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Neurodegenerative diseases such as Alzheimer’s disease (AD) are becoming
more prevalent as the average human lifespan increases. Despite decades of research,
no therapeutics exist that can slow the progress of AD. One of the hallmark symptoms
that best correlates with symptoms of AD is synapse loss at the cellular level. Ethylene
glycol (EG) analogs of benzothiazole aniline (BTA) improve memory and learning in mice
by increasing the number of postsynaptic connection sites or dendritic spines in neurons.
These compounds interact with the protein Fascin1. Through a combination of
knockdown and overexpression studies, | show that Fascin1 levels affect dendritic spine
density. Using tandem mass tag mass spectrometry pulldowns using human brain cortex
lysate, | identify Fascin1-protein interactions that change in the presence of BTA-EG4 and
BTA-EGs. | identify changes in focal adhesions, or sites at which the cell creates an
attachment to the extracellular matrix, by immunofluorescence as a method by which
BTA-EG4 and BTA-EGs may be impacting dendritic spine density. | also provide structural
evidence for the binding pocket between Fascin1 and BTA-EGs using solution protein

nuclear magnetic resonance (NMR) and site-directed mutagenesis.
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Chapter 1

Introduction: The impact of spinogenic molecules on neurodegeneration

1.1  Alzheimer’s Disease

The brain is an incredible organ. It is the center of emotions, providing joy, fear,
love, and anger. ltis the center of both conscious and unconscious thought. On a cellular
level, neurons in the brain create a complex network consisting of millions of neurons and
billions of connections. Through these connections, neurons speak to one another by
sending tiny chemical messengers across a gap between neurons, known as the
synapse. If the collective input of many connections to a single neuron is strong enough
to reach a threshold, the neuron fires and sends an electric signal known as an action
potential down its axon to other neurons which can then respond in kind. Amazingly, the
overall firing of neurons in the brain can coordinate the actions of an animal many orders

of magnitude larger than a single neural cell.

Unfortunately, as the average human lifespan increases, more people are
experiencing age related neurological disorders. Most prevalent among them is
Alzheimer’s Disease(AD), first described by Alois Alzheimer in 19072, Symptoms of AD
begin with memory problems such as impaired judgment, and difficulties with spatial
reasoning. A person may eventually be unable to do simple tasks, such as dressing, has
problems recognizing friends and family, and may begin to hallucinate or have delusions.
With time, the person may no longer be able to communicate, and will be in bed nearly
all the time®5. AD affects over 6 million people in the United States®. The costs
associated with caring for someone affected by AD are enormous, due largely to the long-

term (sometimes over a decade) cost of care for someone with declining mental health.



The estimates for total payments for people over age 65 with dementia in 2021 are around

355 billion dollars®.

Decades of research have gone into studying AD since it was identified as a
common cause of death in the United States in 19767. One of the most prevalent theories
about the progression of AD is known as the amyloid cascade hypothesis®. In brief, it
states that AD is caused by improper cleavage of the amyloid precursor protein leading
to abnormally high levels of B-amyloid which aggregate to form extracellular plaques in
the brain and cause neurotoxicity. The hypothesis has since been modified to the amyloid
cascade-inflammatory hypothesis, which states that extracellular B-amyloid activates an
inflammatory response mediated by microglia®. Protein interactions with B-Amyloid lead
to a host of problems that wreak havoc on neurons and destroy synapses as the

inflammatory response continues in the brain%-"3,

The amyloid cascade hypothesis does not fully explain all the features of AD and
its accuracy has been questioned in recent years'-'". Despite many years of research
studying the amyloid cascade hypothesis, a therapeutic to slow or halt AD has not yet
been discovered and approved for treatment®. However, some trends in the progression
of AD are clear. For example, cognitive decline can be traced to changes in the brain at
the cellular level, such as a loss of synaptic connections between the neurons'™'°. In
fact, synapse loss is the best indicator of cognitive decline in Alzheimer’s disease?® and
synaptic connections are constantly made or pruned through remodeling of the neuron’s
cytoskeleton?'. Preserving the synapses of the brain could therefore be an alternate

approach to treating Alzheimer’s Disease.



1.2 The cytoskeleton is of particular importance to neurons

Neurons have a very unusual cell shape (Figure 1). Many cells that do not have a
rigid cell wall adopt a three-dimensional shape that is roughly spherical. A spherical
shape minimizes a cell’s surface area to volume ratio meaning that if a cell can maintain
a spherical shape, it will maximize the amount of space within the cell for organelles and
other features, while expending a minimum amount of energy to maintain the shape of its
cellular membrane. Adopting any other shape requires a physical scaffold from the cells

internal cytoskeleton, or adhesions to an extracellular scaffold?2.

Lenti GFP

Dendrites

l ,‘ ‘ Ce/ll Body

Figure 1. Animage of a neuron filled with a green fluorescent protein produced by a lentiviral
filler (LentiGFP), allowing visualization of the neruon. The cell body and several dendrites
are labeled.



Neurons do not maintain a typical cell shape (Figure 1) because the function of a
neuron is to communicate across large distances. Neurons expend a large amount of
energy to create a cytoskeletal scaffold that permits the long extension of axons and an
arborization amongst dendrites for sending and receiving signals??. The dendrites and
axons extending so far from the cell body is one reason that neurons require a host of

supporting glial cells in order to function properly?*.

The neuron’s dependence on the cytoskeleton is not limited to the large-scale
structures of the neuron. The neuron also makes use of the cytoskeleton to make vital
structures used both in development and communication with other neurons?®. The
growth cone at the growing end of an elongating axon assists the axon in finding its target
by utilizing numerous cytoskeletal structures including actin-rich lamellipodia and
traditional filopodia?®. In the dendrites, actin-rich structures called dendritic filopodia
(distinct from traditional filopodia in internal structure) protrude from the dendrites and
mature to form post synaptic connection sites known as dendritic spines?’2°. Dendritic
spines are constantly remodeled in the process of making, strengthening, or pruning
synaptic connections®°.

1.3 Previous studies on oligo ethylene glycol (EG) derivatives of benzothiazole
aniline (BTA) BTA-EG4 and BTA-EGs

The hallmark feature of patients with AD is the formation of B-amyloid plaques in
the brain. As discussed previously, these extracellular plaques interact with other
proteins and microglia that lead to inflammation in the brain®. In an attempt to reduce B-
amyloid induced inflammation, the Yang lab previously synthesized BTA-EG4 and BTA-

EGs (Figure 2). These molecules could both bind B-amyloid plaques and prevent other
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Figure 2. lllustration of the chemical structures of Thioflavin T, BTA-EG., and BTA-EGe with
the core and tail regions identified.

proteins from interacting with the plaques, thereby reducing inflammation in the brain®'.
BTA-EG4 and BTA-EGs are derivatives of thioflavinT, a traditional fluorescent dye used

to stain B-amyloid (Figure 2)32:33,

In order to improve biocompatibility, the Yang lab rationally designed chemical
modifications to ThiflavinT to improve the biocompatibility of the molecule. First, the
methyl group on the nitrogen in the benzothiazole (BTA) core was removed, eliminating
the formal charge on the molecule and allowing the molecule to cross biological
membranes. In addition, an ethylene glycol (EG) tail was added to one end of the
molecule®*. At first glance the ethylene glycol tail is an unusual selection to use in
modifying the compound, as it increases its total number of rotatable bonds. The number
of rotatable bonds in a molecule generally decrease the efficacy of a compound as a
therapeutic, due to the increased entropy of the unbound molecule3435. However, the
addition of polyethylene glycol, or pegylation, has become increasingly common, as the

rotatable tail is often not involved in the binding of a therapeutic to its target and generally



still has freedom of rotation even when the core of the therapeutic is bound®¢-%7. In BTA-
EG4 and BTA-EGs the tail serves two purposes. From a chemical standpoint, the poly-
ethylene glycol tail increases the solubility of the molecule in aqueous solution by
incorporating polar oxygen atoms that can hydrogen bond with water in solution. For this
reason, the longer tail on BTA-EGs makes it more soluble in aqueous solution than BTA-
EG4. From a biochemical standpoint, pegylation, or attaching one or more polyethylene
glycol to a protein has a well-known characteristic of decreasing protein-protein
interactions®3°, We hypothesize that the nonpolar BTA core interacts with the plaques,
while the polyethylene glycol tail extends out of the protein into the nearby solvent to ward
off would-be protein interactors. In this manner these molecules have been shown to
decrease B-amyloid induced synapse loss in neurons*’. BTA-EG4 and BTA-EGs were
found to successfully reduce the binding of antibodies®' and cellular proteins*® to

aggregated B-amyloid and reduce amyloid-protein interactions in semen*'.

BTA-EG4 was next investigated in a mouse model for their effect on cognitive
behavior. Importantly, the molecule BTA-EG4 was found to cross the blood brain barrier
in mice3! which is important for a therapeutic intended to act in the brain. Consistent with
the theoretical conclusion described above, the 3xTg AD mouse model mice showed

improved memory and learning and rescued synapse loss when treated with BTA-EG4*2.

BTA-EG4 was also surprisingly found to have a non-pathological response leading
to improved memory and learning, even in wild-type (WT) mice. BTA-EG4 treated WT
mice showed improved cognitive performance in both a Morris water maze and a fear

conditioning test*3.  Our collaborators investigated neurons in both 3xTg and WT mice



and found that when treated with BTA-EG4 , the dendrites of the neurons showed an

increased density of dendritic spines*3.

Dendritic spines are tiny mushroom-like structures located on the dendrites of
neurons and can work as the receiving, or postsynaptic, end of a synaptic connection*#45.
The majority of excitatory synapses in the brain form with a dendritic spine as the post
synaptic connection site between neurons**. The experiments discussed above were the
first time that the nootropic effects of BTA-EG4 were identified in vivo. Since then, the
spinogenic properties of BTA-EG4 or its derivatives have also been demonstrated in rat

primary neurons*® and human neuronal induced pluripotent stem cells*’.

1.4  Photoaffinity labeling identifies the protein Fascin1 as a target for BTA-EG4

To further understand the nootropic effects of BTA-EG4 and BTA-EGe, the Yang
lab investigated the protein targets of these compounds. In his doctoral dissertation work,
Kevin Sibucao (a former student in the Yang lab) used a chemical biology approach to
identify potential protein targets for BTA-EG4*8. A brief overview is presented here as it

is applicable to the work of this dissertation.

Dr. Sibucao synthesized an analog of BTA-EG4 (Compound 1, Figure 3) with
modifications that would allow Compound 1 to both attach to, and extract proteins that
interact with it*8. This was accomplished by replacing a methyl group on the core of the
molecule with a trifluoromethyl diazirine, and biotinylating the polyethylene glycol tail
(Figure 3). The biotinylation of the tail provides a convenient handle for both identification

using a streptavidin horseradish peroxidase and for isolation using neutravidin agarose



beads. The trifluoromethyl diazirine can be activated upon stimulation by ultraviolet light,

resulting in the excision of N2 gas and the production of a carbene at that location*®5°,

The carbene can then nonspecifically insert into a neighboring covalent bond,
creating a new covalent adduct between the BTA-EG4 analog and other interacting
biomolecules (Figure 3). If the molecule is exposed to solvent at the time of ultraviolet
light activation, the carbene can insert into a bond in the solvent molecule (e.g. between
the hydrogen and oxygen atoms of water if it is used as the solvent). If the molecule is

buried in a protein pocket, the resulting covalent bond can form between the molecule
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Figure 3. lllustration of the photoaffinity labeling and pulldown process by which Dr. Sibucao
identified Fascin1 as a binder of the BTA-EG4 analog Compound 1




and the protein, covalently linking them together (Figure 3). The photoactivation of the
compound was carried out in lysates SHSY-5Y neuroblastoma cells, 3xTg mouse
midbrain, and human cortex. Proteins were pulled down using the biotinylated tail of the
protein and neutravidin agarose beads, separated by size using SDS-PAGE gel
electrophoresis, and discrete bands were cut out and proteins identified using tandem
mass spectrometry. This work uncovered a list of proteins that were pulled down in this

fashion, including the lead hit Fascin14®.

1.5 Overview of the work presented in this dissertation
The findings from Dr. Sibucao’s work leave several questions that | attempt to

address in this dissertation:

1) Is Fascin1 on pathway and responsible for the observed effects of BTA-EG4
and BTA-EGs, specifically the increase in dendritic spine density upon
treatment with those compounds?

2) Are there any confirmable mechanistic links between Fascin1 and dendritic
spines that are consistent with our current understanding of how these
compounds affect dendritic spine density?

3) Is it possible to obtain structural confirmation as to the location of the binding

site of our compounds on Fascin1?

Answering these questions will afford a better understanding into novel therapeutic
compounds and targets that may be exploited to reverse the synaptic loss seen in AD
and other forms of dementia, as well as provide insight into ways these molecules may

be modified to enhance their properties.



Chapter 2

Fascin1 expression levels affect dendritic spine density

2.1 Do BTA-EG4 and BTA-EGs affect dendritic spine density through Fascin1
binding?

The key question addressed in this chapter is whether Fascin1 is on pathway for
the observed dendritic spine increase in primary neurons when treated with BTA-EG4 or
BTA-EGe. Dr. Sibucao previously showed that his photoreactive analog of BTA-EG4
binds to Fascin1, and that it can be outcompeted by the addition of BTA-EG4*8. The
binding of BTA-EGe to Fascin1 has been confirmed in our lab by isothermal titration
calorimetry with a dissociation constant of 4.86uM. However, binding to a protein target
does not necessarily signify a direct link to the observed cellular response. The
experiments described in this chapter involve the measurement of changes in dendritic
spine density of primary neurons as a result of modulated Fascin1 expression.
Performing these experiments tests our hypothesis that Fascin1 plays a role in dendritic
spine dynamics.

2.2 Fascin1 is primarily known for bundling actin in filopodia, however it has
many other functions as well.

Fascin 1 is a pseudo-symmetric protein that consists of four (-trefoil domains
(Figure 4)%'. The human gene for Fascin1 is conserved with high sequence similarity to
its homolog in the evolutionarily distant fruit fly D. melanogaster®'. In humans Fascin1 is
expressed in a variety of tissues in the developing embryo. However, as an adult Fascin1
is restricted to neurons, immune cells, the glomerulus, mesenchymal cells, the adrenal

gland, and the basal layer of the skin. Its expression is very low or undetectable in most
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Figure 4. lllustration of the structure of Fascin1. B-trefoils 1, 2, 3, and 4 are colored pink,
blue, yellow, and green respectively. PDB entry 1DFC®'.

other healthy tissues®2. Fascin1 is best known for its function as an actin bundling protein
present in traditional filopodia and invadopodia, or extrusions that protrude from the
leading edge of the cell to explore the immediate environment surrounding the cell>3%4,
Filopodia contain parallel Fascin1-bundled actin and have a distinct composition from the
branched actin containing dendritic filopodia that will be discussed later. Fascin1
supports filopodia structurally by taking individual strands of actin and holding them
together, making the entire arrangement more rigid. Unlike other bundlers of actin such
as various isoforms of a-Actinin, Fascin1 bundles are limited in size in vitro to

approximately 20 bundles of actin per bundle®%-%.

Fascin1 has been used for decades as a prognostic biomarker for cancer with high
Fascin1 expression in the cancerous tissue correlated to a poor prognosis for survival®’-
61, This is often attributed to Fascin1’s role in the creation and maintenance traditional

filopodia and invadopodia, which aid cancer cells in migration and metastasis®?%4. These
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cellular structures are thin fingerlike extensions that probe the cells environment and are
often involved in cell migration®®. However, some studies have shown Fascin1
expression to positively correlate with migration and invasion in a filopodia-independent
manner, or to promote migration in some other way outside Fascin1’s role as an actin-

bundling protein®+66-70,

Because of the relevance of Fascin1 to cancer, it has been extensively studied in
that context®; however, Fascin1 also has several other known functions. Fascin1
stabilizes focal adhesions’', which are locations at which the cell anchors itself to the
extracellular matrix through stress fibers. Fascin1 plays two roles at the site of focal
adhesions. 1) Fascin1 prevents the severing of stress fiber flaments by cofilin and 2)
Fascin1 maintains the size of stress fibers. Fascin1 knockdown in fibroblasts causes a
global change in cytoskeletal structure by significantly thickening the stress fibers
compared to normal fibroblasts”!. Fascin is also implicated in various other cellular
processes and features including retrograde transport’?, and formation of extracellular
vesicles’. Fascin1 is also transported to the nucleus where it acts as a transcription

factor’4.

2.3 Fascin1 and dendritic spines

Korobova and Svitkina reported in 2009 that Fascin1 was not found in dendritic
filopodia of young neurons at 10 days in vitro (DIV)’°. Dendritic filopodia are thin finger-
like protrusions that extend from a dendrite and can mature into mushroom shaped
dendritic spines?’44. Between revealing that Fascin1 is not present in dendritic filopodia
of 10 DIV neurons and the fact that the majority of actin in dendritic filopodia is

branched?®75, Fascin1 was presumed not to play a role in the formation, creation, and
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maintenance of dendritic spines. Fascin1 has since largely been disregarded in the study
of the cytoskeletal dynamics of dendritic spines. However, if it is true that BTA-EG4 and
BTA-EGe are binding Fascin1, and dendritic spine density is being affected as a result,
then we hypothesize that Fascin1 is modulating the dendritic spines of neurons in a way
that has hitherto been unsupported. Immunofluorescent images that | have acquired for
staining of Fascin1 in primary neurons indicate that Fascin1 is present throughout fully
mature neurons at 21 days in vitro (Figure 5) including localization to numerous areas

which are consistent with dendritic spines.

Composite

Lenti GFP

Figure 5. Immunofluorescent image of a rat neuron expressing a filler green fluorescent
protein (Lenti GFP) stained for a microtubule associated protein used to identify dendrites
(MAP2), and stained for Fascin1 (Fascin).
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2.4 Identifying a method for Fascin1 knockdown or knockout, and overexpression
in primary rat neurons

To determine whether Fascin1 is on pathway, or responsible for the increased
spine density in neurons treated with our BTA-EG4 or BTA-EGe, | first needed to establish

a method to knockdown or knockout Fascin1 expression in primary neurons.

The three common methods used to knockdown or knockout a protein in cells are
short interfering RNA (siRNA), short hairpin RNA (shRNA), and clustered regularly
interspaced short palindromic repeats (CRISPR)-Cas9 genome editing technology. Each
of the methods has its own advantages and disadvantages. For example, the CRISPR-
Cas9 system allows for complete removal of a target protein and can thus effectively
eliminate expression. However complete elimination can be fatal to the cells, and off
target cuts by the system must be taken into account’®-"8. By contrast, SiRNA and shRNA
both reduce target protein levels by utilizing native cellular machinery to cut the
messenger RNA of a particular protein sequence. By providing an appropriate double
stranded RNA that has a complementary sequence to the target mMRNA the RNA induced

silencing complex of the cell can be guided to degrade the mRNA of Fascin17980,

While both siRNAs and shRNAs can be delivered via lipofectamine, siRNAs have
an advantage in delivery, in that they only need to be delivered to the cell cytoplasm to
be functional. shRNAs must be delivered to the nucleus, where they interact with the host
DNA and are eventually expressed, producing a short hairpin RNA that is processed by
the cell as previously described. siRNAs have a significant disadvantage in that their

effect is transitory, while the effect of shRNAs is longer lasting due to the constant
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expression of the shRNA when paired with a strong promotor such as the

cytomegalovirus (CMV) promoter.”®

In the end, | selected the shRNA system, because the long-lasting effects would
be particularly useful when dealing with primary neurons, which generally are studied
over the course of 1-3 weeks in vitro. CRISPR-Cas9 was left as a backup option if we

were unable to get results using other methods of proteome manipulation.

Since our collaborators in the Patrick lab provide rat neurons for the experiments
discussed here, all the vectors | designed in this chapter were made to be compatible
with rat cells. While Rat and Human Fascin1 are 96% identical with 98% similarity at the
protein sequence level®!, they are only about 90% identical at the DNA level®?, meaning
that a ~20 nucleotide shRNA designed against the human sequence may present

complications in rat cells or vice versa.

In addition to knocking out Fascin1, | also determined a method for its
overexpression. | designed a Fascin1 expression lentiviral vector with a promotor
designed to overexpress Fascin1. Since expression is promotor driven, it was possible
to design a vector that would express well in most mammalian cell lines. Although many
promoters are available, | used the cytomegalovirus promoter for the overexpression of
Fascin1, since it is a strong promotor for various cell lines and well established in the
literature®384. The vector also included the expression of GFP under the cytomegalovirus
promoter at a separate location on the plasmid as a reporter for positive transfection or

transduction.
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The successful overexpression and knockdown vectors were designed using
Vectorbuilder inc. (Appendix A) These vectors can be delivered to cells in two different
methods, both of which are used in this dissertation. The first method, lentiviral delivery,
involves the vector packaged in a lentivirus that infects the cells. Delivering in this method
allows for integration into the cell's genome. One advantage to lentiviral delivery is that
the delivered DNA will be copied during replication and all daughter cells will receive a
copy of the infected DNA. However, a limitation is that the insertion method is nonspecific,
and can insert into other genes or regulatory elements in the DNA, which may complicate
analysis. The second method, transient transfection, can also be used to deliver DNA
plasmids to cells by lipid encapsulation of the DNA® or the formation of a calcium
phosphate DNA precipitate®® that is internalized into the cells. A limitation of transient
transfection is that the DNA does not always get passed to daughter cells during
replication. Both options are viable, especially since dendritic spine analysis is done in
primary neurons, which do not divide. Vectorbuilder provided the DNA plasmids |
designed in bacteria for purification and use in transient transfection and packaged the

vectors in lentiviruses for lentiviral delivery or transduction.

2.5 Knockdown of Fascin1 in PC12 cells

Once | established a mechanism of knockdown and overexpression, | tested their
efficacy in cells. The knockdown vector was first assessed in PC12 cells, a rat cell line
that mimics many neuronal features such as neurite outgrowth and neuronsecretion8’-%.
It was not prudent to test in primary neurons first, because rats must be sacrificed to
provide primary neurons. Moreover, testing in primary neurons is not advantageous

because they cannot be passaged, do not grow quickly, and do not divide like the PC12
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cells. PC12 cells were infected with packaged lentiviral particles. | found that a multiplicity

of infection (or virus to cell ratio) of greater than or equal to 10 afforded a high transduction
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Figure 6. Verification of Fascin knockdown in PC12 cells. a) Overall lentiviral infection levels of
shRNA1 and scramble control verified by a GFP reporter gene. b) Quantitative western blot of
Fascin1 levels compared to a GAPDH Control. ¢) Graphical analysis of the Fascin1 intensities
relative to the GAPDH Control. ***P-value < 0.001 as assessed by student T-test.
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efficiency of around 95% estimated visually by comparing the number of cells expressing
the GFP reporter gene to the total number of cells in brightfield (Figure 6a). Due to high

transduction efficiency, it was not necessary to select for infected cells.

| assessed Fascin1 expression using a quantitative western blot normalized to a
GAPDH control. PC12 cells transduced with virus at a multiplicity of infection of 10 were
found on average to have an approximate 80% reduction in Fascin1 expression

compared to the uninfected controls (Figures 6b and 6c¢).

2.6 Knockdown and overexpression of Fascin 1 in primary rat neurons

After establishing that the shRNA was functioning properly in the PC12 secondary
cell line, | tested the knockdown efficiency in primary neurons. All work in maintaining,
growing, and imaging primary neurons was done in collaboration with Lara Dozier in the
Patrick lab at UCSD. Primary neurons were cultured in a 24 well plate format and infected

Eyepiece View Eyepiece View
(Scramble Control - 2.0uL) (Fascin shRNA - 2.0uL)

Figure 7. Eyepiece view images taken to show overall transduction efficiency of primary
rat neurons when treated with the scramble control lentivirus (left) or Fascin1 shRNA
lentivirus (right). In both cases 2 uL of virus in a 24 well plate format infected nearly all of
the primary neurons in the well.
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Figure 8. Knockdown of Fascin1 assessed by quantitative Western blot and image analysis.
Neurons treated with a lentiviral package of Fascin1 knockdown shRNA showed an
approximate 60% reduction in Fascin1 expression compared to the scramble control using
GAPDH as a housekeeping gene. **p-value <0.01

with the shRNA vector packaged with lentivirus on DIV 14. We found that 2uL of lentivirus
or 8.7x10° viral particles per well afforded a high transduction efficiency (Figure 7). Some
wells were infected with the scramble control vector as a negative control. The cells were
harvested on DIV 21. By quantitative western blot we found that the neurons infected with
the shRNA lentivirus had an approximate 60% reduction in Fascin1 expression (Figure

8).

One limitation to infection using lentiviral particles with the knockdown vector was
that the GFP filler/reporter gene was not expressed strongly enough for dendritic spine
analysis. To obtain clear visible spines, co-transduction with a sindbis virus with a plasmid

membrane linked mCherry fluorophore is standard protocol in the Patrick lab. Although
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this method achieves a very clear outline of the neurons, the sindbis virus leads to toxicity
over time, and neurons must be fixed and stained within one day of infection. To avoid
this issue, we performed transient transfection of the shRNA plasmid using the calcium
phosphate method, which infected a smaller percentage of cells, but resulted in clearly
countable spines without the need for co-transduction, and these neurons were used for

dendritic spine analysis in section 2.7.

The overexpression of Fascin1 was tested directly in primary neurons due to
excess availability from the Patrick lab. When transducing with lentivirus, nearly all the
cells infected were glial cells, and not the primary neurons. By switching to transient
transfection using the calcium phosphate method, we were able to infect the primary
neurons, but at a low efficiency which would make quantitative changes in expression
difficult to visualize with western blot. Therefore, functionality of the overexpression

vector was assessed by immunofluorescent image analysis. The cells were fixed and

Control

Overexpression

Fascin Signal Fascin Signal

Figure 9. Overexpression of Fascin1 assessed by image analysis using the ImagedJ fyre filter.
Representative control neurons (left) were infected with an FG12 GFP expressing plasmid,
while representative overexpression infected cells (right) were infected with a plasmid
encoding both GFP and overexpression of Fascin1.
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stained for Fascin1 using immunofluorescence (Figure 9). We were able to assess
Fascin1 overexpression qualitatively examining a large number (~20) of infected neurons
compared to controls. By qualitative image analysis, it was clear that infected neurons

had an increase in Fascin1 expression compared to controls.

2.7 Spine density analysis of overexpression and knockdown neurons

To compare results between overexpression and knockdown | used an infection
method consistent between both Fascin1 overexpression and knockdown neurons. Since
lentiviral particles did not infect neurons with the overexpression vector, and knockdown
with lentiviral particles required co-transduction with a sindbis virus as discussed
previously, using lentiviral particles would introduce too many confounding variables to
allow direct comparison between lentiviral infected Fascin1 knockdown and transient
transfected Fascin1 overexpression neurons. | therefore performed dendritic spine
analysis comparing overexpression and knockdown using only the calcium phosphate
transfection method because identification and counting of spines was achievable in
neurons transfected by the calcium phosphate method in both overexpression and
knockdown. Neurons were transfected with plasmids at DIV 14, then fixed and stained
on DIV 21. Images were taken in a single session for a given experiment and all images
were taken with the same laser intensity. The analysis of spine density was blinded,
meaning that all images were taken by our collaborator Lara Dozier in the Patrick Lab
while | analyzed the images, unaware as to which images were treatment or control. Not

until after analysis was complete was the identity of each sample treatment revealed.

Neurons were analyzed by image analysis (Figure 10)°"-°2. Secondary dendritic

shafts were selected using the straighten macro®, then cropped to 30uM segments.
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Dendrites along the dendritic shaft were measured manually and counted using a spine
counting macro developed in the Patrick Lab that records the length, width, and number

of measured spines.
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Figure 10. Dendritic spine analysis. The top panels show representative dendritic segments
of dendritic spine analysis from control, Fascin1 knockdown, and Fascin 1 overexpression
treatments. All samples express GFP. Both knockdown and overexpression of Fascin1
decrease dendritic spine density by approximately 20%. Overexpression of Fascin 1 caused
a decrease in spine length, while knockdown caused a small, but significant change in spine
width. Significance at *p<0.05, **p<0.01, ****p<0.0001 were assessed by student t-test.
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Because of the observed increase in spine density resulting from treatment with
BTA-EG4 and BTA-EGs, we predicted that Fascin1 overexpression and knockdown would
have opposite effects on spine density, and that one of the two treatments would mimic
the effects seen by the compounds BTA-EG4 and BTA-EGe. We were, therefore,
surprised when we found that in both Fascin1 knockdown and Fascin1 overexpression
neurons there was an approximate 20% decrease in dendritic spine density (Figure 10).
This decrease in dendritic spine density does not eliminate the possibility of a logical
explanation, and |, thus, performed further investigation. | performed an additional
experiment treating neurons with 5uM BTA-EG4 and BTA-EGe on DIV 20, harvesting 24
hours later. | analyzed the Fascin1 expression levels by quantitative western blot and
found that there were no significant changes upon treatment with BTA-EG4 and BTA-EGe

(Figure 11). Simply changing the Fascin1 expression levels does not adequately mimic
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Figure 11. Fascin1 expression levels are not significantly different between neurons treated
with vehicle control (DMSO), BTA-EG., and BTA-EGe.
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the response seen by the addition of BTA-EG4 and BTA-EGe, and their interactions with

Fascin1.

These experiments demonstrate that Fascin1 affects spine dynamics of mature
neurons, but both overexpression and knockdown of Fascin1 leads to an overall decrease
in spine density. This is an important discovery, because as mentioned previously,
Fascin1 has largely been disregarded in recent years as playing a role in dendritic spine

dynamics.

In summary, in this chapter | showed that treatment of neurons with BTA-EG4 and
BTA-EGe has an opposite effect on spine density compared to both overexpression and
knockdown of Fascin1. Since neither overexpression nor knockdown of Fascin1 mimics
the effects observed with treatment of BTA-EG4 and BTA-EGs, | was interested in
exploring how targeting Fascin1 with small molecules could affect spine dynamics without
changing expression levels. We postulated that the small molecules could affect the
interaction of Fascin1 with other cellular proteins that are involved with spine regulation.
Since Fascin1 is a structural protein, modifying how and where Fascin1 binds to actin and
other protein binding partners may lead to the phenotypic changes that we have seen in
neurons in the presence of BTA-EG4 and BTA-EGs. Studies towards exploring this

possibility are the subject of Chapter 3.

2.8 Methods
PC12 Cell Culture:
PC12 Cells were maintained in a 37° humidified incubator with 5% CO- in Modified

Eagle’s Medium (Gibco) supplemented with 10% heat inactivated horse serum (Gibco)
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and 5% FBS (Gibco). Cells were passaged 24 hours prior to infection and plated to be
around 70% confluent upon infection. Lentiviral particles were added at various
multiplicities of infection (MOI) to determine transduction efficiency and added at a MOI
of 10 determine Fascin1 knockdown. Fascin1 knockdown was confirmed by harvesting
cells 3 days after infection using IP lysis buffer (Pierce) and following the manufacturer’s

protocol.

Quantitative Western Blots:

Quantitative western blots were accomplished by normalizing total protein
concentration using the Pierce BCA assay and following the manufacturer’s protocol.
Identical quantities of total protein were loaded onto an 4-20% SDS-PAGE gel (BioRad)
and run for 35 minutes at 190V. The protein was then transferred to an activated low
fluorescence PVDF membrane (BioRad) using the TransBlot Turbo system (BioRad).
Blots were incubated for 1hour at room temperature in 2% Membrane Blocking Agent
(Cytivia) in Tris buffered Saline Solution with 0.1% Tween-20 (v/v) (TBST), followed by
overnight incubation with primary antibody (1:10,000 dilution) in 2% Membrane Blocking
Agent at 4°C. The blot was then washed three times for 5 minutes each in TBST at room
temperature. Secondary antibody (1:5000) was added to 2% Membrane Blocking Agent
in TBST and allowed to incubate at room temperature for 1 hour. The membrane was
then washed three times for 5 minutes each in TBST at room temperature, rinsed in MilliQ

water three times and then imaged using the Amersham 680 RGB (Cytivia).

Neuronal Cell Culture:
Dissociated neurons from Sprague Dawley® one day old (P1) rat pups including

both sexes were prepared as previously described®-6.
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Knockdown of Fascin1 in Primary Neurons:

For determining knockdown efficiency, cultured neurons were infected with
lentiviral particles at 14 DIV. Harvesting of neurons for western blot were determined
using the Pierce IP Lysis buffer at 21 DIV according to the manufacturer’s protocol. Fascin

expression was determined as described above for quantitative western blots.

Overexpression of Fascin1 in Primary Neurons:

Neurons at 14 DIV were transfected using CalPhos (Clontech 631312) with 1ug of
lentiviral overexpression plasmid DNA per coverslip or FG 12 lentiviral negative control.
Neurons were fixed and stained on DIV 21 as described below for immunostaining of

primary neurons.

Dendritic Spine Analysis:

For dendritic spine analysis Neurons at 14 DIV were transfected using CalPhos
(Clontech 631312) with 1ug of lentiviral knockdown plasmid, lentiviral overexpression
plasmid DNA per coverslip, or FG 12 lentiviral negative control. Neurons were fixed and

stained on DIV 21 as described below.

Immunostaining of Primary Neurons:

Neurons were fixed using 4% Paraformaldehyde/sucrose solution at room
temperature for 10 minutes. Neurons were then permeabilized with 2% BSA and 0.25%
Triton X-100 at room temperature for 20 minutes. Blocking was done for 6 hours at4° C
in 5% BSA. Primary antibodies for anti-fascin (Millipore MAB3582 1:1000), anti-MAP2
(Abcam5392 1:1000 or 1:5000), or anti GFP (Life Technologies A11122 1:1000). Nuclei

were stained using Hoechst stain (Sigma B2261). Each set of images for a given trial
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were acquired in one imaging session with identical exposure times, gain and power at

63x magnification.

Confocal Microscopy Imaging:
PC 12 cells were imaged on an EVOS FL (Life technologies) inverted microscope

using either the Brightfield or GFP filter.

Neurons were imaged with a Leica DMIG000 inverted microscope with the
following specifications: A Yokogawa Nipkon spinning disk confocal head. Orca ER high
resolution Black and white cooled CCD camera (6.45 um/pixel at 1x). Plan Apochromat
63x/1.4 numerical aperture objective. An argon/krypton air-cooled laser for

405nm/140mW1oomW 561/140mW 637nm lasers.

Image Analysis:

Images were analyzed in a blinded fashion using ImageJ®” or Fiji®":92 (Fiji is just
Imaged). Dendritic shafts were selected using the GFP reporter/filler signal, avoiding any
primary dendritic shafts. The shafts were straightened using a straighten algorithm®3 then
cropped to 30um in length. The spines along the shaft were manually counted and

measured as reported previously*®.
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Chapter 3

Unraveling the web of Fascin1’s protein interactions

3.1 Introduction to protein-protein interactions

Cellular proteins form a vast web of interactions that are highly regulated by the
cell. A major goal in the field of biochemistry is to deconvolute biochemical interactions.
Protein interactions are complex since proteins can have relevant physiological
interactions with many other binding partners and the binding partners can vary between
cell types. Fascin1 is an excellent example of this. Its primary known purpose of bundling
actin is regulated and can be turned “on” or “off” by phosphorylation at a serine residue
by protein kinase C. In addition, Fascin1 interacts with a host of other proteins. Some of
those proteins, similar to Fascin1, play a role in cytoskeletal dynamics, while others
participate in a plethora of molecular functions and biological processes. According to
the Uniprot Database, one of the proteins known to interact with Fascin1, B-catenin, has

20 molecular functions and is involved with over 60 biological processes®.

Investigating the protein-protein interactions of Fascin1 in the presence and
absence of BTA-EG4 and BTA-EGe was a logical next step for two reasons: First, upon
treatment with BTA-EGe, our lab found an increase of dendritic spine density in primary
rat neurons within hours of treatment, which returns to normal dendritic spine density
levels (i.e. density levels equivalent to untreated control cells) within 24 hours of
compound removal*®. This timescale led us to believe that changes in protein-protein
interactions plays a pivotal role on the effects of BTA-EG4 and BTA-EGe. An alternate

explanation, a change in the array of protein expression levels, seems unlikely because
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an upstream change in protein expression levels often takes 1-3 days for noticeable
effects to occur. Therefore, the observed changes that are seen in neurons within hours
happen too quickly for changes in protein expression to be the primary reasoning for the
observed effects of increased spine density. Second, the observed effect of treatment
with BTA-EG4 and BTA-EGs represents a structural change in the cell. Since Fascin1 is
a cytoskeletal-modifying actin-bundling protein it is likely that the effect Fascin1 has on
spine density is a result of changes in cytoskeletal dynamics. Changes in the

cytoskeleton are in essence a change in protein-protein interactions.

In this chapter, | investigate the protein-protein interactions of Fascin1 in the
presence and absence of BTA-EGs and BTA-EGs to connect the phenotypic

morphological changes observed to what is occurring at the cellular biochemical level.

3.2 Previous work concerning the interactions of Fascin1 and other proteins

In his doctoral dissertation, Dr. Kevin Sibucao investigated Fascin1’s protein
interactions by using pulldowns in human brain cortex lysate to probe for protein-protein
interactors that are pulled down in different proportions between controls and the addition
of BTA-EG4 and BTA-EG¢*®. He then used western blot to determine the presence or
absence of known protein interactors. Dr. Sibucao’s lead hit was a disruption between
the interactions of Fascin1 and Rab35, a master regulator protein that can recruit Fascin1
to the cellular membrane’. He hypothesized that when treated with BTA-EG4 or BTA-
EGes, the interaction between Fascin1 and Rab35 was disrupted, causing an increased
availability of actin near the neuronal membrane for creating branched actin networks

common to dendritic spines*.
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A western blot approach to investigating Fascin1 protein interactions has several
limitations.  First, the approach is reductionist, and relies on probing for known
interactions which limits the scope of the assay. Second, western blotting limits the
number of trials and probes that can be used by the number of gels and lanes that can
be run in a single experiment. While stripping and re-probing of western blots allows for
investigation of multiple proteins, very few proteins can be imaged simultaneously, and
cross-interactions can become a problem if a primary antibody is not completely removed
due to incomplete stripping. Third, comparing results across different blots can be
inconsistent, leading to complications in data interpretation. | therefore sought a more
holistic approach to identify the Fascin1-protien interactions that were affected by BTA-
EG4 or BTA-EGe.

3.3 A non-reductionist approach to protein-protein interactions: Tandem mass tag
mass spectrometry.

For the studies presented here, | augment Dr. Sibucao’s data and seek new
protein-protein interactions that are modified by BTA-EG4 and BTA-EGgs by using the non-
reductionist approach of tandem mass tag (TMT) mass spectrometry®®. TMT mass
spectrometry utilizes tags that have two properties: Tags can covalently link to specific
nitrogen or carbon atoms in a protein with high efficiency and specificity, and they have
signature fragmentation patterns by tandem mass spectrometry. The labeling of each
treatment, control, and replicate with TMTs and identification of the proteins by tandem
mass spectrometry allows for the quantification of the proteins that are identified between

samples when compared to the appropriate databases.
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This approach liberated me from the requirement of solely investigating proteins
that were already known to interact with Fascin1. This approach also made it possible to
evaluate hundreds of proteins simultaneously, rather than a small selection of proteins

individually.

| first repeated the experiment as described in Dr. Sibucao’s work*® where | pulled
down Fascin1-interacting proteins in brain lysate from healthy human brain tissue, which
was provided as a generous gift from the Shiley-Marcos Alzheimer’s Disease Research
Center at UCSD. Fascin1 expressed as a fusion protein covalently linked to Glutathione-
S-transferase (GST) was pre-loaded onto magnetic glutathione beads. A negative control
was also prepared by loading GST alone onto magnetic beads. Brain lysate was obtained
by mechanical homogenization in a hypotonic buffer using a Dounce homogenizer. The
soluble fraction was collected and incubated with the pre-loaded beads at 1mg/mL of
protein in the presence or absence of BTA-EG4 and BTA-EGs at 100uM for 2 hours. The
beads were subsequently washed in PBS +0.1% Triton-X100 three times, followed by
elution using 8M Urea 50mM HEPES pH 8.0. The elutions were collected and frozen at
-80°C until they were delivered to Jacob Wozniak of the Gonzales Lab for tandem mass

tagging and mass spectrometry analysis.

The experiment detected 557 unique proteins that were pulled down in the
presence of GST or Fascin1-GST. 100 proteins out of the 557 detected proteins showed
an increased affinity for Fascin1-GST loaded magnetic beads (Figure 12). Those 100
proteins were then split into four clusters. Cluster 1 included 15 proteins that showed a
further increased interaction with Fascin1-GST in the presence of BTA-EG4 and BTA-EGs

compared to the absence of the molecules. Cluster 2 included 8 proteins that showed
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complete dissociation from Fascin1-GST in the presence of BTA-EG4 and BTA-EGs
compared to the absence of the molecules similar to the values obtained in the negative
control. Cluster 3 included 28 proteins that had decreased interaction with Fascin1-GST
in the presence of BTA-EG4 and BTA-EGe compared to the absence of the molecules,
but not complete dissociation as in Cluster 2. Cluster 4 were proteins that were pulled
down with equal affinity in both the presence and absence of compounds. The full dataset

is provided in Appendix B and Supplementary File 1.
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Figure 12. Tandem mass tag data and analysis. a) Correlation plot shows good clustering of
related samples. b) Volcano plot highlighting the 100 proteins that showed a significant
interaction with Fascin1-GST beads over the GST beads control. c) A heat map of the relative
amount of protein pulled down between each sample with blue indicating a low presence of
the protein and red indicating a high presence of the protein. Each row represents a single
protein. The far-left column represents the amount of a given protein pulled down by the
negative control (GST-beads). The far-right column represents the amount of a given protein
pulled down by the Fascin-GST beads. The center two columns represent the amount of a
given protein that was pulled down by Fascin-GST beads in the presence ofBTA-EG4 or BTA-
EGes.

It is also important to note that the overall profiles of BTA-EG4 and BTA-EGs are
similar (Figure 12c), meaning that both BTA-EG4 and BTA-EGe cause a similar change
with which proteins are pulled down in increased abundance, and which are pulled down
in decreased abundance. This fact strengthens the data by giving it redundancy and

solidifies the idea that these two compounds (although slightly different) cause similar
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changes to Fascin1-protein interactions, which is consistent with their similar effect on
dendritic spine density changes in primary neurons*3.
3.4 BTA-EG4 and BTA-EGg¢ increase Fascin1’s interactions with some actin related
proteins, but decrease its interactions with other actin related proteins

In order to find the protein candidates that could be responsible for the effects on
spine density by BTA-EG4 and BTA-EGe, | identified the proteins in clusters 1-3 (Figure

12) that were either directly cytoskeletal or interacted closely with the cytoskeleton.

The first key finding was in cluster 1, where actin itself was pulled down in greater
abundance in the presence of compounds BTA-EG4 and BTA-EGe. Importantly, this
included both the cytoplasmic beta and gamma isoforms of actin, which are most relevant

to neurons.

A second related finding was an apparent trend that many proteins that directly
bind actin were also pulled down in greater abundance. These included Gelsolin, Drebrin,
and subunits of the ARP2/3 complex (Table 1). The increased presence of these proteins
can be explained solely by the fact that Fascin1 showed increased affinity to actin. In the
case of a pulldown, the lysate is full of numerous proteins that are interacting in a complex
manner. Since actin forms filamentous strands, it is entirely possible that Fascin1 may
be linked to one part of an actin strand, and many of the actin associated proteins could
be connected by associating with actin along another part of the strand and are pulled

down by their association with actin, not necessarily by associating directly with Fascin1.

This trend, however, did not hold for all actin associated proteins. Two in particular,

a-actinin1 and a-actinin4, showed decreased pulldown in the presence of BTA-EG4 and
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BTA-EGs, despite the overall increase in pulldown of actin itself (Table 1). Further

analysis of this peculiarity is provided in the following sections.

Table 1. Summary of select actin-related proteins that were both pulled down by Fascin1 and
had a significant change in pulldown level in the presence of BTA-EG4 and BTA-EGs

Percent change of pulldown in the Percent change of pulldown in the

Protein presence of BTA-EG,4 presence of BTA-EGg

Gamma Actin
Beta Actin
Actin related protein 3

Drebrin
Gelsolin
a-actininl
a-actining
R B
Decrease in No Change in Increase in
Pulldown Pulldown Pulldown

3.5 Fascin1 and a-actinin both bundle parallel actin strands

Because of the observations made from the TMT data (i.e., a general increase in
actin and actin associated proteins, but a decrease in the actin associated proteins a-
actinins 1 and 4), | investigated how Fascin1 and a-actinin are reported to interact in the
literature. Both Fascin1 and a-actinin are actin bundling proteins®'.190-1%4 ‘meaning that
the proteins hold two strands of actin together. However, the distance between strands
is very different—approximately 8nm apart for Fascin and 35nm apart for a-actinin®®.
Each protein can bind at multiple locations along a strand of actin, and the strands can
be bundled together into larger parallel bundles of actin. The number of flaments in
Fascin1-bundled actin are limited to approximately 20 strands due to the geometry of
binding and bundling, while a-actinin-bundled actin does not appear to have any such

constraints®:56,
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Fascin1 excludes a-actinin binding a-actinin excludes Fascin1 binding
to strands of actin to strands of actin
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Figure 13. A cartoon diagram illustrating how Fascin1 and a-actinin each promote their own
bundling to strands of actin while excluding the other.

When Fascin1 and a-actinin bundle actin in vitro, each promotes its own bundling
while excluding the other due to the distance between strands® (Figure 13). Fascin1
would only reach one of the two strands of actin if it tried to bundle within a segment
already bundled by a-actinin, and a-actinin would not fit between strands that were
already bundled by Fascin1. Therefore, Fascin1 and a-actinin bundle actin in discrete

domains®8.

3.6 Fascin1 and a-actinin work together to regulate focal adhesions

Both Fascin and a-actinin regulate focal adhesions. Focal adhesions are locations
where the cell creates an attachment to the extracellular substrate through integrins which
are bridging proteins that cross the plasma membrane'®. Focal adhesions begin as
smaller nascent adhesions, that eventually change to become larger mature focal
adhesions'%, On the interior of the cell the integrins interact with a host of “adhesome”

proteins including Focal Adhesion Kinase, Paxillin, Vinculin, Zyxin, Espin, Talin, and

37



others which create a binding location for stress fibers.'%5197 Stress fibers are long
parallel strands of actin that are bundled by a-actinin and myosin2'%, Fascin1 also
bundles the stress fibers, and is located adjacent to the focal adhesion at the barbed ends
of the actin filaments’!. The barbed end is the location where actin monomers are

preferentially added to the filament'%%110,

Interestingly, when Fascin1 is knocked down in NIH 3T3 fibroblast cells, the stress
fibers in the cell undergo a gross morphological change, where focal adhesions and
stress fibers become thicker’!. Because Fascin1 limits the number of actin filaments in a
bundle, it is presumed that Fascin1 also moderates the thickness of stress fibers by

bundling at the barbed end of stress fibers, where actin monomers are added”".

Fascin inhibits focal adhesion degradation by preventing the activity of cofilin, an
actin severing protein’!. Cofilin is heavily regulated in dendritic spines and ins involved
in the enlargement of spines during long term potentiation, spine pruning during in long
term depression, synaptic availability of glutamate receptors, and synaptic vesicle
exocytosis'!'. The Yang lab has previously shown that BTA-EGs decreases the ratio of
active to inactive cofilin in neurons that have been treated with amyloid beta.*® For focal
adhesion turnover, Fascin must disassociate from the focal adhesion before the actin

strands can be severed by cofilin.”

a-actinin is also involved in the regulation of stress fibers and focal adhesions,
however their precise function is disagreed upon in the literature''?-118 While many
papers have published on actin bundle stabilization by a-actinin in vitro, their function
becomes more complex in the cellular environment where many different proteins are

competing for actin filament binding. Several studies have shown by RNAI that a-actinin
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is involved in the assembly and maintenance of stress fibers''?-15, yet others have shown
that when a-actinin is depleted, stress fiber mass increases.''®'"” In MDCK kidney
epithelial cells, a-actinin was shown to suppress actin stress fibers by permitting actin

filament turnover.118

Juxtaposing the scientific literature with the data collected from the TMT pulldown
experiment, | hypothesized that BTA-EG4 and BTA-EGs are acting to stabilize focal
adhesions in their premature, nascent state. The two key conclusions from the TMT
pulldown experiment that led me to this hypothesis were: 1) Fascin1 increases its
interaction with actin in the presence of BTA-EG4 and BTA-EGe, and 2) a-actinin pulldown
is decreased in the presence of BTA-EG4 and BTA-EGs, despite an increase in pulldown
of other actin associated proteins. Stabilized focal adhesions can also lead to an increase
in dendritic spines as will be discussed in the next section.

3.7 Focal adhesion and integrin signaling play a role in the formation and
maintenance of dendritic spines

Since this work focuses on the implications of BTA-EG4 and BTA-EGs on dendritic
spine density, it is also important to consider the effect of focal adhesions on dendritic
spines. Focal adhesions are centered on integrins, which bridge the cellular membrane,
forming a link between the extracellular matrix and stress fibers on the interior of the
cell’®. An entire review article has been published on how integrins affect neural
connectivity, both on the presynaptic bouton of the axon, and the postsynaptic dendritic
spine™®. Integrin activation induces the formation of dendritic spines by assisting the
maturation of dendritic filopodia to dendritic spines through a signaling complex including

focal adhesion kinase, Src, Grb2, and paxillin, which are all traditionally associated with
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the focal adhesion complex as a whole'?°. Focal adhesion Kinase specifically is involved
with the maintenance of dendritic spines by regulating cofilin activity, and is proposed to
be involved with the formation of new spines.'?!
3.8 Confirmation of Fascin1’s apparent increase in affinity to actin in the presence
of BTA-EG4 and BTA-EGe

To test my hypothesis that Fascin1 is stabilizing focal adhesions in a nascent state
by binding more tightly to actin, | designed some preliminary experiments. In
collaboration with Aashish Shivkumar, another doctoral student in the Yang lab, we
attempted to confirm the TMT data showing that Fascin1 better binds to or bundles actin
in the presence of BTA-EG4 and BTA-EGs. Accordingly, we performed an actin bundling
assay with and without BTA-EG4 and BTA-EGs. We also used the compound G2, a
known inhibitor of actin bundling by Fascin1, as a negative control. However, because
we wanted to identify both increases and decreases in actin bundling, we first identified
conditions in which actin was not the limiting reagent. We therefore conducted a slow
speed actin bundling and sedimentation assay at a constant 20uM Actin and varied the
Fascin1 concentration. We identified 0.4uM Fascin1 as a concentration at which bundling
was significant compared to the controls but did not yet saturate the amount of actin found
in the pellet. The experiment was then repeated at 0.4uM Fascin1 with the addition of
compounds BTA-EG4, BTA-EGs, and G2. Actin bundles were pelleted by centrifugation,

and then resuspended in an equal volume of 1x sample buffer.
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The actin bundling was significantly increased by coincubation with BTA-EG4 and
BTA-EGes, while actin bundling was eliminated by G2 (Figure 14). This result corroborates
my earlier finding that Fascin interacts more strongly with actin in the presence of BTA-

EG4 and BTA-EGe as discussed in section 3.4.
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Figure 14. The effects of small molecules BTA-EG4, BTA-EGs, and G2 on the actin
bundling activity of Fascin1. BTA-EGs4 and BTA-EGs increase actin bundling by
Fascin1, while G2 eliminates actin bundling by Fascin1.

3.9 Immunofluorescent microscopy reveals a change in focal adhesions of SHSY-
5Y cells treated with BTA-EGs and BTA-EGe, causing the focal adhesions to
maintain a pre-mature state

Next, | established a cellular assay to investigate focal adhesions by
immunofluorescence. | seeded SHSY-5Y cells on poly-d-lysine coated coverslips at
between 50-70% confluency. The following day | treated the cells with BTA-EGa4, BTA-
EGes, or vehicle control (DMSO), with small molecule compounds at a concentration of

10uM. After 24 hours, cells were fixed and stained for actin by a fluorescent phalloidin

conjugate and stained for paxillin (a common reporter of focal adhesions) with a mouse
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anti-paxillin primary antibody and a Alexafluor488 conjugated goat anti-mouse secondary

antibody. (Figure 15)

DMSO Control BTA-EG6 BTA-EG4

Paxillin (marker of focal adhesions)

Control (DMSO)

Figure 15. Immunofluorescent microscopy of undifferentiated SHSY-5Y cells treated with
BTA-EG4, BTA-EGeg, or vehicle control DMSO (top panels). Enlarged side by side comparison
of DMSO treated and BTA-EGgs treated cells. Mature focal adhesions appear to maintain their
nascent state when cells are treated with BTA-EGs and BTA-EGe.

The control samples looked as expected, with each cell containing many small

nascent adhesions and several larger mature focal adhesions. In contrast, the large focal
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adhesions completely disappeared in cells treated with BTA-EGs, and the cells exhibited
a stretched or spread-out phenotype (Figure 15). The cells treated with BTA-EG4 were
also stretched or spread-out, but the focal adhesions appeared to take on an intermediate
form, somewhere in between the control and BTA-EGgs treated cells. These preliminary
findings indicate that the focal adhesions are not being disassembled as the

neuroblastoma cells attempt to migrate.

These results are consistent with my hypothesis that BTA-EG4 and BTA-EGe
stabilize focal adhesions causing them to maintain a pre-mature state. The stretched-out
phenotype that cells treated with BTA-EGs and BTA-EGe exhibit also supports this
hypothesis, because the focal adhesions are stabilized, preventing detachment from the
substrate as the cell attempts to move/migrate.

3.10 Other possible Fascin1 related pathways that could be affected by BTA-EG4
and BTA-EGe¢ leading to changes in dendritic spines

In addition to the findings described in section 3.9, the TMT tandem mass
spectrometry approach identified other protein interactions that changed with the
coincubation of BTA-EG4 and BTA-EGs that may be in part responsible for the Fascin1
mediated increase in dendritic spine density. These leads are a great starting point for
future research into the effects of BTA-EG4 and BTA-EGe on dendritic spine density, as

well as Fascin1’s role in dendritic spine formation or maintenance.

A collection of proteins that showed up repeatedly in the TMT data as having
decreased binding to Fascin1 in the presence of BTA-EG4 and BTA-EGe, were proteins
that are involved in clathrin coated pit mediated endocytosis. These proteins included 4

subunits of the AP2 adaptor protein complex (a1, a2, 8, and u), and snap91, a clathrin
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coat assembly protein. The AP2 complex serves as a mediator between a clathrin coated
pit vesicle and other proteins in the cell and forms a cage around the endocytosed

vesicle'?2,

The AP2 complex facilitates the endocytosis and recycling of many postsynaptic
receptors found on the dendritic spine. These include NMDA and AMPA receptors which
are both involved in dendritic spine dynamics and plasticity, and long term potentiation,
as well as the GABAA receptors involved in fast synaptic inhibition®123-125, The AP2
complex can also selectively endocytose integrins’?6, which have already been discussed
in section 3.7. Because a large number of membrane-bound proteins can be recycled in
this way, further experiments would need to be conducted in order to identify specific
proteins that may be affecting dendritic spines through a BTA-EG4 and BTA-EGe induced
pathway through Fascin1. Interestingly, microtubule dependent disassembly of focal
adhesions through clathrin coated pits, (presumably mediated by the AP2 complex) have
already been shown to be Fascin1 dependent in NIH 3T3 cells using a nocodazole
washout experiment’! and Fascin1 has been shown to mediate interactions between

actin and microtubules'?’.

Microtubules occasionally invade dendritic spines for 1-5 minute intervals'?8. The
purpose for this invasion, has been debated within the literature'28-13°_ Although some
cargos have been identified that are delivered to dendritic spines via microtubule transport
in this manner, no specific cargo has yet been identified that is transported out of dendritic
spines by this method'?®. Further experiments would be needed to address whether

Fascin1 and cargo transport in clathrin coated pits are involved in this process.
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A final group of proteins that | found have decreased interaction with Fascin1 in
the presence of BTA-EG4 and BTA-EGe are those involved in retrograde transport and
endosomal trafficking. These proteins include RABGA and RABGB, as well as the dynein
light chain 1. Perhaps in concert with the AP2 complex, these proteins could be regulating
vesicle transport out of the dendritic spine for recycling to a newly formed dendritic spine

or tagged for degradation by the proteosome.

3.11 Methods

Expression of Fascin1-GST for pulldowns:

Fascin 1 was grown by transforming the Fascin1 pGEX-5X-2 plasmid cloned by
Dr. Kevin Sibucao®® into DE3-BL21 cells (NEB) following the manufacturer’s instructions.
Cells were plated on selection agar plates containing100ug/mL ampicillin. A colony was
selected for growth overnight in 50mL LB broth with 100ug/mL ampicillin with shaking at
220 RPM and 37°C. The culture was then transferred to a 1L culture containing YT broth
(pre-warmed to 37°C) and 100ug/mL ampicillin. The culture was allowed to grow to an
OD of 0.8-1.0 at which point the temperature was reduced to 17°C and the culture was
induced with 0.5mM IPTG. The culture was allowed to incubate overnight, and the
bacteria were harvested by centrifugation at 3000x gravity for 30 minutes and frozen at -

80°C.
Purification of Fascin1

Fascin1 was purified by lysing the bacteria by resuspending the bacterial pellets in
30-40mL resuspension buffer (20mM Tris pH8, 150mM NaCl, 1mM DTT) , with 50mg

lysozyme and 2uL Benzonase Nuclease (MilliporeSigma) per liter of bacterial culture.
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The resuspension was then sonicated on ice for 10 minutes at 60% power with a pules
sequence of 3 seconds on and 3 seconds off (20 minutes total time). The lysate was then
centrifuged at 18500x gravity for 45-60 minutes. The supernatant was filtered twice to
remove any residual membranous material first by a 0.45uM and then a 0.22 yM pore
size filter (Genesee Scientific), then incubated with 5SmL Glutathione Sepharose 4b beads
(Cytivia) for at least 2 hours at 4°C with rotation. The beads were then collected by gravity
flow filtration and washed with approximately 75mL of resuspension buffer. Fascin1-GST
was eluted by the addition of elution buffer (10mM reduced glutathione 50mM Tris,
150mM NaCl pH8), then concentrated with a 30kDa cutoff centrifugal concentrator
(Millipore) to a total volume of less than 1mL, dialyzed into PBS, then diluted to the

appropriate concentrations for pulldowns in brain lysate.

Fascin1-GST pulldowns in brain lysate

Glutathione magnetic beads were washed three times in hypotonic lysis buffer
(20mM Tris pH 8). Fascin1-GST or GST were loaded onto magnetic beads. Protein was
added to the beads such that there was16uL of 25% slurry glutathione magnetic beads
(Pierce), and 20ug Fascin1-GST per trial. An equimolar amount of GST was prepared
per control. The beads and protein were allowed to incubate while preparing the lysate
(around 2 hours) at 4°C. After incubation, the beads were pulled to the side of the tube
using a magnet and washed once with hypotonic lysis buffer immediately before being

resuspended in an appropriate volume (~25uL per sample) before being added to lysate.

Lysate was prepared by removing approximately 1g brain tissue from storage at -
80°C and resuspending the tissue in 3-5mL cold hypotonic lysis buffer with protease

inhibitor cocktail (COmplete EDTA Free Protease Inhibitors Cocktail Roche) and allowed
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to incubate for 30 minutes. Tissue was then homogenized by mechanical disruption using
a Dounce homogenizer. The tissue was ground extensively with first the loose and then
the tight homogenizer rods on ice. Lysate was centrifuged at 18,000xg for 20 minutes
and the soluble fraction collected. Concentration was verified by BCA assay (Pierce)

following the manufacturer’s protocol and the lysate was diluted to 1mg/mL total protein.

BTA-EG4, BTA-EGe, or DMSO (control) were added to the lysate to a final
concentration of 100uM compound and 0.1%DMSO. Pre-loaded beads were then added
to the lysate and allowed to incubate at 4°C for 2 hours. The beads were washed 3 times
using cold wash buffer (0.1% Triton x-100 in PBS) using a magnet to pull the beads to
the side of the tube prior to each wash. Samples were eluted by adding 25uL of 8M Urea
50mM HEPES pH 8 to the beads, agitating slightly by flicking gently, then pulling the
beads to the side with a magnet and collecting the protein solution that was eluted off the

beads. The elution step was repeated three times.

Protein samples were then frozen at -80 until being sent for tandem mass tagged

mass spectrometry.
TMT mass spectrometry

Trypsin digestion, tandem mass tag labeling and fractionation, and LC MS2/MS3

analysis were performed as described previously'3'.
Cell culture:

SH-SY5Y cells were grown in DMEM:F12 1:1 media and maintained in a
humidified incubator at 37°C. Cells were seeded in a 24 well plate on poly-d-lysine coated

glass coverslips to be around 50-70% confluent. The following day the cells were
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subjected to treatment with BTA-EG4, BTA-EGs, or DMSO control to a final concentration
of 10uM compound with 0.1% DMSO. Cells were fixed and stained 24 hours after

treatment with compounds

Fixing and immunostaining of cells:

Cells were washed once with 300uL PBS supplemented with magnesium and
calcium (PBS-MC). Cells were then fixed for 10 minutes with 300uL of 4%
paraformaldehyde and 4% sucrose in PBS-MC. Cells were carefully and slowly rinsed
three times with PBS-MC. Cells were permeabilized/blocked for 20 minutes in 2% BSA,
0.25% Triton x-100 in PBS-MC. Cells were rinsed 3x with PBS-MC, then blocked with
5% BSA in PBS-MC for 4+ hours. The blocking solution was removed and mouse anti
paxillin antibody was added at a 1:100 dilution in 2% BSA in PBS-MC. The cells were
incubated overnight at 4°C, then carefully and slowly rinsed 3x with PBS MC. Goat anti
mouse AF-488 (Invitrogen) at a 1:1000 dilution in 2% BSA/PBS-MC was added together
with phalloidin conjugated iFluor555 (Abcam) at 1x concentration, added to each well and
allowed to incubate for 1 hour at room temperature. The wells were carefully and slowly
rinsed 3x with PBS-MC and placed on an orbital shaker for 15 minutes on the last rinse
(less than 60 rpm). Cells were mounted on microscope slides using ProLong Glass
mounting media (Thermofisher) and sealed with clear fingernail polish after the mounting
media had set. The slides were kept in the dark until the slides were imaged by a Keyence
All-in-One Fluorescence Microscope BZ-X800. All images were acquired at 100x during

the same session with identical laser intensities.
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Chapter 4

Structural studies to identify key interactions for the binding of

BTA-EGs to Fascin1

4.1 Introduction

The development of a compound that improves memory and learning in mice and
has the potential to combat symptoms of neurodegenerative disease is scientifically and
medically groundbreaking. Understanding exactly how a compound binds to its specific
protein target can lead to a better understanding of its mechanism of action, and lead to
the creation of new compounds that bind with higher affinity that are better candidates for
clinical trials. This chapter identifies key residues that are involved with the binding of
BTA-EGe to Fascin1l. BTA-EGs was not studied in this chapter because of its low
solubility; however, | have collected evidence in Chapter 3 to demonstrate that BTA-EG4
and BTA-EGe cause a similar perturbation of binding partners to Fascin1. The two
compounds also cause a similar cellular response which is an observed increase in
dendritic spine density*3. Accordingly, it is likely that the results for BTA-EGg reported in

this chapter also apply to BTA-EGa.

In this chapter | utilize both protein crystallography and protein NMR to provide

experimental evidence for the binding pocket of BTA-EGs to Fascin1.

4.2 Previous Work
As mentioned previously, Dr. Kevin Sibucao carried out photoaffinity labeling
studies in the Yang lab to identify Fascin1 as the target of BTA-EG4 and its analogs.

Aashish Shivkumar, a PhD student in the Yang lab, confirmed the binding of BTA-EGs to
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Fascin1 by isothermal titration calorimetry and found the binding/dissociation constant
(Kq) of BTA-EGe to Fascin1 to be 4.86uM (data in preparation for publication). He also
performed in silico docking studies supported by site directed mutagenesis to identify a

potential binding pocket for BTA-EGs (Figure 16).
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Figure 16. a) Proposed binding site of BTA-EGs on Fascin1. b) Diagram of all amino acids
that interact directly with BTA-EGg in the proposed binding site
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| build on these studies to provide additional structural evidence as to the binding

pocket BTA-EGes.

4.3 X-ray crystallography and protein NMR: advantages and disadvantages

The two methods that | chose for this analysis are x-ray crystallography and NMR
of proteins in solution. These two techniques are complimentary and provides different
information; however, the utility of each technique is dependent on the protein studied.
Some proteins that are suitable for analysis by protein NMR may not have known
crystallization conditions or may not crystallize well. Conversely, proteins that crystallize
may not give resolved spectra by protein NMR. X-ray crystallography relies on the
diffraction of an x-ray beam to reveal the three-dimensional structure of the electron
clouds within the crystal lattice, while protein NMR reveals information about individual
nuclei by using a strong magnetic field. Both techniques give insights into protein-ligand
interactions, which could allow for the elucidation of interactions between BTA-EGes and

Fascin1.

X-ray crystallography is not limited by the size of the protein being investigated,
and it is relatively inexpensive and straightforward to produce a crystal when
crystallization conditions are known. It can yield high atomic resolution and gives a direct
indication of the three-dimensional structure of the protein. lts limitations are that the
sample must be crystallizable and a single crystal must be obtained with a single lattice
to procure good data. Many proteins exist where conditions for crystallization simply have
not been found. Additional drawbacks to crystallography are that it provides a static
representation of the protein, and that the conditions used to induce crystal formation may

not accurately represent the native environment of the protein. Because of this it is
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possible that the resulting “snapshot” of the protein may not represent a native
conformation and is therefore not accurately depicting intermolecular and intramolecular

interactions. The high-energy x-rays used for diffraction also destroy the sample.

The primary advantage of protein NMR is that it is a dynamic technique, meaning
it provides a representation of different conformations and fluctuations that a protein may
take at a high structural resolution. Protein NMR can give an idea of different
intramolecular interactions and conformations the protein may take. The technique is
noninvasive and non-destructive, assuming that the protein is stable in the solution. A
limitation of protein NMR is the complexity of data interpretation. This is especially true
of proteins with a molecular weight greater than or equal to 30kDa. Fascin1 a 55KDa
protein, is larger than what is usually done in protein NMR. Finally, in order to achieve a
high signal to noise ratio, a large amount of pure protein must be acquired. For context,
the amount of Fascin1 | used for a single NMR experiment is equivalent to the amount

needed for 300 wells of crystallization.

4.4 Screening x-ray protein crystallography conditions for Fascin1

Since crystallization conditions of Fascin1 are already published*132-135 | began
with x-ray crystallography. In literature, most published papers use Fascin1 at a
concentration of around 14mg/mL in a protein buffer including 20mM Tris, 40mM KBr,
and 0.5M EDTA pH 8 for crystallization®*'32135. The Fascin1 is then mixed into
crystallization buffers including 15-20% Polyethylene Glycol (PEG) of various molecular
weights between 3500 and 8000, HEPES or Tris at 100mM pH 8, and TmM DTT ata 1:1
ratio33.132.133,135 " The final published conditions occasionally include additives such as 1-

2.5% isopropanol®4132.135 4 %, glycerol'33.134 or 200mM lithium acetate'34.
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| was able to produce crystals of Fascin1 without the addition of BTA-EGe under a
series of conditions via the hanging drop method'6. Two sets of trays were prepared,
one to test the pH from 6-8 at 14-24% of PEG 4000, and another to test glycerol,
isopropanol, 1,4-butanediol, and 2-Methyl-2,4-pentanediol as additives at 3% (V/V) at a
constant pH of 8.0 in HEPES buffer. Concentrated Fascin1 in protein buffer was added
to crystallization buffer at a 1:1 ratio (2uL each). | found that Fascin1 often crystalizes
more quickly along one axis, resulting in long toothpick shaped crystals. These crystals
are not ideal, as | found that short thicker crystals are better for getting a good diffraction
pattern. In my pH test, | found crystals in most wells, however at lower pH values the
crystals became thin fragile-looking sheets which were not ideal for diffraction. The best
crystals that | collected were found in HEPES at pH 8. For additives | found the most
promising crystals in 3% isopropanol at PEG 4000 concentrations of 18% and 22%. |
also found crystals in 3% 2-Methyl-2,4-pentanediol at PEG 4000 concentrations of 18%

and 22% and in 3%1,4-butanediol at 22% PEG4000.

4.5 Crystallizing the protein Fascin1 in the presence of BTA-EGs

| next attempted to crystalize Fascin1 in the presence of BTA-EGs. BTA-EGes was
added to 14mg/mL Fascin1 in protein buffer at a concentration of 2mM (near the
maximum solubility of BTA-EGe in aqueous solution). The crystal conditions had a
constant 100mM HEPES pH8, 1ImM DTT. The range of PEG 4000 was 14-24% PEG4000
Each condition was run in duplicate with 6 conditions containing 3% isopropanol, and 6

conditions containing no isopropanol.
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| found crystals in many of the conditions. Crystals were exchanged into cryo
buffer (crystallization conditions plus additional glycerol for a final concentration of 30%
cryoprotectant) to inhibit ice crystal formation upon flash-freezing, collected in loops and
frozen in liquid nitrogen. Crystals were sent to the synchrotron at Argonne National Lab.
Diffraction data collection was performed by remote control of the beamline at that
location. Data was reduced with XDS package utilities'®”, molecular replacement was
performed with PHASER'38, then iterative refinement and building was performed with
Coot'®® and phenix.refine’#?. Many of the crystals collected diffracted well, but the best
resolution crystal came from the condition containing 18% PEG 4000, 100mM HEPES
pH 8.0, 3% IPA, 1mM DTT. The crystal structure was found to belong to the C2 space
group and was solved with a resolution of 2.1 angstroms (Figure 17).

Overall Structure Predicted Binding Site

o
i
|

Figure 17. X-ray crystallography of Fascin1. Finished image of the 2.1 angstrom structure
that | obtained showing both Fascin1 proteins in the repeating unit of the crystal (left panel).
Electron density map at the proposed binding pocket of BTA-EGe (right panel). Images were
obtained using Pymol2 and Coot.

Unfortunately, from this experiment no clear electron density corresponding to

BTA-EGe was found in the structure (Figure 17). Several factors could have caused this
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result. First, it is possible that the crystal lattice excludes the binding of BTA-EGes.
Second, the crystallization solvent could potentially interact with BTA-EGe and prevent its
binding to Fascin1 in one of two ways. Complications could have arisen because BTA-
EGe has a polyethylene glycol (PEG) tail and the crystallization solvent contains 18%
PEG. The solubility of the compound is likely reduced in the crystallization solvent due
to the PEG crowding agents in the crystallization conditions. Another potential
complication is that the polyethylene glycol from the solvent could competitively exclude
the compound from binding to the protein. This means that, because PEG and BTA-EGe
have a polyethylene glycol moiety, the PEG, which is at solvent level concentrations (18%
in this case) is more likely to bind to the protein and prevent BTA-EGe from binding. And
if a large percentage of the binding pocket of BTA-EGe on the protein is occupied by PEG,
it would prevent the visualization and identification of the electron density of the much

smaller fraction bound by BTA-EGe.

Although | found several water molecules in the proposed binding pocket (Figure
17), Jansen and co-workers published a structure of Fascin1 in the literature that has a
number of small molecule electron densities including the labeling of PEG, and glycerol
molecules'*. Within the crystal lattice at the proposed binding pocket of BTA-EGe near
Arginine 389 is a molecule of PEG, giving structural evidence to the hypothesis that PEG

might be able to competitively exclude our compound from binding'34 (Figure 18).
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Figure 18. A, surface representation of the actin-binding site in 3-trefoil-1 colored by residue
conservation (left) and an enlarged view (right) showing molecules of PEG bound in the cleft
formed at the interface between B-trefoil domains 1 and 4. Residue conservation decreases
from1 3billue to red as indicated by the bar at the boftom of the figure. Reproduced from Jansen
etal™".

Despite this setback, | attempted to find new crystallization conditions for Fascin1
that did not include PEG. | screened several libraries totaling hundreds of crystallization
conditions but did not find any condition in which | could crystalize Fascin1 without PEG.
To provide an alternate avenue for obtaining structural information about the binding of

BTA-EGs to Fascin1, | explored the complementary technique of protein NMR.

4.6 Introduction to protein NMR

Solution protein NMR relies on identifying the amide N-H on the backbone of the
polypeptide chain of the protein'#!. Since each N-H corresponds to a single amino acid,
the number of peaks seen in a two-dimensional NMR analysis of "N 'H protein should

correspond to the number of amino acids in the protein, minus the prolines, which do not
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have the N-H common to most amino acids. The starting methionine can often be
removed during expression and processing by the host organism and is therefore not
visible as well. Taking this into account, a protein like Fascin1 with 493 amino acids, 15

prolines, and a starter methionine should have 477 total N-H peaks.

In order for the amide nitrogen to appear in the NMR spectra, it must have the
proper atomic spin'#!, therefore the predominant form of nitrogen '*N must be enriched
with ®N. Likewise, carbon atoms must be isotopically enriched with '3C rather than the
predominant natural occurring '2C. The predominant form of Hydrogen 'H does not need
to be isotopically enriched. In fact, because this signal is present in so many molecules,

the 'H signal often needs to be suppressed by utilizing deuterium 2H.

Each isotope produces a unique protein NMR signal and has its own unique one-
dimensional spectrum. In addition, two-dimensional and three-dimensional NMR
experiments allow for the correlation of nuclei that are nearby to each other. There are a
number of experimental methods that can be employed to take advantage of the signals
each nucleus provides by protein NMR. Heteronuclear single quantum coherence
(HSQC) spectroscopy is the most common two-dimensional experiment, which correlates
the N-H amide peaks as previously described'#!. Other three-dimensional experiments
(named for the atoms and order in which the magnetization is passed) such as the HNCA
correlate an N-H peak (HN) to the alpha carbon signal(CA)'#2143 and the HNCACB
experiment correlates the N-H signal (HN) to both the alpha (CA) and beta carbons (CB)
of a given amino acid'4. Each experiment gives additional data because the alpha
carbon chemical shifts are unique to some amino acids, and beta carbon chemical shifts

are unique to even more amino acids, allowing for the correlation between a given N-H
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peak and its amino acid identity. Transverse relaxation optimized spectroscopy (TROSY)
experiments tend to give better signal and resolution for large proteins'™S. | utilize a
combination of these experiments to provide evidence for a binding site of BTA-EGs to

Fascin1.

4.7 Two-dimensional solution NMR of Fascin1

Since the x-ray crystallography experiment showed no evidence of BTA-EGe
bound to Fascin1, | began experimenting with protein NMR of Fascin1. This method
started out as an unlikely candidate for studying Fascin1 simply because it is considered
to be too large for analysis by solution protein NMR. As mentioned previously, solution
NMR tends to become too complicated with proteins of a size larger than 30kDa because
many peaks begin to overlap. Since Fascin1 is a 54.5kDa protein, it seemed unlikely that
Fascin1 would produce a viable NMR spectrum, as too many peaks would overlap one
another. Despite these theoretical limitations, | was curious to see what information could

be obtained through NMR methods.

| expressed and purified Fascin1 in Mengli minimal media with 15N labeled
ammonium chloride. | initially attempted the analysis in a buffer containing 50mM HEPES
pH 7.4, 100mM NaCl, and 1mM DTT with 100uM Fascin1, which gave excellent resolution
in the NMR spectra. Since more peaks are visible at lower pH due to a slower exchange
rate of the amide hydrogen with the solution, | later optimized my conditions to 40mM
HEPES pH6, 90mM NaCl, 3mM TCEP, and 0.1%DMSO (deuterated) with 300uM Fascin1
and 10% deuterium oxide. The TROSY-HSQC spectrum showed excellent resolution for
a protein of this size (Figure 19). Further analysis and assignment of peaks will be

discussed in later sections of this chapter. All data in the NMR spectra of this chapter
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were collected at 37°C on a Bruker Avance Neo 800MHz spectrometer, and data was
processed using NMRPIPE'#® and analyzed with Bruker Topspin4(www.bruker.com).

Images were produced using the Bruker Topspin4 software and Adobe lllustrator.

£
- o
. | &
|
. - _tn
e - - -o
- . -
.. : -. < ¢ .ll I
™ LI ...o.ol 1 1 :g
: ’o: o' ‘.o‘a o -
caie i "l": i
a - . wl 190 L
° ° ° o, L
- - -’.. .|‘.* .'J | ] P | w
N .a.; ' "o o’ -
o, % 5 ) - -
° ° .: ‘.. .0’-. e - ® r —
.O.’ ..'o- . T - ° B €
PP ’. Loe s® ™Y :': o Y .. L %
Y ,..‘ ."“..... .: L .~' .. _‘g_ ~
. . -..-: a-:. ‘...?. ‘,‘. - ﬁZ
o* .'o.o o' ® ® i
DR EEE. AR A B I Py i
o By ..:;.‘o o.:' < .. .V e * _-o
a® 9 = ‘.C & ‘ o @ _S
- & °% %, -
« ® e o o { o L 4
oo: ® e & .‘.. P R -
- Py - P -
- * e o L
I -8
. . e® o L
. e * . s -
. [ ® —-o
- o
l | | | I T T T T I T T T T I T
11 10 9 8 7 6 F2 [ppm]
'H (ppm)

Figure 19. TROSY-HSQC of Fascin1 in solution. 463 out of 477 expected peaks were
visualized for 97% coverage. Image produced using Topspin4 and Adobe lllustrator.

Glutamine and asparagine residues also have N-H signals from their sidechains
that can appear in the same region as the N-H signals from the backbone. Since the

sidechain peaks do not correlate to the amide N-H signal that | am studying, they must

61



be removed from peak counting for identifying coverage. In my spectra they appear in
the range of 66-8 ppm on the H axis and 6105-115ppm on the N axis in the spectra |
collected and appear elongated in the nitrogen dimension. After accounting for the
glutamine and asparagine sidechains, the spectrum was found to contain 463 out of the
477 expected peaks of Fascin1, representing 97% coverage. There is excellent
resolution for most peaks with relatively few overlapping signals which makes it very high

quality for a protein of this size.

After completing the experiments on Fascin without BTA-EGe, | ran the TROSY-
HSQC experiment in the same conditions with the addition of 600uM BTA-EGs (a 2:1
small molecule to protein ratio) to look for perturbations in the spectrum that might
correlate to the amino acids that interact with BTA-EGe. | then overlayed the spectrum
with the apo protein spectrum (Figure 20). While most of the peaks overlap well between
the two spectra, there are approximately 50 peaks with a clear chemical shift. These
peaks likely correspond to amino acid residues that shifted due to compound binding
through proximity to BTA-EGs. The peak shifts could also be a result of a conformational

change that happens when BTA-EGgs binds Fascin1.
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Figure 20. TROSY-HSQC of Fascin1 in solution (black) overlayed with TROSY-HSQC of
Fascin1 with 600uM BTA-EGs(red). Most of the peaks are precisely overlayed, however there
are approximately 50 peaks with a noticeable change in chemical environment. Image
produced using Topspind and Adobe lllustrator.

4.8 Attempts to assign peaks by three-dimensional NMR Analysis
To assign each peak to an amino acid residue, | used three-dimensional NMR

analysis in an attempt to assign the peaks that | had seen in my previous two-dimensional
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NMR analysis with the amino acids of the primary sequence of Fascin1. This can be
accomplished by growing protein in media that is enriched for both '3C and '>N. The
protein can be analyzed by a TROSY coupled HNCA experiment'5:147_With this method,
each N-H signal is coupled to the alpha carbon signal on the amino acid in question
(residue i), and is also coupled to the alpha carbon of the previous residue on the amino
acid chain (residue i-1) resulting in a weaker peak that is vertically aligned on the '"H-3C
spectra for a given 15N plane (Figure 21).'“® The weaker signal will have a corresponding

strong signal to the i-1 residue with an identical 13C shift. This allows “walking” along the
3-Dimensional HNCA

Sidechains

O Invisible to HNCA

no
!
1 |

Residue i-1 Residue i
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Figure 21. Example of a "N plane (107.64ppm) from the Fascin1 3D HNCA data
demonstrating protein assignment by “walking” along the backbone of the protein. For a single
N-H residue peak there will be a strong peak corresponding to that residue (i) and a vertically
aligned weak peak corresponding to the previous residue (i-1). Spectrum produced using
Topspin4 and Adobe lllustrator
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backbone of the protein from residue to residue to identify the NH peaks that are adjacent
to one another in the primary sequence of the protein. Although many amino acids have
nondescript chemical shifts, certain amino acids like glycine have unique chemical °N
and "3C shifts that are distinct because the side chain of glycine attached to the a-carbon
is a hydrogen, while all other amino acids contain a B-carbon attached to the a-carbon'°.
By comparing the identifiable amino acids to the primary amino acid sequence, it

becomes possible to assign each NH peak.

However, | found that because Fascin1 was so large, | was only able to assign a
few peaks in this manner. While navigation in the periphery of my spectra was
manageable, | was unable to definitively “walk” along the backbone of my protein when
the peaks were more densely packed because too many signals had identical 3C shifts,
which complicated analysis. Attempts to address this issue by selective labeling and
truncation of Fascin1 will be discussed in section 4.9. | also attempted to collect additional
three-dimensional NMR data including an HNCACB'44, CBCAHN"4, and HN(CO)CA'*,
to give additional data to assist in the positive identification of residues, however in each
case at 300uM Fascin1 there was not sufficient signal to collect a spectrum of useful

quality.

Although my initial attempt to fully assign the protein by three-dimensional NMR
analysis was unsuccessful, the HNCA spectrum allowed for identification of specific
residues involved in the binding of BTA-EGs which will be discussed in later sections of

this chapter.
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4.9 Using the Cfa intein to selectively label Fascin1

Since | was unable to identify the residues of the full-length Fascin1 protein, |
attempted reduce the amount of data in the NMR spectrum by partial isotopic labeling of
Fascin1 utilizing an intein reaction strategy. Inteins are a class of enzyme that catalyze
the splicing of two amino acid sequences together’®'. The advantages of using an intein
to splice together two protein sequences in NMR is that the two halves of the protein can
be grown separately, meaning that one of the sequences can be labeled with isotopes for
visualization by two and three-dimensional NMR analyses, while the other can be
unlabeled, rendering it undetectable by NMR (Figure 22b). This reduction in data makes
peak assignments easier to deconvolute. Specifically, the Cfagep intein, engineered from
the Cysteine-Phenylalanine-Alanine (CFA) consensus sequence among naturally
occurring, DnaE inteins'2 and modified to include a glycine-glutamic acid-proline loop
(GEP)'S3 (hereon referred to as Cfa), was selected for use in these experiments because
it is fast reacting, only leaves a single amino acid “scar” between the two spliced
sequences, and is promiscuous, meaning that it functions well regardless of the two
protein sequences being spliced together'®3. If the Cfa segments are histidine tagged,
initial purification of the intein reactants can be accomplished by nickel affinity
chromatography, then after the intein reaction has taken place purification of the spliced
protein product from the Cfa proteins can be accomplished by reverse nickel affinity
chromatography (Figure 22a). Fascin1 natively contains a cysteine on the linker between
B-trefoil 2 and B-trefoil 3, meaning that | could accomplish the labeling reaction without

even leaving a scar on the protein (Figure 22c).
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Figure 22. Design of Cfa constructs. a) Purification scheme using nickel affinity
chromatography for purification the Cfa constructs, and reverse nickel affinity chromatography
to separate the final product from the Cfa proteins. b) Diagram comparing uniform labeled
protein to the half-labeled products that can result from segmental labeling. Green outlines
indicate isotopically labeled sections. ¢) Image of the protein Fascin1 with B-trefoil 2, B-trefoil
3 and the native cysteine residue(red) on the linker between the two trefoils. Image rendered
in PyMol2 from PDB entry 3lip'.

| designed two constructs that | named CfaC-FascinC, and FascinN-CfaN, where

C refers to belonging to the c-terminal half of the Fascin1 protein/construct and N refers
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to the n-terminal half of the Fascin1 protein/construct. Unfortunately, | found that
FascinN-CfaN expressed solely into the inclusion bodies, meaning that purification would
require a denaturing reagent such as urea, followed by a post-translational protein
refolding step since urea denatures the protein. Fortunately, both nickel affinity
chromatography and the intein reaction work in the presence of urea. | purified both
constructs and added them to a final concentration of 15uM each in an initial 6M urea that

was slowly dialyzed out as the intein reaction proceeded.

Due to the kinetics of the reaction the Cfa intein works better at warmer
temperatures; however, urea can modify proteins at warmer temperatures by
carbamylating the lysine and arginine residues. | therefore tested the intein reaction at
both 37°C and at 4°C. After verifying by SDS-PAGE that both temperatures achieved
formation of full length Fascin1 product (Figure 23), | proceeded with using only the
reacted protein at 4°C, to protect the protein from carbamylation. | then purified the
solution using a reverse-nickel column and used dialysis to remove the remaining urea.
The removal of urea caused most of the protein to become insoluble. Fortunately, there
was sufficient protein in the soluble fraction for purification by anion exchange
chromatography. Two peaks of pure Fascin eluted off the column. Electrostatic
differences in the protein are responsible for the presence of two peaks. | tested these
two peaks by circular dichroism (CD) spectroscopy to check if the folding of the protein in
the peaks matched the folding of wild-type Fascin1. Both peaks did not match the wild-
type Fascin-1 peak, meaning that the overall folding of the proteins in the two peaks were
different from natively folded Fascin1 (Figure 23). Since the protein was misfolded there

was no reason to collect sufficient sample for NMR.
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Figure 23. a) Intein reaction monitored by SDS-PAGE and Coomassie blue staining. b)
circular dichroism spectra of wild type natively folded Fascin1 (green) compared to the two
peaks eluted off of the anion exchange(AE) column from intein reacted Fascin1(blue and red).
The intein reacted Fascin1 does not align with natively folded Fascin1 indicating that the intein
reacted Fascin1 is misfolded.

| attempted many variations on refolding the intein-generated Fascin1 protein but
was unable to achieve properly folded full-length product. | also redesigned and
subcloned the intein to splice between B-trefoil 1 and B-trefoil 2, and between B-trefoil 3
and B-trefoil 4, rather than my initial attempts to splice halfway through the protein
between B-trefoil 2 and B-trefoil 3. Each of these attempts resulted in protein that required
refolding and gave similar results of improperly folded Fascin1 product as the initial

attempt.
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| also attempted variations on truncating the protein coupled to GST, however the
protein either expressed poorly or precipitated out of solution before or after the cleavage
of the GST tag. These studies led me to conclude that Fascin1 needs to remain intact to
maintain a properly folded conformation. The removal of a B-trefoil domain during
expression and purification was problematic because this potentially exposed too many
natively buried hydrophobic residues to the polar solvent environment, which destabilized
the protein and caused it to precipitate out of solution.
4.10 Identification of residues involved in the binding pocket of BTA-EGs by a
combination of selective isotope labeling and site-directed mutagenesis.

Since assigning the residues of full-length Fascin1 was not feasible by the methods
previously employed, | shifted my focus to identification of key residues involved in the
binding of BTA-EGe using a combination of selective amino acid labeling and site directed

mutagenesis.

With the help of Prof. Stanley Opella, Prof. Galia Debelouchina, and Dr. Sang Ho
Park (all experts on protein NMR at UCSD), | selected two residues to identify in the NMR
spectrum that were proposed to interact with BTA-EGg in the binding pocket of Fascin1,
G393 and A137 (Figure16b). Aashish Shivkumar in the Yang lab had already created
several mutants including G393E and A137K for the isothermal titration calorimetry
experiments discussed in section 4.2. These mutants expressed well and matched the
folding of wild-type Fascin1 as assessed by CD. Therefore, | selected the mutants G393E
(glycine to glutamic acid) and A137K (alanine to lysine) for identification and further

analysis.
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4.11 Identification of the peak belonging to G393

| expressed and purified '°N uniform labeled G393E mutant protein for two-
dimensional NMR analysis by TROSY-HSQC. | overlayed the mutated spectrum and
wild-type spectra for further analysis (Figure 24). Since glutamic acid contains a
negatively charged sidechain at the experimental conditions, | expected this amino acid
mutation to cause a large perturbation in the chemical shifts of nearby residues, larger
than that seen by BTA-EGe binding, because BTA-EGe does not contain a formal charge.
This was confirmed with around 60 peaks showing a visible chemical shift. | also
anticipated the disappearance of one residue (corresponding to G393) and the
appearance of a new residue (corresponding to mutated E393). The disappearance of
the G393 residue is the clearest indication of the identity of the peak belonging to G393

in the wild-type spectrum.
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Figure 24. Overlay of the TROSY-HSQC for uniform labeled wildtype Fascin1 (black) with the

TROSY-HSQC of uniform labeled G393E (blue). Image produced using Topspin4 and Adobe
lllustrator.

Selective glycine labeling was not requried for identification of glycine peaks

T T T T l T T I T
11 10 6 F2 [ppm]

because glycine residues contain a characteristic a-carbon chemical shift and | had
previously collected a-carbon data when completing the three-dimensional HNCA
experiments. Glycine residues, with a hydrogen R-group, have a unique a-carbon

chemical shift that is upfield, averaging around 45.378ppm. All 19 other common amino
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acids have a B-carbon adjacent to the a-carbon, which is a significant change in chemical
environment. These other amino acids, therefore, have an average a-carbon chemical
shift ranging from 53-63ppm™9. | inspected the HNCA three-dimensional spectrum
correlating the N-H peaks to the a-carbon and found a peak that disappeared from the
G393E spectrum, without a corresponding new peak appearing nearby (Figures 24 and
25). This could have been caused by the disappearance of one of two nearby peaks,
which | will refer to as peak 1 and peak 2 (Figure 25). Using the three-dimensional HNCA
data | obtained in section 4.8, | was able to identify peak 1 as glycine due to its signature
chemical shift, while based off its chemical shift peak 2 is not glycine (Figure 25). Thus,

| refer to peak 1 as peak G393 in the discussion that follows.

73



F1 [ppm]

T
106

PR
N SO e
S (AR el S o
el
&S
N (ppm)

2 tpom)

Y HEem)

Peak 23-‘Not Gly

T . . . T . . . T . . . T . . . T . T
7.6 7.4 72 7.0 6.8 F2 [ppm]

H (ppm)

W Uniform Labeled WT

Ml Uniform Labeled WT

3D-Peak 1
'H-7.3ppm
®N-107.6ppm
3C-41.4ppm

. 3D-Peak 2

'H-7.4ppm

®N-108.0ppm
13C-56.7ppm

©
C (ppm)

H (ppm) H (ppm)
Figure 25. Zoomed in overlay of the TROSY-HSQC for uniform labeled wild-type Fascin1
(black) with the TROSY-HSQC of uniform labeled G393E (top panel). Using the three-
dimensional HNCA | had previously obtained, | identified the a-carbon shift of Peak 1 to be
41.4, which is indicative of glycine (bottom left panel). Peak 2 had an a-carbon shift of 56.7,
which is clearly not a glycine (bottom right panel). Spectra produced using Topspin4 and

Adobe lllustrator.
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| next utilized my earlier spectra at the same chemical shift values comparing
Fascin1-WT and Fascin1-WT with BTA-EGs overlayed (Figure 20) to discover if peak
G393 has a chemical shift upon the binding of BTA-EGe. | indeed observed chemical
shift of peak G393 in the presence of BTA-EGs (Figure 26), supporting the idea that G393

may be present in the binding pocket of BTA-EGe to Fascin1.
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Figure 26. Zoomed in overlay of Figure 17 around G 393 showing uniform labeled WT Fascin1
with (red) and without (black) BTA-EGe. Peak G393 shows a chemical shift upon binding to
BTA-EGs. Image produced using Topspin4 and Adobe lllustrator.
4.12 Investigation of the peak belonging to A137

Now that | had identified the peak in the Fascin1-WT spectrum belonging to G393,
| turned my attention to A137, the other peak | had selected for investigation in section

4.10. | expressed and purified uniform >N labeled A137K. As in G393E, the mutation

should create a perturbation larger than that caused by BTA-EGe binding because at the
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mutated lysine introduces a formal charge. The disappearance of the A137 signal, and

the appearance of the mutated K137 signal are also expected in the mutated spectrum.

| expressed and purified A137K mutant Fascin1 and overlayed the spectrum with wild

type Fascin1 as before (Figure 27).

As in the previous mutation there is good

convergence between the two spectra with approximately 60 peaks that do not overlap.
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Figure 27. Overlay of the TROSY-HSQC for uniform labeled wildtype Fascin1 (black) with the
TROSY-HSQC of uniform labeled A137K (blue). Image produced using Topspin4 and Adobe

Illustrator
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Unlike glycine, alanine does not contain a unique average chemical shift. | began
to search for A137 by selectively labeling alanine residues of my wild-type and mutant
proteins. This is accomplished by growing bacteria without any labels for incorporation
into the proteins, and then spiking the media with the "°N labeled alanine and the 19 other
unlabeled common amino acids prior to induction. Providing all the amino acids
suppresses the interconversion of amino acids through the bacteria’s natural metabolic
pathways for a short time. For this reason, expression can only be induced for a few
hours, and usually at 37°C. Fascin1 is normally expressed into inclusion bodies at 37°C
and to mitigate this problem it is normally induced overnight at 17°C. Therefore, it was

necessary to optimize Fascin1 expression for the incorporation of alanine labels.

| completed a series of small-scale experiments and tested various bacterial
strains and expression for 2 hours at 37°C, 2.5 hours at 30°C, and 3 hours at 20°C. |
found the greatest expression of Fascin1 into the supernatant with the use of LEMO
BL21s'%* with 100uM rhamnose to slightly activate the T7 Lysozyme expression that is

included in this strain of BL21 cells.

| expressed and purified sufficient protein to perform a TROSY-HSQC experiment
with Fascin1 at 190uM. The resulting spectrum overlapped well with the spectrum of full-

length uniform labeled Fascin1 protein (Figure 28).
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Figure 28. Overlay of the TROSY-HSQC for uniform labeled wild-type Fascin1 (black) with
the TROSY-HSQC of alanine labeled wild-type Fascin1 (blue). Image produced using
Topspin4 and Adobe lllustrator.

| found 45 peaks out of 49 expected total alanine residues in the protein sequence
for 92% coverage, which is reasonably close to the 97% overall coverage for uniform-
labeled Fascin1. Combining the alanine labeled Fascin1 spectrum with the uniform

labeled WT Fascin1 and A137K Fascin1 spectra, it was easier to identify alanine residues
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that disappeared in the A137K spectrum. The most promising candidates were in a cluster
of four residues, three of which were alanine. (Figure 29) | will refer to them as P1a, P2a,
P3, and P4a with the subscript A denoting an alanine identified from the alanine labeled

WT-Fascin1 spectrum (Figure 28).
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Figure 29. Zoomed in overlay of the TROSY-HSQC for uniform labeled wild-type Fascin1
(black) with the TROSY-HSQC of alanine labeled wild-type Fascin1 (blue). Alanine residues
from alanine labeled WT-Fascin1 are labeled with “A” and arrows denote suspected peak shifts
from WT to A137K Fascin1. Image produced using Topspin4 and Adobe lllustrator.
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The overlayed spectra show that P14 and P3 do not show changes in chemical
shift, P4 shifts upfield in the hydrogen dimension, and P2a disappears, suggesting that
P24 is A137. However, P3 increases in intensity, making the shift of P2a underneath P3
possible (Figure 29). To investigate this possibility, | expressed and purified alanine

labeled A137K Fascin1. The spectrum overlayed well with the A137K uniform labeled

spectrum (Figure 30).
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Figure 30. Overlay of the TROSY-HSQC for uniform labeled A137K Fascin1 (blue) with the
TROSY-HSQC of alanine labeled A137K Fascin1 (orange). Image produced using Topspin4

and Adobe lllustrator.
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The alanine labeling of A137K Fascin1 showed that P24 shifted underneath P3 as
a result of the alanine to lysine mutation, explaining both the disappearance of P2 and
the increased intensity of P3 in the A137K spectrum (Figure 31). P24 therefore cannot be

A137.

128.0 F1 [ppm]

CL

.......

M Uniform Labeled WT
A Alanine from Ala Labeled WT
[l Uniform Labeled A137K
A Alanine from Ala Labeled A137K
—) Suspected peak shifts from WT to A137K

8.4 8.3 8.2 F2 [ppm]
'H (ppm)

Figure 31. Zoomed in overlay of the TROSY-HSQC for uniform labeled wild-type Fascin1
(black) with the TROSY-HSQC of alanine labeled wild-type Fascin1 (blue). Alanines from
alanine labeled WT-Fascin1 are labeled with a black “A”. Alanines from A137K are labeled
with a blue “A”. Arrows denote suspected peak shifts from WT to A137K Fascin1. Image
produced using Topspin4 and Adobe lllustrator.
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To seek another candidate for A137, | overlayed the alanine labeled A137K
spectrum with the alanine labeled WT Fascin1 spectrum. After closely inspecting each

of the 45 signals from the alanine labeled WT Fascin1 spectrum and comparing to the
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Figure 32. Overlay of the TROSY-HSQC for alanine labeled WT-Fascin1 (black) with the
TROSY-HSQC of alanine labeled A137K Fascin1 (blue). Image produced using Topspin4 and
Adobe lllustrator.
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alanine labeled A137K Fascin1 spectrum, | concluded that each alanine peak from the

wild-type spectrum has a corresponding peak in the A137K spectrum (Figure 32).

The alanine labeled WT-Fascin1 spectrum showed 45 out of the expected 49
alanine signals for Fascin1. As a result of investigations into the alanine labeled WT and
A137K Fascin1 spectra, | concluded that A137 must be one of the four alanine signals
that does not appear in the alanine labeled WT spectrum. The residue corresponding to
G393 was identified and determined to shift upon the binding of BTA-EGs to Fascin1
supporting previous studies that identified G393 as a participant in the binding pocket of

BTA-EGe.

These experiments lay the groundwork for additional studies to identify specific
residues that are involved in the binding of BTA-EGs to Fascin1 and for the full assignment
of the WT-Fascin1 spectrum. These experiments will also aid research into future
therapeutics that target Fascin1 in the context of both neurodegenerative disorders and
cancer by providing an alternative to crystallization for the structural determination of

therapeutic binding.

4.13 Methods

Expression of Fascin1 for crystallography:

Fascin 1 was grown by transforming the Fascin1 pGEX-5X-2 plasmid cloned by
Dr. Kevin Sibucao®® into DE3-BL21 cells (NEB) following the manufacturer’s instructions.
Cells were plated on selection agar plates containing100ug/mL ampicillin. A colony was
selected for growth overnight in 50mL LB broth with 100ug/mL ampicillin with shaking at

220 RPM and 37°C. The culture was then transferred to a 1L culture containing YT broth
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(pre-warmed to 37°C) and 100ug/mL ampicillin. The culture was allowed to grow to an
OD of 0.8-1.0 at which point the temperature was reduced to 17°C and the culture was
induced with 0.5mM IPTG. The culture was allowed to incubate overnight, and the
bacteria were harvested by centrifugation at 3000x gravity for 30 minutes and frozen at -

80°C.

Purification of Fascin1

Fascin1 was purified by lysing the bacteria by resuspending the bacterial pellets in
30-40mL resuspension buffer (20mM Tris pH8, 150mM NaCl, 1mM DTT) , with 50mg
lysozyme and 2uL Benzonase Nuclease (MilliporeSigma) per liter of bacterial culture.
The resuspension was then sonicated on ice for 10 minutes at 60% power with a pules
sequence of 3 seconds on and 3 seconds off (20 minutes total time). The lysate was then
centrifuged at 18500x gravity for 45-60 minutes. The supernatant was filtered twice to
remove any residual membranous material first by a 0.45uM and then a 0.22 uM pore
size filter (Genesee Scientific), then incubated with 5SmL Glutathione Sepharose 4b beads
(Cytivia) for at least 2 hours at 4°C with rotation. The beads were then collected by gravity
flow filtration and washed with approximately 50mL of resuspension buffer followed by 25
mL thrombin cleavage buffer (20mM Tris, 150mM NaCl, 1mM DTT, 2mM CaCl.. 50-100
units of thrombin were added to the beads at a 30-50% bead slurry in thrombin cleavage
buffer and allowed to incubate with rotation overnight at 4°C. The flowthrough was
collected and washed with about 3 bead volumes of thrombin cleavage buffer, then
concentrated with a 30kDa cutoff centrifugal concentrator (Millipore) to a total volume of
less than 1mL. The protein was then purified by S200 size exclusion chromatography in

protein buffer (20mM Tris, 40mM KBr, and 0.5M EDTA pH 8) for crystallography or NMR
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buffer (40mM HEPES, 90mM 1mM TCEP NaCl pHG6) for protein NMR. The protein was
then concentrated using a 30kDa cutoff (Millipore) to the desired concentration for

experimentation.
Crytallography of Fascin1

Crystals for diffraction were obtained by mixing 2 pL14mg/mL Fascin in protein
buffer (20mM Tris, 40mM KBr, and 0.5M EDTA pH 8 2mM BTA-EGe) with 2uL
crystallization buffer (14-24% PEG 4000 100mM HEPES pH8, 1mM DTT) on a glass
coverslip and sealed over a well containing 1mL crystallization buffer. Crystals formed
over the course of 3 days. Crystals were exchanged into cryo buffer (crystallization
conditions plus additional glycerol for a final concentration of 30% cryoprotectant) to
inhibit ice crystal formation upon flash-freezing, collected in loops and frozen in liquid
nitrogen. Crystals were sent to the synchrotron at Argonne National Lab. Diffraction data
collection was performed by remote control of the beamline at that location. Data was
reduced with XDS package utilities'®”, molecular replacement was performed with
PHASER"38, then iterative refinement and building was performed with Coot'® and

phenix.refine'40.
Expression of uniform "5N labeled Fascin1 and mutants for HSQC NMR

Plasmids were transformed into DE3-BL21 cells as previously described. A colony
was selected for growth for 5 hours in 2-3mL LB broth with 100pg/mL ampicillin with
shaking at 220 RPM and 37°C. 200uL of the culture was then transferred into a 50mL
culture containing M9 or Mengli minimal media containing 1g of either >N labeled

ammonium chloride or ammonium sulfate and 8g unlabeled glucose. The culture was
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then transferred to a 1L culture containing Mengli media (pre-warmed to 37°C) and
100pg/mL ampicillin. The culture was allowed to grow to an OD of 0.8-1.0 at which point
the temperature was reduced to 17°C and the culture was induced with 0.5mM IPTG.
The culture was allowed to incubate overnight, and the bacteria were harvested by
centrifugation at 3000x gravity for 30 minutes and frozen at -80°C. Purification proceeded

as previously described in 4.13 methods.
Expression of uniform >N 3C labeled Fascin1 for HNCA NMR

Plasmids were transformed into DE3-BL21 cells as previously described. A colony
was selected for growth for 5 hours in 2-3mL LB broth with 100pug/mL ampicillin with
shaking at 220 RPM and 37°C. 200uL of the culture was then transferred into a 50mL
culture containing M9 or Mengli minimal media containing 1g of >N labeled ammonium
chloride and 2g of '3C labeled glucose. The culture was then transferred to a 1L culture
containing Mengli media (pre-warmed to 37°C) and 100ug/mL ampicillin. The culture was
allowed to grow to an OD of 0.8-1.0 at which point the temperature was reduced to 17°C
and the culture was induced with 0.5mM IPTG. The culture was allowed to incubate
overnight, and the bacteria were harvested by centrifugation at 3000x gravity for 30
minutes and frozen at -80°C. Purification proceeded as previously described in 4.13

methods.
Expression of alanine labeled Fascin1 and mutants for HSQC NMR

Plasmids were transformed into Lemo DE3-BL21 (NEB) cells following the
manufacturer’s protocol. A colony was selected for growth for 5 hours in 2-3mL LB broth

with 100pug/mL ampicillin and 30ug/mL chloramphenicol with shaking at 220 RPM and
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37°C. 200uL of the culture was then transferred into a 50mL culture containing M9 media
with 100pg/mL ampicillin and 30pg/mL chloramphenicol containing 1g of unlabeled
ammonium chloride and 5g unlabeled glucose. The culture was then transferred to a 1L
culture containing M9 media (pre-warmed to 37°C) with 100ug/mL ampicillin and 30ug/mL
chloramphenicol. The culture was allowed to grow to an OD of 0.4-0.5 at which point
100mL of amino acid suspension containing 0.1g '°N Alanine and 0.2-0.5g of the
remaining 19 common amino acids. At an OD of 0.6-0.8 Rhamnose was added to a final
concentration of 100pM to induce expression of the T7 Lysozyme and the culture was
plunged into an ice bath with shaking for 5 minutes. The cultures were returned to the
incubator at a temperature of 20°C and the culture was induced with 0.5mM IPTG. The
culture was allowed to incubate for 3 hours, and the bacteria were harvested by
centrifugation at 3000x gravity for 30 minutes and frozen at -80°C. Purification proceeded

as previously described in 4.13 methods.
NMR experiments

All protein NMR experiments were recorded at 37 °C on Bruker Avance Neo
800MHz spectrometers equipped with a TXO 1H/13C/15N cryoprobes. 'H/'>N TROSY-
HSQC data was recorded with 2k and 256 complex points. The NMR data were

processed with NMRPIPE and analyzed with Bruker Topspin 4 (www.bruker.com).
Cloning of intein constructs and Fascin1 truncations

Primers were designed using the CfaCFascinC and CfaNFascinN plasmids as a

template for intiein constructs (Appendix A) and against Fascin_pGEX-5X-2 (Appendix
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A). All cloning was done using the Gibson Assembly® Master Mix NEB E2611L and

following the manufacturer’s protocol.

Cloning of GSG onto the CfaCFascinC construct upstream of the polyhistidine tag
to promote expression was accomplished by using the following primers and

CfaCFascinC (Appendix A) as a template:

Forward: TGGTCATCACCATCACCATCAC

Reverse: GAGCCCATGGTATATCTCCTTCTTAAAG

Cloning of intein split fascin1 between B-trefoils 1 and 2 and between B-trefoils 3 and 4

was accomplished by using the following primers using CfaC-FascinC as a template:

CfaC Reverse: ATTGCTTGCAACCAGACC

Trefoil 3 Forward Trefoil 2 overhang:

TGAACTGTTTGCACTGGAACAGAGCTGTCAGGTTGTTCTGCAG

CfaC Reverse (w/scar Cys): ACAATTGCTTGCAACCAG

Trefoil 3 Forward: TGTCAGGTTGTTCTGCAG

Trefoil 3 Reverse-CfaN overhang:

GAATTTCGGTATCATAGCTCAGACAAATCAGTTTCATCAGAAACAGTTC

Trefoil 4 Forward: CGTCCGATTATTGTGTTTCG

CfaCFascinC Trefoils 3 and 4 Reverse: ATATTCCCACAGGCTTGC

CfaCFascinC Trefoils 3 and 4 Forward: GGATCCGCTGCTAACAAAG
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Cloning of intein split fascin1 between B-trefoils 1 and 2 and between B-trefoils 3
and 4 was accomplished by using the following primers using FascinNCfaN (Appendix

A) as a template:

FascinN Trefoils 1 and 2 CfaN Reverse: CATGGTATATCTCCTTCTTAAAGTTAAAC

FascinN Trefoils 2 and 2 CfaN Forward: ACCGCAAATGGCACC

Trefoil 1 Reverse: TGCAATATGAACTGACCATTTTTC

Trefoil2 Forward ScarC Cfa Overhang:

AAATGGTCTGGTTGCAAGCAATTGTCATCCGCAGGTTAACATTTATAGC

Trefoil 2 Reverse: GCTCTGTTCCAGTGCAAAC

Trefoil 2 Reverse T3 Overhang:

TTGCTGCCTGCAGAACAACCTGACAGCTCTGTTCCAGTG

CfaN Forward: TGTCTGAGCTATGATACCGAAATTC

Cloning of Truncated Fascin-GST constructs was accomplished using the

following primers and Fascin_pGEX-5x-2 (Appendix A) as a template:

GST-Fascin Trefoil 4 Reverse: GGATCCACGCGGAACC

GST-Fascin Trefoil 1 Reverse: GTGCATGGCGATGTGCAC

GST-Fascin Trefoils 1+4 Reverse: GTGCATGGCGATGTGCA

GST-Fascin Trefoils 1+2 Reverse: GCTCTGCTCCAGAGCAAAG

GST-Fascin Trefoils 3+4 Forward: TGCGCCCAGGTCGTGCTGCAGG
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GST-Fascin Trefoils 1+4 Forward: ATCATCGTGTTCCGCGG
GST-Fascin Trefoil 4 Forward: ATCATCGTGTTCCGCGG
Purification of CfaCFascinC, CfaNFascinN, and reacted intein constructs:

Constructs used for intein reactions were initially purified as described by Gupta
and Tycko'®. The purified intein reacted Fascin1 protein was then further purified by
HiTrap Q HP anion exchange chromatography (Cytivia) following the manufacterer’s

recommended protocol.
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Chapter 5
Conclusions

The work of Dr. Sibucao and others in the Yang lab has resulted in an investigation
of the nootropic effects of BTA-EG4 and BTA-EGe and their effects through the protein
Fascin1. In seeking to address if Fascin1 is on pathway and responsible for the observed
effects of BTA-EG4 and BTA-EGs, | have provided novel insight into Fascin1 as a
regulator of dendritic spines through Fascin1 knockdown and overexpression studies in
primary neurons. By exploring confirmable mechanistic links between Fascin1 and
dendritic spines, | have contributed novel information regarding the protein-protein
interactions of Fascin1 in neuronal tissue. | have also identified the maintenance of focal
adhesions in a nascent state as a direct cellular mechanism linking Fascin1 and the
binding of BTA-EG4 and BTA-EGs to the maintenance and formation of dendritic spines.
By examining Fascin1 and the binding of BTA-EGs from the prospective of structural
biology, | have provided direct evidence for locating the binding pocket in which BTA-EGe
binds to fascin through solution-based protein NMR studies and have shown that solution
protein NMR can be a viable tool for studying the interactions between Fascin1 and

potential small molecule therapeutics.

To further investigate the effect of BTA-EG4 and BTA-EGs on dendritic spines
future studies in this area would include studies in both secondary and primary neuronal
cells. These experiments should include both fixed and live cell imaging to further
investigate the effect of BTA-EG4 and BTA-EGe on focal adhesions and to investigate the

interaction between Fascin1 and the AP2 complex, yet to be described in the literature.
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The interactions between Fascin1 and a-actinin in the presence or absence of BTA-EG4

and BTA-EGe can be studied through in vitro competition actin-bundling assays.

A combination of additional selective labeling experiments and the expression of
labeled Fascin1 in deuterated aqueous media followed by 'H/'SN/'3C may lead to
sufficient signal for three-dimensional HNCACB experiments and allow for the full
assignment of the Fascin1 NMR spectra. Additional point mutations will also aid in this
effort and can further confirm the binding pocket of BTA-EGe. While the full protein
remains unassigned by protein NMR, two-dimensional HSQC analysis and mutagenesis
can be used to confirm the binding and provide insight into structural changes caused by

the binding of BTA-EG4, BTA-EGs, and other known Fascin1 binding molecules.

In conclusion, this dissertation adds another block to the construction of work done
by Dr. Sibucao and other previous graduate students in the Yang Lab. My work provides
a basis for further investigations and in turn my contributions will also be built upon, in the
hope that these discoveries can eventually lead to therapeutics and treatments for

Alzheimer’s Disease and other forms of dementia.
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Appendix A: Plasmids

Fascin1 Bacterial Expression Plasmid:

vECONI (268)

ac operator

2]

W E3
tac Promote;s,

coter ‘

BstBI (655)
Swal (6385)

(5996) Hpal

;»‘
il O ac ope,
(5940) ECORV A el "ato,

\o© Yoxe
) ©

J Factor Xa site
o

\ BamHI (951)
\
@) qud

A%

BgIII (1096)
W2 W

PshAI (1258)
_ SgrAlI (1288)

__— BpulOI (1428)
__— BmgBI (1469)

——— AscI (1575)

StyI (1702)

(5173) BStAPI —

Fascin_pGEX-5x-2
6791 bp

laclg promoter

" BseRI (1839)

T BsmlI (1961)

T Sad (2132)

Stul (2403)

PaeR7I - PspXI - XholI (2776)
NotI (2782)

BsaAl (2968)

AGCTTATCGACTGCACGGTGCACCAATGCTTCTGGCGTCAGGCAGCCATCGGAAGCTGTGGTAT
GGCTGTGCAGGTCGTAAATCACTGCATAATTCGTGTCGCTCAAGGCGCACTCCCGTTCTGGATA
ATGTTTTTTGCGCCGACATCATAACGGTTCTGGCAAATATTCTGAAATGAGCTGTTGACAATTA
ATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGTATT
CATGTCCCCTATACTAGGTTATTGGAAAATTAAGGGCCTTGTGCAACCCACTCGACTTCTTTTG
GAATATCTTGAAGAAAAATATGAAGAGCATTTGTATGAGCGCGATGAAGGTGATAAATGGCGAA
ACAAAAAGTTTGAATTGGGTTTGGAGTTTCCCAATCTTCCTTATTATATTGATGGTGATGTTAA
ATTAACACAGTCTATGGCCATCATACGTTATATAGCTGACAAGCACAACATGTTGGGTGGTTGT
CCAAAAGAGCGTGCAGAGATTTCAATGCTTGAAGGAGCGGTTTTGGATATTAGATACGGTGTTT
CGAGAATTGCATATAGTAAAGACTTTGAAACTCTCAAAGTTGATTTTCTTAGCAAGCTACCTGA
AATGCTGAAAATGTTCGAAGATCGTTTATGTCATAAAACATATTTAAATGGTGATCATGTAACC
CATCCTGACTTCATGTTGTATGACGCTCTTGATGTTGTTTTATACATGGACCCAATGTGCCTGG
ATGCGTTCCCAAAATTAGTTTGTTTTAAAAAACGTATTGAAGCTATCCCACAAATTGATAAGTA
CTTGAAATCCAGCAAGTATATAGCATGGCCTTTGCAGGGCTGGCAAGCCACGTTTGGTGGTGGC
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GACCATCCTCCAAAATCGGATCTGATCGAAGGTCGTGGAATTCTGGTTCCGCGTGGATCCACTG
CCACCATGACCGCCAACGGCACAGCCGAGGCGGTGCAGATCCAGTTCGGCCTCATCAACTGCGG
CAACAAGTACCTGACGGCCGAGGCGTTCGGGTTCAAGGTGAACGCGTCCGCCAGCAGCCTGAAG
AAGAAGCAGATCTGGACGCTGGAGCAGCCCCCTGACGAGGCGGGCAGLCGLCGGCLCGTGTGCCTGL
GCAGCCACCTGGGCCGCTACCTGGCGGCGGACAAGGACGGCAACGTGACCTGCGAGCGCGAGGT
GCCCGGTCCCGACTGCCGTTTCCTCATCGTGGCGCACGACGACGGTCGCTGGTCGCTGCAGTCC
GAGGCGCACCGGCGCTACTTCGGCGGCACCGAGGACCGCCTGTCCTGCTTCGCGCAGACGGTGT
CCCCCGCCGAGAAGTGGAGCGTGCACATCGCCATGCACCCTCAGGTCAACATCTACAGCGTCAC
CCGTAAGCGCTACGCGCACCTGAGCGCGCGGCCGGCCGACGAGATCGCCGTGGACCGCGACGTG
CCCTGGGGCGTCGACTCGCTCATCACCCTCGCCTTCCAGGACCAGCGCTACAGCGTGCAGACCG
CCGACCACCGCTTCCTGCGCCACGACGGGCGCLCTGGTGGCGCGCCCCGAGCCGGCCACTGGCTA
CACGCTGGAGTTCCGCTCCGGCAAGGTGGCCTTCCGCGACTGCGAGGGCCGTTACCTGGCGCCG
TCGGGGCCCAGCGGCACGCTCAAGGCGGGCAAGGCCACCAAGGTGGGCAAGGACGAGCTCTTTG
CTCTGGAGCAGAGCTGCGCCCAGGTCGTGCTGCAGGCGGCCAACGAGAGGAACGTGTCCACGLCG
CCAGGGTATGGACCTGTCTGCCAATCAGGACGAGGAGACCGACCAGGAGACCTTCCAGCTGGAG
ATCGACCGCGACACCAAAAAGTGTGCCTTCCGTACCCACACGGGCAAGTACTGGACGCTGACGG
CCACCGGGGGCGTGCAGTCCACCGCCTCCAGCAAGAATGCCAGCTGCTACTTTGACATCGAGTG
GCGTGACCGGCGCATCACACTGAGGGCGTCCAATGGCAAGTTTGTGACCTCCAAGAAGAATGGG
CAGCTGGCCGCCTCGGTGGAGACAGCAGGGGACTCAGAGCTCTTCCTCATGAAGCTCATCAACC
GCCCCATCATCGTGTTCCGCGGGGAGCATGGCTTCATCGGCTGCCGCAAGGTCACGGGCACCCT
GGACGCCAACCGCTCCAGCTATGACGTCTTCCAGCTGGAGTTCAACGATGGCGCCTACAACATC
AAAGACTCCACAGGCAAATACTGGACGGTGGGCAGTGACTCCGTGGTCACCAGCAGCGGCGACA
CTCCTGTGGACTTCTTCTTCGAGTTCTGCGACTATAACAAGGTGGCCATCAAGGTGGGCGGGCG
CTACCTGAAGGGCGACCACGCAGGCGTCCTGAAGGCCTCGGCGGAAACCGTGGACCCCGCCTCG
CTCTGGGAGTACTAGGGCCGGCCCGTCCTTCCCCGCCCCTGCCCACATGGCGGCTCCTGCCAAC
CCTCCCTGCTAACCACTTCTCCGCCAGGTGGGCTCCAGGGCGGGAGGCAAGCCCCCTTGCCTTT
CAAACTGGAAACCCCAGAGAAAACGGTGCCCCCACCTGTCGCCCCTATGGACTCCCCACTCTCC
CCTCCGCCCGGGTTCCCTACTCCCCTCGGGTCAGCGGCTGCGGCCTGGCCCTGGGAGGGATTTC
AGATGCCCCTGCCCTCTTGTCTGCCACGGGGCGAGTCTGGCACCTCTTTCTTCTGACCTCAGAC
GGCTCTGAGAATTCCCGGGTCGACTCGAGCGGCCGCATCGTGACTGACTGACGATCTGCCTCGC
GCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGT
CTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTC
GGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGTATAATTCTTGAAGACGAAAGGG
CCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGT
GGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATA
TGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTAT
GAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTT
GCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTT
ACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCC
AATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAA
GAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAG
AAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGA
TAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTG
CACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATAC
CAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAAC
TGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTT
GCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCG
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GTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGT
AGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATA
GGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTG
ATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGAC
CAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGA
TCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTAC
CAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAG
CAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAAC
TCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCG
ATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGG
CTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATAC
CTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGG
TAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCT
TTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGG
GGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGC
CTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTT
TGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAA
GCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATAA
ATTCCGACACCATCGAATGGTGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAG
TCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTGTC
TCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAA
AAGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGE
CAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATT
GTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAAC
GAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCT
GATCATTAACTATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTT
CCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAG
ACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGC
GGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTCGC
AATCAAATTCAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAA
CCATGCAAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGATGGC
GCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGTG
GGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTTAACCACCATCAAACAGGATT
TTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAA
GGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGCAA
ACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGG
AAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTT
TACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGG
AAACAGCTATGACCATGATTACGGATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAA
CCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGC
GAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTG
CCTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGA
TACTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCAACGTA
ACCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGC
TCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAATTATTTTTGATGGCGT
TGGAATT
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Fascin1 Knockdown Plasmid (designed against rat mRNA)

Purchased from Vectorbuilder. ID#VB181031-1197kmw

T3 promoter
SphI (93)
(Iac operator]| /
lac promoter
(CAP binding site)

(7937) AfIII-PCI—__ =

Nrul* (609)

NotI (520)
EcoNI (542)
_ Mfel (961)

RSV promoter /7 .y
5'LTR “’Uncg "Iy,
teg)

BbvCI (1196)

\  KflI - PpuMI (1706)
Nhel (1757)
<~ BmtI (1801)

| (cePT/CTS

'd Ydwy k“““‘--: e
Ampp =
PR

Ndel (2105)

——— PaeR7I - XhoI (2199)
[ EcoRI (2231)
~ XcmlI (2279)

8347 bp

c
o
o
$T)
pLV Fascinl Knockdown %‘
g
aa]
£
o

~ 1210W0

= BIpI (2587)
Ascl (2596)

T7 promoter|

(5468) AvrIl
(5421) Sfil

[\ PfIFI - Tth111I (3615)
|\ BsiWI (3629)

/ / \ | RsrII (36389)

(4449) PfIMI / / BStEII (3707)

(4202) KpnI \
(4198) Acc65I Csil - SexAI* (4140)

AATGTAGTCTTATGCAATACTCTTGTAGTCTTGCAACATGGTAACGATGAGTTAGCAACATGCC
TTACAAGGAGAGAAAAAGCACCGTGCATGCCGATTGGTGGAAGTAAGGTGGTACGATCGTGCCT
TATTAGGAAGGCAACAGACGGGTCTGACATGGATTGGACGAACCACTGAATTGCCGCATTGCAG
AGATATTGTATTTAAGTGCCTAGCTCGATACATAAACGGGTCTCTCTGGTTAGACCAGATCTGA
GCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAG
TGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTT
TTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTTGAAAGCGAAAGGGAAAC
CAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACGGCAAGAGGCGAGGGGLG
GCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTAGAAGGAGAGAGATGGGTGCGAG
AGCGTCAGTATTAAGCGGGGGAGAATTAGATCGCGATGGGAAAAAATTCGGTTAAGGCCAGGGG
GAAAGAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGT
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TAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCC
CTTCAGACAGGATCAGAAGAACTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGC
ATCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAA
AAGTAAGACCACCGCACAGCAAGCGGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGA
CAATTGGAGAAGTGAATTATATAAATATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCC
ACCAAGGCAAAGAGAAGAGTGGTGCAGAGAGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCC
TTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTACAGGC
CAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAA
CAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGG
AAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAACTCATTTGCAC
CACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGATTTGGAATCACACG
ACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCTTAATACACTCCTTAATTGAAG
AATCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAATTAGATAAATGGGCAAGTTT
GTGGAATTGGTTTAACATAACAAATTGGCTGTGGTATATAAAATTATTCATAATGATAGTAGGA
GGCTTGGTAGGTTTAAGAATAGTTTTTGCTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGAT
ATTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCGACAGGCCCGAAGGAAT
AGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGGATCTCGACGG
TATCGCTAGCTTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGA
CATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATTTT
ACTAGTGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAG
AGATAATTGGAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGTGACGTAGAAA
GTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTT
ACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCG
GAGTCAACTCTGAGCCTTATTTCTCGAGAAATAAGGCTCAGAGTTGACTTTTTTGAATTCCAAC
TTTGTATAGAAAAGTTGGGGTTGCGCCTTTTCCAAGGCAGCCCTGGGTTTGCGCAGGGACGCGG
CTGCTCTGGGCGTGGTTCCGGGAAACGCAGCGGCGCCGACCCTGGGTCTCGCACATTCTTCACG
TCCGTTCGCAGCGTCACCCGGATCTTCGCCGCTACCCTTGTGGGCCCCCCGGCGACGCTTCCTG
CTCCGCCCCTAAGTCGGGAAGGTTCCTTGCGGTTCGCGGCGTGCCGGACGTGACAAACGGAAGC
CGCACGTCTCACTAGTACCCTCGCAGACGGACAGCGCCAGGGAGCAATGGCAGCGCGCCGACCG
CGATGGGCTGTGGCCAATAGCGGCTGCTCAGCAGGGCGCGCCGAGAGCAGCGGCLCGGGAAGGGG
CGGTGCGGGAGGCGGGGETGTGGEGECGEETAGTGTGGGCCCTGTTCCTGCCCGCGCGGTGTTCCGC
ATTCTGCAAGCCTCCGGAGCGCACGTCGGCAGTCGGCTCCCTCGTTGACCGAATCACCGACCTC
TCTCCCCAGGCAAGTTTGTACAAAAAAGCAGGCTGCCACCATGGTGAGCAAGGGCGAGGAGCTG
TTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCG
TGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCAC
CGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTC
AGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACG
TCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTT
CGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAAC
ATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGC
AGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCT
CGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCAC
TACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGC
TGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGGGCTCCGGAGA
GGGCAGGGGAAGTCTTCTAACATGCGGGGACGTGGAGGAAAATCCCGGCCCCATGACCGAGTAC
AAGCCCACGGTGCGCCTCGCCACCCGCGACGACGTCCCCAGGGCCGTACGCACCCTCGCCGLCG
CGTTCGCCGACTACCCCGCCACGCGCCACACCGTCGATCCGGACCGCCACATCGAGCGGGTCAC
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CGAGCTGCAAGAACTCTTCCTCACGCGCGTCGGGCTCGACATCGGCAAGGTGTGGGTCGCGGAC
GACGGCGCCGCGGTGGCGGETCTGGACCACGCCGGAGAGCGTCGAAGCGGGGGLEGGETGTTCGCCG
AGATCGGCCCGCGCATGGCCGAGTTGAGCGGTTCCCGGCTGGCCGCGCAGCAACAGATGGAAGG
CCTCCTGGCGCCGCACCGGCCCAAGGAGCCCGCGTGGTTCCTGGCCACCGTCGGCGTCTCGCCC
GACCACCAGGGCAAGGGTCTGGGCAGCGCCGTCGTGCTCCCCGGAGTGGAGGCGGCCGAGLCGLG
CCGGGGTGCCCGCCTTCCTGGAGACCTCCGCGCCCCGCAACCTCCCCTTCTACGAGCGGCTCGG
CTTCACCGTCACCGCCGACGTCGAGGTGCCCGAAGGACCGCGCACCTGGTGCATGACCCGCAAG
CCCGGTGCCTGAACCCAGCTTTCTTGTACAAAGTGGTGGTACCCGATAATCAACCTCTGGATTA
CAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATAC
GCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGT
ATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGT
GTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTT
TCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCC
GCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGAC
GTCCTTTCCATGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTAC
GTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTC
TTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCATCG
GCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTTAAAAGAAAAGGGGG
GACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATCTGCTTTTTGCTTGTACTGGGTCTCT
CTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCT
CAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACT
AGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTAGTAGTTCATGTCATCT
TATTATTCAGTATTTATAACTTGCAAAGAAATGAATATCAGAGAGTGAGAGGAACTTGTTTATT
GCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTT
CACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGCTCTAGCT
ATCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCLCCC
ATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCA
GAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGGACGTACCCAATTCGCCCTATAGTGAGTCGT
ATTACGCGCGCTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCA
ACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACC
GATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGGACGCGCCCTGTAGCGGCGCAT
TAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGLC
CGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTA
AATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTG
ATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTT
GGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCG
GTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGA
TTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATTTAGGTGGCACTTTT
CGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGC
TCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCA
ACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCA
GAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAAC
TGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAG
CACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTC
GGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATC
TTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGC
GGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATG
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GGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACG
AGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACT
ACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCA
CTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTG
GGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTA
CACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCA
CTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC
TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCC
TTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGA
GATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGG
TTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCA
GATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCA
CCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGT
GTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGG
GGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGT
GAGCTATGAGAAAGCGCCACGCTTCCCGAAGAGAGAAAGGCGGACAGGTATCCGGTAAGCGGCA
GGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCC
TGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGC
CTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTC
ACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGC
TGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAG
CGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACA
GGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTA
GGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAA
CAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCGCGCAATTAACCCTCACTAAA
GGGAACAAAAGCTGGAGCTGCAAGCTT
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Fascin1 Mammalian Overexpression Plasmid:

Purchased from Vectorbuilder ID# VB190307-1132dnt

SphI (93)
(lac operator| /
lac promoter|. \ ’

[CAP binding site)
(9859) Pcil -
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T7 promoter -
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(6715) Bsu36I
(6686) Csil - SexAT*

. Ko,
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(6511) BsmBI - Esp3I
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SGFP FaC‘o" o
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& nce!

(6253) BStEIL ——~ Grp cy cMV ernlha
(6235) RsrII 6000 p.iomie__'»»»»“‘.
2 < I_ I

e

(6175) BsiwI /
(6168) Pasl
(6097) BmgBI =

‘MluI (4716)

AATGTAGTCTTATGCAATACTCTTGTAGTCTTGCAACATGGTAACGATGAGTTAGCAACATGCC
TTACAAGGAGAGAAAAAGCACCGTGCATGCCGATTGGTGGAAGTAAGGTGGTACGATCGTGCCT
TATTAGGAAGGCAACAGACGGGTCTGACATGGATTGGACGAACCACTGAATTGCCGCATTGCAG
AGATATTGTATTTAAGTGCCTAGCTCGATACATAAACGGGTCTCTCTGGTTAGACCAGATCTGA
GCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAG
TGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTT
TTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTTGAAAGCGAAAGGGAAAC
CAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACGGCAAGAGGCGAGGGGLG
GCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTAGAAGGAGAGAGATGGGTGCGAG
AGCGTCAGTATTAAGCGGGGGAGAATTAGATCGCGATGGGAAAAAATTCGGTTAAGGCCAGGGG
GAAAGAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGT
TAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCC
CTTCAGACAGGATCAGAAGAACTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGC
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ATCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAA
AAGTAAGACCACCGCACAGCAAGCGGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGA
CAATTGGAGAAGTGAATTATATAAATATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCC
ACCAAGGCAAAGAGAAGAGTGGTGCAGAGAGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCC
TTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTACAGGC
CAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAA
CAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGG
AAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAACTCATTTGCAC
CACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGATTTGGAATCACACG
ACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCTTAATACACTCCTTAATTGAAG
AATCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAATTAGATAAATGGGCAAGTTT
GTGGAATTGGTTTAACATAACAAATTGGCTGTGGTATATAAAATTATTCATAATGATAGTAGGA
GGCTTGGTAGGTTTAAGAATAGTTTTTGCTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGAT
ATTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCGACAGGCCCGAAGGAAT
AGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGGATCTCGACGG
TATCGCTAGCTTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGA
CATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATTTT
ACTAGTGATTATCGGATCAACTTTGTATAGAAAAGTTGTAGTTATTAATAGTAATCAATTACGG
GGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCC
TGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACG
CCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAG
TACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGC
CTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTA
GTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTG
ACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAA
TCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGT
GTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATCCAAGTTTGTACAA
AAAAGCAGGCTGCCACCATGACAGCCAACGGAACAGCTGAGGCCGTGCAGATCCAGTTCGGCCT
GATCAACTGCGGCAACAAGTACCTGACAGCCGAGGCCTTCGGATTCAAAGTGAACGCCTCTGCC
AGCAGCCTGAAGAAGAAGCAGATCTGGACCCTGGAACAGCCTCCTGACGAAGCCGGATCTGCTG
CCGTGTGTCTGAGAAGCCACCTGGGAAGATACCTGGCCGCCGACAAGGACGGAAACGTGACATG
CGAGAGAGAGGTGCCAGGACCTGACTGCAGATTCCTGATCGTGGCCCACGACGACGGAAGATGG
TCCCTGCAGTCTGAGGCCCACAGAAGATACTTCGGCGGCACCGAGGACAGGCTGTCTTGTTTCG
CTCAGACCGTGTCTCCCGCCGAGAAGTGGAGTGTGCATATCGCCATGCATCCCCAAGTGAACAT
CTACAGCGTGACCAGAAAGAGATACGCCCACCTGTCTGCCAGACCTGCCGATGAGATTGCCGTG
GACAGAGATGTGCCTTGGGGCGTCGACTCCCTGATCACACTGGCTTTTCAGGACCAGAGGTACA
GCGTGCAGACCGCCGACCACAGATTTCTGAGGCACGATGGAAGGCTGGTGGCCAGACCAGAACC
TGCCACAGGCTACACCCTGGAATTCAGATCTGGCAAGGTGGCCTTCAGGGACTGCGAGGGGAGA
TATCTGGCTCCTTCTGGACCTAGCGGCACACTGAAGGCCGGCAAGGCTACCAAAGTGGGCAAAG
ACGAGCTGTTCGCCCTCGAGCAGTCTTGTGCTCAGGTTGTGCTGCAGGCCGCCAACGAGAGAAA
CGTGTCCACCAGACAAGGCATGGACCTGAGCGCCAACCAGGACGAGGAAACCGACCAAGAGACA
TTCCAGCTCGAGATCGACAGGGACACCAAGAAGTGCGCCTTCAGAACCCACACCGGCAAGTACT
GGACACTGACAGCTACAGGCGGCGTGCAGTCTACCGCCTCTAGCAAGAACGCCAGCTGCTACTT
CGACATCGAGTGGCGGGACAGAAGGATCACCCTGAGAGCCAGCAACGGCAAGTTCGTGACCTCC
AAGAAGAACGGACAGCTGGCCGCCTCTGTGGAAACAGCCGGCGATTCTGAGCTGTTCCTGATGA
AGCTGATCAACAGGCCCATCATCGTGTTCAGGGGCGAGCACGGCTTCATCGGCTGCAGAAAAGT
GACAGGCACCCTGGACGCCAACAGGTCCTCTTACGATGTGTTTCAGCTCGAGTTCAACGACGGC
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GCCTACAACATCAAGGACAGCACAGGGAAGTATTGGACCGTGGGCTCTGACAGCGCCGTGACAT
CTTCTGGCGATACCCCTGTGGATTTCTTCTTCGAATTCTGCGACTACAACAAGGTCGCCATCAA
AGTCGGCGGCAGATACCTGAAGGGCGATCATGCTGGCGTGCTGAAGGCTTCTGCTGAGACAGTG
GATCCTGCCAGCCTGTGGGAGTACTGATGAACCCAGCTTTCTTGTACAAAGTGGTGATAATCGA
ATTCCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGT
TGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGT
ATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGC
CCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGG
CATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCG
GAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATT
CCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTGTTGCCACCTGGAT
TCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGC
GGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCT
CCCTTTGGGCCGCCTCCCCGCATCGGGAATTCCCGCGGTTCGAACGCGTTGACATTGATTATTG
ACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCG
TTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTC
AATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAG
TATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTA
TTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTT
TCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAG
TACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACG
TCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGC
CCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCTGG
CTAACTAGAGAACCCACTGCGCCACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGT
GCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGC
GAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCG
TGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGA
CCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACC
ATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCC
TGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAA
GCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATC
AAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACC
AGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCA
GTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACC
GCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGGGCTCCGGAGAGGGCAGGGGAAGTC
TTCTAACATGCGGGGACGTGGAGGAAAATCCCGGCCCCATGACCGAGTACAAGCCCACGGTGCG
CCTCGCCACCCGCGACGACGTCCCCAGGGCCGTACGCACCCTCGCCGCCGCGTTCGCCGACTAC
CCCGCCACGCGCCACACCGTCGATCCGGACCGCCACATCGAGCGGGTCACCGAGCTGCAAGAAC
TCTTCCTCACGCGCGTCGGGCTCGACATCGGCAAGGTGTGGGTCGCGGACGACGGCGCCGLCGGT
GGCGGTCTGGACCACGCCGGAGAGCGTCGAAGCGGGGEGCGETGTTCGCCGAGATCGGCCCGLGL
ATGGCCGAGTTGAGCGGTTCCCGGCTGGCCGCGCAGCAACAGATGGAAGGCCTCCTGGCGCLCGL
ACCGGCCCAAGGAGCCCGCGTGGTTCCTGGCCACCGTCGGCGTCTCGCCCGACCACCAGGGLCAA
GGGTCTGGGCAGCGCCGTCGTGCTCCCCGGAGTGGAGGCGGCCGAGCGLCGLCCGGEGGETGCCCGLC
TTCCTGGAGACCTCCGCGCCCCGCAACCTCCCCTTCTACGAGCGGCTCGGCTTCACCGTCACCG
CCGACGTCGAGGTGCCCGAAGGACCGCGCACCTGGTGCATGACCCGCAAGCCCGGTGCCTGAGG
TACCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTTAAAAGAAAAGGG
GGGACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATCTGCTTTTTGCTTGTACTGGGTCT
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CTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGC
CTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAA
CTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTAGTAGTTCATGTCAT
CTTATTATTCAGTATTTATAACTTGCAAAGAAATGAATATCAGAGAGTGAGAGGAACTTGTTTA
TTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTT
TTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGCTCTAG
CTATCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCC
CCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTC
CAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGGACGTACCCAATTCGCCCTATAGTGAGTC
GTATTACGCGCGCTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACC
CAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCA
CCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGGACGCGCCCTGTAGCGGCGC
ATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCG
CCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTC
TAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACT
TGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACG
TTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCT
CGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCT
GATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATTTAGGTGGCACTT
TTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCC
GCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATT
CAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACC
CAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGA
ACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATG
AGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAAC
TCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCA
TCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACT
GCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACA
TGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGA
CGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAA
CTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGAC
CACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCG
TGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATC
TACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCT
CACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAA
ACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC
CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTT
GAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGT
GGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCG
CAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAG
CACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTC
GTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACG
GGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGC
GTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGAGAGAAAGGCGGACAGGTATCCGGTAAGCGG
CAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGT
CCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGA
GCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGC
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TCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGA
GCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAG
AGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGA
CAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCAT
TAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGAT
AACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCGCGCAATTAACCCTCACTA
AAGGGAACAAAAGCTGGAGCTGCAAGCTT

FascinN-CfaN Plasmid:

Purchased from Vectorbuilder. ID# VB181221-1147qzj
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(3659) PFIFI - Tth111I
(3653) BsaAl Pcil (3404)
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TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTT
TAACTTTAAGAAGGAGATATACCATGACCGCAAATGGCACCGCAGAAGCAGTTCAGATTCAGTT
TGGTCTGATTAATTGCGGCAACAAATATCTGACAGCAGAAGCCTTTGGCTTTAAAGTTAATGCA
AGCGCAAGCAGCCTGAAAAAAAAGCAGATTTGGACCCTGGAACAGCCTCCGGATGAAGCAGGTA
GCGCAGCAGTTTGTCTGCGTAGCCATCTGGGTCGTTATCTGGCAGCCGATAAAGATGGTAATGT
TACCTGTGAACGTGAAGTTCCGGGTCCTGATTGTCGTTTTCTGATTGTTGCACATGATGATGGT
CGTTGGAGCCTGCAGAGCGAAGCACATCGTCGTTATTTTGGTGGCACCGAAGATCGTCTGAGCT
GTTTTGCACAGACCGTTAGTCCGGCAGAAAAATGGTCAGTTCATATTGCAATGCATCCGCAGGT
TAACATTTATAGCGTTACCCGTAAACGTTATGCACATCTGAGCGCACGTCCTGCAGATGAAATT
GCAGTTGATCGTGATGTTCCGTGGGGTGTTGATAGCCTGATTACCCTGGCATTTCAGGATCAGC
GTTATAGCGTGCAGACCGCAGATCACCGTTTTCTGCGTCATGATGGCCGTCTGGTTGCACGTCC
GGAACCGGCAACCGGTTATACACTGGAATTTCGTAGCGGTAAAGTTGCCTTTCGTGATTGTGAA
GGACGCTATCTGGCACCGTCAGGTCCGAGCGGCACCCTGAAAGCAGGTAAAGCAACCAAAGTTG
GTAAAGATGAACTGTTTGCACTGGAACAGAGCTGTCTGAGCTATGATACCGAAATTCTGACCGT
GGAATATGGCTTTCTGCCGATTGGTAAAATTGTGGAAGAACGTATTGAATGCACCGTGTATACC
GTGGATAAAAACGGTTTTGTTTATACCCAGCCGATTGCACAGTGGCATAATCGTGGTGAACAAG
AAGTTTTTGAGTACTGTCTGGAAGATGGTAGCATTATTCGTGCGACCAAAGATCACAAATTTAT
GACCACCGATGGTCAGATGCTGCCGATCGATGAAATTTTTGAACGTGGTCTGGATCTGAAACAG
GTTGATGGTCTGCCTGGTAGCGGTCATCATCATCACCATCACTAAGGATCCGCTGCTAACAAAG
CCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGC
CTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATATCCCGCAAGA
GGCCCGGCAGTACCGGCATAACCAAGCCTATGCCTACAGCATCCAGGGTGACGGTGCCGAGGAT
GACGATGAGCGCATTGTTAGATTTCATACACGGTGCCTGACTGCGTTAGCAATTTAACTGTGAT
AAACTACCGCATTAAAGCTTATCGATGATAAGCTGTCAAACATGAGAATTCTTGAAGACGAAAG
GGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAG
GTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAA
TATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGT
ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTT
TTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGG
TTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTT
CCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGC
AAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCAC
AGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGT
GATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTT
TGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCAT
ACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTA
ACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAG
TTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGC
CGGTGAGCGTGGGTCACGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATC
GTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGA
TAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGAT
TGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATG
ACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAG
GATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCT
ACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTC
AGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGA
ACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGG
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CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCG
GGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGAT
ACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCC
GGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTAT
CTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAG
GGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTG
GCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCC
TTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGG
AAGCGGAAGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCAA
TGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATC
GCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGG
GCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTC
AGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTC
GTGAAGCGATTCACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGC
GTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTG
ATGCCTCCGTGTAAGGGGGATTTCTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGAT
GCTCACGATACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAA
CTGGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTTA
ATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATAAT
GGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTCAT
GTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCGGTG
ATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCAC
GATCATGCGCACCCGTGGCCAGGACCCAACGCTGCCCGAGATGCGCLCGLCGTGCGGCTGCTGGAG
ATGGCGGACGCGATGGATATGTTCTGCCAAGGGTTGGTTTGCGCATTCACAGTTCTCCGCAAGA
ATTGATTGGCTCCAATTCTTGGAGTGGTGAATCCGTTAGCGAGGTGCCGCCGGCTTCCATTCAG
GTCGAGGTGGCCCGGCTCCATGCACCGCGACGCAACGCGGGGAGGCAGACAAGGTATAGGGCGG
CGCCTACAATCCATGCCAACCCGTTCCATGTGCTCGCCGAGGCGGCATAAATCGCCGTGACGAT
CAGCGGTCCAATGATCGAAGTTAGGCTGGTAAGAGCCGCGAGCGATCCTTGAAGCTGTCCCTGA
TGGTCGTCATCTACCTGCCTGGACAGCATGGCCTGCAACGCGGGCATCCCGATGCCGCCGGAAG
CGAGAAGAATCATAATGGGGAAGGCCATCCAGCCTCGCGTCGCGAACGCCAGCAAGACGTAGCC
CAGCGCGTCGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAAACGTTTGGTGGCGGGA
CCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCAAGCGACAGGCCGATCA
TCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAGCGCTGCCGGCACCTGTCC
TACGAGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAGTCATGCCCCGCGCCCAC
CGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGAGATCCCGGTGCCTAATGAG
TGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTG
CCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGT
GGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAG
AGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTA
ACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACC
AACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACC
AGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGG
CACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCA
GCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGG
TGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATAC
TGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTC
CACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCG
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AGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCA
CGCTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAG
GGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACG
CGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAA
CGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGAC
ATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCAT
GCCATACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGC
GACTCCTGCATTAGGAAGCAGCCCAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGA
ATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCAC
GCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGATGTCGGLCG
ATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGA
GGATCGAGATCTCGATCCCGCGAAAT
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CfaC-FascinC Plasmid:

Purchased from Vectorbuilder. ID: VB181221-1149zrp

(6448) BglII T7 promoter
) EJn Xbal (47)

(6259) SphI \ | Nsil (52)
(6194) EcoNI \ |\ Dralll (111)
\ \ | Mfel (213)

(5726) Mlul

(5544) BstEII
(5523) Apal
(5519) PsSpOMI — .

BamHI (519)
BlpI (371)

(5315) BssHII.
~ HindIII (1208)
—~— BspDI - ClaI (1215)
_Zral (1316)
— AatIl (1318)

(5224) Hpal )

(4885) PshAI — CfaC-FascinC

6467 bp

} T Scal (1756)
(4658) Eagl ~
B T Pvul (1868)
(4543) BfuAI - BspMI

(4244) BsmI~ A
(4173) BmeT110I
(4172) Aval - BsoBI /

(4145) FspAIL

AhdI (2237)

(4017) BpulOI

AlwNI (2716)

(3380) PfIFI- Tth111I
(3374) BsaAl /
(3355) Bstz171  AccI (3354)

Pcil (3125)

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTT
TAACTTTAAGAAGGAGATATACCATGCATCACCATCACCATCACATGGTGAAAATCATTAGCCG
TAAAAGCCTGGGCACCCAGAATGTTTATGATATTGGTGTTGGTGAACCGCACAACTTTCTGCTG
AAAAATGGTCTGGTTGCAAGCAATTGTCAGGTTGTTCTGCAGGCAGCAAATGAACGTAATGTTA
GCACCCGTCAAGGTATGGATCTGAGCGCAAATCAGGATGAAGAAACCGATCAAGAAACCTTTCA
GCTGGAAATTGATCGCGATACCAAAAAATGTGCATTTCGTACCCATACCGGTAAATATTGGACC
CTGACCGCAACCGGTGGTGTTCAGAGCACCGCAAGCAGCAAAAATGCAAGCTGTTATTTTGATA
TCGAATGGCGTGATCGTCGTATTACCCTGCGTGCCAGCAATGGCAAATTTGTTACCAGCAAARAA
AAACGGTCAGCTGGCAGCAAGCGTTGAAACCGCAGGCGATAGCGAACTGTTTCTGATGAAACTG
ATTAACCGTCCGATTATTGTGTTTCGTGGTGAACATGGTTTTATTGGTTGCCGTAAAGTTACCG
GTACACTGGATGCAAATCGTAGCAGCTATGATGTTTTTCAGCTTGAGTTTAACGATGGTGCCTA
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CAACATTAAAGATAGCACAGGCAAATACTGGACCGTTGGTAGCGATAGCGCAGTGACCAGCAGC
GGTGATACACCGGTTGATTTTTTCTTTGAATTCTGCGACTATAACAAAGTGGCCATTAAAGTTG
GTGGTCGCTATCTGAAAGGTGATCATGCCGGTGTTCTGAAAGCAAGCGCAGAAACCGTTGATCC
GGCAAGCCTGTGGGAATATTAAGGATCCGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCT
GCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTT
TTTTGCTGAAAGGAGGAACTATATCCGGATATCCCGCAAGAGGCCCGGCAGTACCGGCATAACC
AAGCCTATGCCTACAGCATCCAGGGTGACGGTGCCGAGGATGACGATGAGCGCATTGTTAGATT
TCATACACGGTGCCTGACTGCGTTAGCAATTTAACTGTGATAAACTACCGCATTAAAGCTTATC
GATGATAAGCTGTCAAACATGAGAATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTT
ATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTG
CGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAAT
AACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGT
CGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTG
AAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACA
GCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGT
TCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATA
CACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCA
TGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACT
TCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTA
ACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCA
CGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGC
TTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCG
GCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCACGCGGTA
TCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAG
TCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCAT
TGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAAT
TTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTT
TTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTT
CTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGG
ATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATAC
TGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATAC
CTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGT
TGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCAC
ACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAA
AGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAG
GAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCG
CCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAAC
GCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTC
CTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCG
CCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGGGCGCCTGATGCGG
TATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCAATGGTGCACTCTCAGTACAATCTG
CTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTG
CGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGC
TTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCG
AAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGATTCACAGATGTCTG
CCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCTGATAAA
GCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGGGGGATTT
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CTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCACGATACGGGTTACTGATG
ATGAACATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGGCGGGA
CCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAG
GGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATAATGGTGCAGGGCGCTGACTTCCGCG
TTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGT
TTTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCGGTGATTCATTCTGCTAACCAGTAAGG
CAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCACGATCATGCGCACCCGTGGCCAGG
ACCCAACGCTGCCCGAGATGCGCCGCGTGCGGCTGCTGGAGATGGCGGACGCGATGGATATGTT
CTGCCAAGGGTTGGTTTGCGCATTCACAGTTCTCCGCAAGAATTGATTGGCTCCAATTCTTGGA
GTGGTGAATCCGTTAGCGAGGTGCCGCCGGCTTCCATTCAGGTCGAGGTGGCCCGGCTCCATGC
ACCGCGACGCAACGCGGGGAGGCAGACAAGGTATAGGGCGGCGCCTACAATCCATGCCAACCCG
TTCCATGTGCTCGCCGAGGCGGCATAAATCGCCGTGACGATCAGCGGTCCAATGATCGAAGTTA
GGCTGGTAAGAGCCGCGAGCGATCCTTGAAGCTGTCCCTGATGGTCGTCATCTACCTGCCTGGA
CAGCATGGCCTGCAACGCGGGCATCCCGATGCCGCCGGAAGCGAGAAGAATCATAATGGGGAAG
GCCATCCAGCCTCGCGTCGCGAACGCCAGCAAGACGTAGCCCAGCGCGTCGGCCGCCATGLCCGG
CGATAATGGCCTGCTTCTCGCCGAAACGTTTGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAG
GGCGTGCAAGATTCCGAATACCGCAAGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGG
TCCTCGCCGAAAATGACCCAGAGCGCTGCCGGCACCTGTCCTACGAGTTGCATGATAAAGAAGA
CAGTCATAAGTGCGGCGACGATAGTCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAA
GGCTCTCAAGGGCATCGGTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTAATTGCG
TTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCC
AACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGA
CGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCT
GGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTG
TCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAA
TGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCC
CTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCC
GCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCG
AGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTC
CACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAG
ACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCAT
CCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTT
ACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCG
CGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGC
CAATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTC
CGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACG
CGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCA
CATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGCG
CCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCC
CAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGATGGCG
CCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCC
CGAAGTGGCGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCAACCGCACC
TGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGA
AAT
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Appendix B: Tandem mass tag pulldowns of Fascin1 in human brain cortex lysate
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