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ABSTRACT OF THE DISSERTATION

Global Weyl Modules for Twisted and Untwisted Loop Algebras

by

Nathaniael Jared Manning

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2012

Dr. Vyjayanthi Chari, Chairperson

A family of modules called global Weyl modules were defined in [7] over algebras of the form

g⊗A, where g is a simple finite–dimensional complex Lie algebra and A is a commutative

associative algebra with unity. Part I of this dissertation contains a characterization the

homomorphisms between these global Weyl modules, under certain restrictions on g and

A. The crucial tool in this section is the reconstruction of the fundamental global Weyl

module from a local one. In Part II, global Weyl modules are defined for the first time for

loop algebras which have been twisted by a graph automorphism of the Dynkin diagram.

We analyze their relationship with the twisted local Weyl module, which was defined in [8],

and with the untwisted global Weyl module.
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Introduction

This manuscript is concerned with Lie algebras of the form g⊗A, where g is a sim-

ple, complex finite–dimensional Lie algebra and A is a commutative associative algebra with

unity over C. The main content of Part I first appeared as [3]. In it, we study the category

IA of g⊗ A–modules which are integrable (locally finite–dimensional) as g–modules. This

category fails to be semi–simple, and it was proved in [11] that irreducible representations of

the quantum affine algebra specialize at q = 1 to reducible, indecomposable representations

of the loop algebra. This phenomenon is analogous to the one observed in modular rep-

resentation theory: an irreducible finite–dimensional representation in characteristic zero

becomes reducible in passing to characteristic p, and the resulting object is called a Weyl

module.

This analogy motivated the definition of Weyl modules (global and local) for loop

algebras in [11]. Their study was pursued for more general rings A in [7] and [12]. Thus,

given any dominant integral weight of the simple Lie algebra g, one can define an infinite–

dimensional object WA(λ) of IA, called the global Weyl module, via generators and relations.

It was shown (see [7] for the most general case) that if A is finitely generated, then WA(λ)

is a right module for a certain commutative finitely generated associative algebra Aλ, which
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is canonically associated with A and λ. The local Weyl modules are obtained by taking the

tensor product of WA(λ), over Aλ, with simple Aλ-modules. This construction is known

as the Weyl functor Wλ
A; equivalently, local Weyl modules can be given via generators and

relations. The calculation of their dimension and character has led to a series of papers

([10], [9], [15], [23], [1]).

The local Weyl modules have been useful in understanding the blocks of the cate-

gory FA of finite–dimensional representations of g⊗A, which gives homological information

about this category. One motivation for Part I of this dissertation is to explore the use of

the global Weyl modules to further understand the homological properties of the categories

FA and IA. The global Weyl modules have nice universal properties, and in fact they play

a role similar to that of the Verma modules M(λ) in the study of the Bernstein-Gelfand-

Gelfand category O for g (for a more precise treatment of this topic, see [4]). A basic result

about Verma modules is that Homg(M(λ),M(µ)) is of dimension at most one and also that

any non–zero map is injective. In Part I of the dissertation we prove an analogue of this

result (Theorem 3) for global Weyl modules.

In Part II, we consider the twisted loop (sub)algebras of g ⊗ C[t±1], which we

denote by LΓ(g). These are the algebras of fixed points in g⊗C[t±1] under a group action

of Γ ∼= Z/mZ obtained from an order m Dynkin diagram automorphism of g. Here Γ acts

upon C∗ by multiplication with an mth primitive root of unity ξ; using the induced action

on the coordinate ring C[t±1] of this variety (that is, t 7→ ξ−1t) we have a diagonal action

on g⊗C[t±1].

In [8], local Weyl modules were defined and studied for these algebras. The main

result of that paper was that any local Weyl module of LΓ(g) can be obtained by restricting
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a local Weyl module for L(g). As an application, one of the authors of [8] obtained in his

thesis a parametrization of the blocks of the category of finite–dimensional representations

of the twisted loop algebras. The notion of a global Weyl module for LΓ(g), however, has

not appeared in the literature thus far, and it is the main aim of Part II to fill this gap.

The fixed–point subalgebra g0 of g under the action of Γ is a simple Lie algebra,

called the underlying Lie algebra. Its weight theory is crucial in our development. In Part II,

using the same tools as [7], we define, for any dominant integral weight λ of g0, a global

Weyl module WΓ(λ). We also describe its highest weight space AΓ
λ, by giving it a natural

algebra structure, and define a Weyl functor WΓ
λ from the category of left AΓ

λ-modules to

the category of integrable LΓ(g)-modules. As in [7], we obtain, by using the Weyl functor,

a homological characterization of Weyl modules. We also prove that there is a canonical

embedding of AΓ
λ into Aµ for any µ ∈ P+ satisfying the condition that µ |h0

= λ, where h0

is the fixed–point subalgebra of a Cartan subalgebra h of g.

The global Weyl module W (µ) (µ ∈ P+) for the loop algebra L(g) is, via restric-

tion, also a module for LΓ(g). Furthermore, if λ is a dominant integral weight of g0, then⊕
µW (µ) (where the sum is taken over all µ such that µ |h0

= λ) is a LΓ(g)-module and the

main theorem of Part II (Theorem 8) relates this module with WΓ(λ). Some motivation for

this work also comes from the finite-dimensional representation theory of the quantum affine

algebra, where relationships are known ([17, Theorem 4.15]) between Kirillov-Reshetikhin

modules for the twisted and untwisted algebras.
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Part I

Homomorphisms between global

Weyl modules
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Chapter 1

In this chapter we establish some notation and then recall the definition and some

elementary properties of the global Weyl modules. Throughout, we assume that the reader

is familiar with the material from an introductory graduate course in Lie theory.

1.1 Preliminary notation

Let C be the field of complex numbers and let Z (respectively Z+) be the set

of integers (respectively non–negative integers). Given two complex vector spaces V , W

let V ⊗W (respectively, Hom(V,W )) denote their tensor product over C (respectively the

space of C–linear maps from V to W ).

Given a commutative and associative algebra A over C, let MaxA be the maximal

spectrum of A and mod A the category of left A–modules. Given a right A-module M

and an element m ∈M , the annihilating (right) ideal of m is

AnnAm = {a ∈ A : m.a = 0}.
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1.1.1

The assignment x 7→ x⊗1+1⊗x for x ∈ a extends to a homomorphism of algebras

∆ : U(a)→ U(a)⊗U(a),

and therefore defines a bialgebra structure on U(a). In particular, if V,W are two a–

modules then V ⊗W and HomC(V,W ) are naturally U(a)-modules and W ⊗ V ∼= V ⊗W

as U(a)-modules. One can also define the trivial a–module structure on C and we have

V a = {v ∈ V : av = 0} ∼= Homa(C, V ).

Suppose that A is an associative commutative algebra over C with unity. Then

a⊗A is canonically a Lie algebra, with the Lie bracket given by

[x⊗ a, y ⊗ b] = [x, y]⊗ ab, x, y ∈ a, a, b ∈ A.

We shall identify a with the Lie subalgebra a ⊗ 1 of a ⊗ A. Note that for any algebra

homomorphism ϕ : A→ A′ the canonical map 1⊗ ϕ : g⊗ A→ g⊗ A′ is a homomorphism

of Lie algebras and hence induces an algebra homomorphism U(g⊗A)→ U(g⊗A′).

1.2 Simple Lie algebras

1.2.1

Let g be a finite–dimensional complex simple Lie algebra with a fixed Cartan

subalgebra h. Let Φ be the corresponding root system and fix a set {αi : i ∈ I} ⊂ h∗ (where

I = {1, . . . ,dim h}) of simple roots for Φ. The root lattice Q is the Z–span of the simple

roots while Q+ is the Z+–span of the simple roots, and Φ+ = Φ ∩ Q+ denotes the set of
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positive roots in Φ. Let ht : Q+ → Z+ be the homomorphism of free semi-groups defined

by setting ht(αi) = 1, i ∈ I.

The restriction of the Killing form κ : g×g→ C to h×h induces a non–degenerate

bilinear form (·, ·) on h∗, and we let {ωi : i ∈ I} ⊂ h∗ be the fundamental weights defined

by 2(ωj , αi) = δi,j(αi, αi), i, j ∈ I. Let P (respectively P+) be the Z (respectively Z+) span

of the {ωi : i ∈ I} and note that Q ⊆ P . Given λ, µ ∈ P we say that µ ≤ λ if and only if

λ− µ ∈ Q+. Clearly ≤ is a partial order on P . The set Φ+ has a unique maximal element

with respect to this order which is denoted by θ and is called the highest root of Φ+. From

now on, we normalize the bilinear form on h∗ so that (θ, θ) = 2.

1.2.2

Given α ∈ Φ, let gα denote the root space

gα = {x ∈ g : [h, x] = α(h)x, h ∈ h} ,

and define subalgebras n± of g by

n± =
⊕
α∈Φ+

g±α.

We have isomorphisms of vector spaces

g ∼= n− ⊕ h⊕ n+, U(g) ∼= U(n−)⊗U(h)⊗U(n+). (1.2.1)

For α ∈ Φ+, fix elements x±α ∈ g±α and hα ∈ h spanning a Lie subalgebra of g isomorphic

to sl2, i.e., we have

[hα, x
±
α ] = ±2x±α , [x+

α , x
−
α ] = hα,

and more generally, assume that the set {x±α : α ∈ Φ+} ∪ {hi := hαi : i ∈ I} is a Chevalley

basis for g.
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1.3 Representation theory of simple Lie algebras

Given an h–module V , we say that V is a weight module if

V =
⊕
µ∈h∗

Vµ, Vµ = {v ∈ V : hv = µ(h)v, h ∈ h},

and elements of the set wt V = {µ ∈ h∗ : Vµ 6= 0} are called weights of V . If dimVµ < ∞

for alll µ ∈ h∗, let ch V be the character of V , namely the element of the group ring Z[h∗]

given by,

ch V =
∑
µ∈h∗

dimVµe(µ),

where e(µ) ∈ Z[h∗] is the element corresponding to µ ∈ h∗. Observe that for two such

modules V1 and V2, we have

ch(V1 ⊕ V2) = ch V1 + ch V2, ch(V1 ⊗ V2) = ch V1ch V2.

1.3.1

Definition 1. For λ ∈ P+, let M(λ) be the left U(g)–module generated by an element mλ

with defining relations:

hmλ = λ(h)mλ, x+
αimλ = 0, h ∈ h, i ∈ I.

In other words, M(λ) is the quotient of U(g) by the left ideal J(λ) generated by

the vectors
{
x+
αi , h− λ(h) : h ∈ h, i ∈ I

}
, and the vector mλ is the image of 1 ∈ U(g)

modulo this ideal.
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As a direct consequence of the definition, we have the following lemma, which we

isolate here for later comparison.

Lemma 1. Let λ, µ ∈ h∗. Then,

(i) M(λ) is not isomorphic to M(µ) if λ 6= µ.

(ii) Hom(M(λ),M(µ)) = 0 unless λ ≤ µ.

The modules M(λ), for λ ∈ h∗, are called Verma modules. They play an impor-

tant role in the representation theory of semisimple complex Lie algebras g, and we have

introduced them here for purposes of analogy with the global Weyl module. They are also

useful for us as a way of producing a family of simple modules for U(g). The following is an

amalgamation of standard results on the simple quotients of Verma modules (for instance,

see [5]).

Theorem 1. For any λ ∈ h∗, the Verma module M(λ) has a unique irreducible

quotient, denoted by V (λ).

(i) The module V (λ) is finite–dimensional if and only if λ ∈ P+. Moreover, if V is a

finite-dimensional irreducible g–module then there exists a unique λ ∈ P+ such that

V is isomorphic to V (λ).

(ii) For λ ∈ P+, V (λ) is the left g–module generated by an element vλ with defining

relations:

hvλ = λ(h)vλ, x+
αivλ = 0, (x−αi)

λ(hαi )+1vλ = 0, h ∈ h, i ∈ I.
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(iii) V (λ) is a weight module, with

wt V (λ) ⊂ λ−Q+ and dimV (λ)λ = 1.

We shall say that V is a locally finite–dimensional g–module if

dim U(g)v <∞, v ∈ V.

It is well–known that a locally finite–dimensional g–module is isomorphic to a direct sum of

irreducible finite–dimensional modules, and moreover it is easy to see that as vector spaces,

Vµ ∩ V n+ ∼= Homg(V (µ), V ), µ ∈ P+.

1.4 Global Weyl modules

Assume from now on that A is an associative commutative algebra over C with

unity. We recall the definition of the global Weyl modules. These were first introduced

and studied in the case when A = C[t±1] in [11] and then later in [12] in the general case.

We shall, however, follow the approach developed in [7]. We observe the similarity of this

definition with that of the Verma module (Section 1.3.1).

Definition 2. For λ ∈ P+, the global Weyl module WA(λ) is the left U(g ⊗ A)–module

generated by an element wλ with defining relations,

(n+ ⊗A)wλ = 0, hwλ = λ(h)wλ, (x−αi)
λ(hαi )+1wλ = 0, (1.4.1)

where h ∈ h and i ∈ I. In other words, WA(λ) is the quotient of U(g⊗ A) by the defining

ideal I(λ), where I(λ) is generated by the set{
x⊗ a, h⊗ 1− λ(h), (x−αi)

λ(hi)+1 : x ∈ n+, i ∈ I, h ∈ h
}
.
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The following immediate consequence of the definition establishes a crucial prop-

erty of the global Weyl module.

Lemma 2. Let V be any g⊗A–module and let λ ∈ P+. If v ∈ V satisfies the relations in

Equation 1.4.1, then the assignment wλ 7→ v induces a (g⊗A)–module homomorphism

WA(λ)→ V.

Suppose that ϕ is an algebra automorphism of A. Then ϕ⊗1 induces an automor-

phism of U(g⊗A) as in Section 1.1.1, which clearly preserves each generator of the defining

ideal ideal I(λ) of WA(λ). Thus I(λ) is also preserved, and we have an isomorphism of

g⊗A–modules,

WA(λ) ∼= (1⊗ ϕ)∗WA(λ). (1.4.2)

1.4.1

The following construction shows immediately that WA(λ) is non–zero. Given any

ideal I of A, define an action of g⊗A on V (λ)⊗A/I by

(x⊗ a)(v ⊗ b) = xv ⊗ āb, x ∈ g, a ∈ A, b ∈ A/I,

where ā is the canonical image of a in A/I. In particular, if a /∈ I and h ∈ h is such that

λ(h) 6= 0 we have

(h⊗ a)(vλ ⊗ 1) = λ(h)vλ ⊗ ā 6= 0. (1.4.3)

Clearly if I ∈ MaxA, then

V (λ)⊗A/I ∼= V (λ)
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as g–modules and hence vλ ⊗ 1 generates V (λ) ⊗ A/I as a g–module (and so also as a

g⊗A–module). Since vλ⊗1 satisfies the defining relations of WA(λ), we see from Lemma 2

that V (λ)⊗A/I is a non–zero quotient of WA(λ).

1.4.2

Given a weight module V of g⊗A, and a Lie subalgebra a of g⊗A, set

V a
µ = Vµ ∩ V a, µ ∈ h∗.

The following lemma is proved by observing that WA(λ) is a highest weight module

for g and that the adjoint action of g on U(g⊗A) is locally finite.

Lemma 3. For λ ∈ P+ the module WA(λ) is a locally finite–dimensional g–module and

we have

WA(λ) =
⊕
η∈Q+

WA(λ)λ−η

which in particular means that wt WA(λ) ⊂ λ−Q+. If V is a g⊗A–module which is locally

finite–dimensional as a g–module then we have an isomorphism of vector spaces,

Homg⊗A(WA(λ), V ) ∼= V n+⊗A
λ .

The following remark extends the analogy with Verma modules (cf. Lemma 1).

Remark. Fix λ, µ ∈ P+. Then

(i) WA(λ) is not isomorphic to WA(µ) if λ 6= µ.

(ii) Homg⊗A(WA(λ),WA(µ)) = 0 unless λ ≤ µ.

12



1.4.3

The weight spaces WA(λ)λ−η are not necessarily finite–dimensional, and to under-

stand them, we proceed as follows. We first observe that one can regard WA(λ) as a right

module for U(h⊗A) by setting

(uwλ)(h⊗ a) = u(h⊗ a)wλ, u ∈ U(g⊗A), h ∈ h, a ∈ A.

To see that this is well–defined, it suffices to show that for every generator x of I(λ), we

have x(h⊗ a)wλ = 0. In other words, we must see that

(n+ ⊗A)(h⊗ a)wλ = 0 = (h− λ(h))(h⊗ a)wλ,

(x−αi)
λ(hi)+1(h⊗ a)wλ = 0, h ∈ h, i ∈ I.

The first two conditions follow promptly from the defining relations of the module WA(λ).

To see the last condition, recall that WA(λ) is a locally finite–dimensional module for g,

and therefore the vector (h⊗ a)wλ generates a finite-dimensional module for the sl2 triple

〈x±αi , hi〉. In particular, since

x+
αi(h⊗ a)wλ = 0

for each i ∈ I, we see that the third condition is satisfied.

Since U(h⊗A) is commutative, the algebra Aλ defined by

Aλ = U(h⊗A)/AnnU(h⊗A)wλ

is a commutative associative algebra. It follows that WA(λ) is a (g ⊗ A,Aλ)-bimodule.

Moreover, for all η ∈ Q+, the weight space WA(λ)λ−η is a right Aλ–module: given u ∈

13



U(g⊗A) with uwλ ∈WA(λ)λ−η, let a ∈ Aλ with preimage a ∈ U(h⊗A). Then,

(h⊗ 1)(uwλ.a) = (h⊗ 1)(uawλ) = (u(h⊗ 1)awλ) + [h⊗ 1, u] awλ

= λ(h)uawλ − η(h)uawλ = (λ− η)(h)uwλ.a.

Clearly the assignment wλ 7→ 1 + AnnU(h⊗A)wλ induces an isomorphism

WA(λ)λ ∼=Aλ
Aλ (1.4.4)

of Aλ–modules, where we regard Aλ as a right Aλ-module through right multiplication.

The following is immediate.

Lemma 4. For λ ∈ P+, η ∈ Q+ the subspaces WA(λ)n
+

λ−η and WA(λ)n
+⊗A
λ−η are Aλ–

submodules of WA(λ) and we have

WA(λ)n
+

λ = WA(λ)n
+⊗A
λ = WA(λ)λ.

1.4.4

For λ, µ ∈ P+, the space Homg⊗A(WA(µ),WA(λ)) has the natural structure of a

right Aλ–module: given a homomorphism f : WA(µ) → WA(λ) and a ∈ Aλ, we define

f.a : WA(µ) → WA(λ) by extending the assignment wµ 7→ wµ.a to a homomorphism of

g ⊗ A–modules. To see that this is well–defined, by Lemma 2 it is enough to observe that

wµ.a satisfies the defining relations of WA(µ).

The following lemma establishes some basic properties of this module structure.

Lemma 5. Given λ, µ ∈ P+, we have

Homg⊗A(WA(µ),WA(λ)) ∼=Aλ
WA(λ)n

+⊗A
µ .

14



In particular,

Homg⊗A(WA(λ),WA(λ)) ∼=Aλ
Aλ
∼=Aλ

WA(λ)n
+⊗A
λ .

Proof. Let ψ : WA(µ) → WA(λ) be a nonzero g ⊗ A–module map. The vector ψ(wµ) ∈

WA(λ) clearly has weight µ and is annihilated by n+ ⊗ A. Thus, we obtain a well-defined

map Homg⊗A(WA(µ),WA(λ)) → WA(λ)µ of right Aλ–modules given by ψ 7→ ψ(wµ). It is

straightforward to see that this map is injective, sinceWA(µ) is a cyclic U(g⊗A)–module and

thus ψ is determined by ψ(wµ). On the other hand, given any vector w ∈WA(λ)n
+⊗A
µ , the

assignment wµ 7→ w induces a well–defined homomorphism WA(µ)→WA(λ) by Lemma 2,

which establishes the first part of the lemma.The second part follows immediately from the

first and from Equation 1.4.4, and the lemma is proved.
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Chapter 2

In this chapter, we state the main results of Part I and make some comments

about the restrictions in their hypotheses.

2.1 Statement of results

First, let us establish some additional notation.

2.1.1

For s = (si)i∈I ∈ ZI+, set

As =
⊗
i∈I

A⊗siωi , WA(s) =
⊗
i∈I

WA(ωi)
⊗si , ws =

⊗
i∈I

w⊗siωi , (2.1.1)

where all tensor products are taken in the same (fixed) order. Given k, ` ∈ Z+ let Rk,`

be the algebra of polynomials C[t±1
1 , . . . , t±1

k , u1, . . . , u`] with the convention that if k = 0

(respectively ` = 0), R0,` (respectively Rk,0) is just the ring of polynomials (respectively

Laurent polynomials) in ` (respectively k) variables.
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2.1.2

The main result of Part I is the following.

Theorem 2. Assume that A = Rk,` for some k, ` ∈ Z+. For all s ∈ Zn+ and µ ∈ P+, we

have

Homg⊗A(WA(µ),WA(s)) ∼=As WA(s)n
+⊗A
µ =

(⊗
i∈I

(WA(ωi)
n+⊗A)⊗si

)
µ
. (2.1.2)

In the case when g is a classical simple Lie algebra, we can make (2.1.2) more

precise. Let I0 be the set of i ∈ I such that αi occurs in θ with the coefficient 2/(αi, αi). In

particular, I0 = I for g of type A or C. Given s = (si)i∈I ∈ ZI+ and λ ∈ P+, let cs(λ) ∈ Z+

be the coefficient of e(λ) in

∏
i∈I0

e(ωi)
si
∏
i/∈I0

 ∑
0≤j≤i/2

(
j + k − 1

j

)
e(ωi−2j)

si

,

where ω0 = 0.

Corollary 6. Let λ ∈ P+ and s ∈ ZI+. Assume either that g is not an exceptional Lie

algebra or that si = 0 if i /∈ I0. We have

Homg⊗A(WA(λ),WA(s)) ∼=As A
⊕cs(λ)
s ,

where we use the convention that A
⊕cs(λ)
s = 0 if cs(λ) = 0.

2.1.3

Our next result is the following. Recall from Lemma 5 that for all λ ∈ P+ we have

Homg⊗A(WA(λ),WA(λ)) ∼=Aλ
Aλ.
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Theorem 3. Let A be the ring R0,1 or R1,0. For all µ =
∑

i∈I siωi ∈ P+ with si = 0 if

i /∈ I0, and all λ ∈ P+, we have

Homg⊗A(WA(λ),WA(µ)) = 0, if λ 6= µ.

Further, any non–zero element of Homg⊗A(WA(µ),WA(µ)) is injective. An analogous result

holds when A = Rk,`, k, ` ∈ Z+, g ∼= sln+1 and µ = sω1.

2.2 Remarks on the main results

We now make some comments on the various restrictions in the main results.

The proof of Theorem 2 relies on an explicit construction of the fundamental global Weyl

modules in terms of certain finite–dimensional modules called the fundamental local Weyl

modules. A crucial ingredient of this construction is a natural bialgebra structure of Rk,`.

The proof of Corollary 6 depends on a deeper understanding of the g–module structure of

the local fundamental Weyl modules. These results are unavailable for the exceptional Lie

algebras when k + ` > 1. In the case when k + ` = 1, the structure of these modules for

the exceptional algebras is known as a consequence of the work of many authors on the

Kirillov–Reshetikhin conjecture (see [6] for extensive references on the subject). Hence, a

precise statement of Corollary 6 could be made when k + ` = 1 in a case by case and in a

not very compact fashion. The interested reader is referred to [16] and [20].

2.2.1

Before discussing Theorem 3, we make the following conjecture.
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Conjecture 7. Let A = Rk,` for some k, ` ∈ Z+. Then for all λ ∈ P+ and s ∈ Zn+, any

non–zero element of Homg⊗A(WA(λ),WA(s)) is injective.

The proof of Theorem 3 will rely on the fact that this conjecture is true (see

Section 4.3.2) when k+` = 1 and si = 0 if i /∈ I0 as well as on the fact that the fundamental

local Weyl module is irreducible as a g–module if i ∈ I0. We shall prove in Section 4.3.2

using Corollary 6 and the work of [12] that the conjecture is also true when g = slr+1 and

λ = sω1. Remark 22 of this paper shows that Homg⊗A(WA(λ),WA(µ)) can be non–zero if

we remove the restriction on µ.

2.2.2

Finally, we make some remarks on quantum analogs of this result. In the case of

the quantum loop algebra, one also has analogous notions of global and local Weyl modules

which were defined in [11], and one can construct the global fundamental Weyl module from

the local Weyl module in a way analogous to the one given in this paper for A = C[t±1]. It

was shown in [11] for the quantum loop algebra of sl2 that the canonical map from the global

Weyl module into the tensor product of fundamental global Weyl modules is injective. For

the general quantum loop algebra, this was established by Beck and Nakajima ([1]) using

crystal and global bases. They also describe the space of extremal weight vectors in the

tensor product of quantum fundamental global Weyl modules.
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Chapter 3

In this chapter we recall some necessary results from [7] and also the definition

and elementary properties of local Weyl modules.

3.1 The highest weight space

3.1.1

For r ∈ Z+, the symmetric group Sr acts naturally on A⊗r and on (MaxA)×r by

permuting the factors. Let (A⊗r)Sr be the corresponding ring of invariants and (MaxA)×r/Sr

the set of orbits, respectively, of these actions. If r = r1 + . . . + rn, then we regard

Sr1 × · · · × Srn as a subgroup of Sr in the canonical way: Sr1 permutes the first r1 let-

ters, Sr2 the next r2 letters, and so on. Given λ =
∑

i∈I riωi ∈ P+, set

rλ =
∑
i∈I

ri, Sλ = Sr1 × · · · × Srn , Aλ = (A⊗rλ)Sλ , (3.1.1)

MaxAλ = (MaxA)rλ/Sλ. (3.1.2)
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The algebra Aλ is generated by elements of the form

symi
λ(a) = 1⊗(r1+···+ri−1) ⊗

( ri−1∑
k=0

1⊗k ⊗ a⊗ 1⊗(ri−k−1)
)
⊗ 1⊗(ri+1+···+rn), a ∈ A, i ∈ I.

(3.1.3)

The following was proved in [7, Theorem 4].

Proposition 8. Let A be a finitely generated commutative associative algebra over C with

trivial Jacobson radical. Then the homomorphism of associative algebras U(h ⊗ A) → Aλ

defined by

hi ⊗ a 7→ symi
λ(a), i ∈ I, a ∈ A

induces an isomorphism of algebras symλ : Aλ
∼−→ Aλ. In particular, if A is a finitely

generated integral domain then Aλ is isomorphic to an integral subdomain of Ar.

3.1.2

For λ, µ ∈ P+, it is clear that the tensor product WA(λ)⊗WA(µ) has the natural

structure of a (g ⊗ A,Aλ ⊗ Aµ)-module. We recall from [7] that, in fact, there exists a

(g⊗A,Aλ+µ)-bimodule structure on WA(λ)⊗WA(µ).

It is clear from Definition 1.4 that the assignment wλ+µ 7→ wλ ⊗ wµ defines a

homomorphism τλ,µ : WA(λ + µ) → WA(λ) ⊗WA(µ) of g ⊗ A-modules. The restriction

of this map to WA(λ + µ)λ+µ induces a homomorphism of algebras Aλ+µ → Aλ ⊗Aµ as

follows. Consider the restriction of the comultiplication ∆ of U(g ⊗ A) to U(h ⊗ A). It is

not hard to see that

AnnU(h⊗A)⊗U(h⊗A)(wλ⊗wµ) ⊂ AnnU(h⊗A)wλ⊗U(h⊗A) +U(h⊗A)⊗AnnU(h⊗A)wµ,
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and hence we have

∆(AnnU(h⊗A)(wλ+µ)) ⊂ AnnU(h⊗A)wλ ⊗U(h⊗A) + U(h⊗A)⊗AnnU(h⊗A)wµ.

It is now immediate that the comultiplication ∆ : U(h ⊗ A) → U(h ⊗ A) ⊗ U(h ⊗ A)

induces a homomorphism of algebras ∆λ,µ : Aλ+µ → Aλ ⊗ Aµ. This endows any right

Aλ⊗Aµ-module (hence, in particular, WA(λ)⊗WA(µ)) with the structure of a right Aλ+µ-

module. It was shown in [7] that τλ,µ is then a homomorphism of (g⊗A,Aλ+µ)-bimodules.

Summarizing, we have

Lemma 9. Let λs ∈ P+, 1 ≤ s ≤ k and let λ =
∑k

s=1 λs. The natural map WA(λ) →

WA(λ1)⊗ · · · ⊗WA(λk) given by wλ 7→ wλ1 ⊗ · · · ⊗wλk is a homomorphism of (g⊗A,Aλ)-

bimodules.

3.2 Local Weyl modules

For λ ∈ P+, let Wλ
A be the right exact functor from Aλ−Mod to the category of

g⊗A-modules given on objects by

Wλ
AM = WA(λ)⊗Aλ

M, M ∈ Aλ −Mod .

This is known as the Weyl functor; it plays a crucial role in all that follows. Clearly Wλ
AM

is a weight module for g and we have isomorphisms of vector spaces

(Wλ
AM)λ−η ∼= (WA(λ))λ−η ⊗Aλ

M, η ∈ Q+,

(Wλ
AM)λ ∼= (WA(λ)λ)⊗Aλ

M ∼= wλ ⊗C M.

Moreover, Wλ
AM is generated as a g⊗A-module by the space wλ ⊗C M and

Wλ
AM
∼= Wµ

AN ⇐⇒ λ = µ, M ∼=Aλ
N.
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Because Aλ is a commutative associative algebra over the algebraically closed field C, the

isomorphism classes of simple objects of Aλ −Mod are given by the maximal ideals of Aλ.

Given I ∈ Max Aλ, the quotient Aλ/I is a simple object of Aλ −Mod and has dimension

one. The g ⊗ A-modules Wλ
AAλ/I are called the local Weyl modules and when λ = ωi,

i ∈ I we call them the fundamental local Weyl modules. It follows that (Wλ
AAλ/I)λ is also

a one-dimensional vector space spanned by

wλ,Aλ/I = wλ ⊗ 1.

We note the following corollary.

Corollary 10. Suppose that M ∈ Aλ −Mod is finite-dimensional. Then Wλ
AM is finite–

dimensional. In particular, the local Weyl modules are finite–dimensional and have a unique

irreducible quotient Vλ
AM .

3.2.1

We note the following consequence of Proposition 8.

Lemma 11. For i ∈ I, we have Aωi
∼= A and WA(ωi) is a finitely generated right A-module.

The fundamental local Weyl modules are given by

Wωi
A A/I = WA(ωi)⊗A A/I, I ∈ MaxA.

In particular, we have

(h⊗ a)wωi,A/I = 0, (h⊗ b)wωi,A/I = ωi(h)wωi ⊗ b̄, h ∈ h, a ∈ I, b ∈ A.
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3.2.2

The following lemma is a special case of a result proved in [7] and we include the

proof in this case for the reader’s convenience.

Lemma 12. Let A be a finitely generated, commutative associative algebra. For I ∈ MaxA

there exists N ∈ Z+ such that for all i ∈ I,

(g⊗ IN )Wωi
A A/I = 0. (3.2.1)

Proof. First, we claim it is enough to show that for j ∈ I there exists Nj ∈ Z+, with

(x−αj ⊗ INj )wωi,A/I = 0. (3.2.2)

Indeed, write x−θ = [x−αi1
[· · · [x−αip−1

, x−αip ] · · · ]] for some i1, . . . , ip ∈ I (where we recall that

θ is the highest root of g) and take N =
∑p

j=1Nij . Together with the fact that

Wωi
A A/I = U(n− ⊗A)wωi,A/I, [x−θ , n

−] = 0,

Equation 3.2.2 implies that

(x−θ ⊗ IN )wωi,A/I = 0,

and because g is a simple Lie algebra, this will prove the lemma.

It therefore remains to establish 3.2.2. Observe first that for j 6= i ∈ I, k ∈ I and

for all a ∈ A

x+
αk

(x−αj ⊗ a)wωi,A/I = δk,j(hj ⊗ a)wωi,I = 0,

by Lemma 3.2.1 and the defining relations of WA(ωi). Thus, (x−αj⊗a)wωi,A/I ∈ (Wωi
A A/I)n

+

and since ωi − αj /∈ P+ we conclude that

(x−αj ⊗A)wωi,A/I = 0, j 6= i.
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If j = i, then

0 = (x+
αi ⊗ a)(x−αi)

2wωi = 2((x−αi ⊗ 1)(hi ⊗ a)− (x−αi ⊗ a))wωi .

By Lemma 3.2.1, we have (hi ⊗ a)wωi,A/I = 0 if a ∈ I, and so we get

(x−αi ⊗ a)wωi,A/I = 0, a ∈ I

which completes the proof.

3.3 Fundamental global Weyl modules

In this section we establish the main tool for proving Theorem 2. It is not, in

general, clear how (or even if it is possible) to reconstruct the global Weyl module from

a local Weyl module. The main result of this section is that it is possible to do so when

λ = ωi and A = Rk,` for some k, ` ∈ Z+.

3.3.1

We begin with a general construction. The Lie algebra (g⊗A)⊗A acts naturally

on V ⊗A for any g⊗A-module V . Suppose that A is a bialgebra with the comultiplication

h : A → A ⊗ A. (It is useful to recall that A is a commutative associative algebra with

identity). Then the comultiplication map h induces a homomorphism of Lie algebras 1⊗h :

g⊗A→ g⊗A⊗A (cf. 1.1.1) and thus a g⊗A-module structure on V ⊗A. Explicitly, the

(g⊗A,A)-bimodule structure on V ⊗A is given by the following formulas:

(x⊗ a)(v ⊗ b) =
∑
s

(x⊗ a′s)v ⊗ a′′sb, (v ⊗ b)a = v ⊗ ba, v ∈ V, a, b ∈ A,
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where h(a) =
∑

s a
′
s ⊗ a′′s . We denote this bimodule by (V ⊗ A)h and observe that it is a

free right A-module of rank equal to dimC V . It is trivial to see that (V ⊗ A)h is a weight

module for g⊗A if V is a weight module for g⊗A and that

((V ⊗A)h)µ = Vµ ⊗A, V n+⊗A ⊗A ⊂ (V ⊗A)n
+⊗A

h .

Moreover, if V1, V2 are g⊗A-modules, one has a natural inclusion

Homg⊗A(V1, V2) ↪→ Homg⊗A((V1 ⊗A)h, (V2 ⊗A)h), η 7→ η ⊗ 1. (3.3.1)

In particular, if V is reducible, then (V ⊗A)h is also a reducible (g⊗A)-module.

3.3.2

Let hk,` : Rk,` → Rk,` ⊗Rk,` be the comultiplication given by,

hk,`(t
±1
s ) = t±1

s ⊗ t±1
s , hk,`(ur) = ur ⊗ 1 + 1⊗ ur,

where 1 ≤ s ≤ k and 1 ≤ r ≤ `. Any monomial m ∈ Rk,` can be written uniquely as a

product of monomials

m = mumt, mt ∈ C[t±1
1 , . . . , t±1

k ], mu ∈ C[u1, . . . , u`].

Set deg t±1
s = ±1 and deg ur = 1 for 1 ≤ s ≤ k, 1 ≤ r ≤ ` and let degt m (respectively,

degu m) be the total degree of mt (respectively, mu) and for for any f ∈ A define degt f

and degu f in the obvious way. The next lemma is elementary.

Lemma 13. Let m = mtmu be a monomial in Rk,`. Then mt ∈ R×k,`, hk,`(mt) = mt⊗mt

and

hk,`(m) = m⊗mt +
∑
q

m′u,qmt ⊗m′′u,qmt = mt ⊗m +
∑
q

m′′u,qmt ⊗m′u,qmt, (3.3.2)
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where m′u,q,m
′′
u,q are (scalar multiples of) monomials in the ur, 1 ≤ r ≤ `, such that if

m′u,q 6= 0, m′′u,q 6= 0, then degu m′u,q < degu m and degu m′u,q + degu m′′u,q = degu m.

3.3.3

For the rest of the section A denotes the algebra Rk,` for some k, ` ∈ Z+ and I

the ideal of A generated by the elements {t1 − 1, . . . , tk − 1, u1, . . . , u`}.

Suppose that J ∈ MaxRk,`. It is clear that there exists an algebra automorphism

ϕ : Rk,` → Rk,` such that ϕ(I) = J. As a consequence, we have an induced isomorphism of

g⊗A-modules,

Wωi
A A/I

∼= (1⊗ ϕ)∗Wωi
A A/J. (3.3.3)

Moreover, if we set

hϕk,` = (ϕ⊗ ϕ) ◦ hk,` ◦ ϕ−1 : A→ A⊗A,

then hϕk,` also defines a bialgebra structure on A and we have an isomorphism of g ⊗ A-

modules

(1⊗ ϕ)∗(Wωi
A A/I⊗A)hk,`

∼= (Wωi
A A/J⊗A)hϕk,`

. (3.3.4)

This becomes an isomorphism of (g⊗A,A)-bimodules if we twist the right A-module struc-

ture of (Wωi
A A/J⊗A)hϕk,`

by ϕ.

3.4 Construction of fundamental global Weyl modules

We now reconstruct the global fundamental Weyl module from a local one.
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Proposition 14. For all i ∈ I, the assignment wωi 7→ wωi,A/I ⊗ 1 defines an isomorphism

of (g⊗A,A)-bimodules

WA(ωi)
∼=−→ (Wωi

A A/I⊗A)hk,` .

Remark 15. It is clear from (3.3.4) and Section 1.4 that one can work with an arbitrary

ideal J provided that hk,` is replaced by hϕk,`, where ϕ is the unique automorphism of A

such that ϕ(I) = J.

Proof. The element wωi,A/I ⊗ 1 ∈ (Wωi
A A/I ⊗ A)h satisfies the relations in Definition 1.4

and hence the assignment wωi 7→ wωi,A/I ⊗ 1 defines a homomorphism of g⊗A-modules

p : WA(ωi)→ (Wωi
A A/I⊗A)hk,` .

We begin by proving that p is a homomorphism of right A-modules. Using Lemma 3.2.1

and the definition of the right module structure on WA(ωi) we see that

p((uwωi)a) = p(u(hi ⊗ a)wωi) = u(hi ⊗ a)(wωi,A/I ⊗ 1), u ∈ U(g⊗A), a ∈ A.

This shows that it is enough to prove that for any monomial m in A, we have

(hi ⊗m)(wωi,A/I ⊗ 1) = wωi,A/I ⊗m. (3.4.1)

Write m = mtmu and observe that mt − 1 ∈ I while

degu m > 0 =⇒ m ∈ I.

Using (3.3.2) we get

hk,`(m)− 1⊗m ∈ I⊗A

and since (hi ⊗ I⊗A)(wωi,A/I ⊗ 1) = 0 by Lemma 3.2.1, we have established (3.4.1).
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To prove that p is surjective we must show that

U(g⊗A)(wωi,A/I ⊗ 1) = (Wωi
A A/I⊗A)hk,` ,

and the remarks in Section 3.3.1 show that it is enough to prove

(Wωi
A A/I)ωi−η ⊗A ⊂ U(g⊗A)(wωi,A/I ⊗ 1), η ∈ Q+. (3.4.2)

The argument is by induction on ht η, the induction base with ht η = 0 being immediate

from (3.4.1). For the inductive step assume that we have proved the result for all η ∈ Q+

with ht η < k. To prove the result for ht η = k, it suffices to prove that for all j ∈ I and all

monomials m in A we have

((x−αj ⊗m)w)⊗ g ∈ U(g⊗A)(wωi,A/I ⊗ 1),

where w ∈ (Wωi
A A/I)ωi−η′ with ht η′ = k − 1 and g ∈ A. For this, we argue by a further

induction on degu m. If degu m = 0 then m = mt and we have

((x−αj ⊗m)(w)⊗ g = (x−αj ⊗m)(w ⊗m−1g) ∈ U(g⊗A)(Wωi
A A/I)ωi−η′ .

This proves that the induction on degu m starts. If degu m > 0 we use (3.3.2) to get

((x−αj ⊗m)w)⊗ g = (x−αj ⊗m)(w ⊗m−1
t g)−

∑
q

((x−αj ⊗m′u,qmt)w)⊗m′′u,qg.

Both terms on the right hand side are in U(g⊗A)(Wωi
A A/I)ωi−η′ : the first by the induction

hypothesis on ht η′ and the second by the induction hypothesis on degu m. This completes

the proof of the surjectivity of p.

To prove that p is injective, recall from Section 3.3.1 that (Wωi
A A/I⊗ A)hk,` is a

free right A-module of rank equal to the dimension of Wωi
A A/I. Hence if K is the kernel
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of p we have an isomorphism of right A-modules,

WA(ωi) ∼= K ⊕ (Wωi
A A/I⊗A)hk,` .

Using (3.3.3) we see that for any maximal ideal J in A,

dim(WA(ωi)⊗A A/J) = dim Wωi
A A/J = dim Wωi

A A/I = dim((Wωi
A A/I⊗A)hk,` ⊗A A/J).

Therefore, K ⊗A A/J = 0. Since K is finitely generated over the (Noetherian) ring A,

Nakayama’s Lemma implies that there is a ∈ A with a − 1 ∈ J, so that Ka = 0. In

particular, a becomes invertible in the localization AJ, from which it now follows that

KJ = 0 for all J ∈ MaxA. Thus, K = 0.
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Chapter 4

This chapter contains the proofs of the main theorems of Part I.

4.1 Proof of Theorem 2 and Corollary 6

We continue to assume that A = Rk,`, k, ` ∈ Z+ and that I is the maximal ideal

of A generated by {t1 − 1, . . . , tk − 1, u1, . . . , u`}. We also use the comultiplication hk,`

and denote it by just h. Let MA ⊂ A be the set of monomials in the generators ur, t
±1
s ,

1 ≤ r ≤ `, 1 ≤ s ≤ k.

4.1.1

The following proposition, together with Lemma 12 and Proposition 14, completes

the proof of Theorem 2.

Proposition 16. Suppose that Vs, 1 ≤ s ≤ M are g ⊗ A-modules such that there exists

N ∈ Z+ with

(n+ ⊗ IN )Vs = 0, 1 ≤ s ≤M. (4.1.1)
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Then

((V1 ⊗A)h ⊗ · · · ⊗ (VM ⊗A)h)n
+⊗A = (V n+⊗A

1 ⊗A)h ⊗ · · · ⊗ (V n+⊗A
M ⊗A)h.

4.1.2

The first step in the proof of Proposition 16 is the following. We need some

notation. Let V be a g⊗A-module and let K ∈ Z+. Define

V≥K = {v ∈ V : (n+ ⊗m)v = 0, m ∈MA, |degt m| ≥ K}.

Note that V≥0 = V n+⊗A.

Lemma 17. Let V be a g⊗A-module and K ∈ Z+. Then

((V ⊗A)h)≥K = V≥K ⊗A. (4.1.2)

In particular,

(V ⊗A)n
+⊗A

h = V n+⊗A ⊗A. (4.1.3)

Proof. Let vh ∈ (V ⊗A)h and write, vh =
∑

p vp⊗gp, where {gp}p is a linearly independent

subset of A. By (3.3.2) we have

(x⊗m)vh =
∑
p

(x⊗m)vp ⊗mtgp +
∑
p,q

(x⊗m′u,qmt)vp ⊗m′′u,qmtgp.

with degu m′u,q < degu m. Since degt m
′
u,qmt = degt m, it follows that

V≥K ⊗A ⊂ ((V ⊗A)h)≥K .

We prove the reverse inclusion by induction on degu m. Let vh ∈ ((V ⊗ A)h)≥K and let

degt m ≥ K. If degu m = 0, then

0 = (x⊗m)vh =
∑
p

(x⊗m)vp ⊗ gpm.

32



Since the set {gpm}p is also linearly independent, we see that (x ⊗m)vp = 0 for all p. If

degu m > 0, we use (3.3.2) to get

0 = (x⊗m)vh =
∑
p

(x⊗m)vp ⊗mtgp +
∑
p,q

(x⊗m′u,qmt)vp ⊗m′′u,qmtgp.

Since degu m′u,q < degu m all terms in the second sum are zero by the induction hypothesis,

and the linear independence of the set {mtgp}p gives (x⊗m)vp = 0 for all p.

4.1.3

Proposition 18. Let U, V be g⊗A-modules and suppose that for some N ∈ Z+

(n+ ⊗ IN )V = 0.

Then

(U ⊗ (V ⊗A)h)n
+⊗A = Un+⊗A ⊗ (V n+⊗A ⊗A). (4.1.4)

Before proving this proposition, we establish Proposition 16. The argument is by

induction on M , with (4.1.3) showing that induction begins at M = 1. For M > 1, take

U = (V1 ⊗A)h ⊗ · · · ⊗ (VM−1 ⊗A)h, V = VM .

The induction hypothesis applies to U and together with Proposition 18 completes the

inductive step.

4.1.4

Lemma 19. Let A = Rk,` with k > 0. Let V be a g ⊗ A-module and suppose that

(n+ ⊗ IN )V = 0 for some N ∈ Z+. Then for all K ∈ Z+ we have

V n+⊗A = V≥K .

33



Proof. It suffices to prove that V≥K ⊂ V≥K−1 for all K ≥ 1. Since (1− t±1
1 )N ∈ IN we have

0 = (x⊗m(1− t±1
1 )N )v = (x⊗m)v +

N∑
s=1

(−1)s
(
N

s

)
(x⊗mt±s1 )v, (4.1.5)

for all x ∈ n+, m ∈ MA and v ∈ V Suppose that v ∈ V≥K and take m ∈ MA with

|degt m| = K − 1. If degt m ≥ 0 (respectively, degt m < 0) then | degt mts1| ≥ K (respec-

tively, | degt mt−s1 | ≥ K) for all s > 0. Thus we conclude that all terms in the sum in (4.1.5)

with the appropriate sign choice equal zero hence (x⊗m)v = 0 and so v ∈ V≥K−1.

4.1.5

Lemma 20. Let A = R0,`. Let V be a g ⊗ A-module and suppose that (n+ ⊗ IN )V = 0

for some N ∈ Z+. Let K ≥ N ∈ Z+. Then

V n+⊗A ⊗A = {vh ∈ (V ⊗A)h : (n+ ⊗m)vh = 0, m ∈MA, degu m ≥ K} (4.1.6)

Proof. Since (V ⊗ A)h is a (g ⊗ A,A)-bimodule the sets on both sides of (4.1.6) are right

A-modules. Hence if vh is an element of the set on the right hand side of (4.1.6) then vhu
s
j

is also in the right hand side of (4.1.6) for all s ∈ Z+. Write vh =
∑

p vp ⊗ gp, where {gp}p

is a linearly independent subset of A. Since the uj , 1 ≤ j ≤ ` are primitive and usj ∈ IN

if s ≥ N , we have for all 0 ≤ r ≤ N

0 = (x⊗ u(K+N−r)
j )(vh)u

(r)
j =

N∑
s=0

(∑
p

((x⊗ u(s)
j )vp)⊗ u(K+N−r−s)

j gpu
(r)
j

)

=

N∑
s=0

(
K +N − s

r

)(∑
p

((x⊗ u(s)
j )vp)⊗ u(K+N−s)

j gp

)
.

We claim that the matrix C(N,K) = (
(
K+N−s

r

)
)0≤s,r≤N is invertible. Assuming the claim,

we get ∑
p

((x⊗ u(s)
j )vp)⊗ u(K+N−s)

j gp = 0, 0 ≤ s ≤ N,

34



and since the gp are linearly independent this implies that

(x⊗ u(s)
j )vp = 0, 0 ≤ s ≤ N

and so (x⊗ usj)vh = 0 for all x ∈ n+, s ∈ Z+.

Now, let m ∈ MA and let α ∈ Φ+. Then (hα ⊗m)vh is also an element of the

right hand side of (4.1.6) and hence by the preceding argument, we get

0 = (xα ⊗ 1)(hα ⊗m)vh

= (hα ⊗m)(xα ⊗ 1)vh − 2(xα ⊗m)vh = −(2xα ⊗m)vh,

thus proving that vh ∈ (V ⊗A)n
+⊗A

h = V n+⊗A ⊗A by (4.1.3).

To prove the claim, let u be an indeterminate and let {pr ∈ C[u] : 0 ≤ r ≤ N}

be a collection of polynomials such that deg pr = r (in particular, we assume that p0

is a non-zero constant polynomial). Then for any tuple (a0, . . . , aN ) ∈ CN+1, we have

det(pr(as))0≤r,s≤N = cdet(ars)0≤r,s≤N = c
∏

0≤r<s≤N (as − ar), where c is the product of

highest coeffcients of the pr, 0 ≤ r ≤ N . Since
(
u
r

)
is a polynomial in u of degree r with

highest coefficient 1/r!, we obtain with as = N +K − s,

detC(N,K) =
( N∏
r=1

r!
)−1 ∏

0≤r<s≤N
(r − s) = (−1)N(N+1)/2.

4.2 Proof of Proposition 18

Now we have all the necessary ingredients to prove Proposition 18.

Proof of Proposition 18. Let vh ∈ (U ⊗ (V ⊗A)h)n
+⊗A and write vh =

∑
p,sws ⊗ vs,p ⊗ gp,
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where {ws}s and {gp}p are linearly independent subsets of U and A respectively. We have

0 = (x⊗m)vh =
∑
s,p

(
((x⊗m)ws)⊗ vs,p ⊗ gp + ws ⊗ (x⊗m)(vs,p ⊗ gp)

)
(4.2.1)

=
∑
s,p

((x⊗m)ws)⊗ vs,p ⊗ gp

+
∑
s,p

ws ⊗
(

(x⊗m)vs,p ⊗ gpmt +
∑
q

(x⊗m′u,qmt)vs,p ⊗m′′u,qmtgp

)
, (4.2.2)

Suppose first that A = Rk,` with k > 0 and let K = maxp | degt gp| + 1. If m is such that

|degt m| ≥ K, then the set {gp}p is linearly independent from the set {m′′u,qmtgp}p,q and

hence we must have that

∑
s,p

((x⊗m)ws)⊗ vs,p ⊗ gp = 0,
∑
s,p

ws ⊗ (x⊗m)(vs,p ⊗ gp) = 0 (4.2.3)

and using the linear independence of the elements {ws}s we conclude that for all s

∑
p

(vs,p ⊗ gp) ∈ ((V ⊗A)h)≥K = V≥K ⊗A = V n+⊗A ⊗A,

using (4.1.2) and Lemma 19. This proves Proposition 18 in the case when k > 0.

Suppose now that A = R0,` and let N ∈ Z+ be such that (n+ ⊗ IN )V = 0.

Let K = N + 1 + maxp {degu gp} and let x ∈ n+. If degu m ≥ K then m ∈ IN and

so (x ⊗ m)vs,p = 0. Furthermore, (x ⊗ m′u,q)vs,p 6= 0 implies that degu m′u,q < N . By

Lemma 13 it follows that degu m′′u,q > maxp {deg gp}. Therefore, the non-zero terms, if any,

in the second sum in (4.2.2) are linearly independent from those in the first sum and we

obtain (4.2.3). Furthermore, we have

0 =
∑
p

∑
{q : degum′u,q<N}

(x⊗m′u,q)vs,p ⊗m′′u,qgp

and as before we conclude that (x ⊗ m′u,q)vs,p = 0 when degu m′u,q < N . Thus, (x ⊗

m)
(∑

p vs,p ⊗ gp
)

= 0 for all s and it remains to apply Lemma 20.
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4.2.1

We conclude this section with a proof of Corollary 6. The following is a special

case of Theorem 7.1 and Proposition 7.7 of [7].

Theorem 4. Let I ∈ MaxA, where A = Rk,`. Then

dim(Wωi
A A/I)n

+⊗A = dim(Wωi
A A/I)ωi = 1, i ∈ I0,

If g is of type Bn or Dn and i /∈ I0 then

dim(Wωi
A A/I)n

+⊗A
µ =


0, µ 6= ωi−2j ,(
j + k − 1

j

)
, µ = ωi−2j , i− 2j ≥ 0

where ω0 = 0.

Alternately, one may reformulate this result in the following way. The subspace

(Wωi
A A/I)n

+⊗A is an h-module with character given by

ch(Wωi
A A/I)n

+⊗A =
∑

j:i−2j≥0

(
j + k − 1

j

)
e(ωi−2j).

Hence, using Theorem 2, we get

chWA(s)n
+⊗A =

∏
i∈I

(ch(Wωi
A A/I)n

+⊗A)si ,

and Corollary 6 follows.

4.3 Proof of Theorem 3

Given s ∈ ZI+, define µs ∈ P+ by µs =
∑

i∈I siωi and let τs : WA(µs) → WA(s)

be the natural map of (g ⊗ A,A)-bimodules defined in the above lemma and satisfy-

ing τs(wµs) = ws. Since WA(s)µs = ws ⊗ As, we see that any non-zero element τ of
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Homg⊗A(WA(µs),WA(s)) is given by composing τs with right multiplication by an element

of As, i.e. τ = τsa with a ∈ As.

4.3.1

Lemma 21. Assume that λ ∈ P+ and s ∈ ZI+ satisfy

(i) any non-zero element of Homg⊗A(WA(λ),WA(s)) is injective,

(ii) the map τs : WA(µs)→WA(s) is injective.

Then any non-zero element of Homg⊗A(WA(λ),WA(µs)) is injective. Moreover, if si = 0 for

all i /∈ I0, then

Homg⊗A(WA(λ),WA(µs)) = 0, λ 6= µs.

Proof. Let η ∈ Homg⊗A(WA(λ),WA(µs)). If η 6= 0, then τs · η ∈ Homg⊗A(WA(λ),WA(s))

is non-zero since τs is injective. Hence τs · η is injective which forces η to be injective. If

we now assume that λ 6= µs and that si = 0 if i /∈ I0, then it follows from Corollary 6 that

Homg⊗A(WA(λ),WA(s)) = 0 and hence it follows that η = 0 in this case.

Remark 22. Using Theorem 4, we see that if g is of type Bn or Dn with n ≥ 6 and i = 4,

then (Wω4
A A/I)n

+⊗A
ω2

6= 0 or equivalently

Homg⊗A(Wω2
A A/I,W

ω4
A A/I) 6= 0.

Using Proposition 14 and (3.3.1) we get

Homg⊗A(WA(ω2),WA(ω4)) 6= 0,

which in particular proves that the last assertion of the above Lemma and hence Theorem

3 fail in this case.
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4.3.2

From now on, we shall assume that s ∈ ZI+ is such that si = 0 if i /∈ I0. By

Corollary 6, we see that Homg⊗A(WA(λ),WA(µs)) = 0 if λ 6= µs and the first condition of

Lemma 21 is trivially satisfied. Hence Theorem 3 will follow if we show that µs satisfies

both conditions in Lemma 21. By the discussion at the start of Section 5, we see that

proving that µs satisfies the first condition is equivalent to proving that τsa is injective for

all a ∈ As. In other words, Theorem 3 follows if we establish the following.

Proposition 23. Let s ∈ ZI+ be such that si = 0 if i /∈ I0. For all a ∈ As, the canonical

map τµa : WA(µs) → WA(s) given by extending wµs → wsa is injective, in the following

cases:

(i) A = R0,1 or R1,0,

(ii) A = Rk,`, g = sln+1 and s = (s, 0, . . . , 0) ∈ ZI+, s > 0.

The rest of the section is devoted to proving the proposition.

4.3.3

We begin by proving the following Lemma.

Lemma 24. Let A be a finitely generated integral domain. Let s ∈ ZI+ be such that si = 0

if i /∈ I0. Then τµsa : WA(µs) → WA(s) is injective for a ∈ As \ {0} if and only if τµs is

injective.

Proof. Consider the map ρa : WA(s)→WA(s) given by

ρa(w) = wa, w ∈WA(s).
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This is clearly a map of (g⊗A,As)-bimodules. Since

WA(s)µs = ws ⊗As,

and As is an integral domain, it follows that that the restriction of ρa to WA(s)µs is injective,

and so

ker ρa ∩WA(s)µs = {0}.

Since wt WA(s) ⊂ µs−Q+, it follows that if ker ρa is non-zero, there must exist w′ ∈ ker ρa

with

(n+ ⊗A)w′ = 0.

But this is impossible by Corollary 6 and hence ker ρa = 0. Since τµsa = ρaτµs , the Lemma

follows.

4.3.4

We now prove that τµs is injective. This was proved in [11] for g = sl2 and A = R1,0

and in [12] for g = sln+1, s = (s, 0, . . . , 0) ∈ Zn+, s > 0 and for any finitely generated integral

domain A.

Since

τsWA(µs)µs
∼=Aµs

(U(g⊗A)ws)µs
∼=Aµs

Aµs ,

the following proposition completes the proof of Proposition 23.

Proposition 25. Let µ ∈ P+ and let π : WA(µ)→W be a surjective map of (g⊗A,Aµ)-

bi-modules such that the restriction of π to WA(µ)µ is an isomorphism of right Aµ-modules.

If A = R0,1 or R1,0 and µ =
∑

i∈I0 siωi, then π is an isomorphism.
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4.3.5

Assume from now on that A is either R0,1 or R1,0. The following is well-known.

Proposition 26. For all r ∈ Z+, the ring (R⊗r0,1)Sr is isomorphic to R0,r and (R⊗r1,0)Sr is

isomorphic to C[t1, t2, . . . , tr, t
−1
r ].

The proposition implies that Max Aλ is an irreducible variety. Given λ ∈ P+,

define Dλ ⊂ Max Aλ by: I ∈ Dλ if and only if the Srλ-orbit of symλ I is of maximal size, i.e,

symλ I is the Srλ-orbit of ((t−a1,1), . . . , (t−a1,r1), . . . , (t−an,1), . . . , (t−an,rn)) ∈ (MaxA)×rλ

for some ai,r ∈ C (respectively ai,r ∈ C×) with ai,r 6= aj,s if (i, r) 6= (j, s). The set of such

orbits is clearly Zariski open in MaxAλ. Since symλ induces an isomorphism of algebraic

varieties MaxAλ → Max Aλ, we conclude that Dλ is Zariski open, hence is dense in Max Aλ.

Therefore, given any non-zero a ∈ Aλ there exists I ∈ Dλ with a /∈ I.

4.3.6

We shall need the following theorem.

Theorem 5. Let A = R0,1 or R1,0 and let λ =
∑

i∈I riωi ∈ P+.

(i) The right Aλ-module WA(λ) is free of rank dλ, where

dλ =
∏
i∈I

(dim Wωi
A (A/I))ri ,

for any I ∈ MaxA.

(ii) Let I ∈ Dλ. Then

Wλ
A(Aλ/I) ∼=

⊗
i∈I

ri⊗
r=1

Wωi
A (A/Ii,r),
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where Ii,r ∈ MaxA is the ideal generated by (t− ai,r). If, in addition, we have ri = 0

for i /∈ I0, then Wλ
A(Aλ/I) is an irreducible g⊗A- module.

Part (i) of the Theorem was proved in [11] for sl2, in [9] for slr+1 and in [15] for

algebras of type A,D,E. The general case can be deduced from the quantum case, using

results of [1, 19, 22]. Part (ii) of the Theorem was proved in [11] in a different language and

in [7] in the language of this paper.

4.4 Proof of Proposition 25

Proof of Proposition 25. Let {ws}1≤s≤dµ be an Aµ-basis ofWA(µ) (cf. Theorem 5(i)). Then

for all I ∈ max Aµ, {ws ⊗ 1}1≤s≤dµ is a C-basis of Wµ
AAµ/I. Suppose that w ∈ kerπ and

write

w =

dµ∑
s=1

wsas, as ∈ Aµ.

If w 6= 0, let a be the product of the non-zero elements of the set {as : 1 ≤ s ≤ dµ}.

Since Aµ is an integral domain we see that a 6= 0. By the discussion in Section 4.3.5 we

can choose I ∈ Dµ with a /∈ I. Then as 6= 0 implies that as /∈ I and hence w̄ := w ⊗ 1 =∑dµ
s=1ws⊗ ās 6= 0, where ās is the canonical image of as in Aµ/I. Notice that Theorem 5(ii)

implies that Wµ
A(Aµ/I) is a simple g⊗A-module.

Since π is surjective, W is generated by π(wµ). Setting W ′ = π(WA(µ)I), we see

that

W ′µ = π((WA(µ)I)µ) = π(wµ)I.

In particular, this proves that π(wµ) /∈W ′, hence W ′ is a proper submodule of W and

(W/W ′)I = 0.
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This implies that π induces a well-defined non-zero surjective homomorphism of g ⊗ A-

modules π̄ : Wµ
A(Aµ/I)→W/W ′ → 0. In fact since Wµ

A(Aµ/I) is simple, we see that π̄ is

an isomorphism. But now we have

0 = π(w) = π̄(w̄),

forcing w̄ = 0 which is a contradiction caused by our assumption that w 6= 0.

The proof of Proposition 25 is complete.
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Part II

Global Weyl modules for the

twisted loop algebra
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Chapter 5

For Part II of the manuscript, we alter our notation to fit the context of the twisted

loop algebras. From now on there will be two simple Lie algebras under consideration (one

being the set of fixed points of the other under an automorphism). As such, we need to

introduce some alternate notation, as the context will not always make it clear. This chapter

is devoted to some explication and reminders of preliminary results, in addition to these

notational changes.

5.1 Preliminaries

5.1.1

As in Part I, Let g be a finite–dimensional simple Lie algebra of rank n with Cartan

matrix (aij)i,j∈I , where I = {1, · · · , n}. Fix a Cartan subalgebra h of g and let R denote

the corresponding set of roots. Let {αi}i∈I (resp. {ωi}i∈I) be a set of simple roots (resp.

fundamental weights) and Q (resp. Q+), P (resp. P+) be the integer span (resp. Z+–span)

of the simple roots and fundamental weights respectively. Denote by ≤ the usual partial
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order on P ,

λ, µ ∈ P, λ ≤ µ ⇐⇒ µ− λ ∈ Q+.

Set R+ = R∩Q+ and let θ be the unique maximal element in R+ with respect to the partial

order.

Fix a Chevalley basis, which we now denote with capital letters byX±α , Hi, α ∈ R+,

i ∈ I of g and set X±i = X±αi , Hα = [X+
α , X

−
α ] and note that Hi = Hαi . For each α ∈ R+,

the subalgebra of g spanned by {X±α , Hα} is isomorphic to sl2. Define subalgebras n± of g

by

n± =
⊕
α∈R+

CX±α ,

and note that g has a triangular decomposition

g = n− ⊕ h⊕ n+.

Let σ be a permutation of I satisfying aσ(i)σ(j) = aij for each i, j ∈ I. Then the

assignment

X±i 7→ X±σ(i), Hi 7→ Hσ(i), i ∈ I,

extends to an automorphism of g called a diagram automorphism and also denoted by σ.

Fix such an automorphism, say of order m, and take Γ = 〈σ〉 = Z/mZ. The character

group G of Γ is defined as the set of group homomorphisms Γ → C∗; fixing ζ a primitive

mth root of 1, we obtain a G-grading of g:

g =

m−1⊕
s=0

gs

where

gs = {x ∈ g : σ(x) = ζsx} .
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Given any subalgebra a of g which is preserved by Γ, set as = gs ∩ a. The following is well

known (see for example [5] or [18, Chapter 8]). The fixed–point subalgebra g0 is a simple

Lie algebra and h0 is a Cartan subalgebra of g0, and we denote by R0 the corresponding set

of roots. We fix a set of simple roots {αi}i∈I0 , and let Q0 (resp. Q+
0 ), P0 (resp. P+

0 ) be the

integer span (resp. Z+–span) of the simple roots {αi}i∈I0 and the weights {ωi}i∈I0 (resp.

in the case where g is of type A2n the span of {ωi}i∈I0\{rk g0}∪{2ωrk g0}), respectively. This

conflict in notation between the roots of g0 and the roots of g will not cause a problem

in practice, where it will always be clear from context which we mean. The rank of g0 is

equal to the number of orbits of I under the induced action of Γ. We identify this set of

orbits with an index set for the simple roots of g0, and further identify this with a subset

I0 = {1, . . . , rk g0} ⊂ I by adopting the standard labeling as the first rk g0 nodes of I.

Moreover, gs is an irreducible representation of g0 for all s, and

n± ∩ g0 = n±0 =
⊕
α∈R+

0

(g)±α.

We set h0 = h ∩ g0, so we have g = n−0 ⊕ h0 ⊕ n+
0 is a triangular decomposition of g0.

As h0 ⊆ h, we have a natural map h∗ � h∗0 given by restriction; furthermore our

choice of Chevalley basis elements {hi} is such that P � P0. If λ ∈ P , we denote its image

under this projection by λ̄ ∈ P0. We will frequently suppress the bar if it is clear from

context whether a functional lies in P or in P0.

As diagram automorphisms, the group Γ acts upon the nodes I = {1, . . . , n} of

the Dynkin diagram of g, and for a node i of this diagram we denote by Γi the stabilizer of

i in Γ. More generally, Γ acts on R and we denote by Γα the stabilizer of α. For α ∈ R0,

we often choose a preimage lying in R, and when this will not cause confusion, we also
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label it α. For 0 ≤ k < m and α ∈ R0, we define the following elements hα(k) ∈ h ∩ gk,

x±α (k) ∈ n± ∩ gk:

hα(k) =
1

|Γα|

m−1∑
j=0

(ζk)jHσj(α), x±α (k) =
1

|Γα|

m−1∑
j=0

(ζk)jX±
σj(α)

.

In the case that g is of type A2n and α ∈ R0 is a short root, we also use the formula

above to define additional elements x±2α(1), satisfying

Cx±2α(1) = C[X±α , X
±
σ(α)].

Observe that if Γα = Γ, then hα(ε) = 0 for all ε 6= 0. We set hi(k) := hαi(k),

x±i (k) := x±αi(k) and write hi = hi(0), x±i = x±i (0).

Then for all x±α (0) ∈ (g0)α, hα(0) ∈ h, the vectors {x±α (0), hα(0)} generate a Lie algebra

isomorphic to sl2, and {x±α (0), hi}i∈I0,α∈R+
0

is a Chevalley basis of g0; see [14] for details.

In the case when Γ is trivial, we recover the untwisted case in the sense that g0 = g,

xα(0) = Xα, hα(0) = Hα, P±0 = P± and Q±0 = Q±.

5.1.2

Let A = C
[
t±1
]

and let A+ be a fixed vector space complement to the subspace

C of A. Given a Lie algebra a, define a Lie algebra structure on a⊗A, by

[x⊗ a, y ⊗ b] = [x, y]⊗ ab, x, y ∈ g, a, b ∈ A.

Definition 3. The Lie algebra a⊗A is called the loop algebra of a and is denoted by L(a).

We will denote by Γ : A → A the group action of Γ on A given by extending the

map σ : t 7→ ζt to an algebra homomorphism (recall that ζ is a primitive mth root of unity).
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Then A decomposes as

A =
m−1⊕
s=0

As,

where As = {a ∈ A : σ(a) = ζsa}. We then have A0 = C [t±m] and As = tsA0. The linear

extension of the map σ : x ⊗ tk 7→ σ(x) ⊗ σ(tk) for all x ∈ g, k ∈ Z is a Lie algebra

automorphism of g⊗A, and the set of fixed points

(g⊗A)Γ =

m−1⊕
s=0

gs ⊗A−s

is a Lie subalgebra of g⊗A.

Definition 4. The Lie algebra (g⊗A)Γ is called the twisted loop algebra of g with respect

to Γ; we will denote this algebra by LΓ(g).

These loop algebras occur as a main ingredient in a realization of the affine Kac–

Moody algebras and also of the extended affine Lie algebras; see for example [5, Chapter

18] or [18] for details. For any subalgebra a of g which is invariant under the action of Γ,

we set LΓ(a) = (a⊗A)Γ.

As Γ is generated by a diagram automorphism of g, the subalgebras n±, h of g are

each preserved by Γ and hence LΓ(g) inherits the triangular decomposition of g:

LΓ(g) = LΓ(n−)⊕ LΓ(h)⊕ LΓ(n+).

We briefly mention a more geometric realization of these loop algebras. The ring

C
[
t±1
]

is the coordinate ring of the affine variety C∗. The Lie algebra g can be viewed

as an affine variety, and if we denote by M(C∗, g) the Lie algebra of regular maps from

C∗ to g (where the bracket is defined pointwise), the group action of Γ on g and on A

(hence on C∗) extends to an action Γ : M(C∗, g) → M(C∗, g). Then it is easy to see that
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M(C∗, g)Γ ∼= LΓ(g); we call such a realization of LΓ(g) an equivariant map algebra (see [24]

for more details).

We identify a with the Lie subalgebra a ⊗ C of a ⊗ A. Similarly, if b is a Lie

subalgebra of a, then b ⊗ A is naturally isomorphic to a subalgebra of a ⊗ A. Finally we

denote by U(g⊗A+) the subspace of U(g⊗A) spanned by monomials in the elements x⊗a

where x ∈ g, a ∈ A+.

If J0 is any ideal in A0, then

m−1⊕
s=0

gs ⊗ t−sJ0 is clearly an ideal of LΓ(g); conversely,

the following can be deduced from [8] or [21].

Lemma 27. Let J be an ideal of LΓ(g). Then there exists an ideal J0 ⊆ A0 such that

J =
⊕
s∈Z

gs ⊗ t−sJ0.

5.1.3

A very important tool for understanding and analyzing modules for loop algebras

has been the use of results for L(sl2). In the twisted loop setting, we will once again

use results for the smallest available twisted loop algebra. Namely, let g = sl3 and Γ be

induced by the non-trivial Dynkin diagram automorphism of g. Then in our notation, the

fixed–point algebra is denoted by LΓ(sl3). In this case g0
∼= sl2 and g1

∼= V (4ω), the five–

dimensional irreducible sl2-module.

In contrast with the loop case, the twisted loop algebras are in some sense built from copies

of L(sl2) and LΓ(sl3). The following lemma, proved in [14], makes this idea precise.

Lemma 28.
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(i) If g is of type A2n, then we have canonical isomorphisms

L(sl2) ∼= sp
{
x±α (j)⊗ tms−j , hα(j)⊗ tms−j | s ∈ Z , 0 ≤ j ≤ m− 1

}
,

if α is a long root, and

LΓ(sl3) ∼= sp
{
x±α (j)⊗ tms−j , x±2α(j + 1)⊗ tms−j , hα(j)⊗ tms−j | s ∈ Z, 0 ≤ j ≤ m− 1

}
,

if α is a short root.

(ii) If g is not of type A2n, then we have canonical isomorphisms

L(sl2) ∼= sp
{
x±α (0)⊗ tms, hα(0)⊗ tms | s ∈ Z

}
,

if α is a long root, and

L(sl2) ∼= sp
{
x±α (j)⊗ tms−j , hα(j)⊗ tms−j | s ∈ Z , 0 ≤ j ≤ m− 1

}
,

if α is a short root.

5.1.4

In this section, we will recall some crucial results on the classification of simple

finite–dimensional modules for L(g). We begin with the definition of an evaluation module.

Given λ ∈ P+ and a ∈ C∗, the the g-module V (λ) descirbed in Theorem 1 has an L(g)–

module structure given by

(x⊗ tn).v = anx.v for all x ∈ g , v ∈ V (λ).

We denote this module by Va(λ). Clearly, since V (λ) is a simple g-module, Va(λ) is a simple

L(g)-module. This result has a generalization for tensor products of simple modules. To
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state this result, we will first introduce some useful terminology, due to [24]:

Let Ξ be the monoid of finitely supported functions from C∗ to P+. Thus, for ξ ∈ Ξ,

supp(ξ) := {a ∈ C∗ | ξ(a) 6= 0} ⊂ C∗

is a finite set. We define the weight of ξ ∈ Ξ by the formula wt(ξ) :=
∑

a∈supp(ξ) ξ(a) ∈ P+.

Consequently we have

Ξ =
⋃

λ∈P+

Ξλ,

where Ξλ = {ξ ∈ Ξ | wt(ξ) = λ}. We associate to each ξ ∈ Ξ an L(g)-module

Vξ :=
⊗

a∈supp(ξ)

Va(ξ(a)).

The following characterization of simple finite–dimensional L(g)-modules was proved in [10].

Theorem 6. Vξ is a simple finite–dimensional L(g)–module. Moreover, if V is a simple

finite–dimensional L(g)-module, then there exists ξ ∈ Ξ, such that V ∼= Vξ.

5.1.5

Before recalling the results on simple finite–dimensional modules for LΓ(g), we will

introduce the necessary notion of admissible sets.

Definition 5. A finite subset X ⊂ C∗ is called admissible, if for all a 6= b ∈ X we have

Γ.a ∩ Γ.b = ∅.

We say a finitely supported function ξ ∈ Ξ is admissible if its support supp(ξ) is an ad-

missible set. Furthermore, for every finite subset X ⊂ C∗, we denote by Xadm a maximal

admissible subset (clearly this set is not unique, but for our purposes the uniqueness will

not be necessary).
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Now, observe that any Dynkin diagram automorphism σ induces an automorphism

of P+ given by the formula σ(ωi) = ωσ(i). As stated in Section 5.1.2, the group of

automorphisms Γ acts also on C∗ by multiplication with ζ, a primitive mth root of unity.

We say ξ ∈ Ξ is equivariant with respect to Γ, if

ξ(σ(a)) = σ(ξ(a)) for all a ∈ C∗ and σ ∈ Γ.

We denote by ΞΓ the set of equivariant functions in Ξ. The following was proved in [24].

Theorem 7. ΞΓ parametrizes the simple finite–dimensional LΓ(g)-modules.

For the reader’s convenience, we recall here the assigment of a simple module to

an equivariant function. In order to do so, we introduce the symmetrizer map Σ : Ξ −→ ΞΓ,

given by

ξ 7→
∑
σ∈Γ

σ ◦ ξ ◦ σ−1.

Clearly, this function is well-defined, since the right hand side is by construction equivariant.

Given χ ∈ ΞΓ, a function ξ ∈ Ξ is called χ-admissible if Σ(ξ) = χ and supp(ξ) is an

admissible set. Before continuing, we observe that for each χ ∈ ΞΓ, there exists at least one

χ-admissible function, constructed as follows.

Let χ ∈ ΞΓ and choose a maximal admissible subset Xadm ⊂ supp(χ). For a ∈ C∗,

define ξ ∈ Ξ by

ξ(a) :=


χ(a) if a ∈ Xadm

0 a /∈ Xadm

.

Then ξ is finitely supported, and supp(ξ) is admissible by construction, with Σ(χ) = ξ.

The following was shown in ([21],[24]):
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Lemma 29. Suppose ξ ∈ Ξ is admissible. Then the L(g)-module Vξ is simple as an LΓ(g)-

module. Moreover, every simple LΓ(g)-module is obtained in this way.

The parametrization of Theorem 7 is completed by observing that for two admis-

sible functions ξ1, ξ2 ∈ Ξ with Σ(ξ1) = Σ(ξ2), we have

Vξ1
∼= Vξ2 as LΓ(g)-modules.

We shall also define the weight of an equivariant function χ ∈ ΞΓ. This was done

before for elements from Ξ, but it is important to note that although ΞΓ ⊂ Ξ, the weight of

an element in ΞΓ considered as an equivariant function is different from its weight considered

as an element in Ξ. To define the weight of χ, let ξ ∈ Ξ be χ-admissible and set

wt0(χ) = wt(ξ) ∈ P+
0 .

We observe here that the weight is independent of the choice of ξ.

5.2 The category IΓ

In this section we will (by analogy with [7]) define the category of locally finite

modules and the global Weyl modules. We keep the exposition as short as possible without

sacrificing necessary detail.

5.2.1

Let IΓ be the category whose objects are modules for LΓ(g) which are locally

finite–dimensional g0–modules and whose morphisms are

HomIΓ(V, V ′) = HomLΓ(g)(V, V
′), V, V ′ ∈ IΓ.
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Clearly IΓ is an abelian category and is closed under tensor products. We shall use the

following elementary result often without mention in the rest of the paper.

Lemma 30. Let V ∈ Ob IΓ.

(i) If Vλ 6= 0 and wt V ⊂ λ−Q+
0 , then λ ∈ P+

0 and

LΓ(n+).Vλ = 0, (x−i )λ(hi)+1.Vλ = 0, i ∈ I0.

If in addition, V = U(LΓ(g)).Vλ and dimVλ = 1, then V has a unique irreducible

quotient.

(ii) If V = U(LΓ(g)).Vλ and LΓ(n+).Vλ = 0, then wt V ⊂ λ−Q+
0 .

(iii) If V ∈ IΓ is irreducible and finite–dimensional, then there exists λ ∈ wt V such that

dimVλ = 1, wt V ⊂ λ−Q+
0 .

5.2.2

We recall here the definition of the global Weyl module for L(g) (due to [10]); it

will play a crucial role in all that follows.

Definition 6. Let λ ∈ P+. The global Weyl module W (λ) is generated by a non-zero

vector wλ, subject to the defining relations:

L(n+).wλ = 0, (H ⊗ 1).wλ = λ(H)wλ, (X−i )λ(Hi)+1.wλ = 0, i ∈ I, H ∈ h.

The study of these modules initiated a series of papers ([10], [9], [15], [23], [1]),

and we give here a brief summary of the results contained therein. W (λ) is an integrable
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projective module in a certain category (see Section 5.2.3). Furthermore, W (λ) is a free

module of finite rank over the algebra

Aλ := U(L(h))/AnnU(L(h))wλ,

which is isomorphic to a Laurent polynomial ring in finitely many variables.

5.2.3

Given an integrable left g0-module V , it is a standard fact of relative homological

algebra that

PΓ(V ) := U(LΓ(g))⊗g0 V

is a projective LΓ(g)-module. Moreover PΓ(V ) lies in IΓ. Furthermore, if λ ∈ P+
0 , then

PΓ(V (λ)) is generated as an LΓ(g)-module by a non-zero element v with relations

n+
0 .v = 0 h.v = λ(h)v, (x−i )λ(hi)+1.v = 0, i ∈ I0, h ∈ h0.

For ν ∈ P+
0 and V ∈ Ob IΓ, let V ν ∈ Ob IΓ be defined by:

V ν := V/
∑
µ�ν

U(LΓ(g))Vµ. (5.2.1)

Equivalently, this is the unique maximal LΓ(g) quotient W of V satisfying wt W ⊂ ν−Q+
0 .

A morphism π : V → V ′ of objects in IΓ clearly induces a morphism πν : V ν → (V ′)ν . Let

IΓ
ν be the full subcategory of objects V ∈ IΓ such that V = V ν . If V ∈ Ob IΓ

ν , then its

weights are bounded above by ν and, since it is integrable, it decomposes into a direct sum

simple finite–dimensional g0-modules. Hence,

V ∈ Ob IΓ
ν =⇒ #wt V <∞. (5.2.2)
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Remark 31. If λ, ν ∈ P+
0 , then PΓ(V (λ))ν ∈ Ob IΓ

ν .

We are now able to define the main object of study for this paper:

Definition 7. The global Weyl module of weight λ ∈ P+
0 for LΓ(g) is

WΓ(λ) := PΓ(V (λ))λ.

The following proposition is proved analogously to [7, Proposition 4].

Proposition 32. WΓ(λ) is generated by a nonzero element wλ with relations

LΓ(n+).wλ = 0, h.wλ = λ(h)wλ, (x−i )λ(hi(0))+1.wλ = 0, i ∈ I0, h ∈ h0. (5.2.3)

5.2.4

For µ ∈ P+, W (µ) may be viewed as a module for LΓ(g) by restriction, in which

case the highest weight vector will be of weight µ̄. It follows that there is a natural map

WΓ(µ̄) −→ W (µ). The immediate questions, whether this map is injective or surjective,

must be answered in the negative in general. Nevertheless, we shall find an L(g)–module

into which a global Weyl module for LΓ(g) embeds: let λ ∈ P+
0 and consider

W :=
⊕

µ∈P+ : µ̄=λ

W (µ).

This is clearly a module for L(g) and hence, by restriction, for LΓ(g). The main result of

our paper is that WΓ(λ) appears as a submodule of W .

Theorem 8. Let λ ∈ P+
0 . There is an injective homomorphism of LΓ(g)-modules

WΓ(λ) ↪→
⊕
µ=λ

W (µ),

57



induced by the assignment

wλ 7→ w :=
∑
µ=λ

wµ.

By Proposition 32, it is clear that this assignment gives a homomorphism of LΓ(g)–

modules. The remainder of this manuscript is devoted to the proof that the map is, in fact,

injective.
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Chapter 6

In this chapter, we continue to follow the methods established in [7] by analyzing

the highest weight space of the twisted global Weyl module, and using it to define a twisted

Weyl functor.

6.1 The Weyl functor and its properties

For λ ∈ P+
0 , we denote by AnnU(LΓ(h))wλ the annihilator of wλ in U(LΓ(h)). This

is an ideal in U(LΓ(h)), and we define AΓ
λ as the quotient of U(LΓ(h)) by this ideal:

AΓ
λ := U(LΓ(h))/AnnU(LΓ(h))wλ.

Clearly, AΓ
λ is a commutative associative algebra and we will see in Theorem 10 that it is

finitely generated.

6.1.1

We define a right module action of AΓ
λ on WΓ(λ) as follows: for a ∈ AΓ

λ and

u ∈ U(LΓ(g)),

uwλ.a := ua.wλ.
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The verification that this map is well–defined is straightforward; see [7] for details. For all

µ ∈ P+
0 , the subspaces WΓ(λ)µ are LΓ(h)–submodules for both the left and right actions

and

AnnU(LΓ(h))wλ =
{
u ∈ U(LΓ(h)) : wλ.u = 0 = u.wλ

}
=
{
u ∈ U(LΓ(h)) : WΓ(λ).u = 0

}
.

Therefore WΓ(λ) is an
(
LΓ(g),AΓ

λ

)
–bimodule and each subspace WΓ(λ)µ is a right AΓ

λ–

module. Moreover, WΓ(λ)λ is an AΓ
λ–module and

WΓ(λ)λ ∼=AΓ
λ

AΓ
λ.

Let mod AΓ
λ be the category of left AΓ

λ–modules.

Definition 8. Let WΓ
λ : mod AΓ

λ → IΓ
λ be the right exact functor given by

WΓ
λM = WΓ(λ)⊗AΓ

λ
M, WΓ

λf = 1⊗ f,

where M ∈ Ob mod AΓ
λ and f ∈ HomAΓ

λ
(M,M ′) for some M ′ ∈ Ob mod AΓ

λ. We call this

functor the (twisted) Weyl functor.

The g0–action on WΓ
λM is locally finite (since WΓ(λ) ∈ Ob IΓ

λ ), so that WΓ
λM ∈

Ob IΓ
λ , and

WΓ
λAΓ

λ
∼=LΓ(g) W

Γ(λ), (WΓ
λM)µ ∼= WΓ(λ)µ ⊗AΓ

λ
M,

for µ ∈ P0, M ∈ Ob mod AΓ
λ.

6.1.2

In this section we adapt results from [7] and state them without proofs, since

these proofs carry over almost verbatim from the case of untwisted loop algebras. The first
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ingredient we shall require is the restriction functor, which will be right adjoint to the Weyl

functor. For this we need the following lemma, whose proof can be found in [7, Lemma 4].

Lemma 33. For all λ ∈ P+
0 and V ∈ Ob IΓ

λ we have AnnLΓ(h)(wλ).Vλ = 0.

As a consequence, we see that the left action of U(LΓ(h)) on Vλ induces a left action

of AΓ
λ on Vλ, and we denote the resulting AΓ

λ–module by Rλ
ΓV . Given π ∈ HomIΓ

λ
(V, V ′)

the restriction πλ : Vλ → V ′λ is a morphism of AΓ
λ–modules and

V 7→ Rλ
ΓV, π 7→ Rλ

Γπ = πλ

defines a functor

Rλ
Γ : IΓ

λ −→ mod AΓ
λ

which is exact since restriction of π to a weight space is exact. If M ∈ Ob mod AΓ
λ, we have

an isomorphism of left AΓ
λ–modules,

Rλ
ΓWΓ

λM = (WΓ
λM)λ = WΓ(λ)λ ⊗AΓ

λ
M ∼= wλA

Γ
λ ⊗AΓ

λ
M ∼= M,

and hence an isomorphism of functors IdAΓ
λ

∼= Rλ
ΓWΓ

λ .

We may apply the restriction functor to an object of IΓ
λ , then apply the Weyl func-

tor and obtain once again an object of IΓ
λ . The following proposition shows the relationship

between these two LΓ(g)–modules.

Proposition 34. Let λ ∈ P+
0 and V ∈ Ob IΓ

λ . There exists a canonical map of LΓ(g)–

modules ηV : WΓ
λRλ

ΓV → V such that η : WΓ
λRλ

Γ ⇒ IdIΓ
λ

is a natural transformation of

functors and Rλ
Γ is a right adjoint to WΓ

λ .
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As an immediate consequence we obtain with standard homological methods:

Corollary 35. The functor WΓ
λ maps projective objects to projective objects.

We now have all the ingredients necessary to state the main result (Theorem 1)

of [7] in the case of twisted loop algebras. The proof carries over almost identically, hence

will be omitted.

Theorem 9. Let λ ∈ P+
0 and V ∈ Ob IΓ

λ . Then V ∼= WΓ
λRλ

ΓV iff for all U ∈ Ob IΓ
λ with

Uλ = 0, we have

HomIΓ
λ
(V,U) = 0, Ext1

IΓ
λ
(V,U) = 0. (6.1.1)

6.1.3

Another consequence of Proposition 34 is the one-to-one correspondence between

maximal ideals of AΓ
λ and simple modules of LΓ(g) of highest weight λ.

Lemma 36. For λ ∈ P+
0 , there exists a natural correspondence between maximal ideals of

AΓ
λ and ΞΓ

λ.

Proof. Let M ∈ Max AΓ
λ. Then WΓ

λ(AΓ
λ/M) has a unique simple quotient V of highest

weight λ, so by Theorem 6, there exists ξM ∈ ΞΓ
λ so that V ∼= VξM . On the other hand, let

ξ ∈ ΞΓ
λ and Vξ be the corresponding simple LΓ(g)-module (Theorem 7). Then Rλ

ΓVξ is a

simple AΓ
λ-module, and so there exists Mξ ∈ Max AΓ

λ such that

Rλ
ΓVξ
∼= AΓ

λ/Mξ.

Since Rλ
Γ is right adjoint to WΓ

λ , we have ξMξ
= ξ and M = MξM .
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6.1.4

In this section, we will prove that the global Weyl module is finitely generated as

a right AΓ
λ–module. This result is analogous to [7, Theorem 2], but requires a new proof

when Γ is nontrivial.

To clarify the importance of this result, first recall that the global Weyl module is infinite–

dimensional, and even decomposes into infinitely many simple g0-modules. By applying the

Weyl functor on one–dimensional AΓ
λ-modules we obtain the so called local Weyl modules

(see Section 7.1). Once we show that the global Weyl module is finitely generated, we can

deduce that the local Weyl modules are finite–dimensional (see [8, Proposition 4.2]).

Theorem 10. WΓ(λ) is a finitely generated right AΓ
λ–module.

Let u be an indeterminate and for α ∈ R+
0 , we define for all ` ≥ 1 the following

power series in u with coefficients in U(LΓ(h)):

pα,`(u) = exp

(
−
∞∑
k=1

hα ⊗ t`k

k
uk

)
.

Let pα,`(u) =
∑∞

j=0 p
j
α,`u

j . Note that p0
α,` = 1, and that pjα,` is contained in the subalgebra

generated by
{
hα ⊗ t`k : 0 ≤ k ≤ j

}
. For the proof, we need the following lemma, which is

an immediate consequence of [8, Lemma 2.3] via the substitution t 7→ t`.

Lemma 37. Let α ∈ R+
0 and r ∈ Z+. Then if

` ∈



Z>0 , if α ∈ (R0)s and g is not of type A2n

mZ>0 , if α ∈ (R0)l and g is not of type A2n

2Z>0 , if α ∈ (R0)s and g is of type A2n

Z>0 , if α ∈ (R0)l and g is of type A2n
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we have

(x+
α ⊗ t`)r

(
x−α ⊗ 1

)r+1
+ (−1)r+1

 r∑
j=0

(
x−α ⊗ t`j

)
pr−jα,`

 ∈ U(LΓ(g))U(LΓ(n+))+.

Using this containment, we now prove the theorem.

Proof. Since WΓ(λ) is an object of IΓ
λ (see Remark 31), we know that #wt WΓ(λ) <∞. It

follows that for any monomial u ∈ U(LΓ(g)) with wtg0(u) 6= 0, and any v ∈ WΓ(λ), there

exists N > 0 such that uN .v = 0. In particular, WΓ(λ) is locally finite–dimensional for any

vector of the form x⊗ tk, x ∈ n− ∩ gε, k ≡ −ε mod m.

Let λ ∈ P+
0 and α ∈ R+

0 . We set ` = 1 if g is of type A2n and α is a long root,

or g is not of type A2n and α is a short root. In any other case, we set ` = m. By setting

r = λ(hα), we see from the defining relations of WΓ(λ) and the lemma above that

x−α ⊗ t`r.wλ = (−1)r

r−1∑
j=0

x−α ⊗ t`jp
r−j
α,`

 .wλ, (6.1.2)

which, after an inductive argument, implies

(
x−α ⊗ t`k

)
.wλ ∈ sp

{(
x−α ⊗ t`s

)
wλA

Γ
λ : 0 ≤ s < λ(hα)

}
.

Additionally we must consider the elements x−ν ⊗ t and x−2ν ⊗ t, when g is of type

A2n and ν ∈ (R0)s. We proceed with the latter case, the former being very similar.

Set β = 2ν and let a be the Lie algebra generated by the elements

x+
β ⊗ t

2q+1, x−β ⊗ t
2q−1,

1

2
hν ⊗ t2q, q ∈ Z,
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then we have a Lie algebra ismorphism to L(sl2) (by Lemma 28), given by

x+
β ⊗ t

2q+1 7→ x+
α ⊗ tq , x−β ⊗ t

2q−1 7→ x−α ⊗ tq ,
1

2
hν ⊗ t2q 7→ h⊗ tq.

Lemma 37 gives us

(x+
β ⊗ t

3)r
(
x−β ⊗ t

−1
)r+1

+ (−1)r+1

 r∑
j=0

(
x−β ⊗ t

2j−1
)
pr−jβ

 ∈ U(LΓ(g))U(LΓ(n+)+),

where we define pjβ ∈ AΓ
λ by

∞∑
j=0

pjβu
j = exp

(
−
∞∑
k=1

1
2hν ⊗ t

2k

k
uk

)
.

Again, since WΓ(λ) is integrable, we have

x−β ⊗ t
2r−1.wλ = (−1)r

r−1∑
j=0

(
x−β ⊗ t

2j−1
)
pr−jβ

 .wλ

for r � 0, and the second case is proven.

To complete the proof of the theorem, let {β1, · · · , βN} be an enumeration of

R−0 ∪R
−
1 (resp. R−0 ∪R

−
1 ∪R

−
2 ). Using the PBW theorem, we can see that elements of the

form (
(gε1)βi1

⊗ tr1
)(

(gε2)βi2
⊗ tr2

)
· · ·
(

(gε`)βi`
⊗ tr`

)
.wλ

for 0 ≤ εj < m, βij ∈ {β1, . . . , βN}, 1 ≤ i1 ≤ i2 ≤ · · · ≤ i` ≤ N , ` ∈ Z+, and ri ≡ εi

mod m, generate WΓ(λ) as a right module for AΓ
λ. Using this spanning set and the fact

that #wt WΓ(λ) < ∞, an inductive argument on the length ` of a monomial from this

spanning set shows that WΓ(λ) is finitely generated as an AΓ
λ–module.

6.2 The algebra AΓ
λ

In this section we will give an explicit description of the algebra AΓ
λ and deduce

that it is finitely generated.
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6.2.1

We continue to follow the model of [7]. That is, we identify AΓ
λ with a ring of

symmetric polynomials. To begin, recall that a basis for LΓ(h) is given by the set

{hi(ε)⊗ tmk−ε : i ∈ I0, 1 ≤ ε ≤ m− 1, k ∈ Z} = {hi(k̄)⊗ t−k : k ∈ Z, i ∈ I0},

where k̄ denotes the least nonnegative residue of k modulo m.

Set A (k) = C
[
t±k
]

and for λ =
∑

i∈I0 riωi ∈ P
+
0 , define

AΓ
λ =

⊗
i∈I0

(
A(|Γi|)⊗ri

)Sri .
Now we identify a natural generating set of AΓ

λ.

For N ∈ Z+ and B any associative algebra over C, we define a homomorphism of

algebras symN : B → B⊗N by the assignment

b 7→
N−1∑
`=0

1⊗` ⊗ b⊗ 1⊗N−`−1.

Now set

symi
λ(b) = 1⊗λ(

∑
j<i hj) ⊗ symλ(hi)(b)⊗ 1⊗λ(

∑
j>i hj)

for i ∈ I0. Taking B = A(|Γi|) for i ∈ I0, we clearly have

{symi
λ(tk) : k ∈ |Γi|Z} ⊂ AΓ

λ.

The following lemma makes clear the role of these elements in generating AΓ
λ.

Lemma 38. The set

{symi
λ(tk) : i ∈ I0, k ∈ |Γi|Z, |k| ≤ λ(hi)}

generates AΓ
λ as an algebra over C.
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Proof. Fix i ∈ I0 and set N = λ(hi). It is well known that the algebra A((|Γi|)⊗N )SN is

isomorphic to the polynomial algebra C[f1, f2 . . . , fN , f
−1
N ], where the f` are the elemen-

tary symmetric functions in the N variables t
|Γi|
1 , . . . , t

|Γi|
N . On the other hand, the element

symi
λ(tk) corresponds to the power sum gk of degree k|Γi| in the factor A(|Γi|)⊗N , so that

we have

C[g1, . . . , gN ] ∼= C[t
|Γi|
1 , . . . , t

|Γi|
N ]SN ∼= C[f1, . . . , fN ].

In order to prove the lemma, it therefore suffices to check that f−1
N lies in C[g−1, . . . , g−N ].

But this is clear, since

f−1
N ∈ C[t

−|Γi|
1 , . . . , t

−|Γi|
N ]SN ∼= C[g−1, . . . , g−N ].

As a consequence of Lemma 38, we see that the assignment

hi(k̄)⊗ t−k 7→ symi
λ(t−k), i ∈ I0, k ∈ Z

extends to a surjective homomorphism of algebras τ̃λ : U(LΓ(h)) � AΓ
λ. We shall show in

the rest of this section that τ̃λ descends to an isomorphism τλ : AΓ
λ
∼= AΓ

λ.

6.2.2

The first step is to provide a natural correspondence between ΞΓ
λ and the maximal

spectrum of AΓ
λ. This description of Max(AΓ

λ) will be used in the sequel to show that AΓ
λ and

AΓ
λ are isomorphic as algebras. To describe the correspondence, we introduce an alternate

description of the maximal ideals in AΓ
λ in terms of multisets on the maximal ideals of

A(|Γi|).
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For any set S, letM(S) be the set of functions f : S → Z+ satisfying the condition

that f(s) = 0 for all but finitely many s ∈ S. Such a function is called a finite multiset on

S. M(S) forms a commutative monoid under the usual addition of functions. The size of

f ∈M(s) is given by the formula

|f | =
∑
s∈S

f(s).

We also note that any element ofM(S) can be written uniquely as a Z+-linear combination

of characteristic functions χs for s ∈ S, defined by χs(b) = δs,b for b ∈ S.

6.2.3

We shall use this language to describe the maximal ideals of the tensor product

AΓ
λ. It is clearly enough to classify the maximal spectrum of rings (A(|Γi|)⊗`)S` for ` ∈ Z+.

Such ideals are given precisely by unordered `-tuples (with possible repetition) of maximal

ideals of A(|Γi|), i ∈ I0, i.e. by elements f ∈M (Max(A(|Γi|))) with |f | = `.

Since the maximal ideals of A(|Γi|) are principal ideals generated by polynomials

t|Γi| − a|Γi| for a ∈ C∗, we may view elements of M (Max(A(|Γi|))) as multisets consisting

of orbits of C∗ under the action of Γi.

Abbreviating M (Max(A(|Γi|))) by Mi, the product M̂ =
∏
i∈I0Mi is also a

commutative monoid, and for f̂ ∈ M̂ we set wt(f̂) =
∑

i∈I0 |fi|ωi ∈ P
+
0 . Defining

M̂λ =
{
f̂ ∈ M̂ : wt(f̂) = λ

}
, λ ∈ P+

0 ,

we see that Max
(
AΓ
λ

)
is in bijective correspondence with M̂λ.

In this language, any ξ ∈ Ξ can be written uniquely as a linear combination of
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fundamental weights ωi, i ∈ I, with coefficients from M(C∗):

ΞΓ =

{∑
i∈I

fiωi : fi ∈M(C∗)

}
,

where for ξ =
∑

i∈I fiωi and c ∈ Max(A), we have ξ(c) =
∑

i∈I fi(c)ωi ∈ P+.

6.2.4

Next, we exhibit an isomorphism of monoids between M̂ and ΞΓ. Observe that

for each i ∈ I0 there is a surjective morphism of monoids

M(C∗)
πi
�Mi,

defined by extending the assignment χa 7→ χā, where ā is the orbit of a under the action

of Γi. If Γi is trivial, then of course πi is simply the identity map. We describe some of its

further properties in the following lemma.

Lemma 39. Let ξ =
∑

i∈I fiωi lie in ΞΓ. Then

(1) For all γ ∈ Γ and i ∈ I we have πi(fi) = πi(fγ(i)).

(2) For each a ∈ C∗ and i ∈ I, we have

πi(fi)(ā) = |Γi|fi(a) ∈ |Γi|Z+. (6.2.1)

Proof. For the first part, observe that by the equivariance of ξ we have

fi(γ(a)) = fγ(i)(a) (6.2.2)

for i ∈ I, γ ∈ Γ and a ∈ Max(A). The result now follows by the definition of πi.

69



For the second assertion, there is nothing to prove unless Γi = Γ, that is γ(i) = i

for all γ ∈ Γ, in which case the result follows from Equation (6.2.2) and the definition of

πi.

Now construct a morphism of monoids α : ΞΓ → M̂: given an equivariant function

ξ ∈ ΞΓ, write ξ =
∑
i∈I

fiωi and define α(ξ) ∈ M̂ by the formula

α(ξ) :=

(
1

|Γi|
πi(fi)

)
i∈I0

. (6.2.3)

It follows from part (ii) of Lemma 39 that α is injective, so it remains to show that it is

surjective. For this, fix

ĝ = (gi)i∈I0 ∈ M̂.

To find a preimage of ĝ under α, define fi ∈M(C∗) for i ∈ I0 by

fi(a) =


gi(a) if Γi = 1,

gi(ā) if Γi = Γ,

so that fi is clearly constant on the orbits of C∗ under Γi. It follows that fi satisfies

Equation 6.2.1, and hence πi(fi) = |Γi|gi. Hence, α is an isomorphism.

Finally, we show that α induces a bijection Max(AΓ
λ)↔ ΞΓ

λ. For this, it suffices to

show that for ξ ∈ ΞΓ, we have

wt0(ξ) = wt(α(ξ)), (6.2.4)

which follows from the observation that

wt0(ξ) =
∑
i∈I0

1

|Γi|
|fi|ωi, for ξ =

∑
i∈I

fiωi.

70



6.2.5

The next step is to show that τ̃λ descends to a surjective homomorphism of algebras

τλ : AΓ
λ → AΓ

λ.

For ξ ∈ ΞΓ
λ, define evξ : U(LΓ(h))→ C by extending the assignment

hi(k̄)⊗ t−k 7→
∑

ā⊂supp(ξ)

a−kξ(a)(hi(k̄)), i ∈ I0, k ∈ Z, (6.2.5)

so that

u.v = evξ(u)v, v ∈ (Vξ)λ, u ∈ U(LΓ(h)).

Since Vξ is a quotient of WΓ(λ) for ξ ∈ ΞΓ
λ, it follows immediately that

AnnU(LΓ(h))wλ ⊆
⋂
ξ∈ΞΓ

λ

ker(evξ). (6.2.6)

For f̂ ∈ M̂λ, write evf̂ : AΓ
λ → C for evaluation at the maximal ideal of AΓ

λ

corresponding to f̂ . Applying the relevant definitions, we have

evα−1(f̂) = evf̂ ◦ τ̃λ. (6.2.7)

We can now complete the proof that AΓ
λ is a quotient of AΓ

λ.

Proposition 40.

AnnU(LΓ(h))w
Γ
λ ⊆ ker(τ̃λ).

Proof. It follows immediately from Equation 6.2.7 that

⋂
f̂∈M̂λ

ker(evf̂ ◦ τ̃λ) =
⋂
ξ∈ΞΓ

λ

ker(evξ). (6.2.8)
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On the other hand, since the Jacobson radical J(A(s)) = 0 for all s ∈ Z+, we see that

J(AΓ
λ) = 0. In particular,

ker(τ̃λ) =
⋂

f̂∈M̂λ

ker(evf̂ ◦ τ̃λ). (6.2.9)

The proposition now follows from Equations 6.2.6, 6.2.8 and 6.2.9.

Corollary 41. The map τ̃λ descends to a surjective homomorphism of algebras

τλ : AΓ
λ → AΓ

λ.

6.2.6

It remains to show that τλ is injective. For this, we adapt the argument of [7], by

identifying a spanning set of AΓ
λ which is mapped to a linearly independent subset of AΓ

λ.

Lemma 42. The images of elements∏
i∈I0

mi∏
s=1

(hi(k̄i,s)⊗ t−ki,s) : 0 ≤ mi ≤ λ(hi), ki,s ∈ Z


span AΓ

λ.

Proof. It is clearly enough to prove that for each i ∈ I0 and k1, . . . , k` ∈ Z we have

∏̀
s=1

(hi(k̄s)⊗ t−ks)wλ ∈ sp

{
r∏
s=1

(hi( ¯̀
s)⊗ t−`s)wλ : r ≤ λ(hi)

}
. (6.2.10)

We shall prove this statement as Corollary 44 below. Assuming it, the lemma follows.

In order to establish Equation 6.2.10, we shall first prove the following, more

general, proposition. For any element a of an associative algebra and any n ∈ Z, we denote

by a(n) the divided power an/n!, with the convention that a(n) = 0 for n < 0.
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Proposition 43. Let k, ` ∈ Z+ with k ≤ `. Given ε1, . . . , εk ∈ Z and i ∈ I0, we have

k∏
s=1

(x+
i (ε̄s)⊗ t−εs)(x−i )(`) =

2k∑
r=0

(x−i )(`−r)Pr(ε1, . . . , εk),

where Pr(ε1, . . . , εk) is an element of U(LΓ(g)) in the standard PBW order, having length

at most k and consisting of homogeneous elements of weight (k− r)αi as an sl2(i)-module.

Moreover, Pk(ε1, . . . , εk) has, except for terms ending in LΓ(n+), a unique term of length k,

which is
∏k
s=1(hi(ε̄s)⊗ t−εs).

Proof. The proof proceeds by induction on k. For the base case, a simple induction on `

shows that

(x+
i (ε̄)⊗ t−ε)(x−i )(`) = (x−i )(`)(x+

i (ε̄)⊗ t−ε) (6.2.11)

+ (x−i )(`−1)(hi(ε̄)⊗ t−ε) + (x−i )(`−2)(−x−i (ε̄)⊗ t−ε).

Now assuming the result for k < `, we prove it for k + 1. By the induction hypothesis and

repeated use of Equation 6.2.11, we have

k+1∏
s=1

(x+
i (ε̄s)⊗ t−εs)(x−i )(`) =

2k∑
r=0

(x−i )(`−r)(x+
i (ε̄k+1)⊗ t−εk+1)Pr(ε1, . . . , εk)

+
2k∑
r=0

(x−i )(`−r−1)(hi(ε̄k+1)⊗ t−εk+1)Pr(ε1, . . . , εk).

+

2k∑
r=0

(x−i )(`−r−2)(x−i (ε̄k+1)⊗ t−εk+1)Pr(ε1, . . . , εk).

Reindexing, this is
2(k+1)∑
r=0

(x−i )(`−r)Pr(ε1, . . . , εk+1),

where

Pr(ε1, . . . ,εk+1) = (x+
i (ε̄k+1)⊗ t−εk+1)Pr(ε1, . . . , εk)

+ (hi(ε̄k+1)⊗ t−εk+1)Pr−1(ε1, . . . , εk) + (x−i (ε̄k+1)⊗ t−εk+1)Pr−2(ε1, . . . , εk).
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(Here Pj(ε1, . . . , εk) = 0 if j < 0 or j > 2k.) This element, once it is commuted into PBW

order, clearly has the correct weight and maximum length.

It only remains to analyze Pk+1(ε1, . . . , εk+1). Any monomial from the third term

of this element ends in a summand of Pk−1(ε1, . . . , εk), which has weight 2 and hence, being

already in PBW order, must end in some term from LΓ(n+). By the induction hypothesis,

the second term contains the desired product

k+1∏
s=1

(hi(ε̄s)⊗ t−εs)

as its unique term of length k + 1 (modulo LΓ(n+)).

To deal with the term

(x+
i (ε̄k+1)⊗ t−εk+1)Pr(ε1, . . . , εk),

we observe that by weight considerations, any monomial not ending in LΓ(n+) must be of

the form

(x−i (δ̄)⊗ t−δ)
q∏
p=1

(hi(δ̄s)⊗ t−δs), q ≤ k − 1.

Now applying the element (x+
i (ε̄k+1)⊗ t−εk+1) and commuting to PBW order yields terms

that end in LΓ(n+), together with a term of length q + 1 ≤ k.

Corollary 44. Fix i ∈ I0 and k1, . . . , k` ∈ Z. Then

∏̀
s=1

(hi(k̄s)⊗ t−ks)wλ ∈ sp

{
r∏
s=1

(hi( ¯̀
s)⊗ t−`s)wλ : r ≤ λ(hi)

}
.

Proof. By setting k = ` in Proposition 43, we see that

0 =
∏̀
s=1

(x+
i (k̄s)⊗ t−ks)(x−i ⊗ 1)`wλ =

∏̀
s=1

(hi(k̄s)⊗ t−ks)wλ +H.wλ, ` ≥ λ(hi) + 1,

where H lies in the span of elements of the form
∏r
s=1(hi( ¯̀

s) ⊗ t−`s) with r < `. The

statement of the corollary now follows by induction on `.
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6.2.7

It still remains to show that the images under τλ of the elements from Lemma 42

form a linearly independent subset of AΓ
λ. Now, these are⊗

i∈I0

mi∏
s=1

symλ(hi)(t
−ki,s) : 0 ≤ mi ≤ λ(hi), ki,s ∈ Z

 .

Since the tensor product preserves linear independence, it therefore suffices to check that

for each i ∈ I0 the set of products{
mi∏
s=1

symλ(hi)(t
−ki,s) : 0 ≤ mi ≤ λ(hi), ki,s ∈ Z

}

is linearly independent. A slightly more general statement can be found in [7]; we reproduce

it and include a proof here for convenience. Recall from Section 6.2.1 that for any associative

algebra B we have a map symN : B → B⊗N mapping

b 7→
N−1∑
`=0

1⊗` ⊗ b⊗ 1⊗N−`−1.

Lemma 45. Let b0, b1, . . . ∈ B form a countable ordered basis, with b0 = 1 and br ∈ B+

for r > 1. Then the elements{∏̀
s=1

symN (brs) : rs ∈ Z+, ` ≤ N

}

are linearly independent in B⊗N .

Proof. The projections onto the summand B⊗`+ ⊗ 1⊗N−` of the elements listed are

∑
σ∈Sr`

σ.(br1 ⊗ br2 ⊗ · · · ⊗ br`)⊗ 1⊗N−`,

where S` acts in the obvious way on B⊗`. Since these are clearly linearly independent by

the choice of br as basis elements, the proof is complete.
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6.2.8

In this subsection, we compare the algebras Aλ and AΓ
λ
. For this purpose, let us

examine again the symmetrizer map defined in Section 5.1.5:

Σ : Ξ −→ ΞΓ , ξ 7→
∑
σ∈Γ

σ ◦ ξ ◦ σ−1.

If we restrict this map to the functions of weight λ ∈ P+, we obtain a map

Σ : Ξλ −→ ΞΓ
λ
.

Let Vξ be the simple L(g)-module associated to ξ ∈ Ξλ. It follows from the discussion in

Section 5.1.5 that Vξ is a simple LΓ(g)-module if and only if supp(ξ) is admissible. On the

other hand, Vξ has, viewed as a LΓ(g)-module, a unique simple quotient of highest weight

λ; in fact this quotient is isomorphic to VΣ(ξ), as we shall show in Proposition 46.

Recall the evaluation map defined for any ξ ∈ Ξ in [7] or, for η ∈ ΞΓ
λ
, in Sec-

tion 6.2.5:

evξ : U(L(h)) −→ C and evη : U(LΓ(h)) −→ C.

The following theorem gives a natural embedding between the algebras Aλ and AΓ
λ
, and

also gives a necessary and sufficient condition on λ for this embedding to be surjective.

Theorem 11. Let λ =
∑
miωi ∈ P+, then there exists a natural injective map

ι : AΓ
λ
↪→ Aλ.

Furthermore, ι is surjective iff for each i ∈ I, λ satisfies the following:

1. If Γ.i = {i}, then mi = 0
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2. If mi 6= 0, then mσ(i) = 0 for all σ ∈ Γ \ {1}.

Proof. We have seen that AΓ
λ
∼= AΓ

λ
and from [7], we have

Aλ
∼= Aλ =

⊗
i∈I

(A(1)⊗mi)Smi .

All of these isomorphisms are, by construction, compatible with the embedding of U(LΓ(h))

into U(L(h)). So it remains to show that

AΓ
λ
↪→ Aλ.

It is sufficient to show this for each i ∈ I0. Recall that we have identified I0 with a subset

of I. We proceed with two exhaustive cases:

First assume that i ∈ I such that Γ.i = {i}, so that Γi = Γ. Then A(|Γi|) ( A(1), so we

have

((A(|Γi|))⊗mi)Smi ( (A(1)⊗mi)Smi ,

if mi > 0.

In the other case, Γi = {1}, and we set ni =
∑

σ∈Γmσ(i). Then we have

(A(1)⊗ni)Sni ⊆
⊗
σ∈Γ

(A(1)⊗mσ(i))
Smσ(i) ,

with equality if and only if the right hand side consists of only one non-trivial tensor factor–

i.e., mσ(i) = 0 for σ 6= 1, which proves the theorem.

6.2.9

Let λ ∈ P+ amd ξ ∈ Ξλ. We have seen in Lemma 36 that we can associate to ξ a

maximal ideal Mξ ∈ Max Aλ. The simple module Aλ/Mξ will be denoted by Cξ. Similarly,
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for χ ∈ ΞΓ
λ

we denote the simple AΓ
λ
-module by Cχ.

Using the embedding AΓ
λ
↪→ Aλ of Theorem 11, we see that for every ξ ∈ Ξλ, Cξ is a simple

AΓ
λ
-module. Then we have by construction of the symmetrizer the following:

Proposition 46. Let ξ ∈ Ξλ. Then Cξ
∼= CΣ(ξ) as AΓ

λ
-modules.

Proof. In [21, Equation (5.18)], the symmetrizer map was given for multiloop algebras. It

was shown that for admissible ξ ∈ Ξλ, Cξ
∼= CΣ(ξ) as AΓ

λ
-modules. If ξ is not admissible,

then Vξ is not simple as a LΓ(g)-module, but has a unique simple quotient. Denote this

simple quotient by Vξ′ ; then ξ′ ∈ Ξλ is admissible, Cξ
∼= Cξ′ as AΓ

λ
-modules and Σ(ξ′) =

Σ(ξ).
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Chapter 7

In this final chapter, we complete the proof of Theorem 8. To do this, we first study

the local Weyl modules by applying the twisted Weyl functor to the simple AΓ
λ–modules.

7.1 Local Weyl modules

We have seen in Lemma 36 that simple AΓ
λ–modules are parametrized by ΞΓ

λ.

Definition 9. The (twisted) local Weyl module associated to χ ∈ ΞΓ
λ is the LΓ(g)-module

WΓ
λCχ := WΓ(λ)⊗AΓ

λ
Cχ

One compelling reason to study the local Weyl modules is the fact that they admit

the following universal property:

Proposition 47. Let V ∈ Ob IΓ
λ such that V is generated by a highest weight vector v

of weight λ, and suppose dimVλ = 1. Then there exists χ ∈ ΞΓ
λ such that the assigment

wλ ⊗ 1 7→ v extends to a surjective map

WΓ
λCχ � V.
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Proof. By Lemma 33 and since V is generated by v, the assigment wλ 7→ v extends to a

surjective map

WΓ(λ) � V.

Furthermore, Vλ is an AΓ
λ-module and since dimVλ = 1, this module is simple. Hence by

the discussion in Section 6.2.9, there exists χ ∈ ΞΓ
λ, such that Vλ ∼= Cχ as AΓ

λ-modules. We

can deduce that the map induced by wλ 7→ v factors through the kernel of evχ and we have:

wλ ⊗ 1 7→ v extends to a surjective map

WΓ
λCχ � V,

and the proposition is proven.

Local Weyl modules for twisted loop algebras have been defined before in [8], as

well as in [13] with two different approaches. We will compare these definitions and show

their equivalences; we begin by defining them for L(g).

7.1.1

Let λ ∈ P+ and ξ ∈ Ξλ. The local Weyl module associated to ξ, as defined in [7],

is

W (ξ) := W (λ)⊗Aλ
Cξ.

Local Weyl modules had been defined previously in [10], but we will use the notation from

[7]. It was shown in the aforementioned series of papers ([10], [9], [15], [23], [1]) that

dimW (ξ) =
∏
i∈I

(dimW (ξi))
mi ,
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where λ =
∑
miωi and ξi is any element of Ξωi . This implies that the dimension of W (ξ)

is independent of ξ, but depends only on λ. Furthermore, it has been shown (for instance

in [7]), that W (ξ) has Vξ as its unique simple quotient.

7.1.2

In [13], local Weyl modules for LΓ(g) were defined to be the restriction of the un-

twisted local Weyl module for L(g); they are parametrized by equivariant finitely supported

functions. We should mention, that in [13] local Weyl modules were defined in a much more

general context. Namely, a finite group Γ acting freely on an affine scheme X and g by

automorphisms, which clearly includes the case of twisted loop algebras.

Specifically, let χ ∈ ΞΓ and let ξ be a χ-admissible function as in Section 5.1.5.

Then one defines by restriction the LΓ(g)-module

WΓ(χ) := W (ξ).

Now, since ξ is admissible, it follows that W (ξ) is a cyclic U(LΓ(g))-module ([13, Theorem

4.5]), and it was established in [13, Proposition 3.5] that the definition of WΓ(χ) is inde-

pendent of the choice of such ξ. Moreover, the modules WΓ(χ) satisfy a universal property

([13, Theorem 4.5]) similar to the universal property of local Weyl modules for loop algebras

([10]) and generalized current algebras ([7, Theorem 1]).

7.1.3

In [8], local Weyl modules for the twisted loop algebra were defined by a generator

w and certain relations. They were parametrized by a set of n-tuples (where n = |I0|) of
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polynomials π = (πi)i∈I0 with constant term 1, and we will denote these modules by WΓ(π).

Their universal property was proven in [8, Theorem 2]; we cite an abbreviated version here.

Theorem 12. Let λ ∈ P+
0 and suppose that V is a finite-dimensional LΓ(g)-module gener-

ated by a one-dimensional highest weight space of weight λ. Choose a vector vλ ∈ Vλ. Then

there exists an n-tuple (πi)i∈I0 of polynomials such that the assigment w 7→ vλ extends to

a surjective map of LΓ(g)-modules

WΓ(π) � V.

The following is immediate from the universal properties established above.

Corollary 48. For each χ ∈ ΞΓ
λ, there exists a n-tuple of polynomials (π) such that

WΓ
λCχ

∼= WΓ(χ) ∼= WΓ(π),

and vice versa.

7.1.4

In [8], the dimension and character of local Weyl modules have been computed.

We recall this result ([8, Theorem 2]) here since it will be useful in the proof of Theorem 8.

Theorem 13. Let λ ∈ P+, and χ ∈ ΞΓ
λ
, then

dimWΓ(λ)⊗AΓ
λ

Cχ = rankAλ
W (λ) =

∏
(rankAωi

W (ωi))
mi .

In particular, the dimension is independent of χ and depends only on λ. Moreover, the g0

character is also independent of χ.
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7.1.5

Using the fact that AΓ
λ is a Laurent polynomial ring (Section 6.2) and the fact

that

dimWΓ(λ)⊗AΓ
λ

Cχ

is independent of χ, we can conclude a result which was previously known for untwisted

loop and current algebras:

Theorem 14. For λ ∈ P+
0 , W

Γ(λ) is a free right AΓ
λ-module with

rankAΓ
λ
WΓ(λ) = dim WΓ

λCχ

for some, and hence for any, χ ∈ ΞΓ
λ.

7.2 Proof of Theorem 8

It remains to prove the main theorem.

Theorem 15. For λ ∈ P+
0 , we have

WΓ(λ) ↪→
⊕
µ=λ

W (µ),

where the map is induced by

wλ 7→ w :=
∑
µ=λ

wµ.

By construction, we have a surjective map

WΓ(λ) � U(LΓ(g)).w

The idea of the proof is to show that both sides are free AΓ
λ-modules of the same rank.

Together with the surjectivity of the above map, this will complete the proof.
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7.2.1

We have seen in Theorem 11 that AΓ
λ ⊂ Aµ is a subalgebra, for any µ satisfying

µ = λ. It follows that W (µ) is a right module for AΓ
λ and hence

⊕
µ=λW (µ) is a right

module for AΓ
λ. Finally, the submodule U(LΓ(g)).w ⊂

⊕
µ=λW (µ) is a right module for

AΓ
λ, being a quotient of WΓ(λ).

We want to show that U(LΓ(g)).w is a free AΓ
λ-module of the same rank as WΓ(λ). Now

because AΓ
λ is a polynomial algebra, in order to prove the freeness of U(LΓ(g)).w it suffices

to show that the dimension of

U(LΓ(g)).w ⊗AΓ
λ

Cχ

is independent of the maximal ideal χ ∈ ΞΓ
λ.

In order to prove this, we will need the following lemma:

Lemma 49. For each χ ∈ ΞΓ
λ, there exists τ ∈ P+ and ξ ∈ Ξτ such that ξ is χ-admissible

and

U(LΓ(g)).w ⊗AΓ
λ

Cχ
∼=LΓ(g) W (τ)⊗Aτ Cξ.

Assuming the lemma, we prove Theorem 8 as follows. Observe that the dimension

of the right hand side in Lemma 49 is independent of ξ and depends only on τ : it is equal

to the rank of W (τ) as a Aτ -module. By Theorem 13 we know that for τ =
∑
miωi,

rankAτ W (τ) =
∏
i∈I

(rankAωi
W (ωi))

mi .

On the other hand

rankAωi
W (ωi) = rankAωσ(i)

W (ωσ(i)).

To see this, one may recall, that σ is an automorphism of L(g), and W (ωσ(i)) is isomorphic

to the pullback of the module W (ωi) by the automorphism σ−1.
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Using this and the rank formula for the global Weyl module, we obtain that for all τ1, τ2 ∈

P+ with τ1 = τ2,

rankAτ1
W (τ1) = rankAτ2

W (τ2).

It follows that the dimension of U(LΓ(g)).w ⊗AΓ
λ

Cχ is independent of χ, and hence

U(LΓ(g)).w ⊂
⊕

µ=λW (µ) is a projective AΓ
λ-module. Since AΓ

λ is a polynomial ring,

it now follows from the famous result of Quillen that U(LΓ(g)).w is a free AΓ
λ-module.

Together with Theorem 14, this gives for τ = λ,

rankAτ W (τ) = rankAΓ
λ
WΓ(λ).

We therefore conclude that the rank of U(LΓ(g)).w ⊂
⊕

µ=λW (µ) as a AΓ
λ-module is equal

to the rank of WΓ(λ) as a AΓ
λ-module. Since we already have a surjective map

WΓ(λ) � U(LΓ(g)).w

and both modules are free AΓ
λ-modules, the map is an isomorphism and the theorem is

proven.

7.2.2

It remains to prove Lemma 49:

Proof. We start by defining projection maps πτ , for τ = λ, onto the τ -th component of⊕
µ=λW (µ).

πτ :
⊕
µ=λ

W (µ) �W (τ),

and by restriction we obtain maps

πτ : U(LΓ(g)).w −→W (τ),
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where w =
∑

µ=λwµ. By construction, we have

πτ (U(LΓ(g)).w) = U(LΓ(g)).wτ ⊂W (τ),

the LΓ(g)-submodule of W (τ) generated through the highest weight vector wτ .

For χ ∈ ΞΓ
λ, let ξ ∈ Ξ be a χ-admissible function (whose existence is assured by

the discussion in Section 5.1.5) and let τ = wt(ξ). Consider the local L(g)-Weyl module

W (τ)⊗Aτ Cξ.

We see, since the support of ξ is admissible, that this is a cyclic LΓ(g)-module, generated

by wτ ⊗Cξ. In fact, W (τ)⊗Aτ Cξ is by restriction a local Weyl module for LΓ(g), but by

construction Cχ
∼= Cξ as AΓ

λ-modules. Therefore, we have

W (τ)⊗Aτ Cξ
∼=LΓ(g) W

Γ(λ)⊗AΓ
λ

Cχ. (7.2.1)

Since Cχ
∼= Cξ, we have the trivial isomorphism

U(LΓ(g)).w ⊗AΓ
λ

Cχ
∼=LΓ(g) U(LΓ(g)).w ⊗AΓ

λ
Cξ.

We use the projection map πτ to obtain

U(LΓ(g)).w ⊗AΓ
λ

Cξ.�
(
U(LΓ(g)).wτ

)
⊗AΓ

λ
Cξ.

Combining this projection map with the fact that AΓ
λ ⊂ Aτ is a subalgebra, we have as

LΓ(g)-modules

U(LΓ(g)).w ⊗AΓ
λ

Cχ �
(
U(LΓ(g)).wτ

)
⊗Aτ Cξ. (7.2.2)

With the considerations above (we use that the support of ξ is admissible), we obtain, that

W (τ)⊗Aτ Cξ = (U(L(g)).wτ )⊗Aτ Cξ =
(
U(LΓ(g)).wτ

)
⊗Aτ Cξ. (7.2.3)

86



Combining 7.2.2 and 7.2.3, we obtain

dim U(LΓ(g)).w ⊗AΓ
λ

Cχ ≥ dimW (τ)⊗Aτ Cξ.

On the other hand, since U(LΓ(g)).w⊗AΓ
λ

Cχ is a cyclic LΓ(g)-module, generated

by the highest weight space, we have

WΓ(λ)⊗AΓ
λ

Cχ � U(LΓ(g)).w ⊗AΓ
λ

Cχ. (7.2.4)

So we obtain

dimWΓ(λ)⊗AΓ
λ

Cχ ≥ dim U(LΓ(g)).w ⊗AΓ
λ

Cχ.

Concluding we have

dimWΓ(λ)⊗AΓ
λ

Cχ ≥ dim U(LΓ(g)).w ⊗AΓ
λ

Cχ ≥ dimW (τ)⊗Aτ Cξ,

With 7.2.1, we conclude that we have equality throughout. That is,

WΓ(λ)⊗AΓ
λ

Cχ
∼=LΓ(g) U(LΓ(g)).w ⊗AΓ

λ
Cχ
∼=LΓ(g) W (τ)⊗Aτ Cξ,

which completes the proof.

87



Conclusions

We make some final remarks here about the connections between Parts I and II,

to place this manuscript in a broader context. Both sections are essentially aimed at un-

derstanding the global Weyl module, and the way it relates to other interesting structures

such as the local Weyl modules. These modules have been useful in understanding the

structure of various categories of representations of generalized loop algebras g⊗A. All this

is ultimately motivated by questions in the level–zero representation theory of the affine

algebra associated to g. The work represented in Part I was an early step in a program

(continued in [4] and [2]) to establish the global and local Weyl modules as “intermediate”

modules between the simples and their projective covers. This is analogous to the role of

the Verma module in the Bernstein–Gelfand–Gelfand Category O, and so Part I is really

an effort to form a comparison between global Weyl modules and Verma modules by ab-

stracting some important homological properties of the Verma modules. Along the way, we

are able to use a local Weyl module with a fundamental highest weight to reconstruct the

global Weyl module of the same weight. This provides both a crucial tool in our proof, and

some further insight into the relationship between local and global Weyl modules. In the

case of an arbitrary dominant integral weight, it is not clear how one might pass from a
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local Weyl module back to the global, so any special cases one can construct should aid in

understanding the general question.

On the other hand, the aim of Part II is to define the global Weyl module in

the context of the twisted loop algebra LΓ(g), which has until now been missing from

the literature. The main goal is to prove that the twisted global Weyl module, which is

straightforward to define by generators and relations, enjoys some nice relationship with its

untwisted counterpart.

Intuitively, having already understood the connection between the twisted and

untwisted local Weyl modules from the main result of [8] (that is, every twisted module

may be found inside an appropriately chosen untwisted one), one might expect that the

analogous result holds in the global case. However, for λ ∈ P+
0 , it is not true in general that

WΓ(λ) embeds into W (µ) with µ satisfying µ̄ = λ, which would be the most reasonable

guess. It turns out that the canonical map, sending wλ to wµ, generally fails to be injective.

In some cases, however, this canonical map is an embedding. Specifically, it can be shown

that for ωi ∈ P+
0 , we have WΓ(ωi) ↪→ W (ωj), for all j ∈ Γ.i. It follows that in this

particular case, the results from Part I (and particularly Theorem 2) may provide insight

into the homomorphisms between the twisted global Weyl modules we define in Part II.

Some remarks are also in order about more general Lie algebras than those of the

form g⊗A. Let Γ be any finite group, acting on g and an affine scheme X by automorphisms.

The Lie algebras of Γ–equivariant regular maps from X to g are called the equivariant map

algebras; they can also be realized as Lie algebras of fixed points (g⊗A)Γ, where A is the ring

of regular functions on X and the action of Γ on A is diagonal. Many well–known infinite–

dimensional Lie algebras are in fact examples of these algebras, including the generalized
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Onsager algebra and the twisted loop and multiloop algebras. Their finite–dimensional

simple modules were studied and classified in [24]. Local Weyl modules for an equivariant

map algebra were defined and studied in [13] in the case when Γ is abelian and its action on

X is free. Similarly to the case of twisted loop algebras in [8], it was shown there that any

local Weyl module for (g ⊗ A)Γ can be obtained by restriction from a local Weyl module

for g⊗A.

The contents of Part II can be viewed as a preliminary step toward a definition

of the global Weyl module for the equivariant map algebras. In the twisted loop case, we

still have a Cartan subalgebra, so we have weights and can define the global Weyl modules

by generators and relations. In the general situation, there might be no non-zero Cartan

subalgebra; however, the direct sum of Theorem 8 can be adapted in a way that is not

dependent on having such a Cartan subalgebra. Thus, using our result for twisted loop

algebras, one may attempt to define global Weyl modules for (g⊗ A)Γ as submodules in a

direct sum of global Weyl modules for g⊗A. Proving that they admit sufficient properties

to justify the name global Weyl module would the main task in such a project.
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