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Evolutionary rescue of resistant mutants is
governed by a balance between radial
expansion and selection in compact
populations

Serhii Aif 1,2, Nico Appold 1,2, Lucas Kampman 3,4,
Oskar Hallatschek 3,4,5 & Jona Kayser 1,2

Mutation-mediated treatment resistance is one of the primary challenges for
modern antibiotic and anti-cancer therapy. Yet, many resistance mutations
have a substantial fitness cost and are subject to purifying selection. How
emerging resistant lineages may escape purifying selection via subsequent
compensatory mutations is still unclear due to the difficulty of tracking such
evolutionary rescue dynamics in space and time. Here, we introduce a system
of fluorescence-coupled synthetic mutations to show that the probability of
evolutionary rescue, and the resulting long-term persistence of drug resistant
mutant lineages, is dramatically increased in dense microbial populations. By
tracking the entire evolutionary trajectory of thousands of resistant lineages in
expanding yeast colonies we uncover an underlying quasi-stable equilibrium
between the opposing forces of radial expansion and natural selection, a
phenomenon we term inflation-selection balance. Tailored computational
models and agent-based simulations corroborate the fundamental nature of
the observed effects and demonstrate the potential impact on drug resistance
evolution in cancer. The described phenomena should be considered when
predicting multi-step evolutionary dynamics in any mechanically compact
cellular population, including pathogenic microbial biofilms and solid tumors.
The insights gained will be especially valuable for the quantitative under-
standing of response to treatment, including emerging evolution-based ther-
apy strategies.

Many drug resistance mutations are associated with a decrease in
growth rate in the absence of treatment, a phenomenon often referred
to as the fitness cost of resistance, and thus subject to purifying
selection1–4. In principle, slower-growing resistant clones can be res-
cued by acquiring subsequent compensatory mutations, offsetting

their resistance-associated fitness cost2,5–8 (Fig. 1a). However, the short
lifetime and small size of less-fit intermediate clones, comprised of
slower-growing cells, makes crossing such a fitness valley inherently
rare, requiring large populations9,10, environmental shifts11, or long
times12 to become repeatedly observable at all.
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We and others have recently demonstrated that in dense
populations collective cell dynamics inherently decrease the power
of selection by several orders of magnitude13,14. The ensuing
alterations in evolutionary dynamics and clone longevity are likely
to also affect evolutionary rescue. However, tracking the ongoing
evolutionary trajectories of small individual clones is extremely
difficult. Time-resolved deep sequencing approaches can identify
emerging de novo subclones but lack the ability to spatio-
temporally track them, especially in dense populations15–17.
Microscopy-based clonal tracking approaches of fluorescently pre-
labeled clones, while featuring exquisite spatio-temporal resolu-
tion, fail to capture newly arising mutant clones13,14,18–20. Conse-
quently, we still lack empirical insight into how the altered
evolutionary dynamics in dense populations impact the evolu-
tionary rescue of slower-growing lineages and, as a result, drug
resistance evolution. A better understanding of the fundamental
processes governing evolutionary rescue in such crowded settings
will be crucial to understand why drug resistance is so prevalent in
many pathological cellular populations.

In this work, we study the evolutionary rescue of drug-resistant
clones in densely-packed cellular populations via a genetically tailored
yeast-based model system. Combining our empirical results with
accompanying in silico models of colony growth and agent-based
tumor simulations,we find that the competing effects ofmechanically-
driven radial range expansion and a clone-width-dependent reduction
of selection pressures conspire to create a previously unidentified
inflation-selection balance. The resulting stabilization of less-fit resis-
tant clones drastically enhances their chance to acquire compensatory
mutations, persist for long times and, upon drug application, become
the seed for resurgent growth.

Results
Tracking evolutionary rescue dynamics via synthetic compen-
satory mutations
We aim at investigating the evolutionary rescue of slower-growing
resistant clones, competing within a background of faster-growing but
susceptible wild-type cells. In this context, evolutionary rescue refers
to the de novo acquisition of a compensatory mutation that elevates
the growth rate of resistant cells to that of the wild-type (Fig. 1a). A
model system of multi-type yeast colonies, comprised of genetically
tailored resistant and susceptible S. cerevisiae strains, allows us to track
evolutionary rescue dynamics and the resulting fate of resistant
lineages with high spatio-temporal resolution. Fluorescently labeled
resistant cells, carrying a constitutive resistance against the drug
hygromycin B, are interspersed at a low fraction (10%) into a popula-
tion of hygromycin-susceptible wild-type cells (Fig. 1b). We then grow
radially expanding colonies from a small droplet of this mixed inocu-
lum, placed on a 2D agar substrate (see Supplementary Fig. 1). Resis-
tant lineages, expanding from individual cells inoculated at the front,
form well-segregated sectors that can be readily visualized via time-
resolved fluorescence microscopy (Fig. 1c, d).

To emulate the cost of resistance, we selectively adjust the growth
rates of resistant cells via the translational inhibitor cycloheximide, to
which wild-type cells are insensitive21. Resistance-associated growth
rate reductions have been reported to vary substantially (0−75%),
depending on the type of cell, the drug, and the mechanism of resis-
tance,with low-cost variants beingmost frequently observed in clinical
isolates2,22. Themoderately low fitness cost of s =0.013 ± 0.006 (50nM
cycloheximide), chosen for our main experiments, reflects this dis-
tribution while allowing for optimal data acquisition within the time
and throughput constraints of our assay.

Fig. 1 | Synthetic mutation assay to study evolutionary rescue dynamics in
expanding microbial colonies. a Schematic of evolutionary rescue of a resistant
mutant (red) associated with a fitness cost relative to its wild-type ancestor (gray)
via a compensatory mutation that renders it resistant but without a cost (blue).
b Outline of experimental competition assay of resistant clones (red, 10%) inter-
spersed in a colony of susceptiblewild-type cells (gray, 90%). cMicroscope images
of the colony front ≈ 1 h after inoculation (day 0). Scale bar 10μm. d Narrow but
persisting resistant clone at the front just prior to application of hygromycin (day
5). Scale bar 100 μm. e Resistant growth dome after initiation of hygromycin
treatment (day 6). Scale bar 100μm. Images in c–e are representative for experi-
ments repeated in n = 6 independent colonies. f Schematic of synthetic mutation

system (see genotypes in Supplementary Table 1). A red fluorescing (RFP) and
cycloheximide responsive (inactive cyh2r) genotype (top) switches to a cyan
fluorescing (CFP) and cycloheximide unresponsive (active cyh2r) genotype (bot-
tom) via loxP recombination using a β-estradiol-tunable Cre recombinase (Cre-
EBD) (see Supplementary Movie 1). UBQ denotes a ubiquitin moeity that triggers
proteolytic cleavage and hygMX indicates a constitutively expressed hygromycin
resistance cassette. g Illustrating microscopy image of a colony one day after
treatment application. Most resistant clones have been outcompeted by the wild-
type (Extinction). Only one clone acquired a compensatorymutation (Rescue) and
persisted to expand upon hygromycin application (Treatment failure).
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In the context of this study, cycloheximide is solely used to adjust
the relative fitness between resistant and susceptible clones, while the
resistance itself refers to hygromycin B. In addition, it should be noted
that quantitative measures of the relative fitness cost refer to the rate
of change in clone width, rather than the doubling rate of the com-
prising cells (see Supplementary Fig. 2). As a result of the fitness cost of
resistant clones, we observe their width at the expanding front to
remain small (~10 cells) during an initial hygromycin-free growth phase
(Fig. 1d). Application of hygromycin halts the growth of susceptible
wild-type cells while resistant clones still present at the colony edge
continue to expand outward in a semi-circular pattern (Fig. 1e). Wewill
refer to these rapid expansions of resistant lineages after drug appli-
cation as resurgent growth domes. It should be noted that the specific
formof treatment failure is likely to bedifferent inother contexts, such
as the antibiotic treatment of a biofilm or the effects of chemotherapy
on a solid tumor. For example, dead yeast cells retain their structural
integrity upon treatment and do not free up any space.

To additionally detect compensatory mutation events and track
the evolutionary trajectories of emerging de novo compensated

subclones, we introduce a recombinase-based synthetic mutations
system (Fig. 1f). Slower-growing resistant cells can stochastically switch
at a rate μ from a slower-growing, red-fluorescent initial state to a cyan-
fluorescent rescued state which has a growth rate matching that of the
non-switching wild-type cells. The mutation rate μ is set by the con-
centration of β-estradiol (Supplementary Fig. 2). Unless otherwise
indicated, mutation rates were set to μ = 2.65 ± 0.25 × 10−4μm−1 to
obtain a sufficient number of evolutionary rescue events within the
experimental time frame while maintaining a low probability of clonal
interference of multiple compensated subclones within one resistant
lineage. Note that both uncompensated and compensated cells carry
the hygromycin resistance.

These synthetic mutations allow us to monitor incoming com-
pensatory mutations throughout colony expansion and directly mea-
sure their effects on long-term persistence and treatment failure. With
each initial clone representing an independent experiment, this high-
throughput approach allowed us to quantitatively assess the fate of
several thousand resistant lineages in parallel. Figure 1g shows a post-
experiment image of a colony with clone boundaries as a fossil record

Fig. 2 | Slower-growing resistant mutants are stabilized at a quasi-constant
equilibrium width, reshaping the acquisition and effect of compensatory
mutations. a Experimental data analysis pipeline. Time series of colony images are
acquired via fluorescence microscopy and analyzed via a machine-learning-based
image segmentation and processing pipeline to extract clone trajectories. b Single-
lineage trajectories (1 to 9 days of growth) for one representative colony (of n = 48
total number of colonies), sorted for trajectory length and type. Line width is
proportional to the clone width at the colony edge. Not all clones extinct after one
day are shown (see broken axis). Compare to Supplementary Fig. 3 for trajectories
of no-rescue control. Inset: Probability Pcomp for null model simulations
(n0 = 10,000 clones) and experiments (n0 = 2898 ± 126 clones from n = 18 inde-
pendent colonies) (see main text). c Width of compensated (blue) and uncom-
pensated (red) clones. Connected points represent the median width with error
bars/shaded areas indicating interquartile ranges. Circles represent mean values.

n = 18 independent colonies with amutation rate μ = 2.65 ± 0.25 × 10−4μm−1 (4 nM β-
estradiol). d, e Estimated probability densities for the width of uncompensated
(red) or compensated (blue) clones, respectively (see “Methods” for details). Hue
indicates increasing colony radius over time. f Clone survival probabilities at the
front (Eq. (1)) for experiments with compensatory mutations (with-rescue,
μ = 2.65 ± 0.25 × 10−4μm−1, 4 nM β-estradiol) and minimal mutations (no-rescue,
μ = 5.6 ± 3.5 × 10−6 μm−1, 0 nM β-estradiol) (points), and null model (doted lines).
n0 = 2898 ± 126 clones in n = 18 independent colonies for both with-rescue and no-
rescue experiments. See Supplementary Fig. 4 for survival probabilities with dif-
ferent mutation rates. Error bars/shaded area indicate Poisson distribution SD
(vertical axis) and SDof themean (horizontal axis). Arrows indicate treatment times
as in Fig. 3. g Efficacy of compensatory mutations (Eq. (2)). Shaded areas indicate
propagated SDs. Gray box represents the window of inefficacy, during which effi-
cacy remains zero within errors. Source data are provided as a Source data file.
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of past clonewidths.Wefind that slower-growing resistant clones form
narrow yet surprisingly persistent streaks before eventually being
expelled from the expanding front. A compensated resistant subclone,
in contrast, can persist long-term, even grow in size, and eventually
seed a resurgent growth dome upon hygromycin treatment.

The acquisition and effect of compensatory mutations is gov-
erned by a stabilization of uncompensated clones
To quantify the underlying evolutionary dynamics, we recorded the
complete history of N ~ 10,000 individual resistant clones via time-
resolved, multi-scale fluorescence microscopy in 24 h intervals
(Fig. 2a). Cloneswere initially associatedwith an intrinsicfitness cost of
s =0.013 ± 0.006 but could acquire a compensatorymutation at rate μ
(see figure captions).

Segmenting images via a machine-learning-based, pixel-wise
segmentation pipeline, we measured the width and compensation
state (uncompensated (-) or compensated (+)) of clones at the colony
edge to reconstruct their complete evolutionary trajectory
(see Fig. 2b).

To quantify the prevalence of compensatory mutations, we cal-
culated the probability Pcomp = n+/n0 of a clone to acquire a compen-
satory mutation and survive until the end of the experiment. We then
compared our experimental results to a baseline obtained from a
minimal in silico null model of radial range expansion. In this model,
the trajectories of individual sector boundaries are simulated as
selection-biased 1D random walks on a radially expanding periphery
(see below for a detailed description). In brief, boundaries undergo a
random step in angular space for each step of radial expansion.
Competition between adjacent clones is implemented by shifting the
Gaussian kernel from which the angular step size is drawn. This
approach has been previously demonstrated to be well-suited to
capture many key aspects of evolution and range expansion in
spatially-structured populations, such as local competition, gene
surfing, and the effects of radial growth19,23,24. Yet, our experiments
show a 10-fold higher prevalence of compensated clones in compar-
ison to this null model (Fig. 2b, inset).

Our assay also gives direct access to the width distributions of
uncompensated and compensated clones (Fig. 2c–e). For compen-
sated (blue) clones, we find that themeanwidthw continuously grows
with increasing radius while the underlying width distribution gradu-
ally widens (Fig. 2c, e). The mean width of uncompensated (red)
clones, however, initially rises but then saturates for r ≳ 4000μm and
remains constant at an equilibrium width weq = 50± 17μm. This sta-
bilization is also reflected in the width distribution of uncompensated
clones, which remains narrowly confined around weq (Fig. 2d).

The observed width equilibrium should also have a marked
impact on lineage fate, prolonging overall sector survival. We also
expect that clones should become extinct at a constant rate that is set
by the equilibrium width. In the absence of compensatory mutations,
this should result in a gradual exponential decay of the survival
probability Psurv, while in the presence of compensatory mutation we
would expect Psurv to level off at a non-zero value.

To test this hypothesis, we measured the radius-dependent sur-
vival probability

PsurvðrÞ=
nðrÞ
n0

ð1Þ

with n(r) and n0 = n(r = r0) denoting the respective number of lineages
present at the front when the colony has expanded to a radius
r (Fig. 2f).

Comparing survival probabilities of experiments to null model
simulations for both a no-rescue (μ < 10−5μm−1) and a with-rescue
(μ = 2.65 ± 0.25 × 10−4 μm−1) scenario, we find that experimentally
observed survival probabilities exceed those of the respective null

model data by at least one order of magnitude at the end of our
experiments. The difference is especially drastic for the no-rescue
scenario in which the null model did not yield any surviving clones for
r > 2100μm while experiments exhibit a long-tailed, exponential-like
decay. This behavior is consistent with our observation of a steady
equilibrium width.

Intriguingly, for r≲ 5000μm we find experimental survival
probability of the no-rescue scenarios to be virtually indistinguishable
from those measured in with-rescue samples. In the later phase of
expansion (r ≳ 5000μm), however, the with-rescue survival prob-
abilities level off while those of the no-rescue counterpart continue to
decay. This divergence can be quantified by calculating the efficacy of
rescue as (Fig. 2g)

Eresc = 1�
Pno�rescue
surv

Pwith�rescue
surv

ð2Þ

Here, Eresc =0 indicates no observed difference between both scenar-
ios while Eresc = 1 represents the limit of all surviving clones to be
exclusively in the with-rescue sample. In our experiments, efficacy
remains zerowithin errors for r < 4700μm, after which it continuously
rises to Eresc =0:6±0:1 at the end of experiments.

The impact of evolutionary rescue is delayed
The observed delay in efficacy generates an initial windowof inefficacy
during which evolutionary trajectories seem unaffected by evolu-
tionary rescue. Notably, the extent of this delay seems temporally
decoupled from the acquisition of compensatory mutations, the
majority of which having already occurred before r = 3000μm
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as measured via the number of resurgent growth domes. The fitness cost of all
experiments was s=0.013 ±0.006 (Supplementary Fig. 2a, b). Mutation rates were
either low (μ = 5.6 ± 3.5 × 10−6μm−1), medium (μ = 2.65 ±0.25 × 10−4μm−1), or high
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c, d Efficacy of evolutionary rescue with reference to low mutation experiment for
treatment at day 5 or day 9, respectively. Error bars indicate propagated SDs. Source
data are provided as a Source data file.

Article https://doi.org/10.1038/s41467-022-35484-y

Nature Communications |         (2022) 13:7916 4



(Supplementary Fig. 5). Together, this suggests an interesting con-
sequence: The probability of treatment failure should be independent
of evolutionary rescue if therapy is initiated within the window of
inefficacy.

To test this prediction, we conducted a series of therapy mimicry
experiments, initiating treatment either within or substantially after
the window of inefficacy. In these experiments, we expanded colonies
for an initial pre-treatment phase at different mutation rates for either
5 or 9 days (see arrows in Fig. 2f). We then initiated treatment with
hygromycin B, halting wild-type growth, and counted resurgent
growth domes after one dayof post-treatment regrowth. Analogous to
Psurv, the respective treatment failure probabilities Pfail for each sce-
nario is then given by

Pfail =
Nfail

n0
ð3Þ

whereNfail is the number of growth domes and n0 is again the number
of initially inoculated clones. We further measured the proportion of
the total treatment failure probability attributed to either compen-
sated (blue) or uncompensated (red) clones (Supplementary Fig. 6).

Comparing the treatment failure probabilities of different muta-
tion rates, we find that the fraction of compensated growth domes
increases with mutation rate (Fig. 3a). Intriguingly, this shift in com-
pensation status does not directly translate to a change in overall
treatment failure probability, which remains essentially unaffected for
the early treatment point. Delaying treatment until day 9, in contrast,
yields a significant difference in treatment failure probabilities
between control and samples with increased mutation rate (Fig. 3b).
The contrast between early and late treatment time points can also be
appreciated by comparing the respective efficacy values Eresc = 1�
Pno�rescue
fail =Pwith�rescue

fail (Fig. 3c, d).

The occurrence and impact of evolutionary rescue is governed
by a stable inflation-selection balance
Motivated by the observed width stability of uncompensated clones,
we tested our hypothesis that this phenomenon might also be a key
determinant of evolutionary rescue dynamics, including thewindowof
inefficacy. The origin of the plateau in width can be rationalized by
considering the interplay of the twomain forces driving the change of
mean clonal width, (i) global inflation of the population front due to
radial growth (Fig. 4a) and (ii) natural selection (Fig. 4b). For a slower-
growing clone, these forces are opposing each other with inflation
increasing clone size and selectiondecreasing it, so that the totalwidth
change per radial expansion is

∂rwtot = ∂rwinf � ∂rwsel ð4Þ

with the clonal widthwmeasured as the arc length between delimiting
sector boundaries. In the simplest scenario, inflation depends on the
sector width and the current population radius as ∂rwinf ðw,rÞ=w=r
while selection only depends on the relative fitness difference s of the
adjacent clones ∂rwsel =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∣s∣ð2 + sÞ
p

. Such a constant selection scenario
has been comprehensively investigated in previous studies of range
expansions18–20,25. Even though a constant selection scenario can yield
an equilibrium clone width weq at which inflation and selection forces
cancel each other out (∂rwtot(weq) = 0), this equilibrium is inherently
unstable (Fig. 4c). Clones ofwidthw <weq are selection dominated and
continue to shrink while those of larger width w >weq are inflation
dominated and expand. However, we and others have recently
demonstrated that in dense populations, similar to those investigated
here, selection decreases with clone width13,14. For such a width-
dependent selection ∂rwsel(w), a stable equilibrium width can exist,
such that small clones are inflation dominated while bigger clones are
selection dominated (Fig. 4d). Note that the strength of inflation is
inversely proportional to the colony radius r. As a result, weq will
gradually increase for a constant selection scenario and decrease for
width-dependent selection.

To quantitatively test this inflation-selection balance hypothesis,
we simulated both constant and width-dependent selection scenarios,
modeling the trajectories of individual sector boundaries as biased 1D
randomwalks on a radially inflating surface (Fig. 5a)13,24. We found that
our experimentally observed survival probabilities could not be cap-
tured by any constant fitness scenario, even if effective selection was
reduced by several orders of magnitude (Fig. 5f, dashed lines; see also
Supplementary Figs. 9 and 10).

However, using a width-dependent selection coefficient seff(w)
(Fig. 5b, inset) not only resulted in a plateauing and narrowly dis-
tributedwidthof uncompensated clones (Fig. 5c–e) but alsoaccurately
reproduced empirical survival probabilities and efficacies (Fig. 5f, g,
solid lines). Note that the above rationale for an inflation-selection
balance is robust across a wide spectrum of width dependence, solely
requiring that ∂rwsel(w) approaches zero more rapidly than inflation
for decliningwidth (see SupplementaryFig. 11). Here,weused a logistic
form of seff ðwÞ= s � 2=ð1 + ewc=wÞ as a minimal heuristic model with only
one free parameter (the critical width wc).

We previously demonstrated that such a clone-width-dependent
reduction in effective selection can inherently emerge as a result of
collective cell dynamics indense cellular populations (see Fig. 2g in ref.
[13]). In short, distance-dependent mechanical coupling of cell motion
prevents the differential displacement required for selection to act.
The exact formof thiswidth-dependence, andwith it the values ofweq,
may differ substantially between systems. However, the fundamental
concept of inflation-selection balance and its evolutionary con-
sequences may extend to other dense populations, including patho-
genic bacterial biofilms or solid tumors, that exhibit theminimal set of
necessary ingredients: (i) the inflation of a peripheral growth layer and
(ii) width-dependent selection.
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Fig. 4 | The opposing effects of peripheral inflation and width-dependent
selection create a quasi-stable equilibrium width. a Illustration of inflation of
sector width due to radial population expansion. b Illustration of constant and
width-dependent negative selection in an inflation-free flat front. c, d Schematic
graphs of lateral width change per radial colony expansion, ∂rw, for constant (c)
andwidth-dependent (d) selection scenarios, respectively. Yellow lines indicate the
contribution of inflation for a given radius r, blue lines indicate the contribution of
effective (constant or width-dependent) selection, and black lines represent the
sum of both. Note that the slope of the yellow inflation line will gradually decrease
as the colony expands. Shaded areas indicate inflation dominated (+, growing
clones) or selection dominated (−, shrinking clones) width regions. See Supple-
mentary Figs. 7 and 8 for width dynamics.
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Evolutionary rescue and treatment failure in an in silico
tumor model
To assess the relevance of our findings in the context of solid tumors,
we conducted agent-based simulation of tumor growth using a tai-
lored implementation of the PhysiCell platform26. In short, cells grow
and divide in an explicitly simulated nutrient microenvironment and
repulsively interact via a distance-dependent force, resulting in non-
motile, overdamped motion (Fig. 6a). In our implementation, indivi-
dual cells can additionally mutate at a predetermined stochastic rate
and fitness effect. Cells in the population interior stop proliferating
due to a lack of nutrients, creating a peripheral growth layer.

Similar to our experimental assay, we simulated the expansion of
2D in silico tumors starting from a mixture of resistant but slower-
growing cells interspersed at a low fraction into abackgroundof faster-
growing wild-type cells.

Resulting in silico tumor populations inherently capture the full
finger print of inflation-selection balance. Following an analysis pipe-
line equivalent to that applied to experimental data (Fig. 6b), we again
find stabilized trajectories of uncompensated clones, the character-
istic long tail of no-rescue survival probabilities, and the ensuing delay
in efficacy of evolutionary rescue (Fig. 6c–g).

Leveraging the spatio-temporal resolution of our simulations and
the ability to precisely control timing and position of compensatory
mutations, we find that the life history of a clone can be divided into
four characteristic phases: (i) establishment phase, (ii) equilibrium
phase, (iii) transition phase, and (iv) escaped phase (Fig. 6h). At the
beginning of the initial establishment phase, uncompensated clones
are very small by definition, similar to a de novo resistant clone just
after acquiring the resistance-conveying mutation. During this phase,
the probability of a clone to be driven to extinction by randomgenetic
drift is high.

Those clones that do not succumb to genetic drift right away
enter the equilibrium phase, in which the width of a clone remains
constant due to the opposing forces of natural selection and per-
ipheral inflation. In our simulations, we find this finite equilibrium
width to be 39.24 ± 22.32 μm, or weq = 3.27 ± 1.86 cell diameters.
While clones in this phase can still fluctuate to extinction, the rate is
drastically reduced in comparison to the initial establishment phase
due to an increased mean clone width. This stabilization at a small
but finite clone width can now be interpreted as the root cause for
the narrow yet persistent streaks of uncompensated clones
observed in Fig. 1g.

Fig. 5 | Including inflation-selection balance in a randomwalk model of range
expansion reproduces experimental observations. a Schematic of radial-
random-walk model, simulating clone boundaries as a selection-biased 1D random
walk along a radially expanding periphery. Inset: Selection can either reflect the full
fitness cost (nullmodel, see Fig. 2b, f), be reducedbya constant factor (f) or change
as a functionof clonewidth (b–g).b Simulated trajectories (same radius range as in
experiments). Line width is proportional to the clone width at the colony edge.
Inset: Width-dependent effective selection coefficient (see main text). c Width of
compensated (blue) and uncompensated (red) clones. Solid lines represent the
median width and shaded areas indicate interquartile ranges. Dashed lines repre-
sent mean values. d, e Estimated probability densities for the width of

uncompensated (red) or compensated (blue) clones (see “Methods” for details).
Hue indicates increasing colony radius over time. f Clone survival probabilities at
the front (Eq. (1)) for different simulation scenarios (see legend). Note that with-
rescue and no-rescue data overlaps for the neutral scenario. Shaded area indicates
Poisson distribution SD. Experimental data is identical to that shown in Fig. 2f.
g Efficacy of compensatory mutations (Eq. (2)) for the same scenarios shown in
panel f) withmatching line styles. Shaded areas indicate propagated SDs. Gray box
represents the window of inefficacy for the width-dependent selection scenario.
Experimental data (red) is identical to that shown in Fig. 2g. Source data are pro-
vided as a Source data file, if applicable (see ”Data availability” statement).
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The acquisition of a compensatory mutation then initiates a
transition phase during which the survival probability gradually tran-
sitions from low to high. Even though compensated mutant cells now
double at the rate of wild-type cells and even have a fitness advantage
over their neighboring uncompensated ancestor, de novo

compensated clones originate from a single cell and are therefore very
small initially. At these small widths, the benefits of positive selection
and radial inflation are small in comparison to the effects of random
width fluctuations. As a result, a substantial fraction of nascent com-
pensated subclones will be driven to extinction, similar to the fate of

Fig. 6 | The interplay of inflation-selection balance and evolutionary rescue
inherently emerges inanagent-based in silico tumormodel. a Schematics of the
simulation set-up (see “Methods” section for details). b Simulated trajectories. Line
width is proportional to the clone width at the colony edge. c Width of compen-
sated (blue) and uncompensated (red) clones. Solid and dashed lines represent the
median and mean widths, respectively, and shaded areas indicate interquartile
ranges. s =0.21 (see Supplementary Fig. 12 fordifferent fitness costs).d, e Estimated
probability densities (see Fig. 5d, e and “Methods” for details). f Clone survival
probabilities at the front (Eq. (1)). Shaded area indicates Poisson distribution SD.
g Efficacy of compensatorymutations. Shaded areas indicate propagated SDs. Gray
box represents the window of inefficacy. h Representative simulated clone trajec-
tory exhibiting all phases (see main text). i Mean clone width development of

uncompensated clones (red lines) andmutations triggered at different colony radii
r* (blue solid lines). Linesbegin at theirmutation timepoint. Hue decreaseswith the
mutation start. Dashed lines are linear fits to the width of compensated clones.
Shaded areas represent SD of the fitted lines. j Radial expansion Δrescape from the
point of mutation r* to escape wescape as function of r* (mean± SD). k Probability
Pescape (black circles) to grow above escape width wescape = 6 cells in 2500μm of
radial colony growth aftermutation. Error bars indicate one SD assuming a Poisson
distribution. Probability Pmutate (black diamonds) to get a mutation (with mutation
rate μ =0.1 per step) at the given radius. Combined probability Ptotal (red squares)
for a clone to acquire a mutation and eventually grow to the width w >wescape.
n = 20 simulated colonies for each r*. Source data are provided as a Source datafile.
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uncompensated clones during the establishment phase. However,
over time the mean width of surviving compensated clones will grow,
gradually decreasing the likelihood to fluctuate to extinction via ran-
dom genetic drift.

In our simulations, once a clone grows to a width larger than
wescape = 6 cells, the probability of genetic drift overcoming inflation
becomes smaller than 1%. Clones reaching this escaped phase not only
persist virtually indefinitely but continue to grow linearly in lateral
width until treatment is initiated at some future time.

A direct consequence of the observed quasi-stability of slower-
growing clones is that compensatorymutations can occur over a wide
range of population radii. This raises the question of how the prob-
ability of a compensated clone to permanently escape selection
depends on the radius r* at which the compensatory mutation occur-
red and the transition phase is initiated.

In our agent-based simulations we can address this question by
triggering compensatory mutations at a specific radius r* and then
measure the effects on subsequent evolutionary dynamics (see
Supplementary Movie 2). We find that the rate at which the mean
width of compensated clones increases is inversely correlated with
r*, consistent with a weaker inflation at higher radii (Fig. 6i). From
the slope of the linear width increase we calculate the expected
radial expansion Δrescape(r*) that is needed for a compensated
subclone to transition to a width w >wescape = 6 cells (Fig. 6j). Since
Δrescape(r*) increases with r*, compensated clones emerging at lar-
ger r* have to, on average, endure a longer time in the transition
phase which results in a decreasing probability Pesc(r*) of the clone
to reach escape width (Fig. 6k).

Since Pesc(r*) only describes the dynamics after acquisition of the
compensatory mutations, we have to multiply it with the probability
Pmutate(r*) of an uncompensated clone to mutate at r* to obtain the
total probability Ptotal(r*) = Pesc(r*) ⋅ Pmutate(r*) that a resistant clone
survives due to a compensatory mutation at r* (Fig. 6k).
Pmutate(r) = 1 − (1−μ)w(r) is defined by the width of uncompensated
clones and is therefore also subject to the inflation-selection balance.
Consequently, Pmutate(r*) initially increases and then saturates while
Pesc(r*) continuously decays.

The result is broad peak in the combined probability Ptotal(r*)
suggesting that there is a temporal window during which the evolu-
tionary rescue of a resistant clone is most likely to lead to selection
escape, long-term persistence, and eventually treatment failure.

Discussion
In this work, we study how resistant lineages associated with a fitness
cost can be rescued from purifying selection via subsequent com-
pensatory mutations. We introduce an experimental evolution assay
based on fluorescence-coupled synthetic mutations in expanding
yeast colonies. This model system allows us to track the complete
evolutionary trajectories of thousands of individual clones with high
spatio-temporal resolution. Three main findings emerged from our
study, linking the increased probability of evolutionary rescue and
consequences for treatment failure to the growth-induced collective
cell dynamics in dense populations.

First, we identify an inflation-selection balance, in which the
counteracting effects of peripheral population inflation and selection
pressure result in a quasi-stable equilibrium width of slower-growing
resistant clones. As a result, these lineages persist at the expanding
population front, improving their chance to acquire a subsequent cost-
compensatory mutation. Modeling clone boundaries as biased ran-
dom walkers, we show that a clone-width-dependent effective selec-
tion is required for inflation-selection to be stable.

We expect that inflation-selection balance will have a pivotal
impact on related processes, such as mutations-selection balance and
the maintenance of standing genetic variation, or the accumulation of
mutational load and conversional meltdown of populations21,27–30

Second, our analysis reveals that a heightened prevalence of
compensated resistant clones does not immediately translate to an
increased probability of treatment failure but is substantially delayed.
De novo compensated clones need to establish and expand above the
width of their uncompensated ancestors before having an effect.
However, as a result of the stabilizing effect of inflation-selection bal-
ance this catching-up takes time. The result is a transient window
during which the efficacy of compensatory mutations is negligible.
Conceptually, these dynamics have similarities to other types of tran-
sients that have been described in range-expanding populations20.

Third, using an agent-based in silico model of tumor growth, we
demonstrate that inflation-selection balance only requires a minimal
set of ingredients that is inherent to radially expanding dense popu-
lations and also present in solid tumors. We conclude our study by
leveraging our simulation platform approach to investigate how the
timing of compensatory mutations impacts long-term treatment
success.

Our findings suggest a number of future avenues of research. To
facilitate a systematic investigation, we focused on a compensation-to-
neutral scenario. Using a different wild-type reference strain could
extendour analysis to sub-neutral or even net beneficial compensatory
mutations. While our well-controlled yeast model system is ideally
suited to investigate the fundamental effects of density-driven growth
on the evolutionary dynamics of dense populations, it does not cap-
ture many of the biological and biochemical intricacies present in
other settings, such as active migration, cell-cell adhesion or hetero-
geneous mechanical properties which may overlay the fundamental
processes discussed in this work.

A particularly interesting extension of the work presented here
will be to investigate how the secretion of extracellular polymeric
substances (EPS), a common feature of bacterial biofilms, might alter
the processes discussed in our work31–33. While biofilm growth due to
EPS secretion, rather than cellular proliferation alone, is likely to result
in some form of long-range correlations in cell motion, expansions
may not necessarily be lateral. Dedicated experimental assays and
tailored simulations will be needed to elucidate the role of EPS and
biofilm growth modes on inflation-selection balance and evolutionary
rescue dynamics. Moreover, populations growing under spatial con-
straints, such as confinement in a pore or a tube, might not follow the
simple radial inflation discussed here. The ensuing effects on front
curvature have the potential to either reduce or amplify local inflation,
thereby shifting the point of inflation-selection balance.

In addition, our study focuses on the evolutionary rescue of a pre-
existing resistance mutation. Alternative trajectories to two-step
resistance, such as the hitchhiking of a resistance mutation on an
independent driver mutation, have not been included34. However, our
experimental strategy and the presented computational framework
could be generalized in the future to investigate these alternative
scenarios. In experiments, this can be achieved by the implementation
of a two-step synthetic mutation platform via two orthogonal recom-
binase systems.

Notably, our observations might not be exclusive to dense
populations. While the necessary ingredients for inflation-selection
balance inherently emerge from density-driven growth, they might
also be generatedbyother formsof negative size-dependent selection,
such as it has been described for mutualistic scenarios35.

We predict the existence of an inflation-selection balance to be
robust across a wide range of growth parameters and systems. Yet,
natural cellular populations exhibit many layers of complexity that
are not captured by the minimal assumptions of our model and that
might overlay, reshape or even eliminate inflation-selection balance
and its effects on evolution. In addition, this study focuses on a
limited set of parameters to unravel the fundamental concepts of
inflation-selection balance and evolutionary rescue. However, while
the investigated fitness costs are within realistic parameter regimes,
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we emphasize that they are subject to experimental and computa-
tional constraints and do not necessarily reflect the full spectrum of
real-world scenarios.

In contrast to reports on the cost of resistance, measurements
of the rates of compensatory mutations in natural systems remain
elusive. However, it is reasonable to assume that values are likely to
be highly variable and potentially outside the range of parameters
explored in our experiments5. While the concept of inflation-
selection balance does not depend on the rate of compensatory
mutations, this variability will need to be factored in when inter-
preting our results in the context of evolutionary rescue in patho-
genic biofilms or cancer.

Of particular interest will be to extend our investigations to three-
dimensional range expansions, such as matrix-embedded microbial
spheroids and cancer cell tumoroids. In addition, including cell death
in the context of treatment failure dynamics to study the competitive
release of internal resistant cells will be of pivotal importance36–38.

In conclusion, our work is a crucial step toward a bottom-up
understanding of evolutionary dynamics in dense cellular populations
as an emergent phenomenon in actively proliferating granular matter.
This study is, to our knowledge, the first to combine the effects of two
of the most fundamental features of these systems, growth-driven
radial expansion and collective dynamics, to systematically investigate
their impact on critical evolutionary processes, such as evolutionary
rescue and drug resistance evolution.

We expect that future expansions of the framework and tools
established here will help to design better quantitative and predictive
models for evolution in compact populations, thus serving as a step-
ping stone toward novel evolution-based therapy strategies4,39–41.

Methods
Strains
All experiments in this workwere conductedwith the non-motile yeast
S. cerevisiae. The used strains, yJK26 (resistant mutant with synthetic
mutation system) and yMG10 (wild-type background), were con-
structed on the W303 laboratory strain and are based on the common
ancestor yJK19, expressing the β-estradiol inducible pSCW11-Cre-EBD
recombinase construct from pDL1242.

yJK26 and yMG10 feature the same synthetic mutation cassette
PENO2-loxP-ymCherry-kanMX-loxP-FP2-UBQ-cyh2r, only differing by the
secondaryfluorescent protein FP2behind the cassette, which for yJK26
is ymCerulean and for yMG10 ymCitrine (see the following section for
details on cloning of the syntheticmutation system). In both cases, the
fluorescent protein is coupled via a proteolytically cleavable ubiquitin
linker to cyh2r (CYH2Q37E), conveying resistance to the translational
inhibitor Cycloheximide. To construct yJK26, we first introduced the
synthetic mutation cassette (yJK20) and subsequently replaced the
Nourseothricin resistance marker, originally introduced into yJK19 as
selection marker for cre-EBD insertion, with a HygR resistance from
pAG32 (available from www.addgene.com, #35122). Consequently,
yJK26 (and its converted version yJK26c) are constructively resistant
against hygromycin B, while the converted version of yMG10 (yMG10c)
is used as hygromycin-susceptible wild-type strain in our experiments.
All insertions were achieved by amplifying the insert via standard PCR,
followed by Lithium Acetate transformation and selection. Correct
insertion was verified by cross-junctional colony PCR of positively
selected clones. The genotypes of the strains are specified in Supple-
mentary Table 1.

Construction of synthetic mutation cassette
The synthetic mutation cassette was constructed on the basis of
pMEW90 (a kind gift of the lab of AndrewMurray, Harvard)43. Initially,
all parts were amplified via PCR and assembled via Gibson cloning to
yield pMG8. To obtain pJK19, we replaced the ymCitrine in pMG8 with
ymCerulean via Gibson assembly.

Evolutionary rescue assay
Evolutionary rescue experiments were conducted subjecting yJK26
and yMG10c to spatial competition on 2% agar YPD plates. From the
colonies grown from a single cell on the agar plate for 2 days, parts of
the single colonies were picked and cultured in a liquid YPD medium
overnight. The next day cells were reinoculated into freshmedium and
regrown for about 3 h. The two strains were mixed in the ratio 1:9
resistant to susceptible, estimating cell concentration by OD600 mea-
surement. 1μL of mixed cultures of OD600 ≈ 20 were then inoculated
on the 6-well plates filled with 15 mL medium and air dried. Image of
the colony ~ 1 h after inoculation shown in Supplementary Fig. 13.
Cycloheximide and β-estradiol were premixed in the medium at
desired concentrations (50 nM for cycloheximide, and 2, 4, or 6 nM for
estradiol). Colonies were grown for 5 or 9 days prior to treatment and
imaged daily. On the treatment day, hygromycin B was applied by
pipetting90μLof 41:5 mg

mL stock as small drops at the edgesof thewells.
A total of 92 colonies was grown, with at least 5 colonies in the same
chemical environment. Treatment after 5 days was initiated for 6
colonies of each condition (50 nM cycloheximide +0, 4, and 6 nM
estradiol and 0 nM cycloheximide + 0 nM estradiol (compensated
inoculum)), except 0 nM cycloheximide + 0 nM estradiol (uncom-
pensated inoculum),where only 5 colonieswere treated. Treatment on
day 9was done for 18 colonies with 50nM cycloheximide + 0 and 4 nM
estradiol, 17 colonieswith 50nMcycloheximide + 6nMestradiol, 6 and
5 colonies with no chemicals for uncompensated and compensated
inocula correspondingly. The initial number of clones is estimated by
manually counting clones from the single-cell resolution images. From
12 colonies we measure the mean of 156 clones per colony, which
results in a total of ≈14,500–15,000 clones.

Fitness differences between the strains under different cyclo-
heximide concentrations were measured using the final images of
colonies grown from the inoculations with low fractions (2.5–10%) of
faster-growing cells (yMG10c) in the slower-growing (yJK26). The
opening angles of the faster-growing clones were measured at differ-
ent radii of the colony and fitted with Eq. 10 from ref. [20] to compute
growth rate differences. For 50 nM cycloheximide fitness difference
between yJK26 and yJK10c is s = 1.26 ±0.64% (measured using 14 non-
interfering clones). For yJK26 and yMG10c under no cycloheximide
s =0.09 ±0.08% (measured using 8 non-interfering clones). Thefitness
difference between yJK26c and yMG10c is neutral within the errors of
the method. Colony examples and measured values are presented in
Supplementary Fig. 2a, b.

Mutation rates of yJK26 were estimated by measuring the fre-
quency change of mutated clones throughout colony growth. 1μL of
yJK26 cells in YPD with OD600 ≈ 20 was inoculated onto agar plates
containing different concentrations of estradiol and imaged daily. The
frequency of compensated mutants at the colony periphery was
measured as a function of colony radius and averaged over 6 colonies
(see Supplementary Fig. 14) for 0, 2, and 4 nMestradiol and 12 colonies
for 6 nM estradiol. Assuming neutrality, any change in mutant fre-
quency only occurs due to mutations and can be described by

f blue = 1� f rede
μðr0�rÞ,

with fred being the frequency of red clones, μ the mutation rate, r0 the
initial radius, and r representing the current colony radius. Fitting the
function above to themeasured frequency change yields themutation
rate per cell per radial colony growth. Orthogonal distance regression
was used for fitting and calculating uncertainties of the mutation rate.
See Supplementary Fig. 2c, d.

Imaging and analysis
Colonies were imaged using ZEN 3.0 (blue edition) on a Zeiss Axio-
zoom V16 fluorescence microscope with PlanNeoFluar Z 2.3x/0.57
objective for imaging right after the inoculation and after 1 day of

Article https://doi.org/10.1038/s41467-022-35484-y

Nature Communications |         (2022) 13:7916 9

http://www.addgene.com


growth. A PlanApo Z 0.5x/0.125 objective was used for all other time
points. For presentation in Figures, fluorescence images were pro-
cesses in FIJI (V 2.0.0) to adjust color maps. A custom semi-automated
pipelinewas used to process the images. First, imageswere segmented
via Ilastik (V 1.3.3), aMachine Learning based segmentation platform44.
The algorithm was trained on randomly picked images from different
days (training data is available upon request). Colony microscopy
images with segmented outputs are shown in Supplementary Fig. 15.
Segmented images were further analyzed via custom MATLAB
(R2020a) and python 3.8 algorithms.

Clone trajectories
Clone trajectories are reconstructed by assigning labels to the each
individual clone at the periphery. For labeling, angular positions
throughout different days of the imaging were used. Image after one
day of growth was taken as the reference (Fig. 2b). For each day clone
angular positions were compared to clone positions one day before to
assign IDs. Full trajectory tracking was only done for illustrative pur-
poses for one colony and was not needed in the quantitative analysis
presented in the main text.

Categorization of mixed clones
The transition from uncompensated to fully compensated states in
both experiments and simulations typically progresses via a mixed
state in which the clone is comprised of both compensated and
uncompensated cells at the front. Since experimental data is subject to
imaging constraints and segmentation artifacts, we categorized clones
with any detectable compensation as fully compensated, reflected in
the apparently sharp transitions in Fig. 2b. However, we excluded any
such ambiguous regions for the width analysis in Fig. 2c to avoid sys-
tematic bias due to segmentation artifacts. These limitations due not
apply to the categorization of resurgent growth domes so that the
treatment failure analysis in Fig. 3 includes all compensated clones
even if some uncompensated cells remain (see Supplementary Fig. 6).
For both radial-random-walk and agent-based simulations, featuring
perfect type resolution, uncompensated and compensated subclones
were considered independently in the width analysis (Figs. 5c, 6c).
Note that in agent-based-simulations uncompensated cells in the
population bulk can still mutate, resulting in an apparent intermixing
(see Supplementary Video 2). However, the effect of these bulk
mutations on the evolutionary dynamics at the front and the fate of the
clone is negligible.

Estimation of width distributions
Clone width distributions (panels d and e of Figs. 2, 5, and 6) represent
smoothed values with log-transformed kernel density estimation
(KDE)45. Supplementary Fig. 16 shows the comparison of the under-
lying histogram to the probability density estimations using either an
asymmetrical gamma function kernel46, a conventional Gaussian ker-
nel, or a log-transformed Gaussian kernel. The advantage of a log-
transformed KDE is that it produces the estimate for strictly positive
observations and is zero at x =0 unlike conventional Gaussian KDE or
standard KDE with asymmetrical kernels45. For the experimental data
(Fig. 2) we apply a cut-off of one-pixel size to avoid segmentation-
associated artifacts.

Description of the random walker model
Randomwalker simulations were implemented in python 3.8.We treat
the boundaries between each resistant clone with the wild type as
independent non-interacting one-dimensional random walkers in
angular space19,23:

Φ½i�=Φ½i� 1�+ ηðb,σX Þ
1
R
:

Whereη(μ, σ) is normally distributed noisewithmean μ and variance σ.
b is the bias of thewalk, which is zero for the neutral clones, and can be
positive or negativenumber for cloneswith afitnessdeficit, depending
on the side of the sector that the random walker is representing. Each
boundary performs a random walk, that is a solution to the diffusion
equation. The diffusion coefficient is a measure of the genetic drift in
the system. It is represented by the random step that follows Gaussian
distribution with the variance19:

<ΔX2> = σ2
X =4D:

To simulate clonal extinctionwe cause neighboring randomwalkers to
be annihilated when they cross. The bias of the random walk b is cal-
culated using the equal-time argument in refs. [19,20]:

b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sð2 + sÞ
p

:

To test our hypothesis of inflation-selection balance emerging from
collective cell dynamicswe use an effective width-dependent selection
coefficient s = s(w), with a shape similar to that experimentally
observed in Fig. 2g of ref. [13]. Here we used

seff = s0
2

1 + e
wc
w

,

wherewc is the critical width analogous to the critical width in ref. [13]
and is a free parameter.

Parameterization of the random walker model
To parameterize the random walk model, we use the measured initial
radius of the colony after inoculation and the measured fitness cost s0
(see Supplementary Table 2). To obtain the value forwc in the effective
selection we compared the equilibrium width of slower-growing
clones to the experimentally measured one. For a fitness cost of
s0 = 0.013 a critical width of wc = 280μm best matched the experi-
mental data. To estimate genetic drift in the system, we tuned the
diffusion coefficient together with initial clone size distribution to
match the experimental clone survival probability (Supplementary
Figs. 17 and 18). The diffusion coefficient to best match experiments is
0.23μm−1. The strength of genetic drift controls the shift of survival
probability. The initial width distribution controls the slope of the
initial drop in survival probability, when most of the clones are of very
small size. Here, our initial size distribution that followed a Gaussian
distribution with the mean of 20 μm and standard deviation of 5μm.
For comparison experimental mean width of red clones after 1 day is
26 ± 12μm. Analogously, we compared the results of different muta-
tion rates (see Supplementary Fig. 19). Mutation rate used in the
simulations μ = 10−4 μm−1 is in a good agreement with experimentally
measured value of μ = 2.65 ± 0.25 × 10−4 μm−1.

Agent-based simulations
Agend-based simulations of in silico tumors were performed via a
modified version of PhysiCell (version 1.8.0), an open-source platform
for 2D and 3D tumor growth26, with BioFVM (version 1.1.6)47 to solve
the transport equation.

The model simulates growth, including mechanical cell-cell
interactions, within a chemical microenvironment that is modeled
via diffusion of chemicals in the system. Cell division and physical
forces exerted on the neighbors lead to densely packed population.
Agents continuously consume nutrients diffusing to the system from
theouter edgewith circular Dirichlet boundary conditions. This results
in the emergenceof a growth layer as nutrients becomedepleted in the
population bulk (see Supplementary Movie 3).

Each cell in the simulation carries its own characteristics, defined
by its mechanical and chemical environment. These characteristics
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include cell size, cycle progression, growth rate, and mechanics. We
initialize the system similar to the initial inoculations in experiments,
having a hollow dense ring of cells, with sufficiently spaced single
slower-growingmutants interspersed at the periphery (16.6%). Growth
of both cell types depends on the nutrient concentration, slowing
down gradually until the growth is completely halted for very low
concentrations. For parameterization of the simulation see Supple-
mentary Table 3.

The ratioof cell size to the colony radiuswas chosen to differ from
the experiment to accommodate computational cost limitations. Vir-
tual populations are grown up to ~2 × 106 cells, corresponding to a 10-
fold radial increase from the starting colony.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Imaging data used in this study is available at https://figshare.com/
projects/Aif2022_NatComms/146175. The Source data for figures are
provided together with the code to reproduce the figures at https://
gitlab.gwdg.de/kayser-lab/aif_isb. See README.md file for detailed
description. Source data for Fig. 5 and random walk simulations rela-
ted Supplementary Figures are available from the authors upon
request due to very large data size. These data sets can also be
obtained by rerunning simulations provided in the repository as
described in the Fig. 5 section of the README.md. Source data are
provided with this paper.

Code availability
The code used for simulations and analysis in this study is available at
https://gitlab.gwdg.de/kayser-lab/aif_isb. Persitent Identifier for the
code 21.11101/0000-0007-F9A6-5 can be resolved at https://www.
pidconsortium.net/.

References
1. Melnyk, A. H., Wong, A. & Kassen, R. The fitness costs of antibiotic

resistance mutations. Evol. Appl. 8, 273–283 (2015).
2. Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it

possible to reverse resistance? Nat. Rev. Microbiol. 8,
260–271 (2010).

3. Broxterman, H. J. et al. Induction by verapamil of a rapid increase in
ATP consumption in multidrug-resistant tumor cells. FASEB J. 2,
2278–2282 (1988).

4. Enriquez-Navas, P. M., Wojtkowiak, J. W. & Gatenby, R. A. Applica-
tion of evolutionary principles to cancer therapy. Cancer Research
75, 4675–4680 (2015).

5. Levin, B. R., Perrot, V. & Walker, N. Compensatory mutations, anti-
biotic resistance and the population genetics of adaptive evolution
in bacteria. Genetics 154, 985–997 (2000).

6. Hughes, D. & Andersson, D. I. Evolutionary consequences of drug
resistance: shared principles across diverse targets and organisms.
Nat. Rev. Genet. 16, 459–471 (2015).

7. Low, D. E., Kellner, J. D. &Wright, G. D. Superbugs: How they evolve
and minimize the cost of resistance. Curr. Infect. Dis. Rep. 1,
464–469 (1999).

8. Reynolds, M. G. Compensatory evolution in rifampin-resistant
Escherichia coli. Genetics 156, 1471–1481 (2000).

9. Weissman,D. B., Desai,M.M., Fisher, D. S. &Feldman,M.W. The rate
at which asexual populations cross fitness valleys. Theoret. Popul.
Biol. 75, 286–300 (2009).

10. Weissman, D. B., Feldman, M. W. & Fisher, D. S. The rate of fitness-
valley crossing in sexual populations. Genetics 186,
1389–1410 (2010).

11. Steinberg, B. & Ostermeier, M. Environmental changes bridge
evolutionary valleys. Sci. Adv. 2, e1500921 (2016).

12. Gokhale, C. S., Iwasa, Y., Nowak, M. A. & Traulsen, A. The pace of
evolution across fitness valleys. J. Theoret. Biol. 259,
613–620 (2009).

13. Kayser, J., Schreck, C. F., Gralka, M., Fusco, D. & Hallatschek, O.
Collective motion conceals fitness differences in crowded cellular
populations. Nat. Ecol. Evol. 3, 125–134 (2019).

14. Giometto, A., Nelson, D. R. & Murray, A. W. Physical interactions
reduce the power of natural selection in growing yeast colonies.
Proc. Natl Acad. Sci. USA 115, 11448–11453 (2018).

15. Good, B.H.,McDonald,M. J., Barrick, J. E., Lenski, R. E. &Desai,M.M.
The dynamics of molecular evolution over 60,000 generations.
Nature 551, 45–50 (2017).

16. Barrick, J. E. & Lenski, R. E. Genome dynamics during experimental
evolution. Nat. Rev. Genet. 14, 827–839 (2013).

17. Nguyen Ba, A. N. et al. High-resolution lineage tracking reveals
travelling wave of adaptation in laboratory yeast. Nature 575,
494–499 (2019).

18. Gralka, M. et al. Allele surfing promotes microbial adaptation from
standing variation. Ecol. Lett. 19, 889–898 (2016).

19. Hallatschek, O. & Nelson, D. R. Life at the front of an expanding
population. Evolution 64, 193–206 (2010).

20. Korolev, K. S. et al. Selective sweeps in growingmicrobial colonies.
Phys. Biol. 9, 026008 (2012).

21. Lavrentovich, M., Wahl, M., Nelson, D. & Murray, A. Spatially con-
strained growth enhances conversional meltdown. Biophys. J. 110,
2800–2808 (2016).

22. Gagneux, S. et al. The competitive cost of antibiotic resistance in
Mycobacterium tuberculosis. Science 312, 1944–1946
(2006).

23. Weinstein, B. T., Lavrentovich, M. O., Möbius, W., Murray, A. W. &
Nelson, D. R. Genetic drift and selection in many-allele range
expansions. PLOS Comput. Biol. 13, e1005866 (2017).

24. Hallatschek, O., Hersen, P., Ramanathan, S. & Nelson, D. R. Genetic
drift at expanding frontiers promotes gene segregation. Proc. Natl
Acad. Sci. USA 104, 19926–19930 (2007).

25. Lavrentovich, M. O., Korolev, K. S. & Nelson, D. R. Radial Domany-
Kinzel models with mutation and selection. Phys. Rev. E 87,
012103 (2013).

26. Ghaffarizadeh, A., Heiland, R., Friedman, S. H., Mumenthaler, S. M.
& Macklin, P. PhysiCell: an open source physics-based cell simu-
lator for 3-D multicellular systems. PLOS Comput. Biol. 14,
e1005991 (2018).

27. Peischl, S., Kirkpatrick, M. & Excoffier, L. Expansion load and the
evolutionary dynamics of a species range. Am. Nat. 185,
E81–E93 (2015).

28. Gilbert, K. J., Peischl, S. & Excoffier, L. Mutation load dynamics
during environmentally-driven range shifts. PLOS Genet. 14,
e1007450 (2018).

29. Goyal, S. et al. Dynamic mutation-selection balance as an evolu-
tionary attractor. Genetics 191, 1309–1319 (2012).

30. Desai, M. M. & Fisher, D. S. Beneficial mutation-selection balance
and the effect of linkage on positive selection. Genetics 176,
1759–1798 (2007).

31. Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, coop-
eration and competition in biofilms. Nat. Rev. Microbiol. 14,
589–600 (2016).

32. Hartmann, R. et al. Emergence of three-dimensional order and
structure in growing biofilms. Nat. Phys. 15, 251–256 (2019).

33. Yan, J., Nadell, C. D., Stone, H. A., Wingreen, N. S. & Bassler, B. L.
Extracellular-matrix-mediated osmotic pressure drives Vibrio cho-
lerae biofilm expansion and cheater exclusion. Nat. Commun. 8,
327 (2017).

Article https://doi.org/10.1038/s41467-022-35484-y

Nature Communications |         (2022) 13:7916 11

https://figshare.com/projects/Aif2022_NatComms/146175
https://figshare.com/projects/Aif2022_NatComms/146175
https://gitlab.gwdg.de/kayser-lab/aif_isb
https://gitlab.gwdg.de/kayser-lab/aif_isb
https://gitlab.gwdg.de/kayser-lab/aif_isb
https://www.pidconsortium.net/
https://www.pidconsortium.net/


34. Hughes, D. & Andersson, D. I. Evolutionary trajectories to antibiotic
resistance. Ann. Rev. Microbiol. 71, 579–596 (2017).

35. Müller, M. J. I., Neugeboren, B. I., Nelson, D. R. & Murray, A. W.
Genetic drift opposes mutualism during spatial population expan-
sion. Proc. Natl Acad. Sci. USA 111, 1037–1042 (2014).

36. Fusco,D.,Gralka,M., Kayser, J., Anderson,A.&Hallatschek,O. Excess
of mutational jackpot events in expanding populations revealed by
spatial Luria-Delbrück experiments. Nat. Commun. 7, 12760 (2016).

37. Gallaher, J. A., Enriquez-Navas, P. M., Luddy, K. A., Gatenby, R. A. &
Anderson, A. R. Spatial heterogeneity and evolutionary dynamics
modulate time to recurrence in continuous and adaptive cancer
therapies. Cancer Res. 78, 2127–2139 (2018).

38. Waclaw, B. et al. A spatial model predicts that dispersal and cell
turnover limit intratumour heterogeneity. Nature 525,
261–264 (2015).

39. Kim, E., Brown, J. S., Eroglu, Z. & Anderson, A. R. Adaptive therapy
for metastatic melanoma: predictions from patient calibrated
mathematical models. Cancers 13, 823 (2021).

40. Zhang, J., Cunningham, J. J., Brown, J. S. & Gatenby, R. A. Inte-
grating evolutionary dynamics into treatment of metastatic
castrate-resistant prostate cancer. Nat. Commun. 8, 1816 (2017).

41. West, J. et al. Towardsmulti-drug adaptive therapy.Cancer Res.80,
1578–1589 (2020).

42. Lindstrom, D. L. & Gottschling, D. E. The mother enrichment pro-
gram: a genetic system for facile replicative life span analysis in
Saccharomyces cerevisiae. Genetics 183, 413–422 (2009).

43. Wahl, M. E. & Murray, A. W. Multicellularity makes somatic differ-
entiation evolutionarily stable. Proc. Natl Acad. Sci. USA 113,
8362–8367 (2016).

44. Berg, S. et al. Ilastik: interactive machine learning for (bio)image
analysis. Nat. Methods 16, 1226–1232 (2019).

45. Jones, A. T., Nguyen, H. D. & McLachlan, G. J. logKDE: log-
transformed kernel density estimation. J. Open Source Softw. 3,
870 (2018).

46. Hoffmann, T. & Jones, N. S. Unified treatment of the asymptotics of
asymmetric kernel density estimators. Preprint at https://arxiv.org/
abs/1512.03188 (2015).

47. Ghaffarizadeh, A., Friedman, S. H. &Macklin, P. BioFVM: an efficient,
parallelized diffusive transport solver for 3-D biological simulations.
Bioinformatics 32, 1256–1258 (2016).

Acknowledgements
This work was supported by the Emmy Noether Programme of the
German Research Foundation (project 455449456) and the National
Institute of General Medical Sciences of the National Institutes of Health
under award 2R01GM115851-06A1. J.K. acknowledges a research scho-
larship (KA4486/1-1) awardedby theGermanResearch Foundation.O.H.
acknowledges support by a Humboldt Professorship of the Alexander
von Humboldt Foundation. The authors thank M. Eiche, C. Moeckel, A.
Feder, B. Good, M. Gralka, C.F. Schreck, and D. Fusco for vital discus-

sions, as well as J. Guck and his group for their invaluable support. The
help of the groups of J. Rine and A. Murray, providing critical genetic
material and invaluable insights into yeast genetics, is gratefully
acknowledged.

Author contributions
S.A., O.H., and J.K. conceived and designed the study. S.A., N.A., L.K.,
and J.K. carried out and analyzed the experiments. S.A. and J.K. per-
formed and evaluated the simulations. S.A., N.A., O.H., and J.K. dis-
cussed and interpreted the results. S.A. and J.K. wrote the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-35484-y.

Correspondence and requests for materials should be addressed to
Oskar Hallatschek or Jona Kayser.

Peer review information Nature Communications thanks Robert Noble
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-35484-y

Nature Communications |         (2022) 13:7916 12

https://arxiv.org/abs/1512.03188
https://arxiv.org/abs/1512.03188
https://doi.org/10.1038/s41467-022-35484-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Evolutionary rescue of resistant mutants is governed by a balance between radial expansion and selection in compact populations
	Results
	Tracking evolutionary rescue dynamics via synthetic compensatory mutations
	The acquisition and effect of compensatory mutations is governed by a stabilization of uncompensated clones
	The impact of evolutionary rescue is delayed
	The occurrence and impact of evolutionary rescue is governed by a stable inflation-selection balance
	Evolutionary rescue and treatment failure in an in silico tumor model

	Discussion
	Methods
	Strains
	Construction of synthetic mutation cassette
	Evolutionary rescue assay
	Imaging and analysis
	Clone trajectories
	Categorization of mixed clones
	Estimation of width distributions
	Description of the random walker model
	Parameterization of the random walker model
	Agent-based simulations
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




