
UC Irvine
ICS Technical Reports

Title
Behavioral exploration with RTL library

Permalink
https://escholarship.org/uc/item/44d8b7kg

Authors
Pan, Wenwei
Grun, Peter
Gajski, Daniel D.

Publication Date
1996-07-29

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/44d8b7kg
https://escholarship.org
http://www.cdlib.org/

A^c

Notice; This Material

may be protected
by Copyright Law
(Titie17U.S.C.)

Behavioral Exploration with RTL Library

Wenwei Pan

Peter Grun

Daniel D. Gajski

Technical Report #96-34
July 29, 1996

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425
(714) 824-7063

wpan@ics.uci.edu
pgrun@ics.uci.edu
gaj ski @ics .uci .edu

Abstract

Behavioral synthesis that takes into consideration real components as well as timing con
straints is necessary for the design of today's ASIC chips. In this report, we give a methodology for
design space exploration under timing constraints. To illustrate our proposed methodology, we also
give several designs that implement a Squafe Root Algorithm. We compare these designs and give
their behavioral and structural description in the Appendix.

Contents

1 Introduction 3

2 Example Description 3
3 Library Components 5
4 Design Space Exploration 7
5 Methodology 11
6 VHDL models hierarchy 14
7 Conclusions .14

8 References 14

9 Appendix 15
9.1 SRA System 15
9.2 Test Bench Entity 16
9.3 SRA Entity 17
9.4 Datapath Entity 20
9.5 Abs/min/max Entity 22
9.6 16-bit Adder Entity 24
9.7 1-bit Full Adder Entity 27
9.8 16-bit Register Entity. 28
9.9 D Flip Flop Entity 29
9.10 2-input And Gate Entity. 30

List of Figures

1 Flowchart of square root algorithm 3
2 Simple library components 4
3 Complex library components 5
4 Design space exploration 8
5 SRA schedule 1 8

6 SRA schedule 2 10

7 Datapath schematic 10
8 SRA schedule 3 11

9 Methodology flowchart 12
10 VHDL description hierarchy 13

List of Tables

1 Delays and costs of simple library components 6
2 Delays and costs of complex library components using ripple-carry adder. 7
3 Delays and costs of complex library components using carry-look-ahead adder. 7

Behavioral Exploration with RTL Library

Wenwei Pan, Peter Grun, Daniel D. Gajski
Department of Information and Computer Science
University of California, Irvine, CA 92697-3425

Abstract

Behavioral synthesis that takes into consider
ation real components as well as timing con
straints is necessary for the design of today's
ASIC chips. In this report, we give a method
ology for design space exploration under tim
ing constraints. To illustrate our proposed
methodology, we also give several designs that
implement a Square Root Algorithm. We com
pare these designs and give their behavioral
and structural description in the Appendix.

1 Introduction

In this report, we give a detailed example
showing how to design digital systems from
behavioral description. The example is a cus
tom ASIC for computing square root. Details
of the design as well as the source listing of
VHDL code are given in the following sec
tions.

Generally, in the synthesis based design, the
algorithm is represented as a Control/Data
Flow Graph (CDFG). From CDFG, perform
ing scheduling, allocation and binding, RT
level design can be obtained. Different heuris
tics in each step and different component
libraries will have a direct impact on the Cost
and performance of the final design.

By doing several manual designs we were able
to formulate a methodology for exploring ithe
design space.

Section 2 presents the specification of the SRA
example, section 3 describes the library com
ponents needed. Next in section 4 we show
three different designs, and in section 5 we
present the methodology. After the conclusions
in section 6, in the appendix we show the
VHDL code for our optimal design.

2 Example Description

We have designed a custom ASIC which is to
compute the square-root approximation (SRA)
of 2 signed integers, a and b, by the following
formula:

a' +b^ =max ((0:875x +0.5y), x)

where x = max(lal, \b\), y = min(lal, 1^1).

a = Inl
b = In2

Start

X = max(tl,t2)

y = min(tl ,t2)
t3 = X » 3

t4 = y » 1

t5 = X -13

t6 = t4 +15

t7 = max(t6,x)

Done = 1

Out = t7

Figure 1: Flowchart of square root algorithm.

"0"

Subtractor

H r
; _ , 0
Selector

T
\b\

"0"

Subtractor

sign bit

J 0

Selector

J
m

(a) Absolute value unit (b) Absolute value unit
(version 1) (version 2)

h
Subtractor Subtractor

sim hit I

Subtractor

sign bitsign bit

min/max
T tr

Selector

T
min(a,b)

(c) Min unit

Selector

t
max(a,b)

(d) Max unit

contr_oi^Y>- Selector

T
min/max(a,b)

(e) Min/Max unit

a

I

1
"0'

"v.
> s
r...,

n

shift
control

jirzi
»i »3

a» 1

(f) 1-bit right shifter

a» 3

Selector

~r~
a»3/a»I

(g) 3-bit right shifter (h) l-bit/3-bit right shifter

Adder •0
±

Adder •0

add/sub
control Tt

SL
Adder -•

a+b

(i) Adder

a-b

(j) Subtracter

Figure 2: Simple library components.

a+b/a-b

(k) Adder/Subtractor

According to Figure 1, the SRA ASIC has 2
input ports, Inl and In2, which are used to read
integers a and b, and one output port Out
which outputs the result. In the flowchart, the
ASIC reads the input ports and starts the com
putation whenever the input control signal
Start becomes equal to 1. First it computes the
absolute values of a and b and assigns the
maximum of these 2 values to x and minimum

to J. Then it shifts x three positions to the right
to obtain 0.125x and y one position to the right
to obtain 0.5y. The ASIC calculates 0.875x by
subtracting 0.125x from x. Next it adds 0.875x
and 0.5y, and computes the maximum of x and
the expression 0.875;t + 0.5y. Finally the ASIC
produces the result and makes it available
through the Out port for one cloek cycle.

sign bit
Adder

Selector

Selector

C, Cg Operation

0 1 absolute

I 0 minimum

1 I maximum

(a) Unit for computing minimum,
maximum and absolute value

sign bit
Adder

3>- Selector

Cj Cg Operation

1 0 addition

0 1 absolute
1 1 subtraction

(c) Unit for computing addition,
subtraction, and absolute value

Adder -*

Selector

Selector

Operation

0 0 addition
0 1 minimum
1 0 subtraction
1 I maximum

(b) Unit for computing addition,
subtraction, minimum and maximum

sign bit
Adder -*

Selector

Selector

C2 Cj Cg Operation

0 0 1 addition
1 0 0 absolute
1 0 I subtraction
1 1 0 minimum

1 I I maximum

(d) Unit for computing addition, subtraction,
minimum, maximum and absolute value

Figure 3: Complex library components.

(1) Simple library component: max unitAt the same time, it sets the control signal
Done to 1, in order to signal to the environ
ment that the data that has appeared at the Out
port is a valid result.

3 Library Components.

In the implementation of the SRA example we
use the library components from [1] (figure
8.12 and 8.21), replicated here for convenience
in Figures 2 and 3. We describe 2 units as
example. Other units are defined similarly. For
brevity, we consider 4 bit versions of the input
and output values in the following examples.

Figure 2(d) is a functional unit performing the
maximum of the 2 inputs. We present the func
tionality of this component here as an exam
ple:

Inputs: A, B: 4-bit 2's complement values
Outputs: O: 4-bit 2's complement value
Function: if A > = B, O = A; else O = B

Example: (1). A = 0111 (7), B = 0100 (4). A
and B are the two inputs to the subtracter.
Since the result of the subtraction is 0011,

and the sign bit is 0, Ais selected as output;
(2). A = 1100 (-4), B = 0001 (1). The
result of the subtraction is 1011, and the
sign bit is 1, therefore, B is selected as out
put;

(2) Complex library component: abs/min/
max unit

A library of complex functional units from [1]
is presented in Figure 3. These units perform
combinations of the +, min, max, and abs

operations. In order to show how the cottipo-
nents from the complex library work, we
describe the abs/min/max unit from Figure 3(a)
below. .

Inputs: A, B: 4-bit 2's complement values
cl, cO: 1-bit mode control signal

Outputs: 0\ 4-bit 2's complement value
Function:

U clcO = 01: O = abs(B)-,
If clcO = 10: O = min(A. B);
If clcO = 11: O = max(A, B);

Example: (1). Assume clcO = 01, A = 0111
(7), 5 = 1100 (-4). Since cl = 0, the left
input to the 4-bit adder is 0000. The right
input is 0011 by inverting jB(IlOO). So the
result of the adder is 0100. Since cl = 0

this result is selected as the left input of the
output selector. Since the sign bit of the
adder result is 0, and cO = 1, the control bit
for the output selector is 1. Therefore, O =
0100 (4) which is equivalent to abs(B).

(2). Assume clcO = 10, A = 1110 (-2),
B = 1011 (-5). Since cl = 1, the left input
to the 4-bit adder is 1110. The right input
of the adder is 0100. The result of the

adder is 0011. Since the sign bit of this
result is 0, and cO = 0, the control bit of the
output selector is 0. Therefore, O = B =
1011 (-5), which is equivalent to min(A,B).

In the Tables 1,2 and 3 we present the delays
and the cost of the functional units in the

library. The cost is expressed in number of
transistors, whereas the delay is in ns.

No Component

Delay
, from

input
(ns)

Delay
from

control

(ns)

Cost

(trans.)

1 and 2 input 2.4 6

2 and 3 input 2.4 8

3 and 4 input 3.2 10

4 or 2 input 2.4 6

5 or 3 input 2.4 8

6 or 4 input 3.2 10

7 xor 2 input 4.2 14

8 nand 2 input 1.4 4

9 nand 3 input 1.8 6

10 nand 4 input 2.2 8

11 inv 1 2

12 full adder 8.4 30

13 dff 4 18

14 dff with clear 4 26

15 mux 2 to 1 4.8 5.8 14

16 and_

16

2.4 96

17 or_16 2.4 96

18 xor_16 4.2 224

19 inv_16 1 32

20 Ripple carry
adder_16

50.4 494

21 CLA adder_16 21.6 1074

22 buffer_16 2 96

23 register_16 4 512

24 selector2_16 4.8 5.8 224

Table 1: Delays and costs of simple library
components

6

No Component

Delay
from

input
(ns)

Delay
from

control

(ns)

Cost

(trans.)

25 +/- 54.6 54.6 718

26 absl 56.2 750

27 abs2 57.2 752 ,

28 min 56.2 750

29 max 57.2 752

30 min/max 60.4 10 764

31 shift! 0 0

32 shift3 0 0

33 abs/min/max 62.8 62.8 1084

34 +/-/abs/min/

max

69.6 70.2 1318

35 +/-/abs 63.8 63.8 1046

36 +/-/min/max 70.4 72.8 1188 '

Table 2: Delays and costs of complex library
components using ripple-carry adder

No Component

Delay
From

Input
(ns)

Delay
From

Control

(ns)

Cost

(trans.)

25 +/- 25.8 25.8 1298

26 absl 27.4 1330

27 abs2 28.4 1332

28 min 27.4 1330

29 max 28.4 1332

30 min/max 31.2 10 1344

31 shift! 0 0

32 shift3 0 0

33 abs/min/max 33.6 33.6 1664

Table 3: Delays and costs of complex
components using CLA adder.

34 +/-/abs/min/

max

40.4 40.8 1898

35 +/-/abs 34.6 34.6 1626

36 +/-/min/max 41 43.4 1768

Table 3: Delays and costs of complex
components using CLA adder.

Table 1 shows the simple components from the
library (the components numbered 1 to 15 are
1-bit components, whereas 16 to 24 are 16-bit
functional units and registers).

Table 2 shows the cost and delay for the com
plex functional units using the ripple-carry
adder, whereas Table 3 shows the same com
ponents with 2-level CLA adder.

In the third/fourth column we show the delays
from the data-inputs/control-inputs to the out
put. This is the worse case delay for single sig
nal change from any input to any output.

For area we use 1 literal/2 transistors estima

tion for the basic gates (nand, nor, inverter),
which we use subsequently in the rest of the
components.

4 Design Space Exploration.

The problem addressed is starting from a
behavioral description to generate RTL struc
tural implementations of the algorithm satisfy
ing a timing constraint, using RTL components
from a library.

By using different components from a library,
we can obtain a large spectrum of implementa
tions for the given behavioral description.
Intuitively, if we allocate more functional units
(more potential for parallelism), or faster units,
we can increase the speed. If the speed require
ments are not important, we can use less or
slower functional units, and obtain a cheaper
implementation. Based on the requirements of

a specific application, one can choose the
implementation which best fits it's needs.

6000

5000

4000

3000

2000

1000

Cost [transistors]

H* (2.1)

Faster library

timing
;trmntcons

V. (2.2)
(1.1)

(2.3) (1.2)

I I I

(1.3)

xecution time [ns]

200 300 400 500 600 '

Figure 4: Design space exploration.

In the following we will present the way we
derive two sets of three different implementa
tions for the SRA algorithm: the first three of
them are derived using the library of compo
nents shown in Tables 1 and 2 (ripple-carry
adder version), and the next 3 use the library of
components summarized in Tables 1 and 3
(carry-look-ahead adder version). In each set,
the first implementation maximizes the speed
of the resulting chip, the second one shows the
best cost/performance trade-off, and the third
implementation represents the lowest cost
solution.

The points (1.1), (1.2) and (1.3) in Figure 4
represent the ripple-carry implementations,
whereas the points (2.1), (2.2) and (2.3) show
the CLA implementation in terms of cost and
execution time. The best design in terms of
both cost and performance should have mini
mal product of cost and execution rime.

We tried many implementations but for the

sake of brevity we only show 6 of them. In the

following we show the three schedules gener

ated for the slower library, and by only chang

ing the cost and delay of the adders used, we

recompute the cost and execution time of the

implementations under the faster library.

In the Following three cases, we use the for
mula execution time = clock cycle Xnumber of
states to compute the execution time.

Case 1. Fastest schedule and allocation.

Starting from the flowchart representing the
SRA algorithm, we derive the CDFG. In order
to generate the fastest implementation, we
assume initially that each operation is per
formed by the fastest component in the library.
Later on, we optimize the description, by

Figure 5: SRA schedule 1.

allowing operations that are not on the critical
path to be performed by slower components,
since no performance is lost by doing this.
Also components which can be merged

together without increasing clock cycle and the
number of control steps (because they are not
on the critical path, or the clock cycle is
already determined by even slower compo
nents) are considered in order to lower the
cost.

Knowing the smallest delays for implementing
each operator in the CDFG (according to the
library), we can determine the critical path.
Obviously, the biggest of these delays deter
mines the clock cycle (we don't consider mul-
ticycling at this step).

Based on the clock cycle we first schedule the
operations on the critical path. Starting with
the first operation in the CDFG we assign each
node to the first state available. Consecutive

operations which have the sum of delays
smaller than the clock cycle can be assigned to
the same state, provided the dependences
allow it. The schedule generated for case 1 is
shown in Figure 5.

The operations not on the critical path have the
freedom to be moved to different states. This

freedom can be used to optimize the usage of
components, allowing us to lower the cost of
the ASIC implementation (as long as the clock
cycle is not affected). If two operations are not
in the same state in the schedule, and there
exists a functional unit in the library which can
perform both of them, we say that we merge
them by allocating the same library component
to execute them. In our example we can merge
together the -I- and - operations, because the
delay of the library component for +/- is not
longer than the clock cycle computed so far,
and by doing this we decrease the cost of the
implementation. Therefore in this case we will
have the max library component implementing
the max operators from the CDFG, the min for
the min operators, 2 abs library components,
and one +/- component. The shadings in the
figures show the clustering of the operation

nodes as the result of merging. For each cluster
of operations we allocate one functional unit.
In the following, we show the cost and execu
tion time for the designs. For the execution
time we use the formula execution time =

clock cycle Xnumber ofstates.

(1.1) Slow library (ripple-carry adder)

cost = i X Cost(min) + 7 X Cost(max) + 2 X
Cost(abs) + 7 X Cost(+/-) = 3720 transis
tors

clock cycle = 57.2 ns
number ofstates = 7
execution time = 57.2x7 = 400.4 ns

(1.2) Fast library (CLA adder)

cost = 1 X Cost(min) -tlx Cost(max) + 2 X
Cost(abs) + 1 X Cost(-t/-) = 6620 transis
tors

clock cycle = 28.4 ns
number ofstates = 7
execution time = 28.4 X 7 = 198.8 ns

Case 2. Optimal cost/performance trade-off.

In order to get the best cost/performance trade
off, different schedules and merging of opera
tions have to be attempted. By an iterative
improvement technique, we can merge more
operations in the CDFG, compromising the
clock cycle and/or the number of states in the
schedule against substantial cost improve
ments. If the cost improvement is higher than
the performance loss, we obtain an overall
cost/performance improvement.

As previously stated, we could get better cost/
performance ratio, by trading off some perfor
mance loss against an improvement in area. To
decrease the cost of the implementation we try
to merge more operators into functional units.
This additional merging will increase slightly
the clock cycle.

We observe that the »1 and >>i operations
have 0 delay, therefore, by chaining them with
other operations would not affect the perfor
mance. On the other hand we can see that if we

move the min operation from state S2 to state
S3, we will be able to merge it with the max
operation and, use the same functional unit,
which has a slightly higher delay, but it gener
ates a good improvement in cost.

ina.\

max

Figure 6: SRA schedule 2.

Figure 6 shows the final schedule for this
implementation. The final allocation is one
abs/min/max unit, and one abs/+/- unit, and
this results in:

(2.1) Slow library (ripple-carry adder)

cost = 1 X Cost(abs/min/max) + 1 X Cost(abs/
+/-) = 2130 transistors

clock cycle = 63.8 ns
number ofstates = 7
execution time = 63.8x7 = 446.6 ns

(2.2) Fast library (CLA adder)

cost = 1 X Cost(abs/min/max) + 1 X Cost(abs/
+/-) = 3290 transistors

clock cycle = 35 ns
number ofstates = 7
execution time = 35x7 = 245 ns

Inl In2

R2 R3

»3

abs/min/max abs/+/-

»1

Out

Figure 7: Datapath schematic

After scheduling and functional unit alloca
tion, storage and interconnect allocation is
done, generating the final RTL netlist. We
present the datapath schematic for the case 2 in
Figure 7.

Case 3. Minimal cost schedule and alloca

tion.

In order to create the lowest cost implementa
tion, we have to use the cheapest combination

10

of functional units which still perform the
desired operations.

In our case the abs, min, max, + and - opera
tions have to be performed (besides the shifts
which have cost 0). The best combination in
this case is to use only one functional unit, the
+/-/abs/min/max which has the cost of 1318

transistors.

When using only one functional unit, we can
not perform in the same state 2 different opera
tions, therefore the schedule gets longer.
Figure 8 shows that we need 9 states to per
form the computation.

max

Out

Figure 8: SRA schedule 3.

(3.1) Slow library (ripple-carry adder)

cost = 1 X Cost(+/-/abs/min/max) = 1318 tran
sistors

clock cycle = 69.6 ns
number ofstates = 9
execution time = 69.6 x 9 = 626.4 ns

(3.2) Fast library (CLA adder)
cost = 1 X Cost(+/-/abs/min/max) = 1898 tran

sistors

clock cycle = 40.8 ns
umber ofstates = 9
execution time = 40.8 X 9 = 367.2 ns

In Figure 4 we can see the differences in terms
of cost and performance between the three
implementations presented here for each
library. By keeping the library of components
the same and changing the schedule and allo
cation, we generate the points on the curves, as
shown in the Figure 4. By changing the time
and cost characteristics of the library (using
faster components) and keeping the schedule
and allocation the same, the implementations
move along the dotted arrow.

Considering that we have a given time con
straint, we can choose the lowest cost imple
mentation which satisfies it.

5 Methodology.

As previously stated, we start with a behav
ioral specification of an algorithm (possibly in
VHDL), and generate a set of implementations
of different cost/performance ratios, that sat
isfy a timing constraint.

Therefore the starting point is an HDL high
level description. First, we derive the CDFG
representing this description, and we allocate
to each operation the fastest component from
the library (which implements that operation).
Knowing the delays for performing each oper
ation, we can find the critical paths. The clock

11

Use another

descnption

Behavioral specification j

Create CDFG

Allocate to each

operator the fastest
component

Analyze critical path
and determine the

clock cycle

Merge off-critical-path
components

w/o increasing clock cycle

Schedule CDFG
(list scheduling)

Timing constrain
satisfied

Figure 9: Methodology flowchart.

Component
library

Merge two operators
causing minimal delay

Create next
implementations

Allocate storage and
interconnect components

Create an
implementation

RTL descnption

cycle is determined by the delay of the slowest
component (considering that the operation is
not performed in multiple cycles, chained with
other units or pipelined) allocated to an opera
tion.

We then try to cluster as many operations as
possible, as long as we do not affect the clock
cycle or the number of nodes on the critical
path. For example if 2 operations have to be
performed in different states, due to the exist-

12

(sra_system)

(TEST BENCH
(contooller) (datapath)

(+/-/ABS/MIN/MAX) (ABS/MIN/MA)g

ADDER 16 (SELECT0R2_1^(DRIVER }(rEGISTCR_1^

(full adder)

MUX21 MUX41

Figure 10: VHDL description hierarchy.

ence of a path between them in the CDFG then
by allocating the same functional unit to per
form them we do not increase the length of the
schedule (the number of states needed).

We still have to make sure that we do not

increase the clock cycle. This is true if the
delay of the functional unit which performs
both the operations is not greater than the
delay of the slowest functional unit allocated
so far to any other operation. In our example,
all these conditions hold for the + and - opera
tions (see Figure 5). Therefore we are able to
group the -i- and - operations without compro
mising performance against the decrease of
cost (the area of the unit which performs both
+ and - is less than the sum of the areas of the

unit for -I- and the unit for -).

At this point we have a valid functional unit
allocation, and we can generate a schedule
using list scheduling. The allocated and sched
uled CDFG corresponds to the fastest imple

mentation, using the given library. If this
implementation doesn't satisfy the timing con
straint we have to use a library with faster
components. If the implementation satisfies
the constraint, we can allocate storage and
interconnect to generate a complete RTL level
implementation of the algorithm.

In order to generate the next implementations
we will merge at each step the 2 operations
which create the smallest performance degra
dation measured by the product of clock cycle
and number of states. This allows us to trade
off performance against the cost of the imple
mentation. We keep on doing this until we pass
the timing constraint. At each iteration of the
methodology flowchart a new point in the cost/
execution time space is generated (see Figure
4). All the RTL descriptions generated so far
represent points in the design space and are
considered for use in the final implementation.

13

6 VHDL Models Hierarchy.

All the VHDL models are developed hierarchi
cally in a bottom up fashion, as shown in Fig
ure 10.

(1). The 1st level of hierarchy consists of the
basic gates, muxes and flip flops. All the
VHDL models in this level have only behav
ioral description. All the higher level compo
nents are composed of these basic entities.

The delay information for these gates and flip
flops are shown in Table 1.

(2). The 2nd level of hierarchy consists of the
16-bit adders, selectors, bus drivers and regis
ters. They appear as RT level components in
the datapath. All the VHDL models in this
level have both the behavioral and structural

description. The structural VHDL models are
simulated first and then the delay information
is inserted into the behavioral models.

(3). The 3rd level of hierarchy consists of the
complex library components such as abs/min/
max and abs/min/max/add/sub units. They are
also used in the datapath. For example, the
abs/min/max consists of 2 16-bit selectors and
1 16-bit ripple carry adder. We have both
behavioral and structural VHDL description
for them.

(4). The 4th level of hierarchy consists of the
datapath and controller. The datapath model is
an RT level structural model. The controller

has both behavioral model which generate
appropriate control signals every cycle and
structural model which is a gate level imple
mentation including next-state logic, output
logic and state flip flops. The testbench is also
included in this level.

(5). The 5th level of hierarchy simply incorpo
rates the SRA model and the testbench to be

simulated.

7 Conclusions.

This report presents a methodology for time
constrained functional unit allocation and

scheduling, taking into account the area of the
implementation. It shows how to perform
design space exploration by selecting different
library components, and creating different
schedules of the CDFG. We also give a method
how to achieve the best cost/performance
trade-off, providing a good starting point for
the next levels of synthesis. Our future plans
are to extend this work for pipelined designs.

8 References.

[1] D. D. Gajski, "Principles of Digital
Design", Prentice Hall 1996.

[2] D. D. Gajski, N. Dutt, A. Wu, and S. Lin,
"High Level Synthesis: Introduction to
Chip and System Design", Kluwer Aca
demic Publishers, 1992.

14

9 Appendix.

9.1 SRA System.

////////////////////////// SRA system llllllllllllllllllllllllllllllllll

—square root approximation algorithm system - struc
tural description
—includes the whole system comprised of test bench
component and the SRA.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_misc.all;
use ieee.std_logic_arith.all;

entity sqr_system is
end sqr_system;

architecture schematic of sqr_system is

signal done : std_logic;
signal sqr_out: std_logic_vector(15 downto 0);
signal reset: std_logic;
signal elk: std_logic;
signal start : std_logic;
signal in2 : std_logic_vector(15 downto 0);
signal inl : std_logic_vector(15 downto 0);

~ test bench component
component tb

port (done : in stdjogic;
sqr_out: in std_logic_vector(15 downto 0);

elk: out stdjogic;
inl : out std_logic_vector(15 downto 0);
in2 : out std_logic_vector(15 downto 0);

reset: out stdjogic;
start : out stdjogic);

end component;

~ square root approximation component
component sqr

port (elk : in stdjogic;
inl : in std_logic_vector(15 downto 0);
in2 : in std_logic_vector(15 downto 0);

reset: in stdjogic;
start : in stdjogic;
done : out stdjogic;

sqr_out : out std_logic_vector(15 downto 0));
end component;
for all: sqr use entity work.sqr(schematic_optimal);

begin •

i_tb : tb

port map (done=>done, sqr_out=>sqr_out, clk=>-
clk, inl=>inl,

in2=>in2, reset=>reset, start=>start);

i_sqr: sqr
port map (clk=>clk, inl=>inl, in2=>in2, reset=>re-

set,

start=>start, done=>done, sqr_out=>sqr_out);
end schematic;

configuration cfg_sqr_system_schematic of sqr_system
is

for schematic

end for;

end cfg_sqr_system_schematic;

15

9.2TestBenchEntity."0000000000011000",

"0000000000000100",

////////////////////////////testbench//////////////////////////////////"0000000000001000"

—testbenchforsquarerootapproximationalgorithm-
)y

begin
behavioraldescriptionforiinin_rrangeloop

reset<='0',

libraryieee;T'after150ns

useieee.std_logic_1164.all;start<='0',

useieee.std_logie_misc.all;T'after150ns.

useieee.std_logic_arith.all;'0'after300ns;

inl<=in_l(i);
entitytbisin2<=in_2(i);

port(done:instd_logic;waitfor900ns;

sqr_out:instd_logic_vector(15downto0);endloop;
elk:outstd_logic;endprocess;
inl:outstd_logic_vector(15downto0);endbehavioral;

in2:outstd_logic_vector(15downto0);
reset:outstd_logic;
start:outstd_Iogic);

endtb;

architecturebehavioraloftbis

signalc:std_logic:='0';
constantperiod:time:=90ns;
begin

—clockgeneration
c<=notcafter(period/2.0);
elk<=c;

—testvectorsgeneration
process

typetest_vectorisarray(1to10)of
std_logic_vector(15downto0);
constantin_l:test_vector:=

("1111111111111111",

"0000000000000001",

"0000000000000001",

"0000000000000011",

"0000000000000101",

"1111111111111011",

"1000000000000000",

"0000000000001001",

"0000000000000100",

"0000000000000111"

);
constantin_2:test_vector:=

("0000000000000001",

"0000000000000000",

"0000000000000011",

"0000000000000011",

"1111111111110100",

"1111111111110100",

"0111111111111111",

16

9.3 SRA Entity.

///////////////////////////// SRA entity llllllllllllllllllllllllllllllll

—Square Root Algorithm - behavioral and structural
descriptions

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_misc.all;
use ieee.std_logic_arith.all;

entity sqr is

port (elk : in
inl : in

in2 : in

reset; in

start : in

std_logic;
std_logic_vector(15 downto 0);
std_logic_vector(15 downto 0);

std_logic;
std_logic;

done : out std_logic;
sqr_out: out std_logic_vector(15 downto 0));

end sqr;

~ behavioral description of SRA
architecture nonscheduled_behavioral of sqr is
begin

process(clk,reset)
variable a,b,tl,t2,t3,t4,t5,t6,t7,x,y : integer;
variable v_sqr_out: std_logic_vector(15 downto 0);
variable v_done : std_logic:='0';

begin
if (reset = '0') then

v_done := '0';

v_sqr_out := "zzzzzzzzzzzzzzzz";
elsif (elk = ' 1') and (clk'event) and (start = 'I') then

a := conv_integer(signed(inl));
b := conv_integer(signed(in2));
if (a<0) then

tl := -a;

else

tl a;

end if;

if (b<0) then
12 :=-b;

else

12 b;

end if;

if (tl<t2) then
X ;= t2;

y;=tl;
else

X := tl;

y t2;
end if;

14 y /2;

13 :=x/8;

15 := X -13;

16 := 14+ 15;

if (16 > x) then
17 := 16;

else

17 := x;

end if;

v_done

v_sqr_out := conv_std_logic_vector(t7,16);
end if;

if (reset'event) and (reset = '0') then
done <= v_done after 6.4 ns;

sqr_out <= v_sqr_out after 8.4 ns;
end if;

if (elk' event) and (elk = ' 1') and (start = ' 1') then
done <= v_done after 7*88.8 ns;

sqr_out <= v_sqr_out after 7*88.8 ns;
end if;

end process;
end nonscheduled_behavioral;

~ SRA structural description (datapath and controller)
arehiteeture schematic_optimal of sqr is

signal n_l : stdjogic;
signal n_2 : std_logic;
signal n_3 : std_logic;
signal n_4: std_logic;
signal n_5 : std_logic;
signal n_6 : std_logic;
signal n_7 : std_logic;
signal n_8 : std_logic;
signal n_9 : stdjogic;
signal n_10: std_logic;
signal n_l 1 : stdjogic;
signal n_12 : std_logic;
signal n_13 : std_logic;
signal n_14: std_logic;
signal n_15 : stdjogic;
signal n_16 : stdjogic;
signal n_17 : stdjogic;
signal n_18 : stdjogic;
signal n_19 ; stdjogic;
signal n_20: stdjogic;

component datapath_optimal
port (el : in stdjogic;

c2: in stdjogic;
c3 : in stdjogic;
c4: in stdjogic;
elk: in stdjogic;
en : in stdjogic;

inl ; in std_logic_vector(15 downto 0);
in2 : in std_logic_vector(15 downto 0);

17

loadl : in std_logic; s7=>n_14.

load2 : in stdjogic; s8=>n_13, s9=>n_12, sqr_out=>sqr_out);
Ioad3 ; in std_logic; i_2 : controller_optimal

si : in stdjogic; port map (clk=>clk, reset=>reset, start=>start,
slO : in stdjogic; cl=>n_ll,

sll:in std_logic; c2=>n_10, c3=>n_9, c4=>n_8, done=>done,

sl2 : in stdjogic; en=>n_4,

s2 : in std_logic; loadl=>n_3, load2=>n_2, load3=>n_l,
s3 : in std_logic; sl=>n_20, slO=>n_7,

s4: in std_Iogic; si l=>n_6, sl2=>n_5, s2=>n_19, s3=:>n_18,

s5 : in std_Iogic; s4=>n_17,

s6 : in std_logic; s5=>n_16, s6=>n_15, s7=>n_14, s8=>n_13,

s7 : in std_Iogic; s9=>n_12);

s8 : in std_logic; end schematic_optimal;
s9 : in std_logic;

sqr_out: out std_Iogic_vector(15 downto 0));
end component;

component controller_optimal
port (elk ; in std_logic;

reset: in std_logic;
start; in std_logic;

cl : out stdjogic;
c2; out std_logic;
c3 : out stdjogic;
c4 : out std_logic;

done; out std_logic;
en : out stdjogic;

loadl : out stdjogic;
load2 : out stdjogic;
load3 : out stdjogic;

si : out stdjogic;
slO : out stdjogic;
sll:out stdjogic;
sl2 : out stdjogic;
s2 ; out stdjogic;
s3 ; out stdjogic;
s4 : out stdjogic;
s5 : out stdjogic;
s6 : out stdjogic;
s7 : out stdjogic;
s8 : out stdjogic;
s9 : out stdjogic);

end component;

begin
i_l : datapath_optimal
port map (cl=>n_l 1, c2=>n_10, c3=>n_9, c4=>n_8,

clk=>clk, en=>n_4,

inl=>inl, in2=>in2, loadl=>n_3, load2=>n_2,

load3=>n_l,

sl=>n_20, sl0=>n_7, sll=>n_6, sl2=>n_5,

s2=>n_19,

s3=>n_18, s4=>n_17, s5=>n_16, s6=>n_15,

18

9.4 Datapath Entity.
Illlllllllllllllllllllllllimzxa^athllllllllllllllllllllllllllllllllll
— Datapath of Square Root Algorithm - structural
description

library ieee;
use ieee.std_logic_1164.alj
use ieee.std_logic_misc.all
use ieee.std_logic_arith.all
use work.all;

entity datapath_optimal is
port (cl : in std.

c2; in std_

c3 : in std_

c4: in std_

elk: in std.

en : in std.
inl : in std.

in2; in std.

loadl : in std

load2 : in std,

loads : in std

si : in std

slO: in std

sll : in std.
sl2 : in std

s2: in std_

s3 ; in std_

s4 : in std_

s5 : in std_

s6 : in std_

s7 : in std_

s8 : in std_

s9 : in std_

sqr_out: out std
end datapath_optimal;

-logic;
.logic;
.logic;
.logic;
.logic;
logic;
.logic_vector(15 downto 0);
.logic_vector(15 downto 0);
-logic;
-logic;
-logic;
Jogic;
-logic;
-logic;
-logic;
.logic;
.logic;
logic;
logic;
.logic;
logic;
.logic;
.logic;
.logic_vector(15 downto 0));

architecture schematic of datapath_optimal is

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

n_ll : std_logic
n_12: std_logic.
n_13 : stdjogic.
n_14: std_logic.
n_l : std_logic_
n_2: std_logic_
n_3 : std_logic_
n_4 : std_logic_
n_5 : std_logic_
n_7; std_logic_
n_9 : std_logic_
n_10: stdjogic

component buffer! 6

.vector(15 downto 0);

.vector(15 downto 0);

.vector(15 downto 0);

.vector(15 downto 0);
.vector(15 downto 0);
.vector(15 downto 0);
.vector(15 downto 0);
.vector(15 downto 0);
.vector(15 downto 0);
.vector(15 downto 0);
.vector(15 downto 0);
_vector(15 downto 0);

port (c : in std_logic;
i: in std_logic_vector(15 downto 0);
o ; out std_logic_vector(15 downto 0));

end component;

component shiftS
port (i: in std_logic_vector(15 downto 0);

o : out std_logic_vector(15 downto 0));
end component;

component shiftl
port (i: in std_logic_vector(15 downto 0);

o : out std_logic_vector(15 downto 0));
end component;

component addsubabs
port (cO : in std_logic;

cl : in std_logic;
11 : in std_logic_vector(15 downto 0);
12 : in std_logic_vector(15 downto 0);
o : out std_logic_vector(15 downto 0));

end component;
for all: addsubabs use entity work.addsubabs(struc

tural);

component register_16
port (elk : in std_logic;

din : in std_logic_vector(15 downto 0);
load : in std_logic;
dout: out std_logic_vector(15 downto 0));

end component;

component absminmax
port (cO : in std_logic;

cl : in std_logic;
11 : in std_logic_vector(15 downto 0);
12 : in std_logic_vector(15 downto 0);
0 : out std_logic_vector(15 downto 0));

end component;

begin

i_20: bufferl6

port map (c=>en, i=>n_14, o=>sqr_out);
i_l : buffer16

port map (c=>s6, i=>n_7, o=>n_4);
i_2: buffer16

port map (c=>s5, i=>in2, o=>n_4);
i_3 : buffer16

port map (c=>s4, i=>n_7, o=>n_5);
i_4: buffer16

port map (c=>s3, i=>inl, o=>n_5);
i_5 : bufferl6

port map (c=>s2, i=>n_9, o=>n_5);

19

i_6 : buffer16

port map (c=>sl, i=>n_10, o=>n_5);
i_7 : buffer16

port map (c=>sl2, i=>n_12, o=>n_l);
i_8 : buffer16

port map (c=>slO, i=>n_13, o=:>n_2);
i_9 : buffer16

port map (c=>s8, i=>n_13, o=>n_3);
i_10 : bufferl6

port map (c=>sll, i=>n_ll, o=>n_l);
i_ll : buffer16

port map (c=>s7, i=>n_ll, o=>n_3);
i_12 : bufferl6

port map (c=>s9, i=>n_14, o=>n_2);
i_13 : shift3

port map (i=>n_13, o=>n_12);
i_14 : shift1

port map (i=>n_10, o=>n_9);
i_15 : addsubabs

port map (cO=>c3, cl=>c4, il=>n_2, i2=>n_l,
o=>n_7);

i_regl : register_16
port map (clk=>clk, din=>n_4, load=>load2,

dout=>n_ll);
i_reg2 : register_16

port map (clk=>clk, din=>n_10, Ioad=>load3,
dout=>n_13);

i_reg3 : register_16
port map (clk=>clk, din=>n_5, load=>loadl,

dout=>n_14);
i_19 : absminmax

port map (cO=>cl, cl=>c2, il=>n_3, i2=>n_14,
o=>n_10);

end schematic;

20

9.5 Abs/min/max Entity.

///////////////////// abs/min/max entity /////////////////////////////
— abs/min/max library component - structural and
behavioral descriptions

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use work.all;

entity absminmax is
port (

11 : in std_logic_vector (15 downto 0); :
12 : in std_logic_vector (15 downto 0); 5

cO: in std_logic;
cl : in std_logic;
o : out std_logic_vector (15 downto 0)

);
end absminmax;

architecture behavioral of absminmax is

begin

process(c0,cl,il,i2)
variable a,b,c: integer;

begin
a := conv_integer(signed(il));
b := conv_integer(signed(i2));
if(cl='0')and (cO='l')then

if (b<0) then
c := -b;

else

c ;= b;

end if;

elsif (cl='r.) and (c0='0') then
if (a < b) then

c := a;

else

c := b;

end if;

elsif (cl='r) and (cO='r) then
if (a > b) then

c := a;

else

c := b;

end if;

end if;

if (cO'event) then
o <= conv_std_logic_vector(c,16) after 10

ns;

end if;

if (cl'event) then

o <= conv_std_logic_vector(c,16) after
62.8 ns;

end if;

if (ir event) then
0 <= conv_std_logic_vector(c,16) after

62.8 ns;

end if;

if (i2'event) then
0 <= conv_std_logic_vector(c, 16) after 61

ns;

end if;

end process;
end behavioral;

architecture structural of absminmax is

0);

signal sl,s2,s3,s4,s5 : std_logic_vector (15 downto

signal cout,overflow,s6,one: std_logic;

—adder_16 is a 16 bit ripple carry adder
component adder_16

port (cin : in std_logic;
X: in std_logic_vector (15 downto 0);
y : in std_logic_vector (15 downto 0);

cout: out std_logic;
overflow : out stdjogic;

s : out std_logic_vector (15 downto 0));
end component;

~ selector2_16 is a 16 bit 2 to 1 selector

component selector2_16
port(10: in std_logic_vector (15 downto 0);

11 : in std_logic_vector (15 downto 0);
s : in stdjogic;
0 : out std_logic_vector (15 downto 0));

end component;

~ and_16 is an array of 16 2-input and gates
component and_16
port(il : in std_logic_vector (15 downto 0);

12 : in std_logic_vector (15 downto 0);
o : out std_logic_vector (15 downto 0));

end component;

~ inv_16 is an array of 16 inverters
component inv_16
port (i: in std_logic_vector (15 downto 0);

o : out std_logic_vector (15 downto 0));
end component;

~ xor2 is a 2 input xor gate

21

component xor2
port (il : in stdjogic;

12 : in std_logic;
o : out std_logic);

end component;

for all : adder_16 use entity work.adder_16(sche
matic);

for all : selector2_16 use entity work.selector2_16(
schematic);

for all ; and_16 use entity work.and_16(schematic

);
for all: inv_16 use entity work.inv_16(schematic);
for all: xor2 use entity work.xor2(behavioral);

begin
processed) begin

for i in 0 to 15 loop
sl(i) <= cl;

end loop;
end process;
one <= ' 1';

ul : and_16 port map(sl,il,s2);
u2 : inv_16 port map(i2,s3);
u3 : adder_16 port map(one,s2,s3,cout,overflow,s4);
u4 : selector2_16 portmap(s4,il,cl,s5);
u5 : xor2 port map(cO,s4(15),s6);
u6 ; selector2_16 port map(i2,s5,s6,o);

end structural;

22

9.6 16 Bit Adder Entity.

////////////////////////////16 bit adder entity ///////////////////////

- 16 bit adder - behavioral and structural descriptions

library ieee;
use ieee.std_logic_l 164.all;
use ieee.std_logic_misc.alI;
use ieee.std_logic_arith.all;

entity adder_16 is
port (cin ; in std_logic;

X; in std_logic_vector(15 down to 0);
y : in std_logic_vector(15 downto 0);

cout: out std_logic;
overflow : out std_logic;

s : out std_logic_vector(15 down to 0));
end adder_16;

architecture behavioral of adder_16 is

begin
process(x,y,cin)

variable sum: std_logic_vector(15 downto 0);
variable carry: std_logic_vector(16 downto 0);

begin
carry(0) := cin;
for i in 0 to 15 loop

sum(i) := x(i) xor y(i) xor carry(i);
carry(i+l) := (x(i) and y(i)) or (x(i) and car-

ry(i))
or (y(i) and carry(i));

end loop;
if(cin'event) then

s <= sum after 46.2 ns; ~ verified
cout <= carry(16) after 44.8 ns;--verified

overflow <= carry(15) xor carry(16) after
46.2 ns;

end if;

if (x'event) or (y'event) then
s <= sum after 50.4 ns; — verified

cout <= carry(16) after 49 ns;
overflow <= carry(15) xor carry(16) after

50.4 ns;

end if;

end process;
end behavioral;

- 16-bit ripple carry adder
architecture schematic of adder_16 is

signal
signal
signal

n_l : stdjogic;
n_2 : stdjogic;
n_3 : stdjogic;

signal n_4 : std_logic;
signal n_5 : std_logic;
signal n_6 : std_logic;
signal n_7 : std_logic;
signal n_8 : std_logic;
signal n_9 : std_logic;
signal n_10: std_logic;
signal n_ll : std_logic;
signal n_12: stdjogic;
signal n_13 : std_logic;
signal n_14: stdjogic;
signal n_15 : stdjogic;
signal cout_dummy : stdjogic;

—adder_l is a 1 bit full adder whose output is:
—s = (x xor y xor cin)
~ cout = (x and y) or (x and cin) or (y and cin)

component adder_l
port (cin : in stdjogic;

stdjogic;
stdjogic;
stdjogic;
stdjogic);

X : m

y : in
cout: out

s : out

end component;

- xor2 is a 2 input xor gate
component xor2
generic (delay : time := 4.2 ns);
port(il : in stdjogic;

i2 : in stdjogic;
o : out stdjogic);

end component;

begin

cout <= cout_dummy;

i_13 : adder_l
port map (cin=>n_6, x=>x(4), y=>y(4),

cout=>n_5, s=>s(4));
i_14 : adder_l

port map (cin=>n_7, x=>x(3), y=>y(3),
cout=>n_6, s=>s(3));

i_15 : adder_l

port map (cin=>n_8, x=>x(2), y=>y(2),
cout=>n_7, s=>s(2));

i_16: adder_l

port map (cin=>n_9, x=>x(l), y=>y(l),
cout=>n_8, s=>s(l));

i_17 : adder_l

port map (cin=>cin, x=>x(0), y=>y(0),
cout=>n_9, s=>s(0));

i 18 : adder 1

23

port map (cin=>n_5, x=>x(5), y=>y(5),
cout=>n_4, s=>s(5));

i_19 : adder_l

port map (cin=>n_4, x=>x(6), y=>y(6),
cout=>n_2, s=>s(6));

i_20 : adder_l

port map (cin=>n_2, x=>x(7), y=>y(7),
cout=>n_3, s=>s(7));

i_21 : adder_l

port map (cin=>n_3, x=>x(8), y=>y(8),
cout=>n_15, s=>s(8));

i_22 : adder_l

port map (cin=>n_15, x=>x(9), y=>y(9),
cout=>n_14, s=>s(9));

i_23 : adder_l

port map (cin=>n_14, x=>x(10), y=>y(10),
cout=>n_13, s=>s(10));

i_24 : adder_l

port map (cin=>n_13, x=>x(ll), y=>y(ll),
cout=>n_12, s=>s(ll));

i_25 ; adder_l

port map (cin=>n_12, x=>x(12), y=>y(12),
cout=>n_ll, s=>s(12));

i_26 : adder_l

port map (cin=>n_ll, x=>x(13), y=>y(13),
cout=>n_10, s=>s(13));

i_27 : adder_l

port map (cin=>n_10, x=>x(14), y=>y(14),
cout=>n_l, s=>s(14));

i_28 : adder_l

port map (cin=>n_l, x=>x(15), y=>y(15),
cout=>cout_dummy, s=>s(15));

i_12 : xor2

generic map (delay => 4.2 ns)
port map (il =>cout_dummy, i2=>n_l, o=>over-

flow);

end schematic;

24

9.7 1-Bit Full Adder Entity.

///////////////////////// 1 bit adder entity //////////////////////////////

- 1 bit full adder - behavioral and structural descriptions

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_misc.all;
use ieee.std_logic_arith.all;

entity adder_l is
port (cin : in std_logic;

X ; in std_logic;
y : in std_logic;

cout; out stdjogic;
s : out stdjogic);

end adder_l;

architecture behavioral of adder_l is

begin
process(cin,x,y) begin

if (x'event) or (y'event) then
s <= (x xor y xor cin) after 8.4 ns;

cout <= (x and y) or (x and cin) or (y and
cin) after 7 ns;

end if;

if (cin'event) then
s <= (x xor y xor cin) after 4.2 ns;

cout <= (x and y) or (x and cin) or (y and
cin) after 2.8 ns;

end if;

end process;
end behavioral;

architecture schematic of adder_l is

signal n_l : stdjogic;
signal n_2 : stdjogic;
signal n_3 : stdjogic;

—nand2 is a 2-input nand gate
component nand2
generic (delay : time := 1.4 ns);
port (il : in stdjogic;

i2 : in stdjogic;
o : out stdjogic);

end component;

—xor2 is a 2-input xor gate
component xor2
generic (delay : time := 4.2 ns);
port (il ; in stdjogic;

i2 : in stdjogic;

o : out stdjogic);
end component;

begin

i_6: nand2

generic map (delay => 1.4 ns)
port map (il=>n_3, i2=>n_2, o=>cout);

i_7 : nand2

generic map (delay => 1.4 ns)
port map (il=>n_l, i2=>cin, o=>n_2);

i_8 : nand2

generic map (delay => 1.4 ns)
port map (il=>y, i2=>x, o=>n_3);

i_5 : xor2

generic map (delay => 4.2 ns)
port map (il=>cin, i2=>n_l, o=>s);

i_4: xor2

generic map (delay => 4.2 ns)
port map (il=>y, i2=>x, o=>n_l);

end schematic;

25

9.8 16-Bit Register Entity.

////////////////////////// 16 bit register entity ///////////////////////

- 16 bit register - behavioral and structural descriptions

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_misc.all;
use ieee.std_logic_aritb.all;

entity register_16 is
generic(setup: time := 2 ns;
bold: time := 1 ns);

port (elk : in std_logic;
din : in std_logic_vector(15 downto 0);

load: in std_logic;
dout: out std_logic_vector(15 downto 0));

begin
process(clk)
begin

if(clk=' 1') and (elk'event) and (load = ' 1') then
assert (din'stable(setup + 4.8 ns))
report "setup time violation !"
severity warning;
assert (load'stable(setup -i- 5.8 ns))
report "setup time violation !"
severity warning;
assert (din'stable(4.8 ns - bold))
report "bold time violation !"
severity warning;
assert (load'stable(5.8 ns- bold))
report "bold time violation !"
severity warning;

end if;

end process;
end register_16;

architecture behavioral of register_16 is
constant delay: time := 4 ns;

begin
process(clk)

variable result: std_logic_vector(15 downto 0)
:= "0000000000000000";

begin
if(clk=' 1') and (elk'event) and (load = ' 1') then

result := din;

dout <= result after delay;
end if;

end process;
end behavioral;

architecture schematic of register_16 is

signal n_4 : std_logic;
signal n_7 : std_logic;
signal n_10: stdjogic;
signal n_13 : std_logic;
signal n_16: std_logic;
signal n_19 : std_logic;
signal n_22 : stdjogic;
signal n_25 : std_logic;
signal n_28 : std_logic;
signal n_31 : std_logic;
signal n_34: std_logic;
signal n_37 : std_logic;
signal n_40: std_logic;
signal n_43 : std_logic;
signal n_46: std_logic;
signal n_49 : std_logic;
signal dout_dummy : std_logic_vector(15 downto

0);

— mux2 is a 1-bit 2 to 1 selector

component mux2
port (iO : in std_logic;

il : in std_logic;
s : in stdjogic;
o : out std_logic);

end component;

~ dff is a D flip flop
component dff

port (elk : in std_logic;
d : in std_logic;
q : out std_logic);

end component;

begin

dout <= dout_dummy;

i_l : mux2

port map (i0=>dout_dummy(0), il=>din(0),
s=>load, o=>n_49);

i_2: mux2

port map (iO=>dout_dummy(l), il=>din(l),
s=>load, o=>n_46);

i_3 : mux2

port map (i0=>dout_dummy(2), il=>din(2),
s=>load, o=>n_43);

i_4: mux2

port map (iO=>dout_dummy(3), il=>din(3),
s=>load, o=>n_40);

i 5 : mux2

26

port map (i0=>dout_dummy(4), il=>din(4),
s=>load, o=>n_37);

i_6 : mux2

port map (iO=>dout_dummy(5), il=>din(5),
s=>load, o=>n_34);

i_7 : mux2

port map (i0=>dout_dummy(6), il=>din(6),
s=>load, o=>n_31);

i_8 ; mux2

port map (iO=>dout_dummy(7), il=>din(7),
s=>load, o=>n_28);

i_9 : mux2

port map (iO=>dout_dummy(8), il=>din(8),
s=>load, o=>n_25);

i_10: mux2

port map (i0=>dout_dummy(9), il=>din(9),
s=>load, o=>n_22);

i_ll : mux2

port map (i0=>dout_dummy(10), il=>din(10),
s=>load, o=>n_19);

i_12 : mux2

port map (iO=>dout_dummy(ll), il=>din(ll),
s=>load, o=>n_16);

i_13 : mux2

port map (i0=>dout_dummy(12), il=>din(12),
s=>load, o=>n_13);

i_14 : mux2

port map (iO=>dout_dummy(13), il=>din(13),
s=>load, o=>n_10);

i_15 : mux2

port map (i0=>dout_dummy(14), il=>din(14),
s=>load, o=>n_7);

i_16 : mux2

port map (i0=>dout_dummy(15), il=>din(15),
s=>load, o=>n_4);

i_]7:dff

port map (clk=>clk, d=>n_46, q=>dout_-
dummy(l));

L18:dff

port map (clk=>clk, d=>n_49, q=>dout_-
dummy(O));

i_19 : dff

port map (clk=>clk, d=>n_43, q=>dout_-
dummy(2));

i_20 : dff

port map (clk=>clk, d=>n_40, q=>dout_-
dummy(3));

i_21 : dff

port map (clk=>clk, d=>n_34, q=>dout_-
dummy(5));

i_22 ; dff

port map (clk=>clk, d=>n_37, q=>dout_-
dummy(4));

i 23 : dff

port map (clk=>clk, d=>n_31, q=>dout_
dummy(6));

i_24 : dff

port map (clk=>clk, d=>n_28, q=>dout_
dummy(7));

i_25 : dff

port map (clk=>clk, d=>n_22, q=>dout_
dummy(9));

i_26 : dff

port map (clk=>clk, d=>n_25, q=>dout_
dummy(8));

i_27 : dff
port map (clk=>clk, d=>n_19, q=>dout_

dummy(lO));
i_28:dff

port map (clk=>clk, d=>n_16, q=>dout_
dummy(ll));

i_29 : dff

port map (clk=>clk, d=>n_10, q=>dout_
dummy(13)):

i_30: dff

port map (clk=>clk, d=>n_13, q=>dout_
dummy(12));

i_31 : dff
port map (clk=>clk, d=>n_7, q=>dout_

dummy(14));
L32 : dff

port map (clk=>clk, d=>n_4, q=>dout_
dummy(15));

end schematic;

27

9.9 D Flip Flop Entity.

/////////////////// D flip flop entity lllllllllllllllllllllllllllllllll

—D flip-flop - behavioral description

library ieee;
use ieee.stdJogic_I164.all;

entity dff is
generic (delay : time := 4 ns;

setup : time := 2 ns;
hold : time := 1 ns);

port (elk : in stdjogic;
d; in stdjogic;
q : out stdjogic);

begin
process(clk)
begin

if (elk = '1') and (clk'event) then
assert (d'stable(setup))
report "setup time violation !"
severity warning;

end if;

end process;

process(d) begin
if (elk = '1') then

assert (clk'stable(hold))
report "hold time violation !"
severity warning;

end if;

end process;

end dff;

architecture behavioral of dff is

begin
process(clk)

variable state : stdjogic := '0';
begin

if (elk = T) and (clk'event) then

state := d;

q <= state after delay;
end if;

end process;
end behavioral;

28

9.10 2 Input And Gate Entity.

ImmillImmill l input and gate entity /////////////////////////

- 2 input and gate - behavioral description

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_misc.all;
use ieee.std_logic_arith.all;

entity and2 is
generic (delay : time := 2.4 ns);
port (il:in std_logic;

12 : in std_logic;
o : out std_logic);

end and2;

architecture behavioral of and2 is

begin
0 <= il and 12 after delay;

end behavioral;

29

