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A family of mem-models, including the mem-dashpots,
mem-springs, and most recently, mem-inerters, is emerging
as a new and powerful way of capturing complex nonlinear
behaviors of materials and systems under various types of
dynamic loads involving different frequency, amplitude, and
loading histories (e.g., hysteresis). Under the framework of
nonlinear state-space representation and hybrid dynamical
systems, mem-springs may be formulated to effectively rep-
resent an inherent degradation of material state. It is shown
in this study, for the first time, how the absement (time inte-
gral of strain /displacement), a signature state variable for a
mem-spring, can be connected with the damage variable, a
key quantity in continuum damage mechanics (CDM). The
generalized momentum (time integral of stress), on the other
hand, is shown to be efficient in modeling strain ratchet-
ing via the concept of mem-dashpot. It is also shown in this
study, for the first time, how two formulations of the memca-
pacitive system models (for mem-springs) are special cases
of the Preisach model.

Keywords: Mem-models, absement, generalized momen-
tum, nonlinear state-space representation, hybrid dynami-
cal system, continuum damage mechanics, damage variable,
strain ratcheting, Wiechert model, classical Preisach model

1 INTRODUCTION

Classical theories treating viscoelasticity, viscoplasticity,
damage, and hysteresis modeling constantly call for a
continuous development to accommodate the require-
ments/opportunities of never-ending real-world challenges,
active engineering innovations, and greatly enhanced infor-
mation technology capabilities. In this study, classical the-
ories are identified and connected with an emerging new
family of models called “mem-models” that originated from



Jin-Song Pei et al.

bond graph theory, and has evolved to underpin hybrid dy-
namical system theory. Figs. 1 to 3 are snapshots demon-
strating modeling capabilities of mem-models that comple-
ment those of the existing models and are achieved in a com-
putationally efficient manner. For each of these sets of re-
sponses, we will show how existing concepts from different
fields can be connected to mem-models. These new connec-
tions will enrich mem-modeling development and applica-
tion and provoke a new appreciation of classical theories in
damage mechanics and hysteresis modeling. Specific defini-
tions of mem-dashpots and mem-springs will be introduced
as we proceed as a partial overview of mem-models; see
Pei et al (2015) for background material and general defi-
nitions. The relevant classical theories in damage mechan-
ics and hysteresis modeling will also be briefly reviewed for

clarity.

€D €D

(b) dissipative and symmetri-
cal responses in two directions
enabled by mem-spring mod-
eling

(a) cycle-to-cycle recovery in-
troduced by using absement-
based mem-spring modeling

Fig. 1: Modeling capabilities of a specific 1-D damage model in CDM
(a mem-spring model in fact) after being improved by using the hybrid
dynamical system view that is introduced to mem-spring modeling fol-
lowing Pei (2018). The model will be given in conjunction with Fig. §;
the inputs are o(¢t) = 0.3(1 — cos(6t)) and o(t) = 0.3sin(2¢) for
(a) and (b), respectively. Arrowheads in red, orange, green and blue (in
this order) are used for the orientation of the loops herein

1.1 Motivation for Mem-Modeling

Complex nonlinear dynamic behaviors/responses have been
studied for the purposes of modeling, simulation, monitor-
ing, and control. Linear and nonlinear state-space repre-
sentations are attractive given that they bridge the gap be-
tween data and model, and facilitate system identification
and control in a reduced-order modeling fashion. Nonethe-
less, the choice of state variables has been (and is) a chal-
lenge. Kalman (1967) pp. 135 states: “the state is the least
amount of information we need about past inputs to deter-
mine the output resulting from any future input”. Willems
(1972), pp. 325 states: “It is, however, impossible to deduce

0 10 20 0 10 20
E=¢€dteEm E=¢€qdtem

(a) softening memristor (b) hardening-softening mem-

ristor

Fig. 2: Fatigue softening and fatigue hardening-softening strain ratch-
eting responses efficiently simulated by using generalized momentum-
based mem-dashpot modeling. The models for the ratcheting strain €4
will be presented in conjunction with Fig. 11 (b) and (c)
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(a) An assembly whose param-
eters follow Table 4 Case 1

(b) An assembly whose param-
eters follow Table 4 Case 2

Fig. 3: Nonlinear periodic responses to sinusoidal input enabled by as-
semblies of a mem-spring and mem-dashpot that have the same creep
response to two different Wiechert models. These are snapshots ex-
tracted and rescaled from Fig. 18

a priori, in physical terms what will be the state. This in-
deed, is a very difficult problem even for relatively simple
systems, and it appears to be the cause for much of the reluc-
tance of introducing this concept in physics”. Analogously,
within the field of continuum constitutive theory, the ther-
modynamic state of a system is a full description of its in-
stantaneous condition which is identified by a set of state
variables. The set of state variables represent the minimum
information to define all thermodynamic properties of the
system.

The same may be said about mem-spring models that be-
long to the mem-model class. Not only is the choice of state
variables unclear, but also the required functional forms
defining both the state evolution and input-output mappings
are not precisely defined. Material stress-strain behaviors
and system load-displacement responses characterized by
the “origin-crossing” input-output feature (meaning that the
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input and output become zero simultaneously) under repeti-
tive loading and unloading conditions may be modeled effi-
ciently by mem-spring models.

Mem-springs are from a new family of state-space hys-
teresis models called “mem-models” introduced to engineer-
ing mechanics in Pei et al (2015, 2017); Pei (2018); Pei
et al (2020a,b); Wagg and Pei (2020). They are based on a
suite of new concepts for the memristor, memcapacitor, and
meminductor developed in electrical engineering originated
in Chua (1971), catching attention since Strukov et al (2008)
and being generalized in Di Ventra et al (2009). The publi-
cations on mem-dashpots, mem-springs, and mem-inerters
followed the lead of Oster and Auslander (1973); Jeltsema
(2012) when the memristor was first introduced to engineer-
ing mechanics.

Unlike mem-dashpot models, mem-spring models are
fundamentally new, and as such there are no well-
established existing examples for these models. Devising
a mem-spring model by defining the required functional
forms does not have general guidelines, which are the
focus of our pursuit. To construct mem-models, we have
tried using experimental data and secant quantities (Pei et al
(2020a)). This is one way of obtaining mem-spring mod-
els, which may work. However, it neither helps to explain
why or when it works, nor to predict situations when it does
not work. Another way we have tried is to overcome the
limitation of mem-spring models that are revealed by the
phenomenon to be modeled and then supplement the mod-
els with other theories/techniques, e.g., modify the original
definitions of the mem-models by following hybrid dynam-
ical system theory (Pei (2018)). In this study, we try a dif-
ferent approach. We start with some existing theories that
have no apparent connections to mem-models and arrive at
some specific forms of mem-spring models. This is a rigor-
ous but limited way of constructing mem-models; however,
the connections with established physical models provide
potentially better insights. This path was previously exer-
cised in Pei (2018), which examined creep and relaxation
responses in viscoelasticity.

We start with a simple 1-D damage model in CDM and
show that it is actually a mem-spring model. In addition,
we explain what absement could mean and also what the
CDM damage variable signifies physically from this mem-
model viewpoint. We then go further to improve a subset of
the 1-D damage models by using techniques developed for
mem-springs. We also examine a mem-spring model by us-
ing the definition of hyperelasticity, e.g., Houlsby and Puzrin
(2007), which is akin to augmenting the state description
of the material with a set of internal state variables, the so-
called internal state variable theory (ISV) of both kinematic
and kinetic types as enabled by the mem-models.

Next, we take the simplest mem-dashpot model called
a mechanical memristor to show its usefulness in model-

ing ratcheting strain and its potential in viscoplasticity. We
then turn to assemblies of one mem-spring and one mem-
dashpot. In a parametric study, we calibrate such a mem-
model assembly with a two-arm Wiechert model (Roylance
(2001)) in terms of one particular creep response, after
which we compare the two different models for both si-
nusoidal and consecutive positive loading responses. The
Wiechert model is a popular choice in viscoelasticity, mak-
ing such a connection useful.

Then, we examine a subset of the classical Preisach
models (Preisach (1935); Krasnosel’skii and Pokrovskii
(1989); Mayergoyz (2003)) that can be represented by mem-
models. We show, step by step, how an order-1 Preisach
model can be written as a mem-spring model by assigning
a proper state variable under the state-space representation.
We arrive at two forms of mem-models, one being exact and
the other approximate. Both of them are loading rate inde-
pendent. As the order of the Preisach response increases,
we need more state variables for the mem-models. This is
a constructive approach for devising mem-spring model ar-
chitectures.

Finally, we examine the generalized Duhem
model (Padthe et al (2008)) and point out its relation-
ship with the mem-models.

1.2 Motivation from Continuum Damage Mechanics and
Rheological Models

Eq. (1.6) in Kachanov (1986) gives the elastic strain of a
damaged material as € = %%, where @ is called “continu-
ity”, a positive monotonically decreasing function of time,
ie,® < 0and 1 > @ > 0. A simple form of the kinetic
equation in the case of uniaxial tension is given in Eq. (1.8)
in Kachanov (1986) as 22 = —A (Z)". Lemaitre (1996)
states: “... About fifteen years later D = (1 — @) received
the status of an internal state variable in the thermodynam-
ical sense: 0 < D < 1 (0 for the undamaged state and 1
for failure)”, where D is £ in this paper. The damage vari-
able is an abstract concept as it was created for modeling
purpose. This concept is typically introduced to represent
a phenomenological degradation in material response, often
without a precise physical definition.

An internal state variable is often not directly measur-
able making it harder to comprehend. In this study, we use
the mem-spring theory to quantitatively express the dam-
age variable by using absement, a concept essential in mem-
spring theory. When the exponent n = 1, the damage vari-
able depends on the absement only. When n # 1, the dam-
age variable rate depends on the absement rate. Even though
absement is not often used, it indeed is a kinematic quantity
that could be obtained from time integral of strain. Thus, we
demystify the concept of the damage variable. We make
this internal state variable more observable.



Jin-Song Pei et al.

Damage functions in CDM are nonlinear and gener-
ally irreversible. Mem-models are also fundamentally non-
linear, rate-dependent (but can be made rate-independent),
and can be made hysteretic. This versatility suggests to us
that mem-models may allow more versatile damage mech-
anisms, and overcome some current limitations of CDM,
e.g., nonlinear accumulation of damage and the effect of
mean stress in fatigue (see page 98 in Lemaitre (1996));
see Fig. 2. Mem-models offer an alternative framework for
CDM damage functions to improve, generalize, and evolve
in modeling both elasticity and plasticity with history de-
pendency. The hybrid dynamical system framework (men-
tioned in Fig. 1), secant modulus-based identification, and
dual input-output pairs are among new techniques/ways of
thinking that mem-models can bring to “classical” CDM as
described in Kachanov (1986); Lemaitre (1996).

Networks of mechanical elements (spring, dashpot, etc.)
have been used as rheological models, e.g., in viscoelastic-
ity, viscoplasticity and even extended to material damage
(e.g., Houlsby and Puzrin (2007)). As a source of nonlin-
earity and degradation, damage variables are treated as in-
ternal state variables separately from other state variables
that are kinematic quantities. In contrast, mem-dampers and
mem-springs individually are more powerful than their lin-
ear counterparts in modeling (Pei et al (2020a)). This hints at
a simpler network involving fewer parameters to be identi-
fied when introducing mem-models in a network. See Fig. 3
for richer responses that the smallest mem-model assembly
can bring about with the same number of parameters as its
linear counterpart (a Wiechert model in that case). Mathe-
matically, mem-dashpots and mem-springs can degenerate
into their linear counterparts.

1.3 Motivation from Hysteresis Modeling

Hysteresis modeling has a long and still active history,
see Morris (2011) for a review. Herein, we examine whether
mem-models can be useful for hysteresis modeling. There
are two types of hysteresis models: physics-based and phe-
nomenological. The latter is excellent for minor loop predic-
tion. There are several sub-types under phenomenological
models, for example, differential equation-based, hysteresis
operator-based, summation of elements-based. See Table 1.
Mem-models can be classified as belonging to the first two
sub-types: differential-equation-based models (e.g., Pei et al
(2017)) and as shown in this study, classical Preisach models
(which are hysteresis operator-based).

Not to be exhaustive, Table 2 lists some hysteresis
operator-based models, which are all classical Preisach
models. In particular, DEM, extended Masing, and Maxwell
slip models are equivalent, being a subset of the classical
Preisach model. As reviewed in Pei and Beck (2020), this
understanding comes from model equivalency, which was

initiated in Jayakumar (1987); Jayakumar and Beck (1988);
Beck and Jayakumar (1996), peaked in Lubarda et al (1993),
and promoted in Segalman and Starr (2004, 2008); Royston
(2008). We will show that mem-spring models can be for-
mulated into a subset of the classical Preisach models.

Table 1 uses four popular model classes for hysteresis to
examine the three sub-types under phenomenological rep-
resentation, where the importance of nonlinear state space
modeling can be seen; mem-models are naturally nonlinear
state space models.

Gorbet et al (1998) invokes the classical state-space rep-
resentation of Willems (1972) to show that the classical
Preisach model falls within the standard dynamical sys-
tem framework, legitimizing the representation using state
space. Since extended Masing and DEM are equivalent and
are a subset of the classical Preisach model, they follow
suit. We highlight the necessity of using differential alge-
braic equation (DAE) and hybrid system, as elaborated and
demonstrated in Pei and Beck (2020) to implement the hys-
teresis rules defining the extended Masing model. Note that
the Bouc-Wen model is not a subset of classical Preisach
models (Pei and Beck (2020)). The use of a summation of
elements starts with the well-known Kelvin and Maxwell
models assembled from spring and dashpot elements. DEM
and extended Masing have been presented by a summation
of stops or plays (Iwan (1966, 1967); Jayakumar (1987);
Jayakumar and Beck (1988); Beck and Jayakumar (1996)),
while the classical Preisach model is a summation of relay
hystrons (Krasnosel’skii and Pokrovskii (1989); Mayergoyz
(2003)).

1.4 Contributions and Structure of this Paper

An overarching goal of this work is to further the under-
standing of mem-modeling by building connections to clas-
sical theories, showing how mem-models either complement
or improve these existing theories, and reciprocally, how the
latter can inspire new development in mem-modeling.

In Section 2, we identify an existing simple 1-D CDM
model as a mem-spring model so that we can learn from the
choice of functional forms that mem-spring modeling has
been lacking. We quantify the relationship between the dam-
age variable in this CDM model and the state variable called
absement in mem-modeling (time integral of strain). For a
subset of this 1-D CDM model with n = 1, we improve it
by using mem-spring modeling techniques to produce new
or more desirable responses. We outline what a 3-D mem-
spring model would look like.

In Section 3, we point out the usefulness of another state
variable called generalized momentum in mem-modeling
(time integral of stress), in the context of modeling 1-D
ratcheting strain. We develop a mechanical memristor-based
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Table 1: Three sub-types for phenomenological hysteresis models. fwith a necessity of involving differential algebraic equation (DAE) and hybrid

system
Model Sub-Type of Phenomenological Representation
Class Nonlinear State-Space Classical Preisach Summation of Elements
Bouc-Wen Yes No No
Classical Preisach  Yes in Principle } Yes Yes

(Gorbet et al (1998); Pei et al (2017)
and this study)

(Krasnosel’skii  and  Pokrovskii
(1989); Mayergoyz (2003))

Extended Masing  Yes f Yes Yes
(Jayakumar (1987); Jayakumar and (Lubarda et al (1993)) (Jayakumar (1987); Jayakumar and
Beck (1988); Beck and Jayakumar Beck (1988); Beck and Jayakumar
(1996); Pei and Beck (2020)) (1996))
DEM Yes in Principle { Yes Yes
(Lubarda et al (1993)) Iwan (1966, 1967)
Table 2: Some hysteresis operator-based models
Model Name Selected Reference
1 Classical Preisach models Preisach (1935); Krasnosel’skii and Pokrovskii (1989); Mayergoyz (2003)
2 Play & stop Visintin (1994)
3 Generalized play & generalized stop ~ Krasnosel’skii and Pokrovskii (1989); Visintin (1994)
4 Prandtl-Ishlinskii model Visintin (1994)
5  Krasnosel’skii-Pokrovskii model Krasnosel’skii and Pokrovskii (1989)
6  Maxwell slip model Goldfarb and Celanovic (1996)

(Maxwell resistive capacitive model)
Distributed-element model (DEM)
8  Extended Masing model

B

Twan (1966, 1967)

Masing (1926); Fan (1968); Pyke (1979); Jayakumar (1987); Jayakumar and Beck (1988);

Beck and Jayakumar (1996)

model for this application. We compare a two-arm Wiechert
model with the smallest assembly of a mem-spring and a
mem-dashpot to exploit the richness of the mem-models’
dynamic responses, in relation to their linear counterparts.

In Section 4, we connect two forms of mem-spring mod-
els to a subset of classical Preisach models. Overall, even
though we make a connection between mem-springs and
the classical Preisach models, non-deteriorating hysteresis
model, we highlight the inherent “damaging”, or “degrad-
ing” properties that are built into the mem-models, which
we exploit for CDM and viscoelasticity.

2 MEM-SPRING MODELS AND CONTINUUM
DAMAGE MECHANICS

There is a connection between mem-spring models and the
damage function in continuum damage mechanics. Under-
standing and exploiting this connection will help advance
both mem-models and continuum damage mechanics.

2.1 Relationship of 1-D CDM Damage Model and
Memcapacitive System Model

An effort-controlled (i.e., force/stress-controlled) memca-
pacitive system model can be expressed as follows:

y(t) = £ (y(@®),r(t),) (D
z(t) = C(y(),r(®),)rt), ()

where y (t) is a state vector, r(t) is the restoring force/stress,
and z(t) is the displacement/strain. In this constitutive rela-
tion, the input is r(¢), while the output is z:(¢). In general, the
secant compliance function, C', depends on the states and in-
put. To arrive at specific functional forms for this model, we
examine a specific CDM model for hints.

Isolating the 1-D continuum damage mechanics (CDM)
model from Kachanov (1986) and casting it into the for-
mat for an effort-controlled memcapacitive system model,

we have the following:
. g n
£ (1 — 5) 3)

1
0 @)
E1-¢)
where A > 0 and n > 1 are material properties. In this con-
stitutive relation, the input r(t) is the stress o (t), while the
output x(t) is the “elastic-damage” strain € (t). The scalar
state variable y(¢) in Eq. (1) is the damage variable £(t),

state equations:

input-output equation:

state equation:

input-output equation: Ep =
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7

o ; o
@A =05 n = 1,and (b) A = 05, n = 1, and
E =1witho(t) = 03(1 - E = 1witho(t) = 0.3(1 —
cos(2t)) cos(6t))

P — =
(@A =077, n=2ad (b)A = 0.775, n = 2, and
E =1witho(t) = 03(1 - E = 1witho(t) = 0.3(1 —
cos(2t)) cos(6t))

/

e e
@A=1ln=1landE=1 (WA=1n=1LandE=1
with o (¢) = 0.3 sin(2t) with o(t) = 0.3 sin(6t)

Fig. 4: Two different 1-D CDM damage models with n = 1 subject
to a total of four specific stress inputs. Note that (b) does not take into
consideration partial recovery from cycle to cycle. (c) and (d) are not
physically meaningful. Improved models are shown in Fig. 1 with de-
tails to be given in Section 2.3

and E is the initial modulus of elasticity. In a continuum
thermodynamics setting of CDM, Eq. (4) would be identi-
fied as the “state relation” and Eq. (3) as the “kinetics.” It
is important to note that € p is the total damaged and elastic
strain. This is not reversible nonlinear elasticity; rather the
process is irreversible and dissipative but the strain can all be
recovered by removing the stress; i.e.,c - 0andep — 0
simultaneously, conforming to the so-called zero-crossing
property. Figs. 4 and 5 give two numerical examples with
n = 1 and n = 2, respectively; the issues specified in the
figure captions in these two examples will be addressed later.
Eq. (3) does not guarantee 0 < ¢ < 1, which is needed in
Eq. (4); See Eq (5). The simulation must be terminated when
& reaches 1 as typified in Fig. 6.

n+1

§t) =1- {1 —(n+1)A /Ot U(T)"dT] ©)

It can be seen that the 1-D CDM damage model is
a special time-invariant effort-controlled memcapacitive
system model with the single state variable &. In this
model, C in Eq. (2) does not depend on time or the input
7(t). This should not come as a surprise since CDM is an in-
ternal state variable (ISV)-based formulation; our interest is

. ‘aun
©A=2,n=2,andE=1 @A=2,n=2,andE =1
with o(¢) = 0.3 sin(2t) with o(t) = 0.3 sin(6t)

Fig. 5: Two different 1-D CDM damage models with n = 2 subject
to a total of four specific stress inputs. Note that (b) does not take into
consideration partial recovery from cycle to cycle. (c) and (d) are physi-
cally meaningful, however antisymmetric patterns may be desired from
time to time. Improved models are shown in Fig. 1 with details to be
given in Section 2.3
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Fig. 6: A typical set of time histories, which matches Fig. 5(b) high-
lighting the need for 0 < ¢ <1
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whether mem-models can provide a broader framework for
CDM.

2.2 Relationship between 1-D CDM Damage Variable and
Absement

Equations (3) and (4) can be rewritten as a single equation
by eliminating o

A = <E5D>n (6)

Based on the definition of absement a(t), we have:
4 = €p (N

Substituting Eq. (7) into Eq. (6), we have the following:

E(t) = AE™a(t)"” (®)
1) = AE"/ (a(7))" dr assuming £(0) = 0, )
0

where Eq. (8) is in a differential form, while Eq. (9) is in an
integral form. Conversely, we have:

alt) = + ({E?) " (10)
a(t) = %/0 (?) dr assuming a(0) = 0 (11)

For n = 1, a(t) = 77£(t). Since failure of the system
occurs at £ = 1 in this damage mechanics model, the failure
absement iS Qfajjure = giving an interpretation of the
material parameter A.

These equations give a physical interpretation of the
damage variable: The absement rate and damage variable
rate follow a nonlinear static one-to-one mapping. This
one-to-one mapping follows a power law of n. In partic-
ular, for n = 1, the two rates are proportional and so are
a(t) and £(t) if £(0) = a(0) = 0.

1
EA>

2.3 Benefits of Absement as State Variable

A flow-controlled (i.e., displacement/strain-controlled)
memcapacitive system model can be obtained analogous to
Egs. (1) and (2):

state equations: y(t) = g (y(t), z(t),t) (12)

S (y(t),z(t),t) x(t) (13)
where, as before, y(t) is the state vector, 7 (¢) is the restoring

force/stress, and x(t) is the displacement/strain. In this con-
stitutive relation, the input is 2 (¢), while the output is r(¢). S

input-output equation: ()

is the secant stiffness function and can be seen as the general
spring stiffness, a function of the states and input.

When n = 1 in the model in Eq. (8), the 1-D CDM
damage model is equivalent to using absement a as the state
(damage) variable. Furthermore, the mem-spring model is
reduced to its simplest form, a mechanical memcapacitor
(which is an element model), defined as follows:

o(t) = B(1— BAa(t))ep(t), (14)

where a(t) = ep(t), a trivial state equation. Since £(t) < 1,
a(t) < 25 must hold. It can be seen that the secant stiff-
ness function is a function of a: S(a(t)) = E(1 — EAa(t)),
which is a one-to-one mapping that can be exploited in ana-
lyzing proper data (Pei et al (2015)).

Integrating both sides of Eq. (14) with respect to time ¢
and introducing the concept ““ generalized momentum” (Pei
et al (2018)):

p(t) = o(t) (15)

we arrive at the following one-to-one mapping from a to p
that defines the mechanical memcapacitor:

E?A 1\? 1
) = -2 (a0 - 57) + 55 (16)

where a < . Clearly, p(t) < L. Equivalently, we have
the inverse one-to-one mapping from p to a as follows:

alt) = —K—EfA) (p(t)—;l) T (17)

using which we have:

€D(t)
ol(t) (18)

E{1 _EA [ﬁ - \/(—ﬁ) (p(t) - ﬁ)J}

which is a special case of an effort-controlled memcapaci-
tive system model with p(t) = o(¢), a trivial state equation,
and the secant compliance function being a function of p:

1
B{1-BA g~/ (58) - 0]}
which is a one-to-one mapping that can also be exploited in
analyzing proper data (Pei et al (2015)).

Equations (14) and (18) are equivalent, being in the flow-
and effort-controlled form, respectively. This is the conve-
nience of having an element model, which belongs to the
family of higher-order elements (Chua (2003); Biolek et al
(2016)) with each model governed by a one-to-one mapping
of the defining kinematic and kinetic quantities. The two
specific one-to-one mappings used in Fig. 4(a) and (b), and
(c) and (d) are presented in Fig. 7 (a) and (b), respectively.

Cp) =
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(a) for Fig. 4(a) and (b) where
A=05n=1,and E=1

(b) for Fig. 4(c) and (d) where
A=1,n=1l,and E=1

Fig. 7: The one-to-one mappings between a(¢) and p(¢) used in Fig. 4

The response presented in Fig. 4(b) does not take par-
tial recovery from cycle to cycle into account. Following the
technique and examples in Pei (2018), a one-mode hybrid
system model can be adopted to improve the current model.
Namely, “reset” is applied to both a(t) and p(t) whenever a
new consecutive positive cycle starts. These reset quantities
are denoted as a(t) and p(t). The one-to-one mapping be-
tween a and p still holds but in terms of a(t) and p(t); see
Figs. 8(a) and 1(a) for the improved one-to-one mapping and
the response, respectively.

Energy generating behavior (i.e., non-passivity) occurs
in both Fig. 4(c) and (d). This is a fundamental challenge
to overcome for mem-spring models as detailed in Pei et al
(2015); Pei (2018). In addition to the techniques exercised
there, we try the following “reset” in this study: the inte-
grations of ep and o for a and p will be reset into a and
P, respectively, whenever the loading changes its direction.
Under each loading direction, the one-to-one mapping be-
tween a and p is given as follows:

a(t) = _\/(_EgA) (p(t) - 21A> + E—IA whena > 0

0= (+27) (60 55) + g whena <

See Figs. 8(b) and 1(b) for the improved one-to-one map-
ping and the response. The response, being passive, is phys-
ically meaningful.

Such one-to-one mappings including those between o
and p, a and S, and p and C and the subsequent ‘“‘reset”
to correct or improve the responses cannot be offered by
mem-spring models using £ as the state variable because
¢ is neither a higher-order integral for ¢ nor a higher-
order integral for o. To assess the challenge of possibly
changing the state variable from £ to a when n # 1, we
made the following manipulations:

g = SETD, EDp = %0 (19)

(a) for Fig. 1(a) where A =
0.5,n=1,and E =1

(b) for Fig. 1(b) where A =1,
n=1and E =1

Fig. 8: The one-to-one mappings between a(t) and p(t) used in Fig. 1

When t = 0, we have:
1

ep(0) = SfU(O) (20)
0
Normalize the secant function as follows:
11
= —— 21
€D 5 s% o (21)

Contrasting with the 1-D CDM damage model:

1 1
_ = 22
D= H1¢° (22)
and substituting Eq. (9) into (22), we have:
1 1
ED (t) (23)

= — o
E1— AEn [] (a(r))" dr
Since we have Sy = FE, we have:

S ! n

5 = 1— AE" / (a(7))" dr assuming £(0) =0 (24)
0 0

We numerically verified that when n £ 1, S is not even a

function of both a and €p, making a simple time-invariant

memcapacitive system model using a as a state variable im-

possible.

2.4 Possible 3-D Mem-Spring Model

A summary of CDM is given as follows. For 1-D, we have

U(ep,&) = %Ee%(l 3 (25)
0=% = Fep(1-¢) (26)

ep = ﬁ (28)
(i)
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where ¥ is the free energy (per unit volume of material), and
vy is the damage strain energy release rate (Lemaitre (1985)).
For 3-D and assuming isotropic damage, we have:

1
W(ED,g):QED :E:ep(l=9) (30)
o=E:ep(l—¢) 31)
or 1
Y= 3§ §ED.E.ED (32)
E':o
ep="—¢ (33)
é to be discussed as follows, (34)

where ep and o are now 3 x 3 symmetric second order
tensors and E is the fourth order tensor of elasticity.

Damage equations under multiaxial stress conditions
can be obtained by using an isotropic scalar-valued func-
tion x (o) of a symmetric second-order tensor, which can be
approximated as a linear function of at most three invariants
(forming irreducible basis functions). For example, follow-
ing Chaboche (1987), we can have:

x(o) = aly(o) + (o) + (1 —a— B)J2(a), (35)

where the maximum principal stress Ip(o) = o7, which

opens the microcracks and causes them to grow. The hy-

drostatic stress I1 (o) = Tr(o) = o : 1 greatly affects the

growth of the cavities. The octahedral shear stress Ja(o) is

related to the effects of deviatoric stress, and « and /3 are

coefficients that depend on the material and temperature.
The missing Eq. (34) is recovered as follows:

-a(i%)

for example A (QI()(U) + ﬁ]l(O') + (1 - — ﬁ)JQ(O-))n
= ¢

The 3-D continuum damage mechanics (CDM) model is

as follows:

E': o
1-¢

where A > 0 and n > 1 are material properties. In this con-
stitutive relation, the input is o (¢), while the output is € o (t)
(damage strain). The input-output equation is no longer a
scalar equation as in the definition for memristive system
model in Chua and Kang (1976) and that for memcapacitive
system model in Di Ventra et al (2009). The input-output
equation is a tensorial equation, a necessary generalization
from 1-D to 3-D.

We have thus reviewed both the 1-D and 3-D CDM
formulas using ¥(ep,&) = 2ep : E : ep(l — &) and

state equations:

input-output equation: Ep = 37

o =E: ep(l— &). We have shown that one specific 3-D
mem-spring model can be obtained from the 3-D CDM the-
ory. As far as we can tell, there are no previously published
3-D mem-spring models. Inspired by this particular case, a
general effort-controlled memcapacitive system model in 3-
D intended for material constitutive modeling may be ex-
pressed as follows:

state equations:  y(t) =f (y(¢),o(t),t) (38)
input-output equation: ep(t) = C(y(t),o(t),t) : o(t)
(39)

where y(t) is the state vector, o (t) is the stress tensor, and
ep(t) is the strain tensor. In this constitutive relation, the
input is o (t), while the output is ep(t). C (y(t),o(t),t) =
(1 L where E~! stands for secant compliance matrix and
can be seen as the inverse of the generalized spring stiffness,
a function of the states and input.

For a given memcapacitive system, the absement,
strictly speaking, is defined as the primitive of £p, so it
should be a symmetric second-order tensor a with a = ep.
If we want to adopt this point of view, by following more
closely the 1-D case, we have the following for an isotropic
case:

e 1-D: Using 0 = Eep(1 — &) we have

E=A (1 7 f)n = A(Eep)" = A(EQ)"

e3-D:Usingo =E: ep(l — &) we have
= a(Y0) A en)” = A 2"

where the absement is defined as a = €p and we assume
that  is a linear combination of stress invariants, as in (35).

2.5 Potential Connection with Hyperelasticity

Regarding the strain energy function, it was given in Pei
et al (2015) for the simplest case of mem-springs and is re-
derived here for hyperelasticity (e.g., Houlsby and Puzrin
(2007)):

o

% 40)

oc=S8(y,ep)ep 41
ov

Pep S(y.ep)ep (42)

for some free energy function ¥ (y,ep), where y is the state
vector. The last equation legitimizes the internal variable-
based strain energy function. Pei (2018) relaxes the continu-
ity of S, thus making more options for ¥ possible. As in Pei
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et al (2015), the simplest case would be as follows, still not
allowing a closed-form solution:

Wz/adaD :/S(a)aDdED (43)

This is a very challenging topic calling for further studies.
Other anecdotal facets are collected in Appendix A.1. With
the challenge acknowledged, some preliminary thoughts are
shared as follows:

For a flow-controlled setting in terms of o(t) =
S(a(t))ep(t) and p(t) = G(a(t)), with a(t) = ep(t) and
% = S, we have:

!P(t)—-]/ (H)d=p (1) (44)

~ [ statt)

(t)dep(t) (45)

_ / S(a(t)ép()ep(t)dt (46)
:/ED@S@QWMQ) @7)
_ / £p(H)dG (alt)) 8)
(t) = / ép(t)dp(t) (49)

Similarly, for an effort-controlled setting in terms of

ifét%::Cé]?(Qe)ig?e?nd a(t) = F(p(t)), with p(t) = o(t)
v(t) = [ ep(t)dot) (50)
~ [ ctowpetvoto 51)
/ C(p o(t)dt (52)

— [stcwoi (53)

- [irp) (54)
() = / &(t)dalt) (55)

Egs. (49) and (55) are two forms of the energetics for a me-
chanical memcapacitor. For the special cases of ep(t) =
ceR(t) and o(t) = ¢, R(t) where R is the linear ramp func-
tion, we have the following expressions, respectively:

W(t) = Csp(t) )

which reveal a new insight into both absement and gener-
alized momentum: the energy can be either strain rate
times generalized momentum, as in Eq. (49), or stress
rate times absement, as in Eq. (55), in a strain- and
stress-controlled setting, respectively.

U(t) = cra(t) (56)

3 MEM-MODELS AND VISCOELASTICITY

3.1 Relationship between Ratcheting Strain and
Generalized Momentum

Strain ratcheting refers to strain accumulation when the ap-
plied stress cycles have a non-zero mean stress, a.k.a., asym-
metric stress (e.g., Moosbrugger and McDowell (1990); Mc-
Dowell et al (1994)). Paul (2019) gives a recent review
of ratcheting fatigue, where “ratcheting strain accumulation
rate” plays an important role. See Fig. 9 for a numerical
example developed in this study to produce a total of six
different scenarios; the key statements made regarding the
controlling factors for strain ratcheting in Paul (2019) are
demonstrated as follows:

— The ratcheting strain accumulation rate is zero when the
mean stress is zero. See Fig. 9(a). A counter-example is
thermal expansion driven ratcheting, e.g. Bennett et al
(2020).

— The ratcheting strain accumulation rate increases with
the mean stress. Contrast Fig. 9(b) with Fig. 9(c).

— The ratcheting strain accumulation rate increases with
the stress amplitude. Contrast Fig. 9(b) with Fig. 9(d).
This may not be obvious visually, but the numerical val-
ues and Eq. (59) (later) support this claim.

— The ratcheting strain accumulation rate reduces with
the increment in the stress rate. Contrast Fig. 9(b) with
Fig. 9(e).

— The ratcheting strain accumulation rate is affected by
the sign of the mean stress. Contrasting Fig. 9(b) with
Fig. 9(f).

This numerical example was made by follow-
ing Houslby et al (2017) in terms of (i) making the
plastic strain and ratcheting strain additive; (ii) using a
Masing model for the plastic deformation, and (iii) making
the ratcheting strain a fraction of the plastic strain. In
particular, the Masing model in Fig. 9(a) to (e) adopts
the functional form of a virgin loading curve directly
from Jayakumar (1987): epy = —7.51n (1 -5 5) or equiv-
alently, 0 = 2.5 (1 — e_%} where the subscript M is
for Masing model. The Masing model in Fig. 9(f) is simply
anti-symmetric. The ratcheting strain is not introduced
at the onset of the plastic strain. After the virgin loading
curve is completed, the first unloading curve is finished,
and when the reloading curve reaches the mean stress level,
the ratcheting strain is started. This arrangement is purely
meant to simplify the simulation by focusing on the new
part of this study.

The new ideas in this study include (I) the use of gener-
alized momentum, and (IT) making ratcheting strain a static
function of generalized momentum. What is presented in
Fig. 9 is based on a linear relationship between ratcheting
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1 2 2
0.5 1.5
S 0 5 1 S
-0.5 0.5 ]
iy
-1 0
-10 0 10 0 10 20 0 10 20
E=¢€qdt+em E=¢€qt+tem E=€Eqdt+eEm
(a) no ratcheting (b) baseline case (c) effect of mean stress
0
el

b b
-1.5
0 10 20 0 10 20 -20 -10 0
E=¢€d+eEm E=¢€&d+eEm E=¢€dtTeEm
(d) effect of stress amplitude (e) effect of stress rate (f) effect of stress direction

Fig. 9: Numerical example following Houslby et al (2017) for plastic and ratcheting strain additivity, with a Masing model for the plastic strain,
and ratcheting as a fraction of plastic strain. We use the new ideas (in the main text) of (I) using generalized momentum, and (II) using a one-to-one
mapping between the generalized momentum and ratcheting strain to make a mechanical memristor (here a linear function and so a linear dashpot
only): the full stress-strain plots are given for all six scenarios (a) to (f)

strain and generalized momentum (in fact, a linear dash-

. . . . Table 3: N ical val f th ameters in Figs. 9 and 10
pot model); the choices of nonlinear functions will lead to abe umencal vafues of the parameters in F1gs. > an

. . . . . S iolD &
the use of mechanical memristors, and will be given in Sec- Cen?ar)lo g 1170 v
tion 3.2. b) 1.25 1 1
Generalized momentum p(t) is defined as the time inte- (©) 0.75 1 1
gral of a stress time history o (¢) following the naming in Pei Ed; }gg (])'5 é
et al (2018). For a periodic stress causing a strain ratcheting (% 125 1 1
response, we have the following for the generalized momen-
tum p as a function of time ¢:
' the time instants when wt = "D with p € N, Defining
p(t) = /0 (opsin(wt) 4+ 0)dr (57)  these special time instants as t,, = W, we have:
go _
= (1= cos(wt)) + at, G8)  p(ta) = 4oty (59)

where oy is the stress amplitude with gy > 0, ¢ is the mean
stress, and w is the stress angular frequency. See Fig. 10 for
the time histories of p(¢) corresponding to all six scenarios
in Fig. 9 where T is the period of the stress; the numerical

values used for &, 0y, and w for each scenario are given in
Table 3.

which is for a specific value of n. Holding n constant, it can
be seen that

When & = 0, p (t,,) is a constant with respect to t,,.
When & > 0, p (t,,) increases with ¢,,.
When oy increases, p (t,,) increases uniformly.

There is a periodic component and a linear component When w increases, p (t,,) decreases uniformly.
in p(t), making the understanding of p(¢) a little obscure. If When & < 0, p (£,,) decreases with ¢,, and will eventu-
we track the maxima in a o(¢) time history, then we collect ally change its sign.
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Fig. 10: Same numerical example following Houslby et al (2017) as in
Fig. 9: the time histories of generalized momentum as given for all six
scenarios (a) to (f)

Now, it can be seen that p(t¢,) correlates well with
“ratcheting strain accumulation rate”. Moreover, p (t,) is
a quantitative measure. We directly apply the generalized
momentum concept in the mem-modeling. We follow the
“higher-order element” (HOE) (Chua (2003); Biolek et al
(2016)), which is another general theory that overlaps with
the mem-models. Like absement, a negative higher-order
kinematic quantity than the velocity or strain rate itself, gen-
eralized momentum is simply a negative higher-order ki-
netic quantity than the characteristic force or stress itself.

3.2 Potential Role of Memristor in Modeling Strain
Ratcheting and More

The strain ratcheting literature indicates the necessity for
constant, decreasing, and increasing ratcheting rate, e.g.,
see Fig. 3 in Paul (2019). Eq. (59) indicates a linear relation-
ship of the time instants ¢,, (corresponding to the maxima in
o(t)) and p(t). This means that a constant ratcheting rate can
be realized by using a linear mapping between generalized
momentum p(¢) and ratcheting strain €(¢) in the following
two equivalent definitions through time differentiation:

ea(t) = wp(t), €q(t) =wol(t), (60)

where € is ratcheting strain. w is the reciprocal of the vis-
cosity of the linear dashpot; the results given previously in
Fig. 9 use w = 0.1.

60 60 60
Q40 / Q40 / Q40 l
20 20 20
0 0 0
0 5 0 5 0 5
€d €d &d
(a) linear dashpot for  (b) softening mem- (c) hardening-
Fig. 9 ristor for Fig. 2(a) softening memristor
for Fig. 2(b)

Fig. 11: One-to-one mappings between the generalized momentum and
ratcheting strain to make mechanical memristors

A time-varying ratcheting rate can be realized through
a nonlinear mapping between generalized momentum p(t)
and ratcheting strain £4(¢) in the following two equivalent
definitions through time differentiation:

dF (p(t))

falt) = F(plt) . alt) = =

o(t), (61)

where dl;;)p) = W(p) leading to é4(t) = W (p(¢)) o(t),

a differential form for a mechanical memristor. Fig. 2(a)
and (b) give two examples of memristor-based ratcheting re-

sponses with W (p) = 0.1+ skoes and W = 0.014 Z=30°,
respectively. Their nonlinear mappings between p(t) and
eq(t), as well as w = 0.1 for the linear mapping discussed
above, are given in Fig. 11.

The plastic and ratcheting strain and their sum for these
three models for Scenario (b) in Table 3 is given column-
wise in Fig. 12. The time in Fig. 12 is a delayed time com-
pared with Fig. 9 given the choice of the start of the ratchet-
ing strain.

Generalized momentum p(t) is exploited here as a surro-
gate for time parameterization, based on the mem-modeling
given in Pei (2018). Time, or equivalently number of cycles,
can be replaced with generalized momentum, after which
characteristic curves of ratcheting strain versus number of
cycles could be used to determine the one-to-one mapping
between generalized momentum p(t) and ratcheting strain
¢(t). In fact, this mem-model mode of thinking - namely ex-
ploiting a one-to-one p versus € mapping - was instumental
in constructing all examples on the topic presented here.

Having explored a mechanical memristor to model
ratcheting strain, let us examine whether a mechanical mem-
ristor has more modeling potential for a viscosity-hardening
law. Following Section 6.2.4 in Lemaitre and Chaboche
(1990), the viscosity-hardening law can be written as:

o = Kel/Ml/N (62)
where ¢, is the plastic strain, and NV, M and K are three pa-
rameters that are functions of temperature and depend on the
material. It can be seen that the hardening-law is based on a
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(a) linear dashpot

(b) softening memristor(c) harden/soften memristor
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Fig. 12: Same numerical example following Houslby et al (2017) as in Figs. 9 and 10. The one-to-one mapping between the generalized momentum
and ratcheting strain to make a mechanical memristor follow the three choices of (a) to (c) going from the left to right columns in Fig. 11. The
stress-strain plots are given for ratcheting strain only under Scenario (b) in Table 3. Note that the time here is a delayed time compared with Fig. 9

given the the choice of the start of the ratcheting strain there

flow-controlled time-invariant memristive system model

o = D(e,ép)ép (63)

Pei (2018) explores both the creep and relaxation re-
sponses of a mechanical memcapacitor. Here we discuss
creep, relaxation, and ramped strain responses of a me-
chanical memristor defined previously in Eq. (61) with the
subscript d replaced with p. The desired responses are de-
picted in Figs. 6.11, 6.25 and 6.26 in Lemaitre and Chaboche
(1990), respectively. Some simple derivations are presented,

along with a numerical example using W (p) = H% + 1.

— First, we subject this memristor model to a creep test
where o (t) cooH(t), where ¢ € R and H(t) is
the Heaviside function. We then have p(t) = cooR (%)
where R is the linear ramp function. We have:

ép(t) = W(p)o(t) (64)
= W(cooR(t))cooH(t) (65)
ep(t) = F (cogR(t)) (66)

This reveals what creep responses mean for a memristor.
Comparison with Fig. 6.11 in Lemaitre and Chaboche
(1990) is given in Fig. 13(a).

— Relaxation response, however, cannot be captured well
by using one memristor model alone given o(t)
D(ep(t))ep(t) with €,(t) = ceoM(t) and £,(t)
ceod(t), where §(t) stands for Dirac delta function, mak-
ing the response non-physical, the same difficulty as
with a linear dashpot. Note that D is the inverse func-
tion of W.

(a)

(b)

c values

c values

t Ep

Fig. 13: Responses generated by a mechanical memristor defined by
W (p) = +=°5 +1: (a) mimicking Fig. 6.11 in Lemaitre and Chaboche
(1990), and (b) mimicking Fig. 6.26 in Lemaitre and Chaboche (1990)

— Finally, we study how this memristor would respond to
ramped strain inputs with various strain rates in compar-
ison with Fig. 6.26 in Lemaitre and Chaboche (1990):

a(t) = D(ep(t))én(t) (67)
When ¢, (t) = ¢R(t), we have £,(t) = ¢H(t), and

o(t) = D(cR(t))cH(t) (68)
p(t) = G(cR(1)) (69)

See Fig. 13(b), which exhibits some discrepancies from
Fig. 6.26 in Lemaitre and Chaboche (1990). Various
facets behind Fig. 13(b) are plotted in Fig. 14. Since
D (hence W) is nonnegative, this is a passive mechan-
ical memristor, in accord with the passivity property
in Chua and Kang (1976). Thus, all these are one-to-one
mappings. Different strain rates do “activate” different
ranges in each one-to-one mapping. Nonetheless, it can
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be seen that W is the slope of €,,-p and D is the slope of
p-€p. The inverse relationship between W and D can be
seen as well.

(a1)

25 20
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Fig. 14: One-to-one mappings of a mechanical memristor defined by
W(p(t)) = # + 1 subject to e, (t) = cR(¢) with six different
strain rates ¢ shown in the legend

The modeling power of an individual memristor for
creep, relaxation, and ramped strain responses thus seems
limited, which prompts the next topic.

3.3 Memristor and Memcapacitor Connected in Series

Assembling elementary models to make more complex
models has been a powerful approach in modeling represen-
tation. Following bond graph theory, flow-controlled, effort-
controlled and mixed assemblies, corresponding to connec-
tivities in parallel, series, and both, respectively, have been
used in mem-modeling (Jeltsema and Scherpen (2009)). In
this study, connecting in series a mechanical memristor for
ratcheting strain and a Masing model for plastic strain makes
it efficient to capture strain ratcheting response under an
asymmetric periodic stress, i.e., € = €4 + €37. Another ex-
ample for model assembly is the relation ¢ = &, + &, in
the literature (e.g., Lemaitre and Chaboche (1990)) for the
total strain as a summation of linear elastic strain and plas-
tic strain. Pei et al (2020a) introduces a means of exercising
various mem-springs connected in series with various mem-
dashpots; see Figs. 8 to 11 there for numerical examples. An
identification scheme is discussed there as well.

Having previously compared a mem-model assembly
with a Maxwell model (with two model parameters) in Pei
et al (2020a), we are curious to learn how the responses of

25

a mem-model assembly (one mem-spring and one mem-
dashpot connected in series) and a popular linear model
assembly (a Wiechert model with two arms) would dif-
fer from each other. To make a tangible comparison, we
start with the same creep response for the two types of
models and proceed to compare their sinusoidal response
and one specific strain ratcheting response.

For a Wiechert model subject to stress inputs, we have
the Voigt type as illustrated in Fig. 15 and its creep compli-
ance function as follows (when o (t) = ooH(t)):

C1 C2

Co
stress

T1=C1M1 Te=Ca21)2

Fig. 15: Voigt type Wiechert model following Roylance (2001) where

C=1/E,and7 = %

Coreep(t) = %? =Co+ > C; (1 - e‘%) , (70)
J

where 7; = g—J with j the number of the Kelvin arms. We
will restrict to the case of ; = 2 herein for demonstration
purposes. Three sets of parameter values are chosen as listed
in Table 4; their corresponding creep response time histories
in log scale are plotted in Fig. 16, where Cases 2 and 3 dis-
play two inflection points corresponding to j = 2.

Table 4: Numerical values of the parameters in Eq. (70)

CaseID Cp Ch T1 Ca T2 )
1 1 1 1 1 1 1
2 1 1 0.1 1 5 1
3 1 1 0.5 2 20 1

We use a mem-spring to match the creep response of the
standard solid part of the Wiechert model. We use a mem-
ristor to match the creep response of the remaining Kelvin
arm. The total and individual targeted responses are given as
follows:

e(t) = es(t) +ealt) (71)
eo(t) = [Co + O (1 - e*%)} oo (t) (72)
calt) = Cy (1 - e‘f’?) aoH (1), (73)

where the subscripts s and d represent mem-spring and
mem-dashpot, respectively.

For the mem-spring, we apply p(t)
manipulation to obtain the following:

) o

ooR(t) to the

p(t)
o071

es(t) = [Co Oy (1 e (74)
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Fig. 16: Creep responses plotted in log scale for time

This is the model for the mem-spring that we are seek-
ing in terms of &(t) C (p(t)) o(t), where C(p)
{CO + 1 (1 — ¢ 7071 )|. This is an effort-controlled me-
chanical memcapacitor model, which would generate en-
ergy if loaded in the opposite direction in a sinusoidal
test (Pei et al (2015); Pei (2018)). Therefore, as was pre-
viously done in Section 2.3, the integrations of £, and o for
a and p will be reset into @ and p, respectively, whenever the
loading changes its direction. The one-to-one mappings be-
tween @ and p in two directions are made anti-symmetrical.
Using Case 2 in Table 4 as an example, Fig. 17(a) presents
various facets of the mem-spring model with o-¢; as a loop,
p-a being one-to-one and anti-symmetrical, and both S-a
and C'-p being one-to-one and symmetrical.
For the mem-dashpot, we have the following step:

eqa(t) = Cy (1 - 67%> oot (t)

aoR(t)
Cg (1 —e 2072 ) UoH(t)

_»®
=Yy (1 —e UOTZ) o9, whent >0
o)
Cy _p®)
Eq(t) = —2e 7oz 0(t), whent >0 (75)
T2

This is the model for a mechanical memristor that we
are seeking in terms of £(t) W (p(t)) o(t), where
W(p) = %6_”0%2. Using Case 2 in Table 4 as an example,
Fig. 17(b) presents various facets of the mechanical mem-
ristor model with o-¢4 as a loop, and p-¢4, D-¢4 and W-p
all being one-to-one.

In both Figs. 18 and 19, there are three columns pro-
gressing through a Maxwell model, a two-arm Wiechert
model, and a mem-model assembly consisting of a mem-
spring and a mem-dashpot. These three different kinds of
models are contrasted in terms of both sinusoidal and strain
ratcheting responses. The parameters of these model are
tuned as specified in the captions to enable a more reason-
able comparison. Such model calibrations are exercised for
both Kelvin and Maxwell models with each using a me-
chanical memcapacitor subject to a sawtooth input; this is
presented in Appendix A.2 where fundamental differences
can be seen between mem-spring models and classical lin-
ear models (with two parameters each).

It can be seen that the Wiechert models lead to richer
linear responses than their Maxwell model counterparts. The
nonlinear responses of the mem-model assemblies are the
richest, hopefully mimicking some meaningful responses of
real-world applications. Again, fundamental differences can
be seen between mem-models and classical linear models.

4 CONSTRUCTING MEM-SPRINGS WITH
CLASSICAL PREISACH MODELS

4.1 Subset of Classical Preisach Models

We assume that there exists a classical Preisach model that
satisfies the origin-crossing property of the mem-models,
i.e., the input and output become zero simultaneously
(e.g., Song et al (2001)). It will be shown that this subset
of the classical Preisach model can be transformed into an
equivalent time-invariant memcapacitive system model.

Making this happen has two important practical impli-
cations. First, the identification and inversion of the clas-
sical Preisach model is computationally demanding, while
the identification and inversion of the time-invariant mem-
models is much less so. Second, the classical Preisach model
is considered a hysteresis operator confined within its own
rules and notations, while the mem-spring models fall under
the category of differential models, preferably using the no-
tation of hybrid dynamical system theory, and with a demon-
strated possibility of providing physical interpretations and
quantities that are enabled by a higher-order framework af-
fecting the choice of state variables.

The classical Preisach models are probably the most
celebrated hysteresis models. Mayergoyz (2003) contains
a comprehensive description of these models, which were
originally developed for magnetic hysteresis (Preisach
(1935); Krasnosel’skii and Pokrovskii (1989)) but are more
general. These models are made up of piecewise mono-
tonically increasing or decreasing input-output branches
(e.g., Mayergoyz (2003)). This is consistent with “monotone
operators” and discussions on “vibro-correctness” in Kras-
nosel’skii and Pokrovskii (1989). The input-output relation
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Fig. 17: Behaviors of the mem-spring and mem-dashpot in Case 2 of Table 4, whose serial connection is calibrated against (in terms of creep
response according to Eqs. (71), (74) and (75)) and to be compared with a two-arm Wiechert model in terms of sinusoidal and strain ratcheting test
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Fig. 18: Sinusoidal responses of three different assemblies. Column-wise, they are a spring with Cp 4+ C'; connected in series with a linear dashpot
with 7o; the Wiechert model with two arms defined in Eqgs. (71), (72) and (73), and the mem-model assembly defined in Egs. (71), (74) and (75)

of the classical Preisach model is given as follows: cending branch as in Fig. 20(b). In this figure, the shaded

area S7 inside the Preisach triangle has the relay hysteron

y(t) = // v(a, B) Ra,pu(t)dads, (76) operator switched “on” corresponding to R, gu(t) = 1 for
T

that particular time instant. The unshaded area S~ inside the
Preisach triangle has the relay hysteron operator switched
“off” corresponding to R, gu(t) = —1 for that particular
time instant. This leads to:

where u(t) and y(¢) are the input, and output, respectively.
‘Ra,p represents a relay hysteron operator with switching
down and up thresholds as « and 3, respectively; v («, )

is the Preisach (density, weighting, distribution) function; 7'

denotes the Preisach triangle with S > «. See Fig. 20. y(t) = //+ v (e, B) dod — //7 v(a,B)dadB  (77)
In the classical Preisach model, to determine the weigh- § s

ing function v (a, 8), one of the two options is to start with The following formulation is general from Mayergoyz

a limiting ascending branch as in Fig. 20(a). Then, a set of ~ (2003), but we focus on the subset of the classical Preisach
first-order transition curves is attached to this limiting as-  model illustrated in Fig. 21(a). Define F'(o/, ') as follows:
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Fig. 19: Sinusoidal responses of three different assemblies. Column-wise, they area spring with Cg + C1 connected in series with a linear dashpot
with 72; the Wiechert model with two arms defined in Egs. (71), (72) and (73), and the mem-model assembly defined in Eqgs. (71), (74) and (75)

R, gy = J2 2t (78)
where the input o is on the limiting ascending branch, and
its output is f,-. The input 5’ is on a first-order descending
branch that starts to descend from «'; the output correspond-

ing to this 5’ is denoted as f+g . It can be shown that:

) = [ ( / u(a,mda) a8 (19)
! B
from which, it can be derived that:
Ioan 62F(O‘/76/)
v, B') = Y (80)

4.2 Constructing Mem-Springs using Preisach Model

We choose an effort-controlled mem-spring model in
Fig. 21(b) that can be equivalently represented by a clas-
sical Preisach model in Fig. 21(a). We desire the follow-
ing state and input/output equations for this time-invariant
effort-controlled memcapacitive system model:

y(t) =£(y(t),r(t)) 81)
z(t) =W (y(t),r(t))r(t) (82)
from which we have

Wiy.r) = = (83)

First, on the loading branch, because (¢, f,) is on the
limiting ascending branch of the Preisach model, we have

from Eq. (77):

for = /:; (/_Oo u(a,ﬁ)cw) dov
Lo ([ o)

This is a zero-crossing for x as a function of r with r = «o’.
There is no need for a state variable, and W = W (r)r would
suffice. So, we focus on the unloading branch, i.e., a first-
order reversal curve. Using Fig. 21(b), we have the following
expression for the secant stiffness of a generic point on the
descending branch:

(84)

W', 5) = 1

85
7 (85)

From Eq. (78), we have:
foz’B’ = fa’ - 2F(a/aﬂ/) (86)

Substituting both Egs. (84) and (79) into (86), it can be seen
that the numerator of the secant stiffness function W (o, 8)
contains double integrals of the Preisach density function v.
Next, we convert o’ and /3’ into the input and state variables.
For the first-order reversal curve, we have r = 3’. We have
two options of introducing the state variable.

Under the first option, we follow Gurtin and Francis
(1981) and Pei (2018) by introducing a maximum force 7,
used to track the limiting ascending branch for this effort-
controlled setting. In a a flow-controlled setting in Gurtin
and Francis (1981) and Pei (2018), there is a maximum dis-
placement. Then, we have r,,, = «’. With this, we have:

W', B") = W(rm,r),
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where

Ist integral + 2nd integral + 3rd integral
W (rm,r) = .

Ist integral = /Tm (/a u(a,ﬁ)dﬁ) da
+o0 @

2nd integral = —/ (/ u(a,ﬁ)dﬁ) do

3rd integral = _2/% (/Tm V(&,B)d@) dg
r B

This applies to the first-order reversal curve. For the limiting
ascending branch, this also applies because r,, = r and the
third integral vanishes.

By following Pei (2018), we have the following discrete-
time state equation for both branches:

rm(k+1) = max(ry,(k),r(k+ 1)), with r,,, (1) = (1)

which can be rewritten into a continuous-time format. With
this, we have constructed a time-invariant memcapacitive
system model as follows:

7.1m = f (va ’I") (87)
x=W(rm,r)r (88)
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Fig. 21: Input-output plot of a mem-spring in terms of (a) a classical
Preisach model, and (b) a mem-spring model

This formulation, in fact, is more general than that in Pei
(2018) based on Gurtin and Francis (1981). A strong limita-
tion is that this formulation only applies to both the limiting
ascending branch and first-order reversal curve. More state
variables are needed to track the first-, second-, etc. order
reversal curve(s) when higher-order reversal curves are an-
ticipated in the output.

The second option is taken in an approximate sense. As-
suming loading and unloading follows a constant loading
rate, we have:
p= a’Z - B

2 2
where p is the generalized momentum in Pei et al (2018),
and T is the duration of one loading cycle. It can be seen
that o/ can be solved in terms of 3’ and p. This leads to the
following:

(89)

W(a, ) =W(p,r) (90)
In summary, when we can assume loading and unloading
with a constant loading rate, we have:

p=r ©1)

x=W(p,r)r (92)
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which has the same strong limitation as the first option.

We note that the Masing model used to generate the plas-
tic strain in Section 3.1 could be reformulated in terms of
a mem-spring by applying a slightly extended version of
the methodologies presented above. The complete model to
capture strain ratcheting could then involve a mem-model
assembly with one mem-spring and one mem-dashpot con-
nected in series.

5 DUHEM MODELS

Here we examine a possible connection between the gen-
eralized Duhem model and the mem-models. From Padthe
et al (2008), we have the following definition (begin quote):

@(t) = f (2(t),u(t) g (u(t)), =(0) =wo, t=0  (93)
y(t) = h(z(t), u(t)), 94)

where z : [0,00) — R™ is absolutely continuous, u :
[0, 00) — R is continuous and piecewise C!, f : R" x R —
R™*™ is continuous, g : R — R” is continuous and satisfies
g(0) =0and y : [0,00) - R,and h : R® x R — R are
continuous. The value of z at a point ¢ at which @ does not
exist can be assigned arbitrarily. We assume that the solution
to Eq. (93) exists and is unique on all finite intervals. Under
these assumptions, « and y are continuous and piecewise C*.
... Assume that g is positively homogeneous, that is

glav) = ag(v), YVa > 0andv € R 95)

then, the generalized Duhem model in Egs. (93) and (94) is
rate-independent (end quote).

It can be seen that under this condition and assuming x
is a state variable, Eq. (93) becomes a differential form of
the mem-model in Pei et al (2018). Eq. (93) thus has zero-
crossing and rate-independence. This is one connection be-
tween the generalized Duhem and mem-models. A differ-
ence is that zero-crossing is a property of the vector state
equation rather than the scalar input-output equation.

6 CONCLUSIONS

Mem-models are a family of new models of dampers,
springs, inerters (and very likely, more) originally based
on nonlinear state-space representations. However, how to
choose state variables and define functional forms for mem-
models is unspecified and remains a major technical chal-
lenge. The connections made herein suggest specific and
potentially fruitful paths to search for state variables and
functional forms for mem-springs. One choice makes mem-
springs physically meaningful in modeling the basic kind
of damage that is defined and involved in continuum dam-
age mechanics (CDM) context. We also generalize mem-
springs from 1-D to 3-D for isotropic materials for future

work to validate. Tapping functional forms from viscoelas-
ticity is constructive and fruitful, however bear in mind that
mem-models are fundamentally nonlinear and thus are fun-
damentally different from classical linear theories.

We have confirmed the unique and significant model-
ing power when adopting both absement and generalized
momentum, the time integral of strain and stress in the
mem-springs and mem-dashpots for modeling elastic dam-
age strain and ratcheting strain, respectively. These choices
of state variables for the nonlinear state-space representa-
tion enable governing one-to-one mappings to be preserved
after introducing switching behaviors under a hybrid dy-
namical system viewpoint. One-to-one mappings are prob-
ably among the most desired portraits of complex time-
dependent and history/path-dependent and fundamentally
nonlinear dynamic systems that the mem-models contribute,
even with the necessity of adopting other state variables be-
ing acknowledged.

Since the classical Preisach model for hysteresis is rig-
orous, showing that two forms of time-invariant memca-
pacitive system models are a subset provides a rigorous
foundation for the latter. For this subset, using the mem-
models reduces computational demand and also enables a
physical interpretation. Nevertheless, the nonlocal memory
in Preisach model is still demanding computationally. More
state variables must be introduced and/or algebraic variables
are needed for capturing nonlocal memory when higher-
order responses of the Preisach model are anticipated.
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A Appendix

A.1 Some Basic Energy Relations

The following discussion is for a flow-controlled system, starting with
an imposed constant strain rate, followed by strain removal at the same
rate:

imposed strain, t € [0,t0]: e(t) = ket (96)
strain removal, ¢ € [to, 2to]: e(t) = keto —ke(t — to), (Ch)
<~

€0

where ke is the strain rate, and ¢ = tg is the time when strain removal
starts.

The energy per unit volume of material, U, is the area under the
corresponding stress-strain curve:

€0 (0]
U= / - / ouden 98)
0 =)

where [ and u are for loading and unloading, respectively.
1. Piece-wise defined nonlinear spring, i.e., o = f;(g)

2t

to
U(t):/0 i (keT) kedr + fu (—keT + 260) (—ke)dr

to

to
= k:s/ [fi(keT) — fu(—keT 4+ €0)] dT, 99)
0

where 7 is the dummy index for time ¢. Notable examples includ-
ing Ramberg-Osgood models and Bouc-Wen models.
2. Viscoelastic material, i.e., o = f(€)

to 2to
U(t) = / f(ks)ksdT + f(_ks)(_ke)d‘r
0 to
to
= ke [0~ (ko)) ar (100)
0
3. Mechanical memcapacitor, i.e., o0 = f(a)e

Ut) = /Otu f (%72) kedr

2to ke
+/ f (—372 +2€07——50t0) (—ke)dr
to

to k E 1
=k / |:f (—872) —f (——572 + eoT + —eot ):| dr
/o 2 2 2 00

(101)
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A.2 Mem-Spring Calibrated to Linear Viscoelastic Models

Mem-springs, being fundamentally nonlinear, cannot be expected to
behave like linear models. Consequently, it was hard to avoid some
initial mistakes in the following effort, the goal being to calibrate a
mem-spring to make it respond the same as a linear model under a spe-
cific input (but only for a specific duration of time). Then, we change
the input to reveal their differences.

Element models are tried before system models for the mem-

spring. First of all, memcapacitor models are good for both £(¢) = k.t
and o(t) = ket to produce a maybe-valid stress-strain curve for vis-
coelastic material. Next, to what extent a memcapacitor model can be
calibrated to a linear model demands attention.

(i) Maxwell model: Only good for e(t) = ket (i.e., a = %k5t2) to

(i)

produce a typical stress-strain curve for viscoelastic material as

o(t) = ken [1 - e_%t}

1%772 —Ey k5772
e n'—
E E

(102)

p(t) = kent + (103)

We can calibrate a memcapacitor (i.e., an element) o(t) =
S(a(t))e(t), or equivalently, p(t) = G(a(t)) as follows:

2a k;5772 _E /[2a ksnz
=G =k — — nVke - =1
p=Gla) =kemy| =+ —p-e E

with the understanding that Maxwell and mem-spring models
would only respond the same under any specific value of k. in

(104)

e(t) = ket. The corresponding one-to-one mapping S(a) = %
is as follow:
_E [7a
n [1 —e nVke }
S(a)=————= (105)

2a
\/ ke
Note that an attempt of continuing with the calibration using the
unloading behavior of the same Maxwell model failed. Details are

given as follow when a = f%ks (t— to)2+2a0 fort € [to, 2to]:
- &4 L (t—to)

o(t) = —ken — keme” 1" + 2keme” (106)
ken? _Ey  2ken? _E(4_

p(t):—kyﬁf%»%e nt_%e o (t t0)+p0 (107)

It would not be possible to use the same memcapacitor model for
this unloading behavior.

Kelvin model: Only good for a(t) = kot (ie.,, p = %katz) to
produce a typical stress-strain curve for viscoelastic material as
kg k’g?? —Et
e() = -5 [1 e ] (108)
ko o kom kon? [ - By
t) = ~o42 el 1- ] 109
o) = 55" ~ =t t T ! (109

We can calibrate a mem-spring (i.e., an element) e(t) =
C(p(t))o(t), or equivalently, a(t) = F(p(t)) as follows:

- 2 N2 _E [2B
a:F(p):B—M\/kl+%[l—e nvki] (110)

E E?

with the understanding that Kelvin and mem-spring models would
only respond the same under any specific value of k. in o(t) =

kot. The corresponding one-to-one mapping C(p) = % is as
follow:
_E [Zp
1 = |:1 —e nVko :|
Cp) == — 111
(r) =4 = (111

The rest challenge remains as for calibrating using the Maxwell
model.

See Figs. 22 and 23 for two numerical examples.

mem-spring
Maxwell
0 0.6
0 > 4 5 8 10 12 0 02 04 0.6 0.8 1

t €

Fig. 22: One example of “calibrating” a particular Maxwell model with
E:Ln:landka:%

1 1

b o5 08
mem-spring
— Kelvin

0
0 2 4 6 8 10 12 06

0.4

0.6
w 04 0.2
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Fig. 23: One example of “calibrating” a particular Kelvin model with
E=1n=1landk, =2
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