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ABSTRACT OF THE DISSERTATION

Solutions to the 2D Euler Equations Satisfying the Serfati Condition
With Relaxed Constraints on the Initial Vorticity

by

Taylor Gunter Baldwin

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, September 2020

Dr. James Kelliher, Chairperson

We prove finite-time existence of solutions to the 2D Euler equations where the

velocity grows slower than the square root of the distance from the origin and

with vorticity up to linear growth provided the initial vorticity is quasibounded,

or with growth in the vorticity related to the growth in the velocity provided

the initial vorticity is stable. In the quasibounded case, we provide an example

with unbounded vorticity and velocity. We also prove uniqueness for solutions

with stable initial vorticity and with a certain bound on the modulus of continu-

ity of the initial velocity. This thesis expands on the recent work of Cozzi and

Kelliher, which substitutes Serfati’s identity in place of the Biot-Savart law to

demonstrate uniqueness and short-time existence of bounded vorticity solutions

with slow growing velocity.
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1. Preliminaries

1.1. Introduction

In 1757, Leonhard Euler introduced his namesake system of partial differential

equations which models the evolution of an inviscid fluid [7]. The velocity formu-

lation of the two-dimensional incompressible Euler equations is


ut + u · ∇u = −∇p, (t, x) ∈ [0,∞)× R2,

∇ · u = 0,

u|t=0 = u0,

(1.1)

where u(t, x) is the divergence-free velocity field and p(t, x) is the scalar pressure.

By taking the scalar curl of (1.1), we obtain the vorticity-stream formulation of

the two-dimensional Euler equations, which is the formulation we will work with:

 ωt + u · ∇ω = 0, (t, x) ∈ [0,∞)× R2,

ω|t=0 = ω0.
(1.2)

Here, the divergence-free velocity field u is determined from the vorticity ω =

∇× u = ∂1u2 − ∂2u1 by the Biot-Savart law

u = K ∗ ω, K(x) :=
x⊥

2π|x|2
,

where x⊥ := (−x2, x1).
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The standard weak solution result to the two-dimensional Euler equations was

established in 1963 by Yudovich in [19], where he demonstrated the global-in-time

well-posedness of the equations for bounded vorticity on a bounded domain in

R2. Yudovich’s work was subsequently extended to the full plane for vorticity in

L1(R2) ∩ L∞(R2); the proof to the following theorem can be found, for example,

in [12].

Theorem 1.1.1 ( [12] ). If ω0 ∈ L1(R2)∩L∞(R2), then for any T > 0 there exists

a unique solution with initial vorticity ω0 in the sense that the velocity field u and

vorticity ω = ∇× u satisfy the following criteria:

• ω ∈ L∞([0, T ];L1(R2) ∩ L∞(R2)),

• u = K ∗ ω,

• The vorticity equation ωt + u · ∇ω = 0 holds in the sense of distributions.

In recent years, efforts have been made to demonstrate existence of solutions

with velocity and/or vorticity which does not decay at infinity or which is un-

bounded. In [20], Yudovich extended his own result to allow for slightly un-

bounded vorticities, but still on a bounded domain. In [18], Vishik, while working

in the full plane, was able to establish uniqueness for a slightly larger class of

unbounded vorticities than Yudovich, but still assumed the vorticity vanished at

infinity. In [16], Taniuchi built upon [15] to prove global existence for a class of

solutions with bounded unbounded vorticity and with bounded velocity that is

not required to decay.

Elgindi and Jeong, in [6], were able to establish the well-posedness of solutions

to the Euler equations with merely bounded initial vorticity and with velocity

with up to linear growth provided the initial vorticity was m-fold symmetric,

m ≥ 3. Generally, the Biot-Savart law requires some decay of the vorticity. To

get around this, the authors use the observation made in [5] that the Biot-Savart
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kernel exhibits integral decay in when convoluted with a function with vanishing

first and second Fourier modes.

Serfati took a different approach in [15], where he presents the outlines of proofs

for the well-posedness of solutions in R2 requiring only that the velocity and

vorticity both be bounded. Serfati replaced the Biot-Savart law u = K ∗ ω with

the identity

uj(t) = uj0 + (aKj) ∗ (ω(t)− ω0) +

∫ t

0

(∇∇⊥[(1− a)Kj]) ∗· (u⊗ u)(s) ds, (1.3)

where a is any radially symmetric cutoff function with a = 1 in a neighborhood

of the origin, and where A ∗·B :=
∑

i,j A
ij ∗ Bij for any matrix-valued functions

A,B. We call identity (1.3) Serfati’s identity.

With this substitution, Serfati was able to prove the following.

Theorem 1.1.2 (Serfati [15]). We say a divergence-free vector field u ∈ S if

‖u‖S := ‖u‖L∞(R2) + ‖ω(u)‖L∞(R2) <∞, where ω(u) = ∇× u. If u0 ∈ S, then for

any T > 0 there exists a unique solution to the Euler equations with initial data u0

in the sense that the velocity field u and vorticity ω = ∇× u satisfy the following

criteria:

• u ∈ L∞([0, T ];S) ∩ C([0, T ]× R2),

• Serfati’s identity in (1.3) holds for any radially symmetric cutoff function a

with a = 1 in a neighborhood of the origin,

• The vorticity equation ωt + u · ∇ω = 0 holds in the sense of distributions.

Serfati presents in [15] only the outline of the proof to Theorem 1.1.2. A more

fleshed-out proof of Serfati’s result, along with an extension of the result to exterior

domains, is provided in [1]; see also [11] for a fuller characterization of these

Serfati solutions. Serfati’s result was improved upon in [2] to show the existence
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of solutions with bounded vorticity and with locally bounded velocity that grows

slower than the power of a logarithmic function.

In [4], Cozzi and Kelliher extended Serfati’s result more generally (using differ-

ent techniques than were used in [2]) to establish the well-posedness of solutions

with velocity with slow growth at infinity and bounded vorticity. To measure

the growth of the velocity field, Cozzi and Kelliher introduced multiple classes of

single-variable scalar functions collectively called growth bounds.

Definition 1.1.3 (Growth Bounds).

1. We say a function h : [0,∞)→ (0,∞) is a pre-growth bound if it is increasing,

concave, differentiable on [0,∞), and twice continuously differentiable on

(0,∞).

2. A pre-growth bound h is a growth bound if
∫∞

1
h(s)s−2 ds <∞.

3. A growth bound h is a well-posedness growth bound if h2 is also a growth

bound.

We also define H[h](r) :=
∫∞
r
h(s)s−2 ds. We note that H[h](r) <∞ for all r > 0

if h is a growth bound.

Remark 1.1.4. For simplicity of notation, given a pre-growth bound h and any

x ∈ R2, we will often write h(x) in place of h(|x|), h′(x) in place of h′(|x|), etc.

Given a function u and a growth bound h, we can compare the growth of u and

h by considering ‖u/h‖L∞ . We will generally require that ‖u/h‖L∞ <∞, so that

in no place on its domain does u grow much faster than h.

A elementary example of a well-posedness growth bound is h1(r) = 1; in this

case, only if a function u is bounded will u/h ∈ L∞. Examples of growth bounds

which allow growth in u when u/h ∈ L∞ include h2(r) = 1 + rα, where h2 is

a growth bound when α ∈ [0, 1) and a well-posedness growth bound when α ∈

[0, 1/2), and h3(r) = log
1
4 (e+ r).
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Cozzi and Kelliher’s result in [4] follows.

Theorem 1.1.5 (Cozzi and Kelliher [4]). We say a divergence-free vector field u ∈

Sh, where h is a pre-growth bound, if ‖u‖Sh := ‖u/h‖L∞(R2)+‖ω(u)‖L∞(R2) <∞. If

u0 ∈ Sh, then for some T > 0 there exists a unique solution to the Euler equations

with initial data u0 in the sense that the velocity field u, vorticity ω = ∇× u, and

unique flow map X satisfy the following criteria:

• u ∈ C([0, T ];Sh),

• Serfati’s identity in (1.3) holds for any radially symmetric cutoff function a

with a = 1 in a neighborhood of the origin,

• ω(t, x) = ω0(X−t(x)) on [0, T ]× R2, where X−t is the inverse of X at time

t.

None of the above results allow initial data where both the velocity and the

vorticity are allowed to grow as |x| → ∞. The purpose of this dissertation is to

investigate to what extent we can relax the boundedness condition on the vorticity

in Theorem 1.1.5 so as to allow for the existence of solutions with growth in both

the initial velocity and the initial vorticity. We also explore uniqueness of a class

of solutions.

1.2. Main Results

To state our main results, we first must establish several definitions.

Definition 1.2.1. Let h, g be pre-growth bounds. We define Sh,g to be the Banach

space of divergence-free vector fields u over R2 such that

‖u‖Sh,g :=
∥∥∥u
h

∥∥∥
L∞(R2)

+

∥∥∥∥ω(u)

g

∥∥∥∥
L∞(R2)

<∞,

where ω(u) = ∇× u.
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Remark 1.2.2. Note that the assumptions on the initial data u0 in Theorem 1.1.2

are equivalent to requiring u0 ∈ S1,1. Similarly, the assumptions on u0 in Theo-

rem 1.1.5 are equivalent to requiring u0 ∈ Sh,1 for a well-posedness growth bound

h.

Definition 1.2.3 (Radial Cutoff Function and Cutoff Biot-Savart Kernel). Choose

a radially symmetric function a ∈ C∞c (R2) so that a : R2 → [0, 1] is supported

in B1(0) and a = 1 on B1/2(0). For any λ > 0, we define the scaled radial cutoff

function

aλ(x) := a
(x
λ

)
.

We also define the cutoff Biot-Savart kernel

Kλ := 1Bλ(0)K,

where 1A is the characteristic function of a set A.

We are now prepared to define what we mean by a solution to the 2D Euler

equations.

Definition 1.2.4 (Lagrangian Solution). Let h, g be pre-growth bounds and let

T > 0. Assume u ∈ L∞([0, T ];Sh,g) with vorticity ω = ∇×u and unique flow-map

X. Let u0 = u|t=0 and ω0 = ∇ × u0. Then we say u is a solution to the Euler

equations on [0, T ] if

(1) ω(t, x) = ω0(X−t(x)) for each (t, x) ∈ [0, T ]× R2, where X−t is the inverse of

X at time t, and

(2) Serfati’s identity (1.3) holds for each (t, x) ∈ [0, T ]×R2 for each scaled radial

cutoff function aλ.

We note that Definition 1.2.4 is the Lagrangian formulation of (1.2) with the

Biot-Savart law replaced by Serfati’s identity. As in [4], we use Lagrangian so-
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lutions, as opposed to Eulerian solutions, as we need the fact that the initial

vorticity is transported by a unique flow map in our uniqueness proof. Well-

posedness of Eulerian solutions to the two-dimensional Euler equations is most

often established by first constructing Lagrangian solutions (which are automat-

ically Eulerian), then proving that Eulerian solutions are unique. This works

for bounded velocity, bounded vorticity solutions; see, for example, [3] and [17].

Whether this approach can be extended to the solutions studied here is unknown

and is a subject for future work.

In [4], the authors establish the well-posedness of solutions with initial data in

Sh,1, where h is a well-posedness growth bound, for at least short time; thus, they

assume the initial voriticity is bounded. As we shall show, one way to relax this

condition is to assume the initial vorticity is merely “almost” bounded.

Definition 1.2.5 (Quasibounded Functions). For f : R2 → R and a pre-growth

bound h, define

‖f‖Th = sup
x∈R2,λ≥h(x)
ξ∈MPH(R2)

1

2πλ

∫
Bλ(x)

|f(y)|
|x− ξ(y)|

dy,

where we define MPH(R2) as the set of all measure-preserving homeomorphisms

on R2. If ‖f‖Th < ∞, we say f is h-quasibounded, or merely quasibounded when

h is understood.

We call Th = {f : ‖f‖Th <∞} the space of h-quasibounded functions.

The uniform norm takes the supremum over all individual values of a function.

In contrast, the quasibounded norm takes into account the points surrounding

each individual value, weighting the points differently, but with no preference as

to which point is weighted most heavily.

Another possible way to relax the boundedness requirement on the initial vor-

ticity in the existence argument is to require the initial vorticity to be stable in
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some sense.

Definition 1.2.6 (Stabilizers). Let h be a pre-growth bound. We say that a

differentiable function φ : R2 → R is an h-stabilizer, or simply a stabilizer when h

is understood, if ‖h∇φ‖L∞(R2) <∞. We say that a function ω : R2 → R is stable

relative to φ if ‖ω − φ‖L∞(R2) <∞.

Definition 1.2.7 (Induced Growth Bounds). Let h be a pre-growth bound. Define

~(r) := 1 +
∫ r

0
ds
h(s)

. We show in Lemma 1.3.5 that ~ is a pre-growth bound. We

call ~ the pre-growth bound induced by h.

Theorems 1.2.8 to 1.2.10 comprise our main results.

Theorem 1.2.8 (Existence with Quasibounded Initial Vorticity). Let u0 ∈ Sh,g

for some well-posedness growth bound h and some pre-growth bound g. If ω0 ∈ Th,

then there exists a solution to the Euler equations u ∈ L∞([0, T ];Sh,g) with initial

data u0 for some T > 0, where ‖ω(t)‖Th = ‖∇ × u(t)‖Th is uniformly bounded for

t ∈ [0, T ].

Theorem 1.2.9 (Existence with Stable Initial Vorticity). Let h be a well-posedness

growth bound, let g ≤ C~ be a pre-growth bound, and let u0 ∈ Sh,g. If ω0 is stable

relative to some h-stabilizer φ, then there exists a solution to the Euler equations

u ∈ L∞([0, T ];Sh,g) with initial data u0 for some T > 0, where ω(t) = ∇× u(t) is

uniformly stable relative to φ; that is, ‖ω(t)− φ‖L∞(R2) < C for some C indepen-

dent of t ∈ [0, T ].

In the case of stable initial vorticity, we are also able to prove uniqueness of

solutions in some situations.

Theorem 1.2.10 (Uniqueness with Stable Initial Vorticity). Let h be a well-

posedness growth bound, let g ≤ C~ be a pre-growth bound, and let u0 ∈ Sh,g. Let

8



the initial vorticity ω0 be stable with respect to some h-stabilizer φ. Suppose

|u0(x+ y)− u0(x)| ≤ Ch(x)µ

(
|y|
h(x)

)

for all x, y ∈ R2 such that |y| ≤ C(1 + |x|). Then if there is a solution u ∈

L∞([0, T ];Sh,g) with initial data u0 for some T > 0, the solution is unique.

We prove Theorem 1.2.8 in Section 2.4. We also provide an example of a solu-

tion that has initial data with quasibounded, yet unbounded, initial vorticity in

Section 2.4.

We prove Theorem 1.2.9 in Section 2.5. We also discuss the challenges of finding

initial data satisfying the assumptions of Theorem 1.2.10 that do not also satisfy

the assumptions of Theorem 1.1.5; it is possible no such initial data exists.

Finally, we prove theorem 1.2.10 in Section 3.2.

1.3. Properties of Growth Bounds

In this section, we investigate the properties of growth bounds. We begin with

Lemmas 1.3.1 to 1.3.4, in which we prove important properties of growth bounds

first observed in [4].

Lemma 1.3.1. Let h : [0,∞)→ [0,∞) be an increasing, concave function. Then

h is subadditive; that is, for all r, s ≥ 0,

h(r + s) ≤ h(r) + h(s).

Proof. Since h is concave with h(0) ≥ 0, for any constant a ∈ [0, 1] we have

ah(r) ≤ ah(r) + (1− a)h(0) ≤ h(ar + (1− a)0) = h(ar).

9



Then setting a = r/(r + s) (so that (1− a) = s/(r + s)), we have

h(r + s) = ah(r + s) + (1− a)h(r + s)

≤ h(a(r + s)) + h((1− a)(r + s))

= h(r) + h(s). �

Lemma 1.3.2. Let h : [0,∞)→ [0,∞) be an increasing, concave function. Then

for any a ≥ 1 and r ≥ 1,

h(ar) ≤ 2ah(r). (1.4)

Proof. We first consider h(nr) for n ∈ N. Assuming h((n − 1)r) ≤ (n − 1)h(r),

the concavity of h implies

h(nr) = h((n− 1)r + r) ≤ (n− 1)h(r) + h(r) = nh(r).

Thus, h(nr) ≤ nh(r) for all n by induction. Then for a ≥ 1, choose n ∈ N and

α ∈ [0, 1) so that a = n+ α. The subadditivity of h implies

h(ar) = h(nr + αr)

≤ h(nr) + h(αr)

≤ nh(r) + h(r)

≤ 2nh(r)

≤ 2ah(r). �

Lemma 1.3.3. Let h be a pre-growth bound. Then for all r ≥ 0,

h(r) ≤ cr + d,

10



where c = h′(0) and d = h(0).

Proof. Since h is concave, h′(r) ≤ h′(0) for all r ≥ 0. Then by the mean-value

theorem,

h(r) =
h(r)− h(0)

r
r + h(0) ≤ h′(0)r + h(0). �

Lemma 1.3.4. Let h be a pre-growth bound. Then for any a ≥ 1 and r ≥ 1,

h(h(r)) ≤ C(h)h(r). (1.5)

Proof. Use Lemma 1.3.3 together with the fact that h is an increasing function to

conclude

h(h(r)) ≤ h′(0)h(r) + h(0) ≤ h′(0)h(r) + h(r) ≤ C(h)h(r). �

In Lemmas 1.3.5 and 1.3.6, we establish important properties of the relationship

between a growth bound and its conjugate growth bound.

Lemma 1.3.5. Let h be a pre-growth bound. Then ~ is also a pre-growth bound,

and 1/h is a convex function.

Proof. Since h is a pre-growth bound, it follows that h(r) > 0, that h′(r) ≥ 0, and

that h′′(r) ≤ 0 for all r > 0.

Then recalling that

~(r) := 1 +

∫ r

0

1

h(s)
ds,

we note that for all r ≥ 0,

~(0) = 1 > 0,

~′(r) =
1

h(r)
> 0,

~′′(r) =
d

dr

1

h(r)
= − h′(r)

(h(r))2
≤ 0,
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so that ~ is a pre-growth bound.

Differentiating once more, we find that for r > 0,

d2

dr2

1

h(r)
=

2(h′(r))2 − h(r)h′′(r)

(h(r))3
≥ 0,

which establishes the convexity of 1/h(r). �

Lemma 1.3.6. If h is a well-posedness growth bound and g ≤ C~ is a pre-growth

bound, then, in asymptotic notation, g(r)h(r) = O(r).

Proof. Since g(r)h(r) ≤ Ch(r)~(r), it is sufficient to show that h(r)~(r) = O(r).

First consider the case where h′(r0) = 0 for some r0 ≥ 0. Since h′ is a decreasing

non-negative function, if h′(r0) = 0, then h(r) = 0 for all r ≥ r0. Thus, h′(r)~(r) ≤

h′(0)~(r0) for all r ≥ 0. Hence,

d

dr

(
h(r)~(r)

)
= h′(r)~(r) + h(r)~′(r)

= h′(r)~(r) + 1

≤ h′(0)~(r0) + 1

≤ C.

So h(r)~(r) = O(r).

To get this bound when h′(r) > 0 for all r > 0, first note that since h2 is a

pre-growth bound, it is concave. Then

d2

dr2

(
1

2
h2(r)

)
= h′′(r)h(r) + h′(r)2 ≤ 0.

Rearranging the inequality yields

1

h(r)
≤ − h

′′(r)

h′(r)2
.
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Integrating both sides of the inequality gives us

∫ r

0

1

h(s)
ds ≤

∫ r

0

− h
′′(s)

h′(s)2
ds =

1

h′(s)

∣∣∣∣∣
r

0

≤ 1

h′(r)
.

Returning once more to the derivative of h(r)~(r), we see that

d

dr

(
h(r)~(r)

)
= h′(r)~(r) + 1

= h′(r)

(
1 +

∫ r

0

1

h(s)
ds

)
+ 1

≤ h′(r)

(
1 +

1

h′(r)

)
+ 1

≤ h′(0) + 2

≤ C.

So h(r)~(r) = O(r) in this case, too. �

Remark 1.3.7. Note that since (h~)′ = h′~ + 1 ≥ 1, the bound in Lemma 1.3.6

is, in fact, tight.

Recalling that we seek to bound the velocity with a growth bound h and the

vorticity with the conjugate growth bound g, Lemma 1.3.6 is significant in that

it bounds the combined growth of the velocity and vorticity. This suggests that a

more restrictive bound on the velocity would allow for a more permissive bound

on the vorticity, and vice-versa.

Lemma 1.3.8. Let h be a pre-growth bound and let u be a time-dependent vector

field with associated flow map X. Let ζ : R2 → R such that |∇ζ(x)| ≤ C/h(|x|).

Then for t1 ≤ t2, we have

|ζ(X(t2, x))− ζ(X(t1, x))| ≤ C

∫ t2

t1

∥∥∥∥u(s)

h

∥∥∥∥
L∞

ds. (1.6)
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Proof. Observe that,

|ζ(X(t2, x))− ζ(X(t1, x))| ≤
∫ t2

t1

|∇ζ(X(s, x))||u(s,X(s, x))| ds

≤
∫ t2

t1

C

h(X(s, x))
|u(s,X(s, x))| ds

≤ C

∫ t2

t1

∥∥∥∥u(s)

h

∥∥∥∥
L∞

ds. �

Corollary 1.3.9. Let h, g be pre-growth bounds. Given a time-dependent vector

field u with flow map X, we have for t1 ≤ t2,

exp

(
−C

∫ t2

t1

∥∥∥∥u(s)

h

∥∥∥∥
L∞

ds

)
≤ g(X(t2, x))

g(X(t1, x))
≤ exp

(
C

∫ t2

t1

∥∥∥∥u(s)

h

∥∥∥∥
L∞

ds

)
.

(1.7)

Furthermore, if g ≤ C~, then

|g(X(t2, x))− g(X(t1, x))| ≤ C

∫ t2

t1

∥∥∥∥u(s)

h

∥∥∥∥
L∞

ds, (1.8)

And if h is a well-posedness growth bound, then

|h(X(t2, x))− h(X(t1, x))| ≤ C

∫ t2

t1

∥∥∥∥u(s)

h

∥∥∥∥
L∞

ds. (1.9)

Proof. To obtain bound (1.7), first observe that

(
g

g′

)′
= 1− gg′′

(g′)2
≥ 1 ≥ Ch′,

It follows that g/g′ ≥ Ch. Thus,

d

dr
log g(r) =

g′

g
≤ C

h
.

14



Then we can apply Lemma 1.3.8 with ζ(x) = log g(x) to obtain

log
g(X(t1, x))

g(X(t2, x))
≤ C

∫ t2

t1

∥∥∥∥u(s)

h

∥∥∥∥ ds

and

log
g(X(t2, x))

g(X(t1, x))
≤ C

∫ t2

t1

∥∥∥∥u(s)

h

∥∥∥∥ ds.

Take the exponential of both sides of both these inequalities to obtain (1.7).

Next, observe that since g ≤ C~, it follows that g′ ≤ C~′ = C/h, so that we

obtain bound (1.8) by applying Lemma 1.3.8 with ζ(x) = g(x).

Finally, inequality (1.9) is obtained by observing that, because h2 is a growth

bound, the derivative d
dr
h2(r) = 2h′(r)h(r) is bounded. Hence, h′ ≤ C/h. Then

Lemma 1.3.8 gives the desired result. �

1.4. The Biot-Savart Kernel

In this section, we establish several important bounds relating to the Biot-Savart

kernel. Generally, the results in this section were first proved elsewhere; we include

the results and their proofs here for convenience. We first define the cutoff Biot-

Savart Kernel, which will prove useful later. We continue with Lemmas 1.4.2

to 1.4.4, which are proved in [1], and Lemmas 1.4.5 and 1.4.6, which are proved

in [4]. We conclude with Lemmas 1.4.7 and 1.4.8

Definition 1.4.1 (Cutoff Biot-Savart Kernel). For any λ > 0, we define the cutoff

Biot-Savart kernel as

Kλ = 1Bλ(0)K,

where 1A is the characteristic function of a set A.

Note that |aλK| ≤ |Kλ|, so that the following bound on ‖Kλ‖L1(R2) also holds

for ‖aλK‖L1(R2).
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Lemma 1.4.2. There exists a constant C > 0 so that, for each λ > 0,

‖Kλ‖L1(R2) ≤ Cλ.

Proof. We calculate

‖Kλ‖L1(R2) = C

∫
Bλ(0)

1

|x|
dx

≤ C

∫ λ

0

dr

= Cλ. �

Lemma 1.4.3. Let U ⊂ R2 have finite measure, and choose p ∈ [1, 2). Then

‖K‖pLp(U) ≤
2

(4π)
p
2 (2− p)

|U |1−
p
2 .

Proof. Let R = (π−1|U |)1/2 (so that |U | = πR2). We note that |K(x)| is a

radially symmetric function and decreases with increasing |x|. As such, the value

of ‖K‖Lp(U) is maximized when U = BR(0). Thus,

‖K‖pLp(U) ≤ ‖K‖
p
Lp(BR(0))

=
1

(2π)p

∫
BR(0)

1

|x|p
dx

=
2π

(2π)p

∫ R

0

r

rp
dr

=
1

(2π)p−1(2− p)
R2−p.

Plugging in our choice for R gives the result. �

Lemma 1.4.4. For any z1, z2 ∈ R2 and any conjugate exponents p, q ∈ (1,∞),

|K(z1)−K(z2)| ≤ 2
1
p |z1 − z2|

1
q

2πmin{|z1|, |z2|}2− 1
p

.
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Proof. We first observe that for any z1, z2 ∈ R2, direct calculation yields

|K(z1)−K(z2)| = 1

2π

|z1 − z2|
|z1||z2|

.

Now, to be specific, assume without loss of generality that |z1| ≤ |z2|. Then

it follows that |z1 − z2| ≤ 2|z2| and that |z1||z2| ≥ |z1|2−
1
p |z2|

1
p . Combining these

observations gives us

|K(z1)−K(z2)| ≤ 1

2π

|z1 − z2|
|z1|2−

1
p |z2|

1
p

≤ 1

2π

|z1 − z2|
|z1|2−

1
p (2−1|z1 − z2|)

1
p

,

from which we obtain the result. �

Lemma 1.4.5. Let X1, X2 : R2 → R2 be measure-preserving homomorphisms,

and let δ := ‖X1 −X2‖L∞(R2) <∞. Let U ⊂ R2 have finite measure. Then

‖K(x−X1(z))−K(x−X2(z))‖L1
z(U) ≤ C

√
|U |µ

(
δ√
|U |

)
,

where

µ(r) :=

 −r log r, if r < e−1,

e−1, if r ≥ e−1.
(1.10)
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Proof. For any p, q > 1 such that p−1+q−1 = 1, we utilize Lemma 1.4.4 to compute

‖K(x−X1(z))−K(x−X2(z))‖L1
z(U)

≤ C

∥∥∥∥∥ |X1(z)−X2(z)|
1
q

min{|x−X1(z)|, |x−X2(z)|}2− 1
p

∥∥∥∥∥
L1
z(U)

≤ Cδ
1
q

2∑
j=1

∥∥∥∥∥ 1

|x−Xj(z)|2−
1
p

∥∥∥∥∥
L1
z(U)

≤ Cδ
1
q

2∑
j=1

∥∥∥∥∥ 1

|x− y|2−
1
p

∥∥∥∥∥
L1
y(Xj(U))

≤ Cδ
1
q

2∑
j=1

‖K(x− y)‖
2− 1

p

L
2− 1

p
y (Xj(U))

≤ Cδ
1
q p|U |

1
2p ,

where we used Lemma 1.4.3 for the last inequality.

This bound is minimized when p = − log(δ/
√
|U |) so long as δ/

√
|U | < e−1

(which condition ensures that p > 1). Thus, when δ/
√
|U | < e−1, we obtain

‖K(x−X1(z))−K(x−X2(z))‖L1
z(U)

≤ Cδ
1+ 1

log(δ/
√
|U|)

(
− log

δ√
|U |

)
|U |

1

−2 log(δ/
√
|U|)

≤ −Cδ

(
log

δ√
|U |

)(
δ√
|U |

) 1

log(δ/
√
|U|)

≤ C
√
|U |µ

(
δ√
|U |

)
,

since x1/ln(x) = e. So we obtain the result for δ/
√
|U | < e−1.

When δ/
√
|U | ≥ e−1, Lemma 1.4.3 with p = 1 immediately gives us the desired

bound. �

Lemma 1.4.6. Let X1, X2 : R2 → R2 be measure-preserving homeomorphisms and

fix x ∈ R2 and λ > 0. Let V = supp aλ(X1(x) −X1(·)) ∪ supp aλ(X1(x) −X2(·))
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and assume δ := ‖X1(·)−X2(·)‖L∞(V ) <∞. Then

∫
|(aλK(X1(x)−X1(y))− aλK(X1(x)−X2(y)))| dy ≤ Cλµ

(
δ

λ

)
,

where µ is as in (1.10).

Proof. First, we write

∫
|(aλK(X1(x)−X1(y))− aλK(X1(x)−X2(y)))| dy

≤
∫
|aλ(X1(x)−X1(y))(K(X1(x)−X1(y))−K(X1(x)−X2(y)))| dy

+

∫
|(aλ(X1(x)−X1(y))− aλ(X1(x)−X2(y)))K(X1(x)−X2(y))| dy

=: I1 + I2.

Now let U = supp aλ(X1(x)−X1(·)). Then noting that |U | = πλ2, Lemma 1.4.5

implies

I1 ≤ ‖K(X1(x)−X1(y))−K(X1(x)−X2(y))‖L1
y(U) ≤ Cλµ

(
δ√
πλ

)
≤ Cλµ

(
δ

λ

)
.

Next, let W = {X1(y)−X2(y) | y ∈ V }. Then for I2, we use the fact that the

Lipschitz constant of aλ is Cλ−1 to calculate

I2 ≤
C

λ

∫
V

|X1(y)−X2(y)||K(X1(y)−X2(y))| dy

≤ C

λ
δ

∫
V

|K(X1(y)−X2(y))| dy

≤ C

λ
δ

∫
W

|K(y)| dy

≤ Cδ,
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where we used Lemma 1.4.3 together with the observation that

|W | ≤ |V | ≤ | supp aλ(X1(x)−X1(·))|+ | supp aλ(X1(x)−X2(·))| = 2πλ2.

Then observe that δ ≤ λµ(δ/λ) so long as δ ≤ e−1λ.

On the other hand, since |aλ| ≤ 1 and is supported in V , we can again use

Lemma 1.4.3 to calculate

I2 ≤ 2

∫
V

|K(X1(y)−X2(y))| dy ≤ 2

∫
W

|K(y)| dy ≤ Cλ.

But µ(δ/λ) = e−1 whenever δ > e−1λ. �

Lemma 1.4.7. For each n ∈ N and λ > 0, there exists a constant C > 0,

depending only on n and λ, so that

|∇nK(x)| = C|x|−(n+1) (1.11)

|∇n(aλK(x))| ≤ C|x|−(n+1), (1.12)

for every x ∈ R2, where ∇n =

n times︷ ︸︸ ︷
∇∇ · · ·∇.

Proof. We first note that for any smooth function f ,

∣∣∇|f |∣∣ =

∣∣∣∣∇f f

|f |

∣∣∣∣ = |∇f |.

Then assuming |∇n−1K(x)| = C|x|−n, we observe that

|∇nK| =
∣∣∇|∇n−1K|

∣∣
= |∇(C|x|−n)|

= Cn|x|−(n+1).
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Since |K| = C|x|−1, equation (1.11) holds by induction.

And since ∇naλ ∈ C∞c (R2), we can, of course, find a constant C dependent on n

and λ so that |∇naλ(x)| ≤ C|x|−(n+1). Inequality (1.12) immediately follows. �

Lemma 1.4.8. Let h be a well-posedness growth bound and let u, v be vector fields

on R2. Then

∣∣(∇∇⊥[(1−aλ)Kj]) ∗· (u⊗ u)
∣∣ ≤ C

∥∥∥u
h

∥∥∥2

L∞(R2)

(
H[h2](λ/2) +

h2

λ

)
, (1.13)∣∣(∇∇⊥[(1−aλ)Kj]) ∗· (u⊗ u− v ⊗ v)

∣∣
≤ C

(∥∥∥u
h

∥∥∥
L∞(R2)

+
∥∥∥v
h

∥∥∥
L∞(R2)

)∥∥∥∥u− vh
∥∥∥∥
L∞(R2)

(
H[h2](λ/2) +

h2

λ

)
(1.14)

Proof. To obtain bound (1.13), we use Lemma 1.4.7 to calculate

∣∣((∇∇⊥[(1− aλ)Kj]) ∗· (u⊗ u)
)
(x)
∣∣ ≤ C

∫
Bλ/2(x)

1

|x− y|3
|u(y)|2 dy

≤ C
∥∥∥u
h

∥∥∥2

L∞(R2)

∫
Bλ/2(x)

h2(y)

|x− y|3
dy.

Then utilizing the subadditivity of h2, we have

∫
Bλ/2(x)

h2(y)

|x− y|3
dy ≤

∫
Bλ/2(x)

h2(x− y)

|x− y|3
dy + h2(x)

∫
Bλ/2(x)

1

|x− y|3
dy

≤ C

∫ ∞
λ/2

h2(s)

s2
ds+ Ch2(x)

∫ ∞
λ/2

1

s2
ds

= CH[h2](λ/2) + C
h2(x)

λ/2
,

from which (1.13) follows.
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To obtain bound (1.14), we first note that

|(u⊗ u− v ⊗ v)(y)| = |(u⊗ (u− v)− (u− v)⊗ v)(y)|

≤ |u(y)||(u− v)(y)|+ |(u− v)(y)||v(y)|

≤
(∥∥∥u

h

∥∥∥
L∞(R2)

+
∥∥∥v
h

∥∥∥
L∞(R2)

)∥∥∥∥u− vh
∥∥∥∥
L∞(R2)

h2(y),

so that

∣∣(∇∇⊥[(1−aλ)Kj]) ∗· (u⊗ u− v ⊗ v)
∣∣

≤ C

(∥∥∥u
h

∥∥∥
L∞(R2)

+
∥∥∥v
h

∥∥∥
L∞(R2)

)∥∥∥∥u− vh
∥∥∥∥
L∞(R2)

∫
Bλ/2(x)

h2(y)

|x− y|3
dy.

The bound on
∫
Bλ/2(x)

h2(y)|x− y|−3 dy above then yields (1.14). �

1.5. Locally Log-Lipschitz Velocity Fields

In [1], the authors obtain a bound on the modulus of continuity of a bounded

velocity field with bounded vorticity. The authors of [4] adapt the technique to

obtain a similar bound in the case when u ∈ Sh,1, where h is a pre-growth bound.

In Proposition 1.5.2, we tweak the argument to show that all u ∈ Sh,g are locally

log-Lipschitz for any pre-growth bounds h, g.

First, though, we establish a simple result that we will allow us to bound the

stream function of a velocity field.

Lemma 1.5.1. Let ψ : Rn → R be a smooth function with ψ(z) = 0 for some

fixed z ∈ R2. Set u = ∇⊥ψ. Then for any pre-growth bound h and any x ∈ R2,

|ψ(x)| ≤ |x− z|h(|x|+ |z|)
∥∥∥u
h

∥∥∥
L∞

.
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Proof. Let γ(α) = αx+ (1− α)z, with 0 ≤ α ≤ 1. Then

|ψ(x)| =
∣∣∣∣∫
γ

∇ψ · ds
∣∣∣∣

=

∣∣∣∣∫ 1

0

u⊥(αx+ (1− α)z) · (x− z)dα

∣∣∣∣
≤
∫ 1

0

∣∣∣∣ u(αx+ (1− α)z)

h(|αx+ (1− α)z|)

∣∣∣∣ |x− z|h(|αx+ (1− α)z|) dα

≤ |x− z|h(|x|+ |z|)
∥∥∥u
h

∥∥∥
L∞

. �

Proposition 1.5.2. Let h, g be pre-growth bounds and let u ∈ Sh,g. For all x, y ∈

R2 such that |y| ≤ C(1 + |x|) for some C > 0, we have

|u(x+ y)− u(x)| ≤ C‖u‖Sh,gg(x)h(x)µ

(
|y|
h(x)

)
,

where µ is as in (1.10).

Proof. Fix x ∈ R2 and choose a stream function ψ of u so that ψ(x) = 0. Define

u = ∇⊥(a2R(x− ·)ψ(·)) for arbitrary R > 0, and let ω = ∇× u. Then u(x+ y) =

u(x + y) whenever |y| ≤ R. Thus, for |y| ≤ R and p > 2, Morrey’s inequality

implies

|u(x+ y)− u(x)| = |u(x+ y)− u(x)| ≤ C ‖∇u‖Lp(R2) |y|
1− 2

p . (1.15)

Now note that since ω is compactly supported, u = K ∗ ω. Then applying the
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Calderon-Zygmund inequality to (1.15) yields

|u(x+ y)− u(y)| ≤ Cp‖ω‖Lp(R2)|y|1−
2
p

≤ Cp‖ω‖Lp(B2R(x))|y|1−
2
p

≤ C

∥∥∥∥ωg
∥∥∥∥
L∞(R2)

g(|x|+ 2R)pR2/p|y|1−
2
p

≤ C|y|
∥∥∥∥ωg
∥∥∥∥
L∞(R2)

g(|x|+ 2R)p|R−1y|−
2
p

for all p > 2.

It is easy to show the infimum of p|R−1y|−
2
p over all p occurs when p =

−2 log(|R−1y|), which satisfies p > 2 so long as |y| < R/e. Thus, as long as

R−1|y| < e−1, we have

|u(x+ y)− u(y)| ≤ −C|y|
∥∥∥∥ωg
∥∥∥∥
L∞

g(|x|+ 2R) log(|R−1y|).

We also observe that for |x− ξ| ≤ 2R we have

∣∣∣∣ω(ξ)

g(ξ)

∣∣∣∣ =

∣∣∣∣∆(a2R(x− ξ)ψ(ξ))

g(ξ)

∣∣∣∣
≤ |∆a2R(x− ξ)||ψ(ξ)|+ 2|∇a2R(x− ξ)||∇ψ(ξ)|+ |a2R(x− ξ)||∆ψ(ξ)|

g(ξ)

≤
CR−2|x− ξ|h(|x|+ |ξ|)

∥∥u
h

∥∥
L∞

+ CR−1h(ξ)
∥∥u
h

∥∥
L∞

+ |ω(ξ)|
g(ξ)

≤
CR−1h(2|x|+ 2R)

∥∥u
h

∥∥
L∞

+ CR−1h(|x|+ 2R)
∥∥u
h

∥∥
L∞

+ |ω(ξ)|
g(ξ)

≤ CR−1h(2|x|+ 2R)
∥∥∥u
h

∥∥∥
L∞

+

∥∥∥∥ωg
∥∥∥∥
L∞

,

where we used Lemma 1.5.1 to bound |ψ(ξ)|. So

|u(x+ y)− u(y)|

≤ −C|y|
(
CR−1h(2|x|+ 2R)

∥∥∥u
h

∥∥∥
L∞

+

∥∥∥∥ωg
∥∥∥∥
L∞

)
g(|x|+ 2R) log(|R−1y|).
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Now choose R = h(x). We note that for any pre-growth bound ζ and any

constants a, b ≥ 1, we have

ζ(a|x|+ bh(x)) ≤ ζ(a|x|+ b(c|x|+ d))

= ζ((a+ bc)|x|+ bd)

≤ Cζ(x) + ζ(bd)

≤ Cζ(x).

Thus, as long as |y| < e−1h(x),

|u(x+ y)− u(y)| ≤ C‖u‖Sh,gg(x)h(x)µ

(
|y|
h(x)

)
,

which establishes the bound for this case.

Now assume e−1h(x) ≤ |y| ≤ C(1 + |x|). Observe that this bound on |y| implies

both that µ(|y|/h(x)) = e−1 and that h(x+ y) ≤ Ch(x). Then

|u(x+ y)− u(x)| ≤ |u(x+ y)|
h(x+ y)

h(x+ y) +
|u(x)|
h(x)

h(x)

≤
∥∥∥u
h

∥∥∥
L∞

(h(x+ y) + h(x))

≤ C
∥∥∥u
h

∥∥∥
L∞

h(x)

≤ C
∥∥∥u
h

∥∥∥
L∞

h(x)µ

(
|y|
h(x)

)
,

Since this bound when |y| ≥ e−1h(x) is stronger than the bound desired, the proof

is complete. �

1.6. Flow Map Bounds and Properties

The following lemma represents a slight adjustment to lemma 4.2 in [4] to allow

for simpler notation.
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Lemma 1.6.1. Let g, h be pre-growth bound and let u1, u2 ∈ L∞([0, T ], Sh,g) with

associated flow maps X1, X2. Set Mj = ‖uj‖L∞([0,T ],Sh,g). Then assuming for

concreteness that M1 ≤M2, we have for each x ∈ R2 and t ∈ [0, T ],

|Xj(t, x)− x|
h(x)

≤Mjte
Mjt, j = 1, 2, (1.16)

|X1(t, x)−X2(t, x)|
h(x)

≤ CM2te
M2t, (1.17)

|X−tj (x)− x|
h(x)

≤ CMjte
Mjt, j = 1, 2, (1.18)

|X−t1 (x)−X−t2 (x)|
h(x)

≤ CM2te
M2t, (1.19)

where C is independent of n.

Proof. We use the observation that |uj(x)| ≤ Mjh(x) together with (1.7) to cal-

culate

|Xj(t, x)− x| ≤
∫ t

0

|uj(s,Xj(s, x))| ds

≤Mj

∫ t

0

|h(Xj(s, x))| ds

≤Mje
Mjt

∫ t

0

|h(x)| ds

≤Mjte
Mjth(x),

which proves (1.16).

Then observing that

|X1(t, x)−X2(t, x)| ≤ |X1(t, x)− x|+ |X2(t, x)− x|

immedately yields (1.17).

To prove (1.18) and (1.19), observe x = Xj(t,X
−t
j (x)), then proceed to bound

|X−tj (x)− x| as above. �
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The following result is analogous to lemma 8.2 in [12]; the arguments are similar,

though adjustments had to be made to account for the particulars of our problem.

Lemma 1.6.2. Let u ∈ L∞([0, T ];Sh,g) with associated flow map X, where T > 0

and h, g are pre-growth bounds. Then for any x1, x2 ∈ R2, there is a non-negative

function β(x), dependent on ‖u‖L∞([0,T ];Sh,g) and T and which increases as |x|

increases, so that whenever |x1 − x2| < e− exp(β(x1)), we have

|X(t, x1)−X(t, x2)| ≤ |x1 − x2|exp(−β(x1)), (1.20)

|X−t(x1)−X−t(x2)| ≤ |x1 − x2|exp(−β(x1)), (1.21)

for all t ∈ [0, T ].

Similarly, for each t1, t2 ∈ [0, T ], there exists a constant C dependent only on

‖u‖L∞([0,T ];Sh,g), so that, given any x ∈ R2, we have

|X(t1, x)−X(t2, x)| ≤ (Ch(x)|t1 − t2|)exp(−β(x)) , (1.22)

|X−t1(x)−X−t2(x)| ≤ (Ch(x)|t1 − t2|)exp(−β(x)) (1.23)

whenever |t1 − t2| < (Ch(x))−1e− exp(β(x1)).

Proof. We prove only estimates (1.21) and (1.23) for the inverse flow maps. Es-

timates (1.20) and (1.22) for the flow maps in the forward direction are proved

similarly.

We begin by proving (1.21). Start by setting

Yt(τ, x) = X(t− τ,X−t(x)),
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where τ ∈ [0, t]. Note Yt(0, x) = x and Yt(t, x) = X−t(x). Also observe that

d

dτ
Yt(τ, x) =

d

dτ
X(t− τ,X−t(x))

= −u(t− τ,X(t− τ,X−t(x)))

= −u(t− τ, Yt(τ, x)),

so that

Yt(τ, x) = x−
∫ τ

0

u(t− s, Yt(s, x)) ds.

Then setting ρ(τ) = |Yt(τ, x1)− Yt(τ, x2)|, we have

ρ(τ) ≤ |x1 − x2|+
∫ τ

0

|u(t− s, Yt(s, x1))− u(t− s, Yt(s, x2))| ds.

But by Proposition 1.5.2, we have

|u(t− s, Yt(s, x1))− u(t− s, Yt(s, x2))|

≤ C‖u‖L∞([0,T ];Sh,g)g(Yt(s, x1))h(Yt(s, x1))µ

(
ρ(s)

h(Yt(s, x1))

)
≤ C‖u‖L∞([0,T ];Sh,g)g(Yt(s, x1))h(Yt(s, x1))µ

(
ρ(s)

h(0)

)
≤ C‖u‖L∞([0,T ];Sh,g)g(Yt(s, x1))h(Yt(s, x1))µ(ρ(s)),

where we used Lemma 1.3.2 in the last inequality. Thus, by (1.7),

ρ(τ) ≤ ρ(0) + C(‖u‖L∞([0,T ];Sh))g(x1)h(x1)

∫ τ

0

µ (ρ(s)) ds.

Now we apply Osgood’s lemma to the inequality. (A statement and short proof
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of Osgood’s lemma can be found, for example, in [10].) Doing so,we obtain

∫ ρ(τ)

ρ(0)

ds

µ(s)
≤ C(‖u(s)‖L∞([0,T ];Sh))g(x1)h(x1)τ

≤ C(‖u(s)‖L∞([0,T ];Sh))g(x1)h(x1)T

=: β(x1).

(1.24)

Recall that µ(r) = −r log r when r < e−1 and observe that

∫ e−1

α

ds

−s log(s)
> β(x1)

whenever 0 ≤ α < e− exp(β(x1)). Therefore, as long as ρ(0) < e− exp(β(x1)), it follows

that ρ(τ) < e−1, in which case

∫ ρ(τ)

ρ(0)

ds

µ(s)
=

∫ ρ(τ)

ρ(0)

ds

−s log s

= − log | log s|

∣∣∣∣∣
ρ(τ)

ρ(0)

.

Substituting this into (1.24) and solving for ρ(τ), we calculate

log

∣∣∣∣ log ρ(0)

log ρ(τ)

∣∣∣∣ ≤ β(x1),

log

∣∣∣∣ log ρ(τ)

log ρ(0)

∣∣∣∣ ≥ −β(x1),

log ρ(τ)

log ρ(0)
≥ e−β(x1),

log ρ(τ) ≤ e−β(x1) log ρ(0).

Thus, we obtain

ρ(τ) ≤ ρ(0)exp(−β(x1))

for all τ ∈ [0, t]. Setting τ = t yields (1.21).
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Next, we prove (1.23). By (1.21) we have

|X−t2(x)−X−t1(x)| = |X−t1(X(t1, X
−t2(x)))−X−t1(x)|

≤ |X(t1, X
−t2(x))− x|exp(−β(x))

provided that |X(t1, X
−t2(x))− x| < e− exp(β(x)). But

|X(t1, X
−t2(x))− x| = |X(t1, X

−t2(x))−X(t2, X
−t2(x))|

=

∣∣∣∣∫ t2

t1

u(s,X(s,X−t2(x))) ds

∣∣∣∣
≤ ‖u‖L∞([0,T ];Sh,g)

∣∣∣∣∫ t2

t1

h(X(s,X−t2(x))) ds

∣∣∣∣
≤ Ch(x)|t1 − t2|,

where we once again used inequality (1.7), and where constant C depends only on

‖u‖L∞([0,T ];Sh,g). But this implies that

|X−t2(x)−X−t1(x)| ≤ (Ch(x)|t1 − t2|)exp(−β(x))

so long as |t1 − t2| ≤ (Ch(x))−1e− exp(β(x)), as desired. �

Lemma 1.6.3. Let u1, u2 ∈ L∞([0, T ], Sh,g) with associated flow maps X1, X2,

where h, g are pre-growth bounds and T > 0. Fix x ∈ R2 and t ∈ [0, T ]. Let

V (t) = U1(t) ∪ U2(t), where Uj(t) = {y : |X1(t, x)−Xj(t, y)| < h(x)}. Then

‖X1(t, y)−X2(t, y)‖L∞y (V (t)) ≤ Ch(x)

∥∥∥∥X1(t, y)−X2(t, y)

h(y)

∥∥∥∥
L∞y (R2)

,

where C depends on T , ‖u1‖L∞([0,T ],Sh,g), and ‖u2‖L∞([0,T ],Sh,g).
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Proof. We first note that

‖X1(t, y)−X2(t, y)‖L∞y (V (t)) =

∥∥∥∥X1(t, y)−X2(t, y)

h(y)
h(y)

∥∥∥∥
L∞y (V (t))

≤
∥∥∥∥X1(t, y)−X2(t, y)

h(y)

∥∥∥∥
L∞y (R2)

‖h‖L∞(V (t))

≤
∥∥∥∥X1(y)−X2(y)

h(y)

∥∥∥∥
L∞y (R2)

2∑
j=1

‖h‖L∞(Uj(t)).

But note that |Xj(t, y)| ≤ h(x)+|X1(t, x)| for all y ∈ Uj. Thus, by (1.7) and (1.16)

and Lemmas 1.3.1, 1.3.2 and 1.3.4, for all y ∈ Uj,

h(y) ≤ Ch(Xj(t, y))

≤ Ch(h(x) + |X1(t, x)|)

≤ Ch(h(x) + |x|+ Ch(x))

≤ Ch(x),

which completes the proof. �

Proposition 1.6.4. Let h be a well-posedness growth bound and let u be a time-

dependent vector field with associated flow map X. Then for any x, y ∈ R2,

|x−X−t(y)| ≤ |x− y|+ Ch(y)

(
1 +

∫ t

0

∥∥∥∥u(s)

h

∥∥∥∥
L∞(R2)

ds

)2

.
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Proof. Using (1.9), we calculate

|x−X−t(y)| ≤ |x− y|+ |y −X−t(y)|

= |x− y|+ |X(t,X−t(y))−X−t(y)|

≤ |x− y|+
∫ t

0

|u(s,X(s,X−t(y)))| dy

≤ |x− y|+
∫ t

0

∥∥∥∥u(s)

h

∥∥∥∥
L∞(R2)

h(X(s,X−t(y))) dy

≤ |x− y|+
∫ t

0

∥∥∥∥u(s)

h

∥∥∥∥
L∞(R2)

(
h(y) + C

∫ t

s

∥∥∥∥u(σ)

h

∥∥∥∥
L∞(R2)

dσ

)
ds

≤ |x− y|+ Ch(y)

∫ t

0

∥∥∥∥u(s)

h

∥∥∥∥
L∞(R2)

ds+

(∫ t

0

∥∥∥∥u(s)

h

∥∥∥∥
L∞(R2)

ds

)2


≤ |x− y|+ Ch(y)

(
1 +

∫ t

0

∥∥∥∥u(s)

h

∥∥∥∥
L∞(R2)

ds

)2

. �
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2. Existence

Our proof for existence follows the same general outline as the existence proofs

in [1] and [4], while bringing in elements of [12]:

Construct a Sequence of Approximating Solutions. Given satisfactory

initial data, we construct a sequence of smooth, compactly supported functions

which approximates the initial data and for which a classical solution to the Euler

equations may be obtained. Our goal is to show that the resulting sequence of

solutions to the approximate initial data converges in some sense to a solution

satisfying the original initial data.

Obtain a Uniform Bound on the Sequence of Solutions. Once we con-

struct a sequence of approximating solutions, we will show the sequence is bounded

uniformly in an appropriate sense. As we shall see, this bound is essential to show-

ing convergence of our sequence. This step is also the one in which [1], [4], [12],

and our approach here differ most significantly from one another. It is this step

that is primarily responsible for the conditions we are required to impose on initial

data to guarantee the existence of a solution.

Show a Subsequence of Flow Maps Converges. We find a subsequence of

approximating flow maps that converges locally uniformly. We take the limit as

the flow map of our candidate solution and show it is measure-preserving.
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Show the Sequence of Vorticities Converges We use the limit flow map

to define a candidate vorticity function by transporting the initial vorticity with

the flow. We then show that a subsequence of approximating vorticities in fact

converges to this candidate vorticity in an appropriate sense.

Show the Sequence of Velocities Converges. We use Serfati’s identity to

show that a subsequence of approximating velocities is Cauchy in an appropriate

Banach space. We take the limit of this subsequence as the velocity field of our

candidate solution.

Prove the Limit is a Solution. Once we have obtained a candidate solution,

we confirm that it actually is a solution to the Euler equations in the sense of

Definition 1.2.4: we show the limit velocity is in L∞([0, T ];Sh,g) (where h, g are

suitable pre-growth bounds), that the limit flow map actually is the flow map of

the limit velocity, and that the candidate solution satisfies Serfati’s identity.

2.1. Constructing an Approximating Sequence

Definition 2.1.1 (Sequence of Approximating Initial Data). Let u0 ∈ Sh,g, where

h, g are pre-growth bounds. Let ψ0 be the stream function associated with u0 so

that ψ0(0) = 0, and let ω0 = ∇× u0 = ∆ψ0. Set

ψ0
n = an(ψ0 ∗ νn),

u0
n = ∇⊥ψ0

n,

ω0
n = ∆ψ0

n = ∇× u0
n,

(2.1)

where

νn(x) := n2ν(nx)

for some mollifier ν.
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We say (u0
n) is the sequence of approximating initial data generated by u0.

Lemma 2.1.2. Let ψ : R2 → R such that ψ(0) = 0. Let u = ∇⊥ψ and ω = ∆ψ =

∇× u. Let h, g be pre-growth bounds. Then for |x| ≤ n,

|(ψ ∗ νn)(x)| ≤ C
∥∥∥u
h

∥∥∥
L∞(R2)

nh(x), (2.2)

|(u ∗ νn)(x)| ≤ C
∥∥∥u
h

∥∥∥
L∞(R2)

h(x), (2.3)

|(ω ∗ νn)(x)| ≤ C

∥∥∥∥ωg
∥∥∥∥
L∞(R2)

g(x), (2.4)

where C is independent of x, n.

Proof. For |x| ≤ n, we use the fact that ν has support within some ball BR(0) to

calculate

|u ∗ νn(x)| ≤
∥∥∥u
h

∥∥∥
L∞(R2)

∫
R2

h(x− y)νn(y) dy

≤
∥∥∥u
h

∥∥∥
L∞(R2)

h(|x|+R/n)‖νn‖L1(R2)

≤
∥∥∥u
h

∥∥∥
L∞(R2)

(h(x) + h(R))

≤
∥∥∥u
h

∥∥∥
L∞(R2)

(h(x) + Ch(0))

≤
∥∥∥u
h

∥∥∥
L∞(R2)

(h(x) + Ch(x))

≤ C
∥∥∥u
h

∥∥∥
L∞(R2)

h(x).

We calculate (2.4) analogously.

And by Lemma 1.5.1, we have for |x| ≤ n,

|ψ0 ∗ νn(x)| ≤
∥∥∥u0

h

∥∥∥
L∞(R2)

∫
R2

|x− y|h(x− y)νn(y) dy

≤
∥∥∥u0

h

∥∥∥
L∞(R2)

(|x|+R/n)h(|x|+R/n)‖νn‖L1(R2)

≤ C
∥∥∥u0

h

∥∥∥
L∞(R2)

nh(x). �
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Proposition 2.1.3. Let u0 ∈ Sh,g, where h, g are pre-growth bounds. Let (u0
n) be

the sequence of approximating initial data generated by u0. Then for each n,

‖u0
n‖Sh,g ≤ C,

where C depends only on ‖u0‖Sh,g .

Proof. Observing that u0
n is supported in Bn(0), we calculate

∥∥∥∥u0
n

h

∥∥∥∥
L∞(R2)

=

∥∥∥∥u0
n

h

∥∥∥∥
L∞(Bn(0))

=

∥∥∥∥∇⊥an(ψ0 ∗ νn) + an(u0 ∗ νn)

h

∥∥∥∥
L∞(Bn(0))

≤ C

∥∥∥∥ψ0 ∗ νn
nh

∥∥∥∥
L∞(Bn(0))

+
∥∥∥u0 ∗ νn

h

∥∥∥
L∞(Bn(0))

.

Thus, by (2.2) and (2.3),

∥∥∥∥u0
n

h

∥∥∥∥
L∞(R2)

≤ C
∥∥∥u0

h

∥∥∥
L∞(R2)

.

Similarly,

∥∥∥∥ω0
n

g

∥∥∥∥
L∞(R2)

=

∥∥∥∥ω0
n

g

∥∥∥∥
L∞(Bn(0))

=

∥∥∥∥∆an(ψ0 ∗ νn) + 2∇⊥an · (u0 ∗ νn) + an(ω0 ∗ νn)

g

∥∥∥∥
L∞(Bn(0))

≤ C

∥∥∥∥ψ0 ∗ νn
n2g

∥∥∥∥
L∞(Bn(0))

+ C

∥∥∥∥u0 ∗ νn
ng

∥∥∥∥
L∞(Bn(0)

+

∥∥∥∥ω0 ∗ νn
g

∥∥∥∥
L∞(Bn(0))

.

So Lemmas 1.3.3 and 2.1.2 yield

∥∥∥∥ω0
n

g

∥∥∥∥
L∞(R2)

≤ C‖u0‖Sh,g . �
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Definition 2.1.4 (Approximating Sequence). Let u0 ∈ Sh,g, where h, g are pre-

growth bounds, and let (u0
n) be the sequence of approximating initial data gen-

erated by u0. Given any smooth, compactly supported initial velocity, it is well-

known that there exists a unique classical solution to the Euler equations; see, for

example, [14]. In particular, observe that, for each n, there exists a solution un to

the Euler equations with initial data u0
n. We call (un) the approximating sequence

generated by u0.

2.2. Obtaining a Uniform Bound on the

Approximating Sequence

To prove convergence, we need to establish a uniform bound for the approximating

sequence generated by given initial data. The following lemma from [4] will prove

essential to establishing a uniform bound on the approximating sequence.

Lemma 2.2.1. Assume Λ : [0,∞)→ [0,∞) satisfies

Λ(t) ≤ Λ0 + η

(∫ t

0

Λ(s) ds

)

for some Λ0 ≥ 0, where η : [0,∞)→ [0,∞) is a continuous, non-decreasing convex

function with η(0) = 0, and C(t) ≥ 0. Then for all t ∈ [0, 1],

∫ Λ(t)

Λ0

ds

η(s)
≤ t, (2.5)

and for a fixed T > 1, we have

∫ Λ(t)

Λ0

ds

η(Ts)
≤ t

T
(2.6)

for all t ∈ [0, T ].
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Proof. Utilizing the convexity of η, we can apply Jensen’s inequality to obtain

Λ(t) ≤ Λ0 + η

(
1

t

∫ t

0

tΛ(s) ds

)
≤ Λ0 +

1

t

∫ t

0

η(tΛ(s)) ds.

Observe for any a ∈ [0, 1] and r ≥ 0,

η(ar) = η(ar + (1− a)0) ≤ aη(r) + (1− a)η(0) = aη(r).

Then for all t ∈ [0, 1] we have

Λ(t) ≤ Λ0 +

∫ t

0

η(Λ(s)) ds.

We immediately obtain (2.5) by applying Osgood’s Lemma (see Lemma A.1.1).

Now for T > 1, we have for all t ≤ T

η(tΛ(s)) = η

(
t

T
TΛ(s)

)
≤ t

T
η(TΛ(s)).

Then

Λ(t) ≤ Λ0 +
t

T

∫ t

0

η(TΛ(s)) ds.

Applying Osgood’s Lemma here yields (2.6). �

We are now prepared to establish a uniform bound on the approximating se-

quence.

Proposition 2.2.2. Let u0 ∈ Sh,g for some well-posedness growth bound h and

pre-growth bound g. Let (un) be the approximating sequence of velocities gen-

erated by u0, with corresponding vorticities (ωn). If there exists a continuous,

non-decreasing convex function η0 : [0,∞)→ [0,∞) with η0(0) = 0 such that

1

h(x)
|Kh(x)| ∗ |ωn(t)− ω0

n|(x) ≤ C +

√√√√η0

(∫ t

0

∥∥∥∥un(s)

h

∥∥∥∥2

L∞(R2)

ds

)
(2.7)
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for all n, x ∈ R2, and t ≥ 0 sufficiently small, then there exists a T > 0 so that

the sequence (un) is bounded uniformly in L∞([0, T ], Sh,g).

Proof. It is shown in [1] that Serfati’s identity holds for a classical weak solution

to the Euler equations with compactly supported initial data. Then dividing

Serfati’s identity by h(x), each solution in our approximating sequence satisfies

the inequality

∣∣∣∣un(t, x)

h(x)

∣∣∣∣ ≤ ∣∣∣∣u0
n(x)

h(x)

∣∣∣∣+
1

h(x)
|(aλK) ∗ (ωn(t)− ω0

n)(x)|

+
1

h(x)

∫ t

0

∣∣(∇∇⊥[(1− aλ)K]
)
∗· (un ⊗ un)(s, x)

∣∣ ds.
Recall that by Lemma 1.4.8, we have the bound

1

h(x)

∣∣(∇∇⊥[(1− aλ)K]
)
∗· (un ⊗ un)(s, x)

∣∣
≤ C

∥∥∥∥un(s)

h

∥∥∥∥2

L∞

[
H(λ/2)

h(x)
+ C

h(x)

λ

]
, (2.8)

where H = H[h2]. We desire (2.8) to be a uniform bound over x; therefore, we

must choose λ(x) so that h(x) = O(λ(x)) to control the term. But we wish to

similarly bound

1

h(x)

∣∣(aλK) ∗ (ωn(t)− ω0
n)(x)

∣∣ ≤ 1

h(x)
|Kλ| ∗ |ωn(t)− ω0

n|(x),

where control of the term tends to improve with smaller order λ. As such, we

choose λ(x) = h(x) in an attempt to satisfactorily control both terms.
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Thus, using assumption (2.7), we have for each n,

∣∣∣∣un(t, x)

h(x)

∣∣∣∣ ≤ ∣∣∣∣u0
n(x)

h(x)

∣∣∣∣+ C +

√√√√η0

(∫ t

0

∥∥∥∥un(s)

h

∥∥∥∥2

L∞(R2)

ds

)

+ C

[
1 +

H(h(x)/2)

h(x)

] ∫ t

0

∥∥∥∥un(s)

h

∥∥∥∥2

L∞(R2)

ds.

But by Proposition 2.1.3, we can bound ‖u0
n‖Sh,g independent of n. And since H

is a decreasing function and h is a well-posedness growth bound,

H(h(x)/2) ≤ H(h(0)/2) <∞.

Therefore

∣∣∣∣un(t, x)

h(x)

∣∣∣∣ ≤ C +

(√
η0

(∫ t

0

Λn(s) ds

)
+ C

∫ t

0

Λn(s) ds

)
,

where

Λ(s) =

∥∥∥∥u0
n(s)

h

∥∥∥∥2

L∞(R2)

.

Taking the supremum over x and squaring both sides of the inequality yields

Λn(t) ≤ C +

(√
η0

(∫ t

0

Λn(s) ds

)
+ C

∫ t

0

Λn(s) ds

)2

, (2.9)

Then applying Lemma 2.2.1 and (2.9) with η(r) = (
√
η0(r) + Cr)2 immediately

gives us a uniform bound on Λn for at least finite time. To see why this is so for

T < 1, set

D =

∫ ∞
C

ds

η(s)
.

Choose T ∈ (0, 1) so that T < D and (2.7) holds for all t ≤ T . Note that there

exists some M <∞ so that ∫ M

C

ds

η(s)
= T.
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Then since ∫ Λn(t)

C

ds

η(s)
≤ t ≤ T,

it follows that Λn(t) ≤M for all t ∈ [0, T ] and every n.

Similar reasoning can be used to obtain a uniform bound on Λn(t) in [0, T ] when

T ≥ 1, provided D is sufficiently large.

And now we can deduce from (1.7) that

|ωn(t, x)| = |ω0
n(X−tn (x))|

≤ Cg(X−tn (x))

≤ Cg(x) exp

(
C

∫ t

0

∥∥∥∥un(s)

h

∥∥∥∥
L∞(R2)

ds

)

≤ Cg(x) exp

(
CT

∥∥∥un
h

∥∥∥
L∞([0,T ]×R2)

)
.

Then, by the just-derived uniform bound over n on ‖un/h‖L∞([0,T ]×R2), we see that

‖ωn/g‖L∞([0,T ]×R2) is also uniformly bounded over n.

Thus, (un) is bounded uniformly on L∞([0, T ];Sh,g) for any sufficiently small

T > 0. �

2.3. Proof of Existence

Theorem 2.3.1. Let h be a well-posedness growth bound, let g be a pre-growth

bound, and let u0 ∈ Sh,g. If the approximating sequence generated by u0 is uni-

formly bounded in L∞([0, T ];Sh,g) for some T > 0, then there exists a solution to

the Euler equations (in the sense of Definition 1.2.4) with initial data u0 in Sh,g

on [0, T ].

In particular, note that if the conditions of Proposition 2.2.2 are satisfied for

some initial data u0 ∈ Sh,g, then Theorem 2.3.1 implies that there exists a short-

time solution to the Euler equations with initial data u0. Indeed, the proofs of
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Theorems 1.2.8 and 1.2.9 use this framework to prove short-time existence of

solution given satisfactory initial conditions by demonstrating Proposition 2.2.2

holds for such initial data.

Proof.

Convergence of Flow Maps Let (X−tn ) be the approximating sequence of

inverse flow maps generated by u0. We first note that, by Lemma 1.6.2, there exists

some positive function β(x) which increases with |x| so that for all x1, x2 ∈ R2

and t1, t2 ∈ [0, T ] with |x1 − x2|, |t1 − t2| sufficiently small, we have

|X−t1n (x1)−X−t2n (x2)| ≤ |X−t1n (x1)−X−t2n (x1)|+ |X−t2n (x1)−X−t2n (x2)|

≤ (Ch(x1)|t1 − t2|)exp(−β(x1)) + |x1 − x2|exp(−β(x1))

for each n, where C is independent of n. Thus, the family (X−tn ) is uniformly

equicontinuous on [0, T ] × BR(0) for any R > 0. But by (1.18), (X−tn ) is also

uniformly bounded on [0, T ]×BR(0) for any R > 0.

Then by the Arzelá-Ascoli theorem, on any compact subset of [0, T ]×R2 there is

a uniformly convergent subsequence of (X−tn ). In particular, there is a subsequence

(X−tn1
) of (X−tn ) that converges uniformly on [0, T ]×B1(0). But applying the Arzelá-

Ascoli theorem a second time, we find a subsequence (X−tn2
) of (X−tn1

) that converges

uniformly on [0, T ] × B2(0). Continuing this process, we obtain by induction an

infinite family of sequences

(X−tn ) ⊇ (X−tn1
) ⊇ (X−tn2

) ⊇ · · ·

such that (X−tnj ) converges uniformly on [0, T ]×Bj(0) for each j.

Using a diagonalization argument, we construct a new sequence (X−tk ) by taking

the first term of (X−tn1
), the second term of (X−tn2

), and so on. Then by construction,
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(X−tk ) is a subsequence of (X−tn ) that converges uniformly on all compact subsets

of [0, T ]× R2; say X−t = limX−tk .

We wish to show that X−t is measure-preserving. To do so, let f ∈ Cc(R2)

and choose R > 0 so that supp f ⊆ BR(0). Observe that for every x, k such that

|X−tk (x)| < R, bound (1.16) implies that

|x| = |Xk(t,X
−t
k (x))| ≤ |X−tk (x)|+ C(T )h(X−tk (x)) ≤ R + C(T )h(R) =: R′.

Thus, supp f(X−tk (·)) ⊆ BR′(0). But then defining F : R2 → R as

F (x) =

 sup |f |, |x| ≤ R′

0, otherwise
,

we have |f(X−tk (·))| ≤ F for every k. So we can apply the Lebesgue dominated

convergence theorem together with the fact that X−tk is measure preserving for

every k to conclude that

∫
R2

f(X−t(x)) dx = lim

∫
R2

f(X−tk (x)) dx =

∫
R2

f(x) dx. (2.10)

But since Cc(R2) is dense in L1(R2), identity (2.10) holds for all f ∈ L1(R2).

Now let A ⊂⊂ R2 be a Borel set, let 1A be the the corresponding characteristic

function, and let m be Lebesgue measure. Noting that 1A ∈ L1(R2), we observe

m(A) =

∫
A

dx =

∫
1A(x) dx =

∫
1A(X−t(x)) dx =

∫
X(t,A)

dx = m(X(t, A)),

so that X−t is a measure preserving transformation.

Convergence of Vorticities Let (ωk) be the subsequence of the approximating

sequence of vorticities (ωn) corresponding to (X−tk ). Set ω(t, ·) = ω0(X−t). Choose
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a compact L ⊂ R2 and an ε > 0. Observe

‖ωk(t)− ω(t)‖Lp(L) = ‖ω0
k(X

−t
k )− ω0(X−t)‖Lp(L)

≤ ‖ω0
k(X

−t
k )− ω0(X−tk )‖Lp(L) + ‖ω0(X−tk )− ω0(X−t)‖Lp(L)

≤ ‖ω0
k − ω0‖Lp(X−tk (L)) + ‖ω0(X−tk )− ω0(X−t)‖Lp(L)

≤ ‖ω0
k − ω0‖Lp(Bα(0)) + ‖ω0(X−tk )− ω0(X−t)‖Lp(L),

where α is chosen so that X−tk (L) ⊂ Bα(0) for all k and all t ∈ [0, T ], a fact

guaranteed by (1.18). But

‖ω0
k − ω0‖Lp(Bα(0)) ≤ ‖∆ak(ψ0 ∗ νk)‖Lp(Bα(0))

+ 2‖∇⊥ak · (u0 ∗ νk)‖Lp(Bα(0)) + ‖ak(ω0 ∗ νk)− ω0‖Lp(Bα(0)).

And since supp |∆ak| = supp |∇ak| = {x : 1
2
k ≤ |x| ≤ k}, it follows that

Bα(0) ∩ supp |∆ak| = Bα(0) ∩ supp |∇ak| = ∅

for all sufficiently large k, meaning

‖∆ak(ψ0 ∗ νk)‖Lp(Bα(0)) + 2‖∇⊥ak · (u0 ∗ νk)‖Lp(Bα(0)) → 0

as k → ∞. And it is well known that ak(ω0 ∗ νk) → ω0 in Lploc; for example, see

theorem C.7 in [8]. Then ‖ωk0 − ω0‖Lp(Bα(0)) < ε for sufficiently large k.

In fact, choose a particularm so large that we in fact do have ‖ω0
m−ω0‖Lp(Bα(0)) <
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ε. Then

‖ω0(X−tk )− ω0(X−t)‖Lp(L)

≤ ‖ω0(X−tk )− ω0
m(X−tk )‖Lp(L) + ‖ω0

m(X−tk )− ω0
m(X−t)‖Lp(L)

+ ‖ω0
m(X−t)− ω0(X−t)‖Lp(L)

≤ ‖ω0 − ω0
m‖Lp(Bα(0)) + ‖ω0

m(X−tn )− ω0
m(X−t)‖Lp(L) + ‖ω0

m − ω0‖Lp(Bα(0))

≤ 2ε+ ‖ω0
m(X−tk )− ω0

m(X−t)‖Lp(L).

To bound ‖ω0
m(X−tk )− ω0

m(X−t)‖Lp(L), we first note that because ω0
m is contin-

uous and X−tk → X−t locally uniformly, we have ω0
m(X−tk ) → ω0

m(X−t) pointwise

as k →∞. And for each k and each x ∈ L,

|ω0
m(X−tk (x))− ω0

m(X−t(x))|p ≤ (2‖ω0
m‖L∞(Bα(0)))

p.

But 2‖ω0
m‖L∞(Bα(0))1L(x) ∈ L1(L). Hence, Lebesgue dominated convergence im-

plies that ω0
m(X−tk )→ ω0

m(X−t) in Lp(L) as k →∞

Combining the above results, we see that ωk → ω in Lp(L). Since L was an

arbitrary compact set, and since all the bounds we obtained were independent of

t ∈ [0, T ], we have that ωk → ω in L∞([0, T ];Lploc(R2)).

Convergence of Velocities Let (uk) be the subsequence of the approximating

sequence of velocities (un) corresponding to (X−tk ). Again take L as an arbitrary

compact subset of R2. Our goal is to show (uk) is Cauchy in L∞([0, T ]×L). First

observe that Serfati’s identity implies that

|ui(t, x)− uj(t, x)| ≤ |u0
i (x)− u0

j(x)|+ I1 + I2 + I3
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for any ui, uj ∈ (uk), where

I1 = |(aλK) ∗ (ωi(t)− ωj(t))|,

I2 = |(aλK) ∗ (ω0
i − ω0

j )|,

I3 =

∣∣∣∣∫ t

0

(∇∇⊥[(1− aλ)K] ∗· (ui ⊗ ui − uj ⊗ uj)(s) ds
∣∣∣∣ .

Now choose ε > 0. By construction, u0
k → u0 locally uniformly. Thus, there

exists an N > 0 so that ‖u0
i − u0

j‖L∞(L) ≤ ε for all i, j ≥ N .

To bound I1 for x ∈ L, set p = 3/2 and q = 3. (Actually, any conjugate

exponents p, q such that p ∈ (1, 2) will work; we merely choose p = 3/2 to be

concrete.) Set Lλ = L + Bλ(0) for some fixed λ to be determined later. Then by

Lemma 1.4.3 and Hölder’s inequality,

I1 ≤ C|Lλ|
1
6‖ωi(t)− ωj(t)‖L3(Lλ).

Similarly,

I2 ≤ C|Lλ|
1
6‖ω0

i − ω0
j‖L3(Lλ).

But for all i, j sufficiently large

‖ωi − ωj‖L∞([0,T ];L3(Lλ)) <
ε

|Lλ|
1
6

,

in which case

I1, I2 ≤ Cε.

And by Lemma 1.4.8,

I3(t, x) ≤ C(t)

(
H[h2](λ/2) +

h2(x)

λ

)
.
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Since H[h2](r)→ 0 as r →∞, we can find a δ with 0 < δ < ε so that

H[h2]

(
h2(x)

2δ

)
< ε.

Then setting λ = h2(x)/δ, we obtain the bound I3 ≤ C(T )ε.

Thus, for N sufficiently large,

‖ui − uj‖L∞([0,T ]×L) ≤ C(T )ε

whenever i, j ≥ N . Then since L was arbitrary, uk converges to some function u

in L∞loc([0, T ]× R2).

Convergence to a Solution First, we demonstrate that u ∈ L∞([0, T ];Sh,g).

First note that for any (t, x) ∈ [0, T ]×L, where L ⊂⊂ R2 is arbitrary, we have by

Proposition 1.5.2 that

|uk(t,Xk(t, x))− u(t,X(t, x))|

≤ |uk(t,Xk(t, x))− uk(t,X(t, x))|+ |uk(t,X(t, x))− u(t,X(t, x))|

≤ C(L)µ(C|Xk(t, x)−X(t, x)|) + ‖uk − u‖L∞([0,T ]×L)

≤ C(L)µ(C‖Xk −X‖L∞([0,T ]×L)) + ‖uk − u‖L∞([0,T ]×L),

implying uk(t,Xk(t, x))→ u(t,X(t, x)) locally uniformly.

But then since Xk(t, x)→ X(t, x) in L∞loc([0, T ]× R2), it follows that

0 = lim
k→∞

[
(Xk(t, x)− x)−

∫ t

0

uk(s,Xk(s, x)) ds

]
= (X(t, x)− x)−

∫ t

0

u(s,X(s, x)) ds,

so that X is a flow map of u. Specifically, note that this means that Corollary 1.3.9

holds for u,X.
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Therefore, for any (t, x) ∈ [0, T ]× R2,

∣∣∣∣ω(t, x)

g(x)

∣∣∣∣ ≤ ∣∣∣∣ω0(X−t(x))

g(x)

∣∣∣∣
≤ C

∣∣∣∣ω0(X−t(x)

g(X−t(x))

∣∣∣∣
≤ C‖u0‖Sh .

Thus, ‖ω/g‖L∞([0,T ]×R2) <∞.

Finally, observe that

∥∥∥∥u− ukh

∥∥∥∥
L∞([0,T ]×L)

≤ C‖u− uk‖L∞([0,T ]×L) → 0,

so ∥∥∥u
h

∥∥∥
L∞([0,T ]×L)

≤ sup
k

∥∥∥uk
h

∥∥∥
L∞([0,T ]×R2)

<∞.

Since L was arbitrary, we in fact have

∥∥∥u
h

∥∥∥
L∞([0,T ]×R2)

<∞.

Thus, u ∈ L∞([0, T ];Sh,g).

Finally, we prove that u satisfies Serfati’s identity. Fix (t, x) ∈ [0, T ] × R2 and

λ > 0. First, by construction u0
k → u0 pointwise, and we demonstrated that

uk → u pointwise above.

Next, observe that by Hölder’s inequality and Lemma 1.4.3,

|[(aλKj) ∗ (ω(t)− ωk(t))](x)| ≤ C
3
√
λ‖ω − ωk‖L∞([0,T ];L3(Bλ(x))) → 0,

so that

[(aλK
j) ∗ ωk(t)](x)→ [(aλK

j) ∗ ω(t)](x).
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pointwise as k →∞. We can similarly show that

[(aλK
j) ∗ ω0

k](x)→ [(aλK
j) ∗ ω0](x).

Now let ε > 0 be arbitrary. To show convergence in the final term of Serfati’s

identity, choose R ≥ max{λ/2, h2(x)ε−1} large enough so that H[h2](R) < ε. Let

G = Bλ/2(x)c ∩BR(x). Observe

∣∣∣∣∫ t

0

[
(∇∇⊥[(1− aλ)Kj]) ∗· (u⊗ u− uk ⊗ uk)(s)

]
(x) ds

∣∣∣∣
≤ C(T )

∫ t

0

∫
Bλ/2(x)c

h(y)

|x− y|3
|u(s, y)− uk(s, y)| dy ds

≤ C(T )

(∫ t

0

∫
G

h(y)

|x− y|3
|u(s, y)− uk(s, y)| dy ds

+

∫ t

0

∫
BR(x)c

h(y)

|x− y|3
|u(s, y)− uk(s, y)| dy ds

)

=: C(T )(A(x, t) +B(x, t)).

Now

A(x, t) ≤ t‖u− uk‖L∞([0,T ]×G)

∫
G

h(y)

|x− y|3
dy

≤ t‖u− uk‖L∞([0,T ]×G)

(∫
G

h(x− y)

|x− y|3
dy + h(x)

∫
G

1

|x− y|3
dy

)
≤ Ct‖u− uk‖L∞([0,T ]×G)

(∫ R

λ
2

h(r)

r2
dy + h(x)

∫ R

λ
2

1

r2
dy

)

≤ Ct‖u− uk‖L∞([0,T ]×G)

(
H[h](λ/2) + h(x)

(
1

λ/2
− 1

R

))
≤ C(T, λ)‖u− uk‖L∞([0,T ]×G)h(x)

We choose k large enough so that

‖u− uk‖L∞([0,T ]×G) ≤
ε

h(x)
,
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meaning that A(x, t) ≤ Cε.

Furthermore,

B(x, t) =

∫ t

0

∫
BR(x)c

h2(y)

|x− y|3
|u(s, y)− uk(s, y)|

h(y)
ds dy

≤ C(T )

∫
BR(x)c

h2(y)

|x− y|3
dy

≤ C(T )

(
H[h2](R) +

h2(x)

R

)
.

Due to our choice of R, we have

B(x, t) ≤ Cε.

Since ε was arbitrary, it follows that

∫ t

0

[
(∇∇⊥[(1− aλ)Kj]) ∗· (uk ⊗ uk)(s)

]
(x) ds

→
∫ t

0

[
(∇∇⊥[(1− aλ)Kj]) ∗· (u⊗ u)(s)

]
(x) ds

pointwise as k →∞.

Combining the above results, we see that as we let k →∞ in Serfati’s identity

ujk(x) = (u0
k)
j(x) + [(aλK

j) ∗ (ωk(t)− ω0
k)](x)

+

∫ t

0

[(∇∇⊥[(1− aλ)Kj]) ∗· (uk ⊗ uk)(s)](x) ds,

we obtain

uj(x) = uj0(x)+[(aλK
j)∗(ω(t)−ω0)](x)+

∫ t

0

[(∇∇⊥[(1−aλ)Kj])∗· (u⊗u)(s)](x) ds

for each x ∈ R2, as desired.

Therefore, u is a solution to the Euler equations (in the sense of Definition 1.2.4)
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with initial data u0. �

2.4. Existence of Solutions with Quasibounded

Initial Vorticity

Before proving Theorem 1.2.8, we first must show that that the sequence of ap-

proximating initial vorticities, generated by some quasibounded initial vorticity,

is uniformly quasibounded. To do so, we need the following lemma.

Lemma 2.4.1. Let ξ ∈MPH(R2), let λ > 0, and let x ∈ R2. Then

∫
Bλ(x)

1

|x− ξ(y)|
dy ≤ 2πλ.

Proof. As in our argument to Lemma 1.4.3, we note that since |x−z|−1 is radially

symmetric about z = x and decreases as |x− z| increases, we calculate

∫
Bλ(x)

1

|x− ξ(y)|
dy ≤

∫
ξ(Bλ(x))

1

|x− z|
dz

≤
∫
Bλ(x)

1

|x− z|
dz

= 2πλ. �

Proposition 2.4.2. Let h, g be pre-growth bounds and let u0 ∈ Sh,g. Let (ω0
n) be

the sequence of approximating initial vorticities generated by u0. If ω0 ∈ Th, then

‖ω0
n‖Th ≤ C,

where C is independent of n.
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Proof. First, recall that

|ω0
n| =

∣∣∆(an(ψ0 ∗ νn)
)∣∣

≤ |∆an(ψ0 ∗ νn)|+ 2|∇⊥an · (u0 ∗ νn)|+ |an(ω0 ∗ νn)|.

Recall also that since ν has support within some ball BR(0) for some R > 0, νn

has support within BR/n(0). Now using Lemmas 1.4.3 and 1.5.1, we have for any

x ∈ R2, λ ≥ h(x), ξ ∈MPH(R2),

1

2πλ

∫
Bλ(x)

|∆an(y)(ψ0 ∗ νn)(y)|
|x− ξ(y)|

dy

≤ 1

2πλ

∫
Bλ(x)

|∆an(y)|
|x− ξ(y)|

(∫
R2

|ψ0(z)|νn(y − z) dz

)
dy

≤ 1

2πλ

∫
Bλ(x)∩Bn(0)

Cn−2

|x− ξ(y)|

(∫
BR/n(y)

|z|h(z)νn(y − z) dz

)
dy

≤ C

2πλ

∫
Bλ(x)∩Bn(0)

1

|x− ξ(y)|

(∫
BR/n(y)

νn(y − z) dz

)
dy

≤
C‖νn‖L1(R2)

2πλ

∫
Bλ(x)∩Bn(0)

1

|x− ξ(y)|
dy

≤ C,

where we used Lemma 1.3.3 and Lemma 2.4.1 together with the observation that

|z| ≤ n+R/n ≤ Cn whenever |y − z| ≤ R/n and |y| ≤ n. Similarly,

1

2πλ

∫
Bλ(x)

|∇⊥an(y) · (u0 ∗ νn)(y)|
|x− ξ(y)|

dy

≤ 1

2πλ

∫
Bλ(x)

|∇an(y)|
|x− ξ(y)|

(∫
R2

|u0(z)|νn(y − z) dz

)
dy

≤
‖u0/h‖L∞(R2)

2πλ

∫
Bλ(x)

Cn−11Bn(0)(y)

|x− ξ(y)|

(∫
BR/n(y)

h(z)νn(y − z) dz

)
dy

≤ C.
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Finally,

1

2πλ

∫
Bλ(x)

|ω0 ∗ νn(y)|
|x− ξ(y)|

dy

≤ 1

2πλ

∫
BR/n(0)

∫
Bλ(x)

|ω0(y − z)|
|x− ξ(y)|

νn(z) dy dz

=
1

2πλ

∫
BR/n(0)

νn(z)

∫
Bλ(x−z)

|ω0(α)|
|x− ξ(α− z)|

dα dz,

where we obtained the last step by substituting α = y − z. But noting that

ξz := ξ(· − z) ∈MPH(R2), we calculate for all |z| ≤ R/n ≤ R,

∫
Bλ(x−z)

|ω0(α)|
|x− ξz(α)|

dα ≤
∫
Bλ+R(x)

|ω0(α)|
|x− ξz(α)|

dα ≤ 2π(λ+R)‖ω0‖Th .

Thus,

1

2πλ

∫
Bλ(x)

|ω0 ∗ νn(y)|
|x− ξ(y)|

dy ≤ λ+R

λ
‖νn(z)‖L1(R2)‖ω0‖Th ≤ C. �

Now we are prepared to use Proposition 2.2.2 and theorem 2.3.1 to prove The-

orem 1.2.8.

Proof of Theorem 1.2.8. Let (un) be the approximating sequence generated

by u0. Observe that by Proposition 1.6.4 that X−tn (Bλ(x)) ⊂ Bλ̂n
(x) for any

x ∈ R2, where

λ̂n = λ̂n(t, x) = λ+ Ch(|x|+ λ)

(
1 +

∫ t

0

∥∥∥∥un(s)

h

∥∥∥∥
L∞(R2)

ds

)2

.
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Then by simple substitution, for λ ≥ h(x) we calculate

(
|Kλ| ∗ |ωn(t)− ω0

n|
)
(x) ≤ 1

2π

∫
Bλ(x)

|ω0
n(X−tn (y))− ω0

n(y)|
|x− y|

dy

≤ 1

2π

∫
Bλ̂n (x)

|ω0
n(z)|

|x−Xn(t, z)|
dz +

1

2π

∫
Bλ(x)

|ω0
n(y)|
|x− y|

dy

≤ ‖ω0
n‖Thλ̂n + ‖ω0

n‖Thλ

≤ C(λ̂n + λ),

where, by Proposition 2.4.2, C is independent of x, t, n.

In particular, if we set λ = h(x), then

λ̂n ≤ h(x) + Ch(x)

(
1 +

∫ t

0

∥∥∥∥un(s)

h

∥∥∥∥
L∞(R2)

)2

≤ h(x)

(
C + Ct

∫ t

0

∥∥∥∥un(s)

h

∥∥∥∥2

L∞(R2)

)
,

so that

(
|Kh(x)| ∗ |ωn(t)− ω0

n|
)

(x) ≤ h(x)

(
C + Ct

∫ t

0

∥∥∥∥un(s)

h

∥∥∥∥2

L∞(R2)

)
.

Existence of a solution on some interval [0, T ] follows from Proposition 2.2.2 and

Theorem 2.3.1.

To show that ‖ω(t)‖Th is uniformly bounded on [0, T ], we proceed similar to

above. Since X−tn (Bλ(x)) ⊂ Bλ̂(x)), where

λ̂(t, x) = λ+ Ch(|x|+ λ)

(
1 +

∫ t

0

∥∥∥∥u(s)

h

∥∥∥∥
L∞(R2)

ds

)2

,
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we calculate for any t ∈ [0, T ], x ∈ R2, λ ≥ h(x), and ξ ∈MPH(R2) that

1

2πλ

∫
Bλ(x)

|ω(t, y)|
|x− ξ(y)|

dy =
1

2πλ

∫
Bλ(x)

|ω0(X−t(y))|
|x− ξ(y)|

dy

≤ 1

2πλ

∫
Bλ̂(x)

|ω0(z)|
|x− ξ(X(t, z))|

dy

≤ λ̂

λ
‖ω0‖Th

≤ C(T ). �

In the following example, we use confined eddies (see Appendix A.2) to construct

initial data with quasibounded initial vorticity. By Theorem 1.2.8, there exists a

short-time solution to the Euler equations with this initial data.

Example 2.4.3. Let h be a well-posedness growth bound and let g be a pre-

growth bound. For each n, construct a confined eddy centered at xn = (n, 0) with

velocity ûn and vorticity ω̂n so that

• ‖ω̂n‖L∞(R2) = g(xn),

• the eddy has support on Brn(xn), where rn < (g(xn))−1 is small enough

so that ‖ûn‖L∞(R2) ≤ h(xn), and so the supports of the eddies are pairwise

disjoint.
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Note that by Lemma 1.4.3, for any x ∈ R2, λ > 1, ξ ∈MPH(R2) we have

∑
n

∫
Bλ(x)

|ω̂n(y)|
|x− ξ(y)|

dy ≤
∑

{n:Brn (xn)∩Bλ(x)6=∅}

∫
Brn (xn)

|ω̂n(y)|
|x− ξ(y)|

dy

≤
∑

{n:Brn (xn)∩Bλ(x)6=∅}

Crn‖ω̂n‖L∞(Brn (xn))

≤
∑

{n:Brn (xn)∩Bλ(x)6=∅}

Crng(xn)

≤
∑

{n:Brn (xn)∩Bλ(x) 6=∅}

C

≤ Cλ.

Now choose u0 ∈ Sh,1 with bounded vorticity ω0. Define

u0 = u0 +
∑
n

ûn,

ω0 = ω0 +
∑
n

ω̂n.

By construction and the observations above, it follows that u0 ∈ Sh,g with

ω0 ∈ Th. Thus, by Theorem 1.2.8, there is a short-time solution to the Euler

equations with initial data u0. �

2.5. Existence of Solutions with Stable Initial

Vorticity

We begin with several important results regarding stabilizers, including their re-

lationship with approximating initial data generated by stable initial data.

Proposition 2.5.1. Let h be a pre-growth bound and let φ be an h-stabilizer.

Then

‖φ/~‖L∞(R2) <∞.
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Proof. Observe,

|φ(x)− φ(0)| =
∣∣∣∣∫ 1

0

∇φ(αx) · x dα
∣∣∣∣

≤
∫ 1

0

|∇φ(αx)||x| dα

≤ C

∫ 1

0

|x|
h(α|x|)

dα

= C

∫ |x|
0

1

h(α)
dα

≤ C~(x). �

Proposition 2.5.2. Let h be a pre-growth bound and let φ be an h-stabilizer.

Then for any x1, x2 ∈ R2,

|φ(x2)− φ(x1)| ≤ C
|x1 − x2|

h(min{|x1|, |x2|})
.

Proof. Recall that by Lemma 1.3.5, 1/h is convex. Thus,

|φ(x1)− φ(x2)| =
∣∣∣∣∫ 1

0

∇φ(αx1 + (1− α)x2) · (x1 − x2) dα

∣∣∣∣
≤ C|x1 − x2|

∫ 1

0

1

h(αx1 + (1− α)x2)
dα

≤ C|x1 − x2|
∫ 1

0

α

h(x1)
+

1− α
h(x2)

dα

≤ C
|x1 − x2|

h(min{|x1|, |x2|})
. �

Definition 2.5.3. Let h be a pre-growth bound and let φ be an h-stabilizer. For

each n, let

φn = an(φ ∗ νn).

We call (φn) is the sequence of approximating stabilizers generated by φ.

Proposition 2.5.4. Let h, g be pre-growth bounds, and let u0 ∈ Sh,g with vor-
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ticity ω0 being stable with respect to some h-stabilizer φ. Let (u0
n) and (ω0

n) be,

respectively, the sequences of approximating initial velocities and initial vorticities

generated by u0, and let (φn) be the sequence of approximating stabilizers generated

by φ. Then for each n, φn is an h-stabilizer, and ω0
n is stable with respect to φn.

In particular,

‖ω0
n − φn‖L∞(R2) ≤ C,

where C does not depend on n.

Proof. First note that since φn is smooth and compactly supported, there exists

a constant C = C(n) so that |∇φn(x)| ≤ C/h(x). Thus, φn is an h-stabilizer.

And we can use Young’s convolution inequality together with Lemma 2.1.2 and

Lemma 1.5.1 to calculate

|ω0
n − φn| = |(ψ0 ∗ νn)∆an + 2∇⊥an · (u0 ∗ νn) + an(ω0 ∗ νn)− an(φ0 ∗ νn)|

≤ C1Bn(0)

∣∣∣∣ψ0 ∗ νn
n2

∣∣∣∣+ C1Bn(0)

∣∣∣u0 ∗ νn
n

∣∣∣+ |(ω0 − φ0) ∗ νn|

≤ C
∥∥∥u0

h

∥∥∥
L∞(R2)

+ ‖ω0 − φ‖L∞(R2)‖νn‖L1(R2)

≤ C
∥∥∥u0

h

∥∥∥
L∞(R2)

+ ‖ω0 − φ‖L∞(R2). �

Proposition 2.5.5. Let h be a pre-growth bound and φ an h-stabilizer. Let (φn) be

the sequence of approximating stabilizers generated by φ, and let (un) be a sequence

of time-dependent vector fields with associated flow maps (Xn). Then there exists

a constant C independent of n so that

‖φn(Xn(t2))− φn(Xn(t1))‖L∞(R2) ≤ C

∫ t2

t1

∥∥∥∥un(s)

h

∥∥∥∥
L∞(R2)

ds.
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Proof. We calculate

|∇φn| = |∇(an(φ ∗ νn))|

≤ |∇an||φ ∗ νn|+ |an||∇φ ∗ νn|

≤ C

n
1Bn(0)|φ ∗ νn|+ |∇φ ∗ νn|.

But by Lemma 1.3.6 and proposition 2.5.1,

C

n
1Bn(0)(x)|(φ ∗ νn)(x)| ≤ C

n
1Bn(0)(x)

∫
R2

|φ(x− y)|νn(y) dy

≤ C

n
1Bn(0)(x)

∫
R2

C|x− y|+ C

h(x− y)
νn(y) dy

≤ C

n

∫
R2

C
(
n+ R

n

)
+ C

h(x− y)
νn(y) dy

≤ C

∫
R2

1

h(x− y)
νn(y) dy.

Also,

|(∇φ ∗ νn)(x)| ≤
∫
R2

|∇φ(x− y)|νn(y) dy

≤ C

∫
R2

1

h(x− y)
νn(y) dy.

Then recalling that ν is supported in BR(0) for some R > 0, we have

|∇φn(x)| ≤ C

∫
BR/n(0)

1

h(x− y)
νn(y) dy.

Now for |y| ≤ R/n and any x ∈ R2,

h(x) ≤ h(x− y) + h(y) ≤ h(x− y) + h(R) ≤ h(x− y) + Ch(0) ≤ Ch(x− y).

But then

|∇φn(x)| ≤ C

h(x)

∫
R2

νn(y) dy ≤ C

h(x)
,
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where C is independent of n.

We now proceed as in Lemma 1.3.8. Observe that for each x ∈ R2,

|φn(Xn(t2, x))− φn(Xn(t1, x))| ≤
∫ t2

t1

|∇φn(Xn(s, x))||un(x,Xn(s, x))| ds

≤
∫ t2

t1

C

h(Xn(s, x))
|un(x,Xn(s, x))| ds

≤ C

∫ t2

t1

∥∥∥∥un(s)

h

∥∥∥∥
L∞(R2)

. �

Proposition 2.5.6. Let h, g be pre-growth bounds, and let u0 ∈ Sh,g. Assume

ω0 is stable relative to some h-stabilizer φ. If there exists a solution to the Euler

equations u ∈ L∞([0, T ];Sh,g) with initial data u0 for some T > 0, then

‖ω(t)− φ‖L∞(R2) < C(T ),

‖ω(t)− ω0‖L∞(R2) < C(T ),

where ω = ∇× u, for all t ∈ [0, T ].

Proof. Let X be the flow map associated with u. For any t ∈ [0, T ], x ∈ R2, we

calculate

‖ω(t)− φ‖L∞(R2) ≤ ‖ω0(X−t)− φ(X−t)‖L∞(R2) + ‖φ(X−t)− φ‖L∞(R2) ≤ C(T ),

where we used the stability of ω0 and Proposition 2.5.5. But then

‖ω(t)− ω0‖L∞(R2) ≤ ‖ω(t)− φ‖L∞(R2) + ‖φ− ω0‖L∞(R2) ≤ C(T ). �

We are now prepared to prove Theorem 1.2.9. As in our argument to Theo-

rem 1.2.8, we shall do so by applying Proposition 2.2.2 and theorem 2.3.1.

Proof of Theorem 1.2.9. Let (un) be the approximating sequence generated
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by u0. Observe that for each n,

|ωn(t, x)− ω0
n(x)| = |ω0

n(X−tn (x))− ω0
n(x)|

≤ |ω0
n(X−tn (x))− φn(X−tn (x))|

+ |φn(X−tn (x))− φn(x)|+ |φn(x)− ω0
n(x)|.

But then, noting that X−tn (x) = Xn(0, X−t(x)) and x = Xn(t,X−tn (x)), by Propo-

sitions 2.5.4 and 2.5.5, we have

∥∥ωn(t)− ω0
n

∥∥
L∞(R2)

≤ C + C

∫ t

0

∥∥∥∥un(s)

h

∥∥∥∥
L∞(R2)

ds,

where C is independent of n. Applying Hölder’s inequality gives

‖ωn(t)− ω0
n‖L∞(R2) ≤ C + C

√
t

(∫ t

0

∥∥∥∥un(s)

h

∥∥∥∥2

L∞(R2)

) 1
2

.

Thus,

|Kλ| ∗ |ωn(t)− ω0
n| ≤ ‖Kλ‖L1(R2)‖ωn(t)− ω0

n‖L∞(R2)

≤ Cλ

1 +
√
t

(∫ t

0

∥∥∥∥un(s)

h

∥∥∥∥2

L∞(R2)

ds

) 1
2

 .

Then Proposition 2.2.2 and Theorem 2.3.1 give existence. And Proposition 2.5.6

guarantees that ω(t) is uniformly stable relative to φ over [0, T ]. �

Observe that any bounded initial vorticity is also stable with respect to the

stabilizer φ ≡ 0. Such initial data is, in some sense, trivial: while it does satisfy

the conditions of Theorem 1.2.9, since the initial vorticity is bounded, existence is

already guaranteed by Theorem 1.1.5.

Discovering non-trivial examples of initial data—that is, initial data with un-

bounded vorticity—satisfying the conditions of Theorem 1.2.9 has proven difficult.
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A natural way to go about trying to construct such initial data is to attempt to

find a smooth, unbounded initial vorticity ω0 so that ω0 can be its own stabilizer;

that is, so ‖h∇ω0‖L∞ <∞.

While this approach has not yet yielded an example of non-trivial initial data,

it has allowed us to approach the threshold. In fact, in Example 2.5.7 below, we

have

∥∥∥u0

h

∥∥∥
L∞(R2)

<∞,

‖ω0‖L∞(R2) <∞,

‖h∇ω0‖L∞(R2) <∞.

The first and third bounds are required to satisfy the conditions of Theorem 1.2.9,

and the bounds are tight. As such, any attempt to modify the second bound to

allow some growth in the vorticity breaks the other two bounds.

Example 2.5.7 also demonstrates that there exists initial data with the velocity

growing like a well-posedness growth bound and non-decaying vorticity. Cozzi and

Kelliher in [4] prove the short-time existence and uniqueness of solutions with such

initial data, but they did not provide an example with growing initial velocity and

non-decaying initial vorticity.

Example 2.5.7. Let û 6= 0 be the velocity field of a confined eddy with support

in BR(0), and let h be a well-posedness growth bound. Choose a sequence of

points (yn) in R2 so that the family of sets (Bh(yn)R(yn)) is pairwise disjoint. (For

example, we could choose yn so that |yn| = (2n− 1)h(yn)R for each n.) For each

n, define

ûn(x) := h(yn)û

(
1

h(yn)
(x− yn)

)
.

Note that, by construction, the supports of the vn are pairwise disjoint. Also,
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letting ω̂n = ∇× ûn for each n, observe that

‖ûn/h‖L∞(R2) ≤ C,

‖ω̂n‖L∞(R2) ≤ C,

‖h∇ω̂n‖L∞(R2) ≤ C,

where C is independent of n.

Now choose u0 ∈ Sh,1 with bounded vorticity ω0. Define

u0 = u0 +
∑
n

ûn,

ω0 = ω0 +
∑
n

ω̂n,

φ =
∑
n

ω̂n.

By construction, φ is an h-stabilizer, and u0 ∈ Sh,g with ω0 stable relative to

φ. Thus, there is a short time solution to the Euler equations with initial data

u0. �
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3. Uniqueness for Stable Initial

Vorticity

3.1. A Tighter Bound on the Modulus of

Continuity of the Velocity

In Section 1.5, we established a log-Lipschitz bound on the modulus of continuity

for functions u ∈ Sh,g, where h, g are pre-growth bounds. However, we will need a

slightly tighter bound on the modulus of continuity to establish uniqueness. To do

so, we will assume that h is a well-posedness growth bound and u ∈ L∞([0, T ];Sh,g)

for some T > 0 is a solution to the Euler equations with stable vorticity. Then we

will use Serfati’s identity.

Our approach here is an adaptation of Lemma 2.3.1 in [13] and Lemma 2.10

in [6]. However, we substitute Serfati’s identity in place of the Biot-Savart law,

and, unlike [13], we consider data supported in all of R2 instead of just in a

bounded domain.

Proposition 3.1.1. Let u ∈ L∞([0, T ];Sh,g) be a solution to the Euler equations

with stable initial vorticity, where h is a well-posedness growth bound and g is a

pre-growth bound. Then for any x, y ∈ R2 such that |y| ≤ C(1 + |x|) and all
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t ∈ [0, T ],

|u(t, x+ y)− u(t, x)| ≤ |u0(x+ y)− u0(x)|+ C(T )h(x)µ

(
|y|
h(x)

)
.

Proof. Taking the difference of Serfati’s identity evaluated at (t, x+ y) and (t, x)

gives us

|u(t, x+ y)− u(t, x)|

≤ |u0(x+ y)− u0(x)|

+
∣∣aλK ∗ ((ω(t, x+ y)− ω0(x+ y))− (ω(t, x)− ω0(x))

)∣∣
+

∫ t

0

∣∣[∇∇⊥(1− aλ)K] ∗ ·
(
u⊗ u(s, x+ y)− u⊗ u(s, x)

)∣∣ ds
=: |u0(x+ y)− u0(x)|+ I1 +

∫ t

0

I2 ds.

To bound I1, we proceed as in lemma 2.3.1 of [13]. First set A = {z : |x− z| ≤

2|y|} and B = {z : |x− z| ≤ |y|+ λ}, where λ > |y|. (See fig. 3.1.) We note that

supp aλ((x+ y)− ·)∪ supp aλ(x− ·) ⊂ B. Then, using Proposition 2.5.6, we have

I1 ≤
∫
B

∣∣aλK(x+ y − z)− aλK(x− z)
∣∣∣∣ω(t, z)− ω0(z)

∣∣ dz
≤ C(T )

∫
B

∣∣aλK(x+ y − z)− aλK(x− z)
∣∣ dz

≤ C(T )

∫
A

∣∣aλK(x+ y − z)− aλK(x− z)
∣∣ dz

+ C(T )

∫
Ac∩B

∣∣aλK(x+ y − z)− aλK(x− z)
∣∣ dz

=: C(T )(I1
1 + I2

1 ).
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x x+ y

|y|
|y| λ

λ

A

B

supp a
λ (x− ·)

supp a
λ ((x+

y)− ·)

Figure 3.1. Regions of integration involved in bounding I1
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A brute force approach to I1
1 gives

I1
1 ≤

1

2π

∫
A

1

|x+ y − z|
+

1

|x− z|
dz

≤ 1

2π

∫
|x−z|≤3|y|

1

|x− z|
dz +

1

2π

∫
A

1

|x− z|
dz

≤ C

∫
|x−z|≤3|y|

1

|x− z|
dz

≤ C|y|.

To bound I2
1 , we apply the mean value theorem. Specifically, for each fixed z ∈ R2

there exists some xz on the line segment joining x and x+ y so that

∣∣aλK(x+ y − z)− aλK(x− z)
∣∣≤ |y|∣∣∇(aλK)(xz − z)

∣∣.
Then noting that |xz − z| ≥ 1

2
|x− z| for all z ∈ Ac, we have

I2
1 ≤ |y|

∫
Ac∩B

∣∣∇(aλK)(xz − z)
∣∣ dz

≤ |y|
∫
Ac∩B

1

|xz − z|2
dz

≤ C|y|
∫
Ac∩B

1

|x− z|2
dz

≤ C|y|
∫ |y|+λ

2|y|

1

r
dr

≤ C|y| log
|y|+ λ

2|y|
,

Note that to this point, we have not specified the value of λ, requiring only

that λ > |y|. To get a favorable bound on I2, we now choose λ = 6|y| + 2h(x).

Since
[
supp(1− aλ(ξ − ·))

]c
is a ball of radius λ/2 centered at ξ, this implies that

supp(1 − aλ(x − ·)) ∪ supp(1 − aλ(x + y − ·)) ⊂ D, where D = {z : |x − z| >

2|y|+h(x)}. We note also that D ⊂ Ac. (See fig. 3.2.) We proceed to bound I2 in

a manner similar to our approach to I2
1 above, but using Lemmas 1.3.1 and 1.3.3:

67



x x+ y

2|y|

h(x)

λ/2

λ/2

Ac
D

supp(1− aλ(x− ·)) ∪ supp(1− aλ((x+ y)− ·))

Figure 3.2. Regions of integration involved in bounding I2
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I2 ≤
∫
D

∣∣∇∇⊥[(1− aλ)K(x+ y − z)− (1− aλ)K(x− z)]
∣∣|u⊗ u(s, z)| dz

≤ C(T )

∫
D

∣∣∇∇⊥[(1− aλ)K(x+ y − z)− (1− aλ)K(x− z)]
∣∣h2(z) dz

≤ C(T )|y|
∫
D

∣∣∇∇∇⊥[(1− aλ)K(xz − z)]
∣∣h2(z) dz

≤ C(T )|y|
∫
D

h2(z)

|xz − z|4
dz

≤ C(T )|y|
∫
D

h2(z)

|x− z|4
dz

≤ C(T )|y|
∫
D

h2(x− z)

|x− z|4
+

h2(x)

|x− z|4
dz

≤ C(T )|y|
∫
D

c|x− z|+ d

|x− z|4
+

h2(x)

|x− z|4
dz

≤ C(T )|y|
∫
D

1

|x− z|3
+

h2(x)

|x− z|4
dz

≤ C(T )|y|
∫ ∞

2|y|+h(x)

1

r2
+
h2(x)

r3
dr

≤ C(T )|y|
(

1

2|y|+ h(x)
+

h2(x)

(2|y|+ h(x))2

)
≤ C(T )|y|.

Synthesizing the above results with our choice of λ yields

|u(t, x+ y)− u(t, x)| ≤ |u0(x+ y)− u0(x)|+ C(T )|y|
(

1 + log
7|y|+ 2h(x)

2|y|

)
≤ |u0(x+ y)− u0(x)|+ C(T )|y| log

(
c+

h(x)

|y|

)
.

A simple exercise in calculus establishes that there exists some constant C so that

log

(
c+

h(x)

|y|

)
≤ C log

(
h(x)

|y|

)

so long as |y|/h(x) ≤ e−1, proving the result in this case. The result when
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|y|/h(x) > e−1 follows as in the proof of Proposition 1.5.2. �

3.2. Proof of Uniqueness for Stable Initial

Vorticity

The following proof is almost identical to theorem 1.7 in [4]; we include it for

completeness.

Proof of Theorem 1.2.10. We first introduce several functions to simplify no-

tation. Set

η(t) :=

∥∥∥∥X1(t, x)−X2(t, x)

h(x)

∥∥∥∥
L∞x (R2)

,

L(t) :=

∥∥∥∥u1(t,X1(t, x))− u2(t,X2(t, x))

h(x)

∥∥∥∥
L∞x (R2)

,

M(t) :=

∫ t

0

L(s) ds,

Q(t) :=

∥∥∥∥u1(t)− u2(t)

h

∥∥∥∥
L∞(R2)

.

First, note that

η(t) ≤
∥∥∥∥∫ t

0

u1(s,X1(s, x))− u2(s,X2(s, x))

h(x)
ds

∥∥∥∥
L∞x (R2)

≤
∫ t

0

L(s) ds = M(t).

(3.1)

Setting

A(s, x) :=
u2(s,X1(s, x))− u2(s,X2(s, x))

h(x)
,

B(s, x) :=
u2(s,X1(s, x))− u1(s,X1(s, x))

h(x)
,

we see that

L(s) ≤ ‖A(s, x)‖L∞x (R2) + ‖B(s, x)‖L∞x (R2).

70



To bound A, we first note that Lemmas 1.3.3 and 1.6.1 imply that

|X1(s, x)−X2(s, x)| ≤ C(T )h(x) ≤ C(T )(1 + |x|).

Then we can apply Proposition 3.1.1 to obtain

|A(s, x)| ≤ C(T )µ(η(s)). (3.2)

To bound B, we will apply Serfati’s identity to each velocity field with λ(x) =

h(x). This yields

|B(s, x)| ≤ 1

h(x)
(|B1(s, x)|+ |B2(s, x)|),

where

B1(s, x) =
[
(ah(x)K) ∗ (ω2(s)− ω1(s))

]
(X1(s, x))

B2(s, x) =

∫ s

0

(
∇∇⊥[(1− ah(x))K] ∗· (u1 ⊗ u1 − u2 ⊗ u2)

)
(r,X1(s, x)) dr.

Now

B1(s, x) =

∫
R2

(ah(x)K(X1(s, x)− y))(ω0(X−s2 (y))− ω0(X−s1 (y))) dy

≤
∫
R2

(ah(x)K(X1(s, x)− y))(ω0(X−s2 (y))− φ(X2(s,X−s2 (y)))) dy

+

∫
R2

(ah(x)K(X1(s, x)− y))(φ(X2(s,X−s2 (y)))− φ(X2(s,X−s1 (y)))) dy

+

∫
R2

(ah(x)K(X1(s, x)− y))(φ(X2(s,X−s1 (y)))− ω0(X−s1 (y))) dy.

Substituting y = X2(s, z) in the first integral and y = X1(s, z) in the third integral
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yields

B1(s, x) ≤
∫
R2

(ah(x)K(X1(s, x)−X2(s, z))− ah(x)K(X1(s, x)−X1(s, z)))Ω(s, z) dz

+

∫
R2

(ah(x)K(X1(s, x)− y))(φ(X2(s,X−s2 (y)))− φ(X2(s,X−s1 (y)))) dy

=: B1
1(s, x) +B2

1(s, x),

where

Ω(s, z) = ω0(z)− φ(X2(s, z)).

But by Proposition 2.5.5,

|Ω(s, z)| ≤ |ω0(z)− φ(z)|+ |φ(z)− φ(X2(s, z))| ≤ C(T ),

so that, by Lemmas 1.4.6 and 1.6.3, we have

|B1
1(s, x)| ≤ C(T )h(x)µ(η(s)). (3.3)

Next, using the observation that X2(s,X−s2 (y)) = y = X1(s,X−s1 (y)) together

with (1.7) and Proposition 2.5.2, we have

|φ(X2(s,X−s2 (y)))− φ(X2(s,X−s1 (y)))|

= |φ(X1(s,X−s1 (y)))− φ(X2(s,X−s1 (y)))|

≤ |X1(s,X−s1 (y))−X2(s,X−s1 (y))|
min{h(X1(s,X−s1 (y))), h(X2(s,X−s1 (y)))}

≤ C(T )
|X1(s,X−s1 (y))−X2(s,X−s1 (y))|

h(X−s1 (y))

≤ C(T )η(s).
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Thus, Lemma 1.4.2 implies

|B2
1(s, x)| ≤ C(T )h(x)η(s). (3.4)

Combining (3.3) and (3.4) and gives us

|B1(s, x)| ≤ C(T )h(x)(µ(η(s)) + η(s)). (3.5)

To bound B2, we first observe that by Lemma 1.4.8,

B2(s, x) ≤ C(T )(H[h2](h(x)/2) + h(x))

∫ s

0

Q(r) dr

≤ C(T )(H[h2](h(0)/2) + h(x))

∫ s

0

Q(r) dr

≤ C(T )(1 + h(x))

∫ s

0

Q(r) dr.

But (1.7) and Proposition 3.1.1 imply

Q(r) ≤
∥∥∥∥u1(r,X1(r, y))− u2(r,X1(r, y))

h(X1(r, y))

∥∥∥∥
L∞y (R2)

≤
∥∥∥∥u1(r,X1(r, y))− u2(r,X2(r, y))

h(X1(r, y))

∥∥∥∥
L∞y (R2)

+

∥∥∥∥u2(r,X1(r, y))− u2(r,X2(r, y))

h(X1(r, y))

∥∥∥∥
L∞y (R2)

≤ C(T )

(
L(r) +

∥∥∥∥µ( |X1(r, y)−X2(r, y)|
h(X1(r, y))

)∥∥∥∥
L∞y (R2)

)

≤ C(T ) (L(r) + µ(C(T )η(r))) .

(3.6)

Thus,

|B2(s, x)| ≤ C(T )(1 + h(x))

∫ s

0

L(r) + µ(C(T )η(r)) dr. (3.7)
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Bounds (3.5) and (3.7) and yield

|B(s, x)| ≤ C(T )
(
µ(η(s)) + η(s)

)
+ C(T )

∫ s

0

L(r) + µ(C(T )η(r)) dr. (3.8)

Thus, combining (3.2) and (3.8), we obtain

L(s) ≤ C(T )

(
µ(η(s)) + η(s) +

∫ s

0

L(r) + µ(C(T )η(r)) dr

)
. (3.9)

Then recalling (3.1) and observing that M is an increasing function, we calculate

M(t) ≤ C(T )

∫ t

0

µ(η(s)) + η(s) +

∫ s

0

L(r) + µ(C(T )η(r)) dr ds

≤ C(T )

∫ t

0

µ(M(s)) +M(s) +

∫ s

0

µ(C(T )M(r)) dr ds

≤ C(T )

∫ t

0

µ(C(T )M(s)) +M(s) ds.

Then by Osgood’s lemma,

∫ M(t)

0

dα

µ(C(T )α) + α
≤ C(T )t. (3.10)

But α ≤ −C(T )α log(C(T )α) = µ(C(T )α) for α ≤ 1/(C(T )e) and, for any β ∈

(0, 1/(C(T )e)],

∫ β

0

dα

µ(C(t)α)
=

∫ β

0

dα

−C(T )α log(C(T )α)

= − 1

C(T )
log logα

∣∣∣C(T )β

0

=∞.

Then (3.10) can only be satisfied if M(t) = 0 for all t ∈ [0, T ]. But then (3.1)

and (3.6) imply that η(t) = L(t) = Q(t) = 0 for all t ∈ [0, T ]. So the solution to the

Euler equations in Sh,g on [0, T ] with the stated initial coniditions is unique. �
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A. Appendix

A.1. Osgood’s Lemma

Osgood’s lemma is a generalization of Grönwall’s inequality. The short proof below

is attributed to Tehranchi; see [10].

Lemma A.1.1 (Osgood’s Lemma). Let L be a measurable nonnegative function

and γ a nonnegative locally integrable function, each defined on [t0, t1]. Let µ :

[0,∞)→ [0,∞) be continuous and nondecreasing. Suppose that for all t ∈ [t0, t1],

L(t) ≤ a+

∫ t

t0

γ(s)µ(L(s)) ds. (A.1)

If a > 0, then for each t ∈ [t0, t1],

∫ L(t)

a

ds

µ(s)
≤
∫ t1

t0

γ(s) ds.

Proof. Observe that

∫ L(t)

a

dx

µ(x)
≤
∫ a+

∫ t
t0
γ(u)µ(L(u)) du

a

dx

µ(x)

≤
∫ t1

t0

γ(s)µ(L(s))

µ(a+
∫ s
t0
γ(u)µ(L(u)) du)

ds

≤
∫ t1

t0

γ(s) ds,

where we used (A.1) together with the assumption that µ is nondecreasing. �
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A.2. Confined Eddies

Let ω0(r) be a radially symmetric smooth function, where r = |x|. Note that we

can find a stream function ψ0, which is a solution to the equation ∆ψ0 = ω0, which

is radial as well since the Laplacian is rotationally invariant. Then it is simple to

calculate that

u0 = ∇⊥ψ0 =
x⊥

r
ψ′0, (A.2)

ω0 = ∆ψ0 = ψ′′0 +
1

r
ψ′0. (A.3)

But (A.3) implies that

ψ′0(r) =
1

r

∫ r

0

sω0(s) ds,

so that

u0(x) =
x⊥

r2

∫ r

0

sω0(s) ds.

Solutions to the Euler equations with such radial initial data are steady; see [12].

We call such a solution a steady radial eddy.

A confined eddy is a steady radial eddy with compactly supported velocity. In

[9], the authors establish the rate of convergence of solutions of the Navier-Stokes

equations to that of the Euler equations in the vanishing viscosity limit when the

initial vorticity is a superposition of confined eddies having disjoint supports; our

interest in confined eddies is primarily in their versatility in constructing a rich

class of solutions to the Euler equations.

Two properties of confined eddies make them especially useful for our purposes.

First, since confined eddies have compact support, we can superimpose confined

eddies with disjoint supports without the eddies interacting.

Second, note that we can construct a confined eddy with an arbitrarily large

L∞ bound on the vorticity and yet with an arbitrarily small L∞ bound on the
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velocity by requiring the eddy have sufficiently small support. Indeed, observe

that if suppu0 ∈ BR(0), then

‖u0‖L∞(R2) = ‖ψ′0‖L∞(R2) ≤
R

2
‖ω0‖L∞(R2).

Thus, we can guarantee ‖u0‖L∞(R2) < ε for any ε > 0—no matter how large

‖ω0‖L∞(R2) <∞ is—as long as 0 < R < 2ε/‖ω0‖L∞(R2).

Confined eddies provide a simple yet versatile class of solutions to the Euler

equations that we use as a building block in the initial data we construct in Exam-

ples 2.4.3 and 2.5.7. While superpositions of confined eddies with disjoint supports

only yield stationary solutions to the Euler equations, even small perturbations to

the initial data will lead to time evolving solutions.
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