we identify the states

|sh⟩W = |s⟩ (4)

to avoid confusion with the computational basis, since W is
the space spanned by the states |s⟩.

In the decomposition given by [19, Eq. (5)] there are qN

distinct elements, since each HV
s has dimension 1. There are

qN vectors sh ∈ FN
q , so we can write [19, Eq. (2)] as W(v) =∑

sh∈FN
q
ω⟨v,Hsh⟩SPV

sh
, where PV

sh
is the projection associated

with the measurement outcome sh. Since dim(ImPV
sh
) = 1,

we can decompose it as PV
sh

:= |sh⟩W⟨sh|W . Assuming that
the system is in the state |x⟩ for some x ∈ F2N

q /V⊥
S , and

since we can identify x with a unique xh ∈ FN
q , we have

that PV
sh
|x⟩ = |sh⟩W⟨sh|xh⟩W equals |xh⟩W if sh = xh and

is 0 otherwise. We thus obtain (x)h with probability 1 after
performing the PVM {PV

s | s ∈ F2N
q /V⊥S} = {PV

sh
| sh ∈

FN
q } on the state |x⟩.
Remark 1: The PVM can be more clearly expressed as

PV :=
{
PV

sh
= |sh⟩W⟨sh|W | sh ∈ FN

q

}
. (5)

III. N -SUM BOX

An N -sum box is a black box with the functional form
y = Mx, where y ∈ FN

q is the output vector, x =
(x1, . . . , x2N )⊤ ∈ F2N

q is the input vector, and M ∈ FN×2N
q

is the transfer matrix. The inputs to the N -sum box are con-
trolled by N parties (transmitters), where transmitter n ∈ [N ]
is controlling (xn, xN+n). The output vector y is measured by
another party, which we label as the receiver. The N -sum box
is initialized with shared quantum entanglement among the N
transmitters, i.e., each of N entangled q-dimensional qudits
is supplied to a transmitter. The initial qudit entanglement is
independent of the inputs x and any data that subsequently
becomes available to the transmitters. No quantum resource is
initially available to the receiver. In the course of operation of
the N -sum box, each of the N transmitters acquires data from
various sources, including possibly the receiver (e.g., queries
in private information retrieval), based on which it performs
conditional X,Z-gate operations on its own qudits, and then
sends its qudit to the receiver. The receiver performs a quantum
measurement on the N qudits, from which he recovers y.

In this setting, we allow the inputs (xn, xn+N ) from each
transmitter n ∈ [N ] to be transformed by an invertible matrix.
This corresponds to multiplying the input vector by local
invertible transformations, which are defined as follows.

Definition 1: Let diagN,Fq
be the set of diagonal matrices of

dimension N×N and entries in Fq . The set of local invertible
transformations (LITs) is defined as

LITN,Fq
:=

{(
Λ1 Λ2

Λ3 Λ4

)
| Λi ∈ diagN,Fq

,

i ∈ [4], det(Λ1Λ4 −Λ2Λ3) ̸= 0
}
.

We also allow receiver invertible transformations, i.e., we
allow the receiver to transform the output vector of the N -sum
box by multiplying it by P ∈ GLN,Fq

, where GLN,Fq
is the

set of invertible matrices with dimension N and entries in Fq .
This gives equivalent representations of the N -sum box as

y = PMΛx, P ∈ GLN,Fq
, Λ ∈ LITN,Fq

.

Definition 2: The relation
LIT≡ defines an equivalence class of

pairs of matrices M1,M2 ∈ FN×2N
q up to local and receiver

invertible transformations, i.e.,

M1
LIT≡M2 ⇐⇒ M1 = PM2Λ.
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Fig. 2. Quantum circuit and black box representation for an N -sum box with transfer function y = Mx.

IV. STABILIZER-BASED N -SUM BOXES

First, we define SSO matrices, which are used in the
construction of N -sum boxes based on stabilizer formalism.

Definition 3: A matrix M ∈ F2N×N
q is said to be strongly

self-orthogonal (SSO) if its columns span an SSO subspace,
or equivalently, if M⊤JM = 0 and rank(M) = N . The set
of SSO matrices is denoted by Mo.

Remark 2: If F ∈ F2N×2N
q is a symplectic matrix, then its

left-half F( I
0 ) is an SSO matrix. Conversely, an SSO matrix

can be completed to a symplectic matrix (e.g., using the Gram-
Schmidt Algorithm).

Let us now characterize some classes of N -sum boxes that
can be constructed based on the stabilizer formalism.

A. Case with disallowed LITs
The following theorem describes which transfer matrices

are feasible from a stabilizer-based construction when LITs
are disallowed.

Theorem 1: Suppose there exists G ∈ F2N×N
q such that

1) G ∈Mo,
2) there exists H ∈ F2N×N

q such that
(
G H

)
is full rank,

3) M ∈ FN×2N
q is the submatrix comprised of the bottom

N rows of
(
G H

)−1
, i.e., M :=

(
0 I

)(
G H

)−1
.

Then there exists a stabilizer-based construction for an N -sum
box over Fq with transfer matrix M.

Proof: Let UG,H ∈ CqN×qN be the unitary matrix such
that its ith column is the vector representing the state |ν(i)⟩W ,
i ∈ [qN ], identified by Eq. (4), where ν : [qN ] → FN

q is the
natural isomorphism (cf. Remark 5). Let |0⟩W = UG,H|0⟩
be the initial entangled state over H⊗N . Let V = ⟨G⟩col.
If transmitter n ∈ [N ] applies X(xn),Z(xN+n) on his qudit
and sends it to the receiver, then the received qudit is in the
state W(x)|0⟩W = |(x)h⟩W . After performing the PVM PV

(cf. Eq. (5)) on the qudits the receiver measures (x)h without
error by Prop. 1. Let M be as in condition 3, then we have
that Mx = xh, which is the output of the measurement.

Remark 3: The terminology “stabilizer-based construction”
stems from the aforementioned correspondence between max-
imal stabilizers and SSO spaces. Explicitly, let si ∈ F2N

q , i ∈
[N ], and let S = ⟨W(s1), . . . ,W(sN )⟩ ⊆ HWN

q be a
maximal stabilizer group, i.e., a stabilizer group with N
independent generators, where |0⟩W is its stabilized state. Let
G ∈ F2N×N

q be the matrix that has si as its ith column, then
G ∈Mo. For non-maximal stabilizers, see Remark 6.

Remark 4: A stabilizer-based construction for any feasible
N -sum box is information-theoretically optimal as a black
box implementation in the sense that it has the least possi-
ble quantum communication cost. In other words, since the
transfer matrix is full rank, there cannot exist a less costly
construction of the same N -sum box by some non-stabilizer-
based means so that the output delivers N q-ary digits to the
receiver, which cannot be done with a communication cost of
less than N qudits by the Holevo bound [21].

We denote by Msbc the set of all the transfer matrices
resulting from stabilizer-based constructions with disallowed
LITs. In the following, we establish that such set is the same
as the set of SSO matrices, i.e.,

Lemma 1: Mo =Msbc.
Proof: Let M ∈ FN×2N

q be such that M⊤ ∈ Msbc. By
condition 3 of Thm. 1 we have that MG = 0 = G⊤JG.
Since rank(G⊤J) = N we have that ⟨M⟩row = ⟨G⊤J⟩row,
which implies that M = PG⊤J for P ∈ GLN,Fq

. Trivially
M⊤ = J⊤GP⊤ ∈Mo, so we conclude that Msbc ⊆Mo.

Now, let M ∈ FN×2N
q be such that M⊤ ∈ Mo. Let N ∈

FN×2N
q be such that

(
N⊤ M⊤) is full rank, then its inverse

can be written as
(
G H

)
, where G,H ∈ FN×2N

q . Clearly,
M

(
G H

)
=

(
0 I

)
, so by the same argument above it is

easy to see that G ∈Mo, i.e., Mo ⊆Msbc.
Remark 5: Let G = (AB ) ∈ Mo and H = (C

D ) be
such that F :=

(
G H

)
is symplectic. By Eq. (1) we have(

0 I
)
F−1 =

(
−B⊤ A⊤) which is again an SSO matrix.

Lemma 1 implies that we only need to complete G to a



symplectic matrix (instead of invertible). The well-known
connection between symplectic matrices and the stabilizer
formalism [25] allows for a simpler description of the matrix
UG,H, as the following example illustrates.

Example 1: Suppose we have two parties, Tx1 and Tx2,
both possessing two bits (cf. Fig 1). The two-sum trans-
mission protocol computes (x1 + x2, x3 + x4) starting with
the state |β00⟩ = (|00⟩ + |11⟩)/

√
2, which is stabilized by

S = ⟨W(0, 0, 1, 1),W(1, 1, 0, 0)⟩. Consider

F =
(
G H

)
=


0 1 1 0
0 1 0 0
1 0 0 0
1 0 0 1

,
where G is determined by S and H is chosen so that F is a
symplectic matrix. The symplectic matrix can be decomposed,
e.g., using the Bruhat decomposition [26], [27], as

F =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 ·

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

.
The components correspond to quantum gates CNOT and a
partial Hadamard H⊗I on the first qudit [28]. This is precisely
the circuit UG,H for which |β00⟩ = UG,H|00⟩. Using Eq. (1)
we then obtain the transfer matrix

M =
(
0 I

)
F−1 =

(
1 1 0 0
0 0 1 1

)
,

which is exactly the functional form of the two-sum trans-
mission protocol. This approach allows for a straightforward
generalization that computes Mx starting with the state
(|0..0⟩+ |1..1⟩)/

√
2, where

M =


110 · · · 00 000 · · · 00
011 · · · 00 000 · · · 00

...
...

000 · · · 11 000 · · · 00
000 · · · 00 111 · · · 11

 ∈ FN×2N
q .

The following theorem fully characterizes N -sum boxes
without LITs and follows directly from Thm. 1, Remark 3
and Lemma 1.

Theorem 2: Let M ∈ Mo. A construction based on a
stabilizer S ⊆ HWN

q exists for an N -sum box over Fq with
transfer matrix M⊤ if and only if S is a maximal stabilizer.

Remark 6: For non-maximal stabilizers, one can create
a K-sum box with weakly self-orthogonal transfer matrix
M ∈ FK×2N

q , i.e., a matrix that spans a (weakly) self-
orthogonal subspace [19], starting from a stabilizer group
with K generators. This could be done, for instance, by first
completing to a maximal stabilizer and then continuing the
computation with communication cost of N qudits.

B. Case with allowed LITs

The following theorem shows that the transfer matrix of any
(G,H) construction is equivalent (up to LITs) to G⊥, i.e., the
null-space of G, which can be represented as G⊥ := J⊤G.

Theorem 3: Let M ∈ FN×2N
q be such that M⊤ ∈ Msbc.

Then M
LIT≡ G⊤J = (G⊥)⊤.

Proof: This follows directly from the proof of Lemma 1,
since we can write M = PG⊤J for P ∈ GLN,Fq

.
A known property of SSO matrices is that they can be

written in the so-called standard form [29], i.e., if M ∈ Mo

then there exist P ∈ GLN,Fq
, Q ∈ GL2N,Fq

such that

PM⊤Q =
(
I S

)
, (6)

where S is a symmetric N × N matrix, i.e., S⊤ = S. We
define the set of transfer matrices in standard form

Ms := {M ∈ F2N×N
q |M⊤ =

(
I S

)
, S⊤ = S}.

The following lemma shows that any SSO matrix M can be
transformed by at most N signed column-swapping operations
into a matrix M′ =

(
M′

l M′
r

)⊤ ∈ Mo such that M′
l is full

rank. For completeness, the proof is included in App. B.
Lemma 2: For any M ∈Mo there exists a diagonal matrix

Σ ∈ {0, 1}N×N such that

(M′)⊤ = M⊤( I−Σ Σ
−Σ I−Σ

) LIT≡M⊤, (7)

M′ ∈Mo, (8)
det(M′

l) ̸= 0. (9)

Our next result shows that with LITs, every feasible transfer
matrix M ∈ Mo has an equivalent representation in the
standard form M

LIT≡
(
I S

)
, where S⊤ = S. Notice that

in Eq. (6) the matrix Q is not necessarily an LIT. The
contribution here is to show that the standard form remains
valid when only LITs are allowed.

Theorem 4: For every M ∈ Msbc there exists M′ ∈ Ms

such that (M′)⊤
LIT≡M⊤. Conversely, Ms ⊆Msbc.

Proof: By Lemma 2 in Appendix B, there exists M′ :=(
M′

l M′
r

)⊤ ∈ Mo such that M⊤ LIT≡ (M′)⊤ and M′
l is full

rank. Thus, (M′′)⊤ := (M′
l)
−1(M′)⊤ =

(
I F

)
and M′′ ∈

Mo. It is trivial to see that F is symmetric, since M′′ =(
I F

)⊤ ∈Mo, so we can conclude that M′′ ∈Ms.
The converse is trivial by Lemma 1.
Remark 7: The standard form is not unique up to LITs, e.g.,(

I S1

)
=

(
1 0 1 1
0 1 1 1

)
LIT≡

(
1 0 1 1
1 1 0 1

)
LIT≡

(
−1 0
1 1

)(
1 0 1 1
1 1 0 1

)
=

(
1 0 −1 1
0 1 1 0

)
=

(
I S2

)
, S2 ̸= S1.

Next, we define the set MLIT of all possible transfer
matrices that we can obtain by applying LITs:

MLIT :=
{
M ∈ F2N×N

q | ∃M′ ∈Msbc, M
LIT≡M′

}
.



The following theorem shows that any M ∈ MLIT is
equivalent, up to LITs, to a transfer matrix in standard form.

Theorem 5: For every M ∈ MLIT there exists M′ ∈ Ms

such that M′ LIT≡ M. Conversely, for every M′ ∈ Ms there
exists M ∈MLIT such that M

LIT≡M′.
Proof: By definition, for every M ∈ MLIT there exists

M′ ∈ Msbc such that M′ LIT≡ M. By Thm. 4 there exists
M′′ ∈Ms such that M′′ LIT≡M′, and since the equivalence is
transitive, we have that M′′ LIT≡M.

The converse is trivial by the definitions.
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APPENDIX A
PROP. 2.2, [19]

We denote the elements of the quotient space F2n
q /V⊥S by

s := s+ V⊥S ∈ F2n
q /V⊥S .

Let V be a d-dimensional self-orthogonal subspace of F2n
q

and S(V) be a stabilizer defined from V . Then, we obtain the
following statements.
(a) For any v ∈ V , the operation W(v) ∈ S(V) is

simultaneously and uniquely decomposed as

W(v) =
∑

s∈F2n
q /V⊥S

ω⟨v,s⟩SPV
s (10)

with orthogonal projections {PV
s } such that

PV
s P

V
t
= 0 for any s ̸= t, (11)∑

s∈F2n
q /V⊥S

PV
s = Iqn . (12)

(b) Let HV
s := ImPV

s . We have dimHV
s = qn−d for any s ∈

F2n
q /V⊥S and the quantum system H⊗n is decomposed

as

H⊗n =
⊗

s∈F2n
q /V⊥S

HV
s =W ⊗ Cqn−d

, (13)

where the system W is the qd-dimensional Hilbert space
spanned by {|s⟩ | s ∈ F2n

q /V⊥S} with the property HV
s =

|s⟩ ⊗ Cqn−d

:= {|s⟩ ⊗ |ψ⟩ | |ψ⟩ ∈ Cqn−d}.
(c) For any s, t ∈ F2n

q , we have

W(t)|s⟩ ⊗ Cqn−d

= |s+ t⟩ ⊗ Cqn−d

, (14)

W(t)
(
|s⟩⟨s| ⊗ Iqn−d

)
W(t)

†
= |s+ t⟩⟨s+ t| ⊗ Iqn−d .

(15)

(d) For any v ∈ V and any |ψ⟩ ∈ |0⟩ ⊗ Cqn−d

, we have

W(v)|ψ⟩ = |ψ⟩. (16)

APPENDIX B
PROOF OF LEMMA 2

Proof: The first two claims (7) and (8) are true not just
for a particular Σ, but for every diagonal Σ with elements in
{0, 1}.

Let Λ =
(
I−Σ Σ
−Σ I−Σ

)
. First, we prove Eq. (7) by testing

the LIT condition on Λ. We have that det((I−Σ)2 +Σ2) =
det(I− 2Σ+ 2Σ2) = det(I) = 1, since Σ2 = Σ by the fact
that Σ is a diagonal matrix with entries in {0, 1}.

Eq. (8) follows by the fact that ΛJΛ⊤ = J (that is, Λ⊤ is
symplectic), which can be easily proved by employing Σ2 =
Σ.

Finally, we prove that there exists a signed column-swap op-
eration (Σ) that gives us the desired full-rank left half-matrix
of (M′)⊤. For this we proceed according to Algorithm 1,
which tries at most N different signed-swap operations before
declaring either success or failure.

If the algorithm exits with success, then we obtain a full-
rank M′

l as desired. To show that the algorithm cannot fail, let

Algorithm 1: Signed column swap

input : M =
(
Ml Mr

)
∈ FN×2N

q

output: M′ =
(
M′

l M′
r

)
∈ FN×2N

q | det(M′
l) ̸= 0

M′ ←M;
M′

l ←Ml;
M′

r ←Mr;
i← 1;
while i ≤ N do

if (M′
l)·,i is linearly independent of the first i− 1

columns of M′
l then

i← i+ 1;
else if (M′

r)·,i is linearly independent of the first
i− 1 columns of M′

l that are already fixed then
(M′

l)·,i, (M
′
r)·,i ← (−M′

r)·,i, (M
′
l)·,i;

i← i+ 1;
else

return Failure;
end

end
return Success;

us show that failure would lead to a contradiction. Suppose the
algorithm fails and exits with the value i < N . At this point,
the first i − 1 columns of M′

l are linearly independent, but
the ith column of Ml and the ith column of Mr are each
linearly dependent on the first i columns of Ml. Note that
since the only manipulations performed by the algorithm are
signed-swap operations, by Eq. (8) M′ ∈Mo. The remainder
of the proof of Eq. (9) uses the following two trivial facts.

1) Since M′ ∈ Mo, the 2N ×N matrix (M′)⊥ = JM′ ∈
Mo spans the null-space of M′. Thus, any matrix whose
columns are null vectors of M must be self-orthogonal.

2) If V =
(
Vl Vr

)⊤ ∈Mo, then the dot product between
the ith row of Vl and the jth row of Vr is equal to the
dot product between the jth row of Vl and the ith row
of Vr.

Since the (i + 1)th column of Ml and the (i + 1)th column
of Mr are each linearly dependent on the first i columns of
Ml, there exists a 2N ×N matrix V such that

V⊤ =
(
Vl Vr

)
=

(
α1 · · · αi αi+1 0 0 · · · 0 0 0
β1 · · · βi 0 0 0 · · · 0 βi+1 0

)
,

αi+1βi+1 ̸= 0, and (M′)⊤V = 0. In fact, since the first
(i + 1) columns of Ml are linearly dependent, there exists
a non-trivial linear combination of them with coefficients
α1, . . . , αi+1 that produces the zero vector. Notice that αi+1

cannot be zero because the first i columns are linearly inde-
pendent by assumption. Thus, the first row of V⊤ is in the
null-space of M′ and αi+1 ̸= 0. The second row of V⊤ is
similarly in the null-space of M′ and βi+1 ̸= 0. So, V ∈Mo

by fact 1), but the dot product of the first row of Vl with the
second row of Vr is αi+1βi+1 ̸= 0, whereas the dot product



of the second row of Vl with the first row of Vr is 0, which
contradicts fact 2). This contradiction proves Eq. (9).




